Li, Jihui; Song, Yunna; Ma, Zheng; Li, Ning; Niu, Shuai; Li, Yongshen
2018-05-01
In this article, flake graphite, nitric acid, peroxyacetic acid and phosphoric acid are used to prepare graphene oxide phosphonic and phosphinic acids (GOPAs), and GOPAs and polyvinyl alcohol (PVA) are used to synthesize polyvinyl alcohol graphene oxide phosphonate and phosphinate (PVAGOPs) in the case of faint acidity and ultrasound irradiation, and PVAGOPs are used to fabricate PVAGOPs film, and the structure and morphology of GOPAs, PVAGOPs and PVAGOPs film are characterized, and the thermal stability and mechanical properties of PVAGOPs film are investigated. Based on these, it has been proved that GOPAs consist of graphene oxide phosphonic acid and graphene oxide phosphinic acid, and there are CP covalent bonds between them, and PVAGOPs are composed of GOPAs and PVA, and there are six-member lactone rings between GOPAs and PVA, and the thermal stability and mechanical properties of PVAGOPs film are improved effectively. Copyright © 2018 Elsevier B.V. All rights reserved.
Steininger, H; Schuster, M; Kreuer, K D; Kaltbeitzel, A; Bingöl, B; Meyer, W H; Schauff, S; Brunklaus, G; Maier, J; Spiess, H W
2007-04-21
The melting behaviour and transport properties of straight chain alkanes mono- and difunctionalized with phosphonic acid groups have been investigated as a function of their length. The increase of melting temperature and decrease of proton conductivity with increasing chain length is suggested to be the consequence of an increasing ordering of the alkane segments which constrains the free aggregation of the phosphonic acid groups. However, the proton mobility is reduced to a greater extent than the proton diffusion coefficient indicating an increasing cooperativity of proton transport with increasing length of the alkane segment. The results clearly indicate that the "spacer concept", which had been proven successful in the optimization of the proton conductivity of heterocycle based systems, fails in the case of phosphonic acid functionalized polymers. Instead, a very high concentration of phosphonic acid functional groups forming "bulky" hydrogen bonded aggregates is suggested to be essential for obtaining very high proton conductivity. Aggregation is also suggested to reduce condensation reactions generally observed in phosphonic acid containing systems. On the basis of this understanding, the proton conductivities of poly(vinyl phosphonic acid) and poly(meta-phenylene phosphonic acid) are discussed. Though both polymers exhibit a substantial concentration of phosphonic acid groups, aggregation seems to be constrained to such an extent that intrinsic proton conductivity is limited to values below sigma = 10(-3) S cm(-1) at T = 150 degrees C. The results suggest that different immobilization concepts have to be developed in order to minimize the conductivity reduction compared to the very high intrinsic proton conductivity of neat phosphonic acid under quasi dry conditions. In the presence of high water activities, however, (as usually present in PEM fuel cells) the very high ion exchange capacities (IEC) possible for phosphonic acid functionalized ionomers (IEC >10 meq g(-1)) may allow for high proton conductivities in the intermediate temperature range (T approximately 120 -160 degrees C).
Li, Jihui; Li, Yongshen; Song, Yunna; Niu, Shuai; Li, Ning
2017-11-01
In this paper, polyvinyl alcohol/phytic acid polymer (PVA/PA polymer) was synthesized through esterification reaction of PVA and PA in the case of acidity and ultrasound irradiation and characterized, and PVA/PA polymer film was prepared by PVA/PA polymer and characterized, and the influence of dosage of PA on the thermal stability, mechanical properties and surface resistivity of PVA/PA polymer film were researched, and the influence of sonication time on the mechanical properties of PVA/PA polymer film was investigated. Based on those, it was concluded that the hydroxyl group on the chain of PVA and the phosphonic group on PA were connected together in the form of phosphonate bond, and the hydroxyl group on the chain of PVA were connected together in the form of ether bond after the intermolecular dehydration; in the meantime, it was also confirmed that PVA/PA polymer film prepared from 1.20mL of PA not only had the high thermal stability and favorable ductility but also the low surface resistivity in comparison with PVA/PA polymer film with 0.00mL of PA, and the ductility of PVA/PA polymer film was very sensitive to the sonication time. Copyright © 2017. Published by Elsevier B.V.
Li, Yongshen; Song, Yunna; Li, Jihui; Li, Yuehai; Li, Ning; Niu, Shuai
2018-04-01
In this article, polyvinyl alcohol/phytic acid polymer (PVA/PA polymer) is synthesized from PVA and PA via the esterification reaction of PVA and PA in the case of acidity and ultrasound irradiation, and PVA/PA polymer sponge is prepared via foaming PVA/PA polymer in the presence of n-pentane and ammonium bicarbonate, and the structure of PVA/PA polymer and the structure, morphology and crystallinity of PVA/PA polymer sponge are characterized, and the thermal stability and surface resistivity of PVA/PA polymer sponge are investigated. Based on these, it has been attested that PVA/PA polymer synthesized under the acidity and ultrasound irradiation and PVA/PA polymer sponge are structured by the chain of PVA and the cricoid PA connected in the form of ether bonds and phosphonate bonds, and the thermal stability of PVA/PA polymer sponge attains 416.5 °C, and the surface resistivity of PVA/PA polymer sponge reaches 5.76 × 10 4 ohms/sq. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sahiner, Nurettin; Sagbas, Selin
2014-01-01
Novel poly(vinyl phosphonic acid) (p(VPA)) micro particle and composite p(VPA)-silica micro particle hydrogels are synthesized using a micro-emulsion polymerization technique. Porous p(VPA) particles are generated after removal of silica particles upon treatment of composite p(VPA) with 0.5 M NaOH solution. Bare, composite with silica, and porous p(VPA) micro particle hydrogels are used as templates and as reactors. Metal nanoparticles, Co, Ni, and Cu are generated in situ inside these hydrogels by chemical reduction of the absorbed metal ions with a reducing agent such as sodium boron hydride (NaBH4), and are used as catalyst in hydrogen production by hydrolysis of NaBH4 in a basic medium and ammonia borane (AB). The effects of reloaded metal ions, the reaction temperature, the porosity, the reusability, and the type of metal (Co, Ni, Cu) are investigated. The activation energy for hydrolysis of NaBH4, and AB by p(VPA)-Co is 28.02 and 25.51 kJ mol-1, respectively. The mass susceptibility measurements of composite p(VPA)-Co microgel is found as ferromagnetic. It is found that p(VPA) microgels provided better catalytic performance in comparison to macro p(VPA) hydrogels due to improved properties such as higher surface area, pore structure, and inherently magnetic behavior after multiple loadings-reduction of Co(II) from aqueous medium.
Preparation of proton conducting membranes containing bifunctional titania nanoparticles
NASA Astrophysics Data System (ADS)
Aslan, Ayşe; Bozkurt, Ayhan
2013-07-01
Throughout this work, the synthesis and characterization of novel proton conducting nanocomposite membranes including binary and ternary mixtures of sulfated nano-titania (TS), poly(vinyl alcohol) (PVA), and nitrilotri(methyl phosphonic acid) (NMPA) are discussed. The materials were produced by means of two different approaches where in the first, PVA and TS (10-15 nm) were admixed to form a binary system. The second method was the ternary nanocomposite membranes including PVA/TS/NMPA that were prepared at several compositions to get PVA-TS-(NMPA) x . The interaction of functional nano particles and NMPA in the host matrix was explored by FT-IR spectroscopy. The homogeneous distribution of bifunctional nanoparticles in the membrane was confirmed by SEM micrographs. The spectroscopic measurements and water/methanol uptake studies suggested a complexation between PVA and NMPA, which inhibited the leaching of the latter. The thermogravimetry analysis results verified that the presence of TS in the composite membranes suppressed the formation of phosphonic acid anhydrides up to 150 °C. The maximum proton conductivity has been measured for PVA-TS-(NMPA)3 as 0.003 S cm-1 at 150 °C.
McNichols, Brett W.; Koubek, Joshua T.; Sellinger, Alan
2017-10-27
Here, we have developed a single step palladium-catalyzed Heck coupling of aryl halides with vinyl phosphonic acid to produce functionalized (E)-styryl phosphonic acids. This pathway utilizes a variety of commercially available aryl halides, vinyl phosphonic acid and Pd(P(tBu) 3) 2 as catalyst. These conditions produce a wide range of styryl phosphonic acids with high purities and good to excellent yields (31–80%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNichols, Brett W.; Koubek, Joshua T.; Sellinger, Alan
Here, we have developed a single step palladium-catalyzed Heck coupling of aryl halides with vinyl phosphonic acid to produce functionalized (E)-styryl phosphonic acids. This pathway utilizes a variety of commercially available aryl halides, vinyl phosphonic acid and Pd(P(tBu) 3) 2 as catalyst. These conditions produce a wide range of styryl phosphonic acids with high purities and good to excellent yields (31–80%).
Phosphonic acid: preparation and applications
Sevrain, Charlotte M; Berchel, Mathieu; Couthon, Hélène
2017-01-01
The phosphonic acid functional group, which is characterized by a phosphorus atom bonded to three oxygen atoms (two hydroxy groups and one P=O double bond) and one carbon atom, is employed for many applications due to its structural analogy with the phosphate moiety or to its coordination or supramolecular properties. Phosphonic acids were used for their bioactive properties (drug, pro-drug), for bone targeting, for the design of supramolecular or hybrid materials, for the functionalization of surfaces, for analytical purposes, for medical imaging or as phosphoantigen. These applications are covering a large panel of research fields including chemistry, biology and physics thus making the synthesis of phosphonic acids a determinant question for numerous research projects. This review gives, first, an overview of the different fields of application of phosphonic acids that are illustrated with studies mainly selected over the last 20 years. Further, this review reports the different methods that can be used for the synthesis of phosphonic acids from dialkyl or diaryl phosphonate, from dichlorophosphine or dichlorophosphine oxide, from phosphonodiamide, or by oxidation of phosphinic acid. Direct methods that make use of phosphorous acid (H3PO3) and that produce a phosphonic acid functional group simultaneously to the formation of the P–C bond, are also surveyed. Among all these methods, the dealkylation of dialkyl phosphonates under either acidic conditions (HCl) or using the McKenna procedure (a two-step reaction that makes use of bromotrimethylsilane followed by methanolysis) constitute the best methods to prepare phosphonic acids. PMID:29114326
Phosphonic acid: preparation and applications.
Sevrain, Charlotte M; Berchel, Mathieu; Couthon, Hélène; Jaffrès, Paul-Alain
2017-01-01
The phosphonic acid functional group, which is characterized by a phosphorus atom bonded to three oxygen atoms (two hydroxy groups and one P=O double bond) and one carbon atom, is employed for many applications due to its structural analogy with the phosphate moiety or to its coordination or supramolecular properties. Phosphonic acids were used for their bioactive properties (drug, pro-drug), for bone targeting, for the design of supramolecular or hybrid materials, for the functionalization of surfaces, for analytical purposes, for medical imaging or as phosphoantigen. These applications are covering a large panel of research fields including chemistry, biology and physics thus making the synthesis of phosphonic acids a determinant question for numerous research projects. This review gives, first, an overview of the different fields of application of phosphonic acids that are illustrated with studies mainly selected over the last 20 years. Further, this review reports the different methods that can be used for the synthesis of phosphonic acids from dialkyl or diaryl phosphonate, from dichlorophosphine or dichlorophosphine oxide, from phosphonodiamide, or by oxidation of phosphinic acid. Direct methods that make use of phosphorous acid (H 3 PO 3 ) and that produce a phosphonic acid functional group simultaneously to the formation of the P-C bond, are also surveyed. Among all these methods, the dealkylation of dialkyl phosphonates under either acidic conditions (HCl) or using the McKenna procedure (a two-step reaction that makes use of bromotrimethylsilane followed by methanolysis) constitute the best methods to prepare phosphonic acids.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid, P-[2-[bis(2... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10243 Phosphonic acid, P-[2-[bis(2... to reporting. (1) The chemical substance identified as phosphonic acid, P-[2-[bis(2-hydroxyethyl...
40 CFR 721.10412 - Phosphonic acid ester (generic) (P-07-706).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid ester (generic) (P-07... Specific Chemical Substances § 721.10412 Phosphonic acid ester (generic) (P-07-706). (a) Chemical substance... phosphonic acid ester (PMN P-07-706) is subject to reporting under this section for the significant new uses...
40 CFR 721.10412 - Phosphonic acid ester (generic) (P-07-706).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid ester (generic) (P-07... Specific Chemical Substances § 721.10412 Phosphonic acid ester (generic) (P-07-706). (a) Chemical substance... phosphonic acid ester (PMN P-07-706) is subject to reporting under this section for the significant new uses...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid, P-[2-[bis(2... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10243 Phosphonic acid, P-[2-[bis(2... to reporting. (1) The chemical substance identified as phosphonic acid, P-[2-[bis(2-hydroxyethyl...
40 CFR 721.10412 - Phosphonic acid ester (generic) (P-07-706).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonic acid ester (generic) (P-07... Specific Chemical Substances § 721.10412 Phosphonic acid ester (generic) (P-07-706). (a) Chemical substance... phosphonic acid ester (PMN P-07-706) is subject to reporting under this section for the significant new uses...
Rott, Eduard; Steinmetz, Heidrun; Metzger, Jörg W
2018-02-15
The worldwide increasing consumption of the phosphonates 2-phosphonobutane-1,2,4-tricarboxylic acid [PBTC], 1-hydroxyethane 1,1-diphosphonic acid [HEDP], nitrilotris(methylene phosphonic acid) [NTMP], ethylenediamine tetra(methylene phosphonic acid) [EDTMP] and diethylenetriamine penta(methylene phosphonic acid) [DTPMP] over the past decades put phosphonates into focus of environmental scientists and agencies, as they are increasingly discussed in the context of various environmental problems. The hitherto difficult analysis of phosphonates contributed to the fact that very little is known about their concentrations and behavior in the environment. This work critically reviews the existing literature up to the year 2016 on the potential environmental relevance of phosphonates, their biotic and abiotic degradability, and their removal in wastewater treatment plants (WWTPs). Accordingly, despite their stability against biological degradation, phosphonates can be removed with relatively high efficiency (>80%) in WWTPs operated with chemical phosphate precipitation. In the literature, however, to our knowledge, there is no information as to whether an enhanced biological phosphorus removal alone is sufficient for such high removal rates and whether the achievable phosphonate concentrations in effluents are sufficiently low to prevent eutrophication. It is currently expected that phosphonates, although being complexing agents, do not remobilize heavy metals from sediments in a significant amount since the phosphonate concentrations required for this (>50μg/L) are considerably higher than the concentrations determined in surface waters. Various publications also point out that phosphonates are harmless to a variety of aquatic organisms. Moreover, degradation products thereof such as N-(phosphonomethyl)glycine and aminomethylphosphonic acid are regarded as being particularly critical. Despite their high stability against biological degradation, phosphonates contribute to eutrophication due to abiotic degradation (mainly photolysis). Furthermore, the literature reports on the fact that phosphonates in high concentrations interfere with phosphate precipitation in WWTPs. Thus, it is recommended to remove phosphonates, in particular from industrial wastewaters, before discharging them into water bodies or WWTPs. Copyright © 2017 Elsevier B.V. All rights reserved.
Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite
NASA Technical Reports Server (NTRS)
Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.
1992-01-01
Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.
Epoxy Phosphonate Crosslinkers for Providing Flame Resistance to Cotton Textiles
USDA-ARS?s Scientific Manuscript database
Two new monomers (2-methyl-oxiranylmethyl)-phosphonic acid dimethyl ester (3) and [2-(dimethoxy-phosphorylmethyl)-oxyranylmethyl]-phosphonic acid dimethyl ester (6) were prepared and used with dicyandiamide (7) and citric acid (8) to impart flame resistance to cotton plain weave, twill, and 80:20-co...
40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No. 1186211...
40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No. 1186211...
40 CFR 721.10370 - Phosphonic acid, p-octyl-, lanthanum (3+) salt (2:1).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphonic acid, p-octyl-, lanthanum... New Uses for Specific Chemical Substances § 721.10370 Phosphonic acid, p-octyl-, lanthanum (3+) salt... substance identified as phosphinic acid, p-octyl-, lanthanum (3+) salt (2:1) (PMN P-10-99; CAS No. 1186211...
Herath, Mahesha B; Creager, Stephen E; Kitaygorodskiy, Alex; DesMarteau, Darryl D
2010-09-10
A study of proton-transport rates and mechanisms under anhydrous conditions using a series of acid model compounds, analogous to comb-branch perfluorinated ionomers functionalized with phosphonic, phosphinic, sulfonic, and carboxylic acid protogenic groups, is reported. Model compounds are characterized with respect to proton conductivity, viscosity, proton, and anion (conjugate base) self-diffusion coefficients, and Hammett acidity. The highest conductivities, and also the highest viscosities, are observed for the phosphonic and phosphinic acid model compounds. Arrhenius analysis of conductivity and viscosity for these two acids reveals much lower activation energies for ion transport than for viscous flow. Additionally, the proton self-diffusion coefficients are much higher than the conjugate-base self-diffusion coefficients for these two acids. Taken together, these data suggest that anhydrous proton transport in the phosphonic and phosphinic acid model compounds occurs primarily by a structure-diffusion, hopping-based mechanism rather than a vehicle mechanism. Further analysis of ionic conductivity and ion self-diffusion rates by using the Nernst-Einstein equation reveals that the phosphonic and phosphinic acid model compounds are relatively highly dissociated even under anhydrous conditions. In contrast, sulfonic and carboxylic acid-based systems exhibit relatively low degrees of dissociation under anhydrous conditions. These findings suggest that fluoroalkyl phosphonic and phosphinic acids are good candidates for further development as anhydrous, high-temperature proton conductors.
Nanocomposites of phosphonic-acid-functionalized polyethylenes with inorganic quantum dots.
Rünzi, Thomas; Baier, Moritz C; Negele, Carla; Krumova, Marina; Mecking, Stefan
2015-01-01
Insertion of diethyl vinyl phosphonates and free vinyl phosphonic acid, respectively, into [(P^O)Pd(Me)(dmso)] ((P^O) = κ(2)-P,O-Ar2PC6H4SO2O with Ar = 2-MeOC6H4) (1-dmso) occurs in a 2,1- as well as 1,2-fashion, to form a four-and a five-membered chelate [(P^O)Pd{κ(2)-C,O-CH(P(O)(OR)2)CH2CH3}] and [(P^O)Pd{κ(2)-C,O-CH2CH(P(O)(OR)2)CH3}] (R = H, Et). No decomposition or other reactions of 1 by free phosphonic acid moieties occur. Copolymerization in a pressure reactor by 1-dmso yields linear random poly(ethylene-co-diethyl vinyl phosphonate) and poly(ethylene-co-vinyl phosphonic acid). In these copolymerizations, reversible coordination of the phosphonate moieties of free monomer as well as chelate formation by incorporated monomer retards chain growth as also evidenced by relative binding studies of diethyl phosphonate towards 1. Post-polymerization emulsification of poly(ethylene-co-vinyl phosphonic acid) together with CdSe/CdS quantum dots (QDs) yields submicron (ca. 50 nm from dynamic light scattering (DLS) and transmission electron microscopy (TEM)) polymer particles with the QDs embedded in the functionalized polyethylene in a nonaggregated fashion. This embedding benefits the fluorescence behavior in terms of continuous emission and life-time as revealed by wide-field fluorescence measurements. These composite particle dispersions are employed as a ″masterbatch" together with an aqueous high density polyethylene (HDPE) dispersion to generate thin films (by spin-coating) and bulk materials (from the melt), respectively, in which the inorganic nanoparticles remain highly disperse. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Discovery of a Phosphonoacetic Acid Derived Natural Product by Pathway Refactoring.
Freestone, Todd S; Ju, Kou-San; Wang, Bin; Zhao, Huimin
2017-02-17
The activation of silent natural product gene clusters is a synthetic biology problem of great interest. As the rate at which gene clusters are identified outpaces the discovery rate of new molecules, this unknown chemical space is rapidly growing, as too are the rewards for developing technologies to exploit it. One class of natural products that has been underrepresented is phosphonic acids, which have important medical and agricultural uses. Hundreds of phosphonic acid biosynthetic gene clusters have been identified encoding for unknown molecules. Although methods exist to elicit secondary metabolite gene clusters in native hosts, they require the strain to be amenable to genetic manipulation. One method to circumvent this is pathway refactoring, which we implemented in an effort to discover new phosphonic acids from a gene cluster from Streptomyces sp. strain NRRL F-525. By reengineering this cluster for expression in the production host Streptomyces lividans, utility of refactoring is demonstrated with the isolation of a novel phosphonic acid, O-phosphonoacetic acid serine, and the characterization of its biosynthesis. In addition, a new biosynthetic branch point is identified with a phosphonoacetaldehyde dehydrogenase, which was used to identify additional phosphonic acid gene clusters that share phosphonoacetic acid as an intermediate.
Podstawka, Edyta; Olszewski, Tomasz K; Boduszek, Bogdan; Proniewicz, Leonard M
2009-09-03
Here, we report a systematic surface-enhanced Raman spectroscopy (SERS) study of the structures of phosphonate derivatives of the N-heterocyclic aromatic compounds imidazole (ImMeP ([hydroxy(1H-imidazol-5-yl)methyl]phosphonic acid) and (ImMe)(2)P (bis[hydroxy-(1H-imidazol-4-yl)-methyl]phosphinic acid)), thiazole (BAThMeP (butylaminothiazol-2-yl-methyl)phosphonic acid) and BzAThMeP (benzylaminothiazol-2-yl-methyl)phosphonic acid)), and pyridine ((PyMe)(2)P (bis[(hydroxypyridin-3-yl-methyl)]phosphinic acid)) adsorbed on nanometer-sized colloidal particles. We compared these structures to those on a roughened silver electrode surface to determine the relationship between the adsorption strength and the geometry. For example, we showed that all of these biomolecules interact with the colloidal surface through aromatic rings. However, for BzAThMeP, a preferential interaction between the benzene ring and the colloidal silver surface is observed more so than that between the thiazole ring and this substrate. The PC(OH)C fragment does not take part in the adsorption process, and the phosphonate moiety of ImMeP and (ImMe)(2)P, being removed from the surface, only assists in this process.
Preliminary assessment of developmental toxicity of Perfluorinated Phosphonic Acid in mice
Perfluorinated phosphonic acids (PFPAs) are a third member of the perfluoroalkyl acid (PFAA) family, and are structurally similar to the perfluoroalkyl sulfonates and perfluoroalkyl carboxylates. These emerging chemicals have recently been detected in the environment, particularl...
Developmental Toxicity of Perfluorinated Phosphonic Acids in Mice
Perfluorinated phosphonic acids (PFPAs) are a third member of the perfluoroalkyl acid (PFAA) family, and are structurally similar to the perfluoroalkyl sulfonates and perfluoroalkyl carboxylates. PFPAs are used primarily as a surfactant defoaming agent in pesticide production. Re...
Schuschke, Christian; Schwarz, Matthias; Hohner, Chantal; Silva, Thais N; Fromm, Lukas; Döpper, Tibor; Görling, Andreas; Libuda, Jörg
2018-04-19
We have studied the anchoring mechanism of a phosphonic acid on an atomically defined oxide surface. Using time-resolved infrared reflection absorption spectroscopy, we investigated the reaction of deuterated phenylphosphonic acid (DPPA, C 6 H 5 PO 3 D 2 ) with an atomically defined Co 3 O 4 (111) surface in situ during film growth by physical vapor deposition. We show that the binding motif of the phosphonate anchor group changes as a function of coverage. At low coverage, DPPA binds in the form of a chelating tridentate phosphonate, while a transition to a chelating bidentate occurs close to monolayer saturation coverage. However, the coverage-dependent change in the binding motif is not associated with a major change of the molecular orientation, suggesting that the rigid phosphonate linker always maintains the DPPA in a strongly tilted orientation irrespective of the surface coverage.
Effects of Perfluorinated Phosphonic Acid Exposure during pregnancy in the mouse
Perfluorinated phosphonic acids (PFPAs) are a member of the perfluoroalkyl acid (PFAA) family, and are structurally similar to the perfluoroalkyl sulfonates and perfluoroalkyl carboxylates. These chemicals have recently been detected in the environment, particularly in surface wa...
Tiwari, Anjani K; Ojha, Himanshu; Kaul, Ankur; Dutta, Anupama; Srivastava, Pooja; Shukla, Gauri; Srivastava, Rakesh; Mishra, Anil K
2009-07-01
Nuclear magnetic resonance imaging is a very useful tool in modern medical diagnostics, especially when gadolinium (III)-based contrast agents are administered to the patient with the aim of increasing the image contrast between normal and diseased tissues. With the use of soft modelling techniques such as quantitative structure-activity relationship/quantitative structure-property relationship after a suitable description of their molecular structure, we have studied a series of phosphonic acid for designing new MRI contrast agent. Quantitative structure-property relationship studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors of the phosphonic acid-based chelating agent and their stability constants. The final quantitative structure-property relationship mathematical models were found as--quantitative structure-property relationship Model for phosphonic acid series (Model 1)--log K(ML) = {5.00243(+/-0.7102)}- MR {0.0263(+/-0.540)}n = 12 l r l = 0.942 s = 0.183 F = 99.165 quantitative structure-property relationship Model for phosphonic acid series (Model 2)--log K(ML) = {5.06280(+/-0.3418)}- MR {0.0252(+/- .198)}n = 12 l r l = 0.956 s = 0.186 F = 99.256.
Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same
Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato
2001-01-01
A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.
Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same
Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.
2002-01-01
A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.
Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes.
Ju, Kou-San; Gao, Jiangtao; Doroghazi, James R; Wang, Kwo-Kwang A; Thibodeaux, Christopher J; Li, Steven; Metzger, Emily; Fudala, John; Su, Joleen; Zhang, Jun Kai; Lee, Jaeheon; Cioni, Joel P; Evans, Bradley S; Hirota, Ryuichi; Labeda, David P; van der Donk, Wilfred A; Metcalf, William W
2015-09-29
Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed "genome mining" as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N(5)-hydroxyarginine; valinophos, an N-acetyl l-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products.
Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes
Ju, Kou-San; Gao, Jiangtao; Doroghazi, James R.; Wang, Kwo-Kwang A.; Thibodeaux, Christopher J.; Li, Steven; Metzger, Emily; Fudala, John; Su, Joleen; Zhang, Jun Kai; Lee, Jaeheon; Cioni, Joel P.; Evans, Bradley S.; Hirota, Ryuichi; Labeda, David P.; van der Donk, Wilfred A.; Metcalf, William W.
2015-01-01
Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed “genome mining” as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N5-hydroxyarginine; valinophos, an N-acetyl l-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products. PMID:26324907
Water-soluble polymers and compositions thereof
Smith, B.F.; Robison, T.W.; Gohdes, J.W.
1999-04-06
Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.
Water-soluble polymers and compositions thereof
Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.
2002-01-01
Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.
Water-soluble polymers and compositions thereof
Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.
1999-01-01
Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.
Isopropyl methyl phosphonic acid (IMPA)
Integrated Risk Information System (IRIS)
Isopropyl methyl phosphonic acid ( IMPA ) ; CASRN 1832 - 54 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assess
Study of Perfluorophosphonic Acid Surface Modifications on Zinc Oxide Nanoparticles.
Quiñones, Rosalynn; Shoup, Deben; Behnke, Grayce; Peck, Cynthia; Agarwal, Sushant; Gupta, Rakesh K; Fagan, Jonathan W; Mueller, Karl T; Iuliucci, Robbie J; Wang, Qiang
2017-11-28
In this study, perfluorinated phosphonic acid modifications were utilized to modify zinc oxide (ZnO) nanoparticles because they create a more stable surface due to the electronegativity of the perfluoro head group. Specifically, 12-pentafluorophenoxydodecylphosphonic acid, 2,3,4,5,6-pentafluorobenzylphosphonic acid, and (1H,1H,2H,2H-perfluorododecyl)phosphonic acid have been used to form thin films on the nanoparticle surfaces. The modified nanoparticles were then characterized using infrared spectroscopy, X-ray photoelectron spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy were utilized to determine the particle size of the nanoparticles before and after modification, and to analyze the film coverage on the ZnO surfaces, respectively. Zeta potential measurements were obtained to determine the stability of the ZnO nanoparticles. It was shown that the surface charge increased as the alkyl chain length increases. This study shows that modifying the ZnO nanoparticles with perfluorinated groups increases the stability of the phosphonic acids adsorbed on the surfaces. Thermogravimetric analysis was used to distinguish between chemically and physically bound films on the modified nanoparticles. The higher weight loss for 12-pentafluorophenoxydodecylphosphonic acid and (1H,1H,2H,2H-perfluorododecyl)phosphonic acid modifications corresponds to a higher surface concentration of the modifications, and, ideally, higher surface coverage. While previous studies have shown how phosphonic acids interact with the surfaces of ZnO, the aim of this study was to understand how the perfluorinated groups can tune the surface properties of the nanoparticles.
Wilkins, Stewart J; Greenough, Michelle; Arellano, Consuelo; Paskova, Tania; Ivanisevic, Albena
2014-03-04
In situ functionalization of polar (c plane) and nonpolar (a plane) gallium nitride (GaN) was performed by adding (3-bromopropyl) phosphonic acid or propyl phosphonic acid to a phosphoric acid etch. The target was to modulate the emission properties and oxide formation of GaN, which was explored through surface characterization with atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL), inductively coupled plasma-mass spectrometry, and water contact angle. The use of (3-bromopropyl) phosphonic acid and propyl phosphonic acid in phosphoric acid demonstrated lower amounts of gallium oxide formation and greater hydrophobicity for both sample sets, while also improving PL emission of polar GaN samples. In addition to crystal orientation, growth-related factors such as defect density in bulk GaN versus thin GaN films residing on sapphire substrates were investigated as well as their responses to in situ functionalization. Thin nonpolar GaN layers were the most sensitive to etching treatments due in part to higher defect densities (stacking faults and threading dislocations), which accounts for large surface depressions. High-quality GaN (both free-standing bulk polar and bulk nonpolar) demonstrated increased sensitivity to oxide formation. Room-temperature PL stands out as an excellent technique to identify nonradiative recombination as observed in the spectra of heteroepitaxially grown GaN samples. The chemical methods applied to tune optical and physical properties of GaN provide a quantitative framework for future novel chemical and biochemical sensor development.
Esarey, Samuel L; Bartlett, Bart M
2018-04-17
The binding constants and rate constants for desorption of the modified molecular dye [Ru(bpy) 3 ] 2+ anchored by either phosphonate or hydroxamate on the bipyridine ligand to anatase TiO 2 and WO 3 have been measured. In aqueous media at pH 1-10, repulsive electrostatic interactions between the negatively charged anchor and the negatively charged surface govern phosphonate desorption under neutral and basic conditions for TiO 2 anatase due to the high acidity of phosphonic acid (p K a,4 = 5.1). In contrast, the lower acidity of hydroxamate (p K a,1 = 6.5, p K a,2 = 9.1) leads to little change in adsorption/desorption properties as a function of pH from 1 to 7. The binding constant for hydroxamate is 10 3 in water, independent of pH in this range. These results are true for WO 3 as well, but are not reported at pH > 4 due to its Arrhenius acidity. Kinetics for desorption as a function of pH are reported, with a proposed mechanism for phosphonate desorption at high pH being the electrostatic repulsion of negative charges between the surface and the anionic anchor. Further, the hydroxamic acid anchor itself is likely the site of quasi-reversible redox activity in [Ru(bpy) 2 (2,2'-bpy-4,4'-(C(O)N(OH)) 2 )] 2+ , which does not lead to any measurable deterioration of the complex within 2 h of dark cyclic voltammogram scans in aqueous media. These results posit phosphonate as the preferred anchoring group under acidic conditions and hydroxamate for neutral/basic conditions.
A New Epoxy Bis-Phosphonate Crosslinker for Durable Fire Retardancy on Cotton
USDA-ARS?s Scientific Manuscript database
A new epoxy bis-phosphonate crosslinker for cotton [2-(dimethoxy-phosphorylmethyl)-oxiranylmethyl]-phosphonic acid dimethyl ester was prepared in two steps from 3-chloro-2-chloromethylpropene in 55% yield. The new monomer was characterized by proton and carbon NMR and GC-mass spectrometry. This cro...
NASA Astrophysics Data System (ADS)
Fuchs, Maximilian; Gentleman, Eileen; Shahid, Saroash; Hill, Robert; Brauer, Delia
2015-10-01
Bioactive glasses (BG) are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC) are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO) with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid), ions were released fast (up to 90% within 15 minutes at pH 1), which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa), staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid), which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmore, D.
1972-07-04
Nitrogen-heterocyclic phosphonic acids and derivatives are characterized by aminomethyl (or substituted methyl) phosphonic acids or derivatives thereof bonded directly or indirectly, i.e., through a N-side chain to the nitrogen atom in the heterocyclic ring, for example those containing in the molecule at least one of the following units: ..pi..Equation/sup -/ where represents a heterocyclic ring having a nitrogen atom on the ring; -R'N- represents an amino- terminated side chain attached directly to the ring nitrogen (which side chain may or may not be present); and ..pi..Equation/sup -/ represents a methyl (or substituted methyl) phosphonic acid group where M is hydrogen,more » an alcohol or a salt moiety, and X and Y are hydrogen or a substituted group such as alkyl, aryl, etc., of which one or 2 units may be present depending on the available nitrogen bonded by hydrogens, and to uses for these compounds, for example, as scale inhibitors, corrosion inhibitors, etc. (5 claims)« less
Bauer, Anna; Luetjohann, Jens; Rohn, Sascha; Kuballa, Juergen; Jantzen, Eckard
2018-01-10
A new sensitive, fast, and robust method using ion chromatography tandem mass spectrometry (IC-MS/MS) for the determination of fosetyl and phosphonic acid in plant-derived matrices was developed. For compensation of matrix effects and differences in recovery rates the isotopically labeled internal standard (ILIS) 18 O 3 -labeled phosphonic acid was added to the samples prior to the extraction of the target compounds. The validation of the method for the matrices tomato, apple, lemon, sultana, avocado, and wheat was performed according to the actual EU guidance document SANTE/11945/2015. The precision and accuracy were determined in five replicates at spiking levels of 0.010 and 0.100 mg/kg with recovery rates between 76 and 105% and RSDs between 1.2 and 17.8%. In this paper, it was achieved for the first time to detect both fosetyl and phosphonic acid at the reporting level of 0.010 mg/kg most relevant for organic plant food commodities.
Phosphonates are used in an increasing variety of industrial and household
applications including cooling waters systems, oil production, textile industry,
and detergents. Phosphonates are not biodegraded during wastewater treatment but
instead are removed by adsor...
RADIATION STABILITY OF ORGANIC LIQUIDS. Semi-Annual Report No. 2 for July 1 to December 31, 1957
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, R.M.
1958-01-14
Preliminary studies were completed on the nature and amount of the radiolysis products of dibutyl butanephosphonate, 50% dibutyl butanephosphonate- 50% Amsco 12582 mixture, diamyl pentanephosphonate, 50% diamyl pentanephosphonate- 50% Amsco 125-82 mixture, high level dose TBP, and dibutyl phosphoric acid, Results of analysis indicated that aliphatic phosphonates are superior to aliphatic phosphates, but inferior to aromaticaliphatic phosphonates in resistance to radiolytic degradation. Radiolysis data indicated that the phenyl group of phosphonates inhibited gas production when irradiated alone or in Amsco solution, howevcr the phenyl protective effect did not apply to acid production. Alipbatic phosphonates yielded lower G(acid) values than didmore » phenyl phosphonates, No large differences were observed in nature or yield of radiolysis products from the phosphonates. Comparison of radiolysis data of tributyl phosphate with that of aliphatic phosphonates, however, indicates reductions in G(gas) and G(acid) values of factors of 2 and 15, respectively due to the radiolytic stability of the phosphonate structure. Emulsification studies, comparing irradiated TBP and phosphonates, indicated no marked differences between the systems studied. The interpretation of results was complicated by the prevalence of three-phase phenomena due to the high dose levels employed. Tributyl phosphate, irradiated to 1900 whr/liter levels, was studied from the aspects of methods suitable for removal of radiolysis products, methods suitable for isolation of polymeric species, and identification of polymer constituents, Treatment of 1900 whr/liter TBP, diluted with Amsco 125-82 and virgin TBP, with a mixture of sodium and ammonium hydroxides was found to be more effective than simple caustic strip for restoring irradiated TBP to recycle condition. The effectiveness of the treatment was determined by measuring uranium distribution ratios using both spinner column and separatory funnel studies, Duolite A-2 anion exchange resin was used to remove acidic radiolysis products from 1900 whr/liter TBP prior to isolation of polymeric species by vacuum distillation, A G value of 0.91 for polymer was obtained. Cryoscopic studies with the polymer indicated a gross molecular weight of 840 to 850. G values for gas and polymer of 3.40 and 1.42 were obtained from irradiation of dibutyl phosphoric acid to 1280 whr/liter levels. These values are slightly higher than the corresponding values for tributyl phosphate. The solubility of thorium dibutyl phosphate in Amsco 125-82 was determined to be 0.1 g/liter at 26 C. Diethyl carbonate was evaluated as an extractant for uranium by separatory funnel and spinner column studies. The extraction is highly acid dependent and is sensitive to salt effects. Using 0.2M uranyl nitrate of both 6M and 8M nitric acid strengths as feeds at organic/ aqueous ratios of 1:2, uraniura separation factors of 0.45 and 0.82 were obtained. TBP-Amsco systems yield separation factors pf 5 under 2M nitric acid conditions. (For preceding period see AECCU-4051.) (auth)« less
Synthesis of a new family of acyclic nucleoside phosphonates, analogues of TPases transition states.
Dayde, Bénédicte; Benzaria, Samira; Pierra, Claire; Gosselin, Gilles; Surleraux, Dominique; Volle, Jean-Noël; Pirat, Jean-Luc; Virieux, David
2012-05-07
A 6-step procedure was developed for the synthesis of a new family of acyclic nucleoside phosphonates (ANPs), "PHEEPA" [(2-pyrimidinyl-2-(2-hydroxyethoxy)ethyl)phosphonic acids] in overall yields ranging from 4.5% to 32%. These compounds, which possess on one side a hydroxy function and on the other side a phosphonate group, can be considered either as potential antiviral agents or as transition state analogues of nucleoside phosphorylases such as thymidine phosphorylase.
Structure and Order of Phosphonic Acid-Based Self-Assembled Monolayers on Si(100)
Dubey, Manish; Weidner, Tobias; Gamble, Lara J.; Castner, David G.
2010-01-01
Organophosphonic acid self-assembled monolayers (SAMs) on oxide surfaces have recently seen increased use in electrical and biological sensor applications. The reliability and reproducibility of these sensors require good molecular organization in these SAMs. In this regard, packing, order and alignment in the SAMs is important, as it influences the electron transport measurements. In this study, we examine the order of hydroxyl- and methyl- terminated phosphonate films deposited onto silicon oxide surfaces by the tethering by aggregation and growth method using complementary, state-of-art surface characterization tools. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy and in situ sum frequency generation (SFG) spectroscopy are used to study the order of the phosphonate SAMs in vacuum and under aqueous conditions, respectively. X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry results show that these samples form chemically intact monolayer phosphonate films. NEXAFS and SFG spectroscopy showed that molecular order exists in the octadecylphosphonic acid and 11-hydroxyundecylphosphonic acid SAMs. The chain tilt angles in these SAMs were approximately 37° and 45°, respectively. PMID:20735054
Zheng, Tao; Yang, Zaixing; Gui, Daxiang; ...
2017-05-30
Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. We overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. Furthermore, these compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest voidmore » volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.« less
Zheng, Tao; Yang, Zaixing; Gui, Daxiang; Liu, Zhiyong; Wang, Xiangxiang; Dai, Xing; Liu, Shengtang; Zhang, Linjuan; Gao, Yang; Chen, Lanhua; Sheng, Daopeng; Wang, Yanlong; Diwu, Juan; Wang, Jianqiang; Zhou, Ruhong; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao
2017-01-01
Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. Herein, we overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. These compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest void volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism. PMID:28555656
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Tao; Yang, Zaixing; Gui, Daxiang
Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. We overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. Furthermore, these compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest voidmore » volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha
Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only aftermore » -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.« less
Becker, Elmer L.; Ward, Peter A.
1969-01-01
Previous published work has led to the hypothesis that the activatable esterase of chemotaxis is a serine esterase of the rabbit polymorphonuclear leukocyte existing in an inert, phosphonate insusceptible form, which after activation is capable of hydrolyzing aromatic amino acid esters and being inhibited by phosphonates. In the present study, directed to the testing of this hypothesis, we have shown that rabbit peritoneal polymorphonuclear leukocytes contain three esterases capable of hydrolyzing the aromatic amino acid ester, acetyl DL-phenylalanine β-naphthyl ester. Two of these esterases, esterase 1 and esterase 2, are inhibited by various p-nitrophenyl ethyl phosphonate esters. The inhibition of each esterase is irreversible and progressive with time. When the logarithm of the esterase activity remaining after cell and inhibitor have been in contact for a constant time is plotted against the concentration of inhibitor, a straight line results. These results support the conclusion that both esterases are serine esterases. The third esterase, esterase 3, differs from the other two by its inability to be inactivated by any of the phosphonates no matter how high the concentration of phosphonate or prolonged the period of incubation of cell with phosphonate. The activity of esterase 1 is at least 10,000 times more easily inhibited by phosphonates than is that of esterase 2; incubating rabbit polymorphonuclear leukocytes for 15 min at 27°C with 10–9–10–8 M concentrations of various phosphonates inactivates esterase 1, but it required 10–6–10–4 M concentrations of the same phosphonates to inhibit esterase 2. The inhibition profiles of esterase 1 are distinctly different from those of esterase 2 when the two esterases are tested with the phenylalkylphosphonates, chloroalkylphosphonates, and alkylphosphonates. The inhibition profile of esterase 1 is essentially the same as that of the activatable esterase of chemotaxis obtained previously when the same three homologous series of phosphonates were tested for their ability to protect against deactivation by the chemotactic factor or give chemotactic-dependent inhibition. It is tentatively concluded that esterase 1 of the rabbit peritoneal neutrophil is the activated form of the activatable esterase of chemotaxis. PMID:5812915
Phosphonic acid functionalization of nanostructured Ni-W coatings on steel
NASA Astrophysics Data System (ADS)
Orrillo, P. A.; Ribotta, S. B.; Gassa, L. M.; Benítez, G.; Salvarezza, R. C.; Vela, M. E.
2018-03-01
The functionalization of nanocrystalline Ni-W coatings, formed by galvanostatic pulsed electrodeposition on steel, by thermal treatment of octadecylphosphonic acid self-assembled on the oxidized alloy surface is studied by Raman spectroscopy, contact angle measurements, X-ray photoelectron spectroscopy, AFM and electrochemical techniques. Results show that this procedure preserves the surface topography and the optimum mechanical properties of the alloy. More importantly, it turns the alloy surface highly hydrophobic and markedly improves its corrosion resistance, in particular to pitting corrosion in aggressive solutions containing chloride anions. The ability of the phosphonate layer to improve surface properties arises from the barrier properties introduced by the hydrocarbon chains and the strong bonds between the phosphonate head and the underlying surface oxides.
Zhang, Wen; He, Xihong; Ye, Gang; Yi, Rong; Chen, Jing
2014-06-17
Efficient capture of highly toxic radionuclides with long half-lives such as Americium-241 is crucial to prevent radionuclides from diffusing into the biosphere. To reach this purpose, three different types of mesoporous silicas functionalized with phosphonic acid ligands (SBA-POH, MCM-POH, and BPMO-POH) were synthesized via a facile procedure. The structure, surface chemistry, and micromorphology of the materials were fully characterized by (31)P/(13)C/(29)Si MAS NMR, XPS, and XRD analysis. Efficient adsorption of Am(III) was realized with a fast rate to reach equilibrium (within 10 min). Influences including structural parameters and functionalization degree on the adsorption behavior were investigated. Slope analysis of the equilibrium data suggested that the coordination with Am(III) involved the exchange of three protons. Moreover, extended X-ray absorption fine structure (EXAFS) analysis, in combination with XPS survey, was employed for an in-depth probe into the binding mechanism by using Eu(III) as a simulant due to its similar coordination behavior and benign property. The results showed three phosphonic acid ligands were coordinated to Eu(III) in bidentate fashion, and Eu(P(O)O)3(H2O) species were formed with the Eu-O coordination number of 7. These phosphonic acid-functionalized mesoporous silicas should be promising for the treatment of Am-containing radioactive liquid waste.
Synthesis and Structural Studies of Calcium and Magnesium Phosphinate and Phosphonate Compounds
NASA Astrophysics Data System (ADS)
Bampoh, Victoria Naa Kwale
The work presented herein describes synthetic methodologies leading to the design of a wide array of magnesium and calcium based phosphinate and phosphonates with possible applications as bone scaffolding materials or additives to bone cements. The challenge to the chemistry of the alkaline earth phosphonate target compounds includes poor solubility of compounds, and poorly understood details on the control of the metal's coordination environment. Hence, less is known on phosphonate based alkaline earth metal organic frameworks as compared to transition metal phosphonates. Factors governing the challenges in obtaining crystalline, well-defined magnesium and calcium solids lie in the large metal diameters, the absence of energetically available d-orbitals to direct metal geometry, as well as the overall weakness of the metal-ligand bonds. A significant part of this project was concerned with the development of suitable reaction conditions to obtain X-ray quality crystals of the reaction products to allow for structural elucidation of the novel compounds. Various methodologies to aid in crystal growth including hydrothermal methods and gel crystallization were employed. We have used phosphinate and phosphonate ligands with different number of phosphorus oxygen atoms as well as diphosphonates with different linker lengths to determine their effects on the overall structural features. An interesting correlation is observed between the dimensionality of products and the increasing number of donor oxygen atoms in the ligands as we progress from phosphinic acid to the phosphorous acids. As an example, monophosphinate ligand only yielded one-dimensional compounds, whereas the phosphonates crystallize as one and two-dimensional compounds, and the di- and triphosphonate based compounds display two or three-dimensional geometries. This thesis provides a selection of calcium and magnesium compounds with one-dimensional geometry, as represented in a calcium phosphinate to novel two-dimensional sheets of magnesium and pillared calcium phosphonates. The preparation of these novel compounds has led to the establishment of synthetic protocols that allow for the direct preparation of compounds with defined structural features.
Complex compound polyvinyl alcohol-titanic acid/titanium dioxide
NASA Astrophysics Data System (ADS)
Prosanov, I. Yu.
2013-02-01
A complex compound polyvinyl alcohol-titanic acid has been produced and investigated by means of IR and Raman spectroscopy, X-ray diffraction, and synchronous thermal analysis. It is claimed that it represents an interpolymeric complex of polyvinyl alcohol and hydrated titanium oxide.
Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement
Zhou, Xiaoyue; Park, Shin-Hye; Mao, Hongli; Isoshima, Takashi; Wang, Yi; Ito, Yoshihiro
2015-01-01
Phosphonated gelatin was prepared for surface modification of titanium to stimulate cell functions. The modified gelatin was synthesized by coupling with 3-aminopropylphosphonic acid using water-soluble carbodiimide and characterized by 31P nuclear magnetic resonance and gel permeation chromatography. Circular dichroism revealed no differences in the conformations of unmodified and phosphonated gelatin. However, the gelation temperature was changed by the modification. Even a high concentration of modified gelatin did not form a gel at room temperature. Time-of-flight secondary ion mass spectrometry showed direct bonding between the phosphonated gelatin and the titanium surface after binding. The binding behavior of phosphonated gelatin on the titanium surface was quantitatively analyzed by a quartz crystal microbalance. Ellipsometry showed the formation of a several nanometer layer of gelatin on the surface. Contact angle measurement indicated that the modified titanium surface was hydrophobic. Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium. These effects on cell adhesion also led to growth enhancement. Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface. PMID:26366080
McGrath, John W; Hammerschmidt, Friedrich; Preusser, Werner; Quinn, John P; Schweifer, Anna
2009-05-07
The first step of the mineralisation of fosfomycin by R. huakuii PMY1 is hydrolytic ring opening with the formation of (1R,2R)-1,2-dihydroxypropylphosphonic acid. This phosphonic acid and its three stereoisomers were synthesised by chemical means and tested as their ammonium salts for mineralisation as evidenced by release of P(i). Only the (1R,2R)-isomer was degraded. A number of salts of phosphonic acids such as (+/-)-1,2-epoxybutyl-, (+/-)-1,2-dihydroxyethyl-, 2-oxopropyl-, (S)-2-hydroxypropyl-, (+/-)-1-hydroxypropyl- and (+/-)-1-hydroxy-2-oxopropylphosphonic acid were synthesised chemically, but none supported growth. In vitro C-P bond cleavage activity was however detected with the last phosphonic acid. A mechanism involving phosphite had to be discarded as it could not be used as a phosphorus source. R. huakuii PMY1 grew well on (R)- and (S)-lactic acid and hydroxyacetone, but less well on propionic acid and not on acetone or (R)- and (+/-)-1,2-propanediol. The P(i) released from (1R,2R)-1,2-dihydroxypropylphosphonic acid labelled with one oxygen-18 in the PO3H2 group did not stay long enough in the cells to allow complete exchange of 18O for 16O by enzymic turnover.
Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji
2007-01-01
Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.
NASA Astrophysics Data System (ADS)
Yan, Ru; He, Wei; Zhai, Tianhua; Ma, Houyi
2018-06-01
Seeing that amino trimethylene phosphonic acid (ATMP) possesses very strong complexation ability to metal ions and the phosphonic acid group has good affinity for the oxidized iron surface, herein a simple and rapid film-forming method (one-step assembly method) was developed to construct the ATMP-Zn complex conversion layers (ATMP-Zn layers for short) on the cold-rolled steel (CRS) substrate. Zinc ions were found to participate in the formation process of ATMP-based composite film, which made the Zn-containing ATMP film significantly different in appearance, thickness, microstructure and film-forming mechanisms from the Zn-free ATMP film. There was mainly iron (ш) phosphonate in the Zn-free ATMP film, whereas there were Zn2+-ATMP complex and a certain amount of ZnO in the ATMP-Zn composite film. In addition, electrochemical test results clearly indicate that corrosion resistance of ATMP-Zn composite film was greatly enhanced due to the presence of Zn component. Moreover, the corrosion resistance performance could be controlled by adjusting film-forming time, pH and ATMP concentration in the film-forming solutions. The present study provides a new method for the design and fabrication of high-quality environmentally-friendly conversion layers.
Chen, Xuemei; Wiemer, Andrew J; Hohl, Raymond J; Wiemer, David F
2002-12-27
Both the (R)- and (S)-5'-hydroxy 5'-phosphonate derivatives of cytidine and cytosine arabinoside (ara-C) have been prepared via phosphite addition or a Lewis acid mediated hydrophosphonylation of appropriately protected 5'-nucleoside aldehydes. Phosphite addition to a cytosine aldehyde protected as the 2',3'-acetonide gave predominately the 5'R isomer, while phosphite addition to the corresponding 2',3'-bis TBS derivative favored the 5'S stereochemistry. In contrast, phosphite addition to the 2',3'-bis TBS protected aldehyde derived from ara-C gave only the 5'R adduct. However, TiCl(4)-mediated hydrophosphonylation of the same ara-C aldehyde favored the 5'S stereoisomer by a 2:1 ratio. Once all four of the diastereomers were in hand, the stereochemistry of these compounds could be assigned based on their spectral data or that obtained from their O-methyl mandelate derivatives. After hydrolysis of the phosphonate esters and various protecting groups, the four alpha-hydroxy phosphonic acids were tested for their ability to serve as substrates for the enzyme nucleoside monophosphate kinase and for their toxicity to K562 cells.
Properties of polyvinyl alcohol/xylan composite films with citric acid.
Wang, Shuaiyang; Ren, Junli; Li, Weiying; Sun, Runcang; Liu, Shijie
2014-03-15
Composite films of xylan and polyvinyl alcohol were produced with citric acid as a new plasticizer or a cross-linking agent. The effects of citric acid content and polyvinyl alcohol/xylan weight ratio on the mechanical properties, thermal stability, solubility, degree of swelling and water vapor permeability of the composite films were investigated. The intermolecular interactions and morphology of composite films were characterized by FTIR spectroscopy and SEM. The results indicated that polyvinyl alcohol/xylan composite films had good compatibility. With an increase in citric acid content from 10% to 50%, the tensile strength reduced from 35.1 to 11.6 MPa. However, the elongation at break increased sharply from 15.1% to 249.5%. The values of water vapor permeability ranged from 2.35 to 2.95 × 10(-7)g/(mm(2)h). Interactions between xylan and polyvinyl alcohol in the presence of citric acid become stronger, which were caused by hydrogen bond and ester bond formation among the components during film forming. Copyright © 2013. Published by Elsevier Ltd.
Shaffer, David W.; Xie, Yan; Szalda, David J.; ...
2017-09-24
Here, a critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s –1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L) 2] (bpH 2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediatesmore » O–O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaffer, David W.; Xie, Yan; Szalda, David J.
Here, a critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s –1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L) 2] (bpH 2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediatesmore » O–O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.« less
Vaithilingam, Jayasheelan; Kilsby, Samuel; Goodridge, Ruth D; Christie, Steven D R; Edmondson, Steve; Hague, Richard J M
2015-01-01
Surface modification of an implant with a biomolecule is used to improve its biocompatibility and to reduce post-implant complications. In this study, a novel approach has been used to functionalise phosphonic acid monolayers with a drug. Ti6Al4V components fabricated using selective laser melting (SLM) were functionalised with Paracetamol (a pharmaceutically relevant biomolecule) using phosphonic acid based self-assembled monolayers (SAMs). The attachment, stability of the monolayers on the SLM fabricated surface and functionalisation of SAMs with Paracetamol were studied using X-ray photoelectron spectroscopy (XPS) and surface wettability measurements. The obtained results confirmed that SAMs were stable on the Ti6Al4V surface for over four weeks and then began to desorb from the surface. The reaction used to functionalise the phosphonic acid monolayers with Paracetamol was noted to be successful. Thus, the proposed method has the potential to immobilise drugs/proteins to SAM coated surfaces and improve their biocompatibility and reduce post-implant complications. Copyright © 2014. Published by Elsevier B.V.
Silicon-Based Anode and Method for Manufacturing the Same
NASA Technical Reports Server (NTRS)
Yushin, Gleb Nikolayevich (Inventor); Zdyrko, Bogdan (Inventor); Magasinski, Alexandre (Inventor); Luzinov, Igor (Inventor)
2017-01-01
A silicon-based anode comprising silicon, a carbon coating that coats the surface of the silicon, a polyvinyl acid that binds to at least a portion of the silicon, and vinylene carbonate that seals the interface between the silicon and the polyvinyl acid. Because of its properties, polyvinyl acid binders offer improved anode stability, tunable properties, and many other attractive attributes for silicon-based anodes, which enable the anode to withstand silicon cycles of expansion and contraction during charging and discharging.
Polyvinyl alcohol cross-linked with two aldehydes
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Rieker, L. L.; Hsu, L. C.; Manzo, M. A. (Inventor)
1982-01-01
A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article.
Gallium(III) complexes of NOTA-bis (phosphonate) conjugates as PET radiotracers for bone imaging.
Holub, Jan; Meckel, Marian; Kubíček, Vojtěch; Rösch, Frank; Hermann, Petr
2015-01-01
Ligands with geminal bis(phosphonic acid) appended to 1,4,7-triazacyclonone-1,4-diacetic acid fragment through acetamide (NOTAM(BP) ) or methylenephosphinate (NO2AP(BP) ) spacers designed for (68) Ga were prepared. Ga(III) complexation is much faster for ligand with methylenephosphinate spacer than that with acetamide one, in both chemical (high reactant concentrations) and radiolabeling studies with no-carrier-added (68) Ga. For both ligands, formation of Ga(III) complex was slower than that with NOTA owing to the strong out-of-cage binding of bis(phosphonate) group. Radiolabeling was efficient and fast only above 60 °C and in a narrow acidity region (pH ~3). At higher temperature, hydrolysis of amide bond of the carboxamide-bis(phosphonate) conjugate was observed during complexation reaction leading to Ga-NOTA complex. In vitro sorption studies confirmed effective binding of the (68) Ga complexes to hydroxyapatite being comparable with that found for common bis(phosphonate) drugs such as pamindronate. Selective bone uptake was confirmed in healthy rats by biodistribution studies ex vivo and by positron emission tomography imaging in vivo. Bone uptake was very high, with SUV (standardized uptake value) of 6.19 ± 1.27 for [(68) Ga]NO2AP(BP) ) at 60 min p.i., which is superior to uptake of (68) Ga-DOTA-based bis(phosphonates) and [(18) F]NaF reported earlier (SUV of 4.63 ± 0.38 and SUV of 4.87 ± 0.32 for [(68) Ga]DO3AP(BP) and [(18) F]NaF, respectively, at 60 min p.i.). Coincidently, accumulation in soft tissue is generally low (e.g. for kidneys SUV of 0.26 ± 0.09 for [(68) Ga]NO2AP(BP) at 60 min p.i.), revealing the new (68) Ga complexes as ideal tracers for noninvasive, fast and quantitative imaging of calcified tissue and for metastatic lesions using PET or PET/CT. Copyright © 2014 John Wiley & Sons, Ltd.
Phosphonic acid based exchange resins
Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato
1995-01-01
An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.
Kostov, Ondřej; Páv, Ondřej; Rosenberg, Ivan
2017-09-18
This unit comprises the straightforward synthesis of protected 2'-deoxyribonucleoside-O-methyl-(H)-phosphinates in both 3'- and 5'-series. These compounds represent a new class of monomers compatible with the solid-phase synthesis of oligonucleotides using H-phosphonate chemistry and are suitable for the preparation of both 3'- and 5'-O-methylphosphonate oligonucleotides. The synthesis of 4-toluenesulfonyloxymethyl-(H)-phosphinic acid as a new reagent for the preparation of O-methyl-(H)-phosphinic acid derivatives is described. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Hierarchical mesostructured titanium phosphonates with unusual uniform lines of macropores.
Ma, Tian-Yi; Lin, Xiu-Zhen; Zhang, Xue-Jun; Yuan, Zhong-Yong
2011-04-01
Organic-inorganic hybrid materials of mesostructured titanium phosphonates with unusual uniform lines of macropores were synthesized by using bis(hexamethylenetriamine) penta(methylenephosphonic acid) (BHMTPMP) as the coupling molecule, through a one-pot hydrothermal process without any surfactant assistance. A wormhole-like mesostructure and many uniform parallel lines of macropores divided by solid ridges in the same direction were confirmed by N(2) sorption, SEM and TEM observations. This novel macropore architecture has never been observed in other metal phosphonate materials, which may be directly related to the structure nature of BHMTPMP with extra long alkyl chains. The structural characterization of FT-IR and MAS NMR revealed the integrity of organic groups inside the hybrid framework. The hybrid materials were also used as adsorbents for heavy metal ions and CO(2), in order to clarify the impacts of the organic contents and organic types on the physicochemical properties of the synthesized hierarchical macro-/mesoporous phosphonate materials.
Phosphonic acid based ion exchange resins
Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato
1994-01-01
An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.
Phosphonic acid based ion exchange resins
Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato
1996-01-01
An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.
Acid monolayer functionalized iron oxide nanoparticle catalysts
NASA Astrophysics Data System (ADS)
Ikenberry, Myles
Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide nanoparticle syntheses and functionalizations for biomedical and catalytic applications, affecting understandings of surface charge and other material properties.
Sakurada, Osamu; Kato, Yasutake; Kito, Noriyoshi; Kameyama, Keiichi; Hattori, Toshiaki; Hashiba, Minoru
2004-02-01
Zirconium oxy-salts were hydrolyzed to form positively charged polymer or cluster species in acidic solutions. The zirconium hydrolyzed polymer was found to react with a negatively charged polyelectrolyte, such as poly(vinyl sulfate), and to form a stoichiometric polyion complex. Thus, colloidal titration with poly(vinyl sulfate) was applied to measure the zirconium concentration in an acidic solution by using a Toluidine Blue selective plasticized poly(vinyl chloride) membrane electrode as a potentiometric end-point detecting device. The determination could be performed with 1% of the relative standard deviation. The colloidal titration stoichiometry at pH < or = 2 was one mol of zirconium per equivalent mol of poly(vinyl sulfate).
Yu, Xiaomin; Price, Neil P. J.; Evans, Bradley S.
2014-01-01
Two related actinomycetes, Glycomyces sp. strain NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338, were identified as potential phosphonic acid producers by screening for the gene encoding phosphoenolpyruvate (PEP) mutase, which is required for the biosynthesis of most phosphonates. Using a variety of analytical techniques, both strains were subsequently shown to produce phosphonate-containing exopolysaccharides (EPS), also known as phosphonoglycans. The phosphonoglycans were purified by sequential organic solvent extractions, methanol precipitation, and ultrafiltration. The EPS from the Glycomyces strain has a mass of 40 to 50 kDa and is composed of galactose, xylose, and five distinct partially O-methylated galactose residues. Per-deutero-methylation analysis indicated that galactosyl residues in the polysaccharide backbone are 3,4-linked Gal, 2,4-linked 3-MeGal, 2,3-linked Gal, 3,6-linked 2-MeGal, and 4,6-linked 2,3-diMeGal. The EPS from the Stackebrandtia strain is comprised of glucose, galactose, xylose, and four partially O-methylated galactose residues. Isotopic labeling indicated that the O-methyl groups in the Stackebrandtia phosphonoglycan arise from S-adenosylmethionine. The phosphonate moiety in both phosphonoglycans was shown to be 2-hydroxyethylphosphonate (2-HEP) by 31P nuclear magnetic resonance (NMR) and mass spectrometry following strong acid hydrolysis of the purified molecules. Partial acid hydrolysis of the purified EPS from Glycomyces yielded 2-HEP in ester linkage to the O-5 or O-6 position of a hexose and a 2-HEP mono(2,3-dihydroxypropyl)ester. Partial acid hydrolysis of Stackebrandtia EPS also revealed the presence of 2-HEP mono(2,3-dihydroxypropyl)ester. Examination of the genome sequences of the two strains revealed similar pepM-containing gene clusters that are likely to be required for phosphonoglycan synthesis. PMID:24584498
Contrast Agents for Micro-Computed Tomography of Microdamage in Bone
2009-01-01
carboxylate (reported in January 2009), phosphonate and bisphosphonate groups (Fig. 2). The presence of functional groups was verified by FT- IR (Fig. 3...carboxylic acid, (b) phosphonate or (c) bisphosphonate groups for calcium binding damaged tissue. (a) (b) (c) Fig. 3. FT- IR spectra for Au NPs...functional group. Quantitative measurements of the binding affinity were performed by adding hydroxyapatite (HA) crystals to functionalized Au NP solutions in
Phosphorus sorption on marine carbonate sediment: phosphonate as model organic compounds.
Huang, Xiao-Lan; Zhang, Jia-Zhong
2011-11-01
Organophosphonate, characterized by the presence of a stable, covalent, carbon to phosphorus (C-P) bond, is a group of synthetic or biogenic organophosphorus compounds. The fate of these organic phosphorus compounds in the environment is not well studied. This study presents the first investigation on the sorption of phosphorus (P) in the presence of two model phosphonate compounds, 2-aminothylphosphonoic acid (2-AEP) and phosphonoformic acid (PFA), on marine carbonate sediments. In contrast to other organic P compounds, no significant inorganic phosphate exchange was observed in seawater. P was found to adsorb on the sediment only in the presence of PFA, not 2-AEP. This indicated that sorption of P from phosphonate on marine sediment was compound specific. Compared with inorganic phosphate sorption on the same sediments, P sorption from organic phosphorus is much less in the marine environment. Further study is needed to understand the potential role of the organophosphonate compounds in biogeochemical cycle of phosphorus in the environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Development of Oseltamivir Phosphonate Congeners as Anti-Influenza Agents
Cheng, Ting-Jen R.; Weinheimer, Steven; Tarbet, E. Bart; Jan, Jia-Tsrong; Cheng, Yih-Shyun E.; Shie, Jiun-Jie; Chen, Chun-Lin; Chen, Chih-An; Hsieh, Wei-Che; Huang, Pei-Wei; Lin, Wen-Hao; Wang, Shi-Yun; Fang, Jim-Min; Hu, Oliver Yoa-Pu; Wong, Chi-Huey
2012-01-01
Oseltamivir phosphonic acid (tamiphosphor, 3a), its monoethyl ester (3c), guanidino-tamiphosphor (4a) and its monoethyl ester (4c) are potent inhibitors of influenza neuraminidases. They inhibit the replication of influenza viruses, including the oseltamivir-resistant H275Y strain, at low nM to pM levels, and significantly protect mice from infection with lethal doses of influenza viruses when orally administered with 1 mg/kg or higher doses. These compounds are stable in simulated gastric fluid, liver microsomes and human blood, and are largely free from binding to plasma proteins. Pharmacokinetic properties of these inhibitors are thoroughly studied in dogs, rats and mice. The absolute oral bioavailability of these compounds was lower than 12%. No conversion of monoester 4c to phosphonic acid 4a was observed in rats after intravenous administration, but partial conversion of 4c was observed with oral administration. Advanced formulation may be investigated to develop these new anti-influenza agents for better therapeutic use. PMID:23009169
Fabrication of phosphonic acid films on nitinol nanoparticles by dynamic covalent assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinones, Rosalynn; Garretson, Samantha; Behnke, Grayce
Nitinol (NiTi) nanoparticles are a valuable metal alloy due to many unique properties that allow for medical applications. NiTi nanoparticles have the potential to form nanofluids, which can advance the thermal conductivity of fluids by controlling the surface functionalization through chemical attachment of organic acids to the surface to form self-assembled alkylphosphonate films. In this study, phosphonic functional head groups such as 16-phosphonohexadecanoic acid, octadecylphosphonic acid, and 12-aminododecylphosphonic acid were used to form an ordered and strongly chemically bounded film on the NiTi nanopowder. The surface of the NiTi nanoparticles was modified in order to tailor the chemical and physicalmore » properties to the desired application. The modified NiTi nanoparticles were characterized using infrared spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and 31P solid-state nuclear magnetic resonance. The interfacial bonding was identified by spectroscopic data suggesting the phosphonic head group adsorbs in a mixed bidentate/monodentate binding motif on the NiTi nanoparticles. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy revealed the particle sizes. Differential scanning calorimetry was used to examine the phase transitions. Zeta potential determination as a function of pH was examined to investigate the surface properties of charged nanoparticles. In conclusion, the influence of environmental stability of the surface modifications was also assessed.« less
Fabrication of phosphonic acid films on nitinol nanoparticles by dynamic covalent assembly
Quinones, Rosalynn; Garretson, Samantha; Behnke, Grayce; ...
2017-09-25
Nitinol (NiTi) nanoparticles are a valuable metal alloy due to many unique properties that allow for medical applications. NiTi nanoparticles have the potential to form nanofluids, which can advance the thermal conductivity of fluids by controlling the surface functionalization through chemical attachment of organic acids to the surface to form self-assembled alkylphosphonate films. In this study, phosphonic functional head groups such as 16-phosphonohexadecanoic acid, octadecylphosphonic acid, and 12-aminododecylphosphonic acid were used to form an ordered and strongly chemically bounded film on the NiTi nanopowder. The surface of the NiTi nanoparticles was modified in order to tailor the chemical and physicalmore » properties to the desired application. The modified NiTi nanoparticles were characterized using infrared spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and 31P solid-state nuclear magnetic resonance. The interfacial bonding was identified by spectroscopic data suggesting the phosphonic head group adsorbs in a mixed bidentate/monodentate binding motif on the NiTi nanoparticles. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy revealed the particle sizes. Differential scanning calorimetry was used to examine the phase transitions. Zeta potential determination as a function of pH was examined to investigate the surface properties of charged nanoparticles. In conclusion, the influence of environmental stability of the surface modifications was also assessed.« less
Removal of phosphonates from industrial wastewater with UV/FeII, Fenton and UV/Fenton treatment.
Rott, Eduard; Minke, Ralf; Bali, Ulusoy; Steinmetz, Heidrun
2017-10-01
Phosphonates are an important group of phosphorus-containing compounds due to their increasing industrial use and possible eutrophication potential. This study involves investigations into the methods UV/Fe II , Fenton and UV/Fenton for their removal from a pure water matrix and industrial wastewaters. It could be shown that the degradability of phosphonates by UV/Fe II (6 kWh/m 3 ) in pure water crucially depended on the pH and was higher the less phosphonate groups a phosphonate contains. The UV/Fe II method is recommended in particular for the treatment of concentrates with nitrogen-free phosphonates, only little turbidity and a low content of organic compounds. Using Fenton reagent, the degradation of polyphosphonates was relatively weak in a pure water matrix (<20% transformation to o-PO 4 3- ). By means of the Photo-Fenton method (6 kWh/m 3 ), those phosphonates with the smallest numbers of phosphonate groups were easier degraded as well at pH 3.5 in a pure water matrix (o-PO 4 3- formation rates of up to 80%). Despite an incomplete transformation of organically bound phosphorus to o-PO 4 3- with Fenton reagent in an organically highly polluted wastewater (max. 15%), an almost total removal of the total P occurred. The most efficient total P elimination rates were achieved in accordance with the following Fenton implementation: reaction → sludge separation (acidic) → neutralization of the supernatant → sludge separation (neutral). Accordingly, a neutralization directly after the reaction phase led to a lower total P removal extent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phosphonic acid based exchange resins
Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.
1995-09-12
An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.
Pasek, Matthew A; Lauretta, Dante S
2005-08-01
We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.
High-Molecular Compounds (Selected Articles).
1987-08-24
Polymethacrylic Acid and Polyvinyl Alcohol, by I.F. Yefremov, E.B. D’yakonova, A.A. Spartakov, A.A. Trusov ._’ . Us’yarov...polyoctafluoroamyl methacrylate) was converted into polymethacrylic acid by hydrolysis in an alkaline medium. The poly acid was methylated by diazomethane...Institute im. Lensovet Submitted 25 Apr 66 In a low-concentrated aqueous solution of polymethacrylic acid (PHAK) and polyvinyl alcohol (PVS) mixed
Phosphonic acid based ion exchange resins
Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.
1996-07-23
An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.
Phosphonic acid based ion exchange resins
Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.
1994-01-25
An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.
NASA Astrophysics Data System (ADS)
Shmukler, Liudmila E.; Fadeeva, Yuliya A.; Glushenkova, Ekaterina V.; Nguyen, Van Thuc; Safonova, Liubov P.
2018-04-01
The proton-conducting gel electrolytes (PCGEs) based on PMMA, PVdF or PVdF-HFP doped with solutions of phosphonic acid or ammonium based protic ionic liquids (PILs) in DMF have been synthesized. Rather high values of the conductivity (10-4-10-3 S cm-1) have been reached at low dopant concentrations (up to 1 mol l-1). The influence of the nature of both polymeric matrix and dopant as well as dopant concentration on the conductivity values was discussed. It was established that the dependence of conductivity on the nature of dopant, but not the polymeric matrix, was more pronounced.
Gridnev, Ilya D.; Yasutake, Masaya; Imamoto, Tsuneo; Beletskaya, Irina P.
2004-01-01
Optically active 1,2-bis(alkylmethylphosphino)ethanes and bis(alkylmethylphosphino)methanes are unique diphosphine ligands combining the simple molecular structure and P-stereogenic asymmetric environment. This work shows that these ligands exhibit excellent enantioselectivity in rhodium-catalyzed asymmetric hydrogenation of α,β-unsaturated phosphonic acid derivatives. The enantioselective hydrogenation mechanism elucidated by NMR study is also described. PMID:15024119
The Effects of Phosphonic Acids in Dye-Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
James, Keith Edward
Novel methods for the construction of dye-sensitized solar cells (DSSCs) were developed. A thin dense underlayer of TiO2 was applied on fluorine-doped tin oxide (FTO) glass using as a precursor Tyzor AA-105. Subsequently a mesoporous film of P-25 TiO2 was applied by spreading a suspension uniformly over the surface of the underlayer and allowing the plate to slowly dry while resting on a level surface. After sintering at 500° C slides were treated with TCPP as a sensitizing dye and assembled into DSSCs. A novel method was used to seal the cells; strips of ParafilmRTM were used as spacers between the electrodes and to secure the electrodes together. The cells were filled with a redox electrolyte and sealed by dipping into molten paraffin. A series of phosphonic acids and one arsonic acid were employed as coadsorbates in DSSCs. The coadsorbates were found to compete for binding sites, resulting in lower levels of dye adsorption. The resulting loss of photocurrent was not linear with the reduction of dye loading, and in some cases photocurrent and efficiency were higher for cells with lower levels of dye loading. Electrodes were treated with coadsorbates by procedures including pre-adsorption, simultaneous (sim-adsorption), and post-adsorption, using a range of concentrations and treatment times and a variety of solvents. Most cells were tested using an iodide-triiodide based electrolyte (I3I-1) but some cells were tested using electrolytes based on a Co(II)/Co(III) redox couple (CoBpy electrolytes). Phosphonic acid post-adsorbates increased the Voc of cells using CoBpy electrolytes but caused a decrease in the Voc of cells using I3I-1 electrolyte. Phosphonic acids as sim-adsorbates resulted in a significant increase in efficiency and Jsc, and they show promise as a treatment for TCPP DSSCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdez, Carlos A.; Leif, Roald N.; Alcaraz, Armando
The effective methylation of phosphonic acids related to chemical warfare agents (CWAs) employing trimethyloxonium tetrafluoroborate (TMO·BF 4) for their qualitative detection and identification by gas chromatography-mass spectrometry (GC-MS) is presented. The methylation occurs in rapid fashion (1 h) and can be conveniently carried out at ambient temperature, thus providing a safer alternative to the universally employed diazomethane-based methylation protocols. Optimization of the methylation parameters led us to conclude that methylene chloride was the ideal solvent to carry out the derivatization, and that even though methylated products can be observed surfacing after only 1 h, additional time was not found tomore » be detrimental but beneficial to the process particularly when dealing with analytes at low concentrations (~10 μg mL -1). Due to its insolubility in methylene chloride, TMO·BF 4 conveniently settles to the bottom during the reaction and does not produce additional interfering by-products that may further complicate the GC-MS analysis. We demonstrated the method to successfully methylate a variety of Schedule 2 phosphonic acids, including their half esters, resulting in derivatives that were readily detected and identified using the instrument's spectral library. Most importantly, the method was shown to simultaneously methylate a mixture of the organophosphorus-based nerve agent hydrolysis products: pinacolyl methylphosphonate (PMPA), cyclohexyl methylphosphonate (CyMPA) and ethyl methylphosphonate (EMPA) (at a 10 μg mL -1 concentration each) in a fatty acid ester-rich organic matrix (OPCW-PT-O 3) featured in the 38th Organisation for the Prohibition of Chemical Weapons (OPCW) Proficiency Test. Additionally, the protocol was found to effectively methylate N,N-diethylamino ethanesulfonic acid and N,N-diisopropylamino ethanesulfonic acid that are products arising from the oxidative degradation of the V-series agents VR and VX respectively. This work described herein represents the first report on the use of TMO·BF 4 as a viable, stable and safe agent for the methylation of phosphonic acids and their half esters and within the context of an OPCW Proficiency Test sample analysis.« less
Valdez, Carlos A.; Leif, Roald N.; Alcaraz, Armando
2016-06-01
The effective methylation of phosphonic acids related to chemical warfare agents (CWAs) employing trimethyloxonium tetrafluoroborate (TMO·BF 4) for their qualitative detection and identification by gas chromatography-mass spectrometry (GC-MS) is presented. The methylation occurs in rapid fashion (1 h) and can be conveniently carried out at ambient temperature, thus providing a safer alternative to the universally employed diazomethane-based methylation protocols. Optimization of the methylation parameters led us to conclude that methylene chloride was the ideal solvent to carry out the derivatization, and that even though methylated products can be observed surfacing after only 1 h, additional time was not found tomore » be detrimental but beneficial to the process particularly when dealing with analytes at low concentrations (~10 μg mL -1). Due to its insolubility in methylene chloride, TMO·BF 4 conveniently settles to the bottom during the reaction and does not produce additional interfering by-products that may further complicate the GC-MS analysis. We demonstrated the method to successfully methylate a variety of Schedule 2 phosphonic acids, including their half esters, resulting in derivatives that were readily detected and identified using the instrument's spectral library. Most importantly, the method was shown to simultaneously methylate a mixture of the organophosphorus-based nerve agent hydrolysis products: pinacolyl methylphosphonate (PMPA), cyclohexyl methylphosphonate (CyMPA) and ethyl methylphosphonate (EMPA) (at a 10 μg mL -1 concentration each) in a fatty acid ester-rich organic matrix (OPCW-PT-O 3) featured in the 38th Organisation for the Prohibition of Chemical Weapons (OPCW) Proficiency Test. Additionally, the protocol was found to effectively methylate N,N-diethylamino ethanesulfonic acid and N,N-diisopropylamino ethanesulfonic acid that are products arising from the oxidative degradation of the V-series agents VR and VX respectively. This work described herein represents the first report on the use of TMO·BF 4 as a viable, stable and safe agent for the methylation of phosphonic acids and their half esters and within the context of an OPCW Proficiency Test sample analysis.« less
SYNTHESIS OF MIXED FULL AND SEMIESTERS OF PHOSPHOROUS ACID AS ORGANIC MOTOR OIL ADDITIVES,
The synthesis of mixed full and semiesters of phosphonic acid was effected using alkylphenols produced by the chemical industry. By condensation of...industrial alkylphenol or the condensation of acid chloride of di-(alkylphenyl)-phosphorous acid with diethylamine, the corresponding mixed full and semiesters
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized, coupled...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized, coupled...
Suzuki, Tomiko M; Tanaka, Hiromitsu; Morikawa, Takeshi; Iwaki, Masayo; Sato, Shunsuke; Saeki, Shu; Inoue, Masae; Kajino, Tsutomu; Motohiro, Tomoyoshi
2011-08-14
Hybrid photocatalysts consisting of a ruthenium complex and p-type photoactive N-doped Ta(2)O(5) anchored with an organic group were successfully synthesized by a direct assembly method. The photocatalyst anchored by phosphonate exhibited excellent photoconversion activity of CO(2) to formic acid under visible-light irradiation with respect to the reaction rate and stability. This journal is © The Royal Society of Chemistry 2011
Mahjoubi, Hesameddin; Kinsella, Joseph M; Murshed, Monzur; Cerruti, Marta
2014-07-09
Scaffolds made with synthetic polymers such as polyesters are commonly used in bone tissue engineering. However, their hydrophobicity and the lack of specific functionalities make their surface not ideal for cell adhesion and growth. Surface modification of these materials is thus crucial to enhance the scaffold's integration in the body. Different surface modification techniques have been developed to improve scaffold biocompatibility. Here we show that diazonium chemistry can be used to modify the outer and inner surfaces of three-dimensional poly(D,L-lactic acid) (PDLLA) scaffolds with phosphonate groups, using a simple two-step method. By changing reaction time and impregnation procedure, we were able to tune the concentration of phosphonate groups present on the scaffolds, without degrading the PDLLA matrix. To test the effectiveness of this modification, we immersed the scaffolds in simulated body fluid, and characterized them with scanning electron microscopy, X-ray photoelectron spectroscopy, Raman, and infrared spectroscopy. Our results showed that a layer of hydroxyapatite particles was formed on all scaffolds after 2 and 4 weeks of immersion; however, the precipitation was faster and in larger amounts on the phosphonate-modified than on the bare PDLLA scaffolds. Both osteogenic MC3T3-E1 and chondrogenic ATDC5 cell lines showed increased cell viability/metabolic activity when grown on a phosphonated PDLLA surface in comparison to a control PDLLA surface. Also, more calcium-containing minerals were deposited by cultures grown on phosphonated PDLLA, thus showing the pro-mineralization properties of the proposed modification. This work introduces diazonium chemistry as a simple and biocompatible technique to modify scaffold surfaces, allowing to covalently and homogeneously bind a number of functional groups without degrading the scaffold's polymeric matrix.
Long-term stability of self-assembled monolayers on 316L stainless steel.
Kaufmann, C R; Mani, G; Marton, D; Johnson, D M; Agrawal, C M
2010-04-01
316L stainless steel (316L SS) has been extensively used for making orthopedic, dental and cardiovascular implants. The use of phosphonic acid self-assembled monolayers (SAMs) on 316L SS has been previously explored for potential biomedical applications. In this study, we have investigated the long-term stability of methyl (-CH(3)) and carboxylic acid (-COOH)-terminated phosphonic acid SAMs on 316L under physiological conditions. The stability of SAMs on mechanically polished and electropolished 316L SS was also investigated as a part of this study. Well-ordered and uniform -CH(3)- and -COOH-terminated SAMs were coated on mechanically polished and electropolished 316L SS surfaces. The long-term stability of SAMs on 316L SS was investigated for up to 28 days in Tris-buffered saline (TBS) at 37 degrees C using x-ray photoelectron spectroscopy, atomic force microscopy and contact angle goniometry. A significant amount of phosphonic acid molecules was desorbed from the 316L SS surfaces within 1 to 7 days of TBS immersion followed by a slow desorption of molecules over the remaining days. The -COOH-terminated SAM was found to be more stable than the -CH(3)-terminated SAM on both mechanically and electropolished surfaces. No significant differences in the desorption behavior of SAMs were observed between mechanically and electropolished 316L SS surfaces.
Zechel, David L.; Jochimsen, Bjarne
2014-01-01
SUMMARY After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043
Organogel polymers from 10-undecenoic acid and poly(vinyl acetate)
USDA-ARS?s Scientific Manuscript database
Organogels are used in a variety of high value applications including the removal of toxic solvents from aqueous environments and the time-controlled release of compounds. One of the most promising gelators is a polyvinyl polymer containing medium chain length carboxylic acids. The existing producti...
Current Understanding of Perfluoroalkyl Acid Toxicology
The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-14 carbons in length) and an anionic head group (sulfonate, carboxylate or phosphonate). These compounds have excellent surface-tension reducing properties and hav...
Glyphosate catabolism by Pseudomonas sp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinabarger, D.L.
1986-01-01
The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing (3-/sup 14/C) glyphosate revealed that approximately 50-59% of the C3 carbon was oxidized to CO/sub 2/. Fractionation of stationary phase cells labeled with (3-/sup 14/C)glyphosate revealed that from 45-47% of the assimilated C3 carbon is distributed to proteins and that amino acids methionine and serine are highly labeled. The nucleic acid bases adenine and guanine received 90% of the C3 label that was incorporated into nucleic acids, and the only pyrimidine base labeled was thymine. Pulse labeling ofmore » PG2982 cells with (3-/sup 14/C)glyphosate revealed that (3-/sup 14/C)sarcosine is an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of an enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. Phosphonate utilization by Pseudomonas sp. PG2982 was investigated. Each of the ten phosphonates tested were utilized as a sole source of phosphorus by PG2982. Representative compounds tested included alkylphosphonates, 1-amino-substituted alkylphosphonates, amino-terminal phosphonates, and an arylphosphonate. PG2982 cultures degraded phenylphosphonate to benzene and produced methane from methylphosphonate. The data indicate that PG2982 is capable of cleaving the carbon-phosphorus bond of several structurally different phosphonates.« less
Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp.
Ermakova, Inna T; Shushkova, Tatyana V; Sviridov, Alexey V; Zelenkova, Nina F; Vinokurova, Natalya G; Baskunov, Boris P; Leontievsky, Alexey A
2017-07-01
Four bacterial strains from glyphosate- or alkylphosphonates-contaminated soils were tested for ability to utilize different organophosphonates. All studied strains readily utilized methylphosphonic acid and a number of other phosphonates, but differed in their ability to degrade glyphosate. Only strains Ochrobactrum anthropi GPK 3 and Achromobacter sp. Kg 16 utilized this compound after isolation from enrichment cultures with glyphosate. Achromobacter sp. MPK 7 from the same enrichment culture, similar to Achromobacter sp. MPS 12 from methylphosphonate-polluted source, required adaptation to growth on GP. Studied strains varied significantly in their growth parameters, efficiency of phosphonates degradation and characteristic products of this process, as well as in their energy metabolism. These differences give grounds to propose a possible model of interaction between these strains in microbial consortium in phosphonate-contaminated soils.
Novel alpha-hydroxy phosphonic acids via castor oil
USDA-ARS?s Scientific Manuscript database
Hydroxy fatty acids (HFAs) have found a number of uses in today’s market, with uses ranging from materials to pharmaceuticals. Castor oil has served as a versatile HFA; its principle component, ricinoleic acid, can be isolated from castor oil and has been modified extensively for a number of applica...
NASA Astrophysics Data System (ADS)
Song, Jun-Ling; Mao, Jiang-Gao; Sun, Yan-Qiong; Zeng, Hui-Yi; Kremer, Reinhard K.; Clearfield, Abraham
2004-03-01
Hydrothermal reactions of N, N-bis(phosphonomethyl)aminoacetic acid (HO 2CCH 2N(CH 2PO 3H 2) 2) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2[O 2CCH 2N(CH 2PO 3)(CH 2PO 3H)]·H 2O ( 1) and {NH 3CH 2CH 2NH 3}{Ni[O 2CCH 2N(CH 2PO 3H) 2](H 2O) 2} 2 ( 2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a <002> double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2CCH 2N(CH 2PO 3H) 2][H 2O] 2} - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a <800> hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected.
Perfluoroalkyl acids : Recent activities and research progress
The perfluoroalkyl acids (PFAAs) are a family of man-made fluorinated organic chemicals consisting of a carbon backbone typically of four to fourteen in length and a charged functional moiety (primarily carboxylate, sulfonate or phosphonate). The two most widely known PFAAs are ...
Valdez, Carlos A; Leif, Roald N; Alcaraz, Armando
2016-08-24
The effective methylation of phosphonic acids related to chemical warfare agents (CWAs) employing trimethyloxonium tetrafluoroborate (TMO·BF4) for their qualitative detection and identification by gas chromatography-mass spectrometry (GC-MS) is presented. The methylation occurs in rapid fashion (1 h) and can be conveniently carried out at ambient temperature, thus providing a safer alternative to the universally employed diazomethane-based methylation protocols. Optimization of the methylation parameters led us to conclude that methylene chloride was the ideal solvent to carry out the derivatization, and that even though methylated products can be observed surfacing after only 1 h, additional time was not found to be detrimental but beneficial to the process particularly when dealing with analytes at low concentrations (∼10 μg mL(-1)). Due to its insolubility in methylene chloride, TMO·BF4 conveniently settles to the bottom during the reaction and does not produce additional interfering by-products that may further complicate the GC-MS analysis. The method was demonstrated to successfully methylate a variety of Schedule 2 phosphonic acids, including their half esters, resulting in derivatives that were readily detected and identified using the instrument's spectral library. Most importantly, the method was shown to simultaneously methylate a mixture of the organophosphorus-based nerve agent hydrolysis products: pinacolyl methylphosphonate (PMPA), cyclohexyl methylphosphonate (CyMPA) and ethyl methylphosphonate (EMPA) (at a 10 μg mL(-1) concentration each) in a fatty acid ester-rich organic matrix (OPCW-PT-O3) featured in the 38th Organisation for the Prohibition of Chemical Weapons (OPCW) Proficiency Test. In addition, the protocol was found to effectively methylate N,N-diethylamino ethanesulfonic acid and N,N-diisopropylamino ethanesulfonic acid that are products arising from the oxidative degradation of the V-series agents VR and VX respectively. The work described herein represents the first report on the use of TMO·BF4 as a viable, stable and safe agent for the methylation of phosphonic acids and their half esters and within the context of an OPCW Proficiency Test sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Generation and exploitation of acyclic azomethine imines in chiral Brønsted acid catalysis
NASA Astrophysics Data System (ADS)
Hashimoto, Takuya; Kimura, Hidenori; Kawamata, Yu; Maruoka, Keiji
2011-08-01
Successful implementation of a catalytic asymmetric synthesis strategy to produce enantiomerically enriched compounds requires the adoption of suitable prochiral substrates. The combination of an azomethine imine electrophile with various nucleophiles could give straightforward access to a number of synthetically useful chiral hydrazines, but is used rarely. Here we report the exploitation of acyclic azomethine imines as a new type of prochiral electrophile. They can be generated in situ by the condensation of N‧-benzylbenzoylhydrazide with a variety of aldehydes in the presence of a catalytic amount of an axially chiral dicarboxylic acid. By trapping these electrophiles with alkyl diazoacetate or (diazomethyl)phosphonate nucleophiles, we produced a diverse array of chiral α-diazo-β-hydrazino esters and phosphonates with excellent enantioselectivities.
Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A
2012-11-01
A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.
NASA Astrophysics Data System (ADS)
Kajii, Hirotake; Mohri, Yoshinori; Okui, Hiyuto; Kondow, Masahiko; Ohmori, Yutaka
2018-03-01
The characteristics of conventional and inverted polymer photodetectors based on a blend of a donor, poly(3-hexylthiophene) (P3HT), and an acceptor, fullerene derivative [6,6]phenyl-C61-butyric acid methyl ester (PCBM) using Ga-doped ZnO (GZO) electrodes modified by phosphonic acid-based self-assembled monolayer (SAM) treatment in a short time are investigated. Fluoroalkyl SAM, 1H,1H,2H,2H-perfluorooctane phosphonic acid (FOPA) treatment leads to efficient hole extraction from the active layer. The characteristics of the conventional device with GZO modified by FOPA treatment are almost the same as those with indium tin oxide modified by FOPA. Cs2CO3 and aminoalkyl SAM, 11-aminoundecylphosphonic acid (11-AUPA) treatments suppress the hole injection from GZO to the organic layer. For the inverted devices with GZO cathodes using Cs2CO3 and 11-AUPA, the dark current decreases, which results in the improved photodetector detectivity. An inverted device with both Cs2CO3 and 11-AUPA exhibits incident-photon-to-current conversion efficiency (IPCE) of approximately 65% (80%) at 0 V (-6 V) under light irradiation (λ = 500 nm), high on/off ratio, and improved durability. Improved open-circuit voltage and IPCE at low voltages are achieved by these treatments, which are related with the improved internal built-in field, the reduction of recombination probability in the vicinity of GZO, and the modified charge collection efficiency.
NASA Astrophysics Data System (ADS)
Ross, Ryan D.; Cole, Lisa E.; Roeder, Ryan K.
2012-10-01
Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate ( l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.
Synthetic Analogs of Phospholipid Metabolites as Antimalarials.
1979-07-01
phosphatidic acid analogs containing ether and phosphonate groups; completely non-hydrolyzable lecithin analogs containing phosphinate and ether groups...The phosphatidic acid and lecithin target compounds were successfully synthesized and submitted, together with a number of intermediates. A model of a... Phosphatidic acid analogs ......................... 5 Z.Z Lecithin Analogs .................................. 6 2.3 Analogs of Cytidine Diphosphate
Behringer, Deborah L; Smith, Deborah L; Katona, Vanessa R; Lewis, Alan T; Hernon-Kenny, Laura A; Crenshaw, Michael D
2014-08-01
A terrorist attack using toxic chemicals is an international concern. The utility of rubber cement and latex body paint as spray-on/spread-on peel-off collection media for signatures attributable to pesticides and chemical warfare agents from interior building and public transportation surfaces two weeks post-deposition is demonstrated. The efficacy of these media to sample escalator handrail, stainless steel, vinyl upholstery fabric, and wood flooring is demonstrated for two pesticides and eight chemicals related to chemical warfare agents. The chemicals tested are nicotine, parathion, atropine, diisopropyl methylphosphonate, dimethyl methylphosphonate, dipinacolyl methylphosphonate, ethyl methylphosphonic acid, isopropyl methylphosphonic acid, methylphosphonic acid, and thiodiglycol. Amounts of each chemical found are generally greatest when latex body paint is used. Analytes with low volatility and containing an alkaline nitrogen or a sulfur atom (e.g., nicotine and parathion) usually are recovered to a greater extent than the neutral phosphonate diesters and acidic phosphonic acids (e.g., dimethyl methylphosphonate and ethyl methylphosphonic acid). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coan, Patrick D.; Ellis, Lucas D.; Griffin, Michael B.
Here, cooperative catalysts containing a combination of noble metal hydrogenation sites and Bronsted acid sites are critical for many reactions, including the deoxygenation (DO) of biomass-derived oxygenates in the upgrading of pyrolysis oil. One route toward the design of cooperative catalysts is to tether two different catalytically active functions so that they are in close proximity while avoiding undesirable interactions that can block active sites. Here, we deposited carboxylic acid (CA)-functionalized organophosphonate monolayers onto Al 2O 3-supported Pd nanoparticle catalysts to prepare bifunctional catalysts containing both Bronsted acid and metal sites. Modification with phosphonic acids (PAs) improved activity and selectivitymore » for gas-phase DO reactions, but the degree of improvement was highly sensitive to both the presence and positioning of the CA group, suggesting a significant contribution from both the PA and CA sites. Short spacer lengths of 1-2 methylene groups between the phosphonate head and CA tail were found to yield the best DO rates and selectivities, whereas longer chains performed similarly to self-assembled monolayers having alkyl tails. Results from a combination of density functional theory and Fourier transform infrared spectroscopy suggested that the enhanced catalyst performance on the optimally positioned CAs was due to the generation of strong acid sites on the Al 2O 3 support adjacent to the metal. Furthermore, the high activity of these sites was found to result from a hydrogen-bonded cyclic structure involving cooperativity between the phosphonate head group and CA tail function. More broadly, these results indicate that functional groups tethered to supports via organic ligands can influence catalytic chemistry on metal nanoparticles.« less
Coan, Patrick D.; Ellis, Lucas D.; Griffin, Michael B.; ...
2018-03-05
Here, cooperative catalysts containing a combination of noble metal hydrogenation sites and Bronsted acid sites are critical for many reactions, including the deoxygenation (DO) of biomass-derived oxygenates in the upgrading of pyrolysis oil. One route toward the design of cooperative catalysts is to tether two different catalytically active functions so that they are in close proximity while avoiding undesirable interactions that can block active sites. Here, we deposited carboxylic acid (CA)-functionalized organophosphonate monolayers onto Al 2O 3-supported Pd nanoparticle catalysts to prepare bifunctional catalysts containing both Bronsted acid and metal sites. Modification with phosphonic acids (PAs) improved activity and selectivitymore » for gas-phase DO reactions, but the degree of improvement was highly sensitive to both the presence and positioning of the CA group, suggesting a significant contribution from both the PA and CA sites. Short spacer lengths of 1-2 methylene groups between the phosphonate head and CA tail were found to yield the best DO rates and selectivities, whereas longer chains performed similarly to self-assembled monolayers having alkyl tails. Results from a combination of density functional theory and Fourier transform infrared spectroscopy suggested that the enhanced catalyst performance on the optimally positioned CAs was due to the generation of strong acid sites on the Al 2O 3 support adjacent to the metal. Furthermore, the high activity of these sites was found to result from a hydrogen-bonded cyclic structure involving cooperativity between the phosphonate head group and CA tail function. More broadly, these results indicate that functional groups tethered to supports via organic ligands can influence catalytic chemistry on metal nanoparticles.« less
USDA-ARS?s Scientific Manuscript database
In this study, water-soluble amylose-inclusion complexes were prepared from high amylose corn starch and sodium salts of lauric, palmitic, and stearic acid by steam jet cooking. Cast films were prepared by combining the amylose complexes with poly(vinyl alcohol)(PVOH) solution at ratios varying from...
Maya, L.
1980-06-26
A method of preparing and using the crystalline organic derivatives of the tetravalent metal phosphates and phosphonates provides for the contacting of an aqueous solution of a metal nitrate, with a solution of an organophosphorus acid for a period of time at room temperature that is sufficient for the formation of a metal phosphate product, and thereafter recovering said product. According to the invention, the product of the disclosed process is used in effecting analytical separations, such as ion exchange and chromatography.
In situ self cross-linking of polyvinyl alcohol battery separators
NASA Technical Reports Server (NTRS)
Philipp, W. H.; Hsu, L. C.; Sheibley, D. W. (Inventor)
1979-01-01
A battery separator was produced from a polyvinyl alcohol sheet structure which was subjected to an in situ, self crosslinking process by selective oxidation of the 1,2 diol units present in the polyvinyl alcohol sheet structure. The 1,2 diol units were cleaved to form aldehyde end groups which subsequently crosslink through acetalization of the 1,3 diol units of the polyvinyl alcohol. Selective oxidation was achieved using a solution of a suitable oxidizing agent such as periodic acid or lead tetraacetate.
Marine methane paradox explained by bacterial degradation of dissolved organic matter
NASA Astrophysics Data System (ADS)
Repeta, Daniel J.; Ferrón, Sara; Sosa, Oscar A.; Johnson, Carl G.; Repeta, Lucas D.; Acker, Marianne; Delong, Edward F.; Karl, David M.
2016-12-01
Biogenic methane is widely thought to be a product of archaeal methanogenesis, an anaerobic process that is inhibited or outcompeted by the presence of oxygen and sulfate. Yet a large fraction of marine methane delivered to the atmosphere is produced in high-sulfate, fully oxygenated surface waters that have methane concentrations above atmospheric equilibrium values, an unexplained phenomenon referred to as the marine methane paradox. Here we use nuclear magnetic resonance spectroscopy to show that polysaccharide esters of three phosphonic acids are important constituents of dissolved organic matter in seawater from the North Pacific. In seawater and pure culture incubations, bacterial degradation of these dissolved organic matter phosphonates in the presence of oxygen releases methane, ethylene and propylene gas. Moreover, we found that in mutants of a methane-producing marine bacterium, Pseudomonas stutzeri, disrupted in the C-P lyase phosphonate degradation pathway, methanogenesis was also disabled, indicating that the C-P lyase pathway can catalyse methane production from marine dissolved organic matter. Finally, the carbon stable isotope ratio of methane emitted during our incubations agrees well with anomalous isotopic characteristics of seawater methane. We estimate that daily cycling of only about 0.25% of the organic matter phosphonate inventory would support the entire atmospheric methane flux at our study site. We conclude that aerobic bacterial degradation of phosphonate esters in dissolved organic matter may explain the marine methane paradox.
Synthesis of lesquerella a-hydroxy phosphonates
USDA-ARS?s Scientific Manuscript database
Hydroxy fatty acids (HFAs) have found a number of uses in today’s market, with uses ranging from industrial materials to pharmaceuticals. Castor oil, which is obtained from castor seeds, has served as a source of a versatile HFA; its principle component, ricinoleic acid, can be isolated from castor ...
Küsters, Markus; Gerhartz, Michael
2010-04-01
For the determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water, different procedures of enrichment and cleanup were examined using anion exchange or SPE. In many cases interactions of, e.g. alkaline earth metal ions especially calcium could be observed during enrichment and cleanup resulting in loss of analytes. For that reason, a novel cleanup and enrichment procedure for the determination of these phosphonic acid herbicides has been developed in drinking water using cation-exchange resin. In summary, the cleanup procedure with cation-exchange resin developed in this study avoids interactions as described above and is applicable to calcium-rich drinking water samples. After derivatization with 9-fluorenylmethylchloroformate followed by LC with fluorescence detection, LOD of 12, 14 and 12 ng/L and mean recoveries from real-world drinking water samples of 98+/-9, 100+/-16 and 101+/-11% were obtained for glyphosate, aminomethylphosphonic acid and glufosinate, respectively. The low LODs and the high precision permit the analysis of these phosphonic acid herbicides according to the guidelines of the European Commission.
Ono, Shin; Nakai, Takahiko; Kuroda, Hirofumi; Miyatake, Ryuta; Horino, Yoshikazu; Abe, Hitoshi; Umezaki, Masahito; Oyama, Hiroshi
2016-11-04
Diphenyl (α-aminoalkyl)phosphonates act as mechanism-based inhibitors against serine proteases by forming a covalent bond with the hydroxy group of the active center Ser residue. Because the covalent bond was found to be broken and replaced by 2-pyridinaldoxime methiodide (2PAM), we employed a peptidyl derivative bearing diphenyl 1-amino-2-phenylethylphosphonate moiety (Phe(p) (OPh)2 ) to target the active site of chymotrypsin and to selectively anchor to Lys175 in the vicinity of the active site. Previously, it was reported that the configuration of the α-carbon of phosphorus in diphenyl (α-aminoalkyl)phosphonates affects the inactivation reaction of serine proteases, i.e., the (R)-enantiomeric diphenyl phosphonate is comparable to l-amino acids and it effectively reacts with serine proteases, whereas the (S)-enantiomeric form does not. In this study, we evaluated the stereochemical effect of the phosphonate moiety on the selective chemical modification. Epimeric dipeptidyl derivatives, Ala-(R or S)-Phe(p) (OPh)2 , were prepared by separation with RP-HPLC. A tripeptidyl (R)-epimer (Ala-Ala-(R)-Phe(p) (OPh)2 ) exhibited a more potent inactivation ability against chymotrypsin than the (S)-epimer. The enzyme inactivated by the (R)-epimer was more effectively reactivated with 2PAM than the enzyme inactivated by the (S)-epimer. Finally, N-succinimidyl (NHS) active ester derivatives, NHS-Suc-Ala-Ala- (R or S)-Phe(p) (OPh)2 , were prepared, and we evaluated their action when modifying Lys175 in chymotrypsin. We demonstrated that the epimeric NHS derivative that possessed the diphenyl phosphonate moiety with the (R)-configuration effectively modified Lys175 in chymotrypsin, whereas that with the (S)-configuration did not. These results demonstrate the utility of peptidyl derivatives that bear an optically active diphenyl phosphonate moiety as affinity labeling probes in protein bioconjugation. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 521-530, 2016. © 2015 Wiley Periodicals, Inc.
Sequential pyrolysis of plastic to recover polystyrene HCL and terephthalic acid
Evans, Robert J.; Chum, Helena L.
1995-01-01
A process of pyrolyzing plastic waste feed streams containing polyvinyl chloride, polyethylene terephthalate, polystyrene and polyethylene to recover polystyrene HCl and terephthalic acid comprising: heating the plastic waste feed stream to a first temperature; adding an acid or base catalyst on an oxide or carbonate support; heating the plastic waste feed stream to pyrolyze polyethylene terephthalate and polyvinyl chloride; separating terephthalic acid or HCl; heating to a second temperature to pyrolyze polystyrene; separating styrene; heating the waste feed stream to a third temperature to pyrolyze polyethylene; and separating hydrocarbons.
The sources, fate, and toxicity of chemical warfare agent degradation products.
Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V
1999-01-01
We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an evaluation of both the agent and thiodiglycol. Images Figure 1 Figure 3 Figure 5 PMID:10585900
Phase Behavior and Conductivity of Phosphonated Block Copolymers Containing Ionic Liquids
NASA Astrophysics Data System (ADS)
Jung, Ha Young; Kim, Sung Yeon; Park, Moon Jeong
2015-03-01
As the focus on proton exchange fuel cells continues to escalate in the era of alternative energy systems, the rational design of sulfonated polymers has emerged as a key technique for enhancing device efficiency. While the sulfonic acid group guarantees high proton conductivity of membranes under humidified conditions, the growing need for high temperature operation has discouraged their practical uses in fuel cells. In this respect, phosphonated polymers have drawn intensive attention in recent years owing to their self-dissociation ability. In this study, we have synthesized a set of phosphonated block copolymers, poly(styrenephosphonate-methylbutylene) (PSP- b - PMB), by varying phosphonation level (PL). A wide variety of self-assembled morphologies, i.e., disordered, lamellar, hexagonally perforated lamellae and hexagonally packed cylindrical phases, were observed with PL. Remarkably, upon comparing the morphology of PSP- b-PMB and that of sulfonated analog, we found distinctly dissimilar domain sizes at the same molecular weight and composition. A range of ionic liquids (ILs) were incorporated into the PSP- b-PMB block copolymers and their ion transport properties were examined. It has been revealed that the degree of confinement of ionic phases (domain size) impacts the ion mobility and proton dissociation efficiency of IL-containing polymers.
NASA Astrophysics Data System (ADS)
de Carvalho Gomes, Rafael; Seruff, Luciana Amaral; Scal, Maira Labanca Waineraich; Vera, Ysrael Marrero
2018-02-01
The separation of rare earth elements (REEs) using solvent extraction adding complexing agents appears to be an alternative to saponification of the extractant. We evaluated the effect of lactic acid concentration on didymium (praseodymium and neodymium) and lanthanum extraction with 2-ethylhexyl phosphonic acid mono-2-ethyl hexyl ester [HEH(EHP)] as extractant. First, we investigated in batch experiments the separation of lanthanum (La) and didymium (Pr and Nd) using McCabe-Thiele diagrams to estimate the number of extraction stages when the feed solution was or was not conditioned with lactic acid. Additionally, we conducted continuous liquid-liquid extraction experiments and evaluated the influence of lactic acid concentration on the REE extraction and separation. The tests showed that the extraction percentage of REEs and the separation factor Pr/La increased when the lactic acid concentration increased, but the didymium purity decreased. Lanthanum, praseodymium, and neodymium extraction rate were 23.0, 89.7, and 99.2 pct, respectively, with 1:1 aqueous/organic volume flow rate and feed solution doped with 0.52 mol L-1 lactic acid. The highest didymium purity reached was 92.0 pct with 0.26 mol L-1 lactic acid concentration.
NASA Astrophysics Data System (ADS)
Kadyrov, A. A.; Rokhlin, E. M.
1988-09-01
In this review we survey the methods for the preparation of derivatives of fluoroalkenylphosphonic acid and their reactions. The main methods for obtaining these compounds are based on the reactions of fluoroolefins with phosphites and also on the elimination of halogens, hydrogen halides and alkyl halides from fluoroalkylphosphonates or fluorine-containing phosphorus ylides. The chemical properties of fluoroalkenylphosphonates are due to the combined effect of the fluorine atoms and the phosphonate group. Their reactions with different reagents leads to modifications of the phosphonate group, addition to the C=C bond, replacement of the vinyl halogen atom, and cleavage of the C-P bond. The bibliography includes 96 references.
Wanat, Weronika; Talma, Michał; Hurek, Józef; Pawełczak, Małgorzata; Kafarski, Paweł
2018-06-08
A series of phosphonic acid analogues of phenylglycine variously substituted in phenyl ring have been synthesized and evaluated for their inhibitory activity towards potato L-phenylalanine ammonia lyase. Most of the compounds appeared to act as moderate (micromolar) inhibitors of the enzyme. Analysis of their binding performed using molecular modeling have shown that they might be bound either in active site of the enzyme or in the non-physiologic site. The latter one is located in adjoining deep site nearby the to the entrance channel for substrate into active site. Copyright © 2018. Published by Elsevier B.V.
Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning
2018-01-01
In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Yanen; Wang, Kai; Li, Xinpei; Wei, Qinghua; Chai, Weihong; Wang, Shuzhi; Che, Yu; Lu, Tingli; Zhang, Bo
2017-01-01
A key requirement for three-dimensional printing (3-DP) at room temperature of medical implants depends on the availability of printable and biocompatible binder-powder systems. Different concentration polyvinyl alcohol (PVA) and phosphoric acid solutions were chosen as the binders to make the artificial stent biocompatible with sufficient compressive strength. In order to achieve an optimum balance between the bioceramic powder and binder solution, the biocompatibility and mechanical properties of these artificial stent samples were tested using two kinds of binder solutions. This study demonstrated the printable binder formulation at room temperature for the 3D artificial bone scaffolds. 0.6 wt% PVA solution was ejected easily via inkjet printing, with a supplementation of 0.25 wt% Tween 80 to reduce the surface tension of the polyvinyl alcohol solution. Compared with the polyvinyl alcohol scaffolds, the phosphoric acid scaffolds had better mechanical properties. Though both scaffolds supported the cell proliferation, the absorbance of the polyvinyl alcohol scaffolds was higher than that of the phosphoric acid scaffolds. The artificial stents with a hydroxyapatite/beta-tricalcium phosphate (HA/β-TCP) weight ratios of 60:40 depicted good biocompatibility for both scaffolds. Considering the scaffolds' mechanical and biocompatible properties, the phosphoric acid scaffolds with a HA/β-TCP weight ratio of 60:40 may be the best combination for bone tissue engineering applications.
NASA Astrophysics Data System (ADS)
Anderson, Ian Mark
Quantum dot-sensitized solar cells (QDSSCs) are a popular target for research due to their potential for highly efficient, easily tuned absorption. Typically, light is absorbed by quantum dots attached to a semiconductor substrate, such as TiO2, via bifunctional linker molecules. This research aims to create a patterned monolayer of linker molecules on a TiO2 film, which would in turn allow the attachment of a patterned layer of quantum dots. One method for the creation of a patterned monolayer is the functionalization of a TiO2 film with a linker molecule, followed by illumination with a laser at 355 nm. This initiates a TiO 2-catalyzed oxidation reaction, causing loss of surface coverage. A second linker molecule can then be adsorbed onto the TiO2 surface in the illuminated area. Towards that end, the behaviors of carboxylic and phosphonic acids adsorbed on TiO2 have been studied. TiO2 films were functionalized by immersion in solutions a single adsorbate and surface coverage was determined by IR spectroscopy. It is shown that phosphonic acids attain higher surface coverage than carboxylic acids, and will displace them from TiO2 when in a polar solvent. Alkyl chain lengths, which can influence stabilities of monolayers, are shown not to have an effect on this relationship. Equilibrium binding data for the adsorption of n-hexadecanoic acid to TiO2 from a THF solution are presented. It is shown that solvent polarity can affect monolayer stability; carboxylates and phosphonates undergo more desorption into polar solvents than nonpolar. Through illumination, it was possible to remove nearly all adsorbed linkers from TiO2. However, the illuminated areas were found not to be receptive to attachment by a second adsorbate. A possible reason for this behavior is presented. I also report on the synthesis and characterization of a straight-chain, thiol-terminated phosphonic acid. Initial experiments involving monolayer formation and quantum dot attachment are presented. Finally, it was found that quantum dots attach in high amounts to linker-functionalized TiO2 when suspended in pyridine. This increased surface attachment was present even when the linker molecule used lacked a functional group which would bind to the CdSe surface.
Sequential pyrolysis of plastic to recover polystyrene, HCl and terephthalic acid
Evans, R.J.; Chum, H.L.
1995-11-07
A process is described for pyrolyzing plastic waste feed streams containing polyvinyl chloride, polyethylene terephthalate, polystyrene and polyethylene to recover polystyrene, HCl and terephthalic acid comprising: heating the plastic waste feed stream to a first temperature; adding an acid or base catalyst on an oxide or carbonate support; heating the plastic waste feed stream to pyrolyze polyethylene terephthalate and polyvinyl chloride; separating terephthalic acid or HCl; heating to a second temperature to pyrolyze polystyrene; separating styrene; heating the waste feed stream to a third temperature to pyrolyze polyethylene; and separating hydrocarbons. 83 figs.
Craig Clemons; Julia Sedlmair; Barbara Illman; Rebecca Ibach; Carol Hirschmugl
2013-01-01
The distribution of poly(acrylic acid) (PAA) in model laminates of nanocellulose and poly(vinyl alcohol) (PVOH) was investigated by FTIR chemical imaging. The method was effective in spatially discerning the three components of the composite. PAA can potentially improve the performance of nanocellulose reinforced PVOH by not only crosslinking the PVOH matrix but also...
Djafer, Lahcène; Ayral, André; Boury, Bruno; Laine, Richard M
2013-03-01
Phosphorus is frequently reported as a doping element for TiO(2) as photocatalyst; however, the previously reported methods used to prepare P-doped TiO(2) do not allow control over the location of the phosphorus either in the bulk or at the surface or both. In this study, we report on the surface modification of Evonik P25 with phosphonic (H(3)PO(3)) and octylphosphonic acid [C(8)H(17)-PO(OH)(2)], done to limit the introduction of phosphorus only to the photocatalyst surface. The effect of this element on the thermal behavior and photocatalytic properties is reported through characterization using elemental analyses, solid state (31)P NMR, X-ray powder diffraction, N(2) porosimetry, dilatometry, etc. Thus, the objective of the work reported here is to focus on the role(s) that phosphorus plays only at TiO(2) crystallite surfaces. For comparison, other samples were treated with phosphoric acid. Copyright © 2012 Elsevier Inc. All rights reserved.
Nafion/silane nanocomposite membranes for high temperature polymer electrolyte membrane fuel cell.
Ghi, Lee Jin; Park, Na Ri; Kim, Moon Sung; Rhee, Hee Woo
2011-07-01
The polymer electrolyte membrane fuel cell (PEMFC) has been studied actively for both potable and stationary applications because it can offer high power density and be used only hydrogen and oxygen as environment-friendly fuels. Nafion which is widely used has mechanical and chemical stabilities as well as high conductivity. However, there is a drawback that it can be useless at high temperatures (> or = 90 degrees C) because proton conducting mechanism cannot work above 100 degrees C due to dehydration of membrane. Therefore, PEMFC should be operated for long-term at high temperatures continuously. In this study, we developed nanocomposite membrane using stable properties of Nafion and phosphonic acid groups which made proton conducting mechanism without water. 3-Aminopropyl triethoxysilane (APTES) was used to replace sulfonic acid groups of Nafion and then its aminopropyl group was chemically modified to phosphonic acid groups. The nanocomposite membrane showed very high conductivity (approximately 0.02 S/cm at 110 degrees C, <30% RH).
Novel quinolinone-phosphonic acid AMPA antagonists devoid of nephrotoxicity.
Cordi, Alex A; Desos, Patrice; Ruano, Elisabeth; Al-Badri, Hashim; Fugier, Claude; Chapman, Astrid G; Meldrum, Brian S; Thomas, Jean-Yves; Roger, Anita; Lestage, Pierre
2002-10-01
We reported previously the synthesis and structure-activity relationships (SAR) in a series of 2-(1H)-oxoquinolines bearing different acidic functions in the 3-position. Exploiting these SAR, we were able to identify 6,7-dichloro-2-(1H)-oxoquinoline-3-phosphonic acid compound 3 (S 17625) as a potent, in vivo active AMPA antagonist. Unfortunately, during the course of the development, nephrotoxicity was manifest at therapeutically effective doses. Considering that some similitude exists between S 17625 and probenecid, a compound known to protect against the nephrotoxicity and/or slow the clearance of different drugs, we decided to synthesise some new analogues of S 17625 incorporating some of the salient features of probenecid. Replacement of the chlorine in position 6 by a sulfonylamine led to very potent AMPA antagonists endowed with good in vivo activity and lacking nephrotoxicity potential. Amongst the compounds evaluated, derivatives 7a and 7s appear to be the most promising and are currently evaluated in therapeutically relevant stroke models.
NASA Astrophysics Data System (ADS)
Lan, Ping; Xie, Mei-Qi; Yao, Yue-Mei; Chen, Wan-Na; Chen, Wei-Min
2010-12-01
Fructose-1,6-biphophatase has been regarded as a novel therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). 3D-QSAR and docking studies were performed on a series of [5-(4-amino-1 H-benzoimidazol-2-yl)-furan-2-yl]-phosphonic acid derivatives as fructose-1,6-biphophatase inhibitors. The CoMFA and CoMSIA models using thirty-seven molecules in the training set gave r cv 2 values of 0.614 and 0.598, r 2 values of 0.950 and 0.928, respectively. The external validation indicated that our CoMFA and CoMSIA models possessed high predictive powers with r 0 2 values of 0.994 and 0.994, r m 2 values of 0.751 and 0.690, respectively. Molecular docking studies revealed that a phosphonic group was essential for binding to the receptor, and some key features were also identified. A set of forty new analogues were designed by utilizing the results revealed in the present study, and were predicted with significantly improved potencies in the developed models. The findings can be quite useful to aid the designing of new fructose-1,6-biphophatase inhibitors with improved biological response.
Chelating Tendencies of Bioactive Aminophosphonates
Lázár, István; Kafarski, Pawel
1994-01-01
The metal-binding abilities of a wide variety of bioactive aminophosphonates, from the simple aminoethanephosphonic acids to the rather large macrocyclic polyaza derivatives, are discussed with special emphasis on a comparison of the analogous carboxylic acid and phosphonic acid systems. Examples are given of the biological importance of metal ion – aminophosphonate interactions in living systems, and also of their actual and potential applicability in medicine. PMID:18476237
Craig L. Perkins, Ph.D. | NREL
molecular beam epitaxy systems, two photoemission systems, a field-emission scanning Auger microprobe, a ;Molecular Anchors for Self-Assembled Monolayers on ZnO: A Direct Comparison of the Thiol and Phosphonic Acid
Ion exchange polymers and method for making
NASA Technical Reports Server (NTRS)
Philipp, Warren H. (Inventor); Street, Kenneth W., Jr. (Inventor)
1994-01-01
An ion exchange polymer comprised of an alkali metal or alkaline earth metal salt of a poly(carboxylic acid) in a poly(vinyl acetal) matrix is described. The polymer is made by treating a mixture made of poly(vinyl alcohol) and poly(acrylic acid) with a suitable aldehyde and an acid catalyst to cause acetalization with some cross-linking. The material is then subjected to an alkaline aqueous solution of an alkali metal salt or an alkali earth metal salt. All of the film forming and cross-linking steps can be carried out simultaneously, if desired.
Pramanik, Malay; Patra, Astam K; Bhaumik, Asim
2013-04-14
Here we report the synthesis of a new crystalline titanium phosphonate material (HTiP-7) having a self-assembled nanostructure and a mesoscopic void space without the aid of any surfactant or templating agent. The material has been synthesized hydrothermally through the reaction between benzene-1,3,5-triphosphonic acid (BTPA) and titanium(iv) isopropoxide at neutral pH at 453 K for 24 h. This hybrid phosphonate material has been thoroughly characterized by powder X-ray diffraction, N2 sorption, HR TEM, FE SEM, TG-DTA, FT IR and UV-Vis diffuse reflectance spectroscopic studies. Two very well-known software packages, REFLEX and CELSIZ unit cell refinement programs, are employed to establish the triclinic crystal phase of this hybrid material (HTiP-7). Very tiny nanocrystals of HTiP-7 self-aggregated to form spherical nanoparticles of dimension ca. 25 nm together with a mesoscopic void space and good BET surface area (255 m(2) g(-1)). The framework is thermally stable up to 650 K. The material showed excellent carrier mobility for photocurrent generation in the presence of a photosensitizer molecule (Rose Bengal). To the best of our knowledge this is the first report of a photon-to-electron energy transfer process over a dye doped titanium phosphonate nanomaterial.
Ai, Jing; Min, Xue; Gao, Chao-Ying; Tian, Hong-Rui; Dang, Song; Sun, Zhong-Ming
2017-05-23
A novel 3D copper-phosphonate network, with the general formula Cu 7 (H 1 L) 2 (TPT) 3 (H 2 O) 6 , namely compound 1, has been synthesized using a rigid tetrahedral linker tetraphenylsilane tetrakis-4-phosphonic acid (H 8 L) and a nitrogen-containing ancillary ligand (TPT: [5-(4-(1H-1,2,4-triazol-1-yl)phenyl)-1H-tetrazole]) under hydrothermal conditions. The compound was fully characterized using PXRD, ICP, IR, TGA and elemental analysis. Compound 1 can be used as an efficient catalyst for the CO 2 coupling reaction that is greatly superior to many conventional MOF-based catalysts, where porosity is always mentioned and used. In addition, it shows excellent catalytic performance for ring-opening reactions with epoxides under ambient conditions. Additionally, compound 1 can be recycled at least three times without a significant compromise in the activity in the two catalytic reactions.
Potential New Ligand Systems for Binding Uranyl Ions in Seawater Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, John
2014-12-13
Work began this quarter on a new project involving a combined computational and biosynthetic approach to selective recognition of uranyl ion in aqueous solution. This project exploits the results of computational studies to discover new ligand classes. Synthetic studies will follow to generate target systems for uranyl binding and determination of binding constants. The process will be iterative, with results from computation informing synthesis, and vice versa. The theme of the ligand classes to be examined initially will be biologically based. New phosphonate-containing α-amino acid N-carboxyanhydride (NCA) monomers were used recently to prepare well-defined phosphonate-containing poly-peptides and block copolypeptides. Ourmore » first approach is to utilize these phosphate- and phosphonate-containing NCAs for the coordination of uranyl. The work includes the laboratory-scale preparation of a series of NCAs and the full thermodynamic and spectroscopic characterization of the resulting uranyl complexes. We are also evaluating the sequestering activity in different physiological and environmental conditions of these copolymers as well as their biodegradability.« less
Wilk, Magdalena; Janczak, Jan; Videnova-Adrabinska, Veneta
2012-09-01
The asymmetric unit of the title compound, 3C(10)H(12)N(2)(2+)·2C(10)H(11)N(2)(+)·8C(6)H(5)NO(5)P(-), contains one and a half naphthalene-1,5-diaminium cations, in which the half-molecule has inversion symmetry, one 5-aminonaphthalen-1-aminium cation and four hydrogen (5-carboxypyridin-3-yl)phosphonate anions. The crystal structure is layered and consists of hydrogen-bonded anionic monolayers between which the cations are arranged. The acid monoanions are organized into one-dimensional chains along the [101] direction via hydrogen bonds established between the phosphonate sites. (C)O-H···N(py) hydrogen bonds (py is pyridine) crosslink the chains to form an undulating (010) monolayer. The cations serve both to balance the charge of the anionic network and to connect neighbouring layers via multiple hydrogen bonds to form a three-dimensional supramolecular architecture.
Inorganic resist materials based on zirconium phosphonate for atomic force microscope lithography
NASA Astrophysics Data System (ADS)
Kang, Mankyu; Kim, Seonae; Jung, JinHyuck; Kim, Heebom; Shin, Inkyun; Jeon, Chanuk; Lee, Haiwon
2014-03-01
New inorganic resist materials based on metal complexes were investigated for atomic force microscope (AFM) lithography. Phosphoric acids are good for self-assembly because of their strong binding energy. In this work, zirconium phosphonate system are newly synthesized for spin-coatable materials in aqueous solutions and leads to negative tone pattern for improving line edge roughness. Low electron exposure by AFM lithography could generate a pattern by electrochemical reaction and cross-linking of metal-oxo complexes. It has been reported that the minimum pattern results are affected by lithographic speed, and the applied voltage between a tip and a substrate.
A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer
Abney, C. W.; Das, S.; Mayes, R. T.; ...
2016-08-01
Development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platform for achieving this separation, yet design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime-phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in a polymer. Samples exposedmore » to seawater also display a feature consistent with a 2-oxo-bridged transition metal, suggesting formation of an in situ specific binding site. As a result, these findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials.« less
MICROCHIP ENZYMATIC ASSAY OF ORGANOPHOSPHATE NERVE AGENTS. (R830900)
An on-chip enzymatic assay for screening organophosphate (OP) nerve agents, based on a pre-column reaction of organophosphorus hydrolase (OPH), electrophoretic separation of the phosphonic acid products, and their contactless-conductivity detection, is described. Factors affec...
Prata, Maria I M; André, João P; Kovács, Zoltán; Takács, Anett I; Tircsó, Gyula; Tóth, Imre; Geraldes, Carlos F G C
2017-12-01
Three triaza macrocyclic ligands, H 6 NOTP (1,4,7-triazacyclononane-N,N',N″-trimethylene phosphonic acid), H 4 NO2AP (1,4,7-triazacyclononane-N-methylenephosphonic acid-N',N″-dimethylenecarboxylic acid), and H 5 NOA2P (1,4,7-triazacyclononane-N,N'-bis(methylenephosphonic acid)-N″-methylene carboxylic acid), and their gallium(III) chelates were studied in view of their potential interest as scintigraphic and PET (Positron Emission Tomography) imaging agents. A 1 H, 31 P and 71 Ga multinuclear NMR study gave an insight on the structure, internal dynamics and stability of the chelates in aqueous solution. In particular, the analysis of 71 Ga NMR spectra gave information on the symmetry of the Ga 3+ coordination sphere and the stability of the chelates towards hydrolysis. The 31 P NMR spectra afforded information on the protonation of the non-coordinated oxygen atoms from the pendant phosphonate groups and on the number of species in solution. The 1 H NMR spectra allowed the analysis of the structure and the number of species in solution. 31 P and 1 H NMR titrations combined with potentiometry afforded the measurement of the protonation constants (log K Hi ) and the microscopic protonation scheme of the triaza macrocyclic ligands. The remarkably high thermodynamic stability constant (log K GaL =34.44 (0.04) and stepwise protonation constants of Ga(NOA2P) 2- were determined by potentiometry and 69 Ga and 31 P NMR titrations. Biodistribution and gamma imaging studies have been performed on Wistar rats using the radiolabeled 67 Ga(NO2AP) - and 67 Ga(NOA2P) 2- chelates, having both demonstrated to have renal excretion. The correlation of the molecular properties of the chelates with their pharmacokinetic properties has been analysed. Copyright © 2017 Elsevier Inc. All rights reserved.
Hannah, Stuart; Cardona, Javier; Lamprou, Dimitrios A; Šutta, Pavol; Baran, Peter; Al Ruzaiqi, Afra; Johnston, Karen; Gleskova, Helena
2016-09-28
Monolayers of six alkylphosphonic acids ranging from C8 to C18 were prepared by vacuum evaporation and incorporated into low-voltage organic field-effect transistors based on dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT). Similar to solution-assembled monolayers, the molecular order for vacuum-deposited monolayers improved with increasing length of the aliphatic tail. At the same time, Fourier transform infrared (FTIR) measurements suggested lower molecular coverage for longer phosphonic acids. The comparison of FTIR and vibration frequencies calculated by density functional theory indicated that monodentate bonding does not occur for any phosphonic acid. All monolayers exhibited low surface energy of ∼17.5 mJ/m(2) with a dominating Lifshitz-van der Waals component. Their surface roughness was comparable, while the nanomechanical properties were varied but not correlated to the length of the molecule. However, large improvement in transistor performance was observed with increasing length of the aliphatic tail. Upon going from C8 to C18, the mean threshold voltage decreased from -1.37 to -1.24 V, the field-effect mobility increased from 0.03 to 0.33 cm(2)/(V·s), the off-current decreased from ∼8 × 10(-13) to ∼3 × 10(-13) A, and for transistors with L = 30 μm the on-current increased from ∼3 × 10(-8) to ∼2 × 10(-6) A, and the on/off-current ratio increased from ∼3 × 10(4) to ∼4 × 10(6). Similarly, transistors with longer phosphonic acids exhibited much better air and bias-stress stability. The achieved transistor performance opens up a completely "dry" fabrication route for ultrathin dielectrics and low-voltage organic transistors.
Santos, Sónia Sá; Gibson, Gary E; Cooper, Arthur J L; Denton, Travis T; Thompson, Charles M; Bunik, Victoria I; Alves, Paula M; Sonnewald, Ursula
2006-02-15
Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), an important component of the tricarboxylic acid (TCA) cycle, occurs in several neurological diseases. The effect of specific KGDHC inhibitors [phosphonoethyl ester of succinyl phosphonate (PESP) and the carboxy ethyl ester of succinyl phosphonate (CESP)] on [1-13C]glucose and [U-13C]glutamate metabolism in intact cerebellar granule neurons was investigated. Both inhibitors decreased formation of [4-13C]glutamate from [1-13C]glucose, a reduction in label in glutamate derived from [1-13C]glucose/[U-13C]glutamate through a second turn of the TCA cycle and a decline in the amounts of gamma-aminobutyric acid (GABA), aspartate, and alanine. PESP decreased formation of [U-13C]aspartate and total glutathione, whereas CESP decreased concentrations of valine and leucine. The findings are consistent with decreased KGDHC activity; increased alpha-ketoglutarate formation; increased transamination of alpha-ketoglutarate with valine, leucine, and GABA; and new equilibrium position of the aspartate aminotransferase reaction. Overall, the findings also suggest that some carbon derived from alpha-ketoglutarate may bypass the block in the TCA cycle at KGDHC by means of the GABA shunt and/or conversion of valine to succinate. The results suggest the potential of succinyl phosphonate esters for modeling the biochemical and pathophysiological consequences of reduced KGDHC activity in brain diseases.
Lv, Kai; Yang, Chu-Ting; Liu, Yi; Hu, Sheng; Wang, Xiao-Lin
2018-01-01
To aid the design of a hierarchically porous unconventional metal-phosphonate framework (HP-UMPF) for practical radioanalytical separation, a systematic investigation of the hydrolytic stability of bulk phase against acidic corrosion has been carried out for an archetypical HP-UMPF. Bulk dissolution results suggest that aqueous acidity has a more paramount effect on incongruent leaching than the temperature, and the kinetic stability reaches equilibrium by way of an accumulation of a partial leached species on the corrosion conduits. A variation of particle morphology, hierarchical porosity and backbone composition upon corrosion reveals that they are hydrolytically resilient without suffering any great degradation of porous texture, although large aggregates crack into sporadic fractures while the nucleophilic attack of inorganic layers cause the leaching of tin and phosphorus. The remaining selectivity of these HP-UMPFs is dictated by a balance between the elimination of free phosphonate and the exposure of confined phosphonates, thus allowing a real-time tailor of radionuclide sequestration. Moreover, a plausible degradation mechanism has been proposed for the triple progressive dissolution of three-level hierarchical porous structures to elucidate resultant reactivity. These HP-UMPFs are compared with benchmark metal-organic frameworks (MOFs) to obtain a rough grading of hydrolytic stability and two feasible approaches are suggested for enhancing their hydrolytic stability that are intended for real-life separation protocols. PMID:29538348
USDA-ARS?s Scientific Manuscript database
Amylose inclusion complexes prepared from cationic fatty ammonium salts and jet-cooked high amylose starch were combined with poly(vinyl alcohol) (PVOH) to form glycerol-plasticized films. Their tensile properties were compared with similar films prepared previously with analogous anionic fatty acid...
SEPARATION OF EUROPIUM FROM OTHER LANTHANIDE RAE EARTHS BY SOLVENT EXTRACTION
Peppard, D.F.; Horwitz, E.P.; Mason, G.W.
1963-02-12
This patent deals with a process of separating europium from other lanthanides present in aqueous hydrochloric or sulfuric acid solutions. The europium is selectively reduced to the divalent state with a divalent chromium salt formed in situ from chromium(III) salt plus zinc amalgam. The other trivalent lanthanides are then extracted away from the divalent europium with a nitrogen-flushed phosphoric acid ester or a phosphonic acid ester. (AEC)
Molecular water oxidation catalyst
Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.
1993-01-01
A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.
Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.
Zhou, Zhen; Qiao, Weimin; Lin, Yangbo; Shen, Xuelian; Hu, Dalong; Zhang, Jianqiao; Jiang, Lu-Man; Wang, Luochun
2014-01-01
Phosphonate is a commonly used corrosion and scale inhibitor for a circulating cooling water (CCW) system. Its discharge could cause eutrophication of receiving waters. The iron-carbon (Fe/C) micro-electrolysis technology was used to degrade and remove phosphonate from discharged CCW. The influences of initial pH, Fe/C ratio (FCR) and temperature on phosphonate removal were investigated in a series of batch tests and optimized by response surface methodology. The quadratic model of phosphonate removal was obtained with satisfactory degrees of fitness. The optimum conditions with total phosphorus removal efficiency of 95% were obtained at pH 7.0, FCR of 1.25, and temperature of 45 °C. The phosphonate removal mechanisms were also studied. Phosphonate removal occurred predominantly via two consecutive reactive phases: the degradation of phosphonate complexes (Ca-phosphonate) and the precipitation of Fe/C micro-electrolysis products (PO₄(3-), Ca²⁺ and Fe³⁺).
Miled, Nabil; Roussel, Alain; Bussetta, Cécile; Berti-Dupuis, Liliane; Rivière, Mireille; Buono, Gérard; Verger, Robert; Cambillau, Christian; Canaan, Stéphane
2003-10-14
The crystal structures of gastric lipases in the apo form [Roussel, A., et al. (1999) J. Biol. Chem. 274, 16995-17002] or in complex with the (R(P))-undecyl butyl phosphonate [C(11)Y(4)(+)] [Roussel, A., et al. (2002) J. Biol. Chem. 277, 2266-2274] have improved our understanding of the structure-activity relationships of acid lipases. In this report, we have performed a kinetic study with dog and human gastric lipases (DGL and HGL, respectively) using several phosphonate inhibitors by varying the absolute configuration of the phosphorus atom and the chain length of the alkyl/alkoxy substituents. Using the two previously determined structures and that of a new crystal structure obtained with the other (S(P))-phosphonate enantiomer [C(11)Y(4)(-)], we constructed models of phosphonate inhibitors fitting into the active site crevices of DGL and HGL. All inhibitors with a chain length of fewer than 12 carbon atoms were found to be completely buried in the catalytic crevice, whereas longer alkyl/alkoxy chains were found to point out of the cavity. The main stereospecific determinant explaining the stronger inhibition of the S(P) enantiomers is the presence of a hydrogen bond involving the catalytic histidine as found in the DGL-C(11)Y(4)(-) complex. On the basis of these results, we have built a model of the first tetrahedral intermediate corresponding to the tristearoyl-lipase complex. The triglyceride molecule completely fills the active site crevice of DGL, in contrast with what is observed with other lipases such as pancreatic lipases which have a shallower and narrower active site. For substrate hydrolysis, the supply of water molecules to the active site might be achieved through a lateral channel identified in the protein core.
Effects of radiation, acid, and base on the extractant dihexyl-(diethylcarbamoyl)methyl) phosphonate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahner, C.T.; Shoun, R.R.; McDowell, W.J.
1981-11-01
The effects of exposure to gamma radiation (/sup 60/Co) and of contact with acidic and basic aqueous solutions on dihexyl((diethylcarbamoyl)methyl)phosphonate (DHDECMP) were studied. Gamma radiation decomposes DHDECMP into a variety of products. The most troublesome of those are the acidic compounds that cause problems in stripping the actinides and lanthanides from the extractant at low acid concentrations. The rate of degradation of DHDECMP by radiation is about the same or only slightly higher than that of tri-n-butyl phosphate (TBP). It is relatively easy to remove the radiation-produced impurities by equilibration (scrubbing) with sodium carbonate or sodium hydroxide or by columnmore » chromatographic methods. The hydrolysis of DHDECMP in contact with aqueous solutions containing less than 3 M HNO/sub 3/ is not more severe than that of TBP under the same conditions but is significant above that acid concentration. Hydrolysis of DHDECMP in contact with aqueous sodium hydroxide solution does occur, but it should not pose an important problem with the short contact times such as those anticipated for the removal of the radiation-induced degradation products by caustic scrubbing. Results of various chromatographic tests to characterize the degradation products of DHDECMP are also given.« less
Analysis of Phosphonic Acids: Validation of Semi-Volatile Analysis by HPLC-MS/MS by EPA Method MS999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, J; Vu, A; Koester, C
The Environmental Protection Agency's (EPA) Region 5 Chicago Regional Laboratory (CRL) developed a method titled Analysis of Diisopropyl Methylphosphonate, Ethyl Hydrogen Dimethylamidophosphate, Isopropyl Methylphosphonic Acid, Methylphosphonic Acid, and Pinacolyl Methylphosphonic Acid in Water by Multiple Reaction Monitoring Liquid Chromatography/Tandem Mass Spectrometry: EPA Version MS999. This draft standard operating procedure (SOP) was distributed to multiple EPA laboratories and to Lawrence Livermore National Laboratory, which was tasked to serve as a reference laboratory for EPA's Environmental Reference Laboratory Network (ERLN) and to develop and validate analytical procedures. The primary objective of this study was to validate and verify the analytical procedures describedmore » in EPA Method MS999 for analysis of the listed phosphonic acids and surrogates in aqueous samples. The gathered data from this validation study will be used to: (1) demonstrate analytical method performance; (2) generate quality control acceptance criteria; and (3) revise the SOP to provide a validated method that would be available for use during a homeland security event. The data contained in this report will be compiled, by EPA CRL, with data generated by other EPA Regional laboratories so that performance metrics of EPA Method MS999 can be determined.« less
Functionalization of SiO2 Surfaces for Si Monolayer Doping with Minimal Carbon Contamination.
van Druenen, Maart; Collins, Gillian; Glynn, Colm; O'Dwyer, Colm; Holmes, Justin D
2018-01-17
Monolayer doping (MLD) involves the functionalization of semiconductor surfaces followed by an annealing step to diffuse the dopant into the substrate. We report an alternative doping method, oxide-MLD, where ultrathin SiO 2 overlayers are functionalized with phosphonic acids for doping Si. Similar peak carrier concentrations were achieved when compared with hydrosilylated surfaces (∼2 × 10 20 atoms/cm 3 ). Oxide-MLD offers several advantages over conventional MLD, such as ease of sample processing, superior ambient stability, and minimal carbon contamination. The incorporation of an oxide layer minimizes carbon contamination by facilitating attachment of carbon-free precursors or by impeding carbon diffusion. The oxide-MLD strategy allows selection of many inexpensive precursors and therefore allows application to both p- and n-doping. The phosphonic acid-functionalized SiO 2 surfaces were investigated using X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy, whereas doping was assessed using electrochemical capacitance voltage and Hall measurements.
Araújo, Wagner L.; Tohge, Takayuki; Nunes-Nesi, Adriano; Daloso, Danilo M.; Nimick, Mhairi; Krahnert, Ina; Bunik, Victoria I.; Moorhead, Greg B. G.; Fernie, Alisdair R.
2012-01-01
Although the role of the 2-oxoglutarate dehydrogenase complex (2-OGDHC) has previously been demonstrated in plant heterotrophic tissues its role in photosynthetically active tissues remains poorly understood. By using a combination of metabolite and transcript profiles we here investigated the function of 2-OGDHC in leaves of Arabidopsis thaliana via use of specific phosphonate inhibitors of the enzyme. Incubation of leaf disks with the inhibitors revealed that they produced the anticipated effects on the in situ enzyme activity. In vitro experiments revealed that succinyl phosphonate (SP) and a carboxy ethyl ester of SP are slow-binding inhibitors of the 2-OGDHC. Our results indicate that the reduced respiration rates are associated with changes in the regulation of metabolic and signaling pathways leading to an imbalance in carbon-nitrogen metabolism and cell homeostasis. The inducible alteration of primary metabolism was associated with altered expression of genes belonging to networks of amino acids, plant respiration, and sugar metabolism. In addition, by using isothermal titration calorimetry we excluded the possibility that the changes in gene expression resulted from an effect on 2-oxoglutarate (2OG) binding to the carbon/ATP sensing protein PII. We also demonstrated that the 2OG degradation by the 2-oxoglutarate dehydrogenase strongly influences the distribution of intermediates of the tricarboxylic acid (TCA) cycle and the GABA shunt. Our results indicate that the TCA cycle activity is clearly working in a non-cyclic manner upon 2-OGDHC inhibition during the light period. PMID:22876250
Watanabe, Shoji
2008-01-01
This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.
Perfluoroalkyl acids: recent research highlights | Science ...
Perfluorinated compounds are organic chemicals in which all hydrogen molecules of the carbon-chain are substituted by fluorine molecules. Generally, there are two types of perfluorinated compounds, the perfluoroalkanes that are primarily used clinically for oxygenation and respiratory ventilation, and the perfluoroalkyl acids (PFAAs). Environmentally relevant PFAAs are a family of about 30 chemicals that consist of a carbon backbone typically 4-14 molecules in length and a charged functional group composed of either sulfonates, carboxylates or phosphonates (and to a lesser extent, phosphinates). While many (>100) derivatives ofPFAAs (such as alcohols, amides, esters and acids) are used for industrial and consumer applications, they can be degraded or metabolized to PFAAs as end-stage products. Thus, PFAAs, rather than their intermediates or derivatives, have drawn the most public attention and research interest. The most widely known PFAAs are the eight-carbon (C8) sulfonate (perfluorooctane sulfonate, PFOS) and carboxylate (perfluorooctanoic acid, PFOA), although the C4 (perfluorobutane) and C6 (perfluorohexane) sulfonates, as well as the C4, C6 and C9 (perfluorononanoic) carboxylates have also been used in commerce. The perfluoroalkyl phosphonates (PFPAs) are fairly new entities for this class ofchemicals. They are typically used as leveling and wetting agents, and defoaming additives in the production of pesticides. They were considered biologically inert by
Determination of perfluoroalkyl carboxylic, sulfonic, and phosphonic acids in food.
Ullah, Shahid; Alsberg, Tomas; Vestergren, Robin; Berger, Urs
2012-11-01
A sensitive and accurate method was developed and validated for simultaneous analysis of perfluoroalkyl carboxylic acids, sulfonic acids, and phosphonic acids (PFPAs) at low picograms per gram concentrations in a variety of food matrices. The method employed extraction with acetonitrile/water and cleanup on a mixed-mode co-polymeric sorbent (C8 + quaternary amine) using solid-phase extraction. High-performance liquid chromatographic separation was achieved on a C18 column using a mobile phase gradient containing 5 mM 1-methyl piperidine for optimal chromatographic resolution of PFPAs. A quadrupole time-of-flight high-resolution mass spectrometer operating in negative ion mode was used as detector. Method detection limits were in the range of 0.002 to 0.02 ng g(-1) for all analytes. Sample preparation (extraction and cleanup) recoveries at a spiking level of 0.1 ng g(-1) to a baby food composite were in the range of 59 to 98 %. A strong matrix effect was observed in the analysis of PFPAs in food extracts, which was tentatively assigned to sorption of PFPAs to the injection vial in the solvent-based calibration standard. The method was successfully applied to a range of different food matrices including duplicate diet samples, vegetables, meat, and fish samples.
URBAN CONTRIBUTIONS OF GLYSPHOSATE AND ITS DEGRADATE AMPA TO STREAMS IN THE UNITED STATES
Glyphosate is the most widely used herbicide in the world, being routinely applied to control weeds in both agricultural and urban settings. Microbial degradation of glyphosate produces aminomethyl phosphonic acid (AMPA). The high polarity and water-solubility of glyphosate and A...
Two-carbon homologation of aldehydes and ketones to a,ß-unsaturated aldehydes
USDA-ARS?s Scientific Manuscript database
Phosphonate reagents were developed for the two-carbon homologation of aldehydes or ketones to unbranched- or methyl-branched a,ß-unsaturated aldehydes. The phosphonate reagents, diethyl methylformyl-2-phosphonate dimethylhydrazone and diethyl ethylformyl-2-phosphonate dimethylhydrazone, contained a...
NASA Technical Reports Server (NTRS)
Philipp, W. H.; Hsu, L. C.
1979-01-01
Three methods of in situ cross-linking polyvinyl alcohol films are presented. They are: (1) acetalization with a dialdehyde such as glutaraldehyde, (2) acetalization with aldehyde groups formed by selective oxidative cleaving of the few percent of 1,2 diol units present in polyvinyl alcohol, and (3) cross-linking by hydrogen abstraction by reaction with hydrogen atoms and hydroxyl radicals from irradiated water. For the third method, improvement in film conductivity in KOH solution at the expense of mechanical strength is obtained by the presence of polyacrylic acid in the polyvinyl alcohol films. Resistivities in 45 percent KOH are given for in situ cross-linked films prepared by each of the three methods.
Li, Yongshen; Song, Yunna; Ma, Zheng; Niu, Shuai; Li, Jihui; Li, Ning
2018-06-01
In this article, phosphonic acid silver-graphene oxide nanomaterials (Nano-PAS-GO) was synthesized from silver nitrate (AgNO 3 ) solution and phosphoric graphene oxide (PGO) via the convenient ultrasonic-assisted method, and the structure and morphology were characterized, and the photocatalytic activity and recyclability were evaluated through photocatalyzing degradation of Rhodamin B (RhB) aqueous solution, and the possible photocatalytic mechanism was also discussed. Based on those, it was confirmed that Nano-PAS-GO has been synthesized from AgNO 3 solution and PGO colloidal suspension under ultrasonic-assisted condition, and Nano-PAS-GO has consisted of phosphoric acid silver nanoparticles and GO with 2D lattice (2D GO lattice) connected in the form of C-P bonds, and the photodegradation rate of Nano-PAS-GO for RhB aqueous solution has reached 93.99%, and Nano-PAS-GO has possessed the nicer recyclability when the photocatalytic time was 50 min. From those results, the strong and stable interface . between PAS nanoparticles and 2D GO lattice connected in the form of the covalent bonds has effectively inhibited the occurrence of the photocorrosion phenomenon. Copyright © 2018 Elsevier B.V. All rights reserved.
Interaction of solid organic acids with carbon nanotube field effect transistors
NASA Astrophysics Data System (ADS)
Klinke, Christian; Afzali, Ali; Avouris, Phaedon
2006-10-01
A series of solid organic acids were used to p-dope carbon nanotubes. The extent of doping is shown to be dependent on the pKa value of the acids. Highly fluorinated carboxylic acids and sulfonic acids are very effective in shifting the threshold voltage and making carbon nanotube field effect transistors to be more p-type devices. Weaker acids like phosphonic or hydroxamic acids had less effect. The doping of the devices was accompanied by a reduction of the hysteresis in the transfer characteristics. In-solution doping survives standard fabrication processes and renders p-doped carbon nanotube field effect transistors with good transport characteristics.
PROCESS FOR THE RECOVERY OF METALS FROM HIGH-LIME CARNOTITE ORES
Grinstead, R.R.
1959-01-20
A process is presented for recovering uranium values from a high-lime carnotite ore comprising contacting the ore dispersed in a finely divided state with a concentrated mineral acid, adding an industrial orgnnic solvent containing alkyl ontho or pyro phosphoric acids, alkyl phosphates or alkyl phosphonates so as to effect an organic phase into which the metal value is leached and then recovering the metal value from the organic phase.
Phosphoric and carboxylic methacrylate esters as bonding agents in self-adhesive resin cements
Liu, Wenshu; Meng, Hongmei; Sun, Zhiguang; Jiang, Riwen; Dong, Chang-An; Zhang, Congxiao
2018-01-01
The aim of the present study was to investigate the effect of pH and phosphoric ester structure (phosphonate or phosphate) on the bond strength of different dental restorative materials. The following three self-adhesive resin cements were used in the present study: RelyX™ Unicem, Maxcem and Multilink Sprint The pH of each cement was measured using a pH meter. The cements were used to attach a variety of restorative materials to human dentin and the bond strength was measured by assessing shear strength using a universal testing machine. The pH values of RelyX Unicem, Maxcem and Multilink Sprint were 3.78, 1.78 and 3.42, respectively. Maxcem, a phosphate-based self-adhesive cement, was demonstrated to form the weakest bonds. No significant difference in bond strength was observed between RelyX Unicem and Multilink Sprint, which are phosphonate-based cements. The results of the present study suggest that the chemical structure of the functional monomer influences the performance of an adhesive material. Furthermore, the pH of acidic functional monomers containing phosphonate or phosphate groups has an effect on the strength of bonds formed between dentin and restorative materials. PMID:29731837
NASA Astrophysics Data System (ADS)
Sosa, O.; Ferron Smith, S.; Karl, D. M.; DeLong, E.; Repeta, D.
2016-02-01
The biological degradation of dissolved organic matter (DOM) plays important roles in the carbon cycle and energy balance of the ocean. Yet, the biochemical pathways that drive DOM turnover remain to be fully characterized. In this study, we tested the ability of two open ocean bacterial isolates (a Pseudomonas stutzeri strain (Gammaproteobacteria) and a Sulfitobacter isolate (Alphaproteobacteria)) to degrade DOM phosphonates. Each isolate encoded a complete phosphonate degradation pathway in its genome, and each was able to degrade simple alkyl-phosphonates like methyl phosphonate, releasing methane (or other short chain hydrocarbon gases) as a result. We found that cultures incubated in the presence of HMW DOM polysaccharides also produced methane and other trace gases under aerobic conditions. To demonstrate that phosphonates were the source of these gases, we constructed a P. stutzeri mutant disabled in the phosphonate degradation pathway. Unlike the wild type, the mutant strain was deficient in the production of methane and other gases from HMW DOM-associated phosphonates. These observations support the hypothesis that DOM-bound methyl phosphonates may be a significant source of methane in the water column, and that bacterial degradation of these compounds likely contribute to the subsurface methane maxima observed throughout the world's oceans.
Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes
USDA-ARS?s Scientific Manuscript database
Although natural products have been a particularly rich source of human medicines, the rate at which new molecules are being discovered is declining precipitously. Based on the large number of natural product biosynthetic genes in microbial genomes, many have suggested “genome mining” as an approach...
40 CFR 704.95 - Phosphonic acid, [1,2-ethanediyl-bis[nitrilobis-(methylene)
Code of Federal Regulations, 2010 CFR
2010-07-01
... of the substance for which the report is submitted. (ii) Company name and headquarters address. (iii... transaction; the import site may in some cases be the organization's headquarters office in the United States... Abstracts Service Registry Number of the substance for which the report is submitted. (ii) Company name and...
Novel morphology change of Au-Methotrexate conjugates: From nanochains to discrete nanoparticles.
Wang, Wei-Yuan; Zhao, Xiu-Fen; Ju, Xiao-Han; Wang, Yu; Wang, Lin; Li, Shu-Ping; Li, Xiao-Dong
2016-12-30
A novel morphology change of Au-methotrexate (Au-MTX) conjugates that could transform from nanochains to discrete nanoparticles was achieved by a simple, one-pot, and hydrothermal growth method. Herein, MTX was used efficiently as a complex-forming agent, reducing agent, capping agent, and importantly a targeting anticancer drug. The formation mechanism suggested a similarity with the molecular imprinting technology. The Au-MTX complex induced the MTX molecules to selectively adsorb on different crystal facets of gold nanoparticles (AuNPs) and then formed gold nanospheres. Moreover, the abundantly binding MTX molecules promoted directional alignment of these gold nanospheres to further form nanochains. More interestingly, the linear structures gradually changed into discrete nanoparticles by adding different amount of ethylene diamine tetra (methylene phosphonic acid) (EDTMPA) into the initial reaction solution, which likely arose from the strong electrostatic effect of the negatively charged phosphonic acid groups. Compared with the as-prepared nanochains, the resultant discrete nanoparticles showed almost equal drug loading capacity but with higher drug release control, colloidal stability, and in vitro anticancer activity. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Clay, natural Coconut oil fatty acid (C12-C18) diethanolamide, coconut oil fatty acid (C12-C18... acetate Do. Polyvinyl alcohol (minimum viscosity of 4 percent aqueous solution at 20 °C of 4 centipoises...
Isotopic Measurements of Organic Sulfonates From The Murchison Meteorite
NASA Technical Reports Server (NTRS)
Cooper, G. W.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)
1995-01-01
Organic sulfonates and phosphonates have been extracted from the Murchison meteorite for stable isotope measurements. Preliminary stable isotope measurements of individual alkyl sulfonates, R-SO3H (R=C(sub n)H(sub 2n+l)), are shown. These compounds were found in aqueous extracts of Murchison. Both groups show trends similar to other homologous series of organic compounds indigenous to Murchison. Molecular abundances decrease with increasing carbon number, and all possible isomers at each carbon number (through C-4) are present. Carbon isotope measurements of the sulfonates show a decrease in the C-13/C-12 ratio with increasing carbon number. The overall objectives of this project are to obtain dime element carbon, hydrogen, and sulfur - intramolecular isotopic analyses of individual sulfonates, and isotopic measurement of carbon and hydrogen of the phosphonates as a group. The Murchison meteorite is the best characterized carbonaceous chondrite with respect to organic chemistry. The finding of organic sulfonates and phosphonates in Murchison is of interest because they are the first well-characterized series of sulfur and phosphorus containing organic compounds found in meteorites. Also, meteorites, comets, and interplanetary dust particles may have been involved in chemical evolution on the early Earth. Because of the critical role of organic phosphorus and sulfur in all living systems, it is particularly interesting to see examples of abiotic syntheses of these classes of compounds. The study of the isotopic composition of the sulfonates and phosphonates can yield insight into their possible interstellar origin as well as their mechanisms of synthesis in the early solar system. Previous isotopic analyses of other classes of organic compounds indigenous to meteorites, e.g., amino acids, carboxylic acids, and hydrocarbons indicate the possibility that interstellar molecules were incorporated into meteorite parent bodies. In these compounds the ratios of heavy to light isotopes of hydrogen (D/H), carbon (C-13/C-12), and nitrogen (N-15/N-14), are anomalous relative to bulk terrestrial and meteoritic values. In some cases, the D/H ratios approach those observed for molecules in interstellar clouds.
Sun, Chaode; Bittman, Robert
2004-10-29
D-erythro-(2S,3R,4E)-Sphingosine-1-phosphonate (1), the isosteric phosphonate analogue of naturally occurring sphingosine 1-phosphate (1a), and D-ribo-phytosphingosine 1-phosphonate (2), the isosteric phosphonate analogue of D-ribo-phytosphingosine-1-phosphate (2a), were synthesized starting with methyl 2,3-O-isopropylidene-d-glycerate (4) and D-ribo-phytosphingosine (3), respectively. Oxirane 12 was formed in eight steps from 4, and cyclic sulfamidate 22 was formed in five steps from 3. The phosphonate group was introduced via regioselective ring-opening reactions of oxirane 12 and cyclic sulfamidate 22 with lithium dialkyl methylphosphonate, affording 13 and 23, respectively. The synthesis of 1 was completed by S(N)2 displacement of chloromesylate intermediate 14b with azide ion, followed by conversion of the resulting azido group to a NHBoc group and deprotection. The synthesis of 2 was completed by cleavage of the acetal, N-benzyl, and alkyl phosphonate ester groups.
Dancing with chemical formulae of antivirals: a personal account.
De Clercq, Erik
2013-09-15
A chemical structure is a joy forever, and this is how I perceived the chemical structures of a number of antiviral compounds with which I have been personally acquainted over the past 3 decades: (1) amino acid esters of acyclovir (i.e. valaciclovir); (2) 5-substituted 2'-deoxyuridines (i.e. brivudin); (3) 2',3'-dideoxynucleoside analogues (i.e. stavudine); (4) acyclic nucleoside phosphonates (ANPs) (i.e. cidofovir, adefovir); (5) tenofovir disoproxil fumarate (TDF) and drug combinations therewith; (6) tenofovir alafenamide (TAF, GS-7340), a new phosphonoamidate prodrug of tenofovir; (7) pro-prodrugs of PMEG (i.e. GS-9191 and GS-9219); (8) new ANPs: O-DAPy and 5-aza-C phosphonates; (9) non-nucleoside reverse transcriptase inhibitors (NNRTIs): HEPT and TIBO derivatives; and (10) bicyclam derivatives (i.e. AMD3100). Copyright © 2013 Elsevier Inc. All rights reserved.
An unprecedented Fe(36) phosphonate cage.
Beavers, Christine M; Prosvirin, Andrey V; Prosverin, Andrey V; Cashion, John D; Dunbar, Kim R; Richards, Anne F
2013-02-18
The reaction of 2-pyridylphosphonic acid (LH(2)) with iron(II) perchlorate and iron(III) nitrate afforded an interconnected, double-layered, cationic iron cage, [{Fe(36)L(44)(H(2)O)(48)}](20+) (1a), the largest interconnected, polynuclear ferric cage reported to date. Magnetic studies on 1a revealed antiferromagnetic coupling between the spins on adjacent Fe(III) ions.
NASA Astrophysics Data System (ADS)
Modzelewski, Tomasz
The work in this thesis is divided into two main parts. The first part examines the synthesis and characterization of polyphosphazenes as potential scaffolding materials usable for hard tissue repair. The goal of this work was to design polymers containing acidic functional groups in an attempt to encourage the deposition of calcium hydroxyapatite when the polymer is exposed to simulated body fluids. The second part examines the development of a new polymeric architecture which generates elastomeric properties without the use of traditional covalent or physical crosslinks. The goal was to examine the effects of this new architecture on the physical and mechanical properties of the final polymers. Chapter 1 provides a general background for the two main focus areas mentioned above. More specifically: a brief explanation is provided of the necessary physical and chemical properties of a suitable hard tissue engineering scaffolding substrate, and the basis of those requirements; together with an examination of the traditional ways in which elastomeric properties are introduced into a polymeric sample. Chapter 2 details the design and synthesis of polyphosphazenes bearing phosphonic acid and phosphoester side groups using two different routes. The first route utilized a linker unit which was functionalized with phosphoesters prior to its attachment to the polyphosphazene backbone, while the second route involved attachment of the same linking group to the polyphosphazene backbone before the introduction of the phosphoester moieties. In both cases, the samples were treated with iodotrimethylsilane to cleave the ester bonds and afford the parent phosphonic acid. Both routes proved successful. However, varying difficulties were encountered for each route. In Chapter 3 we examine the ability of the phosphonic acid functionalized polyphosphazenes described in Chapter 2 to mineralize calcium hydroxyapatite when exposed to simulated body fluid, which has the same ion concentration as human blood plasma. Scanning electron microscopy studies revealed that those polymers which were synthesized by phosphonation of the linker group after its attachment to the polymer backbone had a higher degree of inorganic deposition along the surface. However, these polymers had a lowed overall concentration of phosphonate groups per polymer chain. The inability to fully remove the ester protecting groups proved to be a key driving force for this increased activity. In addition, Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) analysis was utilized along with X-ray scattering to provide confirmation that the deposited phase was calcium hydroxyapatite, the natural mineral of bone. Chapter 4 describes the development of a family of carboxylic acid functionalized polyphosphazenes and the examination of their ability to mineralize calcium hydroxyapatite when exposed to simulated body fluids. The acid moieties in this system are introduced by the incorporation of the allyl esters of beta-alanine or gamma-amino butyric acid, followed by deesterification to afford the parent carboxylic acid. These samples show a significant increase in their ability to nucleate the growth of calcium hydroxyapatite along their surface, with the best sample doubling in mass within 4 weeks, which is a major improvement over the phosphonic acid functionalized samples described in Chapter 3. Chapter 5 contains an account of a new polymer architecture which imparts elastomeric properties without the use of traditional covalent or physical crosslinks. The polymers were synthesized with sterically bulky cyclotriphosphazene side groups linked directly to the polyphosphazene backbone using a hydroquinone linker. The geometry of the linking unit, as well as the large bulk of the side groups themselves, allowed the cyclotriphosphazene units to protrude away from the polymer backbone in a manner similar to the oars on a Viking long ship. This allowed them to interact physically with the oar's on adjacent polymer chains, and lock the chains in place, similar to the way in which the oars on one ship will interdigitate with the oars of another ship if they get too close. Chapter 6 expands the chemistry of the non-traditional elastomers described in Chapter 5. Specifically, the substituent groups on the cyclotriphosphazene groups are changed from 2,2,2- trifluoroethoxy to phenoxy, while the remaining chlorine atoms along the polymer backbone are still replaced with 2,2,2-trifluoroethoxide. The new polymers are shown to have better mechanical properties then the polymers described in Chapter 5. Chapter 7 describes a further extension of the ideas in Chapters 5 and 6. Specifically it involves the synthesis and mechanical testing of polyphosphazenes bearing oligo-p-phenylene groups co-substituted with 2,2,2-trifluoroethoxide. The oligo-phenylene groups are incorporated to act as variable length cross-linking moieties to further expand the new family of non-traditional polyphosphazene elastomers. The mechanical and physical properties of these polymers reveal a strong dependence on both the length and concentration of the oligo-phenylene minor co-substituent groups. (Abstract shortened by UMI.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelbaky, Mohammed S.M.; Amghouz, Zakariae; Department of Materials Science and Metallurgical Engineering, University of Oviedo, Campus Universitario, 33203 Gijón
Novel metal phosphonate [CuLi(PPA)] [H{sub 3}PPA=3-phosphonopropionic acid] was synthesized hydrothermally and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. It crystallizes in the space group C2/c, with cell parameters a=21.617(2) Å, b=4.9269(2) Å, c=14.342(1) Å, β=132.3(2)°, and Z=8. Its framework is built up from a main trimer, acting as a secondary building unit (SBU), which is formed by vertex-shared between two (LiO{sub 4}) and one (Cu(1)O{sub 4}) polyhedra. These units repeat along b-axis forming infinite inorganic chains, these chains are in turn cross-linked by corner sharing with (Cu(2)O{sub 4}) polyhedra to producemore » inorganic layers lying in the bc-plane. The neighboring layers are connected through the PPA ligand, leading to a 3D pillared-layered structure. The topological analysis reveals that the compound exhibits 3,4,10-c net. Finally, magnetic susceptibility measurement of this compound over the temperature range of 2–300 K reveals the occurrence of weak antiferromagnetic intrachain interactions. - Graphical abstract: Hydrothermal synthesis and structural characterization of a novel lithium-copper phosphonate, formulated as [CuLi(PPA)] (H{sub 3}PPA=3-phosphonopropionic acid), have been reported. This compound has a 3D pillared-layered structure with 3,4,10-c net topology. The magnetic susceptibility data over the temperature range of 2–300 K reveals the occurrence of weak antiferromagnetic interactions. - Highlights: • Novel metal phosphonate, [CuLi(PPA)] (1), has been synthesized and characterized. • Compound 1 has a 3D pillared-layered structure with 3,4,10-c net topology. • Magnetic susceptibility data reveals the occurrence of weak antiferromagnetic interactions.« less
A direct conversion of benzylic and allylic alcohols to phosphonates
Barney, Rocky J.; Richardson, Rebekah M.; Wiemer, David F.
2011-01-01
Benzyl phosphonate esters often serve as reagents in Horner-Wadsworth-Emmons reactions. In most cases, they can be prepared from benzylic alcohols via formation of the corresponding halide followed by an Arbuzov reaction. To identify a more direct synthesis of phosphonate esters, we have developed a one-flask procedure for conversion of benzylic and allylic alcohols to the corresponding phosphonates through treatment with triethyl phosphite and ZnI2. PMID:21405073
Sobkowski, Michal; Kraszewski, Adam; Stawinski, Jacek
2015-01-01
This review covers recent progress in the preparation of H-phosphonate mono- and diesters, basic studies on mechanistic and stereochemical aspects of this class of phosphorus compounds, and their fundamental chemistry in terms of transformation of P-H bonds into P-heteroatom bonds. Selected recent applications of H-phosphonate derivatives in basic organic phosphorus chemistry and in the synthesis of biologically important phosphorus compounds are also discussed.
Cattani-Scholz, Anna; Pedone, Daniel; Blobner, Florian; Abstreiter, Gerhard; Schwartz, Jeffrey; Tornow, Marc; Andruzzi, Luisa
2009-03-09
The synthesis and characterization of two types of silicon-based biofunctional interfaces are reported; each interface bonds a dense layer of poly(ethylene glycol) (PEG(n)) and peptide nucleic acid (PNA) probes. Phosphonate self-assembled monolayers were derivatized with PNA using a maleimido-terminated PEG(45). Similarly, siloxane monolayers were functionalized with PNA using a maleimido-terminated PEG(45) spacer and were subsequently modified with a shorter methoxy-terminated PEG(12) ("back-filling"). The long PEG(45) spacer was used to distance the PNA probe from the surface and to minimize undesirable nonspecific adsorption of DNA analyte. The short PEG(12) "back-filler" was used to provide additional passivation of the surface against nonspecific DNA adsorption. X-ray photoelectron spectroscopic (XPS) analysis near the C 1s and N 1s ionization edges was done to characterize chemical groups formed in the near-surface region, which confirmed binding of PEG and PNA to the phosphonate and silane films. XPS also indicated that additional PEG chains were tethered to the surface during the back-filling process. Fluorescence hybridization experiments were carried out with complementary and noncDNA strands; both phosphonate and siloxane biofunctional surfaces were effective for hybridization of cDNA strands and significantly reduced nonspecific adsorption of the analyte. Spatial patterns were prepared by polydimethylsiloxane (PDMS) micromolding on the PNA-functionalized surfaces; selective hybridization of fluorescently labeled DNA was shown at the PNA functionalized regions, and physisorption at the probe-less PEG-functionalized regions was dramatically reduced. These results show that PNA-PEG derivatized phosphonate monolayers hold promise for the smooth integration of device surface chemistry with semiconductor technology for the fabrication of DNA biosensors. In addition, our results confirm that PNA-PEG derivatized self-assembled carboxyalkylsiloxane films are promising substrates for DNA microarray applications.
Gilmore, Brendan F; Carson, Louise; McShane, Laura L; Quinn, Derek; Coulter, Wilson A; Walker, Brian
2006-08-18
In this study, we report on the synthesis, kinetic characterisation, and application of a novel biotinylated and active site-directed inactivator of dipeptidyl peptidase IV (DPP-IV). Thus, the dipeptide-derived proline diphenyl phosphonate NH(2)-Glu(biotinyl-PEG)-Pro(P)(OPh)(2) has been prepared by a combination of classical solution- and solid-phase methodologies and has been shown to be an irreversible inhibitor of porcine DPP-IV, exhibiting an over all second-order rate constant (k(i)/K(i)) for inhibition of 1.57 x 10(3) M(-1) min(-1). This value compares favourably with previously reported rates of inactivation of DPP-IV by dipeptides containing a P(1) proline diphenyl phosphonate grouping [B. Boduszek, J. Oleksyszyn, C.M. Kam, J. Selzler, R.E. Smith, J.C. Powers, Dipeptide phophonates as inhibitors of dipeptidyl peptidase IV, J. Med. Chem. 37 (1994) 3969-3976; B.F. Gilmore, J.F. Lynas, C.J. Scott, C. McGoohan, L. Martin, B. Walker, Dipeptide proline diphenyl phosphonates are potent, irreversible inhibitors of seprase (FAPalpha), Biochem, Biophys. Res. Commun. 346 (2006) 436-446.], thus demonstrating that the incorporation of the side-chain modified (N-biotinyl-3-(2-(2-(3-aminopropyloxy)-ethoxy)-ethoxy)-propyl) glutamic acid residue at the P(2) position is compatible with inhibitor efficacy. The utilisation of this probe for the detection of both purified dipeptidyl peptidase IV and the disclosure of a dipeptidyl peptidase IV-like activity from a clinical isolate of Porphyromonas gingivalis, using established electrophoretic and Western blotting techniques previously developed by our group, is also demonstrated.
Cross-linked polyvinyl alcohol and method of making same
NASA Technical Reports Server (NTRS)
Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)
1981-01-01
A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.
Kim, In-Hae; Park, Yong-Kyu; Nishiwaki, Hisashi; Hammock, Bruce D; Nishi, Kosuke
2015-11-15
Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase (sEH) were investigated. First, a series of alkyl or aryl groups were substituted on the carbon alpha to the phosphonate function in amide compounds to see whether substituted phosphonates can act as a secondary pharmacophore. A tert-butyl group (16) on the alpha carbon was found to yield most potent inhibition on the target enzyme. A 4-50-fold drop in inhibition was induced by other substituents such as aryls, substituted aryls, cycloalkyls, and alkyls. Then, the modification of the O-substituents on the phosphonate function revealed that diethyl groups (16 and 23) were preferable for inhibition to other longer alkyls or substituted alkyls. In amide compounds with the optimized diethylphosphonate moiety and an alkyl substitution such as adamantane (16), tetrahydronaphthalene (31), or adamantanemethane (36), highly potent inhibitions were gained. In addition, the resulting potent amide-phosphonate compounds had reasonable water solubility, suggesting that substituted phosphonates in amide inhibitors are effective for both inhibition potency on the human sEH and water solubility as a secondary pharmacophore. Copyright © 2015 Elsevier Ltd. All rights reserved.
Heleg-Shabtai, Vered; Gratziany, Natzach; Liron, Zvi
2006-05-01
The application of indirect LIF (IDLIF) technique for on-chip electrophoretic separation and detection of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and its major phosphonic degradation products, ethyl methylphosphonic acid (EMPA) and methylphosphonic acid (MPA) was demonstrated. Separation and detection of MPA degradation products of VX and the nerve agent isopropyl methylphosphonofluoridate (GB) are presented. The negatively charged dye eosin was found to be a good fluorescent marker for both the negatively charged phosphonic acids and the positively charged VX, and was chosen as the IDLIF visualization fluorescent dye. Separation and detection of VX, EMPA, and MPA in a simple-cross microchip were completed within less than a minute, and consumed only a 50 pL sample volume. A characteristic system peak that appeared in all IDLIF electropherograms served as an internal standard that increased the reliability of peak identification. The negative peak of both VX and the MPAs is in agreement with indirect detection theory and with previous reports in the literature. The LOD of VX and EMPA by IDLIF was 30 and 37 microM, respectively. Despite the fact that the detection sensitivity is relatively low, the rapid simultaneous on-chip analysis of both VX and its degradation products as well as the separation and detection of the MPA degradation products of both VX and GB, increases detection reliability and may present a choice when sensitivity is not critical compared with speed and simplicity of the assay.
Electrospun polyvinyl alcohol ultra-thin layer chromatography of amino acids.
Lu, Tian; Olesik, Susan V
2013-01-01
Electrospun polyvinyl alcohol (PVA) ultrathin layer chromatographic (UTLC) plates were fabricated using in situ crosslinking electrospinning technique. The value of these ULTC plates were characterized using the separation of fluorescein isothiocyanate (FITC) labeled amino acids and the separation of amino acids followed visualization using ninhydrin. The in situ crosslinked electrospun PVA plates showed enhanced stability in water and were stable when used for the UTLC study. The selectivity of FITC labeled amino acids on PVA plate was compared with that on commercial Si-Gel plate. The efficiency of the separation varied with analyte concentration, size of capillary analyte applicator, analyte volume, and mat thickness. The concentration of 7mM or less, 50μm i.d. capillary applicator, minimum volume of analyte solution and three-layered mat provides the best efficiency of FITC-labeled amino acids on PVA UTLC plate. The efficiency on PVA plate was greatly improved compared to the efficiency on Si-Gel HPTLC plate. The hydrolysis products of aspartame in diet coke, aspartic acid and phenylalanine, were also successfully analyzed using PVA-UTLC plate. Copyright © 2012 Elsevier B.V. All rights reserved.
40 CFR 721.10677 - Alkyl phosphonate (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10677 Alkyl phosphonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl phosphonate (PMN P-12-584...
Diversity and abundance of phosphonate biosynthetic genes in nature
USDA-ARS?s Scientific Manuscript database
Phosphonates, molecules containing direct C-P bonds, comprise a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than fifty years ago, the extent and diversity of phosphonate production in natur...
Metal-Dependent Amyloid β-Degrading Catalytic Antibody Construct
Nishiyama, Yasuhiro; Taguchi, Hiroaki; Hara, Mariko; Planque, Stephanie A.; Mitsuda, Yukie; Paul, Sudhir
2015-01-01
Catalytic antibodies (catabodies) that degrade target antigens rapidly are rare. We describe the metal-dependence of catabody construct 2E6, an engineered heterodimer of immunoglobulin light chain variable domains that hydrolyzes amyloid β peptides (Aβ) specifically. In addition to the electrophilic phosphonate inhibitor of serine proteases, the metal chelators ethylenediaminetetraacetic acid (EDTA) and 1,10-phenanthroline completely inhibited the hydrolysis of Aβ by catabody 2E6. Formation of catabody-electrophilic phosphonate inhibitor adducts was unaffected by EDTA, suggesting that the metal exerts a favorable effect on a catalytic step after the initial catabody nucleophilic attack on Aβ. The EDTA inactivated catabody failed to disaggregate fibrillar Aβ, indicating the functional importance of the Aβ hydrolytic activity. Treating the EDTA-inactivated catabody with Zn2+ or Co2+ restored the Aβ hydrolytic activity, and Zn2+-induced catabody conformational transitions were evident by fluorescence emission spectroscopy. The studies reveal the absolute catabody dependence on a metal cofactor. PMID:24698848
Electrospun polymer nanofibers reinforced by tannic acid/Fe+++ complexes
USDA-ARS?s Scientific Manuscript database
Nanofibers and fibrous mats of polyvinyl alcohol (PVA) loaded with tannic acid (TA) and ferric ion (Fe+++) complexes (TA-Fe+++) were synthesized by the electrospinning technique. The spinning solutions were characterized for surface tension, electrical conductivity, and viscosity. It was found that ...
Synthetic routes to 3(5)-phosphonylated pyrazoles
NASA Astrophysics Data System (ADS)
Goulioukina, N. S.; Makukhin, N. N.; Beletskaya, I. P.
2016-07-01
This review comprehensively covers the currently available synthetic routes to 3(5)-phosphonylated pyrazoles. There are demonstrated significant advances in this field over the last 10-15 years caused by the use of the Bestmann-Ohira reagent [as well as (diazomethyl)phosphonates and phosphonylated hydrazonoyl halides] in reactions with diverse dipolarophiles. 1,3-Dipolar cycloaddition of diazo compounds to α,β-unsaturated phosphonates as well as intramolecular heterocyclization of (1-diazoallyl)phosphonates and (3--diazo-1-propenyl)phosphonates are discussed. Synthetic potential of cyclocondensation of organophosphorus 1,3-dielectrophilic compounds with hydrazines is shown. Ways to introduce a phosphonate group into the pyrazole ring are considered. Examples of chemical transformations of 3(5)-phosphonylated pyrazoles are reported. The bibliography includes 88 references.
Development of the 2007 Chemical Decontaminant Source Document
2009-03-01
Chemical Agent Simulant Specific DEM diethyl malonate MeS methyl salicylate PEG200 Polyethylene glycol 200 TEP triethyl phosphate Group 6...simulants • H-agent simulants o Methyl salicylate (MeS) o Chloroethyl phenyl sulfide (CEPS) o Chloroethyl ethyl sulfide (CEES) • VX simulants... Methyl bromide Ethyl phosphonothioic dichloride Sulfur dioxide Methyl chloroformate Ethyl phosphonic dichloride Sulfuric acid Methyl chlorosilane
NASA Astrophysics Data System (ADS)
MacLeod, Bradley; Tremolet de Villers, Bertrand; Cowan, Sarah; Ratcliff, Erin; Olson, Dana
2014-03-01
Solution-processed ZnO thin films are now commonly used as n-type bottom contacts in inverted-geometry organic photovoltaics (OPVs). The use of ZnO eliminates the need for highly-reactive top-contact (air-interface) electrode material, such as calcium and aluminum which are commonly used in conventional geometries, which enables operational lifetimes of unencapsulated devices to shift from minutes or hours to days. Modification of the ZnO film by self-assembled monolayers (SAMs) has been shown to enhance performance as well as air-stability during storage. We modify ZnO with dipolar phosphonic acids and observe enhanced performance and stability. We show for the first time devices measured under continuous illumination at one-sun intensity which have significantly enhanced stability when utilizing SAM-modified ZnO. These continuous-illumination stability measurements allow us to investigate the degradation mechanisms of these more stable inverted OPV devices. This work was was supported by of the Center for Interface Science: Solar Electric Materials (CISSEM), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001084.
Improving the Performance of Semiconductor Sensor Devices Using Surface Functionalization
NASA Astrophysics Data System (ADS)
Rohrbaugh, Nathaniel W.
As production and understanding of III-nitride growth has progressed, this class of material has been used for its semiconducting properties in the fields of computer processing, microelectronics, and LEDs. As understanding of materials properties has advanced, devices were fabricated to be sensitive to environmental surroundings such as pH, gas, or ionic concentration. Simultaneously the world of pharmaceuticals and environmental science has come to the age where the use of wearable devices and active environmental sensing can not only help us learn more about our surroundings, but help save lives. At the crossroads of these two fields work has been done in marrying the high stability and electrical properties of the III-nitrides with the needs of a growing sensor field for various environments and stimuli. Device architecture can only get one so far, and thus the need for well understood surface functionalization techniques has arisen in the field of III-nitride environmental sensing. Many existing schemes for functionalization involve chemistries that may be unfriendly to a biological environment, unstable in solution, or expensive to produce. One possible solution to these issues is the work presented here, which highlights a surface modification scheme utilizing phosphonic acid based chemistry and biomolecular attachment. This dissertation presents a set of studies and experiments quantifying and analyzing the response behaviors of AlGaN/GaN field effect transistor (FET) devices via their interfacial electronic properties. Additional investigation was done on the modification of these surfaces, effects of stressful environmental conditions, and the utility of the phosphonic acid surface treatments. Signals of AlGaN/GaN FETs were measured as IDrain values and in the earliest study an average signal increase of 96.43% was observed when surfaces were incubated in a solution of a known recognition peptide sequence (SVSVGMKPSPRP). This work showed that even without a form of surface modification the devices were capable of generating a response in the presence of a charged biomolecule. Solution exposure tests done devices showed that incubating peptides on the device surfaces produced a weak interaction and following 24 hrs of soaking no signs of peptide remained via XPS analysis. Subsequent testing was done to incorporate the phosphonic acid functionalization techniques shown previously by other members of this lab to the AlGaN/GaN surfaces as a remedy to this solution instability. In this second study FETs were modified using a heated phosphoric acid:ethephon etch followed by an incubation in TAT-C peptide. Resulting IV measurements done on the samples showed a shift in threshold voltage of the FETs following the etching procedure followed by a recovery of this shift from prolonged solution exposure. In total samples were given 168 hours of soaking and showed persistent peptide presence through the N 1s peak from XPS scans. FETs modified with this phosphonic acid derivative were examined in a third study under a simulated pollutant sensing scenario by measuring varied concentrations of Hg via a phytochelatin peptide bound to FET surfaces. HNO3 used in the Hg stock solution led to degradation of the FET signal but did not remove the phytochelatin layer. This led to a compensation effect in sensing the highest levels of Hg, lower concentrations however were successfully tested and showed varied responses from the FETs relative to the Hg content. In a concluding study on devices work was done to understand broader effects on the AlGaN/GaN FETs relative to a simulated biological sensing environment. Here an effect was noted from the addition of a biological fouling solution to the FETs and an increase in this effect when the biofouling was done to a phosphonic modified FET surface. Additionally devices were modified and soaked for 5 weeks and showed no shift or degradation in signal. Lastly in controlling for gate width of the FET it was found that the shorter 50 im gates were more susceptible to environmental interference than the 100 and 150 im gated devices. Thus this work has shown that modifying AlGaN/GaN devices with phosphonic acid derivatives is a viable functionalization method that is both adaptable and stable in solution over time. In moving forward, opportunities are available for testing a larger variety of analytes in both the medical and environmental fields. The final goal for this technology would be the fabrication and design of a multi-device sensing unit leading to eventual production of these sensors on an industrial scale for the use in future personal medical devices or environmental monitoring systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diwu, Juan; Wang, Shuao; Good, Justin J.
2011-06-06
The heterobimetallic actinide compound UO₂Ce(H₂O)[C₆H₄(PO₃H)₂]₂·H₂O was prepared via the hydrothermal reaction of U(VI) and Ce(IV) in the presence of 1,2-phenylenediphosphonic acid. We demonstrate that this is a kinetic product that is not stable with respect to decomposition to the monometallic compounds. Similar reactions have been explored with U(VI) and Ce(III), resulting in the oxidation of Ce(III) to Ce(IV) and the formation of the Ce(IV) phosphonate, Ce[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O, UO₂Ce(H₂O)[C₆H₄(PO₃H)₂]₂·H₂O, and UO₂[C₆H₄(PO₃H)₂](H₂O)·H₂O. In comparison, the reaction of U(VI) with Np(VI) only yields Np[C₆H₄(PO₃H)₂]₂·2H₂O and aqueous U(VI), whereas the reaction of U(VI) with Pu(VI) yields the disordered U(VI)/Pu(VI) compound, (U 0.9Pu 0.1)O₂[C₆H₄(PO₃H)₂](H₂O)·H₂O, and themore » Pu(IV) phosphonate, Pu[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O. The reactions of Ce(IV) with Np(VI) yield disordered heterobimetallic phosphonates with both M[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O (M = Ce, Np) and M[C₆H₄(PO₃H)₂]₂·2H₂O (M = Ce, Np) structures, as well as the Ce(IV) phosphonate Ce[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O. Ce(IV) reacts with Pu(IV) to yield the Pu(VI) compound, PuO₂[C₆H₄(PO₃H)₂](H₂O)·3H₂O, and a disordered heterobimetallic Pu(IV)/Ce(IV) compound with the M[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O (M = Ce, Pu) structure. Mixtures of Np(VI) and Pu(VI) yield disordered heterobimetallic Np(IV)/Pu(IV) phosphonates with both the An[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O (M = Np, Pu) and An[C₆H₄(PO₃H)₂]₂·2H₂O (M = Np, Pu) formulas.« less
Cross-linked polyvinyl alcohol films as alkaline battery separators
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.
1983-01-01
Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.
Cross-linked polyvinyl alcohol films as alkaline battery separators
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.
1982-01-01
Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase, L.A.; Peterson, N.L.; Koerner, J.F.
2007-02-15
A brief exposure of hippocampal slices to L-quisqualic acid (QUIS) sensitizes CA1 pyramidal neurons 30- to 250-fold to depolarization by certain excitatory amino acids analogues, e.g., L-2-amino-6-phosphonohexanoic acid (L-AP6), and by the endogenous compound, L-cystine. This phenomenon has been termed QUIS sensitization. A mechanism similar to that previously described for QUIS neurotoxicity has been proposed to describe QUIS sensitization. Specifically, QUIS has been shown to be sequestered into GABAergic interneurons by the System x{sub c} {sup -} and subsequently released by heteroexchange with cystine or L-AP6, resulting in activation of non-NMDA receptors. We now report two additional neurotoxins, the Lathyrusmore » excitotoxin, {beta}-N-oxalyl-L-{alpha},{beta}-diaminopropionic acid (ODAP), and the endogenous compound, L-homocysteic acid (HCA), sensitize CA1 hippocampal neurons > 50-fold to L-AP6 and > 10-fold to cystine in a manner similar to QUIS. While the cystine- or L-AP6-mediated depolarization can be inhibited by the non-NMDA receptor antagonist CNQX in ODAP- or QUIS-sensitized slices, the NMDA antagonist D-AP5 inhibits depolarization by cystine or L-AP6 in HCA-sensitized slices. Thus, HCA is the first identified NMDA agonist that induces phosphonate or cystine sensitization. Like QUIS sensitization, the sensitization evoked by either ODAP or HCA can be reversed by a subsequent exposure to 2 mM {alpha}-aminoadipic acid. Finally, we have demonstrated that there is a correlation between the potency of inducers for triggering phosphonate or cystine sensitivity and their affinities for System x{sub c} {sup -} and either the non-NMDA or NMDA receptor. Thus, the results of this study support our previous model of QUIS sensitization and have important implications for the mechanisms of neurotoxicity, neurolathyrism and hyperhomocystinemia.« less
Selective Removal of Lanthanides from Natural Waters, Acidic Streams and Dialysate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yantasee, Wassana; Fryxell, Glen E.; Addleman, Raymond S.
2009-09-15
The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, increasing public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd, Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS®) that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (ProPhos), and 1-hydroxy-2-pyridinone (1,2-HOPO) from natural waters (river, ground, and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate and compares their performance to a high surface area activated carbon.more » The properties include sorption affinity, capacity, and sorption kinetics. Stability and regenerability of SAMMS materials were also investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. While the activated carbon is as effective as 1,2-HOPO-SAMMS for capturing lanthanides in natural (alkaline) waters, it has no affinity in acid solutions (pH 2.4) and low affinity in carbonate-rich dialysate. Over 99% of 100 ug/L of Gd in dialysate was removed by the ProPhos-SAMMS after ten minutes. SAMMS can be regenerated with an acid wash (0.5 M HCl) without losing the binding properties, for a number of regeneration cycles. In acid solutions, PhoPhos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their potential for chromatographic lanthanide separations. Thus, SAMMS materials have a great potential to be used as sorbents in large scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and sorbent dialyzers for lanthanide clearances.« less
A Novel Multi-Phosphonate Surface Treatment of Titanium Dental Implants: A Study in Sheep
von Salis-Soglio, Marcella; Stübinger, Stefan; Sidler, Michéle; Klein, Karina; Ferguson, Stephen J.; Kämpf, Käthi; Zlinszky, Katalin; Buchini, Sabrina; Curno, Richard; Péchy, Péter; Aronsson, Bjorn-Owe; von Rechenberg, Brigitte
2014-01-01
The aim of the present study was to evaluate a new multi-phosphonate surface treatment (SurfLink®) in an unloaded sheep model. Treated implants were compared to control implants in terms of bone to implant contact (BIC), bone formation, and biomechanical stability. The study used two types of implants (rough or machined surface finish) each with either the multi-phosphonate Wet or Dry treatment or no treatment (control) for a total of six groups. Animals were sacrificed after 2, 8, and 52 weeks. No adverse events were observed at any time point. At two weeks, removal torque showed significantly higher values for the multi-phosphonate treated rough surface (+32% and +29%, Dry and Wet, respectively) compared to rough control. At 52 weeks, a significantly higher removal torque was observed for the multi-phosphonate treated machined surfaces (+37% and 23%, Dry and Wet, respectively). The multi-phosphonate treated groups showed a positive tendency for higher BIC with time and increased new-old bone ratio at eight weeks. SEM images revealed greater amounts of organic materials on the multi-phosphonate treated compared to control implants, with the bone fracture (from the torque test) appearing within the bone rather than at the bone to implant interface as it occurred for control implants. PMID:25215424
USDA-ARS?s Scientific Manuscript database
Water soluble amylose fatty acid and fatty ammonium salt inclusion complexes (AIC) were prepared by jet cooked high amylose corn starch with water soluble salts of long chain fatty acids or fatty amines. The formation of AIC was confirmed by X-ray diffraction of freeze-dried samples. After dissoluti...
Merli, Daniele; Protti, Stefano; Labò, Matteo; Pesavento, Maria; Profumo, Antonella
2016-05-01
A chemically modified electrode (CME) on a gold surface assembled with a ω-phosphonic acid terminated thiol was investigated for its capability to complex uranyl ions. The electrode, characterized by electrochemical techniques, demonstrated to be effective for the determination of uranyl at sub-μgL(-1) level by differential pulse adsorptive stripping voltammetry (DPAdSV) in environmental waters, also in presence of humic matter and other potential chelating agents. The accuracy of the measurements was investigated employing as model probes ligands of different complexing capability (humic acids and EDTA). Copyright © 2016 Elsevier B.V. All rights reserved.
Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.; ...
2016-05-30
The fundamental interaction of U (VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U (VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U (VI) contacted samples revealed that U (VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U (VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31Pmore » NMR on U (VI)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U (VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P– 31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U (VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U (VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somov, N. V., E-mail: somov@phys.unn.ru; Chausov, F. F., E-mail: chaus@uni.udm.ru
2015-03-15
Nitrilotris methylene phosphonate triaqua copper and octasodium bis(nitrilotris methylene phosphonate cuprate(II)) nonadecahydrate have been synthesized and investigated. [CuN(CH{sub 2}PO{sub 3}){sub 3}(H{sub 2}O){sub 3}] is crystallized in the sp. gr. P2{sub 1}/c, Z = 4, a = 9.2506(2) Å, b = 15.9815(2) Å, c = 9.5474(2) Å, β = 113.697(2)°. The copper atom is coordinated by oxygen atoms in the configuration of elongated octahedron; the ligand (of bridge type) links neighboring copper atoms. Na{sub 8}[CuN(CH{sub 2}PO{sub 3}){sub 3}]{sub 2} · 19H{sub 2}O is crystallized in the sp. gr. P2{sub 1}/c, Z = 2, a = 11.24550(10) Å, b = 17.38980(10) Å,more » c = 13.5852(2) Å, β = 127.8120(10)°. This complex is chelating; the copper atom closes three five-membered N-C-P-O-Cu cycles with a shared Cu-N bond. Copper is coordinated in a distorted trigonal-bipyramidal configuration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.
The fundamental interaction of U (VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U (VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U (VI) contacted samples revealed that U (VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U (VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31Pmore » NMR on U (VI)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U (VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P– 31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U (VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U (VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.« less
Tisdale, Evgenia; Wilkins, Charles
2014-04-11
The influence of the sample preparation parameters (the choice of the solvent and of the matrix:analyte ratio) was investigated and optimal conditions were established for MALDI mass spectrometry analysis of the pristine low molecular weight polyvinyl acetate (PVAc). It was demonstrated that comparison of polymer's and solvent's Hansen solubility parameters could be used as a guide when choosing the solvent for MALDI sample preparation. The highest intensity PVAc signals were obtained when ethyl acetate was used as a solvent along with the lowest matrix-analyte ratio (2,5-dihydroxybenzoic acid was used as a matrix in all experiments). The structure of the PVAc was established with high accuracy using the matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry (MALDI-FTMS) analysis. It was demonstrated that PVAc undergoes unimolecular decomposition by losing acetic acid molecules from its backbone under the conditions of FTMS measurements. Number and weight average molecular weights as well as polydispersity indices were determined with both MALDI-TOF and MALDI-FTMS methods. The sample preparation protocol developed was applied to the analysis of a chewing gum and the molecular weight and structure of the polyvinyl acetate present in the sample were established. Thus, it was shown that optimized MALDI mass spectrometry could be used successfully for characterization of polyvinyl acetate in commercially available chewing gum. Copyright © 2014 Elsevier B.V. All rights reserved.
Cella, Claudia; Gerges, Irini; Milani, Paolo; Lenardi, Cristina; Argentiere, Simona
2017-02-13
Poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are among the most studied systems for drug and gene targeting. So far, the synthesis of stable and uniform PLGA NPs has involved the use of a large excess of polyvinyl surfactants such as poly(vinyl alcohol) (PVA) and polyvinylpyrrolidone (PVP), whose removal requires multistep purification procedures of high ecological and economic impact. Hence the development of environment-friendly and cost-effective synthetic procedures for the synthesis of PLGA NPs would effectively boost their use in clinics. This work aims to address this issue by investigating more efficacious alternatives to the so far employed polyvinyl surfactants. More specifically, we developed an innovative synthetic process to achieve stable and uniformly distributed PLGA NPs that involves the use of calcium stearate (CSt), gaining benefits of its high biocompatibility and efficacy at low concentrations and avoiding consequently expensive purification steps. With the help of minimum quantities of polysorbate 60 and sorbitane monostearate, CSt-stabilized PLGA NPs with different sizes and structures were synthesized. The influence of CSt on the encapsulation efficiency of bioactive molecules has been also investigated. The effective encapsulation of both hydrophobic (curcumin) and hydrophilic (fibrinogen labeled with Alexa647) biomolecules into NPs was demonstrated by confocal microscopy, and their release quantified by spectrofluorimetric analyses. Finally, degradation and cytotoxicity studies showed that CSt stabilized NPs were stable under physiological conditions and with good biocompatibility, thus looking promising for further investigation as controlled release devices.
Low-voltage self-assembled monolayer field-effect transistors on flexible substrates.
Schmaltz, Thomas; Amin, Atefeh Y; Khassanov, Artoem; Meyer-Friedrichsen, Timo; Steinrück, Hans-Georg; Magerl, Andreas; Segura, Juan José; Voitchovsky, Kislon; Stellacci, Francesco; Halik, Marcus
2013-08-27
Self-assembled monolayer field-effect transistors (SAMFETs) of BTBT functionalized phosphonic acids are fabricated. The molecular design enables device operation with charge carrier mobilities up to 10(-2) cm(2) V(-1) s(-1) and for the first time SAMFETs which operate on rough, flexible PEN substrates even under mechanical substrate bending. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An aqueous, organic dye derivatized SnO 2 /TiO 2 core/shell photoanode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wee, Kyung-Ryang; Sherman, Benjamin D.; Brennaman, M. Kyle
2016-01-01
Visible light driven water splitting in a dye-sensitized photoelectrochemical cell (DSPEC) based on a phosphonic acid-derivatized donor–π–acceptor (D–π–A) organic dye (P–A–π–D) is described with the dye anchored to an FTO|SnO 2/TiO 2core/shell photoanode in a pH 7 phosphate buffer solution.
Datta, Pallab; Chatterjee, Jyotirmoy; Dhara, Santanu
2013-01-01
Polyvinyl alcohol (PVA) and polylactic acids (PLA) are biocompatible materials possessing some inherent contrasting limitations which have reduced the scope of their individual applicability. Specifically, overcoming strong hydrophobicity and introducing chemical groups for biofunctionalization are unmet challenges for PLA whilst chemical endeavors to render adequate aqueous stability and cell adhesion properties to PVA have not produced completely intended results. Objective of the present work is to explore synthesis of a graft polymer as an approach towards coupling biofunctional groups with PLA materials. In a two-step reaction, PPVA (phosphorylated polyvinyl alcohol or PVA pre-functionalized with phosphate) is esterified with lactic acid followed by polymerization into PLA in presence of stannous chloride as catalyst to obtain phosphorylated polyvinyl alcohol-graft-polylactic acid (PPVA-g-LA) copolymer. Product is characterized by nuclear magnetic resonance, X-ray diffraction, and thermogravimetric analysis. PPVA-g-LA shows an increase in uniaxial elongation compared to parent PPVA under condition of tensile loading. The graft copolymer also exhibits higher water contact angles compared to PPVA, but a more hydrophilic surface compared to PLA. Culture of MG-63 cells on solvent cast films of polymers demonstrates that PPVA-g-LA as a cell substrate can significantly (p < 0.05) improve proliferation and differentiation of cells compared to PPVA substrate whereas in comparison to PLA can significantly ameliorate osteoblast function of cultured cells. Overall, results illustrate the feasibility of PVA to act as a carrier for biofunctional agents to be coupled to lactic acid-based biomaterials with subsequent improvement in cell response on the polymers. In this attempt, it also affords materials with tunable surface or bulk properties of relevance for tissue engineering applications.
Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu
2015-04-01
We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response.
Khomich, Olga A; Yanvarev, Dmitry V; Novikov, Roman A; Kornev, Alexey B; Puljulla, Elina; Vepsäläinen, Jouko; Khomutov, Alex R; Kochetkov, Sergey N
2017-06-23
Derivatives of methylenediphosphonic acid possess wide spectra of biological activities and are used in enzymology as research tools as well as in practical medicine. Carbonyl diphosphonic acid is a promising starting building block for synthesis of functionally substituted methylenediphosphonates. Investigation of the interaction of carbonyl diphosphonic acid with hydroxylamine clearly demonstrates that it is impossible to isolate oxime within the pH range 2-12, while only cyanophosphonic and phosphoric acids are the products of the fast proceeding Beckmann-like fragmentation. In the case of O -alkylhydroxylamines, corresponding alcohols are found in the reaction mixtures in addition to cyanophosphonic and phosphoric acids. Therefore, two residues of phosphonic acid being attached to a carbonyl group provide new properties to this carbonyl group, making its oximes very unstable. This principally differs carbonyl diphosphonic acid from structurally related phosphonoglyoxalic acid and other α-ketophosphonates.
In-situ cross linking of polyvinyl alcohol. [application to battery separator films
NASA Technical Reports Server (NTRS)
Philipp, W. H.; Hsu, L. C.; Sheibley, D. W. (Inventor)
1981-01-01
A method of producing a crosslinked polyvinyl alcohol structure, such as a battery separator membrane or electrode envelope is described. An aqueous solution of a film-forming polyvinyl alcohol is admixed with an aldehyde crosslinking agent a basic pH to inhibit crosslinking. The crosslinking agent, perferably a dialdehyde such as glutaraldehyde, is used in an amount of from about 1/2 to about 20% of the theoretical amount required to crosslink all of the hydroxyl groups of the polymer. The aqueous admixture is formed into a desired physical shape, such as by casting a sheet of the solution. The sheet is then dried to form a self-supporting film. Crosslinking is then effected by immersing the film in aqueous acid solution. The resultant product has excellent properties for use as a battery separator.
Immediate and Delayed Drug Therapy Effects on Low Dose Sarin Exposed Mice Myocardial Performance
2011-03-01
to phosphorylate the serine hydroxyl residue in the active pocket of AChE, forming either a phosphoric or phosphonic acid ester which is extremely...London 2006). Brain natriuretic peptide exerts its 15 natriuretic, diuretic, and vasorelaxant effects through activation of its common receptor...exposed to asymptomatic levels would show no issues during normal activities , such garrison or non-field operations. However, this would quickly change
USSR and Eastern Europe Scientific Abstracts, Chemistry. Number 49
1976-11-04
phosphorus tribromide with oxygen initia- tion leads to the synthesis of l-bromoalkane-2-phosphonous acid dibromides. References 8: 4 Russian, 4 Western. 1 ...are developed for synthesis of dialkylmethylphosphonates by nitration of ethoxyvinylphosphonates. References 21: 19 Russian, 2 Western. 1 / 1 USSR...spectroscopic data and reverse synthesis . Figures 2; References 3: 1 Russian, 2 Western. 1 / 1 28 USSR UDC 547.26 GOLOLOBOV, YU. G., BOLDESKUL, I
Gillet, Raphaël; Roux, Amandine; Brandel, Jérémy; Huclier-Markai, Sandrine; Camerel, Franck; Jeannin, Olivier; Nonat, Aline M; Charbonnière, Loïc J
2017-10-02
Here we present the synthesis and characterization of a new bispidine (3,7-diazabicyclo[3.3.1]nonane) ligand with N-methanephosphonate substituents (L 2 ). Its physicochemical properties in water, as well as those of the corresponding Cu(II) and Zn(II) complexes, have been evaluated by using UV-visible absorption spectroscopy, potentiometry, 1 H and 31 P NMR, and cyclic voltammetry. Radiolabeling experiments with 64 Cu II have been carried out, showing excellent radiolabeling properties. Quantitative complexation was achieved within 60 min under stoichiometric conditions, at room temperature and in the nanomolar concentration range. It was also demonstrated that the complexation occurred below pH 2. Properties have been compared to those of the analogue bispidol bearing a N-methanecarboxylate substituent (L 1 ). Although both systems meet the required criteria to be used as new chelator for 64/67 Cu in terms of the kinetics of formation, thermodynamic stability, selectivity for Cu(II), and kinetic inertness regarding redox- or acid-assisted decomplexation processes, substitution of the carboxylic acid function by the phosphonic moiety is responsible for a significant increase in the thermodynamic stability of the Cu(II) complex (+2 log units for pCu) and also leads to an increase in the radiochemical yields with 64 Cu II which is quantitative for L 2 .
Disorder-derived, strong tunneling attenuation in bis-phosphonate monolayers.
Pathak, Anshuma; Bora, Achyut; Liao, Kung-Ching; Schmolke, Hannah; Jung, Antje; Klages, Claus-Peter; Schwartz, Jeffrey; Tornow, Marc
2016-03-09
Monolayers of alkyl bisphosphonic acids (bisPAs) of various carbon chain lengths (C4, C8, C10, C12) were grown on aluminum oxide (AlO(x)) surfaces from solution. The structural and electrical properties of these self-assembled monolayers (SAMs) were compared with those of alkyl monophosphonic acids (monoPAs). Through contact angle (CA) and Kelvin-probe (KP) measurements, ellipsometry, and infrared (IR) and x-ray photoelectron (XPS) spectroscopies, it was found that bisPAs form monolayers that are relatively disordered compared to their monoPA analogs. Current-voltage (J-V) measurements made with a hanging Hg drop top contact show tunneling to be the prevailing transport mechanism. However, while the monoPAs have an observed decay constant within the typical range for dense monolayers, β(mono) = 0.85 ± 0.03 per carbon atom, a surprisingly high value, β(bis) = 1.40 ± 0.05 per carbon atom, was measured for the bisPAs. We attribute this to a strong contribution of 'through-space' tunneling, which derives from conformational disorder in the monolayer due to strong interactions of the distal phosphonic acid groups; they likely form a hydrogen-bonding network that largely determines the molecular layer structure. Since bisPA SAMs attenuate tunnel currents more effectively than do the corresponding monoPA SAMs, they may find future application as gate dielectric modification in organic thin film devices.
Disorder-derived, strong tunneling attenuation in bis-phosphonate monolayers
NASA Astrophysics Data System (ADS)
Pathak, Anshuma; Bora, Achyut; Liao, Kung-Ching; Schmolke, Hannah; Jung, Antje; Klages, Claus-Peter; Schwartz, Jeffrey; Tornow, Marc
2016-03-01
Monolayers of alkyl bisphosphonic acids (bisPAs) of various carbon chain lengths (C4, C8, C10, C12) were grown on aluminum oxide (AlO x ) surfaces from solution. The structural and electrical properties of these self-assembled monolayers (SAMs) were compared with those of alkyl monophosphonic acids (monoPAs). Through contact angle (CA) and Kelvin-probe (KP) measurements, ellipsometry, and infrared (IR) and x-ray photoelectron (XPS) spectroscopies, it was found that bisPAs form monolayers that are relatively disordered compared to their monoPA analogs. Current-voltage (J-V) measurements made with a hanging Hg drop top contact show tunneling to be the prevailing transport mechanism. However, while the monoPAs have an observed decay constant within the typical range for dense monolayers, β mono = 0.85 ± 0.03 per carbon atom, a surprisingly high value, β bis = 1.40 ± 0.05 per carbon atom, was measured for the bisPAs. We attribute this to a strong contribution of ‘through-space’ tunneling, which derives from conformational disorder in the monolayer due to strong interactions of the distal phosphonic acid groups; they likely form a hydrogen-bonding network that largely determines the molecular layer structure. Since bisPA SAMs attenuate tunnel currents more effectively than do the corresponding monoPA SAMs, they may find future application as gate dielectric modification in organic thin film devices.
Warnan, Julien; Willkomm, Janina; Ng, Jamues N; Godin, Robert; Prantl, Sebastian; Durrant, James R; Reisner, Erwin
2017-04-01
A series of diketopyrrolopyrrole (DPP) dyes with a terminal phosphonic acid group for attachment to metal oxide surfaces were synthesised and the effect of side chain modification on their properties investigated. The organic photosensitisers feature strong visible light absorption ( λ = 400 to 575 nm) and electrochemical and fluorescence studies revealed that the excited state of all dyes provides sufficient driving force for electron injection into the TiO 2 conduction band. The performance of the DPP chromophores attached to TiO 2 nanoparticles for photocatalytic H 2 evolution with co-immobilised molecular Co and Ni catalysts was subsequently studied, resulting in solar fuel generation with a dye-sensitised semiconductor nanoparticle system suspended in water without precious metal components. The performance of the DPP dyes in photocatalysis did not only depend on electronic parameters, but also on properties of the side chain such as polarity, steric hinderance and hydrophobicity as well as the specific experimental conditions and the nature of the sacrificial electron donor. In an aqueous pH 4.5 ascorbic acid solution with a phosphonated DuBois-type Ni catalyst, a DPP-based turnover number (TON DPP ) of up to 205 was obtained during UV-free simulated solar light irradiation (100 mW cm -2 , AM 1.5G, λ > 420 nm) after 1 day. DPP-sensitised TiO 2 nanoparticles were also successfully used in combination with a hydrogenase or platinum instead of the synthetic H 2 evolution catalysts and the platinum-based system achieved a TON DPP of up to 2660, which significantly outperforms an analogous system using a phosphonated Ru tris(bipyridine) dye (TON Ru = 431). Finally, transient absorption spectroscopy was performed to study interfacial recombination and dye regeneration kinetics revealing that the different performances of the DPP dyes are most likely dictated by the different regeneration efficiencies of the oxidised chromophores.
Tsai, L H; Lee, Y J
2001-12-31
The mechanism of N-methyl-D-aspartate (NMDA) inhibits oxotremorine-induced acid secretion was examined in rat stomach, in relation to the cyclic GMP system. NMDA (10(-7) M) did not affect the spontaneous acid secretion from the everted preparations of isolated rat stomach, but inhibited the acid secretion stimulated by oxotremorine, and this effect of NMDA was antagonized by 2-amino-5-phosphonovaleric acid (AP-5), (+/-)3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or N(G)-nitro-L-arginine (L-NNA). NMDA also elevated the cyclic GMP content of mucosal slices from rat stomach, and this effect of NMDA was antagonized by L-NNA. These results indicate that NMDA receptors are present in the rat stomach and regulate the gastric acid secretion. The mechanism underlying the effect of NMDA inhibits oxotremorine-induced acid secretion may be mediated by the NO-dependent cyclic GMP system.
Radiation sensitive indicator based on tetrabromophenol blue dyed poly(vinyl alcohol)
NASA Astrophysics Data System (ADS)
Beshir, W. B.
2013-05-01
Radiation sensitive indicators based on dyed polyvinyl alcohol (PVA) containing acid- sensitive dye (tetrabromophenol blue, TBPB) and chloral hydrate (CCl3·CH·(OH)2, 2,2,2-trichloroethane-1,1-diol) have been developed. These plastic film dosimeters undergo color change from blue (the alkaline form of TBPB) to yellow (the acidic form of TBPB), indicating acid formation. The concentration of radiation formed acids in the films containing different concentrations of chloral hydrate was calculated at different doses. These films can be used as dosimeters for food irradiation applications where the maximum of the useful dose ranges are between 1 and 8 kGy depending on chloral hydrate concentration in the film. The films have the advantage of negligible humidity effects on response in the intermediate range of relative humidity from 0 to 70% as good post irradiation stability when stored in the dark at room temperature. The overall combined uncertainty (at 2σ) associated with measurement of response (ΔA mm-1) at 623 nm for dose range 1-8 kGy is 4.53%.
Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles
NASA Astrophysics Data System (ADS)
Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa
2000-06-01
Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying.
Kura, Aminu Umar; Hussein-Al-Ali, Samer Hasan; Bin Hussein, Mohd Zobir; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah
2014-01-01
The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG. PMID:24737969
Xie, Yan; Shaffer, David W.; Lewandowska-Andralojc, Anna; ...
2016-05-11
Here, we describe herein the synthesis and characterization of ruthenium complexes with multifunctional bipyridyl diphosphonate ligands as well as initial water oxidation studies. In these complexes, the phosphonate groups provide redox-potential leveling through charge compensation and σ donation to allow facile access to high oxidation states. These complexes display unique pH-dependent electrochemistry associated with deprotonation of the phosphonic acid groups. The position of these groups allows them to shuttle protons in and out of the catalytic site and reduce activation barriers. A mechanism for water oxidation by these catalysts is proposed on the basis of experimental results and DFT calculations.more » The unprecedented attack of water at a neutral six-coordinate [Ru IV] center to yield an anionic seven-coordinate [Ru IV–OH] – intermediate is one of the key steps of a single-site mechanism in which all species are anionic or neutral. These complexes are among the fastest single-site catalysts reported to date.« less
Ullah, Majeed; Shah, Mohammad Raza; Bin Asad, Muhammad Hassham Hassan; Hasan, S M Farid; Hussain, Izhar
2017-11-01
Currently cocrystals are considered as an established approach for making crystalline solids with overall improved physico-chemical properties. However, some otherwise well behaving cocrystals undergo rapid dissociation during dissolution, with ultimate conversion to parent drug and thus apparent loss of improved solubility. The polymeric carriers are long known to manipulate this conversion during dissolution to parent crystalline drug, which may hinder or accelerate the dissolution process if used in a dosage form. The goal of this study was to deliver in vivo a more soluble carbamazepine-succinic acid (CBZ-SUC) cocrystal in suspension formulation utilizing Hydroxypropyl methyl cellulose (HPMC-AS) as a crystallization inhibitor and Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft copolymer ® as solubilizer. The concentration of these polymers were systemically varied during in vitro dissolution studies, while selected formulations from dissolution studies were tested in vivo. Pharmacokinetic studies (PK) in rabbits demonstrated that formulation F7-X (1% cocrystal, 1% HPMC-AS and 2% Polyvinyl carpolactam-polyvinyl acetatepolyethylene glycol graft co-polymer®) caused almost 6fold improvement in AUC0-72 (***P k 0.05) as well as much higher C max of 4.73μ.mL-1 to that of 1.07μ.mL-1 of unformulated 'neat' cocrystal given orally. When reference formulation of CBZ (F5-X) with similar composition to F7-X were given to rabbits, cocrystal formulation gave 1.37fold (***P k 0.05) bioavailability than CBZ reference formulation. C max of reference formulation observed was 3.9μmL-1.
TSCA Section 21 Petition to Promulgate Regulations Governing PVCs
This petition requests EPA to promulgate regulations governing the safe treatment, storage and disposal of polyvinyl chloride (PVC), vinyl chloride and associated dialkyl- and alkylarylesters of 1,2-benzenedicarboxylic acid.
NASA Astrophysics Data System (ADS)
Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid
2016-11-01
Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.
Botanicals and Phosphonate Show Potential to Replace Copper for Control of Potato Late Blight
Forrer, Hans-Rudolf
2017-01-01
Potato late blight (PLB) caused by Phytophthora infestans (Pi) is the most harmful disease in potato production worldwide. In organic farming, copper is used despite its persistence in soil and toxicity to soil organisms. To replace copper, suspensions of powders from three promising botanicals, including bark of buckthorn (Frangula alnus, FA), roots of medicinal rhubarb (Rheum palmatum) and galls of the nutgall tree (Galla chinensis), were tested in multi-year field experiments. The current study shows for the first time that botanicals could replace copper under field conditions and best PLB reduction on leaves was achieved with FA, reaching a level close to that of 2 to 3 kg copper per hectare and year. Better results than with copper were achieved with Phosfik® (Ph), a phosphonate-based product. For both FA and Ph, the mode of action is based on induced resistance, for Ph also on direct fungicidal effects. A disadvantage of Ph is the accumulation of residues in potato tubers. Nevertheless, two to three applications with 2 to 3 L/ha of Ph would be feasible to not exceed a minimal risk level (MLR) of 20 mg/kg of phosphorous acid as proposed by the European Food Safety Authority. Due to an excellent environmental profile and a complex mode of action counteracting Pi resistance, phosphonate-based products would be most suitable for sustainable PLB management in integrated pest management (IPM) programmes. PMID:29371580
Two-carbon homologation of aldehydes and ketones to α,β-unsaturated aldehydes.
Petroski, Richard J; Vermillion, Karl; Cossé, Allard A
2011-06-17
Phosphonate reagents were developed for the two-carbon homologation of aldehydes or ketones to unbranched- or methyl-branched α,β-unsaturated aldehydes. The phosphonate reagents, diethyl methylformyl-2-phosphonate dimethylhydrazone and diethyl ethylformyl-2-phosphonate dimethylhydrazone, contained a protected aldehyde group instead of the usual ester group. A homologation cycle entailed condensation of the reagent with the starting aldehyde, followed by removal of the dimethylhydrazone protective group with a biphasic mixture of 1 M HCl and petroleum ether. This robust two-step process worked with a variety of aldehydes and ketones. Overall isolated yields of unsaturated aldehyde products ranged from 71% to 86% after the condensation and deprotection steps.
NASA Astrophysics Data System (ADS)
Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.
2007-01-01
The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.
Alicea, Ismael; Marvin, Jonathan S.; Miklos, Aleksandr E.; Ellington, Andrew D.; Looger, Loren L.; Schreiter, Eric R.
2012-01-01
The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by ~70° between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into phosphonate uptake by bacteria and facilitated the rational design of high signal-to-noise phosphonate biosensors based both on coupled small molecule dyes and autocatalytic fluorescent proteins. PMID:22019591
Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno
2016-06-07
Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.
Fluoride-Mediated Dephosphonylation of α-Diazo-β-carbonyl Phosphonates.
Phatake, Ravindra S; Mullapudi, Venkannababu; Wakchaure, Vivek C; Ramana, Chepuri V
2017-01-20
The possibility of fluoride-mediated selective dephosphonylation of α-diazo-β-carbonyl phosphonates such as the Ohira-Bestmann reagent has been proposed and executed. The resulting α-diazocarbonyl intermediates undergo a (3 + 2)-cycloaddition at room temperature with conjugated olefins and benzynes. Interestingly, under the current conditions, the resulting cycloaddition products underwent either N-acylation (with excess α-diazo-β-carbonyl phosphonates) or Michael addition (with conjugated olefins).
NASA Astrophysics Data System (ADS)
Song, Jun-Ling; Mao, Jiang-Gao
2005-04-01
The syntheses, crystal structures and characterizations of two new divalent metal carboxylate-phosphonates, namely, Zn(H 3L)·2H 2O ( 1) and Pb(H 3L)(H 2O) 2 ( 2) (H 5L dbnd6 4-HO 2C-C 6H 4-CH 2N(CH 2PO 3H 2) 2) have been reported. Compound 1 features a 1D column structure in which the Zn(II) ions are tetrahedrally coordinated by four phosphonate oxygen atoms from four phosphonate ligands, and neighboring such 1D building blocks are further interconnected via hydrogen bonds into a 3D network. The carboxylate group of H 3L anion remains non-coordinated. Compound 2 has a 2D layer structure. Pb(II) ion is 7-coordinated by four phosphonate oxygen atoms from four phosphonate ligands and three aqua ligands. The interconnection of Pb(II) ions via bridging H 3L anions results in a <001> layer. The carboxylate group of the H 3L anion also remains non-coordinated and is oriented toward the interlayer space. Solid state luminescent spectrum of compound 1 exhibits a strong broad blue fluorescent emission band at 455 nm under excitation at 365 nm at room temperature.
Characterization of the Chemical Constitution and Profile of Pharmacological Activity of PGB(x).
1982-02-26
ischemia. Fed. Proc. 40 , 692 (1980). 3. Burkman, A. M. and Phornchirasilp, S., Prostaglandin Bx enhances the inotropic efficacy (Emax) of...nitroketone 10 was then converted to the sodium salt of the corresponding nitronic acid on treatment with an equimolar amount of sodium metabolite in...bromide in chloroform-ethyl acetate to give unsaturated aldehyde 12 in 40 ’ yield. The reaction of compound 9 with dimethyl (2-oxoheptvl) phosphonate in
Investigation into stability of poly(vinyl alcohol)-based Opadry® II films.
Koo, Otilia M Y; Fiske, John D; Yang, Haitao; Nikfar, Faranak; Thakur, Ajit; Scheer, Barry; Adams, Monica L
2011-06-01
Poly(vinyl alcohol) (PVA)-based formulations are used for pharmaceutical tablet coating with numerous advantages. Our objective is to study the stability of PVA-based coating films in the presence of acidic additives, alkaline additives, and various common impurities typically found in tablet formulations. Opadry® II 85F was used as the model PVA-based coating formulation. The additives and impurities were incorporated into the polymer suspension prior to film casting. Control and test films were analyzed before and after exposure to 40°C/75% relative humidity. Tests included film disintegration, size-exclusion chromatography, thermal analysis, and microscopy. Under stressed conditions, acidic additives (hydrochloric acid (HCl) and ammonium bisulfate (NH(4)HSO(4))) negatively impacted Opadry® II 85F film disintegration while NaOH, formaldehyde, and peroxide did not. Absence of PVA species from the disintegration media corresponded to an increase in crystallinity of PVA for reacted films containing HCl. Films with NH(4)HSO(4) exhibited slower rate of reactivity and less elevation in melting temperature with no clear change in melting enthalpy. Acidic additives posed greater risk of compromise in disintegration of PVA-based coatings than alkaline or common impurities. The mechanism of acid-induced reactivity due to the presence of acidic salts (HCl vs. NH(4)HSO(4)) may be different.
McNeill, Alexandra R; Hyndman, Adam R; Reeves, Roger J; Downard, Alison J; Allen, Martin W
2016-11-16
ZnO is a prime candidate for future use in transparent electronics; however, development of practical materials requires attention to factors including control of its unusual surface band bending and surface reactivity. In this work, we have modified the O-polar (0001̅), Zn-polar (0001), and m-plane (101̅0) surfaces of ZnO with phosphonic acid (PA) derivatives and measured the effect on the surface band bending and surface sensitivity to atmospheric oxygen. Core level and valence band synchrotron X-ray photoemission spectroscopy was used to measure the surface band bending introduced by PA modifiers with substituents of opposite polarity dipole moment: octadecylphosphonic acid (ODPA) and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctylphosphonic acid (F 13 OPA). Both PAs act as surface electron donors, increasing the downward band bending and the strength of the two-dimensional surface electron accumulation layer on all of the ZnO surfaces investigated. On the O-polar (0001̅) and m-plane (101̅0) surfaces, the ODPA modifier produced the largest increase in downward band bending relative to the hydroxyl-terminated unmodified surface of 0.55 and 0.35 eV, respectively. On the Zn-polar (0001) face, the F 13 OPA modifier gave the largest increase (by 0.50 eV) producing a total downward band bending of 1.00 eV, representing ∼30% of the ZnO band gap. Ultraviolet (UV) photoinduced surface wettability and photoconductivity measurements demonstrated that the PA modifiers are effective at decreasing the sensitivity of the surface toward atmospheric oxygen. Modification with PA derivatives produced a large increase in the persistence of UV-induced photoconductivity and a large reduction in UV-induced changes in surface wettability.
USDA-ARS?s Scientific Manuscript database
The use of starch in polymer composites for film production has been studied extensively for increasing biodegradability, improving film properties and reducing cost. Starch nanoparticles have received much attention, primarily those obtained by acid hydrolysis of starch granules. In this study, nan...
Qian, Wenjian; Park, Jung-Eun; Liu, Fa; Lee, Kyung S.; Burke, Terrence R.
2012-01-01
Protein-protein interactions (PPIs) mediated by the polo-box domain (PBD) of polo-like kinase 1 (Plk1) serve important roles in cell proliferation. Critical elements in the high affinity recognition of peptides and proteins by PBD are derived from pThr/pSer-residues in the binding ligands. However, there has been little examination of pThr/pSer mimetics within a PBD context. Our current paper compares the abilities of a variety of amino acid residues and derivatives to serve as pThr/pSer replacements by exploring the role of methyl functionality at the pThr β–position and by replacing the phosphoryl group by phosphonic acid, sulfonic acid and carboxylic acids. This work sheds new light on structure activity relationships for PBD recognition of phosphoamino acid mimetics. PMID:22743087
Masuda, Kengo; Sakiyama, Norifumi; Tanaka, Rie; Noguchi, Keiichi; Tanaka, Ken
2011-05-11
It has been established that a cationic rhodium(I)/(R)-H(8)-BINAP or (R)-Segphos complex catalyzes two modes of enantioselective cyclizations of γ-alkynylaldehydes with acyl phosphonates via C-P or C-H bond cleavage. The ligands of the Rh(I) complexes and the substitutents of both γ-alkynylaldehydes and acyl phosphonates control these two different pathways. © 2011 American Chemical Society
Kumar, T Santhosh; Zhou, Si-Yuan; Joshi, Bhalchandra V; Balasubramanian, Ramachandran; Yang, Tiehong; Liang, Bruce T; Jacobson, Kenneth A
2010-03-25
P2X receptor activation protects in heart failure models. MRS2339 3, a 2-chloro-AMP derivative containing a (N)-methanocarba (bicyclo[3.1.0]hexane) system, activates this cardioprotective channel. Michaelis-Arbuzov and Wittig reactions provided phosphonate analogues of 3, expected to be stable in vivo due to the C-P bond. After chronic administration via a mini-osmotic pump (Alzet), some analogues significantly increased intact heart contractile function in calsequestrin-overexpressing mice (genetic model of heart failure) compared to vehicle-infused mice (all inactive at the vasodilatory P2Y(1) receptor). Two phosphonates, (1'S,2'R,3'S,4'R,5'S)-4'-(6-amino-2-chloropurin-9-yl)-2',3'-(dihydroxy)-1'-(phosphonomethylene)-bicyclo[3.1.0]hexane, 4 (MRS2775), and its homologue 9 (MRS2935), both 5'-saturated, containing a 2-Cl substitution, improved echocardiography-derived fractional shortening (20.25% and 19.26%, respectively, versus 13.78% in controls), while unsaturated 5'-extended phosphonates, all 2-H analogues, and a CH(3)-phosphonate were inactive. Thus, chronic administration of nucleotidase-resistant phosphonates conferred a beneficial effect, likely via cardiac P2X receptor activation. Thus, we have greatly expanded the range of carbocyclic nucleotide analogues that represent potential candidates for the treatment of heart failure.
NASA Astrophysics Data System (ADS)
He, Lihua; Zhao, Yan; Xing, Liying; Liu, Pinggui; Wang, Zhiyong; Zhang, Youwei; Liu, Xiaofang
2017-07-01
To improve the anticorrosive performance of aluminum powder, a common functional filler in polymer coatings, we report a novel method to prepare graphene oxide modified aluminum powder (GO-Al) using 3-aminoproplyphosphoic acid as "link" agent. The GO nanosheets were firstly functionalized with 3-aminoproplyphosphoic acid (APSA) by the reaction of amine groups of APSA and the epoxy groups of GO. Subsequently, a layer of GO nanosheets uniformly and tightly covered the surface of flaky aluminum particle though the strong linking strength between -PO(OH)2 functional groups of the modified GO and aluminum. The hydrogen evolution experiment suggests that the GO attached on the aluminum powder could effectively improve the anticorrosive performance of the pigments.
Synthesis and biological evaluation of cyclopropyl analogues of 2-amino-5-phosphonopentanoic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dappen, M.S.; Pellicciari, R.; Natalini, B.
1991-01-01
A series of cyclopropyl analogues related to 2-amino-5-phosphonopentanoic acid (AP5) were synthesized and their biological activity was assessed as competitive antagonists for the N-methyl-D-aspartate (NMDA) receptor. In vitro receptor binding using (3H)-L-glutamate as the radioligand provided affinity data, while modulation of (3H)MK-801 binding was used as a functional assay. The analogues were also evaluated in (3H)kainate binding to assess selectivity over non-NMDA glutamate receptors. Of the compounds tested, 4,5-methano-AP5 analogue 26 was the most potent selective NMDA antagonist; however, potency was lower than that for (((+/-)-2-carboxypiperidin-4-yl)methyl)phosphonic acid (CGS 19755, 5).
Influence of Binder in Iron Matrix Composites
NASA Astrophysics Data System (ADS)
Shamsuddin, S.; Jamaludin, S. B.; Hussain, Z.; Ahmad, Z. A.
2010-03-01
The ability to use iron and its alloys as the matrix material in composite systems is of great importance because it is the most widely used metallic material with a variety of commercially available steel grades [1]. The aim of this study is to investigate the influence of binder in particulate iron based metal matrix composites. There are four types of binder that were used in this study; Stearic Acid, Gummi Arabisch, Polyvinyl alcohol 15000 MW and Polyvinyl alcohol 22000 MW. Six different weight percentage of each binder was prepared to produce the composite materials using powder metallurgy (P/M) route; consists of dry mixing, uniaxially compacting at 750 MPa and vacuum sintering at 1100° C for two hours. Their characterization included a study of density, porosity, hardness and microstructure. Results indicate that MMC was affected by the binder and stearic acid as a binder produced better properties of the composite.
Seasonal Expression of the Picocyanobacterial Phosphonate Transporter Gene phnD in the Sargasso Sea
Ilikchyan, Irina N.; McKay, Robert Michael L.; Kutovaya, Olga A.; Condon, Rob; Bullerjahn, George S.
2010-01-01
In phosphorus-limited marine environments, picocyanobacteria (Synechococcus and Prochlorococcus spp.) can hydrolyze naturally occurring phosphonates as a P source. Utilization of 2-aminoethylphosphonate (2-AEP) is dependent on expression of the phn genes, encoding functions required for uptake, and C–P bond cleavage. Prior work has indicated that expression of picocyanobacterial phnD, encoding the phosphonate binding protein of the phosphonate ABC transporter, is a proxy for the assimilation of phosphonates in natural assemblages of Synechococcus spp. and Prochlorococcus spp (Ilikchyan et al., 2009). In this study, we expand this work to assess seasonal phnD expression in the Sargasso Sea. By RT-PCR, our data confirm that phnD expression is constitutive for the Prochlorococcus spp. detected, but in Synechococcus spp. phnD transcription follows patterns of phosphorus availability in the mixed layer. Specifically, our data suggest that phnD is repressed in the spring when P is bioavailable following deep winter mixing. In the fall, phnD expression follows a depth-dependent pattern reflecting depleted P at the surface following summertime drawdown, and elevated P at depth. PMID:21687717
SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM PHOSPHORIC ACID
Bailes, R.H.; Long, R.S.
1958-11-01
> A solvent extraction process is presented for recovering metal values including uranium, thorium, and other lanthanide and actinide elements from crude industrial phosphoric acid solutions. The process conslsts of contacting said solution with an immisclble organic solvent extractant containing a diluent and a material selected from the group consisting of mono and di alkyl phosphates, alkyl phosphonates and alkyl phosphites. The uranlum enters the extractant phase and is subsequently recovered by any of the methods known to the art. Recovery is improved if the phosphate solution is treated with a reducing agent such as iron or aluminum powder prior to the extraction step.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueff, Jean-Michel, E-mail: jean-michel.rueff@ensicaen.fr; Poienar, Maria; Guesdon, Anne
Novel physical or chemical properties are expected in a great variety of materials, in connection with the dimensionality of their structures and/or with their nanostructures, hierarchical superstructures etc. In the search of new advanced materials, the hydrothermal technique plays a crucial role, mimicking the nature able to produce fractal, hyperbranched, urchin-like or snow flake structures. In this short review including new results, this will be illustrated by examples selected in two types of materials, phosphates and phosphonates, prepared by this method. The importance of the synthesis parameters will be highlighted for a magnetic iron based phosphates and for hybrids containingmore » phosphonates organic building units crystallizing in different structural types. - Graphical abstract: Phosphate dendrite like and phosphonate platelet crystals.« less
2005-12-01
consists of those that catalytically hydrolyze (in some cases stereoselectively) OP’s into non-toxic alkyl methyl phosphonic acids. These enzymes are so...8217fluorosphatase’, nowadays known as OPH, capable of hydrolyzing organophosphates. For therapy and/or profylaxis, a hydrolytic enzyme could be...HuPON hydrolyzes OP insecticides and nerve gases and a relationship was found between the amount of enzyme in different species and the toxic response
Specific adhesion model for bonding hot-melt polyamides to vinyl
Charles R. Frihart
2004-01-01
Hot-melt polyamides are an important market for the dimer acid made from the tall oil fatty acids liberated during the Kraft pulping process. These polyamides bond well to many substrates, but not to polyvinyl chloride (PVC), commonly called vinyl. Dimer-based polyamides made from secondary amines such as piperazine bond well to vinyl. No model for this unique adhesion...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chouyyok, Wilaiwan; Pittman, Jonathan W.; Warner, Marvin G.
2016-05-02
The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructuredmore » silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials.« less
Fire resistant films for aircraft applications
NASA Technical Reports Server (NTRS)
Kourtides, D. A.
1983-01-01
Alternative sandwich panel decorative films were investigated as replacements for the polyvinyl fluoride currently used in aircraft interiors. Candidate films were studied for flammability, smoke emission, toxic gas emission, flame spread, and suitability as a printing surface for the decorative acrylic ink system. Several of the candidate films tested were flame modified polyvinyl fluoride, polyvinylidene fluoride, polyimide, polyamide, polysulfone, polyphenylsulfone, polyethersulfone, polybenzimidazole, polycarbonate, polyparabanic acid, polyphosphazene, polyetheretherketon, and polyester. The films were evaluated as pure films only, films silk-screened with an acrylic ink, and films adhered to a phenolic fiberglass substrate. Films which exhibited the highest fire resistant properties included PEEK polyetheretherketon, Aramid polyamide, and ISO-BPE polyester.
NASA Astrophysics Data System (ADS)
Zuñiga-Zamorano, Ivette; Meléndez-Ortiz, H. Iván; Costoya, Alejandro; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio
2018-01-01
Radiation-grafting of pH-responsive methacrylic acid (MAA) onto poly(vinyl chloride) (PVC) was carried out by the pre-irradiation method using gamma rays, which demonstrated to be an efficient and fast procedure for obtaining PVC-g-MAA copolymers. The influence of preparation conditions, such as absorbed dose, monomer concentration, reaction time, and reaction temperature on the grafting yield was studied. The grafting of MAA onto PVC catheters was confirmed by means of Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), and differential scanning calorimetry (DSC). The pH-responsiveness of the grafted copolymers (critical point 8.5) was measured by swelling under cyclic changes in the pH of the medium. Interestingly, PVC-g-MAA showed enhanced capability to immobilize benzalkonium chloride and, particularly, ciprofloxacin and to sustain the release this antimicrobial agent at both acid and alkaline pH. Tests carried out with Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus point out that the developed functionalized catheters may play a role in the prevention/management of urinary tract infections.
Hydrothermal syntheses and anion-induced structural transformation of three Cadmium phosphonates
NASA Astrophysics Data System (ADS)
Hu, Han; Zhai, Fupeng; Liu, Xiaofeng; Ling, Yun; Chen, Zhenxia; Zhou, Yaming
2018-05-01
Three cadmium phosphonate coordinated polymers, namely as [Cd5(ptz)3(SO4)2(5H2O)]·6H2O (Cdptz-1), [Cd3(ptz)2(Cl)2(4H2O)]·2H2O (Cdptz-2) and [Cd4(ptz)2(SO4)(Cl)(OH)H2O]·H2O (Cdptz-3) have been hydrothermally synthesized using 4-(1,2,4-triazol-4-yl)phenylphosphonic acid (H2ptz) as ligand. Single crystal X-ray analyses revealed Cdptz-2 as layered structure and Cdptz-1,3 as pillar-layered structures with Cl- or SO42- as bridging anions. Due to the weak bonding between metal and anions, Cdptz-1 and 2 can reversibly convert into each other by simple immersing in the corresponding solution at room temperature. While the transformations between Cdptz-1,2 and Cdptz-3 can only happen under hydrothermal condition. The causes for the transformation involve the metal-ligand bond breaking/formation, replacement of anions and enhancement/decrement of the network dimensionality.
Complex Coacervate Core Micelles Containing Poly(vinyl alcohol) Inhibit Ice Recrystallization.
Sproncken, Christian C M; Surís-Valls, Romà; Cingil, Hande E; Detrembleur, Christophe; Voets, Ilja K
2018-04-10
Complex coacervate core micelles (C3Ms) form upon complexation of oppositely charged copolymers. These co-assembled structures are widely investigated as promising building blocks for encapsulation, nanoparticle synthesis, multimodal imaging, and coating technology. Here, the impact on ice growth is investigated of C3Ms containing poly(vinyl alcohol), PVA, which is well known for its high ice recrystallization inhibition (IRI) activity. The PVA-based C3Ms are prepared upon co-assembly of poly(4-vinyl-N-methyl-pyridinium iodide) and poly(vinyl alcohol)-block-poly(acrylic acid). Their formation conditions, size, and performance as ice recrystallization inhibitors are studied. It is found that the C3Ms exhibit IRI activity at PVA monomer concentrations as low as 1 × 10 -3 m. The IRI efficacy of PVA-C3Ms is similar to that of linear PVA and PVA graft polymers, underlining the influence of vinyl alcohol monomer concentration rather than polymer architecture. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Octa- and hexametallic iron(III)-potassium phosphonate cages.
Gopal, Kandasamy; Tuna, Floriana; Winpenny, Richard E P
2011-12-07
Two new iron(III)-potassium phosphonate cage complexes with {K(2)Fe(6)} and {K(2)Fe(4)} cores are reported. Magnetic studies reveal antiferromagnetic interactions between the Fe(III) centres occur in these cages.
Belsky, Kirill S; Sulimov, Artem V; Bulgakov, Boris A; Babkin, Alexandr V; Kepman, Alexey V
2017-08-01
Hydrolysis data for Bis(3-(3,4-dicyanophenoxy)phenyl) phenyl phosphate and Bis(3-(3,4-dicyanophenoxy)phenyl) phenylphosphonate under pH 4, 7 and 10 are presented. Conversion/time plots collected by HPLC analysis, typical chromatograms and NMR spectra of the reactions products are given. Pseudo-first order rate constants are determined for both substrates at 25, 50 and 80 °C. Activation parameters were calculated from Arrhenius equation.
NASA Technical Reports Server (NTRS)
Cooper, George; Horz, Fred; Oleary, Alanna; Chang, Sherwood
2013-01-01
Polar, non-volatile organic compounds may be present on the surfaces (or near surfaces) of multiple Solar System bodies. If found, by current or future missions, it would be desirable to determine the origin(s) of such compounds, e.g., asteroidal or in situ. To test the possible survival of meteoritic compounds both during impacts with planetary surfaces and under subsequent (possibly) harsh ambient conditions, we subjected known meteoritic compounds to relatively high impact-shock pressures and/or to varying oxidizing/corrosive conditions. Tested compounds include sulfonic and phosphonic acids (S&P), polyaromatic hydrocarbons (PAHs) amino acids, keto acids, dicarboxylic acids, deoxy sugar acids, and hydroxy tricarboxylic acids (Table 1). Meteoritic sulfonic acids were found to be relatively abundant in the Murchison meteorite and to possess unusual S-33 isotope anomalies (non mass-dependent isotope fractionations). Combined with distinctive C-S and C-P bonds, the S&P are potential signatures of asteroidal organic material.
Schulz, Erica P; Piñeiro, Ángel; Miñones, José; Miñones Trillo, José; Frechero, Marisa A; Pieroni, Olga; Schulz, Pablo C
2015-03-03
Monolayers of n-eicosanephosphonic acid, EPA, were studied using a Langmuir balance and a Brewster angle microscope at different subphase pH values to change the charge of the polar headgroups (Zav) from 0 to -2. Molecular dynamics simulations (MDS) results for |Zav| = 0, 1, and 2 were compared with the experimental ones. EPA monolayers behave as mixtures of mutually miscible species (C20H41-PO3H2, C20H41-PO3H(-), and C20H41-PO3(2-), depending on the subphase pH). The order and compactness of the monolayers decrease when increasing |Zav|, while go from strongly interconnected by phosphonic-phosphonic hydrogen bonds (|Zav| = 0-0.03) through an equilibrium between the total cohesive energy and the electrostatic repulsion between the charged polar groups (0.03 < |Zav| < 1.6) to an entirely ionic monolayer (|Zav| ≈ 2). MDS reveal for |Zav| = 0 that the chains form spiralled nearly rounded structures induced by the hydrogen-bonded network. When |Zav| ≈ 1 fingering domains were identified. When Z ≈ 2, the headgroups are more disordered and distanced, not only in the xy plane but also in the z direction, forming a rough layer and responding to compression with a large plateau in the isotherm. The monolayers collapse behavior is consistent with the structures and domains founds in the different ionization states and their consequent in-plane rigidity: there is a transition from a solid-like response at low pH subphases to a fluid-like response at high pH subphases. The film area in the close-packed state increases relatively slow when the polar headgroups are able to form hydrogen bonds but increases to near twice that this value when |Zav| ≈ 2. Other nanoscopic properties of monolayers were also determined by MDS. The computational results confirm the experimental findings and offer a nanoscopic perspective on the structure and interactions in the phosphonate monolayers.
Warnan, Julien; Willkomm, Janina; Ng, Jamues N.; Godin, Robert; Prantl, Sebastian; Durrant, James R.
2017-01-01
A series of diketopyrrolopyrrole (DPP) dyes with a terminal phosphonic acid group for attachment to metal oxide surfaces were synthesised and the effect of side chain modification on their properties investigated. The organic photosensitisers feature strong visible light absorption (λ = 400 to 575 nm) and electrochemical and fluorescence studies revealed that the excited state of all dyes provides sufficient driving force for electron injection into the TiO2 conduction band. The performance of the DPP chromophores attached to TiO2 nanoparticles for photocatalytic H2 evolution with co-immobilised molecular Co and Ni catalysts was subsequently studied, resulting in solar fuel generation with a dye-sensitised semiconductor nanoparticle system suspended in water without precious metal components. The performance of the DPP dyes in photocatalysis did not only depend on electronic parameters, but also on properties of the side chain such as polarity, steric hinderance and hydrophobicity as well as the specific experimental conditions and the nature of the sacrificial electron donor. In an aqueous pH 4.5 ascorbic acid solution with a phosphonated DuBois-type Ni catalyst, a DPP-based turnover number (TONDPP) of up to 205 was obtained during UV-free simulated solar light irradiation (100 mW cm–2, AM 1.5G, λ > 420 nm) after 1 day. DPP-sensitised TiO2 nanoparticles were also successfully used in combination with a hydrogenase or platinum instead of the synthetic H2 evolution catalysts and the platinum-based system achieved a TONDPP of up to 2660, which significantly outperforms an analogous system using a phosphonated Ru tris(bipyridine) dye (TONRu = 431). Finally, transient absorption spectroscopy was performed to study interfacial recombination and dye regeneration kinetics revealing that the different performances of the DPP dyes are most likely dictated by the different regeneration efficiencies of the oxidised chromophores. PMID:28451376
It was found that the esters of polystyrene and cinnamic acid , polyvinyl alcohol, and cinnamic acid have high dielectric characteristics that change...Photosensitive acid -resisting emulsions for use in photoengraving of semiconductor parts and semiconductor surfaces were synthesized and tested...organosilicon compounds, cinnamic aldehyde, emulsions based on azo and diazo compounds and polymeric polyesters--were tested. The photoengraving method
Nano-engineered Drug Combinations for Breast Cancer Treatment
2013-08-01
dextran),41 or poly(acrylamide-co-acrylic acid ),42 poly(methyl methacrylate),40 poly(styrene),40 and poly(vinyl cinnamate )40, 43, 44 in separate...pH, this polymer is stable and water insoluble, but at acidic pH the polymer becomes de-protected and water-soluble (Figure 6.A). Thus, particles...made of such a polymer will stay intact in the blood stream and will only start to dissolve away and release their cargo in environments with an acidic
Remediation of DNAPL through Sequential In Situ Chemical Oxidation and Bioaugmentation
2009-04-01
Specific Electrode Field Field-filtered, ICP - PSC 0.05 mg/L 125 mL plastic nitric acid to pHɚ 28 days cool to 4oC Ion Chromatography 25310 C PSC 0.2...oxidized by MnO2 at a significant rate; however, MnO2 reacted rapidly with oxalic acid ; • Complete dechlorination occurred only in microcosms...controller PLFA phospholipid fatty acid ppb parts per billion PTA pilot test area PVC polyvinyl chloride QAPP quality assurance project plan QA
Resin catalysts and method of preparation
Smith, Jr., Lawrence A.
1986-01-01
Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
Resin catalysts and method of preparation
Smith, L.A. Jr.
1986-12-16
Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
Kabysheva, Maria S; Storozhevykh, Tatiana P; Pinelis, Vsevolod G; Bunik, Victoria I
2009-05-01
Impairment of the 2-oxoglutarate oxidative decarboxylation by the 2-oxoglutarate dehydrogenase complex (OGDHC) is associated with the glutamate accumulation, ROS production and neuropathologies. We hypothesized that correct function of OGDHC under metabolic stress is essential to overcome the glutamate excitotoxic action on neurons. We show that synthetic phosphono analogs of 2-oxoglutarate, succinyl phosphonate and its phosphono ethyl ester, improve the catalysis by brain OGDHC through inhibiting the side reaction of irreversible inactivation of its first component, 2-oxoglutarate dehydrogenase. Under the substrate and cofactor saturation, the component and complex undergo the inactivation during catalysis with the apparent rate constant 0.2 min(-1). The inactivation rate is reduced by 90% and 60% in the presence of 50 microM succinyl phosphonate and its phosphono ethyl ester, correspondingly. In cultured cerebellar granule neurons exposed to excitotoxic glutamate, the phosphonates (100 microM) protect from the irreversible impairment of mitochondrial function and delayed calcium deregulation. The deregulation amplitude is decreased by succinyl phosphonate and its phosphono ethyl ester by 50% and 30%, correspondingly. Thus, succinyl phosphonate is more potent than its phosphono ethyl ester in protecting both the isolated brain OGDHC from inactivation and cultured neurons from the glutamate-induced calcium deregulation. The correlation of the relative efficiency of the phosphonates in vitro and in situ indicates that their cellular effects are due to targeting OGDHC, which is in accord with independent studies. We conclude that the compounds preserving the 2-oxoglutarate dehydrogenase activity are of neuroprotective value upon metabolic disbalance induced by glutamate excess.
Li, Xin-Gui; Li, Ang; Huang, Mei-Rong
2008-01-01
Chemical oxidative polymerization at 15 degrees C was used for the simple and productive synthesis of polyaniline (PAN) nanosticks. The effect of polymerization media on the yield, size, stability, and electrical conductivity of the PAN nanosticks was studied by changing the concentration and nature of the acid medium and oxidant and by introducing organic solvent. Molecular and supramolecular structure, size, and size distribution of the PAN nanosticks were characterized by UV/Vis and IR spectroscopy, X-ray diffraction, laser particle-size analysis, and transmission electron microscopy. Introduction of organic solvent is advantageous for enhancing the yield of PAN nanosticks but disadvantageous for formation of PAN nanosticks with small size and high conductivity. The concentration and nature of the acid medium have a major influence on the polymerization yield and conductivity of the nanosized PAN. The average diameter and length of PAN nanosticks produced with 2 M HNO(3) and 0.5 M H(2)SO(4) as acid media are about 40 and 300 nm, respectively. The PAN nanosticks obtained in an optimal medium (i.e., 2 M HNO(3)) exhibit the highest conductivity of 2.23 S cm(-1) and the highest yield of 80.7 %. A mechanism of formation of nanosticks instead of nanoparticles is proposed. Nanocomposite films of the PAN nanosticks with poly(vinyl alcohol) show a low percolation threshold of 0.2 wt %, at which the film retains almost the same transparency and strength as pure poly(vinyl alcohol) but 262 000 times the conductivity of pure poly(vinyl alcohol) film. The present synthesis of PAN nanosticks requires no external stabilizer and provides a facile and direct route for fabrication of PAN nanosticks with high yield, controllable size, intrinsic self-stability, strong redispersibility, high purity, and optimizable conductivity.
Keum, Chang-Gu; Noh, Young-Wook; Baek, Jong-Suep; Lim, Ji-Ho; Hwang, Chan-Ju; Na, Young-Guk; Shin, Sang-Chul; Cho, Cheong-Weon
2011-01-01
Nanoparticles fabricated from the biodegradable and biocompatible polymer, polylactic-co-glycolic acid (PLGA), are the most intensively investigated polymers for drug delivery systems. The objective of this study was to explore fully the development of a PLGA nanoparticle drug delivery system for alternative preparation of a commercial formulation. In our nanoparticle fabrication, our purpose was to compare various preparation parameters. Docetaxel-loaded PLGA nanoparticles were prepared by a single emulsion technique and solvent evaporation. The nanoparticles were characterized by various techniques, including scanning electron microscopy for surface morphology, dynamic light scattering for size and zeta potential, x-ray photoelectron spectroscopy for surface chemistry, and high-performance liquid chromatography for in vitro drug release kinetics. To obtain a smaller particle, 0.2% polyvinyl alcohol, 0.03% D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), 2% Poloxamer 188, a five-minute sonication time, 130 W sonication power, evaporation with magnetic stirring, and centrifugation at 8000 rpm were selected. To increase encapsulation efficiency in the nanoparticles, certain factors were varied, ie, 2-5 minutes of sonication time, 70-130 W sonication power, and 5-25 mg drug loading. A five-minute sonication time, 130 W sonication power, and a 10 mg drug loading amount were selected. Under these conditions, the nanoparticles reached over 90% encapsulation efficiency. Release kinetics showed that 20.83%, 40.07%, and 51.5% of the docetaxel was released in 28 days from nanoparticles containing Poloxamer 188, TPGS, or polyvinyl alcohol, respectively. TPGS and Poloxamer 188 had slower release kinetics than polyvinyl alcohol. It was predicted that there was residual drug remaining on the surface from x-ray photoelectron spectroscopy. Our research shows that the choice of surfactant is important for controlled release of docetaxel.
Diwu, Juan; Wang, Shuao; Good, Justin J; DiStefano, Victoria H; Albrecht-Schmitt, Thomas E
2011-06-06
The heterobimetallic actinide compound UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O was prepared via the hydrothermal reaction of U(VI) and Ce(IV) in the presence of 1,2-phenylenediphosphonic acid. We demonstrate that this is a kinetic product that is not stable with respect to decomposition to the monometallic compounds. Similar reactions have been explored with U(VI) and Ce(III), resulting in the oxidation of Ce(III) to Ce(IV) and the formation of the Ce(IV) phosphonate, Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O, UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O, and UO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O. In comparison, the reaction of U(VI) with Np(VI) only yields Np[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O and aqueous U(VI), whereas the reaction of U(VI) with Pu(VI) yields the disordered U(VI)/Pu(VI) compound, (U(0.9)Pu(0.1))O(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O, and the Pu(IV) phosphonate, Pu[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. The reactions of Ce(IV) with Np(VI) yield disordered heterobimetallic phosphonates with both M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Np) and M[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Ce, Np) structures, as well as the Ce(IV) phosphonate Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. Ce(IV) reacts with Pu(IV) to yield the Pu(VI) compound, PuO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·3H(2)O, and a disordered heterobimetallic Pu(IV)/Ce(IV) compound with the M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Pu) structure. Mixtures of Np(VI) and Pu(VI) yield disordered heterobimetallic Np(IV)/Pu(IV) phosphonates with both the An[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Np, Pu) and An[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Np, Pu) formulas. © 2011 American Chemical Society
Chemoselective recognition with phosphonate cavitands: the ephedrine over pseudoephedrine case.
Biavardi, Elisa; Ugozzoli, Franco; Massera, Chiara
2015-02-25
Complete discrimination of ephedrine and pseudoephedrine, both in solution and in the solid state, was achieved with a phosphonate cavitand receptor. The molecular origin of the epimer discrimination was revealed by the crystal structure of the respective complexes.
Chen, Hong-Xue; Kang, Jie; Chang, Rong; Zhang, Yun-Lai; Duan, Hua-Zhen; Li, Yan-Mei; Chen, Yong-Xiang
2018-06-01
A novel and facile synthetic strategy for α,α-difluorinated phosphonate mimetics of phosphoserine/phosphothreonine utilizing rhodium-catalyzed asymmetric hydrogenation was developed. The dehydrogenated substrate β-difluorophosphonomethyl α-(acylamino)acrylates were first prepared from protected serine/threonine followed by asymmetric hydrogenation using the rhodium-DuPhos catalytic system to generate the chiral center(s). These important phosphonate building blocks were successfully incorporated into phosphatase-resistant peptides, which displayed similar inhibition to the 14-3-3 ζ protein as the parent pSer/pThr peptides.
Forms of organic phosphorus in wetland soils
NASA Astrophysics Data System (ADS)
Cheesman, A. W.; Turner, B. L.; Reddy, K. R.
2014-12-01
Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e., forms derived from biological activity) in wetland soils. We used solution 31P NMR spectroscopy to identify and quantify P forms in surface soils of 28 palustrine wetlands spanning a range of climatic, hydrogeomorphic, and vegetation types. Total P concentrations ranged between 51 and 3516 μg P g-1, of which an average of 58% was extracted in a single-step NaOH-EDTA procedure. The extracts contained a broad range of P forms, including phosphomonoesters (averaging 24% of the total soil P), phosphodiesters (averaging 10% of total P), phosphonates (up to 4% of total P), and both pyrophosphate and long-chain polyphosphates (together averaging 6% of total P). Soil P composition was found to be dependant upon two key biogeochemical properties: organic matter content and pH. For example, stereoisomers of inositol hexakisphosphate were detected exclusively in acidic soils with high mineral content, while phosphonates were detected in soils from a broad range of vegetation and hydrogeomorphic types but only under acidic conditions. Conversely inorganic polyphosphates occurred in a broad range of wetland soils, and their abundance appears to reflect more broadly that of a "substantial" and presumably active microbial community with a significant relationship between total inorganic polyphosphates and microbial biomass P. We conclude that soil P composition varies markedly among freshwater wetlands but can be predicted by fundamental soil properties.
Forms of organic phosphorus in wetland soils
NASA Astrophysics Data System (ADS)
Cheesman, A. W.; Turner, B. L.; Reddy, K. R.
2014-06-01
Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e. forms derived from biological activity) in wetland soils. We used solution 31P NMR spectroscopy to identify and quantify P forms in surface soils of 28 palustrine wetlands spanning a range of climatic, hydro-geomorphic and vegetation types. Total P concentrations ranged between 51 and 3516 μg P g
Grey, L; Nguyen, B; Yang, P
2001-01-01
A liquid chromatography/electrospray/mass spectrometry (LC/ES/MS) method was developed for the analysis of glyphosate (n-phosphonomethyl glycine) and its metabolite, aminomethyl phosphonic acid (AMPA) using isotope-labelled glyphosate as a method surrogate. Optimized parameters were achieved to derivatize glyphosate and AMPA using 9-fluorenylmethyl chloroformate (FMOC-Cl) in borate buffer prior to a reversed-phase LC analysis. Method spike recovery data obtained using laboratory and real world sample matrixes indicated an excellent correlation between the recovery of the native and isotope-labelled glyphosate. Hence, the first performance-based, isotope dilution MS method with superior precision, accuracy, and data quality was developed for the analysis of glyphosate. There was, however, no observable correlation between the isotope-labelled glyphosate and AMPA. Thus, the use of this procedure for the accurate analysis of AMPA was not supported. Method detection limits established using standard U.S. Environmental Protection Agency protocol were 0.06 and 0.30 microg/L, respectively, for glyphosate and AMPA in water matrixes and 0.11 and 0.53 microg/g, respectively, in vegetation matrixes. Problems, solutions, and the method performance data related to the analysis of chlorine-treated drinking water samples are discussed. Applying this method to other environmental matrixes, e.g., soil, with minimum modifications is possible, assuring accurate, multimedia studies of glyphosate concentration in the environment and the delivery of useful multimedia information for regulatory applications.
Perfluoroalkyl phosphonic acids adsorption behaviour and removal by wastewater organisms.
Llorca, Marta; Farré, Marinella; Sànchez-Melsió, Alexandre; Villagrasa, Marta; Knepper, Thomas P; Barceló, Damià
2018-04-26
In this study we have experimentally assessed different physicochemical parameters such as the distribution constant between octanol - water and between water and sludge for three perfluoroakyl substances (PFASs) widely used in waxes and coating materials: perfluorohexane (PFHxPA), perfluorooctane (PFOPA) and perfluorodecane (PFDPA) phosphonic acids. Distribution coefficients were assessed based on the procedures described in the OECD guideline 123 for partition coefficients while the studies of adsorption-desorption in sludge based on the indirect method of the OECD guideline 106. Besides, the removal behaviour of selected compounds has been evaluated using the green algae Desmodesmus subspicatus and microorganisms present in an effluent wastewater. These last experiments were carried out using laboratory scale bioreactors under aerobic conditions according to the OECD guideline 309. The main results of this study showed the resistance to biodegradation of selected compounds by both treatments, <5% was eliminated using D. subspicatus and similar results were obtained by aerobic degradation with wastewater microorganisms. However, it was observed that PFDPA induced changes in algae colour while it was detected to be accumulated in a floccula generated by the microorganisms present in wastewater. According to distribution coefficients the three compounds have values of logD ow below 3, indicating their capability to be present in both phases. Finally, the results of the adsorption/desorption experiments showed that PFOPA and PFDPA reach the equilibrium after 10 days of contact with a sorption percentage higher than 40% and 70%, respectively. Copyright © 2018. Published by Elsevier B.V.
Functionalization of SBA-15 mesoporous silica by Cu-phosphonate units: Probing of synthesis route
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskowski, Lukasz, E-mail: lukasz.laskowski@kik.pcz.pl; Czestochowa University of Technology, Institute of Physics, Al. Armii Krajowej 19, 42-201 Czestochowa; Laskowska, Magdalena, E-mail: magdalena.laskowska@onet.pl
2014-12-15
Mesoporous silica SBA-15 containing propyl-copper phosphonate units was investigated. The structure of mesoporous samples was tested by N{sub 2} isothermal sorption (BET and BHJ analysis), TEM microscopy and X-Ray scattering. Quantitative analysis EDX has given information about proportions between component atoms in the sample. Quantitative elemental analysis has been carried out to support EDX. To examine bounding between copper atoms and phosphonic units the Raman spectroscopy was carried out. As a support of Raman scattering, the theoretical calculations were made based on density functional theory, with the B3LYP method. By comparison of the calculated vibrational spectra of the molecule withmore » experimental results, distribution of the active units inside silica matrix has been determined. - Graphical abstract: The present study is devoted to mesoporous silica SBA-15 containing propyl-copper phosphonate units. The species were investigated to confirm of synthesis procedure correctness by the micro-Raman technique combined with DFT numerical simulations. Complementary research was carried out to test the structure of mesoporous samples. - Highlights: • SBA-15 silica functionalized with propyl-copper phosphonate units was synthesized. • Synthesis efficiency probed by Raman study supported with DFT simulations. • Homogenous distribution of active units was proved. • Synthesis route enables precise control of distance between copper ions.« less
The actuation of a biomimetic poly(vinyl alcohol)poly(acrylic acid) gel.
Marra, S P; Ramesh, K T; Douglas, A S
2002-02-15
Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as biomimetic actuators and "artificial muscles". In previous work, a thermodynamically consistent finite-elastic constitutive model has been developed to describe the mechanical and actuation behaviours of active polymer gels. The mechanical properties were characterized by a free-energy function, and the model uses an evolving internal variable to describe the actuation state. In this work, an evolution law for the internal variable is determined from free actuation experiments on a poly(vinyl alcohol)poly(acrylic acid) (PVAPAA) gel. The complete finite-elastic/evolution law constitutive model is then used to predict the response of the PVA-PAA gel to isotonic and isometric loading and actuation. The model is shown to give relatively good agreement with experimental results.
NASA Astrophysics Data System (ADS)
Galloway, Justin F.
To achieve long-term fluorescence imaging with quantum dots (QDs), a CdSe core/shell must first be synthesized. The synthesis of bright CdSe QDs is not trivial and as a consequence, the role of surfactant in nucleation and growth was investigated. It was found that the type of surfactant used, either phosphonic or fatty acid, played a pivotal role in the size of the CdSe core. The study of surfactant on CdSe synthesis, ultimately led to an electrical passivation method that utilized a short-chained phosphonic acid and highly reactive organometallic precursors to achieve high quantum yield (QY) as has been previously described. The synthesis of QDs using organometallic precursors and a phosphonic acid for passivation resulted in 4 out of 9 batches of QDs achieving QYs greater than 50% and 8 out of 9 batches with QYs greater than 35%. The synthesis of CdSe QDs was done in organic solutions rendering the surface of the particle hydrophobic. To perform cell-targeting experiments, QDs must be transferred to water. The transfer of QDs to water was successfully accomplished by using single acyl chain lipids. A systematic study of different lipid combinations and coatings demonstrated that 20-40 mol% single acyl chained lipids were able to transfer QDs to water resulting in monodispersed, stable QDs without adversely affecting the QY. The advantage to water solubilization using single acyl chain lipids is that the QD have a hydrodynamic radius less than 15 nm, QYs that can exceed 50% and additional surface functionalization can be down using the reactive sites incorporated into the lipid bilayer. QDs that are bright and stable in water were studied for the purpose of targeting G protein-coupled Receptors (GPCR). GPCRs are transmembrane receptors that internalize extracellular cues, and thus mediate signal transduction. The cyclic Adenosine Monophosphate Receptor 1 of the model organism Dictyostelium disodium was the receptor of interest. The Halo protein, a genetically modified dehalogenase, was added to the N-terminus of the cAR1 receptor without resulting in a phenotype. The Halo protein fused to cAR1 was then shown to bind an organic fluorophore by the cleavage of a chloroalkane bond. Though QDs functionalized with a chloroalkane were able to bind free Halo protein, no specific binding to the Halo protein fused to cAR1 was observed.
Takei, Chihiro; Ohno, Yui; Seki, Tomohiro; Miki, Ryotaro; Seki, Toshinobu; Egawa, Yuya
2018-01-01
Previous studies have shown that reversible chemical bond formation between phenylboronic acid (PBA) and 1,3-diol can be utilized as the driving force for the preparation of layer-by-layer (LbL) films. The LbL films composed of a PBA-appended polymer and poly(vinyl alcohol) (PVA) disintegrated in the presence of sugar. This type of LbL films has been recognized as a promising approach for sugar-responsive drug release systems, but an issue preventing the practical application of LbL films is combining them with insulin. In this report, we have proposed a solution for this issue by using PBA-appended insulin as a component of the LbL film. We prepared two kinds of PBA-appended insulin derivatives and confirmed that they retained their hypoglycemic activity. The LbL films composed of PBA-appended insulin and PVA were successfully prepared through reversible chemical bond formation between the boronic acid moiety and the 1,3-diol of PVA. The LbL film disintegrated upon treatment with sugars. Based on the results presented herein, we discuss the suitability of the PBA moiety with respect to hypoglycemic activity, binding ability, and selectivity for D-glucose.
Hydroxyapatite-phosphonoformic acid hybrid compounds prepared by hydrothermal method
NASA Astrophysics Data System (ADS)
Turki, Thouraya; Othmani, Masseoud; Bantignies, Jean-Louis; Bouzouita, Khaled
2014-01-01
Hydroxyapatites were prepared in the presence of different amounts of phosphonoformic acid (PFA) via the hydrothermal method. The obtained powders were characterized through chemical analysis, XRD, IR, 31P MAS-NMR, TEM, and TG-TDA. The XRD showed that the PFA did not affect the apatite composition. Indeed, only a reduction of the crystallite size was noted. After grafting of PFA, the IR spectroscopy revealed the appearance of new bands belonging to HPO42- and carboxylate groups of the apatite and organic moiety, respectively. Moreover, the 31P MAS-NMR spectra exhibited a peak with a low intensity assigned to the terminal phosphonate group of the organic moiety in addition to that of the apatite. Based on these results, a reaction mechanism involving the surface hydroxyl groups (tbnd Casbnd OH) of the apatite and the carboxyl group of the acid was proposed.
Kinetic Studies of the Thermal Decomposition of 2-Chloroethylphosphonic Acid in Aqueous Solution
Biddle, Eric; Kerfoot, Douglas G. S.; Kho, Yioe Hwa; Russell, Kenneth E.
1976-01-01
The decomposition of 2-chloroethylphosphonic acid in aqueous solution has been studied at pH values from 6 to 9 and at temperatures in the 30 to 55 C range. The rate of decomposition is estimated from the rate of formation of ethylene. The rate is proportional to the concentration of the phosphonate dianion and is independent of the hydroxyl ion concentration. The rate constant at 40 C is 1.9 × 10−4 sec−1 and the activation energy is 29.8 kcal mol−1. The rate of reaction is not affected significantly by the presence of potassium iodide or urea (substances which increase the rate of leaf abscission in trees sprayed by 2-chloroethylphosphonic acid). The rate decreases slightly in the presence of low concentrations of magnesium and calcium ions. PMID:16659748
Point, Vanessa; Malla, Raj K; Diomande, Sadia; Martin, Benjamin P; Delorme, Vincent; Carriere, Frederic; Canaan, Stephane; Rath, Nigam P; Spilling, Christopher D; Cavalier, Jean-François
2012-11-26
A new series of customizable diastereomeric cis- and trans-monocyclic enol-phosphonate analogs to Cyclophostin and Cyclipostins were synthesized. Their potencies and mechanisms of inhibition toward six representative lipolytic enzymes belonging to distinct lipase families were examined. With mammalian gastric and pancreatic lipases no inhibition occurred with any of the compounds tested. Conversely, Fusarium solani Cutinase and lipases from Mycobacterium tuberculosis (Rv0183 and LipY) were all fully inactivated. The best inhibitors displayed a cis conformation (H and OMe) and exhibited higher inhibitory activities than the lipase inhibitor Orlistat toward the same enzymes. Our results have revealed that chemical group at the γ-carbon of the phosphonate ring strongly impacts the inhibitory efficiency, leading to a significant improvement in selectivity toward a target lipase over another. The powerful and selective inhibition of microbial (fungal and mycobacterial) lipases suggests that these seven-membered monocyclic enol-phosphonates should provide useful leads for the development of novel and highly selective antimicrobial agents.
Point, Vanessa; Malla, Raj K.; Diomande, Sadia; Martin, Benjamin P.; Delorme, Vincent; Carriere, Frederic; Canaan, Stephane; Rath, Nigam P.; Spilling, Christopher D.; Cavalier, Jean-François
2012-01-01
New series of customizable diastereomeric cis- and trans-monocyclic enol-phosphonate analogs to Cyclophostin and Cyclipostins were synthesized. Their potencies and mechanisms of inhibition toward six representative lipolytic enzymes belonging to distinct lipase families were examined. With mammalian gastric and pancreatic lipases no inhibition occurred with any of the compounds tested. Conversely, Fusarium solani Cutinase and lipases from Mycobacterium tuberculosis (Rv0183 and LipY) were all fully inactivated. Best inhibitors displayed a cis conformation (H and OMe) and exhibited higher inhibitory activities than the lipase inhibitor Orlistat towards same enzymes. Our results have revealed that chemical group at the γ-carbon of the phosphonate ring strongly impacts the inhibitory efficiency, leading to a significant improvement in selectivity toward a target lipase over another. The powerful and selective inhibition of microbial (fungal and mycobacterial) lipases suggests that these 7-membered monocyclic enol-phosphonates should provide useful leads for the development of novel and highly selective antimicrobial agents. PMID:23095026
Metalworking and machining fluids
Erdemir, Ali; Sykora, Frank; Dorbeck, Mark
2010-10-12
Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.
Smith, Jr., Lawrence A.
1985-01-01
Ethers such as isobutyl tertiary butyl ether are dissociated into their component alcohols and isolefins by heat stabilized catalyst compositions prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
Smith, L.A. Jr.
1985-11-05
Ethers such as isobutyl tertiary butyl ether are dissociated into their component alcohols and isoolefins by heat stabilized catalyst compositions prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
Polyvinyl alcohol hydrogels for iontohporesis
NASA Astrophysics Data System (ADS)
Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali
2013-06-01
Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.
Synthetic applications of hypophosphite derivatives in reduction.
Guyon, Carole; Métay, Estelle; Popowycz, Florence; Lemaire, Marc
2015-08-07
The development of new tools for the reduction of organic functions to reach high chemo- and stereo-selectivity is an important research domain. Although, aluminum and boron hydrides are commonly used, they suffer from environmentally and safety issues. In particular, at industrial scale, the search for more specific and efficient reagents with a lower ecological impact remains one of the main objectives of organic chemists. This review captures highlights from literature concerning phosphonic and phosphinic acid derivatives as reducing agents and evaluates their potential as alternatives, in particular to boron and aluminum hydrides.
Kazemian, Mohammad Amin; Habibi-Khorassani, Sayyed Mostafa; Maghsoodlu, Malek Taher; Ebrahimi, Ali
2014-04-01
In the present work, the proposed multiple-mechanisms have been investigated theoretically for the reaction between triphenyl phosphite and dimethyl acetylenedicarboxylate in the presence of N-H acid such as aniline for generation of phosphonate esters using ab initio molecular orbital theory in gas phase. The profile of the potential energy surface was constructed at the HF/6-311G(d,p) level of theory. The kinetics of the gas phase reaction was studied by evaluating the reaction path of various mechanisms. Between 12 speculative proposed mechanisms {step₁, step₂ (with four possibilities), step₃ (with three possibilities), and step₄} only the third speculative mechanism was recognized as a desirable mechanism. Theoretical kinetics data involving k and E(a), activation (ΔG(‡), ΔS(‡) and ΔH(‡)), and thermodynamic parameters (ΔG°, ΔS° and ΔH°) were calculated for each step of the various mechanisms. Step₁ of the desirable mechanism was identified as the rate determining step. Comparison of the theoretical desirable mechanism with the rate law that has been previously obtained by UV spectrophotometry experiments indicated that the results are in good agreement.
The mechanism of action of piperazine-phosphonates derivatives in cotton fabric
USDA-ARS?s Scientific Manuscript database
Piperazine-phosphonates additives are known to be very effective flame retardants on different polymeric systems, especially cotton cellulose. In order to understand their mechanism of action, we carried out the investigation of their thermal behavior on cotton fabric by, first, employing the attenu...
Two-Carbon Homologation of Ketones to 3-Methyl Unsaturated Aldehydes
USDA-ARS?s Scientific Manuscript database
The usual scheme of two-carbon homologation of ketones to 3-methyl unsaturated aldehydes by Horner-Wadsworth-Emmons condensations with phosphonate esters, such as triethyl-2-phosphonoacetate, involves three steps. The phosphonate condensation step results in extension of the carbon chain by two carb...
Spring-loaded polymeric gel actuators
Shahinpoor, Mohsen
1995-01-01
Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.
USDA-ARS?s Scientific Manuscript database
Polyvinyl alcohols-based nanocomposite films were fabricated with four types of montmorillonite (MMT) nanoclay, including 18-amino stearic acid (I.24TL), methyl, bis hydroxyethyl, octadecyl ammonium (I.34TCN), di-methyl, di-hydrogenated tallow ammonium/siloxane (I.44PSS) organically modified MMT, an...
Installation Restoration Program. Phase I. Records Search. Vandenberg Air Force Base, California.
1984-12-01
acidity or alkalinity POL Petroleum, oils, and lubricants PVC Polyvinyl chloride plastic RCRA Resource Conservation and Recovery Act RP-1 Rocket propellant...multiplter: Subscore 3 K ?hvsical State ulriptier Waste Caracteristics Subscore 50 X 1 50 11-1. CS-I HAZARD ASSESSMENT RATING METHODOLOGY FORM (Continued
Calixarene-Mediated Liquid-Membrane Transport of Choline Conjugates.
Adhikari, Birendra Babu; Fujii, Ayu; Schramm, Michael P
2014-05-01
A series of supramolecular calixarenes efficiently transport distinct molecular species through a liquid membrane when attached to a receptor-complementary choline handle. Calix-[6]arene hexacarboxylic acid was highly effective at transporting different target molecules against a pH gradient. Both carboxylic- and phosphonic-acid-functionalized calix[4]arenes effect transport without requiring a pH or ion gradient. NMR binding studies, two-phase solvent extraction, and three-phase transport experiments reveal the necessary and subtle parameters to effect the transport of molecules attached to a choline "handle". On the other hand, rescorin[4]arene cavitands, which have similar guest recognition profiles, did not transport guest molecules. These developments reveal new approaches towards attempting synthetic-receptor-mediated selective small-molecule transport in vesicular and cellular systems.
Zaki, M T; Rizkalla, E N
1980-05-01
N,N*,N',N'-Ethylenediaminetetra(methylenephosphonic) acid is used as a titrant for the direct determination of Cu, Co and Ni, with murexide as indicator. Indirect titrimetric procedures are suggested for the determination of silver, mercury, zinc and cyanide and both direct and indirect methods are applied for the analysis of binary mixtures of silver (or mercury) and copper (cobalt or nickel). The stoichiometry of the reaction, interferences of some metal ions and the pH effects on the complexation reactions are discussed. The values of the equilibrium constants of the protonated CuH(n)L (n = 1, 2, 3 and 4) as well as the unprotonated CuL chelates have been measured.
Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils
USDA-ARS?s Scientific Manuscript database
Phosphonates were synthesized on a medium scale (~200 g) from three lipids: methyl linoleate (MeLin), high-oleic sunflower oil (HOSO), and soybean oil (SBO), and three dialkyl phosphites: methyl, ethyl, and n-butyl, using radical initiator. A staged addition of the lipid and the initiator was needed...
Effect of phosphonate treatments for sudden oak death on tanoaks in naturally infested forests
Matteo Garbelotto; Doug Schmidt
2013-01-01
Application of phosphonate compounds has been shown to be an effective preventive treatment for sudden oak death (SOD), caused by Phytophthora ramorum, in coast live oak (Quercus agrifolia Née) and tanoak (Notholithocarpus densiflorus Manos, Cannon & S.H. Oh). To test the effectiveness of...
Evaluation of phosphonate treatments for control of phytophthora crown rot of walnut
USDA-ARS?s Scientific Manuscript database
Foliar and soil applications of phosphonate were evaluated in a factorial manner for control of trunk cankers caused by Phytophthora citricola in a Persian walnut orchard, cultivar ‘Chandler’. In each of two experiments, the foliar treatment was applied once in the second week of September, whereas...
USDA-ARS?s Scientific Manuscript database
Countless hours of research and studies on triazine, phosphonate and their combination have provided insightful information into their flame retardant properties on polymeric systems. However, only limited number of studies shed light on the mechanism of flame retardant cotton fabrics. The purpose...
USDA-ARS?s Scientific Manuscript database
The phosphonate reagent, diethyl methylformyl-2-phosphonate dimethylhydrazone contains a protected aldehyde group instead of the usual ester group. It can be used for the two-carbon homologation of aldehydes to a, ß-unsaturated aldehydes. The reagent can be prepared in good overall yield (82%) and...
New Polymeric Materials Expected to Have Superior Properties for Space-Based Use.
1985-07-01
Polymethacrylic esters Polvacrylic esters GB3 +CH 2-CH1 +CH 2-C4 COOR COOR Pa lyacrylamide Polymethacrylamide +CH -CH+ CH CONH 2 JCH 2-C4 Polyvinyl chloride...fl.. tetracarboxylic acid dianhydride or with pyromellitic dianhydride. These polymers have shown excellent thermal and radiolytic stability...than the crosslinked phthalocyanines. They can be dissolved in sulfuric acid and sublimed into thin films. 2 2 ,2 3 No mechanical properties have been
Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose
2015-10-14
In this study, catalytic generation of nitric oxide by a copper(II) complex embedded within a poly(vinyl chloride) matrix in the presence of nitrite (source of nitric oxide) and ascorbic acid (reducing agent) was shown to effectively control the formation and dispersion of nitrifying bacteria biofilms. Amperometric measurements indicated increased and prolonged generation of nitric oxide with the addition of the copper complex when compared to that with nitrite and ascorbic acid alone. The effectiveness of the copper complex-nitrite-ascorbic acid system for biofilm control was quantified using protein analysis, which showed enhanced biofilm suppression when the copper complex was used in comparison to that with nitrite and ascorbic acid treatment alone. Confocal laser scanning microscopy (CLSM) and LIVE/DEAD staining revealed a reduction in cell surface coverage without a loss of viability with the copper complex and up to 5 mM of nitrite and ascorbic acid, suggesting that the nitric oxide generated from the system inhibits proliferation of the cells on surfaces. Induction of nitric oxide production by the copper complex system also triggered the dispersal of pre-established biofilms. However, the addition of a high concentration of nitrite and ascorbic acid to a pre-established biofilm induced bacterial membrane damage and strongly decreased the metabolic activity of planktonic and biofilm cells, as revealed by CLSM with LIVE/DEAD staining and intracellular adenosine triphosphate measurements, respectively. This study highlights the utility of the catalytic generation of nitric oxide for the long-term suppression and removal of nitrifying bacterial biofilms.
NASA Astrophysics Data System (ADS)
Zhang, Rui; El-Refaei, Sayed M.; Russo, Patrícia A.; Pinna, Nicola
2018-05-01
The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) play key roles in the conversion of energy derived from renewable energy sources into chemical energy. Efficient, robust, and inexpensive electrocatalysts are necessary for driving these reactions at high rates at low overpotentials and minimize energetic losses. Recently, electrocatalysts derived from hybrid metal phosphonate compounds have shown high activity for the HER or OER. We review here the utilization of metal phosphonate coordination networks and metal-organic frameworks as precursors/templates for transition-metal phosphides, phosphates, or oxyhydroxides generated in situ in alkaline solutions, and their electrocatalytic performance in HER or OER.
Miyamoto, Naoki; Yoshimura, Miho; Okubo, Yuji; Suzuki-Nagata, Kayo; Tsumuraya, Takeshi; Ito, Nobutoshi; Fujii, Ikuo
2018-05-01
Catalytic antibody 7B9, which was elicited against p-nitrobenzyl phosphonate transition-state analogue (TSA) 1, hydrolyzes a wide range of p-nitrobenzyl monoesters and thus shows broad substrate tolerance. To reveal the molecular basis of this substrate tolerance, the 7B9 Fab fragment complexed with p-nitrobenzyl ethylphosphonate 2 was crystallized and the three-dimensional structure was determined. The crystal structure showed that the strongly antigenic p-nitrobenzyl moiety occupied a relatively shallow antigen-combining site and therefore the alkyl moiety was located outside the pocket. These results support the observed broad substrate tolerance of 7B9 and help rationalize how 7B9 can catalyze various p-nitrobenzyl ester derivatives. The crystal structure also showed that three amino acid residues (Asn H33 , Ser H95 , and Arg L96 ) were placed in key positions to form hydrogen bonds with the phosphonate oxygens of the transitions-state analogue. In addition, the role of these amino acid residues was examined by site-directed mutagenesis to alanine: all mutants (Asn H33 Ala, Ser H95 Ala, and Arg L96 Ala) showed no detectable catalytic activity. Coupling the findings from our structural studies with these mutagenesis results clarified the structural basis of the observed broad substrate tolerance of antibody 7B9-catalyzed hydrolyses. Our findings provide new strategies for the generation of catalytic antibodies that accept a broad range of substrates, aiding their practical application in synthetic organic chemistry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fauvelle, Vincent; Nhu-Trang, Tran-Thi; Feret, Thibaut; Madarassou, Karine; Randon, Jérôme; Mazzella, Nicolas
2015-06-16
Glyphosate is the most widely used herbicide on a world scale for the last 40 years, for both urban and agricultural uses. Here we describe the first passive sampling method for estimating the concentration of glyphosate and AMPA (aminomethyl phosphonic acid, one of its major degradation products) in surface water. The sampling method is based on a newly developed configuration of the diffusive gradient in thin-film (DGT) technique, which includes a TiO2 binding phase, already in use for a wide range of anions. Glyphosate and AMPA were retained well on a TiO2 binding phase, and elution in a 1 mL of 1 M NaOH led to recoveries greater than 65%. We found no influence of pH or flow velocity on the diffusion coefficients through 0.8 mm polyacrylamide gels, although they did increase with temperature. TiO2 binding gels were able to accumulate up to 1167 ng of P for both glyphosate and AMPA, and linear accumulation was expected over several weeks, depending on environmental conditions. DGT sampling rates were close to 10 mL day(-1) in ultrapure water, while they were less than 1 mL day(-1) in the presence of naturally occurring ions (e.g., copper, iron, calcium, magnesium). These last results highlighted (i) the ability of DGT to measure only the freely dissolved fraction of glyphosate and AMPA in water and (ii) the needs to determine which fraction (total, particulate, dissolved, freely dissolved) is indeed bioactive.
Byun, Hye-Ran; You, Eun-Ah; Ha, Young-Geun
2017-03-01
For large-area, printable, and flexible electronic applications using advanced semiconductors, novel dielectric materials with excellent capacitance, insulating property, thermal stability, and mechanical flexibility need to be developed to achieve high-performance, ultralow-voltage operation of thin-film transistors (TFTs). In this work, we first report on the facile fabrication of multifunctional hybrid multilayer gate dielectrics with tunable surface energy via a low-temperature solution-process to produce ultralow-voltage organic and amorphous oxide TFTs. The hybrid multilayer dielectric materials are constructed by iteratively stacking bifunctional phosphonic acid-based self-assembled monolayers combined with ultrathin high-k oxide layers. The nanoscopic thickness-controllable hybrid dielectrics exhibit the superior capacitance (up to 970 nF/cm 2 ), insulating property (leakage current densities <10 -7 A/cm 2 ), and thermal stability (up to 300 °C) as well as smooth surfaces (root-mean-square roughness <0.35 nm). In addition, the surface energy of the hybrid multilayer dielectrics are easily changed by switching between mono- and bifunctional phosphonic acid-based self-assembled monolayers for compatible fabrication with both organic and amorphous oxide semiconductors. Consequently, the hybrid multilayer dielectrics integrated into TFTs reveal their excellent dielectric functions to achieve high-performance, ultralow-voltage operation (< ± 2 V) for both organic and amorphous oxide TFTs. Because of the easily tunable surface energy, the multifunctional hybrid multilayer dielectrics can also be adapted for various organic and inorganic semiconductors, and metal gates in other device configurations, thus allowing diverse advanced electronic applications including ultralow-power and large-area electronic devices.
USDA-ARS?s Scientific Manuscript database
Phosphonate biosynthetic gene clusters from two actinomycete strains, Glycomyces sp. NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338, were identified by screening for the PEP mutase gene, which is required for the biosynthesis of most phosphonates. Subsequent examination of the two strains...
Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils
USDA-ARS?s Scientific Manuscript database
Phosphonates were synthesized on a medium scale (~200 g) from three lipids: methyl linoleate (MeLin), high-oleic sunflower oil (HOSO) and soybean oil (SBO), and three dialkyl phosphites: methyl, ethyl and n-butyl, using a radical initiator. A staged addition of the lipid and the initiator to the dia...
Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils
USDA-ARS?s Scientific Manuscript database
Phosphonates were synthesized on a medium scale (~200 g) from three lipids–methyl linoleate (MeLin), high-oleic sunflower oil (HOSO) and soybean oil (SBO), and three dialkyl phosphites–methyl, ethyl and n-butyl, using a radical initiator. A staged addition of the lipid and the initiator was used to ...
USDA-ARS?s Scientific Manuscript database
There has been a great scientific interest in exploring the great potential of the piperazine-phosphonates in flame retardant (FR) application on cotton fabric by investigating the thermal decomposition of cotton fabric treated with them. This research tries to understand the mode of action of the t...
Synthesis and properties of ApA analogues with shortened phosphonate internucleotide linkage.
Králíková, Sárka; Buděšínský, Miloš; Barvík, Ivan; Masojídková, Milena; Točík, Zdeněk; Rosenberg, Ivan
2011-01-01
A complete series of the 2 '-5 ' and 3 '-5 ' regioisomeric types of r(ApA) and 2 '-d(ApA) analogues with the α-hydroxy-phosphonate C3 '-O-P-CH(OH)-C4 ″ internucleotide linkage, isopolar but non-isosteric with the phosphodiester one, were synthesized and their hybridization properties with polyU studied. Due to the chirality on the 5 '-carbon atom of the modified internucleotide linkage bearing phosphorus and hydroxy moieties, each regioisomeric type of ApA dimer is split into epimeric pairs. To examine the role of the 5 '-hydroxyl of the α-hydroxy-phosphonate moiety during hybridization, the appropriate r(ApA) analogues with 3 '(2 ')-O-P-CH(2)-C4 ″ linkage lacking the 5 '-hydroxyl were synthesized. Nuclear magnetic resonance (NMR) spectroscopy study on the conformation of the modified sugar-phosphate backbone, along with the hybridization measurements, revealed remarkable differences in the stability of complexes with polyU, depending on the 5 '-carbon atom configuration. Potential usefulness of the α-hydroxy-phosphonate linkage in modified oligoribonucleotides is discussed.
Skea, D; Broder, I
1986-01-01
We have found several similarities between tannic acid and grain dust extract prepared with methanol. Both formed a precipitate with IgG, and these interactions were inhibited by albumin. In addition, both preparations fixed complement; this activity was heat stable and was removed by prior adsorption of the preparations with hide powder. Adsorption with polyvinyl polypyrrolidone reduced the complement-fixing activity of tannic acid but not that of the methanol grain dust extract. The similarities between tannic acid and the methanol grain dust extract are consistent with the presence of a tannin or tanninlike material in grain dust. Images FIGURE 1. PMID:3709479
DOE Office of Scientific and Technical Information (OSTI.GOV)
Węglarz-Tomczak, Ewelina; Berlicki, Łukasz; Pawełczak, Małgorzata
N0 -substituted 1,2-diaminoethylphosphonic acids and 1,2-diaminoethylphosphinic dipeptides were explored to unveil the structural context of the unexpected selectivity of these inhibitors of M1 alanine aminopeptidases (APNs) versus M17 leucine aminopeptidase (LAP). The diaminophosphonic acids were obtained via aziridines in an improved synthetic procedure that was further expanded for the phosphinic pseudodipeptide system. The inhibitory activity, measured for three M1 and one M17 metalloaminopeptidases of different sources (bacterial, human and porcine), revealed several potent compounds (e.g., Ki ¼ 65 nM of 1u for HsAPN). Two structures of an M1 representative (APN from Neisseria meningitidis) in complex with N-benzyl-1,2-diaminoethylphosphonic acid and N-cyclohexyl-1,2-more » diaminoethylphosphonic acid were determined by the X-ray crystallography. The analysis of these structures and the models of the phosphonic acid complexes of the human ortholog provided an insight into the role of the additional amino group and the hydrophobic substituents of the ligands within the S1 active site region.« less
Zhou, N.; Wu, J.; Yu, Z.; Neuman, R.D.; Wang, D.; Xu, G.
1997-01-01
Three acidic extractants (I) di(2-ethylhexyl) phosphoric acid (HDEHP), (II) 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEHPEHE) and (III) naphthenic acid were employed in preparing the samples for the characterization of the coordination structure of lanthanide-extractant complexes and the physicochemical nature of aggregates formed in the organic diluent of the solvent extraction systems. Photo correlation spectroscopy (PCS) results on the aggregates formed by the partially saponified HDEHP in n-heptane showed that the hydrodynamic radius of the aggregates was comparable to the molecular dimensions of HDEHP. The addition of 2-octanol into the diluent, by which the mixed solvent was formed, increased the dimensions of the corresponding aggregates. Aggregates formed from the lanthanide ions and HDEHP in the organic phase of the extraction systems were found very unstable. In the case of naphthenic acid, PCS data showed the formation of w/o microemulsion from the saponified naphthenic acid in the mixed solvent. The extraction of lanthanides by the saponified naphthenic acid in the mixed solvent under the given experimental conditions was a process of destruction of the w/o microemulsion. A possible mechanism of the breakdown of the w/o microemulsion droplets is discussed.
Spring-loaded polymeric gel actuators
Shahinpoor, M.
1995-02-14
Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.
1989-03-01
PVA, CTBN , PBAA, PMMA, etc. As a test of this predictability, we dissolved a vinyl acetate polymer in THF, and then added PMVT, and did succeed in...Polyvinyl acetate CTBN Carboxy terminated butadiene acrylonitrile PBAA Polybutadiene acrylic acid PMMA Polymethyl. methacrylate THF Tetrahydrofuran NMR
Impregnated metal-polymeric functional beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Volksen, Willi (Inventor)
1980-01-01
Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.
Impregnated metal-polymeric functional beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Volksen, Willi (Inventor)
1978-01-01
Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.
Chromaticity and color saturation of ultraviolet irradiated poly(vinyl alcohol)-anthocyanin coatings
NASA Astrophysics Data System (ADS)
Mat Nor, N. A.; Aziz, N.; Mohd-Adnan, A. F.; Taha, R. M.; Arof, A. K.
2016-06-01
The purpose of this paper is to evaluate the chromaticity and color saturation of anthocyanin extraction from fruit pericarps of Ixora siamensis in a poly(vinyl alcohol) (PVA) matrix. The colored PVA matrix was exposed to UV-B irradiation for 93 days at UV intensity of 17.55 lux. Anthocyanin colorant has been extracted using methanol acidified with 0.5% trifluoroacetic acid (TFA). Different concentrations of ferulic acid (FA) (0, 1, 2, 3, 4 and 5 wt.%) have been added to the anthocyanin extractions before mixing with PVA to form a coating system. The PVA-anthocyanin-FA mixtures have been coated on glass slides and kept overnight in the dark for curing before exposure to UV-B irradiation. The FA-free sample undergoes more color degradation compared to samples containing FA. The coating with 2% FA has the most stable color with chromaticity of 41% and color saturation of 0.88 compared to other FA containing coats. The FA-free coat exhibits 29% chromaticity and color saturation of 0.38 at the end of the experiment.
Song, Yunna; Li, Yuehai; Li, Jihui; Li, Yongshen; Niu, Shuai; Li, Ning
2018-04-01
In the article, graphene oxide (GO) was prepared by flake graphite, nitric acid and peroxyacetic acid via the sonochemical method and characterized, and polyvinyl alcohol carbonate/GO composite (PVAC/GO composite) was synthesized by polyvinyl alcohol (PVA), dimethyl carbonate (DMC) and GO via the approach of transesterification in the case of ultrasonic-microwave synergistic effects and characterized, and three-dimensional PVAC/GO sponge (3D PVAC/GO sponge) was manufactured by PVAC/GO composite via the foaming approach and characterized, and the thermal stability and surface resistivity of 3D PVAC/GO sponge were investigated. Based on those, it had been attested that PVAC polymer was structured by DMC and PVA and had the six-membered lactone rings and the ether bonds, and PVAC/GO composite was constituted by 2D GO lattice and PVAC polymer, and 3D PVAC/GO sponge was constructed by PVAC/GO composite, and the surface resistivity of 3D PVAC/GO sponge with 0.00, 0.60, 1.20, 1.80 and 2.40 g of GO were 9.07 × 10 7 , 6.02 × 10 7 , 4.65 × 10 7 , 2.47 × 10 7 and 1.06 × 107 O/sq, and the thermal stability of 3D PVAC/GO sponge had improved. Copyright © 2017 Elsevier B.V. All rights reserved.
Canellas, Elena; Vera, Paula; Nerín, Cristina
2015-09-01
Biodegradable packagings are made by combination of several materials creating a multilayer with the properties needed. Each material, including the adhesive, could contain substances that could migrate to the food. In this work, gas chromatography coupled with mass spectrometry and ultra-high-pressure liquid chromatography coupled with quadrupole time-of-flight mass spectrometry were used to identify the biodegradable adhesive compounds. Five of the 13 compounds identified were nonintentionally added substances; they were neoformed compounds created by the reaction of added compounds in the adhesive. Moreover, the migration of the compounds through four different biodegradable materials-paper, polylactic acid, ecovio®, and polyvinyl alcohol-was studied for the first time. Three of the 13 compounds identified in the adhesive migrated from the adhesive to Tenax®, which was used as a solid food simulant. One of them, 2,4,7,9-tetramethyl-5-decyne-4,7-diol, was an intentionally added substance, and the other two were 1,6-dioxacyclododecane-7,12-dione and 1,6,13,18-tetraoxacyclotetracosane-7,12,19,24-tetraone, which were nonintentionally added substances identified in this work. Higher migration values (ranging from 0.81 to 2.07 mg/kg) were observed for migration through ecovio® than through the multilayer made by combination of ecovio® and polyvinyl alcohol (0.07-0.39 mg/kg) owing to the barrier effect provided by polyvinyl alcohol. The migration values for migration through paper and polylactic acid were below the limits of detection.
Sukriti; Sharma, Jitender; Chadha, Amritpal Singh; Pruthi, Vaishali; Anand, Prerna; Bhatia, Jaspreet; Kaith, B S
2017-04-01
Present work reports the synthesis of semi-Interpenetrating Network Polymer (semi-IPN) using Gelatin-Gum xanthan hybrid backbone and polyvinyl alcohol in presence of l-tartaric acid and ammonium persulphate as the crosslinker-initiator system. Reaction parameters were optimized with Response Surface Methodology (RSM) in order to maximize the percent gel fraction of the synthesized sample. Polyvinyl alcohol, l-Tartaric acid, ammonium persulphate, reaction temperature, time and pH of the reaction medium were found to make an impact on the percentage gel fraction obtained. Incorporation of polyvinyl alcohol chains onto hybrid backbone and crosslinking between the different polymer chains were confirmed through techniques like FTIR, SEM-EDX and XRD. Semi-IPN was found to be very efficient in the removal of cationic dyes rhodamine-B (70%) and auramine-O (63%) from a mixture with an adsorbent dose of 700 mg, initial concentration of rhodamine-B 6 mgL -1 and auramine-O 26 mgL -1 , at an time interval of 22-25 h and 30 °C temp. Further to determine the nature of adsorption Langmuir and Freundlich adsorption isotherm models were studied and it was found that Langmuir adsorption isotherm was the best fit model for the removal of mixture of dyes. Kinetic studies for the sorption of dyes favored the reaction mechanism to occur via a pseudo second order pathway with R 2 value about 0.99. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structure-sensitive film materials based on polyvinyl alcohol compositions with polyacids
NASA Astrophysics Data System (ADS)
Lazareva, Tatjana G.; Iljushenko, Irina A.
1995-05-01
The influence of polyacidic additives (silicotungstic acid -- STA, carboxymethylcellulose -- Na-CMC, polymethacrylic acid -- PMA, polyacrylic acid -- PAA) on the molecular mobility of film composition based on polyvinyl alcohol (PVA) in the temperature range 20 - 200 degree(s)C has been evaluated. It has been concluded that interpolymer complexes are formed due to hydrogen bonding of the PVA and polyacidic additive molecules, which results in the change of the PVA stereoregularity. The formation of the complexes depends on the type and concentration of the polyacidic additive, the process of (alpha) -relaxation and, in a certain concentration range of the additive, increases the molecular mobility of the kinetic segments surrounding the complex. The influence of short-term UV-irradiation on the structure and properties of such materials has been investigated. A possibility of the reversible change of molecular mobility and stereoregularity of the examined compositions as a result of short-term UV-irradiation has been established. Introduction of polyacids into the PVA structure gives rise to the electrosensitivity, i.e., the ability to change structure under the action of an electric field. In this case the distinguishing feature is the relation between the molecular mobility and electrosensitivity in the range of parameters where the (alpha) - relaxation occurs.
Hodosi, G; Galambos, G; Podányi, B; Kuszmann, J
1992-03-02
6-(2,4-Dichlorophenyl)-D-erythro-1,2,4-hexanetriol, synthesised from D-glucose, was partially silylated, then reacted with 2-methoxypropene to afford 1-O-tert-butyldimethylsilyl-6-(2,4- dichlorophenyl)-2,4-O-isopropylidene-D-erythro-1,2,4-hexanetriol (17). Desilylation of 17 gave 6-(2,4-dichlorophenyl)-2,4-O-isopropylidene-D- erythro-1,2,4-hexanetriol, which was converted into the 1-tosylate 18 and the 1-bromo derivative 19. Reaction of 18 with potassium thiolbenzoate gave, after debenzoylation, oxidation, and deprotection, 6-(2,4-dichlorophenyl)-D-erythro-2,4-dihydroxyhexane-1-sulfonic acid (4). Reaction of 18 or 19 with triethyl phosphite gave, after deprotection, 6-(2,4-dichlorophenyl)-D-erythro-2,4-dihydroxyhexyl-phosphonic acid (5), and reaction of 19 with potassium cyanide gave, after subsequent hydrolysis and deprotection, 7-(2,4-dichlorophenyl)-D-erythro-3-hydroxy-5-heptanolide (3).
Yah, Weng On; Takahara, Atsushi; Lvov, Yuri M
2012-01-25
Selective fatty acid hydrophobization of the inner surface of tubule halloysite clay is demonstrated. Aqueous phosphonic acid was found to bind to alumina sites at the tube lumen and did not bind the tube's outer siloxane surface. The bonding was characterized with solid-state nuclear magnetic resonance ((29)Si, (13)C, (31)P NMR), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy. NMR and FTIR spectroscopy of selectively modified tubes proved binding of octadecylphosphonic acid within the halloysite lumen through bidentate and tridentate P-O-Al linkage. Selective modification of the halloysite clay lumen creates an inorganic micelle-like architecture with a hydrophobic aliphatic chain core and a hydrophilic silicate shell. An enhanced capacity for adsorption of the modified halloysite toward hydrophobic derivatives of ferrocene was shown. This demonstrates that the different inner and outer surface chemistry of clay nanotubes can be used for selective modification, enabling different applications from water purification to drug immobilization and controlled release. © 2011 American Chemical Society
Alan Kanaskie; Everett Hansen; Wendy Sutton; Paul Reeser; Carolyn Choquette
2011-01-01
We conducted four experiments to evaluate the effectiveness of phosphonate application to tanoak (Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S.H.Oh) forests in south-western Oregon: (1) aerial application to forest stands; (2) trunk injection; (3) foliar spray of potted seedlings; and (4) foliar spray of stump...
Yield Improvement and Energy Savings Uing Phosphonates as Additives in Kraft pulping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrike W. Tschirner; Timothy Smith
2007-03-31
Project Objective: Develop a commercially viable modification to the Kraft process resulting in energy savings, increased yield and improved bleachability. Evaluate the feasibility of this technology across a spectrum of wood species used in North America. Develop detailed fundamental understanding of the mechanism by which phosphonates improve KAPPA number and yield. Evaluate the North American market potential for the use of phosphonates in the Kraft pulping process. Examine determinants of customer perceived value and explore organizational and operational factors influencing attitudes and behaviors. Provide an economic feasibility assessment for the supply chain, both suppliers (chemical supply companies) and buyers (Kraftmore » mills). Provide background to most effectively transfer this new technology to commercial mills.« less
Calixarene-Mediated Liquid-Membrane Transport of Choline Conjugates
Adhikari, Birendra Babu; Fujii, Ayu
2015-01-01
A series of supramolecular calixarenes efficiently transport distinct molecular species through a liquid membrane when attached to a receptor-complementary choline handle. Calix-[6]arene hexacarboxylic acid was highly effective at transporting different target molecules against a pH gradient. Both carboxylic- and phosphonic-acid-functionalized calix[4]arenes effect transport without requiring a pH or ion gradient. NMR binding studies, two-phase solvent extraction, and three-phase transport experiments reveal the necessary and subtle parameters to effect the transport of molecules attached to a choline “handle”. On the other hand, rescorin[4]arene cavitands, which have similar guest recognition profiles, did not transport guest molecules. These developments reveal new approaches towards attempting synthetic-receptor-mediated selective small-molecule transport in vesicular and cellular systems. PMID:26161034
Polyphosphazine-based polymer materials
Fox, Robert V.; Avci, Recep; Groenewold, Gary S.
2010-05-25
Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.
Process for recovering actinide values
Horwitz, E. Philip; Mason, George W.
1980-01-01
A process for rendering actinide values recoverable from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorous extractants such as tri-n butyl phosphate (TBP) and dihexyl-N,N-diethyl carbamylmethylene phosphonate (DHDECAMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is preferably made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant is recycled after stripping the degradation products with a neutral sodium carbonate solution.
Prebiotic phosphorus chemistry reconsidered
NASA Technical Reports Server (NTRS)
Schwartz, A. W.; Orgel, L. E. (Principal Investigator)
1997-01-01
The available evidence indicates that the origin of life on Earth certainly occurred earlier than 3.5 billion years ago and perhaps substantially earlier. The time available for the chemical evolution which must have preceded this event is more difficult to estimate. Both endogenic and exogenic contributions to chemical evolution have been considered; i.e., from chemical reactions in a primitive atmosphere, or by introduction in the interiors of comets and/or meteorites. It is argued, however, that the phosphorus chemistry of Earth's earliest hydrosphere, whether primarily exogenic or endogenic in origin, was most likely dominated by compounds less oxidized than phosphoric acid and its esters. A scenario is presented for the early production of a suite of reactive phosphonic acid derivatives, the properties of which may have foreshadowed the later appearance of biophosphates.
NASA Astrophysics Data System (ADS)
Xie, Y. C.; Cheng, Q. R.; Pan, Z. Q.
2018-02-01
New magnesium phosphonates Mg(H2L)31 (H4L = 2,5-dimethylbenzene-1,4 -diylbis(methylene)diphosphonic acid) and Ca(H2L)·2H2O 2 have been hydrothermally synthesized from H4L and the corresponding metal salts. Complex 1 and 2 have been characterized by IR, powder and single-crystal X-ray diffraction methods. Complex 1 crystallizes in trigonal space group R-3c and complex 2 belongs to the triclinic space group. The complexes both form two-dimensional (2D) network structure and show three-dimensional (3D) network through hydrogen bonds. Thermal stability of complex 1 and 2 have also been investigated. CCDC: 1534599 for 1; 1536423 for 2.
A two-step approach for copper and nickel extracting and recovering by emulsion liquid membrane.
Bi, Qiang; Xue, Juanqin; Guo, Yingjuan; Li, Guoping; Cui, Haibin
2016-11-01
The recycling of copper and nickel from metallurgical wastewater using emulsion liquid membrane (ELM) was studied. P507 (2-ethylhexyl phosphonic acid-2-ethylhexyl ester) and TBP (tributyl phosphate) were used as carriers for the extraction of copper and nickel by ELMs, respectively. The influence of four emulsion composition variables, namely, the internal phase volume fraction (ϕ), surfactant concentration (Wsurf), internal phase stripping acid concentration (Cio) and the carrier concentration (Cc), and the process variable treat ratio on the extraction efficiencies of copper or nickel were studied. Under the optimum conditions, 98% copper and nickel were recycled by using ELM. The results indicated that ELM extraction is a promising industrial application technology to retrieve valuable metals in low concentration metallurgical wastewater.
SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS
Grinstead, R.R.
1959-01-20
A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.
Qu, Jian-Bo; Huan, Guan-Sheng; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo; Huang, Fang
2014-08-13
Gigaporous polystyrene (PS) microspheres were hydrophilized by in situ polymerization to give a stable cross-linked poly(vinyl alcohol) (PVA) hydrogel coating, which can shield proteins from the hydrophobic PS surface underneath. The amination of microspheres (PS-NH2) was first carried out through acetylization, oximation and reduction, and then 4,4'-azobis (4-cyanovaleric acid) (ACV), a polymerization initiator, was covalently immobilized on PS-NH2 through amide bond formation, and the cross-linked poly(vinyl acetate) (PVAc) was prepared by radical polymerization at the surfaces of ACV-immobilized PS microspheres (PS-ACV). Finally, the cross-linked PVA hydrogel coated gigaporous PS microspheres (PS-PVA) was easily achieved through alcoholysis of PVAc. Results suggested that the PS microspheres were effectively coated with cross-linked PVA hydrogel, where the gigaporrous structure remained under optimal conditions. After hydrophilic modification (PS-PVA), the protein-resistant ability of microspheres was greatly improved. The hydroxyl-rich PS-PVA surface can be easily derivatized by classical chemical methods. Performance advantages of the PS-PVA column in flow experiment include good permeability, low backpressure, and mechanical stability. These results indicated that PS-PVA should be promising in rapid protein chromatography.
Synthesis and Reactivity of Alkyl-1,1,1-trisphosphonate Esters
Smits, Jacqueline P.; Wiemer, David F.
2011-01-01
The α–trisphosphonic acid esters provide a unique spatial arrangement of three phosphonate groups, and may represent an attractive motif for inhibitors of enzymes that utilize di- or triphosphate substrates. To advance studies of this unique functionality, a general route to alkyl derivatives of the parent system (R = H) has been developed. A set of new α-alkyl-1,1,1-trisphosphonate esters has been prepared through phosphinylation and subsequent oxidation of tetraethyl alkylbisphosphonates, and the reactivity of these new compounds has been studied in representative reactions that afford additional examples of this functionality. PMID:21916407
On the Chemical Emergence of Phosphate-Based Biochemistry
NASA Astrophysics Data System (ADS)
Kee, Terence
Contemporary organisms use orthophosphate derivatives (PO43-) in their cell biochemistry,1 yet questions remain as to how Nature was able to accumulate, activate and exploit the or-thophosphate group from geological sources with both poorly solubility and low chemical activ-ity.2 Gulick argued3 a central role for reduced oxidation state phosphorus (P) oxyacids such as H-phosphonates (H2PO3-) and especially H-phosphinates (H2PO2-) in prebiotic chemistry on account of the greater water solubility of their metal salts and, with the presence of P-H bonds, a different reactivity profile to that expected of orthophosphate. The recent demonstration that hydrothermal corrosion of P-rich mineral phases such as schreibersite (Fe,Ni)3P within iron meteorites leads to production of various P-oxyacids including H-phosphonic (H3PO3)4 and H-phosphinic5 acids as well as orthophosphate has reignited interest in reduced oxida-tion state P chemistry in prebiotic environments. We are examining the prebiotic potential of reduced oxidation state P-chemistry through reactions with carbonyl substrates with rea-sonable prebiotic provenance including formaldehyde glycolaldehyde, both intimately involved in the formose reaction for sugar synthesis6 and pyruvic acid,7 a product of glycolysis and feed-stock for the citric acid cycle, a fundamental cellular metablic process whose heritage is considered an ancient one. In this contribution we present some of our latest results on the H-phosphinate-pyruvate system. References: [1] Lodish H et al. (2000) Molecular Cell Biology, 4th Ed., W. H. Freeman Co., New York. [2] Gulick A. (1955) Am. Sci., 43, 479. [3] Gulick A. (1957) Ann. N. Y. Acad. Sci. 69, 309. [4] Pasek M. A. (2008) Proc. Nat. Acad. Sci. USA, 105, 853. [5] Bryant D. E.and Kee T. P. (2006) Chem. Commun. 2344. [6] Weber A. L. (2000) Origins of Life and Evol. Biosph., 30, 33. [7] Cody G. D. et. al. (2000) Science 289, 1337.
Cao, N.; Du, J.; Gong, C. S.; Tsao, G. T.
1996-01-01
An integrated system of simultaneous fermentation-adsorption for the production and recovery of fumaric acid from glucose by Rhizopus oryzae was investigated. The system was constructed such that growing Rhizopus mycelia were self-immobilized on the plastic discs of a rotary biofilm contactor during the nitrogen-rich growth phase. During the nongrowth, production phase, the biofilm was alternately exposed to liquid medium and air upon rotation of the discs in the horizontal fermentation vessel. The product of fermentation, fumaric acid, was removed simultaneously and continuously by a coupled adsorption column, thereby moderating inhibition, enhancing the fermentation rate, and sustaining cell viability. Another beneficial effect of the removal of fumaric acid is release of hydroxyl ions from a polyvinyl pyridine adsorbent into the circulating fermentation broth. This moderates the decrease in pH that would otherwise occur. Polyvinyl pyridine and IRA-900 gave the highest loading for this type of fermentation. This fermentation system is capable of producing fumaric acid with an average yield of 85 g/liter from 100 g of glucose per liter within 20 h under repetitive fed-batch cycles. On a weight yield basis, 91% of the theoretical maximum was obtained with a productivity of 4.25 g/liter/h. This is in contrast to stirred-tank fermentation supplemented with calcium carbonate, whose average weight yield was 65% after 72 h with a productivity of 0.9 g/liter/h. The immobilized reactor was operated repetitively for 2 weeks without loss of biological activity. PMID:16535381
Richardson, Douglas D; Caruso, Joseph A
2007-06-01
Separation and detection of seven V-type (venomous) and G-type (German) organophosphorus nerve agent degradation products by gas chromatography with inductively coupled plasma mass spectrometry (GC-ICPMS) is described. The nonvolatile alkyl phosphonic acid degradation products of interest included ethyl methylphosphonic acid (EMPA, VX acid), isopropyl methylphosphonic acid (IMPA, GB acid), ethyl hydrogen dimethylamidophosphate sodium salt (EDPA, GA acid), isobutyl hydrogen methylphosphonate (IBMPA, RVX acid), as well as pinacolyl methylphosphonic acid (PMPA), methylphosphonic acid (MPA), and cyclohexyl methylphosphonic acid (CMPA, GF acid). N-(tert-Butyldimethylsilyl)-N-methyltrifluroacetamide with 1% TBDMSCl was utilized to form the volatile TBDMS derivatives of the nerve agent degradation products for separation by GC. Exact mass confirmation of the formation of six of the TBDMS derivatives was obtained by GC-time of flight mass spectrometry (TOF-MS). The method developed here allowed for the separation and detection of all seven TBDMS derivatives as well as phosphate in less than ten minutes. Detection limits for the developed method were less than 5 pg with retention times and peak area precisions of less than 0.01 and 6%, respectively. This method was successfully applied to river water and soil matrices. To date this is the first work describing the analysis of chemical warfare agent (CWA) degradation products by GC-ICPMS.
NASA Astrophysics Data System (ADS)
Ouksel, Louiza; Chafaa, Salah; Bourzami, Riadh; Hamdouni, Noudjoud; Sebais, Miloud; Chafai, Nadjib
2017-09-01
Single Diethyl [hydroxy (phenyl) methyl] phosphonate (DHPMP) crystal with chemical formula C11H17O4P, was synthesized via the base-catalyzed Pudovik reaction and Lewis acid as catalyst. The results of SXRD analyzes indicate that this compound crystallizes into a mono-clinic system with space group P21/n symmetry and Z = 4. The crystal structure parameters are a = 9.293 Å, b = 8.103 Å, c = 17.542 Å, β = 95.329° and V = 1315.2 Å3, the structure displays one inter-molecular O-H⋯O hydrogen bonding. The UV-Visible absorption spectrum shows that the crystal exhibits a good optical transmission in the visible domain, and strong absorption in middle ultraviolet one. The vibrational frequencies of various functional groups present in DHPMP crystal have been deduced from FT-IR and FT-Raman spectra and then compared with theoretical values performed with DFT (B3LYP) method using 6-31G (p, d) basis sets. Chemical and thermodynamic parameters such as: ionization potential (I), electron affinity (A), hardness (σ), softness (η), electronegativity (χ) and electrophilicity index (ω), are also calculated using the same theoretical method. The thermal decomposition behavior of DHPMP, studied by using thermogravimetric analysis (TDG), shows a thermal stability until to 125 °C.
Advances and challenges of wood polymer composites
Roger M. Rowell
2006-01-01
Wood flour and fiber have been blended with thermoplastic such as polyethylene, polypropylene, polylactic acid and polyvinyl chloride to form wood plastic composites (WPC). WPCs have seen a large growth in the United States in recent years mainly in the residential decking market with the removal of CCA treated wood decking from residential markets. While there are...
21 CFR 175.270 - Poly(vinyl fluoride) resins.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Poly(vinyl fluoride) resins. 175.270 Section 175... Substances for Use as Components of Coatings § 175.270 Poly(vinyl fluoride) resins. Poly(vinyl fluoride... the purpose of this section, poly(vinyl fluoride) resins consist of basic resins produced by the...
21 CFR 175.270 - Poly(vinyl fluoride) resins.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Poly(vinyl fluoride) resins. 175.270 Section 175... Substances for Use as Components of Coatings § 175.270 Poly(vinyl fluoride) resins. Poly(vinyl fluoride... the purpose of this section, poly(vinyl fluoride) resins consist of basic resins produced by the...
NASA Astrophysics Data System (ADS)
Zhong, Jun
Density functional theory (DFT) is employed to study lubricant adsorption and decomposition pathways, and adhesive metal transfer on clean aluminum surfaces. In this dissertation, density functional theory (DFT-GGA) is used to investigate the optimal adsorption geometries and binding energies of vinyl-phosphonic and ethanoic acids on an A1(111) surface. Tri-bridged, bi-bridged and uni-dentate coordinations for adsorbates are examined to determine the optimal binding sites on the surface. An analysis of the charge density of states (DOS) of oxygen involved in reacting with aluminum ions reveals changes in the atomic bonding configuration. For these acid molecules, the favorable decomposition pathways lead to fragments of vinyl- and alkylchains bonding to the Al(111) surface with phosphorous and carbon ions. Final optimal decomposition geometries and binding energies for various decomposition stages are also discussed. In addition, ab-initio molecular dynamics (AIMD) is carried out to explore collisions of aliphatic lubricants like butanol-alcohol and butanoic-acid with the Al(111) surface. Simulation results indicate that functional oxygen groups on these molecules could react with the "islands of nascent aluminum" and oxidize the surface. Favorable decomposition pieces on the surface, which were corroborated with experiment and DFT calculations, are found to contribute to the effectiveness of a particular molecule for boundary thinfilm lubrication to reduce the wear of aluminum. Finally, ab-initio molecular dynamics is also applied to investigations of the interaction between aluminum and hematite surfaces with and without a vinyl-phosphonic acid (VPA) lubricant. Without the lubricant, hematite is found to react with Al strongly (thermit reaction). This removes relatively large fragments from the surface of the aluminum substrate when this substrate is rubbed with a harder steel-roller under an external shock contact-load exceeding the ability of the substrate to support the aluminum-oxide film. Adhesive wear is found to significantly raise the temperature of system. Addition of VPA lubricant is found to retard the reaction of hematite with aluminum by forming an effective barrier between the two surfaces.
NASA Astrophysics Data System (ADS)
Nishio, Takashi; Naka, Kensuke
2015-04-01
Photoinduced crystallization of calcium carbonate (CaCO3) was demonstrated by the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphenyl)propionic acid) under alkaline conditions (pH 10). In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol %) was used as the precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. Thermogravimetric analysis of the obtained xerogels showed that increasing the UV irradiation time increased the amount of CaCO3 formed and the complete conversion of calcium ions to calcite was achieved after 50 min of UV irradiation. Furthermore, solid phase analyses suggested that nanometer-to-micron-sized calcite crystals were formed and dispersed in the obtained PVAPS matrix.
Bombardieri, E; Setti, L; Kirienko, M; Antunovic, L; Guglielmo, P; Ciocia, G
2015-12-01
Prostate cancer bone metastases occur frequently in advanced cancer and this is matter of particular attention, due to the great impact on patient's management and considering that a lot of new emerging therapeutic options have been recently introduced. Imaging bone metastases is essential to localize lesions, to establish their size and number, to study characteristics and changes during therapy. Besides radiological imaging, nuclear medicine modalities can image their features and offer additional information about their metabolic behaviour. They can be classified according to physical characteristics, type of detection, mechanism of uptake, availability for daily use. The physiopathology of metastases formation and the mechanisms of tracer uptake are essential to understand the interpretation of nuclear medicine images. Therefore, radiopharmaceuticals for bone metastases can be classified in agents targeting bone (99mTc-phosphonates, 18F-fluoride) and those targeting prostatic cancer cells (18F-fluoromethylcholine, 11C-choline, 18F-fluorodeoxyglucose). The modalities using the first group of tracers are planar bone scan, SPECT or SPECT/CT with 99mTc-diphosphonates, and 18F-fluoride PET/CT, while the modalities using the second group include 18F/11C-choline derivatives PET/CT, 18F-FDG PET/CT and PET/CT scans with several other radiopharmaceuticals described in the literature, such as 18F/11C-acetate derivatives, 18F-fluoro-5α-dihydrotestosterone (FDHT), 18F-anti-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC), 18F-2'-fluoro-5-methyl-1-β-D-arabinofuranosyluracil (FMAU) and 68Ga-labeled-prostate specific membrane antigen (PMSA) PET/TC. However, since data on clinical validation for these last novel modalities are not conclusive and/or are not still sufficient in number, at present they can be still considered as promising tools under evaluation. The present paper considers the nuclear modalities today available for the clinical routine. This overview wants to discuss the opportunities and the drawbacks of these current diagnostic tests in a scenario where planar scintigraphy and/or SPECT with phosphonates, is the only metabolic imaging recommended by the most important Guidelines of the Scientific Societies dealing with prostate cancer. Other nuclear medicine modalities are in very few cases just cited, never recommended except in rare situations. Is there space for agents other than 99mTc-phosphonates to image bone lesions from prostate cancer?
Reaction chemistry and ligand exchange at cadmium selenide nanocrystal surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, Jonathan; Park, Jungwon; Trudeau, Paul-Emile
Chemical modification of nanocrystal surfaces is fundamentally important to their assembly, their implementation in biology and medicine, and greatly impacts their electrical and optical properties. However, it remains a major challenge owing to a lack of analytical tools to directly determine nanoparticle surface structure. Early nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) studies of CdSe nanocrystals prepared in tri-n-octylphosphine oxide (1) and tri-n-octylphosphine (2), suggested these coordinating solvents are datively bound to the particle surface. However, assigning the broad NMR resonances of surface-bound ligands is complicated by significant concentrations of phosphorus-containing impurities in commercial sources of 1, andmore » XPS provides only limited information about the nature of the phosphorus containing molecules in the sample. More recent reports have shown the surface ligands of CdSe nanocrystals prepared in technical grade 1, and in the presence of alkylphosphonic acids, include phosphonic and phosphinic acids. These studies do not, however, distinguish whether these ligands are bound datively, as neutral, L-type ligands, or by X-type interaction of an anionic phosphonate/phosphinate moiety with a surface Cd{sup 2+} ion. Answering this question would help clarify why ligand exchange with such particles does not proceed generally as expected based on a L-type ligand model. By using reagents with reactive silicon-chalcogen and silicon-chlorine bonds to cleave the ligands from the nanocrystal surface, we show that our CdSe and CdSe/ZnS core-shell nanocrystal surfaces are likely terminated by X-type binding of alkylphosphonate ligands to a layer of Cd{sup 2+}/Zn{sup 2+} ions, rather than by dative interactions. Further, we provide spectroscopic evidence that 1 and 2 are not coordinated to our purified nanocrystals.« less
Hönes, Roland; Rühe, Jürgen
2018-05-08
Metallic superhydrophobic surfaces (SHSs) combine the attractive properties of metals, such as ductility, hardness, and conductivity, with the favorable wetting properties of nanostructured surfaces. Moreover, they promise additional benefits with respect to corrosion protection. For the modification of the intrinsically polar and hydrophilic surfaces of metals, a new method has been developed to deposit a long-term stable, highly hydrophobic coating, using nanostructured Ni surfaces as an example. Such substrates were chosen because the deposition of a thin Ni layer is a common choice for enhancing corrosion resistance of other metals. As the hydrophobic coating, we propose a thin film of an extremely hydrophobic fluoropolymer network. To form this network, a thin layer of a fluoropolymer precursor is deposited on the Ni substrate which includes a comonomer that is capable of C,H insertion cross-linking (CHic). Upon UV irradiation or heating, the cross-linker units become activated and the thin glassy film of the precursor is transformed into a polymer network that coats the surface conformally and permanently, as shown by extensive extraction experiments. To achieve an even higher stability, the same precursor film can also be transformed into a chemically surface-attached network by depositing a self-assembled monolayer of an alkane phosphonic acid on the Ni before coating with the precursor. During cross-linking, by the same chemical process, the growing polymer network will simultaneously attach to the alkane phosphonic acid layer at the surface of the metal. This strategy has been used to turn fractal Ni "nanoflower" surfaces grown by anisotropic electroplating into SHSs. The wetting characteristics of the obtained nanostructured metallic surfaces are studied. Additionally, the corrosion protection effect and the significant mechanical durability are demonstrated.
Efficient arsenic(V) removal from water by ligand exchange fibrous adsorbent.
Awual, Md Rabiul; Shenashen, M A; Yaita, Tsuyoshi; Shiwaku, Hideaki; Jyo, Akinori
2012-11-01
This study is an efficient arsenic(V) removal from contaminated waters used as drinking water in adsorption process by zirconium(IV) loaded ligand exchange fibrous adsorbent. The bifunctional fibers contained both phosphonate and sulfonate groups. The bifunctional fiber was synthesised by graft polymerization of chloromethylstyrene onto polyethylene coated polypropylene fiber by means of electron irradiation graft polymerization technique and then desired phosphonate and sulfonate groups were introduced by Arbusov reaction followed by phosphorylation and sulfonation. Arsenic(V) adsorption was clarified in column methods with continuous flow operation in order to assess the arsenic(V) removal capacity in various conditions. The adsorption efficiency was evaluated in several parameters such as competing ions (chloride and sulfate), feed solution acidity, feed flow rate, feed concentration and kinetic performances at high feed flow rate of trace concentration arsenic(V). Arsenic(V) adsorption was not greatly changed when feed solutions pH at 3.0-7.0 and high breakthrough capacity was observed in strong acidic area below pH 2.2. Increasing the flow rate brings a decrease both breakthrough capacity and total adsorption. Trace level of arsenic(V) (0.015 mM) in presence of competing ions was also removed at high flow rate (750 h(-1)) with high removal efficiency. Therefore, the adsorbent is highly selective to arsenic(V) even in the presence of high concentration competing ions. The adsorbent is reversible and reusable in many cycles without any deterioration in its original performances. Therefore, Zr(IV) loaded ligand exchange adsorbent is to be an effective means to treat arsenic(V) contaminated water efficiently and able to safeguard the human health. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Quantitative NMR Analysis of Phosphorus in Carbonaceous and Ordinary Chondrites
NASA Technical Reports Server (NTRS)
Pasek, M. A.; Smith, V. D.; Lauretta, D. S.
2004-01-01
Phosphorus is important in a number of biochemical molecules, from DNA to ATP. Early life may have depended on meteorites as a primary source of phosphorus as simple dissolution of crustal apatite may not produce the necessary concentration of phosphate. Phosphorus is found in several mineral phases in meteorites. Apatite and other Ca- and Mg phosphate minerals tend to be the dominant phosphorus reservoir in stony meteorites, whereas in more iron-rich or reduced meteorites, the phosphide minerals schreibersite, (Fe, Ni)3P, and perryite, (Ni, Fe)5(Si, P)2 are dominant. However, in CM chondrites that have experienced significant aqueous alteration, phosphorus has been detected in more exotic molecules. A series of phosphonic acids including methyl-, ethyl-, propyl- and butyl- phosphonic acids were observed by GC-MS in Murchison. Phosphorian sulfides are in Murchison and Murray. NMR spectrometry is capable of detecting multiple substances with one experiment, is non-destructive, and potentially quantitative, as discussed below. Despite these advantages, NMR spectrometry is infrequently applied to meteoritic studies due in large part to a lack of applicability to many compounds and the relatively high limit of detection requirements. Carbon-13 solid-state NMR has been applied to macromolecular carbon in Murchison. P-31 NMR has many advantages over aqueous carbon-13 NMR spectrometry. P-31 is the only isotope of phosphorus, and P-31 gives a signal approximately twice as strong as C-13. These two factors together with the relative abundances of carbon and phosphorus imply that phosphorus should give a signal approximately 20 as strong as carbon in a given sample. A discussion on the preparation of the quantitative standard and NMR studies are presented
Guillemet, Mélanie L; Moreau, Patrice L
2012-01-01
Escherichia coli K-12 suffers acetic acid stress during prolonged incubation in glucose minimal medium containing a limiting concentration of inorganic phosphate (0.1 mM P(i)), which decreases the number of viable cells from 6 × 10(8) to ≤10 CFU/ml between days 6 and 14 of incubation. Here we show that following two serial transfers into P(i)-limiting medium, evolved mutants survived prolonged incubation (≈10(7) CFU/ml on day 14 of incubation). The evolved strains that overtook the populations were generally PhnE(+), whereas the ancestral K-12 strain carries an inactive phnE allele, which prevents the transport of phosphonates. The switching in phnE occurred with a high frequency as a result of the deletion of an 8-bp repeated sequence. In a mixed culture starved for P(i) that contained the K-12 ancestral strain in majority, evolved strains grew through PhnE-dependent scavenging of probably organic phosphate esters (not phosphonates or P(i)) released by E. coli K-12 between days 1 and 3, before acetic acid excreted by E. coli K-12 reached toxic levels. The growth yield of phnE(+) strains in mixed culture was dramatically enhanced by mutations that affect glucose metabolism, such as an rpoS mutation inactivating the alternative sigma factor RpoS. The long-term viability of evolved populations was generally higher when the ancestral strain carried an inactive rather than an active phnE allele, which indicates that cross-feeding of phosphorylated products as a result of the phnE polymorphism may be essential for the spread of mutants which eventually help populations to survive under P(i) starvation conditions.
Durability of polymer/metal interfaces under cyclic loading
NASA Astrophysics Data System (ADS)
Du, Tianbao
Fatigue crack growth along metal/epoxy interface was examined in an aqueous environment and under mixed-mode conditions. A stress corrosion cracking mechanism was identified in this process. The fatigue crack growth rate in an aqueous environment was increased by several orders of magnitude and the fatigue threshold decreased by a factor of 10. The loss of adhesion in the aqueous environment was induced by the hydration of the surface oxide which resulted in a hydroxide with poor adhesion to the substrate metal. Self-assembled monolayer of long chain alkyl phosphonic acid and amino phosphonic acid were synthesized to enhance the adhesion and improve the durability of Al/epoxy interfacial bonding system. The same approach was taken to promote adhesion between copper and epoxy, where a two-component coupling system of 11-mercapto-1-undercanol and 3-aminopropyltriethoxysilane provided the most significant improvement in the copper/epoxy adhesion. The mixed-mode was applied by a piezoelectric actuator. Subcritical crack growth was observed along the epoxy/aluminum interface and the growth rate was found to depend on the magnitude of the applied electric field. Kinetics of the crack growth was correlated with the piezoelectric driving force. The resulting crack growth behavior was compared with the results from the conventional mechanical testing technique. Large differences were found between these two methods. Using this newly developed technique, effects of loading mode and frequency were studied. The fatigue resistance was found to increase with the mode II component and was expressed as a function of the KII/K I ratio. A strong frequency effect was observed for the subcritical crack growth along the Al/Epoxy interface, their fatigue resistance increased with the testing frequency.
Qi, Yudong; Li, Yan; Bunker, Shana P.; Costeux, Stephane; Morgan, Ted A.
2017-12-12
Polymer foam bodies are made from phosphorus-containing thermoplastic random copolymers of a dialkyl (meth)acryloyloxyalkyl phosph(on)ate. Foam bodies made from these copolymers exhibit increased limiting oxygen indices and surprisingly have good properties. In certain embodiments, the phosphorus-containing thermoplastic copolymer is blended with one or more other polymers and formed into nanofoams.
2015-01-01
A propylene cross-bridged macrocyclic chelator with two phosphonate pendant arms (PCB-TE2P) was synthesized from cyclam. Various properties of the synthesized chelator, including Cu-complexation, Cu-complex stability, 64Cu-radiolabeling, and in vivo behavior, were studied and compared with those of a previously reported propylene cross-bridged chelator (PCB-TE2A). PMID:26617972
Diphasic acido-basic properties of D(octylphenyl)phosphoric acid (DOPPA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sella, C.; Cote, G.; Bauer, D.
1995-07-01
In the first part of this work, the diphasic acido-basic constant (pka*) of di(octylphenyl)phosphoric acid, denoted hereafter DOPPA or HL, is determined from its experimental diphasic neutralization curve. The pka* value of DOPPA appears to be equal to 2.6 in the presence of 1 mol/dm{sup 3} sodium salt. Such a value is significantly lower than that previously determined for di(2-ethylhexyl) phosphoric acid (DEHPA, pka* = 5.2), 2-ethylhexylphosphonic acid, mono-2-ethylhexyl ester (PC88A, pka* = 7.1) and di(2,4,4-trimethylpentyl)phosphinic acid (CYANEX 272, pka* = 8.7). DOPPA (HL) is definitely more acidic than the other organophosphorus acids because its acidic proton can be easilymore » exchanged with sodium cation to form Na{sup +}HL{sub 2}{sup -} species in organic phase. In the second and final part of the work, molecular modelling is used to model the dimers of various organophosphorus acids. A structure-activity relationship is obtained between the association energies of modelled dimers and their diphasic acido-basic constants. This relationship is then used for predicting the pka* values of DOPPOA and DOPPIA which are the phosphonic and phosphinic analogs of DOPPA, respectively. 16 refs., 5 figs., 4 tabs.« less
Microbiological destruction of composite polymeric materials in soils
NASA Astrophysics Data System (ADS)
Legonkova, O. A.; Selitskaya, O. V.
2009-01-01
Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.
Two isomeric lead(II) carboxylate-phosphonates: syntheses, crystal structures and characterizations
NASA Astrophysics Data System (ADS)
Lei, Chong; Mao, Jiang-Gao; Sun, Yan-Qiong
2004-07-01
Two isomeric layered lead(II) carboxylate-phosphonates of N-(phosphonomethyl)- N-methyl glycine ([MeN(CH 2CO 2H)(CH 2PO 3H 2)]=H 3L), namely, monoclinic Pb 3L 2·H 2O 1 and triclinic Pb 3L 2·H 2O 2, have been synthesized and structurally determined. Compound 1 synthesized by hydrothermal reaction at 150°C is monoclinic, space group C2/ c with a=19.9872(6), b=11.9333(1) and c=15.8399(4) Å, β=110.432(3)°, V=3540.3(1) Å 3, and Z=8. The structure of compound 1 features a <400> layer in which the lead(II) ions are bridged by both phosphonate and carboxylate groups. The lattice water molecules are located between the layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Compound 2 with a same empirical formula as compound 1 was synthesized by hydrothermal reaction at 170°C. It has a different layer structure from that of compound 1 due to the adoption of a different coordination mode for the ligand. It crystallizes in the triclinic system, space group P 1¯ with cell parameters of a=7.1370(6), b=11.522(1), c=11.950(1) Å, α=110.280(2), β=91.625(2), γ=95.614(2)°, V=915.3(1) Å 3 and Z=2. The structure of compound 2 features a <020> metal carboxylate-phosphonate double layer built from 1D lead(II) carboxylate chains interconnected with 1D lead(II) phosphonate double chains. XRD powder patterns of compounds 1 and 2 indicate that each compound exists as a single phase.
NASA Astrophysics Data System (ADS)
Zhao, Yuancong; Tu, Qiufen; Wang, Jin; Huang, Qiongjian; Huang, Nan
2010-12-01
Crystalline TiO 2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO 2 films by self-assembling, and the HUPA on TiO 2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO 2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.
Methods for removing contaminant matter from a porous material
Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID
2010-11-16
Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.
Systems and strippable coatings for decontaminating structures that include porous material
Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID
2011-12-06
Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.
ERIC Educational Resources Information Center
Isokawa, Naho; Fueda, Kazuki; Miyagawa, Korin; Kanno, Kenichi
2015-01-01
Poly(vinyl alcohol) (PVA) precipitates in many kinds of aqueous salt solutions. While sodium sulfate, a coagulant for PVA fiber, precipitates PVA to yield a white rigid gel, coagulation of PVA with aluminum sulfate, a coagulant for water treatment, yields a slime-like viscoelastic fluid. One type of homemade slime is prepared under basic…
NASA Astrophysics Data System (ADS)
Deshmukh, Kalim; Sankaran, Sowmya; Basheer Ahamed, M.; Khadheer Pasha, S. K.; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Ali Almaadeed, Mariam; Chidambaram, K.
In the present study, graphene oxide (GO)-reinforced poly (4-styrenesulfonic acid) (PSSA)/polyvinyl alcohol (PVA) blend composite films were prepared using colloidal blending technique at various concentrations of GO (0-3wt.%). The morphological investigations of the prepared composites were carried out using polarized optical microscopy and scanning electron microscopy. The electrical properties of composites were evaluated using an impedance analyzer in the frequency range 50Hz to 20MHz and temperature in the range 40-150∘C. Morphological studies infer that GO was homogeneously dispersed in the PSSA/PVA blend matrix. Investigations of electrical property indicate that the incorporation of GO into PSSA/PVA blend matrix resulted in the enhancement of the impedance (Z) and the quality factor (Q-factor) values. A maximum impedance of about 4.32×106Ω was observed at 50Hz and 90∘C for PSSA/PVA/GO composites with 3wt.% GO loading. The Q-factor also increased from 8.37 for PSSA/PVA blend to 59.8 for PSSA/PVA/GO composites with 3wt.% GO loading. These results indicate that PSSA/PVA/GO composites can be used for high-Q capacitor applications.
Gao, Han; Lian, Keryn
2014-01-08
The effects of nano-SiO2 and nano-TiO2 fillers on a thin film silicotungstic acid (SiWA)-H3PO4-poly(vinyl alcohol) (PVA) proton conducting polymer electrolyte were studied and compared with respect to their proton conductivity, environmental stability, and dielectric properties, across a temperature range from 243 to 323 K. Three major effects of these fillers have been identified: (a) barrier effect; (b) intrinsic dielectric constant effect; and (c) water retention effect. Dielectric analyses were used to differentiate these effects on polymer electrolyte-enabled capacitors. Capacitor performance was correlated to electrolyte properties through dielectric constant and dielectric loss spectra. Using a single-ion approach, proton density and proton mobility of each polymer electrolyte were derived as a function of temperature. The results allow us to deconvolute the different contributions to proton conductivity in SiWA-H3PO4-PVA-based electrolytes, especially in terms of the effects of fillers on the dynamic equilibrium of free protons and protonated water in the electrolytes.
Phenolic metabolites in carnivorous plants: Inter-specific comparison and physiological studies.
Kováčik, Jozef; Klejdus, Bořivoj; Repčáková, Klára
2012-03-01
Despite intensive phytochemical research, data related to the accumulation of phenols in carnivorous plants include mainly qualitative reports. We have quantified phenolic metabolites in three species: Drosera capensis, Dionaea muscipula and Nepenthes anamensis in the "leaf" (assimilatory part) and the "trap" (digestive part). For comparison, commercial green tea was analysed. Phenylalanine ammonia-lyase (PAL) activities in Dionaea and Nepenthes were higher in the trap than in the leaf while the opposite was found in Drosera. Soluble phenols and majority of phenolic acids were mainly accumulated in the trap among species. Flavonoids were abundant in Drosera and Dionaea traps but not in Nepenthes. Phenolic acids were preferentially accumulated in a glycosidically-bound form and gallic acid was the main metabolite. Green tea contained more soluble phenols and phenolic acids but less quercetin. In vitro experiments with Drosera spathulata revealed that nitrogen deficiency enhances PAL activity, accumulation of phenols and sugars while PAL inhibitor (2-aminoindane-2-phosphonic acid) depleted phenols and some amino acids (but free phenylalanine and sugars were elevated). Possible explanations in physiological, biochemical and ecological context are discussed. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Phosphonated Near-Infrared Fluorophores for Biomedical Imaging of Bone**
Hyun, Hoon; Wada, Hideyuki; Bao, Kai; Gravier, Julien; Yadav, Yogesh; Laramie, Matt; Henary, Maged; Frangioni, John V.
2014-01-01
The conventional method for creating targeted contrast agents is to conjugate separate targeting and fluorophore domains. In this study we report a new strategy based on incorporation of targeting moieties into the non-resonant structure of pentamethine and heptamethine indocyanines. Using the known affinity of phosphonates for bone minerals as a model system, we have synthesized two families of bifunctional molecules that target bone without the need for a traditional bisphosphonate. With peak fluorescence emission at ≈ 700 nm or ≈ 800 nm, these molecules can be used for FLARE dual-channel imaging. Longitudinal FLARE studies in mice demonstrate that phosphonated near-infrared fluorophores remain stable in bone for over 5 weeks, and histological analysis demonstrates incorporation into bone matrix. Taken together, we describe a new strategy for creating ultracompact, targeted, near-infrared fluorophores for various bioimaging applications. PMID:25139079
Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers
Sun, Jing; Jiang, Xi; Siegmund, Aaron; ...
2016-04-04
Polymers that conduct protons in the hydrated state are of crucial importance in a wide variety of clean energy applications such as hydrogen fuel cells and artificial photosynthesis. Phosphonated and sulfonated polymers are known to conduct protons at low water content. In this study, we report on the synthesis phosphonated peptoid diblock copolymers, poly-N-(2-ethyl)hexylglycine-block-poly-N-phosphonomethylglycine (pNeh-b-pNpm), with volume fractions of pNpm (Φ Npm) values ranging from 0.13 to 0.44 and dispersity (¯D) ≤ 1.0003. The morphologies of the dry block copolypeptoids were determined by transmission electron microscopy and in both the dry and hydrated states by synchrotron small-angle X-ray scattering. Drymore » samples with Φ Npm > 0.13 exhibited a lamellar morphology. Upon hydration, the lowest molecular weight sample transitioned to a hexagonally packed cylinder morphology, while the others maintained their dry morphologies. Water uptake of all of the ordered samples was 8.1 ± 1.1 water molecules per phosphonate group. In spite of this, the proton conductivity of the ordered pNeh-b-pNpm copolymers ranged from 0.002 to 0.008 S/cm. Finally, we demonstrate that proton conductivity is maximized in high molecular weight, symmetric pNeh-b-pNpm copolymers.« less
Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers
2016-01-01
Polymers that conduct protons in the hydrated state are of crucial importance in a wide variety of clean energy applications such as hydrogen fuel cells and artificial photosynthesis. Phosphonated and sulfonated polymers are known to conduct protons at low water content. In this paper, we report on the synthesis phosphonated peptoid diblock copolymers, poly-N-(2-ethyl)hexylglycine-block-poly-N-phosphonomethylglycine (pNeh-b-pNpm), with volume fractions of pNpm (ϕNpm) values ranging from 0.13 to 0.44 and dispersity (Đ) ≤ 1.0003. The morphologies of the dry block copolypeptoids were determined by transmission electron microscopy and in both the dry and hydrated states by synchrotron small-angle X-ray scattering. Dry samples with ϕNpm > 0.13 exhibited a lamellar morphology. Upon hydration, the lowest molecular weight sample transitioned to a hexagonally packed cylinder morphology, while the others maintained their dry morphologies. Water uptake of all of the ordered samples was 8.1 ± 1.1 water molecules per phosphonate group. In spite of this, the proton conductivity of the ordered pNeh-b-pNpm copolymers ranged from 0.002 to 0.008 S/cm. We demonstrate that proton conductivity is maximized in high molecular weight, symmetric pNeh-b-pNpm copolymers. PMID:27134312
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S. T., E-mail: s164.smith@qut.edu.au; Masters, K.-S.; Hosokawa, K.
2015-12-15
Purpose: A modification of the existing PVA-FX hydrogel has been made to investigate the use of a functionalised polymer in a Fricke gel dosimetry system to decrease Fe{sup 3+} diffusion. Methods: The chelating agent, xylenol orange, was chemically bonded to the gelling agent, polyvinyl alcohol (PVA) to create xylenol orange functionalised PVA (XO-PVA). A gel was created from the XO-PVA (20% w/v) with ferrous sulfate (0.4 mM) and sulfuric acid (50 mM). Results: This resulted in an optical density dose sensitivity of 0.014 Gy{sup −1}, an auto-oxidation rate of 0.0005 h{sup −1}, and a diffusion rate of 0.129 mm{sup 2}more » h{sup −1}; an 8% reduction compared to the original PVA-FX gel, which in practical terms adds approximately 1 h to the time span between irradiation and accurate read-out. Conclusions: Because this initial method of chemically bonding xylenol orange to polyvinyl alcohol has inherently low conversion, the improvement on existing gel systems is minimal when compared to the drawbacks. More efficient methods of functionalising polyvinyl alcohol with xylenol orange must be developed for this system to gain clinical relevance.« less
NASA Astrophysics Data System (ADS)
Niu, Qing-Jun; Zheng, Yue-Qing; Zhou, Lin-Xia; Zhu, Hong-Lin
2015-07-01
Two 2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonato and oxalic acid bridged coordination polymers (H2en)[Co3(H2zdn)2(ox)(H2O)2] (1) and Cd2(H2zdn)(ox)0.5(H2O) (2) (2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid=H5zdn; oxalic acid=H2ox) were synthesized under hydrothermal conditions and characterized by the infrared (IR), thermogravimetric analyses (TGA), elemental analyses (EA) and X-ray diffraction (XRD). Compound 1 is bridged by phosphonate anions to 1D chain, and further linked by oxalate anions to 2D layer. Compound 2 is bridged by O-P-O units of H5zdn to the layer, and then pillared by oxalate anions to generate 3D frameworks. Compound 1 shows anti-ferromagnetic behaviors analyzed with the temperature-dependent zero-field ac magnetic susceptibilities, while compound 2 exhibits an influence on the luminescent property.
Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds
Zhukova, Natalia V.
2014-01-01
The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens) and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed. PMID:25196731
Removal of humic acid from aqueous solution using dual PMMA/PVDF composite nanofiber: kinetics study
NASA Astrophysics Data System (ADS)
Zulfikar, M. A.; Afrianingsih, I.; Bahri, A.; Nasir, M.; Alni, A.; Setiyanto, H.
2018-05-01
The removal of humic acid from aqueous solution using dual poly(methyl methacrylate)/polyvinyl difluoride composite nanofiber under the influence of concentration has been studied. The experiments were performed using humic acid (HA) as an adsorbate at concentration in the range of 50-200 mg/L. Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were used to describe the kinetic data and the rate constants were evaluated. It was observed that the amount of humic acid removed decrease with increasing concentration. The kinetic study revealed that pseudo-second order model fitted well the kinetic data, while the external diffusion or boundary layer diffusion was the main rate determining step in the removal process.
76 FR 13982 - Antidumping Duty Order: Polyvinyl Alcohol From Taiwan
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
...: Polyvinyl Alcohol From Taiwan AGENCY: Import Administration, International Trade Administration, Department... on polyvinyl alcohol (PVA) from Taiwan. DATES: Effective Date: March 15, 2011. FOR FURTHER... from Taiwan. See Polyvinyl Alcohol From Taiwan: Final Determination of Sales at Less Than Fair Value...
Rut, Wioletta; Zhang, Linlin; Kasperkiewicz, Paulina; Poreba, Marcin; Hilgenfeld, Rolf; Drąg, Marcin
2017-03-01
Zika virus is spread by Aedes mosquitoes and is linked to acute neurological disorders, especially to microcephaly in newborn children and Guillan-Barré Syndrome. The NS2B-NS3 protease of this virus is responsible for polyprotein processing and therefore considered an attractive drug target. In this study, we have used the Hybrid Combinatorial Substrate Library (HyCoSuL) approach to determine the substrate specificity of ZIKV NS2B-NS3 protease in the P4-P1 positions using natural and a large spectrum of unnatural amino acids. Obtained data demonstrate a high level of specificity of the S3-S1 subsites, especially for basic amino acids. However, the S4 site exhibits a very broad preference toward natural and unnatural amino acids with selected D-amino acids being favored over L enantiomers. This information was used for the design of a very potent phosphonate inhibitor/activity-based probe of ZIKV NS2B-NS3 protease. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ptak, Tomasz; Młynarz, Piotr; Dobosz, Agnieszka; Rydzewska, Agata; Prokopowicz, Monika
2013-05-01
Boronic acids are a class of intensively explored compounds, which according to their specific properties have been intensively explored in last decades. Among them phenylboronic acids and their derivatives are most frequently examined as receptors for diverse carbohydrates. In turn, there is a large gap in basic research concerning complexation of catecholamines by these compounds. Therefore, we decided to undertake studies on interaction of chosen catecholamines, namely: noradrenaline (norephinephrine), dopamine, L-DOPA, DOPA-P (phosphonic analog of L-DOPA) and catechol, with simple phenyl boronic acid PBA by means of potentiometry and NMR spectroscopy. For comparison, the binding properties of recently synthesized phenylboronic receptor 1 bearing aminophosphonate function in meta-position were investigated and showed promising ability to bind catecholamines. The protonation and stability constants of PBA and receptor 1 complexes were examined by potentiometry. The obtained results demonstrated that PBA binds the catecholamines with the following affinity order: noradrenaline ⩾ dopamine ≈ L-DOPA > catechol > DOPA-P, while its modified analog 1 reveals slightly different preferences: dopamine > noradrenaline > catechol > L-DOPA > DOPA-P.
Hybrid blends of poly(amidoamine) PAMAM dendrimers with two linear high polymers, poly(vinyl chloride), PVC, and poly(vinyl acetate), PVAc, are reported. The interaction between the blend components was studied using dynamic mechanical analysis, xenon nuclear magnetic resonacne ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-01
... DEPARTMENT OF COMMERCE International Trade Administration [A-583-841] Polyvinyl Alcohol From...) is rescinding its administrative review of the antidumping duty order on polyvinyl alcohol (PVA) from... CCPC to the Department, ``Polyvinyl Alcohol from Taiwan: Withdrawal of Administrative Review Request...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... Determination of Antidumping Duty Investigation: Polyvinyl Alcohol From Taiwan AGENCY: Import Administration... (the Department) initiated the antidumping duty investigation on polyvinyl alcohol from Taiwan. See Initiation of Anti-Dumping Duty Investigation: Polyvinyl Alcohol From Taiwan, 69 FR 59204 (October 4, 2004...
1987-04-01
ISODRIN, DIELDRIN, DIISOPROPYLMETHYL- PHOSPHONATE, 1,2-DIBROMO-3- CHLOROPROPANE , AND p-CHLORO- PHENYLMETHYLSULFOXIDE i April 1987 Pet r J. M-&rks...Chester, Pennsylvania 19380 Work Order No. 2281-04-11 1053B TABLE OF CONTENTS 3 Page Paragraph i INTRODUCTION ........................ 1 1.1 Purpose... 1 2 LITERATURE SUMMARY .................... 2 2.1 General ............................. 2 2.2 DBCP
Zhou, Yujing; Zhang, Yan; Wang, Jianbo
2016-11-08
A general approach towards diverse fluorinated phosphonates via geminal difunctionalization reactions of α-diazo arylmethylphosphonates is described. The diazo functionality (RR'C[double bond, length as m-dash]N 2 ) is successfully converted to RR'CF 2 , RR'CHF, RR'CFBr or RR'CFNR'' 2 groups by employing different fluorination reagents. A variety of fluorinated organophosphorus compounds were readily accessed in good to excellent yields from a common type of precursor.
Ding, Zicheng; Chen, Bo; Ding, Junqiao; Wang, Lixiang; Han, Yanchun
2014-07-01
Supramolecular metallogels can be gained from the phosphonate substituted 4,4'-bis(N-carbazolyl)biphenyl (PCBP) in the presence of aluminum chloride in alcohols, which can donate oxygen to aid proton transfer in the aluminum organophosphorus complexes. Inside the metallogels, three-dimensional fiber networks with nanofibers entangling and intersecting with each other inside are formed. The nanofibers show layered structures with a period thickness of 0.82 nm. As the content of aluminum(III) increases, the size of the fibers becomes smaller and the fibers pack more densely. It makes the transparent gel become turbid but nevertheless improves the stability of the metallogels. NMR, FT-IR and fluorescence spectroscopy show that the coordination interactions between the phosphonate groups of PCBP molecules and aluminum(III) ions as well as the π-π interactions among PCBP molecules are involved during the gel formation process. Copyright © 2014 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-19
... National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production... Polyvinyl Chloride and Copolymers Production is being extended for 14 days. DATES: Comments. The public... for the May 20, 2011, Proposed Polyvinyl Chloride and Copolymers Production Rule, the EPA is extending...
Heyes, Logan C; Reichau, Sebastian; Cross, Penelope J; Jameson, Geoffrey B; Parker, Emily J
2014-12-01
3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyses the first committed step of the shikimate pathway, which produces the aromatic amino acids as well as many other aromatic metabolites. DAH7PS catalyses an aldol-like reaction between phosphoenolpyruvate and erythrose 4-phosphate. Three phosphoenolpyruvate mimics, (R)-phospholactate, (S)-phospholactate and vinyl phosphonate [(E)-2-methyl-3-phosphonoacrylate], were found to competitively inhibit DAH7PS from Neisseria meningitidis, which is the pathogen responsible for bacterial meningitis. The most potent inhibitor was the vinyl phosphonate with a Ki value of 3.9±0.4μM. We report for the first time crystal structures of these compounds bound in the active site of a DAH7PS enzyme which reveals that the inhibitors bind to the active site of the enzyme in binding modes that mimic those of the predicted oxocarbenium and tetrahedral intermediates of the enzyme-catalysed reaction. Furthermore, the inhibitors accommodate the binding of a key active site water molecule. Together, these observations provide strong evidence that this active site water participates directly in the DAH7PS reaction, enabling the facial selectivity of the enzyme-catalysed reaction sequence to be delineated. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Somov, N. V.; Chausov, F. F.; Zakirov, R. M.
2017-07-01
3D coordination polymers cesium nitrilotris(methylenephosphonate) and dicesium nitrilotris( methylenephosphonate) are synthesized and their crystal structure is determined. In the crystal of [Cs-μ6-NH(CH2PO3)3H4] (space group P, Z = 2), cesium atoms occupy two crystallographically inequivalent positions with c.n. = 10 and c.n. = 14. The phosphonate ligand plays the bridging function; its denticity is nine. The crystal packing consists of alternating layers of Cs atoms in different environments with layers of ligand molecules between them. A ligand is bound to three Cs atoms of one layer and three Cs atoms of another layer. In the crystal of [Cs2-μ10-NH(CH2PO3H)3] · H2O (space group P, Z = 2), the complex has a dimeric structure: the bridging phosphonate ligand coordinates Cs to form a three-dimensional Cs4O6 cluster. The denticity of the ligand is equal to nine; the coordination numbers of cesium atoms are seven and nine. Two-dimensional corrugated layers of Cs4O6 clusters lie in the (002) plane, and layers of ligand molecules are located between them. Each ligand molecule coordinates eight Cs atoms of one layer and two Cs atoms of the neighboring layer.
Shifrin, Helena; Harel, Efrat; Nadler-Milbauer, Mirela; Weinstock, Marta; Srebnik, Morris
2015-01-01
A novel fused-cyclopentenone phosphonate compound, namely, diethyl 3-nonyl-5-oxo-3,5,6,6a-tetrahydro-1H-cyclopenta[c]furan-4-ylphosphonate (P-5), was prepared and tested in vitro (LPS-activated macrophages) for its cytotoxicity and anti-inflammatory activity and in vivo (DNBS induced rat model) for its potential to ameliorate induced colitis. Specifically, the competence of P-5 to reduce TNFα, IL-6, INFγ, MCP-1, IL-1α, MIP-1α, and RANTES in LPS-activated macrophages was measured. Experimental colitis was quantified in the rat model, macroscopically and by measuring the activity of tissue MPO and iNOS and levels of TNFα and IL-1β. It was found that P-5 decreased the levels of TNFα and the tested proinflammatory cytokines and chemokines in LPS-activated macrophages. In the colitis-induced rat model, P-5 was effective locally in reducing mucosal inflammation. This activity was equal to the activity of local treatment with 5-aminosalicylic acid. It is speculated that P-5 may be used for the local treatment of IBD (e.g., with the aid of colon-specific drug platforms). Its mode of action involves inhibition of the phosphorylation of MAPK ERK but not of p38 and had no effect on IκBα. PMID:25949237
Coleman, Sabre J; Coronado, Paul R; Maxwell, Robert S; Reynolds, John G
2003-05-15
Aqueous solutions of 100 parts per billion (ppb) uranium at pH 7 were treated with granulated activated carbon (GAC) that had been modified with various formulations of hydrophobic aerogels. The composite materials were found to be superior in removing uranium from a stock solution compared to GAC alone evaluated by a modified ASTM D 3860-98 method for batch testing. The testing results were evaluated using a Freundlich adsorption model. The best performing material has parameters of n = 287 and Kf = 1169 compared to n = 1.00, and Kf = 20 for GAC alone. The composite materials were formed by mixing (CH3O)4Si with the hydrophobic sol-gel precursor, (CH3O)3SiCH2CH2CF3 and with specified modifiers, such as H3PO4, Ca(NO3)2, and (C2H5O)3SiCH2CH2P(O)(OC2H5)2, elation catalysts, and GAC in a supercritical reactor system. After gelation, supercritical extraction, and sieving, the composites were tested. Characterization by FTIR and 31P NMR indicate the formation of phosphate in the case of the H3PO4 and Ca(NO3)2 composites and phosphonic acid related compounds in the phosphonate composite. These composite materials have potential application in the clean up of groundwater at DOE and other facilities.
Optical fiber Fabry-Perot interferometer with pH sensitive hydrogel film for hazardous gases sensing
NASA Astrophysics Data System (ADS)
Zheng, Yangzi; Chen, Li Han; Chan, Chi Chiu; Dong, Xinyong; Yang, Jingyi; Tou, Zhi Qiang; So, Ping Lam
2015-09-01
An optical fiber Fabry-Perot interferometer (FPI) coated with polyvinyl alcohol/poly-acrylic acid (PVA/PAA) hydrogel film for toxic gases measurement has been developed. Splicing a short section of hollow core fiber between two single mode fibers forms the FPI. Dip-coated pH-sensitive PVA/PAA hydrogel film on the fiber end performs as a receptor for binding of volatile acids or ammonia, which makes the sensing film swelling or shrinking and results in the dip wavelength shift of the FPI. By demodulating the evolution of reflection spectrum for various concentrations of volatile acids, a sensitivity of 20.8 nm/ppm is achieved with uniform linearity.
Antiviral Activity of Polyacrylic and Polymethacrylic Acids
De Somer, P.; De Clercq, E.; Billiau, A.; Schonne, E.; Claesen, M.
1968-01-01
Polyacrylic acid (PAA) and polymethacrylic acid (PMAA) were investigated for their antiviral properties in tissue culture. Compared to other related polyanions, as dextran sulfate, polystyrene sulfonate, polyvinyl sulfate, and polyphloroglucinol phosphate, PAA and PMAA were found to be significantly more antivirally active and less cytotoxic. PMAA added 24 hr prior to virus inoculation inhibited viral growth most efficiently but it was still effective when added 3 hr after infection. Neither a direct irreversible action on the virus nor inhibition of virus penetration into the cell could explain the antiviral activity of PMAA. PMAA inhibited the adsorption of the virus to the host cell and suppressed the one-cycle viral synthesis in tissue cultures inoculated with infectious RNA. PMID:4302187
NASA Astrophysics Data System (ADS)
Radsick, Timothy Carl
The purpose of this study was to develop phosphorous-based chemicals that could be used to modify the interparticle pair potential of several oxide ceramic particles, thereby enabling their use in colloidal processing schemes. Several procedures for the synthesis of 11-12 carbon alpha,o-functionalized monoalkyl phosphates and phosphonates were developed. Because of its simplicity and its use of mild reagents, a procedure based on the Michaelis-Arbuzov rearrangement was selected to produce the bulk of the chemicals used in this study. Carboxyl- and hydroxyl-terminated monoalkyl phosphonates were adsorbed onto alumina and zirconia powders using either aqueous-based or solvent-based methods to produce a monolayer of "brushlike" steric molecules. In the aqueous-based methods, powders were processed at pH values below their isoelectric point in order to produce a positive charge on the powder, thereby attracting the negatively charged phosphate or phosphonate group onto the powder surface to form the steric monolayer. In solvent-based methods, powder was suspended in an acetone solution of the phosphonates, heated at reflux, washed, dried and heat treated at 120°C under vacuum. The zeta potential of the coated powders was measured to quantify the degree of steric layer adsorption and the shift in the isoelectric point. Slurries of coated alumina and zirconia were prepared having 20 vol % powder. Rheological behavior was studied by measuring viscosity as a function of shear rate for slurries of various pH values and counterion concentrations. Slurries with powder processed via the solvent method were the least sensitive to changes in slurry pH and were straightforward to prepare. It is thought that the solvent-based coating procedure produced a stronger, multi-dentate powder-phosphonate bond than that of the aqueous-based procedure. Dispersed and coagulated slurries were able to be prepared over a wide pH range, including at the isoelectric point of the uncoated powders where a flocculated slurry would typically occur. Slurries were consolidated using pressure filtration. Compressive stress-strain behavior and packing efficiencies were determined. Through consolidation, powder volume fraction was increased to a maximum of 56%, yet through vibration the slurry could be induced to flow, enabling its use in Colloidal Isopressing.
O'Byrne, M B; Tipton, K F
2000-05-01
Taurine is a sulphur-containing beta-amino acid found in high (millimolar) concentrations in excitable tissues such as brain and heart. Its suggested roles include osmoregulator, thermoregulator, neuromodulator, and potential neurotransmitter. This amino acid has also been shown to be released in large concentrations during ischaemia and excitotoxin-induced neuronal damage. Here we report a protective effect of taurine against MPP(+)-induced neurotoxicity in coronal slices from rat brain. Significant protective effects were observed at taurine concentrations of 20 and 1 mM, suggesting a potential role for taurine in cases of neuronal insult. Studies with the synthetic taurine analogues taurine phosphonate, guanidinoethane sulphonate, and trimethyltaurine suggested the observed effect to be mediated via an extracellular mechanism. The use of GABA receptor ligands muscimol and bicuculline indicated the effect to be mediated through activation of GABA(A) receptors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary
AlGaN/GaN Field Effect Transistors (FETs) are promising biosensing devices. Functionalization of these devices is explored in this study using an in situ approach with phosphoric acid etchant and a phosphonic acid derivative. Devices are terminated on peptides and soaked in water for up to 168 hrs to examine FETs for both device responses and surface chemistry changes. Measurements demonstrated threshold voltage shifting after the functionalization and soaking processes, but demonstrated stable FET behavior throughout. X-ray photoelectron spectroscopy and atomic force microscopy confirmed peptides attachment to device surfaces before and after water soaking. Results of this work point to the stabilitymore » of peptide coated functionalized AlGaN/GaN devices in solution and support further research of these devices as disposable, long term, in situ biosensors.« less
Vyakaranam, Kamesh; Hosmane, Narayan S.
2004-01-01
A number of nucleoside mono- and diphosphites and phosphonates containing 1,2-dicarbadodecaborane (12) (la-6b) at 5'-position of the sugar moiety have been synthesized in good yields. Experimental details along with the spectroscopic and analytical data, supporting the formation of the title compounds, are presented. These constitute a new generation of boron compounds that are envisioned to be useful in cancer treatment via Boron Neutron Capture Therapy (BNCT). PMID:18365067
Prasanth, V.V.; Puratchikody, A.; Mathew, S.T.; Ashok, K.B.
2014-01-01
The purpose of this work was to study the effect of various permeation enhancers on the permeation of salbutamol sulphate (SS) buccal patches through buccal mucosa in order to improve the bioavailability by avoiding the first pass metabolism in the liver and possibly in the gut wall and also achieve a better therapeutic effect. The influence of various permeation enhancers, such as dimethyl sulfoxide (DMSO), linoleic acid (LA), isopropyl myristate (IPM) and oleic acid (OA) on the buccal absorption of SS from buccal patches containing different polymeric combinations such as hydroxypropyl methyl cellulose (HPMC), carbopol, polyvinyl alcohol (PVA), polyvinyl pyrollidone (PVP), sodium carboxymethyl cellulose (NaCMC), acid and water soluble chitosan (CHAS and CHWS) and Eudragit-L100 (EU-L100) was investigated. OA was the most efficient permeation enhancer increasing the flux greater than 8-fold compared with patches without permeation enhancer in HPMC based buccal patches when PEG-400 was used as the plasticizer. LA also exhibited a better permeation enhancing effect of over 4-fold in PVA and HPMC based buccal patches. In PVA based patches, both OA and LA were almost equally effective in improving the SS permeation irrespective of the plasticizer used. DMSO was more effective as a permeation enhancer in HPMC based patches when PG was the plasticizer. IPM showed maximum permeation enhancement of greater than 2-fold when PG was the plasticizer in HPMC based buccal patches. PMID:25657797
Antiviral Activity of Polyacrylic and Polymethacrylic Acids
De Somer, P.; De Clercq, E.; Billiau, A.; Schonne, E.; Claesen, M.
1968-01-01
A marked virus-inhibiting potency is obtained in the serum after intraperitoneal injection of polyacrylic acid (PAA) and polymethacrylic acid (PMAA) in mice. Much higher antiviral levels were reached than for other related polymers including dextran sulfate, heparin, polyvinyl sulfate, pyran copolymer, polystyrene sulfonate, and macrodex. The broad antiviral action of PAA and PMAA was attributed both to a direct interference with the virus-cell interaction and the viral ribonucleic acid metabolism and to the formation of an interferon-like factor. Both polyanions differed in interferon-inducing ability: highest serum interferon titer was obtained 18 hr after the intraperitoneal injection of PAA. The mechanism of interferon production by PAA and PMAA is discussed. As described previously for Sindbis virus and endotoxin, the animals also became hyporeactive after injection of PAA. PMID:5725320
Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles.
Teow, Yiwei; Valiyaveettil, Suresh
2010-12-01
Interaction of nanoparticles with human cells is an interesting topic for understanding toxicity and developing potential drug candidates. Water soluble platinum nanoparticles were synthesized via reduction of hexachloroplatinic acid using sodium borohydride in the presence of capping agents. The bioactivity of folic acid and poly(vinyl pyrrolidone) capped platinum nanoparticles (Pt-nps) has been investigated using commercially available cell lines. In the cell viability experiments, PVP-capped nanoparticles were found to be less toxic (>80% viability), whereas, folic acid-capped platinum nanoparticles showed a reduced viability down to 24% after 72 h of exposure at a concentration of 100 μg ml(-1) for MCF7 breast cancer cells. Such toxicity, combined with the possibility to incorporate functional organic molecules as capping agents, can be used for developing new drug candidates.
Spin-coated Films of Squarylium Dye J-Aggregates Exhibiting Ultrafast Optical Responses
NASA Astrophysics Data System (ADS)
Tatsuura, Satoshi; Tian, Minquan; Furuki, Makoto; Sato, Yasuhiro; Pu, Lyong Sun; Wada, Osamu
2000-08-01
The formation of J-aggregates of squarylium dye derivatives in spin-coated films is reported. Squarylium dye derivatives with dipropylamino bases are found to spontaneously aggregate in a spin-coated film. Aggregation is promoted when dye molecules are dispersed in a poly(vinyl alcohol) film, and when a spin-coated film of dye molecules is heated in the presence of acid vapor. In particular, J-aggregates formed by exposure to acetic acid vapor show the narrowest spectral width. J-aggregates formed by the acid treatment method are stable at room temperature and the spectral full-width at half maximum of the J-band is 20 nm. Optical response of the acid-treated film is confirmed to exhibit a short relaxation time of bleached absorption of 300 fs.
21 CFR 177.1670 - Polyvinyl alcohol film.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyvinyl alcohol film. 177.1670 Section 177.1670... Components of Single and Repeated Use Food Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact with food of the types identified in § 176.170(c) of this...
21 CFR 177.1670 - Polyvinyl alcohol film.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyvinyl alcohol film. 177.1670 Section 177.1670... Components of Single and Repeated Use Food Contact Surfaces § 177.1670 Polyvinyl alcohol film. Polyvinyl alcohol film may be safely used in contact with food of the types identified in § 176.170(c) of this...
Multifunctional phosphate-based inorganic-organic hybrid nanoparticles.
Heck, Joachim G; Napp, Joanna; Simonato, Sara; Möllmer, Jens; Lange, Marcus; Reichardt, Holger M; Staudt, Reiner; Alves, Frauke; Feldmann, Claus
2015-06-17
Phosphate-based inorganic-organic hybrid nanoparticles (IOH-NPs) with the general composition [M](2+)[Rfunction(O)PO3](2-) (M = ZrO, Mg2O; R = functional organic group) show multipurpose and multifunctional properties. If [Rfunction(O)PO3](2-) is a fluorescent dye anion ([RdyeOPO3](2-)), the IOH-NPs show blue, green, red, and near-infrared fluorescence. This is shown for [ZrO](2+)[PUP](2-), [ZrO](2+)[MFP](2-), [ZrO](2+)[RRP](2-), and [ZrO](2+)[DUT](2-) (PUP = phenylumbelliferon phosphate, MFP = methylfluorescein phosphate, RRP = resorufin phosphate, DUT = Dyomics-647 uridine triphosphate). With pharmaceutical agents as functional anions ([RdrugOPO3](2-)), drug transport and release of anti-inflammatory ([ZrO](2+)[BMP](2-)) and antitumor agents ([ZrO](2+)[FdUMP](2-)) with an up to 80% load of active drug is possible (BMP = betamethason phosphate, FdUMP = 5'-fluoro-2'-deoxyuridine 5'-monophosphate). A combination of fluorescent dye and drug anions is possible as well and shown for [ZrO](2+)[BMP](2-)0.996[DUT](2-)0.004. Merging of functional anions, in general, results in [ZrO](2+)([RdrugOPO3]1-x[RdyeOPO3]x)(2-) nanoparticles and is highly relevant for theranostics. Amine-based functional anions in [MgO](2+)[RaminePO3](2-) IOH-NPs, finally, show CO2 sorption (up to 180 mg g(-1)) and can be used for CO2/N2 separation (selectivity up to α = 23). This includes aminomethyl phosphonate [AMP](2-), 1-aminoethyl phosphonate [1AEP](2-), 2-aminoethyl phosphonate [2AEP](2-), aminopropyl phosphonate [APP](2-), and aminobutyl phosphonate [ABP](2-). All [M](2+)[Rfunction(O)PO3](2-) IOH-NPs are prepared via noncomplex synthesis in water, which facilitates practical handling and which is optimal for biomedical application. In sum, all IOH-NPs have very similar chemical compositions but can address a variety of different functions, including fluorescence, drug delivery, and CO2 sorption.
Functionalized Polymeric Materials for Electronics and Optics
1993-05-31
some of the physical characteristics of the photocrosslinkable systems derived from a cinnamate functionalized NLO-dye and the photoreactive polymers...chromophore. Figure 12.12 is a UV-Vis spectrum of polyvinyl cinnamate film doped with 10% of the cross-linkable NLO azo dye CNNB-R. The spectrum for the poled...can be similarly prepared from aqueous solutions containing aniline and hydrochloric or sulfuric acids . A very useful review of synthetic methods for
She, Jiarong; Tian, Cuihua; Wu, Yiqiang; Li, Xianjun; Luo, Sha; Qing, Yan; Jiang, Zheng
2018-06-01
Cellulose nanofibrils (CNFs), disintegrated from natural fibers, are promising alternatives in wastewater purification for the porous structure and numerous hydroxyls. The pristine CNFs aerogel has limited mechanical strength and are vulnerable to collapse when exposed to water. In this work, eco-friendly and recycled CNFs aerogel adsorbents were successfully prepared using cellulose nanofibrils (CNFs), which cross-linked by poly(vinyl alcohol) (PVA) and acrylic acid (AA). The combination of PVA and AA endowed CNFs aerogel strong three-dimensional porous structure and desirable adsorption properties. The heavy metal ions were adsorbed on the CNFs-PVA-AA (CPA) adsorbents efficiently and the maximum adsorption capacities for Cu2+ and Pb2+ approached 30.0 mg/g and 131.5 mg/g, respectively. The CPA adsorbent also showed excellent reusability and their adsorption capacities maintained 89% and 88% for Cu2+ and Pb2+ after 5 repeated uses. The adsorption of these heavy metal ions were confirmed to follow pseudo-second-order kinetic and Langmuir isotherm model. The functions of C ═ O and -OH were the major adsorption sites. Chemical adsorption combined with the porous physical adsorption made the CPA to be excellent adsorbent for the removal of heavy metal ions in wastewater.
Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György
2016-03-01
Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).
NASA Astrophysics Data System (ADS)
Biswas, Sujoy; Pathak, P. N.; Roy, S. B.
2012-06-01
An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λmax) for UO22+-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol-1 cm-1). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to >24 h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO22+-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is <2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ±2%. This method can be used to determine 2.5-250 μg mL-1 uranium in ore leach solutions with high accuracy and precision.
Huang, Xing-Fen; Wu, Qing-Lai; He, Jian-Shi; Huang, Zhi-Zhen
2015-04-21
A novel DCC reaction between aromatic aldehydes or ketones and H-phosphonates has been developed for the synthesis of p-formyl or p-acylphenylphosphonates. The synthetic method has excellent para regioselectivities, good yields, and broad substrate scopes and is more benign to the environment. The DCC reaction also tolerates many functional groups, and results in a series of new p-formyl and p-acylphenylphosphonates, which should be important building blocks for the synthesis of versatile arylphosphonate derivatives.
Polymer performance in cooling water: The influence of process variables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amjad, Z.; Pugh, J.; Zibrida, J.
1997-01-01
The key to the efficacy of phosphate and phosphonates in stabilized phosphate and all-organic cooling water treatment (CWT) programs is the presence and performance of polymeric inhibitors/dispersants. The performance of polymeric additives used in CWT programs can be adversely impacted by the presence of iron, phosphonate, or cationic polymer and influenced by a variety of process variables including system pH and temperature. In this article, the performance of several polymeric additives is evaluated under a variety of stressed conditions.
Polymer performance in cooling water: The influence of process variables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amjad, Z.; Pugh, J.; Zibrida, J.
1996-12-01
The key to the efficacy of phosphate and phosphonates in stabilized phosphate and all-organic cooling water treatment (CWT) programs is the presence and performance of polymeric inhibitors/dispersants. The performance of polymeric additives used in CWT programs can be adversely impacted by the presence of iron, phosphonate, or cationic polymer and influenced by a variety of process variables including system pH and temperature. In this paper, the performance of several polymeric additives is evaluated under a variety of stressed conditions.
NASA Astrophysics Data System (ADS)
Yee, Chanel Kitmon
2001-10-01
A general one-phase synthesis for self-assembling thiols onto gold, platinum, palladium and iridium nanoparticles using tetrahydrofuran (THF) as the solvent, and lithium triethylborohydride (superhydride) as the reducing agent, is presented. Using the same synthetic procedure gold nanoparticles functionalized with 11-hydroxyundecane-1-thiol and 4'-bromo-4-mercaptobiphenyl were prepared to show that the availability and reflexibility of this method could lead to surface fabrication with various type of facial moieties. Alkyl selenide- and alkyl thiolate-functionalized gold nanoparticles were also prepared by the same method at 6°C. The properties were compared to their counterparts made at 25°C. The formation of the Se-Au bond and S-Au bonds was investigated by transmission Fourier transform infrared spectroscopy (FTIR), while the bond nature in each case was examined by x-ray photoelectron spectroscopy (XPS). Particle size was determined by Transmission Electron Microscopy (TEM), and further confirmed by ultraviolet spectroscopy (UV). Superparamagnetic Fe and Fe2O3 nanoparticles were synthesized by ultrasound irradiation and post-fabricated with alkyl sulfonic acids of various chain lengths and octadecyl phosphonic acid. TEM reveals nanoparticles of 5--10 mn in diameter. FTIR spectra suggest that the alkyl chains are packed in a solid-like assembly with packing disorder increasing with the decreasing chain length. The octadecyl sulfonic acid coating displays the lowest magnetization within the sulfonic acid series, which may be explained by the high packing and ordering of the alkyl chains on the particle surface. The smallest value of magnetization in the OPA case suggests that the spin-state of surface Fe3+ ions is affected by the bonded surfactant, and that the phosphonate empty d-orbitals increase magnetic interactions between neighboring Fe3+ spins. To build superstructures beyond the monolayer level, a general route for the attachment of amino-terminated biomolecules to nanoparticles was proposed. Thiophene thiolate-functionalized platinum nanoparticles were prepared and reacted with nitrosonium tetrafluoroborate to provide the nitroso-functionalized nanoparticles. The reaction of the nitroso group with primary amines to yield strong N=N bonds might provide a general route for the attachment of amino-terminated biomolecules to nanoparticles. The attachment of two cytidine molecules to platinum nanoparticles was accomplished, and experimental data were provided to demonstrate the intended grafting reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, Woosoon; Bae, Chulsung
The growing scarcity of fresh water is a major political and economic challenge in the 21st century. Compared to thermal-based distillation technique of water production, pressure driven membrane-based water purification process, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), can offer more energy-efficient and environmentally friendly solution to clean water production. Potential applications also include removal of hazardous chemicals (i.e., arsenic, pesticides, organics) from water. Although those membrane-separation technologies have been used to produce drinking water from seawater (desalination) and non-traditional water (i.e., municipal wastewater and brackish groundwater) over the last decades, they still have problems in ordermore » to be applied in large-scale operations. Currently, a major huddle of membrane-based water purification technology for large-scale commercialization is membrane fouling and its resulting increases in pressure and energy cost of filtration process. Membrane cleaning methods, which can restore the membrane properties to some degree, usually cause irreversible damage to the membranes. Considering that electricity for creating of pressure constitutes a majority of cost (~50%) in membrane-based water purification process, the development of new nano-porous membranes that are more resistant to degradation and less subject to fouling is highly desired. Styrene-ethylene/butylene-styrene (SEBS) block copolymer is one of the best known block copolymers that induces well defined morphologies. Due to the polarity difference of aromatic styrene unit and saturated ethylene/butylene unit, these two polymer chains self-assemble each other and form different phase-separated morphologies depending on the ratios of two polymer chain lengths. Because the surface of SEBS is hydrophobic which easily causes fouling of membrane, incorporation of ionic group (e,g, sulfonate) to the polymer is necessary to reduces fouling. Recently, sulfonated SEBS became commercially available and has been extensively explored for membrane-mediated water purification technology. The sulfonated block copolymer creates a well developed nano-sale phase-separated morphologies composed of hydrophilic domains (sulfonated polystyrene) and hydrophobic domains (polyethylene/polybutylene). The hydrophilic domains determines transport properties (water transport, salt and/or ion rejection, etc) and the hydrophobic domains provides mechanical stability of the membrane. Unfortunately, a high degree of sulfonation of SEBS induces excessive swelling and deterioration of mechanical stability of the membrane. In an effort to develop robust polymeric membrane materials for water purification technology, phosphonic acid-functionalized SEBS membranes are investigated during this report period. In compare to sulfonated polymers, the corresponding phosphonated polymers are known to swell less because of the formation of extensive hydrogen bonding networks between phosphonates. In addition to the expected better mechanical stability, phosphonated polymers has another advantage over sulfonated polymers for the use water purification membrane; each phosphonate can accommodate two ions while each sulfonate accommodates only one ion. Membrane properties (ion type, ionic density, etc) of new membranes will be studied and their separation performance will be evaluated in water purification and desalination process. Through systematic study of the relationship of chemical structure–surface property–membrane performance, we aim to better understand the nature of membrane fouling and develop more fouling-resistant water purification membranes. The basic understanding of this relationship will lead to the development of advanced membrane materials which can offer a solution to environmentally sustainable production of fresh water.« less
Morphologies of precise polyethylene-based acid copolymers and ionomers
NASA Astrophysics Data System (ADS)
Buitrago, C. Francisco
Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been identified for precise acid copolymers and ionomers at room temperature: (1) liquid-like order of aggregates dispersed throughout an amorphous PE matrix, (2) one-dimensional long-range order of aggregates in layers coexisting with PE crystals, and (3) three-dimensional periodicity of aggregates in cubic lattices in a PE matrix featuring defective packing. The liquid-like morphology is a result of high content of acid or ionic substituents deterring PE crystallinity due to steric hindrance. The layered morphology occurs when the content of pendants is low and the PE segments are long enough to crystallize. The cubic morphologies occur in precise copolymers with geminal substitution of phosphonic acid (PA) groups and long, flexible PE segments. At temperatures above the thermal transitions of the PE matrix, all but one material present a liquid-like morphology. Those conditions are ideal to study the evolution of the interaggregate spacing (d*) in X-ray scattering as a function of PE segment length between pendants, pendant type and pendant architecture (specifically, mono or geminal substitution). Also at elevated temperatures, the morphologies of precise acrylic acid (AA) copolymers and ionomers were investigated further via atomistic molecular dynamics (MD) simulations. The simulations complement X-ray scattering by providing real space visualization of the aggregates, demonstrating the occurrence of isolated, string-like and even percolated aggregate structures. This is the first dissertation completely devoted to the morphology of precise acid copolymers and precise ionomers. The complete analysis of the morphologies in these novel materials provides new insights into the shapes of aggregates in acid copolymers and ionomers in general. A key aspect of this thesis is the complementary use of experimental and simulation methods to unlock a wealth of new understanding.
2015-01-01
Jakeman et al. recently reported the inability to distinguish the diastereomers of uridine 5′-β,γ-fluoromethylenetriphosphate (β,γ-CHF-UTP, 1) by 19F NMR under conditions we previously prescribed for the resolution of the corresponding β,γ-CHF-dGTP spectra, stating further that 1 decomposed under these basic conditions. Here we show that the 19F NMR spectra of 1 (∼1:1 diastereomer mixture prepared by coupling of UMP-morpholidate with fluoromethylenebis(phosphonic acid)) in D2O at pH 10 are indeed readily distinguishable. 1 in this solution was stable for 24 h at rt. PMID:24819695
Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA).
Fang, Le; Li, Jiang-Shan; Guo, Ming Zhi; Cheeseman, C R; Tsang, Daniel C W; Donatello, Shane; Poon, Chi Sun
2018-02-01
Chemical extraction of phosphorus (P) from incinerated sewage sludge ash (ISSA) is adversely influenced by co-dissolution of metals and metalloids. This study investigated P recovery and leaching of Zn, Cu, Pb, As and Ni from ISSA using inorganic acids (sulphuric acid and nitric acid), organic acids (oxalic acid and citric acid), and chelating agents (ethylenediaminetetraacetic acid (EDTA) and ethylene diamine tetramethylene phosphonate (EDTMP)). The aim of this study was to optimize a leaching process to recover P-leachate with high purity for P fertilizer production. The results show that both organic and inorganic acids extract P-containing phases but organic acids leach more trace elements, particularly Cu, Zn, Pb and As. Sulphuric acid was the most efficient for P recovery and achieved 94% of total extraction under the optimal conditions, which were 2-h reaction with 0.2 mol/L H 2 SO 4 at a liquid-to-solid ratio of 20:1. EDTA extracted only 20% of the available P, but the leachates were contaminated with high levels of trace elements under optimum conditions (3-h reaction with EDTA at 0.02 mol/L, pH 2, and liquid-to-solid ratio of 20:1). Therefore, EDTA was considered an appropriate pre-treatment agent for reducing the total metal/metalloid content in ISSA, which produced negligible changes in the structure of ISSA and reduced contamination during subsequent P extraction using sulphuric acid. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sehlleier, Yee Hwa; Abdali, Ali; Schnurre, Sophie Marie; Wiggers, Hartmut; Schulz, Christof
2014-08-01
Gas phase-synthesized silica nanoparticles were functionalized with three different silane coupling agents (SCAs) including amine, amine/phosphonate and octyltriethoxy functional groups and the stability of dispersions in polar and non-polar dispersing media such as water, ethanol, methanol, chloroform, benzene, and toluene was studied. Fourier transform infrared spectroscopy showed that all three SCAs are chemically attached to the surface of silica nanoparticles. Amine-functionalized particles using steric dispersion stabilization alone showed limited stability. Thus, an additional SCA with sufficiently long hydrocarbon chains and strong positively charged phosphonate groups was introduced in order to achieve electrosteric stabilization. Steric stabilization was successful with hydrophobic octyltriethoxy-functionalized silica nanoparticles in non-polar solvents. The results from dynamic light scattering measurements showed that in dispersions of amine/phosphonate- and octyltriethoxy-functionalized silica particles are dispersed on a primary particle level. Stable dispersions were successfully prepared from initially agglomerated nanoparticles synthesized in a microwave plasma reactor by designing the surface functionalization.
Alicea, Ismael; Marvin, Jonathan S; Miklos, Aleksandr E; Ellington, Andrew D; Looger, Loren L; Schreiter, Eric R
2011-12-02
The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by ~70° between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pietrzyńska, Monika; Zembrzuska, Joanna; Tomczak, Rafał; Mikołajczyk, Jakub; Rusińska-Roszak, Danuta; Voelkel, Adam; Buchwald, Tomasz; Jampílek, Josef; Lukáč, Miloš; Devínsky, Ferdinand
2016-10-10
A method based on experimental and in silico evaluations for investigating interactions of organic phosphates and phosphonates with hydroxyapatite was developed. This quick and easy method is used for determination of differences among organophosphorus compounds of various structures in their mineral binding affinities. Empirical sorption evaluation was carried out using liquid chromatography with tandem mass spectrometry or UV-VIS spectroscopy. Raman spectroscopy was used to confirm sorption of organic phosphates and phosphonates on hydroxyapatite. Polymer-ceramic monolithic material and bulk hydroxyapatite were applied as sorbent materials. Furthermore, a Polymer-ceramic Monolithic In-Needle Extraction device was used to investigate both sorption and desorption steps. Binding energies were computed from the fully optimised structures utilising Density Functional Theory (DFT) at B3LYP/6-31+G(d,p) level. Potential pharmacologic and toxic effects of the tested compounds were estimated by the Prediction of the Activity Spectra of Substances using GeneXplain software. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alicea, Ismael; Marvin, Jonathan S.; Miklos, Aleksandr E.
2012-09-17
The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by {approx}70{sup o} between the two states. Extensive hydrogen bonding and electrostatic interactionsmore » stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins.« less
Autonomously Self-Adhesive Hydrogels as Building Blocks for Additive Manufacturing.
Deng, Xudong; Attalla, Rana; Sadowski, Lukas P; Chen, Mengsu; Majcher, Michael J; Urosev, Ivan; Yin, Da-Chuan; Selvaganapathy, P Ravi; Filipe, Carlos D M; Hoare, Todd
2018-01-08
We report a simple method of preparing autonomous and rapid self-adhesive hydrogels and their use as building blocks for additive manufacturing of functional tissue scaffolds. Dynamic cross-linking between 2-aminophenylboronic acid-functionalized hyaluronic acid and poly(vinyl alcohol) yields hydrogels that recover their mechanical integrity within 1 min after cutting or shear under both neutral and acidic pH conditions. Incorporation of this hydrogel in an interpenetrating calcium-alginate network results in an interfacially stiffer but still rapidly self-adhesive hydrogel that can be assembled into hollow perfusion channels by simple contact additive manufacturing within minutes. Such channels withstand fluid perfusion while retaining their dimensions and support endothelial cell growth and proliferation, providing a simple and modular route to produce customized cell scaffolds.
Wang, Li; Zhao, Hui; Pan, Lin Yun; Weng, Yu Xiang; Nakato, Yoshihiro; Tamai, Naoto
2010-12-01
Carrier dynamics of titanic acid nanotubes (phase of H2Ti2O5.H2O) deposited on a quartz plate was examined by visible/near-IR transient absorption spectroscopy with an ultraviolet excitation. The carrier dynamics of titanic acid nanotubes follows the fast trapping process which attributed to the intrinsic tubular structure, the relaxation of shallow trapped carriers and the recombination as a second-order kinetic process. Transient absorption of titanic acid nanotubes was dominated by the absorption of surface-trapped holes in visible region around 500 nm, which was proved by the faster decay dynamics in the presence of polyvinyl alcohol as a hole-scavenger. However, the slow relaxation of free carriers was much more pronounced in the TiO2 single crystals, as compared with the transient absorption spectra of titanic acid nanotubes under the similar excitation.
Solvent Extraction Separation of Trivalent Americium from Curium and the Lanthanides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Mark P.; Chiarizia, Renato; Ulicki, Joseph S.
2015-02-27
The sterically constrained, macrocyclic, aqueous soluble ligand N,N'-bis[(6-carboxy-2-pyridyl)methyl]-1,10-diaza-18-crown-6 (H2BP18C6) was investigated for separating americium from curium and all the lanthanides by solvent extraction. Pairing H2BP18C6, which favors complexation of larger f-element cations, with acidic organophosphorus extractants that favor extraction of smaller f-element cations, such as bis-(2-ethylhexyl)phosphoric acid (HDEHP) or (2-ethylhexyl)phosphonic acid mono(2-ethylhexyl) ester (HEH[EHP]), created solvent extraction systems with good Cm/Am selectivity, excellent trans-lanthanide selectivity (Kex,Lu/Kex,La = 108), but poor selectivity for Am against the lightest lanthanides. However, using an organic phase containing both a neutral extractant, N,N,N’,N’-tetra(2-ethylhexyl)diglycolamide (TEHDGA), and HEH[EHP] enabled rejection of the lightest lanthanides during loading ofmore » the organic phase from aqueous nitric acid, eliminating their interference in the americium stripping stages. In addition, although it is a macrocyclic ligand, H2BP18C6 does not significantly impede the mass transfer kinetics of the HDEHP solvent extraction system« less
Study of polymorphism using patterned self-assembled monolayers approach on metal substrates
NASA Astrophysics Data System (ADS)
Quiñones, Rosalynn; Brown, Ryanne T.; Searls, Noah; Richards-Waugh, Lauren
2018-01-01
Polymorphism is a molecule's ability to possess altered physical crystalline structures and has become an active interest in pharmaceuticals due to its ability to influence a drug's physical and chemical properties. Crystal stability and solubility are crucial in determining a drug's pharmacokinetics and pharmacodynamics. Changes in these properties due to polymorphisms have contributed to recalls and modifications in industrial production. For this study, the effects of surface interactions with pharmaceuticals were examined through surface modification methodology using organic phosphonic and sulfonic acid self-assembled monolayers (SAMs) developed on a nickel or zinc oxide metal substrate. Drugs analyzed included carbamazepine, cimetidine, tolfenamic acid, and flufenamic acid. All drugs were thermodynamically applied to the reformed surface to aid in recrystallization. It was hypothesized and confirmed that intermolecular bonds, especially hydrogen bonds between the SAMs and pharmaceutical drugs, were the force that assisted in polymorph development. The study was successful in revealing multiple forms for each drug, including their commercial form and at least one additional form using micro FT-IR, Raman spectroscopy, and PXRD. Visual comparisons of crystal polymorphisms were performed with IR microscopy.
Ntatsopoulos, Vassilis; Vassiliou, Stamatia; Macegoniuk, Katarzyna; Berlicki, Łukasz; Mucha, Artur
2017-06-16
The reactivity of Morita-Baylis-Hillman allyl acetates was employed to introduce phosphorus-containing functionalities to the side chain of the cinnamic acid conjugated system by nucleophilic displacement. The proximity of two acidic groups, the carboxylate and phosphonate/phosphinate groups, was necessary to form interactions in the active site of urease by recently described inhibitor frameworks. Several organophosphorus scaffolds were obtained and screened for inhibition of the bacterial urease, an enzyme that is essential for survival of urinary and gastrointestinal tract pathogens. α-Substituted phosphonomethyl- and 2-phosphonoethyl-cinnamate appeared to be the most potent and were further optimized. As a result, one of the most potent organophosphorus inhibitors of urease, α-phosphonomethyl-p-methylcinnamic acid, was identified, with K i = 0.6 μM for Sporosarcina pasteurii urease. High complementarity to the enzyme active site was achieved with this structure, as any further modifications significantly decreased its affinity. Finally, this work describes the challenges faced in developing ligands for urease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Development of a Cross-Flow Fan Powered Quad-Rotor Unmanned Aerial Vehicle
2015-06-01
HVAC Heating ventilation and air conditioning LiPo Lithium - ion polymer PLA Polylactic acid, 3-D printer filament PVA Polyvinyl alcohol PREPREG...control console Figure 79. Rheostat speed control console. 74 c) 6 cell lithium polymer battery Figure 80. 6 Cell LiPo battery . 75 d...Radio control system and versatile unit mounted with zip ties. ......................67 Figure 75. LiPo batteries and parallel battery connector
1981-05-20
broken and the material outgasses hydrogen. Halogenated polymers (e.g., Teflon or polyvinyl chloride) outgas the halogen or even yield the acid (e.g...the etching of the glass by HF. In other words, halogenated polymers when they are irradiated outgas acid vapors which are quite corrosive to any...Si~o S n 4~-1 -zi s -ic!et a:-:r su’i~ K :rs :c 3 xS I, :-aat, :.e ef-:n2 -n tc’ : "s-iacz on. a’ Iv-?g im :y’-,q st~c! y nay ze I :,.;es:*r:m I
Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.
Berenstein, Igal; Muñuzuri, Alberto P; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R
2008-08-01
Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.
NASA Astrophysics Data System (ADS)
Peng, Sha; Zhou, Ming; Liu, Feiyan; Zhang, Chang; Liu, Xueqing; Liu, Jiyan; Zou, Liyong; Chen, Jia
2017-08-01
Flame-retardant polyvinyl alcohol (PVA) membranes with high transparency and flexibility were prepared by mixing an aqueous solution of a phosphorus-containing acrylic acid (AOPA) with PVA. The reaction between AOPA and PVA, the transparency, the crystallinity and the flexibility of the membrane were investigated with Fourier transform infrared spectrometry (FTIR), UV-vis light transmittance, X-ray diffraction and tensile tests, respectively. The limited oxygen index (LOI) and vertical flame (UL 94 VTM), microscale combustion calorimetry, thermogravimetric analysis (TGA) and TGA-FTIR were employed to evaluate the flame retardancy as well as to reveal the corresponding mechanisms. Results showed that PVA containing 30 wt% of AOPA can reach the UL 94 VTM V0 rating with an LOI of 27.3% and retain 95% of the original transparency of pure PVA. Adding AOPA reduces crystallinity of PVA, while the flexibility is increased. AOPA depresses the thermal degradation of PVA and promotes char formation during combustion. The proposed decomposition mechanism indicates that AOPA acts mainly in the condensed phase.
NASA Astrophysics Data System (ADS)
Fillipovich, L. N.; Ariko, N. G.; Agabekov, V. E.; Malashko, P. M.
2005-09-01
Polarizers containing disazo dyes from the group of azobenzene-azonaphthalene have been developed. It has been established that their polarizing ability is determined by the mutual disposition of the azo group and electron-donor substituents in the naphthalene ring. On diazo coupling of γ acid into the α position relative to the oxy group, the M1 and M3 dyes are formed, the polarizing ability of which in uniaxially oriented polyvinyl-alcohol films is higher than in the M2 dye produced as a result of diazo coupling into the α position relative to the amino group. On irradiation by UV light, the dyes are subjected to photodestruction, which, in the case of M2, proceeds through trans-cis-isomerization. The rate of photodestruction depends on the aggregation of the dye molecules, and it increases in the presence of a free-radical initiator. The UV absorber (substituted benzotriazole) and the uniaxial orientation of the film retard this process.
Organic Compounds in Carbonaceous Meteorites
NASA Technical Reports Server (NTRS)
Cooper, Grorge
2001-01-01
Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.
Metastatic Bone Pain Palliation using (177)Lu-Ethylenediaminetetramethylene Phosphonic Acid.
Alavi, Mehrosadat; Omidvari, Shapour; Mehdizadeh, Alireza; Jalilian, Amir R; Bahrami-Samani, Ali
2015-01-01
(177)Lu-ethylenediaminetetramethylene phosphonic acid (EDTMP) is presently suggested as an excellent bone seeking radionuclide for developing metastatic bone pain (MBP) palliation agent owing to its suitable nuclear decay characteristics. To find the exact dosage and its efficiency, this clinical study was performed on the human being, using (177)Lu-EDTMP for MBP palliation. (177)Lu-EDTMP was prepared by Iran, atomic energy organization. Thirty consecutive patients with determined tumors, incontrollable MBP, and positive bone scan at 4 weeks before the beginning of the study participated in this study in the nuclear medicine ward. (177)Lu-EDTMP in the form of sterile slow IV injection was administered with a dose of 29.6 MBq/kg. Short form of brief pain inventory questionnaire was used to evaluate the efficiency of the intervention. Questionnaires were filled out by an expert nuclear physician every 2 weeks while the cell blood count was also checked every 2 weeks up to 12 weeks for evaluation of bone marrow suppression and hematological toxicity. Furthermore, whole body scan was done at days 1, 3, and 7. Twenty-five patients showed a significant pain relief since 2 weeks after the injection, and continued until the end of the follow up period (12 weeks). There were no significant early complications such as bone marrow suppression, hematological toxicity, and no systemic adverse effects. No complication was observed in renal function. Twenty one patients showed flare phenomenon that was started after the 12.2 ± 1.78 h lasting for 38.4 ± 23.08. Sixteen patients (53%) were completely treated; nine patients (30%) showed a partial response, and five patients (17%) had no response to treatment. Total response to treatment was achieved in 25 patients (83%). At the end of the evaluation, no bone marrow suppression or hematologic toxicity was observed. (177)Lu-EDTMP has shown suitable physical and biological properties with good results in long term bone pain relief for patients with bone metastasis.
Metastatic Bone Pain Palliation using 177Lu-Ethylenediaminetetramethylene Phosphonic Acid
Alavi, Mehrosadat; Omidvari, Shapour; Mehdizadeh, Alireza; Jalilian, Amir R.; Bahrami-Samani, Ali
2015-01-01
177Lu-ethylenediaminetetramethylene phosphonic acid (EDTMP) is presently suggested as an excellent bone seeking radionuclide for developing metastatic bone pain (MBP) palliation agent owing to its suitable nuclear decay characteristics. To find the exact dosage and its efficiency, this clinical study was performed on the human being, using 177Lu-EDTMP for MBP palliation. 177Lu-EDTMP was prepared by Iran, atomic energy organization. Thirty consecutive patients with determined tumors, incontrollable MBP, and positive bone scan at 4 weeks before the beginning of the study participated in this study in the nuclear medicine ward. 177Lu-EDTMP in the form of sterile slow IV injection was administered with a dose of 29.6 MBq/kg. Short form of brief pain inventory questionnaire was used to evaluate the efficiency of the intervention. Questionnaires were filled out by an expert nuclear physician every 2 weeks while the cell blood count was also checked every 2 weeks up to 12 weeks for evaluation of bone marrow suppression and hematological toxicity. Furthermore, whole body scan was done at days 1, 3, and 7. Twenty-five patients showed a significant pain relief since 2 weeks after the injection, and continued until the end of the follow up period (12 weeks). There were no significant early complications such as bone marrow suppression, hematological toxicity, and no systemic adverse effects. No complication was observed in renal function. Twenty one patients showed flare phenomenon that was started after the 12.2 ± 1.78 h lasting for 38.4 ± 23.08. Sixteen patients (53%) were completely treated; nine patients (30%) showed a partial response, and five patients (17%) had no response to treatment. Total response to treatment was achieved in 25 patients (83%). At the end of the evaluation, no bone marrow suppression or hematologic toxicity was observed. 177Lu-EDTMP has shown suitable physical and biological properties with good results in long term bone pain relief for patients with bone metastasis. PMID:26097421
Willkomm, Janina; Muresan, Nicoleta M.
2015-01-01
The catalyst [CoIIIBr((DO)(DOH)(4-BnPO3H2)(2-CH2py)pn)]Br, CoP3, has been synthesised to improve the stability and activity of cobalt catalysts immobilised on metal oxide surfaces. The CoP3 catalyst contains an equatorial diimine–dioxime ligand, (DOH)2pn = N2,N2′-propanediyl-bis(2,3-butanedione-2-imine-3-oxime), with a benzylphosphonic acid (4-BnPO3H2) group and a methylpyridine (2-CH2py) ligand covalently linked to the bridgehead of the pseudo-macrocyclic diimine–dioxime ligand. The phosphonic acid functionality provides a robust anchoring group for immobilisation on metal oxides, whereas the pyridine is coordinated to the Co ion to enhance the catalytic activity of the catalyst. Electrochemical investigations in solution confirm that CoP3 shows electrocatalytic activity for the reduction of aqueous protons between pH 3 and 7. The metal oxide anchor provides the catalyst with a high affinity for mesostructured Sn-doped In2O3 electrodes (mesoITO; loading of approximately 22 nmol cm–2) and the electrostability of the attached CoP3 was confirmed by cyclic voltammetry. Finally, immobilisation of the catalyst on ruthenium-dye sensitised TiO2 nanoparticles in aqueous solutions in the presence of a hole scavenger establishes the activity of the catalyst in this photocatalytic scheme. The advantages of the elaborate catalyst design in CoP3 in terms of stability and catalytic activity are shown by direct comparison with previously reported phosphonated Co catalysts. We therefore demonstrate that rational ligand design is a viable route for improving the performance of immobilised molecular catalysts. PMID:29142677
NASA Astrophysics Data System (ADS)
Deburgomaster, Paul
The vast structural complexity of inorganic oxides with structure directing organocations, nitrogen containing ligands and organophosphonate ligands was explored. The hydrothermal reaction conditions utilized herein include the variables of temperature, pH, fill volume and stoichiometry. The systems studied included: (1) the complex materials rendered from reactions of organoamine cations on the structure of vanadium oxides, oxyfluorides and fluorides. As with other systems, the influence of the mineralizer HF was not limited to pH as fluorine incorporation was not uncommon. In specific cases this coincided with reduction of vanadium sites. (2) The copper-organonitrogen ligand/vanadium oxide/aromatic phosphonate system has been studied. The rigid aromatic di- and tri-phosphonate tethers have provided a series of materials which are structurally distinct from the previously investigated aliphatic series. The inclusion of copper-coordinated nitrogen bi- and tri-dentate ligands also provided structural diversity. Product composition was highly influenced by the HF/V ratio. A similar study was conducted with the ligand 1,4-carboxy-phenylphosphonic acid. (3) The preparation of a series of bimetallic organic-inorganic hybrid materials of the M(II)/VxOy/organonitrogen ligand class was further evidence of the utility of thermodynamically driven hydrothermal synthesis. (4) While decomposition of the spherical Keplerate molybdenum clusters is encountered under hydrothermal conditions, this highly soluble form of molybdate was investigated for the development of hybrid organic-inorganic room temperature solution synthesis.
Hariprasad, V; Kulkarni, V M
1996-01-01
Different modes of binding of transition state mimics: amide, phosphonate and difluoro ketone, to human synovial fluid phospholipase A2 (HSF PLA2) are studies by molecular dynamics simulations computed in solvent. The results are analysed in the light of primary binding sites. Hydrogen bonding interaction plays an important role for amino acids such as Gly32, Val30, and Glu55, apart from the well known active site residues viz Asp48, Gly25, Gly29, Gly31, His27, His47, Lys62, Phe23, Asn114 and Tyr112. In addition, the hydrogen bonding interaction between Sn-1 tetrahedral phosphonate group of amide and difluoro ketone inhibitors and crystallographic water molecules (H2O 523, H2O 524 and H2O 401) seems to have a significant role. Many of the active site charged residues display considerable movement upon ligand binding. The structural effects of ligand binding were analyzed from RMS deviations of C alpha in the resulting energy-minimized average structures of the receptor-ligand complexes. The values of the RMS deviations differ among the HSF PLA2s, in a pattern that is not the same for the three complexes. This suggests that ligands with different pharmacological efficacies induce different types of conformational changes of the receptor. Our active-orientation model is, at least qualitatively, consistent with experimental data and should be useful for the rational design of more potent inhibitors.
Bhure, Rahul; Abdel-Fattah, Tarek M.; Bonner, Carl; Hall, Felicia; Mahapatro, Anil
2011-01-01
Cobalt Chromium (Co-Cr) alloys has been widely used in the biomedical arena for cardiovascular, orthopedic and dental applications. Surface modification of the alloy allows us to tailor the interfacial properties to address critical challenges of Co-Cr alloy in medical applications. Self assembled monolayers (SAMs) of Octadecylphosphonic acid (ODPA) have been used to form thin films on the oxide layer of the Co-Cr alloy surface by solution deposition technique. The SAMs formed were investigated for their stability to oxidative conditions of ambient laboratory environment over periods of 1, 3, 7 and 14 days. The samples were then characterized for their stability using X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and Contact Angle Measurements. Detailed high energy XPS elemental scans confirmed the presence of the phosphonic monolayer after oxidative exposure which suggested that the SAMs were firmly attached to the oxide layer of Co-Cr alloy. AFM images gave topographical data of the surface and showed islands of SAMs on Co-Cr alloy surface, before and after SAM formation and also over the duration of the oxidative exposure. Contact angle measurements confirmed the hydrophobicity of the surface over 14 days. Thus the SAMs were found to be stable for the duration of the study. These SAMs could be subsequently tailored by modifying the terminal functional groups and could be used for various potential biomedical applications such as drug delivery, biocompatibility and tissue integration PMID:21603056
Ma, Yun-Sheng; Li, Yi-Zhi; Song, You; Zheng, Li-Min
2008-06-02
The oxidation of MnII carboxylates by (NBu4)Cr2O7 in the presence of different phosphonic acids and chelating ligands results in six CrIII-doped tetranuclear manganese clusters formulated [Mn3CrO2(O2CCH3)4(O3PC5H4N)2(bpy)2] (1), [Mn3CrO2(O2CCH3)4(O3PC5H4N)2(phen)2] (2), [Mn3CrO2(O2CPh)4(O3PC5H4NO)2(phen)2] (3), [Mn3CrO2(O2CPh)4(O3PC6H11)2(bpy)2] (4), [Mn 3CrO2(O2CPh)4(O3PC6H11)2(phen) 2] (5), and [Mn3CrO2(O2CCH3)4(O3PC6H11)2(bpy)2] (6). Single-crystal X-ray analyses reveal that all the compounds contain similar [M4O2]8+ cores with the four metal sites arranged in planar topologies. The metal ions within the core are bridged by both carboxylate and phosphonate ligands. Temperature-dependent magnetic measurements show that in all cases dominant antiferromagnetic interactions are propagated between the metal centers. The ac magnetic measurements on compounds 5 and 6 reveal that both the in-phase and the out-of-phase signals are frequency dependent, characteristic of single-molecule magnet behaviors.
Briand, Glen G; Chivers, Tristram; Krahn, Mark; Parvez, Masood
2002-12-16
The dilithium salts of the phosphonate dianions [PhP(E)(N(t)Bu)(2)](2-) (E = O, S, Se) are generated by the lithiation of [PhP(E)(NH(t)Bu)(2)] with n-butyllithium. The formation of the corresponding telluride (E = Te) is achieved by oxidation of [Li(2)[PhP(N(t)Bu)(2)
Yoon, Soon-Do; Kim, Young-Mog; Kim, Boo Il; Je, Jae-Young
2017-11-01
Active blend films from chitosan-gallic acid (CGA) and polyvinyl alcohol (PVA) were prepared via a simple mixing and casting method through the addition of citric acid as a plasticizer. The CGA/PVA blend films were characterized using Fourier transform infrared spectroscopy (FT-IR). The mechanical properties including tensile strength (TS) and elongation at break (%E), degree of solubility (S) and swelling behavior (DS), water vapor adsorption, and antimicrobial activities of the CGA/PVA blend films with and without LED (light emitting diode)-UV irradiation were also investigated. The CGA/PVA blend films exposed to UV irradiation exerted a higher TS (43.5MPa) and lower %E (50.40), S (0.38) and DS (2.73) compared to the CGA/PVA blend films (TS=41.7MPa, %E=55.40, S=0.42, and DS=3.16) not exposed LED-UV irradiation, indicating that the cross-linkage between CGA and PVA had been strengthened by LED-UV irradiation. However, the water vapor adsorption in the CGA/PVA blend films increased due to the changes of surface roughness and pore volume after LED-UV irradiation, and all values increased by increasing the CGA concentrations in the CGA/PVA blend films. The antimicrobial activities of the CGA/PVA blend films showed that the efficient concentration of CGA in the CGA/PVA blend films was over 1.0%. Taken together, the CGA/PVA blend films have potential for use as food packing materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Seno, Masaru; Yoshida, Kentaro; Sato, Katsuhiko; Anzai, Jun-ichi
2016-05-01
Multilayer thin films composed of phenylboronic acid (PBA)-modified poly(allylamine hydrochloride) (PAH), PBA-PAH, with different PBA contents were prepared to study the effect of PBA content on the stability of the films. An alternate deposition of PBA-PAH and poly(vinyl alcohol) (PVA) on the surface of a quartz slide afforded multilayer films through forming boronate ester bonds between PBA-PAH and PVA. The 10-layered (PBA-PAH/PVA)10 films constructed using PBA-PAHs containing 16% and 26% PBA residues were stable in aqueous solutions over the range of pH 4.0-10.0, whereas the multilayer films composed of PBA-PAHs with 5.9% and 8.3% PBA decomposed at pH 8.0 or lower. The pH-sensitive decomposition of the films was rationalized based on the destabilization of the boronate ester bonds in neutral and acidic solutions. In addition, the (PBA-PAH/PVA)10 films decomposed in glucose and fructose solutions as a result of competitive binding of sugars to PBA-PAH in the films. The sugar response of the films depended on the PBA content in PBA-PAH. The (PBA-PAH/PVA)10 films consisting of 16% and 26% PBA-substituted PBA-PAHs are sensitive to physiological relevant level of glucose at pH7.4 while stable in glucose-free solution, suggesting a potential use of the films in constructing glucose-induced delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tudisco, C.; Cambria, M. T.; Giuffrida, A. E.; Sinatra, F.; Anfuso, C. D.; Lupo, G.; Caporarello, N.; Falanga, A.; Galdiero, S.; Oliveri, V.; Satriano, C.; Condorelli, G. G.
2018-02-01
A versatile synthetic route based on magnetic Fe3O4 nanoparticle (MNP) prefunctionalization with a phosphonic acid monolayer has been used to covalently bind the gH625 peptide on the nanoparticle surface. gH625 is a membranotropic peptide capable of easily crossing the membranes of various cells including the typical human blood-brain barrier components. A similar synthetic route was used to prepare another class of MNPs having a functional coating based on PEG, rhodamine, and folic acid, a well-known target molecule, to compare the performance of the two cell-penetrating systems (i.e., gH625 and folic acid). Our results demonstrate that the uptake of gH625-decorated MNPs in immortalized human brain microvascular endothelial cells after 24 h is more evident compared to folic acid-functionalized MNPs as evidenced by confocal laser scanning microscopy. On the other hand, both functionalized systems proved capable of being internalized in a brain tumor cell line (i.e., glioblastoma A-172). These findings indicate that the functionalization of MNPs with gH625 improves their endothelial cell internalization, suggesting a viable strategy in designing functional nanostructures capable of first crossing the BBB and, then, of reaching specific tumor brain cells.
Spectral Photosensitization of Optical Anisotropy in Solid Poly(Vinyl Cinnamate) Films
NASA Astrophysics Data System (ADS)
Kozenkov, V. M.; Spakhov, A. A.; Belyaev, V. V.; Chausov, D. N.; Chigrinov, V. G.
2018-04-01
The possibility and features of formation of sensitized photoinduced optical anisotropy in amorphous films of poly(vinyl cinnamate) and its derivative poly(vinyl-4-metoxicinnamate) under the action of polarized light (including light that is not absorbed by polymer macromolecules themselves) have been investigated. It is found that the effect of induced optical anisotropy is based on the transfer of electron excitation energy from donor (sensitizer) molecules to acceptor molecules and is observed in the course of phototopochemical biomolecular cyclization reaction of cinnamate fragments in polymer macromolecules. The detected photoinduced anisotropy in solid films of poly(vinyl cinnamate) and its derivative poly(vinyl-4-metoxicinnamate) ensures sensitized photo-orientation of low-molecular thermotropic liquid crystals.
Ray, W J; Post, C B; Puvathingal, J M
1993-01-12
The phospho form of phosphoglucomutase reacts with the isosteric methylenephosphonate analog of alpha-D-glucose 1-phosphate to produce the corresponding analog of alpha-D-glucose 1,6-bisphosphate plus the dephosphoenzyme. In a coupled reaction, kcat/Km = 1.7 x 10(3) M-1 s-1, which is about 2 x 10(-5) times that for the corresponding reaction with alpha-D-glucose 1-phosphate. The decrease in kcat/Km is divided more or less evenly between less efficient PO3- transfer and decreased binding, although smaller phosphates and phosphonates bind approximately equally. There is a much smaller difference in the binding of glucose 1-methylenephosphonate 6-phosphate and glucose 1,6-bisphosphate to the dephosphoenzyme: the binding ratio is < 1:35 when the glucose ring is oriented similarly. Preferred binding patterns for a number of substrates/inhibitors, studied by 31P NMR and UV-difference spectroscopy, suggest that in the ground state the phosphonate group is tolerated to a much greater extent at the catalytic subsite than at the phosphate-binding subsite, where binding specificity appears to be directed toward a tetrahedral-PO3(2-) group attached to a bridging atom that can act as a hydrogen-bond acceptor. Binding specificity at the catalytic subsite apparently is directed toward a different array, possibly (-O...PO3...O-)2-. Some of these results are considered in terms of a modified version of the "induced fit" concept of enzymic specificity, which is reexamined in view of implied thermodynamic restrictions. The internal rearrangement whereby the positions of the anionic groups of the phosphate/phosphonate are exchanged is compared with the analogous rearrangements involving glucose 1,6-bisphosphate and 1,4-butanediol bisphosphate. The supplementary material describes a three-step synthesis of 1-deoxy-alpha-D-glucose 1-methylenephosphonate together with a procedure for phosphorylating the phosphonate to produce an analog of alpha-D-glucose 1,6-bisphosphate and also describes a facile procedure for the qualitative conversion of organic phosphonates to inorganic phosphate.
76 FR 13660 - Polyvinyl Alcohol From Taiwan
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1088 (Final)] Polyvinyl Alcohol From Taiwan Determination On the basis of the record \\1\\ developed in the subject investigation, the United... (March 2011), entitled Polyvinyl Alcohol from Taiwan: Investigation No. 731-TA-1088 (Final). By order of...
NASA Technical Reports Server (NTRS)
Mueller, W. A.; Ingham, J. D.; Reilly, W. W. (Inventor)
1983-01-01
The impact resistance of flame retardant composites, especially thermoplastic molding: compounds containing over 60% hydrated mineral filler such as Al(OH)3 or Mg(OH)2 as improved by coating the filler with 1 to 20% of an elastomer. The composite will fail by crazing or shearing rather than by brittle fracture. A well bonded elastomeric interphase resulted by utilizing acidic substituted resins such as ethyl-hexyl acrylate-acrylic acid copolymers which bond to and are cross-linked by the basic filler particles. Further improvement in impact resistance was provided by incorporating 1 to 10% of a resin fiber reinforcement such as polyvinyl alcohol fibers that decompose to yield at least 30% water when heated to decomposition temperature.
NASA Technical Reports Server (NTRS)
Liu, C. C.
1983-01-01
A computerized system was established and the electrochemical fluorination of trichloroethylene, polyacrylic acid and polyvinyl alcohol in anhydrous hydrogen fluoride was attempted. Both solid substrates as well as membranes were used. Some difficulties were found in handling and analyzing the solid substrates and membranes. Further studies are needed in this area. A microprocessor aided electrochemical fluorination system capable of obtaining highly reproducible experimental results was established.
2005-03-01
electrocardiogram (ECG) by suturing one of them with 5-0 polyvinyl material to the subcutaneous tissue over the right scapula and the other one at the...bands (Pereira de Souza et al.,2001). Concentrations ofACh, Ch, their deuterated variants, and ACh turnover in brain tissue . Animals were anesthetized...mesencephalon, neocortex, piriform cortex, and striatum. These tissue fragments were homogenized in ice cold 15% IN formic acid, 85% acetone for analysis
Marican, Adolfo; Avila-Salas, Fabián; Valdés, Oscar; Wehinger, Sergio; Villaseñor, Jorge; Fuentealba, Natalia; Arenas-Salinas, Mauricio; Argandoña, Yerko; Carrasco-Sánchez, Verónica; Durán-Lara, Esteban F
2018-03-07
This study describes the in-silico rational design, synthesis and evaluation of cross-linked polyvinyl alcohol hydrogels containing γ-cyclodextrin (γ-CDHSAs) as platforms for the sustained release of prednisone (PDN). Through in-silico studies using semi-empirical quantum mechanical calculations, the effectiveness of 20 dicarboxylic acids to generate a specific cross-linked hydrogel capable of supporting different amounts of γ-cyclodextrin (γ-CD) was evaluated. According to the interaction energies calculated with the in-silico studies, the hydrogel made from PVA cross-linked with succinic acids (SA) was shown to be the best candidate for containing γ-CD. Later, molecular dynamics simulation studies were performed in order to evaluate the intermolecular interactions between PDN and three cross-linked hydrogel formulations with different proportions of γ-CD (2.44%, 4.76% and 9.1%). These three cross-linked hydrogels were synthesized and characterized. The loading and the subsequent release of PDN from the hydrogels were investigated. The in-silico and experimental results showed that the interaction between PDN and γ-CDHSA was mainly produced with the γ-CDs linked to the hydrogels. Thus, the unique structures and properties of γ-CDHSA demonstrated an interesting multiphasic profile that could be utilized as a promising drug carrier for controlled, sustained and localized release of PDN.
The development of an energy-independent personnel neutron dosimeter using CR-39
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doremus, S.W.
The addition of specialized (n,{alpha}) radiators to a standard polyethylene/CR-39 (PE/CR-39) neutron dosimetry system was evaluated for improved response to low energy neutrons. Specialized radiators consisting of poly(vinyl alcohol) complexed with boron (natural and enriched boron-10) and poly(acrylic acid) complexed with lithium (enriched lithium-6) were evaluated. The complexion of boron with poly(vinyl alcohol) was accomplished by incorporation or surface coating. The complexion of lithium with poly(acrylic acid) was exclusively performed by incorporation. The dosimeter was designed such that the specialized radiator was in contact with the CR-39 detector (i.e., the specialized radiator was sandwiched between the CR-39 detector and polyethylenemore » radiator). The neutron response of this dosimetry system was investigated using {sup 252}Cf (moderated and bare) spontaneous fission neutrons. Detectors were chemically etched and then read with a Nikon OPTIPHOT microscope. The mean response (tracks {center dot} field{sup {minus}1}) of detectors treated with specialized (n,{alpha}) radiators were evaluated against PE/CR-39 controls. The results of this investigation demonstrate that PE/CR-39 dosimeters equipped with specialized (n,{alpha}) radiators have a noticeable response to low energy neutrons that in many instances is significantly greater than that of the controls. The addition of specialized radiators to this dosimetry system did not effect (diminish) its response to fast neutrons.« less
Schulze, Jan; Kuhn, Stephanie; Hendrikx, Stephan; Schulz-Siegmund, Michaela; Polte, Tobias; Aigner, Achim
2018-03-01
Nucleic acid-based therapies rely on efficient formulations for nucleic acid protection and delivery. As nonviral strategies, polymeric and lipid-based nanoparticles have been introduced; however, biological efficacy and biocompatibility as well as poor storage properties due to colloidal instability and their unavailability as ready-to-use systems are still major issues. Polyethylenimine is the most widely explored and promising candidate for gene delivery. Polyethylenimine-based polyplexes and their combination with liposomes, lipopolyplexes, are efficient for DNA or siRNA delivery in vitro and in vivo. In this study, a highly potent spray-dried nanoparticle-in-microparticle delivery system is presented for the encapsulation of polyethylenimine-based polyplexes and lipopolyplexes into poly(vinyl alcohol) microparticles, without requiring additional stabilizing agents. This easy-to-handle gene delivery device allows prolonged nanoparticle storage and protection at ambient temperature. Biological analyses reveal further advantages regarding profoundly reduced cytotoxicity and enhanced transfection efficacies of polyethylenimine-based nanoparticles from the nanoparticle-in-microparticle delivery system over their freshly prepared counterparts, as determined in various cell lines. Importantly, this nanoparticle-in-microparticle delivery system is demonstrated as ready-to-use dry powder to be an efficient device for the inhalative delivery of polyethylenimine-based lipopolyplexes in vivo, as shown by transgene expression in mice after only one administration. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Marican, Adolfo; Valdés, Oscar; Wehinger, Sergio; Villaseñor, Jorge; Fuentealba, Natalia; Argandoña, Yerko; Carrasco-Sánchez, Verónica
2018-01-01
This study describes the in-silico rational design, synthesis and evaluation of cross-linked polyvinyl alcohol hydrogels containing γ-cyclodextrin (γ-CDHSAs) as platforms for the sustained release of prednisone (PDN). Through in-silico studies using semi-empirical quantum mechanical calculations, the effectiveness of 20 dicarboxylic acids to generate a specific cross-linked hydrogel capable of supporting different amounts of γ-cyclodextrin (γ-CD) was evaluated. According to the interaction energies calculated with the in-silico studies, the hydrogel made from PVA cross-linked with succinic acids (SA) was shown to be the best candidate for containing γ-CD. Later, molecular dynamics simulation studies were performed in order to evaluate the intermolecular interactions between PDN and three cross-linked hydrogel formulations with different proportions of γ-CD (2.44%, 4.76% and 9.1%). These three cross-linked hydrogels were synthesized and characterized. The loading and the subsequent release of PDN from the hydrogels were investigated. The in-silico and experimental results showed that the interaction between PDN and γ-CDHSA was mainly produced with the γ-CDs linked to the hydrogels. Thus, the unique structures and properties of γ-CDHSA demonstrated an interesting multiphasic profile that could be utilized as a promising drug carrier for controlled, sustained and localized release of PDN. PMID:29518980
Luo, Juntao; Pardin, Christophe; Zhu, X X; Lubell, William D
2007-01-01
Spherical crosslinked poly(vinyl alcohol) (PVA) beads with good mechanical stability were prepared by reverse-suspension polymerization, using dimethyl sulfoxide (DMSO) as a cosolvent in an aqueous phase. Poly(ethylene glycol)s with varying chain lengths were grafted onto the PVA beads by anionic polymerization of ethylene oxide. The thermal behavior, morphology, and swelling were evaluated for each of the new polymer matrices. High loading and good swelling in water and organic solvents were characteristic of the PEG-grafted PVA beads. The polymer beads also exhibited good mechanical and chemical stability and were unaffected by treatment with 6 N HCl and with 6 N NaOH. The hydroxyl groups of the PVA-PEG beads were converted into aldehyde, carboxylic acid, and isocyanate functions to provide scavenger resins and were extended by way of a benzyl alcohol in a Wang linker. The transglutaminase substrates dipeptides (Z-Gln-Gly) and heptapeptides (Pro-Asn-Pro-Gln-Leu-Pro-Phe) were synthesized on PVA-PEG_5, PVA-PEG_20, and the Wang linker-derivatized PVA-PEG resins. The cleavage of the peptides from the resins using MeOH/NH3 mixture at different temperatures (0 degrees C and room temp) and 50% TFA/DCM provided, respectively, peptide methyl esters, amides, and acids in good yields and purity as assessed by LC-MS analysis.
Hamper, Bruce C; Mannino, Michael P; Mueller, Melissa E; Harrison, Liam T; Spilling, Christopher D
2016-09-01
Chromatographic separation of the enantiomers of parent compounds dimethyl α-hydroxyallyl phosphonate and 1-(dimethoxyphosphoryl) allyl methyl carbonate was demonstrated by high-performance liquid chromatography (HPLC) using Chiralpak AS-H and ad-H chiral stationary phases (CSP), respectively, using a combination of UV, polarimetric, and refractive index detectors. A comparison was made of the separation efficiency and elution order of enantiomeric α-hydroxyallyl phosphonates and their carbonate derivatives on commercially available polysaccharide AS, ad, OD, IC-3, and Whelk-O 1 CSPs. In general, the α-hydroxyallyl phosphonates were resolved on the AS-H CSP, whereas the carbonate derivatives and were preferentially resolved on the ad-H CSP. The impact of aryl substitution on the resolution of analytes and was evaluated. Thermodynamic parameters determined for enantioselective adsorption hydroxyphosphonates and on the AS-H CSP and carbonate on the ad-H CSP demonstrated enthalpic control for separation of the enantiomers. Chirality 28:656-662, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Actinide and lanthanide separation process (ALSEP)
Guelis, Artem V.
2013-01-15
The process of the invention is the separation of minor actinides from lanthanides in a fluid mixture comprising, fission products, lanthanides, minor actinides, rare earth elements, nitric acid and water by addition of an organic chelating aid to the fluid; extracting the fluid with a solvent comprising a first extractant, a second extractant and an organic diluent to form an organic extractant stream and an aqueous raffinate. Scrubbing the organic stream with a dicarboxylic acid and a chelating agent to form a scrubber discharge. The scrubber discharge is stripped with a simple buffering agent and a second chelating agent in the pH range of 2.5 to 6.1 to produce actinide and lanthanide streams and spent organic diluents. The first extractant is selected from bis(2-ethylhexyl)hydrogen phosphate (HDEHP) and mono(2-ethylhexyl)2-ethylhexyl phosphonate (HEH(EHP)) and the second extractant is selected from N,N,N,N-tetra-2-ethylhexyl diglycol amide (TEHDGA) and N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA).
NASA Astrophysics Data System (ADS)
Sangkota, V. D. A.; Lusiana, R. A.; Astuti, Y.
2018-04-01
Crosslinking and grafting reactions are required to modify the functional groups on chitosan to increase the number of its active groups. In this study, crosslinking reaction of succinic acid and grafting reaction of heparin on chitosan were conducted to produce a membrane as a candidate of a hemodialysis membrane. The mole ratio between chitosan and succinate acids was varied to obtain the best composition of modified materials. By blending all the material composition with PVA-PEG, the blend was transformed into a membrane. The resulted membrane was then characterized by various test methods such as tests of thickness, weight, water uptake, pH resistance, tensile strength and membrane hydrophilicity. The results showed that the best composition of the membrane reached in the addition of 0.011 gram of succinic acid proved by its highest mechanical strength compared to the other membranes.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
... National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production... Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production. The EPA is... present oral testimony at the public hearing, please contact Ms. Teresa Clemons, U.S. Environmental...
40 CFR 61.64 - Emission standard for polyvinyl chloride plants.
Code of Federal Regulations, 2010 CFR
2010-07-01
... chloride plants. 61.64 Section 61.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Standard for Vinyl Chloride § 61.64 Emission standard for polyvinyl chloride plants. An owner or operator of a polyvinyl chloride plant shall comply with the requirements of this section and § 61.65. (a...
NASA Astrophysics Data System (ADS)
Kryazhev, Yu. G.; Vorob'ev, M. S.; Koval', N. N.; Trenikhin, M. V.; Solodovnichenko, V. S.; Sulakshin, S. A.; Likholobov, V. A.
2016-10-01
This work shows the possibility in principle of forming hydrocarbon structures in polyvinyl chloride films free of admixtures and polyvinyl chloride films modified with 5-mass % ferrocene via a radiation chemical transformation in the atmosphere with the use of an electron accelerator with a plasma cathode operating in the pulsed-periodic mode maximal electron energy no higher than 160 keV, pulse length of 40 μs, and current density of 5 mA/cm2. According to the results of semiquantitative X-ray microanalysis, an irradiated polyvinyl chloride film free of admixtures contains 92 of carbon, 6 of oxygen, and 2 mass % of chlorine; the irradiated polyvinyl chloride is an amorphous carbon material. A possible mechanism of the phenomenon is discussed.
Li, Jie; Zhao, Junfu; Zhou, Hefeng; Liang, Jian; Liu, Xuguang; Xu, Bingshe
2011-04-01
In this study, a series of Y(3)Al(5)O(12):Ce(3+), Gd(3+) nano-phosphors were prepared using a simply wet chemical process with polyvinyl pyrrolidone as a modifier. The crystal and bonding structures of Y(3)Al(5)O(12):Ce(3+), Gd(3+) nano-phosphors prepared with different weight percentages of polyvinyl pyrrolidone were characterized by X-ray diffractometry and infrared spectrometry. The decomposition process of dried precursor gel with adding 1.37 wt% polyvinyl pyrrolidone was investigated by differential thermal and thermogravimetric analysis. The effect of surface modification on photoluminescence properties for the samples was studied. The results show that the steric hindrance effect of polyvinyl pyrrolidone leads to high dispersion and good crystallinity of Y(3)Al(5)O(12):Ce(3+), Gd(3+) nano-phosphors prepared with adding a proper weight percentages of polyvinyl pyrrolidone. Adding polyvinyl pyrrolidone is beneficial for the photoluminescence enhancement of the samples, which is attributed to the promotion of the incorporation of Ce(3+) and Gd(3+) into the Y(3)Al(5)O(12) nanocrystal and the surface passivation of the nano-particles by the polyvinyl pyrrolidone molecules. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Süle, András; Csempesz, Ferenc
The solubility of lovastatin and simvastatin (inevitable drugs in the management of cardiovascular diseases) was studied by phase-solubility measurements in multicomponent colloidal and non-colloidal media. Complexation in aqueous solutions of the highly lipophilic statins with β-cyclodextrin (β-CD) in the absence and the presence of dissolved polyvinyl pyrrolidone, its monomeric compound, tartaric acid and urea, respectively, were investigated. For the characterization of the CD-statin inclusion complexes, stability constants for the associates have been calculated.
Ptachcinski, R J; Logue, L W; Burckart, G J; Venkataramanan, R
1986-01-01
The stability of cyclosporine in commonly used i.v. solutions and the percentage of the drug delivered via polyvinyl chloride administration tubing were studied. Cyclosporine injection was prepared according to the manufacturer's instructions and diluted with 5% dextrose injection (D5W) or with 0.9% sodium chloride injection (NS). Admixtures containing cyclosporine 2 mg/mL were prepared in polyvinyl chloride minibags (five for each solution) and in glass containers (three for each solution). The sample obtained at time zero from a glass container protected from light was the control. Additional samples were prepared in minibags and run through 70-inch polyvinyl chloride administration sets. An HPLC assay for cyclosporine was used. Exposure to room light did not significantly affect cyclosporine concentrations. More than 90% of the initial drug concentration remained after 24 hours under all storage conditions, but less than 95% remained after 6 hours in samples diluted with NS and stored in plastic. At times up to 60 minutes, cyclosporine concentrations were significantly different in solutions infused from the minibags through polyvinyl chloride tubing from those in control solutions. Under these conditions, cyclosporine is stable in D5W in glass containers or polyvinyl chloride minibags for 24 hours and in NS for 6 hours (polyvinyl chloride) to 12 hours (glass). However, because of the potential for leaching of plasticizers, cyclosporine admixtures should be stored in glass or used within six hours if stored in polyvinyl chloride minibags. Approximately 10% of the initial drug concentration is lost to 70-inch length polyvinyl chloride infusion tubing.
David, Tomáš; Kubíček, Vojtěch; Gutten, Ondrej; Lubal, Přemysl; Kotek, Jan; Pietzsch, Hans-Jürgen; Rulíšek, Lubomír; Hermann, Petr
2015-12-21
Cyclam derivatives bearing one geminal bis(phosphinic acid), -CH2PO2HCH2PO2H2 (H2L(1)), or phosphinic-phosphonic acid, -CH2PO2HCH2PO3H2 (H3L(2)), pendant arm were synthesized and studied as potential copper(II) chelators for nuclear medical applications. The ligands showed good selectivity for copper(II) over zinc(II) and nickel(II) ions (log KCuL = 25.8 and 27.7 for H2L(1) and H3L(2), respectively). Kinetic study revealed an unusual three-step complex formation mechanism. The initial equilibrium step leads to out-of-cage complexes with Cu(2+) bound by the phosphorus-containing pendant arm. These species quickly rearrange to an in-cage complex with cyclam conformation II, which isomerizes to another in-cage complex with cyclam conformation I. The first in-cage complex is quantitatively formed in seconds (pH ≈5, 25 °C, Cu:L = 1:1, cM ≈ 1 mM). At pH >12, I isomers undergo nitrogen atom inversion, leading to III isomers; the structure of the III-[Cu(HL(2))] complex in the solid state was confirmed by X-ray diffraction analysis. In an alkaline solution, interconversion of the I and III isomers is mutual, leading to the same equilibrium isomeric mixture; such behavior has been observed here for the first time for copper(II) complexes of cyclam derivatives. Quantum-chemical calculations showed small energetic differences between the isomeric complexes of H3L(2) compared with analogous data for isomeric complexes of cyclam derivatives with one or two methylphosphonic acid pendant arm(s). Acid-assisted dissociation proved the kinetic inertness of the complexes. Preliminary radiolabeling of H2L(1) and H3L(2) with (64)Cu was fast and efficient, even at room temperature, giving specific activities of around 70 GBq of (64)Cu per 1 μmol of the ligand (pH 6.2, 10 min, ca. 90 equiv of the ligand). These specific activities were much higher than those of H3nota and H4dota complexes prepared under identical conditions. The rare combination of simple ligand synthesis, very fast copper(II) complex formation, high thermodynamic stability, kinetic inertness, efficient radiolabeling, and expected low bone tissue affinity makes such ligands suitably predisposed to serve as chelators of copper radioisotopes in nuclear medicine.
Dipicolinate Complexes of Gallium(III) and Lanthanum(III).
Weekes, David M; Ramogida, Caterina F; Jaraquemada-Peláez, Maria de Guadalupe; Patrick, Brian O; Apte, Chirag; Kostelnik, Thomas I; Cawthray, Jacqueline F; Murphy, Lisa; Orvig, Chris
2016-12-19
Three dipicolinic acid amine-derived compounds functionalized with a carboxylate (H 3 dpaa), phosphonate (H 4 dppa), and bisphosphonate (H 7 dpbpa), as well as their nonfunctionalized analogue (H 2 dpa), were successfully synthesized and characterized. The 1:1 lanthanum(III) complexes of H 2 dpa, H 3 dpaa, and H 4 dppa, the 1:2 lanthanum(III) complex of H 2 dpa, and the 1:1 gallium(III) complex of H 3 dpaa were characterized, including via X-ray crystallography for [La 4 (dppa) 4 (H 2 O) 2 ] and [Ga(dpaa)(H 2 O)]. H 2 dpa, H 3 dpaa, and H 4 dppa were evaluated for their thermodynamic stability with lanthanum(III) via potentiometric and either UV-vis spectrophotometric (H 3 dpaa) or NMR spectrometric (H 2 dpa and H 4 dppa) titrations, which showed that the carboxylate (H 3 dpaa) and phosphonate (H 4 dppa) containing ligands enhanced the lanthanum(III) complex stability by 3-4 orders of magnitude relative to the unfunctionalized ligand (comparing log β ML and pM values) at physiological pH. In addition, potentiometric titrations with H 3 dpaa and gallium(III) were performed, which gave significantly (8 orders of magnitude) higher thermodynamic stability constants than with lanthanum(III). This was predicted to be a consequence of better size matching between the dipicolinate cavity and gallium(III), which was also evident in the aforementioned crystal structures. Because of a potential link between lanthanum(III) and osteoporosis, the ligands were tested for their bone-directing properties via a hydroxyapatite (HAP) binding assay, which showed that either a phosphonate or bisphosphonate moiety was necessary in order to elicit a chemical binding interaction with HAP. The oral activity of the ligands and their metal complexes was also assessed by experimentally measuring log P o/w values using the shake-flask method, and these were compared to a currently prescribed osteoporosis drug (alendronate). Because of the potential therapeutic applications of the radionuclides 67/68 Ga, radiolabeling studies were performed with 67 Ga and H 3 dpaa. Quantitative radiolabeling was achieved at pH 6.5 in 10 min at room temperature with concentrations as low as 10 -5 M, and human serum stability studies were undertaken.
Kawakami, Tsuyoshi; Isama, Kazuo; Matsuoka, Atsuko
2011-01-01
The aim of this study was to determine the concentrations of six phthalic acid diesters (PAEs) [di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), diisononyl phthalate (DINP), di-n-octyl phthalate (DNOP), and diisodecyl phthalate (DIDP)], two non-phthalic plasticizers [di(2-ethylhexyl) adipate (DEHA), 2,2,4-trimethyl-1,3-pentanediol diisobutylate (TMPDIB)], and mono 2-ethylhexyl phthalate(MEHP) in polyvinyl chloride (PVC) household products that children often places in their mouths and/or contact with their skin (41 products, 47 samples) in Japan. The detection frequencies of the studied compounds were as follows: DEHP (79 %), DINP-2 (13 %), DINP-1 (11 %), DBP (8.5 %), DEHA (8.5 %), DIDP (4.3 %), and DNOP (2.1 %). Concentrations of these compounds ranged from 0.021 % to 48 %. BBP and TMPDIB were not detected in the all samples. Most samples contained DEHP and DINP at high concentrations over 0.1 %. High concentrations of PAEs were detected in PVC household products that appear appealing to children and can possibly be licked and chewed by them. Di(2-ethylhexyl) terephtalete, diisononyl 1,2-cyclohexanedicarboxylic acid, acetyl tributyl citrate, and di(2-ethylhexyl) 4-cyclohexene-1,2-dicarboxylate used as substitute plasticizers were also detected in several samples. MEHP was present in 70 % of the samples, with concentrations ranging from trace amounts to 140 μg/g. The ratios of MEHP against DEHP were 6.2 × 10(-4) to 1.6 × 10(-1) %. MEHP in the household products investigated in this study was most probably an impurity in DEHP. The high concentrations of PAEs detected in products that children often place in their mouth reveal the importance of replacing plasticizers in common household products, and not just children's toys, with safer alternatives.
Biswas, Sujoy; Pathak, P N; Roy, S B
2012-06-01
An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λ(max)) for UO(2)(2+)-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol(-1)cm(-1)). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to > 24h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO(2)(2+)-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is < 2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ± 2%. This method can be used to determine 2.5-250 μg mL(-1) uranium in ore leach solutions with high accuracy and precision. Copyright © 2012 Elsevier B.V. All rights reserved.
Mono- and diesters from o-phthalic acid in leachates from different European landfills.
Jonsson, Susanne; Ejlertsson, Jörgen; Ledin, Anna; Mersiowsky, Ivo; Svensson, Bo H
2003-02-01
Leachates from 17 different landfills in Europe were analysed with respect to phthalates, i.e. phthalic acid diesters (PAEs) and their degradation products phthalic acid monoesters (PMEs) and ortho-phthalic acid (PA). Diesters are ubiquitous and the human possible exposure and potential to human health and environment has put them in focus. The aim of this study was to elucidate whether monoesters and phthalic acid could be traced in landfill leachates and in what concentrations they may be found. The results showed that phthalates were present in the majority of the leachates investigated. The monoesters appeared from 1 to 20 microg/L and phthalic acid 2-880 microg/L (one divergent value of 19 mg phthalic acid/L). Their parental diesters were observed from 1 to 460 microg/L. These observed occurrences of degradation products, of all diesters studied, support that they are degraded under the landfill conditions covered by this study. Thus, we have presented strong evidences to conclude that microorganisms in landfills degrade diesters released from formulations in a variety of products, including polyvinyl chloride (PVC) species.
Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro
2013-06-15
The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid-liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system. Copyright © 2013 Elsevier B.V. All rights reserved.
Krogsgaard-Larsen, Niels; Storgaard, Morten; Møller, Charlotte; Demmer, Charles S; Hansen, Jeanette; Han, Liwei; Monrad, Rune N; Nielsen, Birgitte; Tapken, Daniel; Pickering, Darryl S; Kastrup, Jette S; Frydenvang, Karla; Bunch, Lennart
2015-08-13
Herein we describe the first structure-activity relationship study of the broad-range iGluR antagonist (2S,3R)-3-(3-carboxyphenyl)pyrrolidine-2-carboxylic acid (1) by exploring the pharmacological effect of substituents in the 4, 4', or 5' positions and the bioisosteric substitution of the distal carboxylic acid for a phosphonic acid moiety. Of particular interest is a hydroxyl group in the 4' position 2a which induced a preference in binding affinity for homomeric GluK3 over GluK1 (Ki = 0.87 and 4.8 μM, respectively). Two X-ray structures of ligand binding domains were obtained: 2e in GluA2-LBD and 2f in GluK1-LBD, both at 1.9 Å resolution. Compound 2e induces a D1-D2 domain opening in GluA2-LBD of 17.3-18.8° and 2f a domain opening in GluK1-LBD of 17.0-17.5° relative to the structures with glutamate. The pyrrolidine-2-carboxylate moiety of 2e and 2f shows a similar binding mode as kainate. The 3-carboxyphenyl ring of 2e and 2f forms contacts comparable to those of the distal carboxylate in kainate.
Extraterrestrial Organic Compounds in Meteorites
NASA Technical Reports Server (NTRS)
Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)
2003-01-01
Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.
Lv, Kai; Yang, Chu-Ting; Han, Jun; Hu, Sheng; Wang, Xiao-Lin
2017-06-30
Combining the merits of soft-templating and perchlorate oxidation methods, the first-case investigation of niobium alkylphosphonates has uncovered their unique morphology, backbone composition, thermal behavior and huge potentiality as radioanalytical separation materials. These hierarchically porous solids are random aggregates of densely stacked nanolayers perforated with worm-like holes or vesicular voids, manifesting the massif-, tower-like "polymer brush" elevated up to ∼150nm driven by the minimal surface free energy principle. These coordination polymers consist of distorted niobium (V) ions strongly linked with tetrahedral alkylphosphonate building units, exposing uncoordinated phosphonate moieties and defective metal sites. Despite the amorphous features, they demonstrate multimodal porosity covering continuous micropores, segregated mesopores and fractional macropores, beneficial for the sequestration by active Lewis acid-base center. Evidenced by the maximum distribution coefficients of thorium, lanthanides reaching 9.0×10 4 , 9.5×10 4 mLg -1 and large separation factor at pH≤1 20-element cocktail, this category of niobium alkylphosphonates are capable of harvesting thorium, lanthanides directly from the radionuclide surrogate, comparable to or even surpass the performance of the metal (IV) arylphosphonates counterparts. They also display appreciable SF Eu/Sm ∼20 in 1molL -1 HNO 3 , shedding light on dual approaches to achieve the isolation of americium from curium. A combinatorial radioanalytical separation protocol has been proposed to enrich thorium and europium, revealing facile utilization of these highly stable, phosphonated hybrids in sustainable development of radioanalytical separation. Copyright © 2017 Elsevier B.V. All rights reserved.
Habiba, Umma; Siddique, Tawsif A; Talebian, Sepehr; Lee, Jacky Jia Li; Salleh, Areisman; Ang, Bee Chin; Afifi, Amalina M
2017-12-01
In this study, effect of degree of deacetylation on property and adsorption capacity of chitosan/polyvinyl Alcohol electrospun membrane has been investigated. Resulting nanofibers were characterized by FESEM, FTIR, XRD, TGA, tensile testing, weight loss test and adsorption test. FESEM result shows, finer nanofiber was fabricated from 42h hydrolyzed chitosan and PVA blend solution. FTIR and XRD result showed a strong interaction between chitosan and polyvinyl alcohol. Higher tensile strength was observed for the nanofiber having 42h hydrolyzed chitosan. Blend solution of chitosan/PVA having low DD chitosan had higher viscosity. The nanofibrous membrane was stable in distilled water, acidic and basic medium. The isotherm study shows that the adsorption capacity (q m ) of nanofiber containing higher DD chitosan was higher for Cr(VI). In contrary, the membrane containing chitosan with lower DD showed the higher adsorption capacity for Fe(III) and methyl orange. Moreover, the effect of DD on removal percentage of adsorbate was dependent on the initial concentration of the adsorbate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Peng, Sha; Zhou, Ming; Liu, Feiyan; Zhang, Chang; Liu, Xueqing; Liu, Jiyan; Zou, Liyong; Chen, Jia
2017-08-01
Flame-retardant polyvinyl alcohol (PVA) membranes with high transparency and flexibility were prepared by mixing an aqueous solution of a phosphorus-containing acrylic acid (AOPA) with PVA. The reaction between AOPA and PVA, the transparency, the crystallinity and the flexibility of the membrane were investigated with Fourier transform infrared spectrometry (FTIR), UV-vis light transmittance, X-ray diffraction and tensile tests, respectively. The limited oxygen index (LOI) and vertical flame (UL 94 VTM), microscale combustion calorimetry, thermogravimetric analysis (TGA) and TGA-FTIR were employed to evaluate the flame retardancy as well as to reveal the corresponding mechanisms. Results showed that PVA containing 30 wt% of AOPA can reach the UL 94 VTM V0 rating with an LOI of 27.3% and retain 95% of the original transparency of pure PVA. Adding AOPA reduces crystallinity of PVA, while the flexibility is increased. AOPA depresses the thermal degradation of PVA and promotes char formation during combustion. The proposed decomposition mechanism indicates that AOPA acts mainly in the condensed phase.
Performances of a portable electrospinning apparatus.
Mouthuy, Pierre-Alexis; Groszkowski, Lukasz; Ye, Hua
2015-05-01
To demonstrate that portable electrospinning devices can spin a wide range of polymers into submicron fibres and provide a mesh quality comparable to those produced with benchtop machines. We have designed a small, battery-operated electrospinning apparatus which enables control over the voltage and the flow rate of the polymer solution via a microcontroller. It can be used to electrospin a range of commonly used polymers including poly(ε-caprolactone), poly(p-dioxanone), poly(lactic-co-glycolic acid), poly(3-hydroxybutyrate), poly(ethylene oxide), poly(vinyl acohol) and poly(vinyl butyral). Moreover, electrospun meshes are produced with a quality comparable to a benchtop machine. We also show that the portable apparatus is able to electrospray beads and microparticles. Finally, we highlight the potential of the device for wound healing applications by demonstrating the possibility of electrospinning onto pig and human skins. Portable electrospinning devices are still at an early stage of development but they could soon become an attractive alternative to benchtop machines, in particular for uses that require mobility and a higher degree of flexibility, such as for wound healing applications.
Thalassospira povalilytica sp. nov., a polyvinyl-alcohol-degrading marine bacterium.
Nogi, Yuichi; Yoshizumi, Masaki; Miyazaki, Masayuki
2014-04-01
A polyvinyl-alcohol-degrading marine bacterium was isolated from plastic rope litter found in Tokyo Bay, Japan. The isolated strain, Zumi 95(T), was a Gram-reaction-negative, non-spore-forming and facultatively anaerobic chemo-organotroph. The major respiratory quinone was Q-10. The predominant fatty acids were C18 : 1ω7c and C16 : 0. On the basis of 16S rRNA gene sequence analysis, the isolated strain was closely affiliated with members of the genus Thalassospira in the class Alphaproteobacteria. The DNA G+C content of the novel strain was 55.1 mol%. The hybridization values for DNA-DNA relatedness between this strain and four reference strains representing species of the genus Thalassospira were significantly lower than that accepted as the phylogenetic definition of a species. On the basis of differences in taxonomic characteristics, the isolated strain represents a novel species of the genus Thalassospira for which the name Thalassospira povalilytica sp. nov. (type strain Zumi 95(T) = JCM 18746(T) = DSM 26719(T)) is proposed.
Xing, Yuanna; Lin, Zhihui; Feng, Anhong; Wang, Xin; Gong, Yemeng; Chen, Zeyong
2015-02-01
A novel method was established to determine short chain chlorinated paraffins (SC-CPs) in polyvinyl chloride (PVC) plastics by gas chromatography-negative chemical ion/mass spectrometry (GC-NCI/MS). Ultrasonic extraction was used to extract SCCPs from PVC plastics. The optimal extraction time was 1.5 h, and concentrated sulfuric acid was adopted to purify the extracted solution. Finally, SCCPs in a sample were detected by GC-NCI/MS at 160 C and with methane reagent gas at 1. 5 mL/min. This method was not influenced by medium chain chlorinated paraffins (MCCPs) in the sample, and accurate quantitation was made for SCCPs. Twelve batches of samples were analyzed and SCCPs were detected in each batch with the contents from 0. 3 x 10(2)mg/kg to 3. 5 x 10(4)mg/kg. With respect to European limitation of SC-CPs (1%), four batches of samples did not comply with the European regulation, and they accounted for 33. 3%. Obviously, high SCCPs risk was presented in PVC plastics.
Xiao, Min; González, Edurne; Monterroza, Alexis Martell; Frey, Margaret
2017-10-15
A thermo-responsive polymer with hydrophilic to hydrophobic transition behavior, poly(vinyl caprolactam-co-hydroxyethyl acrylamide) P(VCL-co-HEAA), was prepared by copolymerization of vinyl caprolactam and N-hydroxyethyl acrylamide via free radical solution polymerization. The resulting copolymer was characterized by Fourier transform infrared spectroscopy (FTIR), 1 H nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The lower critical solution temperature (LCST) of P(VCL-co-HEAA) was determined at 34.5°C. This thermo-responsive polymer was then grafted onto cotton fabrics using 1,2,3,4-butanetetracarboxylic acid (BTCA) as crosslinker and sodium hypophosphite (SHP) as catalyst. FTIR and energy dispersive X-ray spectroscopy (EDS) studies confirmed the successful grafting reaction. The modified cotton fabric exhibited thermo-responsive behavior as evidenced by water vapor permeability measurement confirming decreased permeability at elevated temperature. This is the first demonstration that a PVCL based copolymer is grafted to cotton fabrics. This study provides a new thermo-responsive polymer for fabrication of smart cotton fabrics with thermally switchable hydrophilicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Efremenko, E N; Tatarinova, N Iu
2007-01-01
The effect of cell storage at -18 degrees C for 18-24 months on reproductive capacity was investigated for various microorganisms (gram-positive and gram-negative bacteria, yeasts, and filamentous fungi) immobilized in poly(vinyl alcohol) cryogel. To examine the viability of immobilized cells after defrosting, the bioluminescent method of intracellular ATP determination was used. A high level of metabolic activity of immobilized cells after various periods of storage was recorded for Streptomyces anulatus, Rhizopus orvzae, and Escherichia coli, which are producers of the antibiotic aurantin, L(+)-lactic acid, and the recombinant enzyme organophosphate hydrolase, respectively. It was shown that the initial concentration of immobilized cells in cryogel granules plays an important role in the survival of Str. anulatus and Pseudomonas putida after 1.5 years of storage. It was found that, after slow defrosting in the storage medium at 50C for 18 h of immobilized cells of the yeast Saccharomvces cerevisiae that had been stored for nine months, the number of reproductive cells increased due to the formation of ascospores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Camila F.N.; Lazarin, Angélica M., E-mail: amlazarin2@uem.br; Sernaglia, Rosana L.
Graphical abstract: Scanning electron microscopy photographs of calcium phosphate (a) and intercalated with p-aminobenzoic acid (b). Highlights: ► Calcium phosphate was intercalated with p-aminobenzoic acid. ► Guest molecule contains nitrogen and oxygen atoms from amine and carboxylic groups. ► These basic centers are potentially useful for cation coordination in ethanol solution. ► Crystal morphology of compounds is lamellar, it agrees with expected structural characteristics. -- Abstract: Crystalline lamellar calcium phosphate retained 4-aminobenzoic acid inside its cavity without leaching. The intense infrared bands in the 1033 and 1010 cm{sup −1} interval confirmed the presence of the phosphonate groups attached to themore » inorganic layer, with sharp and intense peaks in X-ray diffraction patterns, which gave basal distances of 712 and 1578 pm for the original and the intercalated compounds, respectively. Solid-state {sup 31}P nuclear magnetic resonance spectra presented only one peak for the phosphate groups attached to the main inorganic polymeric structure near −2.4 ppm. The adsorption isotherms from ethanol gave the maximum adsorption capacities of 6.44 and 3.34 mmol g{sup −1} for nickel and cobalt, respectively, which stability constant and distribution coefficient followed Co > Ni.« less
New Boron Analogues of Pyrophosphates and Deoxynucleoside Boranophosphates
Vyakaranam, Kamesh; Rana, Geeta; Spielvogel, Bernard F.
2001-01-01
Tetraethyldicyanoborane pyrophosphate (2) and 3'-(diethylphosphite-cyanoborano)-5'-dimethoxytrityl.N4-benzoyl-deoxycytidine (3) have been synthesized in 70% and 76% yields, respectively. The compatibility of the substituted boranophosphates with common protecting groups is hereby demonstrated. Boron containing biologically active compounds, such as nucleosides and nucleotides 1-6 and amino acids 7-9 are important due to their potential therapeutic activity, research and diagnostic applications. Many boron containing compounds have shown promising activity as anticancer, 10. 11. 12 antiinflammatory,13 and antiosteoporotic 13agents. Oligonucleotdes in which a non-bridging oxygen atom is replaced by a borane(BH3) group are a very important class of modified nucleic acids. 1. 3. 14-16 The BH3 group is isoelectronic with oxygen in natural oligonucleotides and isoelectronic and isostructural with the oligonucleotide methyl phosphonates, which are nuclease resistant. On the other hand, the α-borano triphosphates are good substrates for DNA polymerases and incorporation of boranophosphates into DNA causes an increase in the resistance to exo- and endonucleases 2. 17a as compared to non-modified DNA. There are also notable applications of the α-borano triphosphates in PCR sequencing 17a and nucleic acid detection 17b. PMID:18475988
Clavel, Caroline; Barragan-Montero, Véronique; Garric, Xavier; Molès, Jean-Pierre; Montero, Jean-Louis
2005-09-01
A new synthetic route to obtain the carboxylate analog of mannose 6-phosphate (M6-P) is presented. The effects of the M6-P, the carboxylate and two other analogs (the phosphonate and the alpha,beta ethylenic carboxylate) on the proliferation of human keratinocytes and dermal fibroblasts as well as on the proliferation of a murine fibroblast cell line, 3T3-J2 are tested. We observed that M6-P is a potent inhibitor of proliferation of both fibroblasts and keratinocytes. Among its analogs, the phosphonate showed a similar effect on human dermal fibroblasts but not on keratinocytes.
Mn0.95I0.02[PO3(OH)] · 2H2O phosphate-iodate, an inorganic analogue of phosphonates
NASA Astrophysics Data System (ADS)
Belokoneva, E. L.; Dimitrova, O. V.; Volkov, A. S.
2015-09-01
The new Mn0.95I0.02[PO3(OH)] · 2H2O phosphate-iodate (space group Pnam = Pnma, D {2/h 16}) is obtained under hydrothermal conditions. The crystal structure is determined without preliminary knowledge of the chemical formula. The structure consists of layers of MnО6 octahedra connected with PO4 tetrahedra. Water molecules are located between the layers. [IO3]- groups having a typical umbrella-like coordination are statistically implanted in layers of MnО6 octahedra at a distance of 1.2 Å from Mn atoms. Their content in the crystal is minor. The structures of the phosphate-iodate coincides with the structures of phosphonates with consideration for the replacement of one (OH) vertex of the РО4 tetrahedron by the organic methyl radical СН3. In the structures of phosphonates and earlier studied phosphates, identical layers are distinguished and the cause of the existence of two MDO varieties is established based on the analysis within the OD theory. Possible hybrid structures derived from the prototypes under consideration are predicted.
Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors
NASA Astrophysics Data System (ADS)
Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit
2016-07-01
Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.
Srivastava, S.C.; Meinken, G.E.; Richards, P.
1983-08-25
The radiopharmaceutical reagents of this invention and the class of Tin-117m radiopharmaceuticals are therapeutic and diagnostic agents that incorporate gamma-emitting nuclides that localize in bone after intravenous injection in mammals (mice, rats, dogs, and rabbits). Images reflecting bone structure or function can then be obtained by a scintillation camera that detects the distribution of ionizing radiation emitted by the radioactive agent. Tin-117m-labeled chelates of stannic tin localize almost exclusively in cortical bone. Upon intravenous injection of the reagent, the preferred chelates are phosphonate compounds, preferable, PYP, MDP, EHDP, and DTPA. This class of reagents is therapeutically and diagnostically useful in skeletal scintigraphy and for the radiotherapy of bone tumors and other disorders.
A strontium-90 sequestrant for first-aid treatment of radiation emergency.
Haratake, Mamoru; Hatanaka, Eisuke; Fuchigami, Takeshi; Akashi, Makoto; Nakayama, Morio
2012-01-01
In this study, hydrophilic porous polymer beads with phosphonic acid groups (PGMA-EGDMA-TTA-MP) were synthesized, and assessed as a radioactive strontium-90 sequestrant for the treatment of the radiation emergency. Strontium ions were rapidly absorbed into the blood from the gastrointestinal (GI) tract after oral administration to rats, and distributed to the target organ, i.e., bones. Over 40% of the administered strontium was absorbed into the blood, while the remainder was discharged in the feces within 48 h after the administration. When the PGMA-EGDMA-TTA-MP beads were administered to rats subsequent to the strontium solution, the strontium had accumulated less in the femur. Consequently, the oral administration of the PGMA-EGDMA-TTA-MP beads was effective in suppressing the absorption of strontium from the GI tract.
Ide, Andreas; Drisko, Glenna L; Scales, Nicholas; Luca, Vittorio; Schiesser, Carl H; Caruso, Rachel A
2011-11-01
To take advantage of the full potential of functionalized transition metal oxides, a well-understood nonsilane based grafting technique is required. The functionalization of mixed titanium zirconium oxides was studied in detail using a bisphosphonic acid, featuring two phosphonic acid groups with high surface affinity. The bisphosphonic acid employed was coupled to a UV active benzamide moiety in order to track the progress of the surface functionalization in situ. Using different material compositions, altering the pH environment, and looking at various annealing conditions, key features of the functionalization process were identified that consequently will allow for intelligent material design. Loading with bisphosphonic acid was highest on supports calcined at 650 °C compared to lower calcination temperatures: A maximum capacity of 0.13 mmol g(-1) was obtained and the adsorption process could be modeled with a pseudo-second-order rate relationship. Heating at 650 °C resulted in a phase transition of the mixed binary oxide to a ternary oxide, titanium zirconium oxide in the srilankite phase. This phase transition was crucial in order to achieve high loading of the bisphosphonic acid and enhanced chemical stability in highly acidic solutions. Due to the inert nature of phosphorus-oxygen-metal bonds, materials functionalized by bisphosphonic acids showed increased chemical stability compared to their nonfunctionalized counterparts in harshly acidic solutions. Leaching studies showed that the acid stability of the functionalized material was improved with a partially crystalline srilankite phase. The materials were characterized using nitrogen sorption, X-ray powder diffraction, and UV-vis spectroscopy; X-ray photoelectron spectroscopy was used to study surface coverage with the bisphosphonic acid molecules.
Ye, Bei; Li, Yue; Chen, Zhuo; Wu, Qian-Yuan; Wang, Wen-Long; Wang, Ting; Hu, Hong-Ying
2017-11-01
Polyvinyl alcohol (PVA) is widely used in industry but is difficult to degrade. In this study, the synergistic effect of UV irradiation and chlorination on degradation of PVA was investigated. UV irradiation or chlorination alone did not degrade PVA. By contrast, UV/chlorine oxidation showed good efficiency for PVA degradation via generation of active free radicals, such as OH and Cl. The relative importance of these two free radicals in the oxidation process was evaluated, and it was shown that OH contributed more to PVA degradation than Cl did. The degradation of PVA followed pseudo first order kinetics. The rate constant k increased linearly from 0 min -1 to 0.3 min -1 with increasing chlorine dosage in range of 0 mg/L to 20 mg/L. However, when the chlorine dosage was increased above 20 mg/L, scavenging effect of free radicals occurred, and the degradation efficiency of PVA did not increase much more. Acidic media increased the degradation efficiency of PVA by UV/chlorine oxidation more than basic or neutral media because of the higher ratio of [HOCl]/[OCl - ], higher free radical quantum yields, and the lower free radical quenching effect under acidic conditions. Results of Fourier Transform Infrared Spectroscopy showed that carbonyl groups in degradation products were formed during UV/chlorine oxidation, and a possible degradation pathway via alcohol to carbonyl was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis and properties of hemicelluloses-based semi-IPN hydrogels.
Peng, Feng; Guan, Ying; Zhang, Bing; Bian, Jing; Ren, Jun-Li; Yao, Chun-Li; Sun, Run-Cang
2014-04-01
Hemicelluloses were extracted from holocellulose of bamboo by alkaline treatment. The phosphorylated poly(vinyl alcohol) (P-PVA) samples with various substitution degrees were prepared through the esterification of PVA and phosphoric acid. A series of hydrogels of semi-interpenetrating polymeric networks (semi-IPN) composed of hemicelluloses-g-poly(acrylic acid) (HM-g-PAA) and the phosphorylated poly(vinyl alcohol) (P-PVA) were prepared by radical polymerization using potassium persulphate (KPS) as initiator. The HM-g-PAA networks were crosslinked by N,N-methylenebisacrylamide (MBA) as a crosslinking agent in the presence of linear P-PVA. FT-IR results confirmed that the hydrogels comprised a porous crosslink structure of P-PVA and HM with side chains that carried carboxylate and phosphorylate groups. SEM observations indicated that the incorporation of P-PVA induced highly porous structure, and P-PVA was uniformly dispersed in the polymeric network. The interior network structures of the semi-IPN matrix became more porous with increasing P-PVA. The TGA results showed that the thermo-decomposing temperature and thermal stability were increased effectively for intruding the chain of P-PVA. The maximum equilibrium swelling ratio of hydrogels in distilled water and 0.9 wt% sodium chloride solutions was up to 1085 g g(-1) and 87 g g(-1), respectively. The compressive strength increased with increasing the MBA/HM and P-PVA/HM ratios, and decreased with the increment of AA/HM ratio. Copyright © 2014 Elsevier B.V. All rights reserved.
A new label dosimetry system based on pentacosa-diynoic acid monomer for low dose applications
NASA Astrophysics Data System (ADS)
Abdel-Fattah, A. A.; Abdel-Rehim, F.; Soliman, Y. S.
2012-01-01
The dosimetric characteristics of γ-radiation sensitive labels based on polyvinyl butyral (PVB) and a conjugated diacetylene monomer, 10,12-pentacosa-diynoic acid (PCDA) have been investigated using reflectance colorimeter. Two types of labels (colourless and yellow) based on PCDA monomer were prepared using an Automatic Film Applicator System. Upon γ-ray exposure, the colourless label turns progressively blue, while the yellow colour label turns to green then to dark blue. The colour intensity of the labels is proportional to the radiation absorbed dose. The useful dose range was 15 Gy-2 kGy depending on PCDA monomer concentration. The expanded uncertainty of dose measurement of the colourless label was 6.06 (2 σ).
Metal precursor induced shape controlled synthesis of gold nanostructures
NASA Astrophysics Data System (ADS)
Verma, Manoj; Kathy, Annu Dahiya; Kumar, P. Senthil
2018-05-01
Anisotropic gold nanoparticles have excellent properties which enables them to utilize in exciting applications in plasmonics as well as in nanophotonics, catalysis etc. In this report we have synthesized/tune shape of gold nanoparticles by utilizing in situ polymer halide interaction. Our quest for achieving shape control of gold nanoparticles succeeded even under ambient conditions by utilizing the mild but effective reducing power of versatile polymer, polyvinyl pyrrolidone(PVP) on different precursor more specifically on Hydrochloroauric acid and Potassiumbromoauric acid. The significant shape dependent optical plasmonic signature agrees in excellent manner with TEM observations as shown below. Moreover, as prepared gold nanocrystals having different morphology were studied with XRD measurements and a beautiful conclusion was drawn between crystallographic facets and shapes of gold nanoparticles.
In Situ Cross-Linking of Polyvinyl Alcohol Films
NASA Technical Reports Server (NTRS)
Philipp, W. H.; Shu, L. C.; May, C. E.
1984-01-01
Films or impregnated matrices readily made from aqueous polyvinyl alcohol solution. Controlled thickness films made by casting precise quantities of aqueous polymer solution on smooth surface, allowing water to evaporate and then removing film. Composite separators formed in similar fashion by impregnating cloth matrix with polyvinyl alcohol solution and drying composite. Insoluble thin hydrophilic membranes made from aqueous systems, and use of undesirable organic solvents not required.
Liver disease among polyvinyl chloride production workers.
Creech, J L; Makk, L
1975-01-31
A protocol for systematic testing of all employees of a chemical plant is presented. This factory manufactures polyvinyl chloride compounds and resins, ABS compounds and resins, and synthetic rubber. The results were reviewed, which led to the discovery of 2 additional cases of angiosarcoma and 11 cases of portal fibrosis. Two of the 11 cases were found to have developed in employees other than polyvinyl chloride production workers.
Solution Based Functionalization of Nanostructured Oxides with Organic Molecules
NASA Astrophysics Data System (ADS)
Pearce, Brady Lawrence
The surface modification of wide bandgap semiconductors with organic molecules provides novel functionalities to the composite material. These functionalities can include tuning of the optical properties, providing solution stability of the inorganic material, as well as many others. The use of an in-situ functionalization method for surface attachment of phosphonic group containing molecules to the surface of gallium nitride (GaN) has shown promise. This technique is particularly advantageous due to the etching and functionalization steps occurring at the same time, in the same beaker, as well as not being reliant on organic solvents or high temperatures. In this functionalization process, surface hydroxide groups are preferentially grown on the surface of GaN, which serve as attachment sites for phosphonic groups on organic moieties. Molecules with these hydroxyl groups available natively on their surface, such as AlOOH and GaOOH, provide a unique advantage. The requirement for an etching step is removed, and the functionalization process could be performed in a simple one-step modification. The work in this dissertation seeks to address the possibility of using these materials as the inorganic component in organic/inorganic composite material in devices. Of particular importance in solar cell and bioelectronic devices is the ability to withstand varying pH environments, and to avoid the leaching of toxic ionic species. Lysine has shown to reduce the leaching of ionic species, when particles of inorganic molecules are cross-linking agents for the amino acid. In this work, the aqueous stability of both AlOOH and GaOOH in a lysine environment will be explored. The optical and size characteristics observed in nanostructured forms of the mixed composition AlxGa1-xOOH material system is of interest, due optical tunability providing a distinct advantage in optoelectronic devices containing these organic/inorganic hybrids. Immobilizing phosphonic group containing organic dyes on the surface of GaN, GaOOH, AlOOH and mixed compositions of AlGaOOH using surface bonding sites, and possible covalent attachments mechanisms, seeks to provide an improvement in the long term stability of the inorganic/organic interface for devices. Future work in this area will test device efficiency using these hybrids, explore additional mixed oxyhydroxide composition systems and continue the advancement of the understanding of the important role of phosphonic groups in organic/inorganic devices. The nature of chemical and surface species in these materials will be characterized with Fourier Transformed-Infrared Spectroscopy (FT-IR) and X-Ray Photoelectric Spectroscopy (XPS). The optical properties of the materials were tested with photoluminescence (PL) spectroscopy, and the stability was examined with fluorescence spectroscopy. The crystallographic nature of the nanostructured inorganic materials before and after functionalization was determined with X-Ray Diffraction (XRD). Images of the nanostructures were obtained with mainly Scanning Electron Microscopy (SEM) as well as Transmission Electron Microscopy (TEM). The work in this dissertation seeks to address the improvement of the development of nanostructured inorganic/organic hybrid materials, the investigation of novel composites for these applications and the improvement of the long term stability in aqueous medium as well as of the organic/inorganic interface itself.
Shankar, Ravi; Jain, Archana; Kociok-Köhn, Gabriele; Molloy, Kieran C
2011-02-21
The reactions of diorganotin precursors [R(2)Sn(OR(1))(OSO(2)R(1))](n) [R = R(1) = Me (1); R = Me, R(1) = Et (2)] with an equimolar amount of t-butylphosphonic acid (RT, 8-10 h) in methanol result in the formation of identical products, of composition [(Me(2)Sn)(3)(O(3)PBu(t))(2)(O(2)P(OH)Bu(t))(2)](n) (3). On the other hand, a similar reaction of 2, when carried out in dichloromethane, affords [(Me(2)Sn)(3)(O(3)PBu(t))(2)(OSO(2)Et)(2)·MeOH](n) (4). A plausible mechanism implicating the role of solvent in the formation of these compounds has been put forward. In addition, the synthesis of [(Me(2)Sn)(3)(O(3)PCH(2)CH(2)COOMe)(2)(OSO(2)Me)(2)](n) (5) and [R(2)Sn(O(2)P(OH)CH(2)CH(2)COOMe)(OSO(2)R(1))](n) [R = Et, R(1) = Me (6); R = (n)Bu, R(1) = Et (7)] has been achieved by reacting 1 and related diorganotin(alkoxy)alkanesulfonates with 3-phosphonopropionic acid in methanol. The formation of a methylpropionate functionality on the phosphorus center in these structural frameworks results from in situ esterification of the carboxylic group. X-ray crystallographic studies of 1-7 are presented. The structures of 1 and 2 represent one-dimensional (1D) coordination polymers composed of alternate [Sn-O](2) and [Sn-O-S-O](2) cyclic rings formed by μ(2)-alkoxo and sulfonate ligands, respectively. For 3-5 and 7, variable bonding modes of phosphonate and/or sulfonate ligands afford the construction of two- and three-dimensional self-assemblies that are comprised of trinuclear tin entities with an Sn(3)P(2)O(6) core as well as [Sn-O-P-O](2) and/or [Sn-O-S-O](2) rings. The formation of a 1D coordination polymer in 6 is unique in terms of repeating eight-membered cyclic rings containing Sn, O, P, and S heteroatoms. The contribution from hydrogen-bonding interactions is also found to be significant in these structures.
NASA Astrophysics Data System (ADS)
Yang, Jiali; Lu, Lansi; Zhang, Zhu; Liao, Minhui; He, Huirong; Li, Lingxing; Chen, Jida; Chen, Shijin
2017-12-01
A novel nano-fibrous adsorbent from imino-acetic acid (IDA) and polyvinyl alcohol (PVA) mixture solution was prepared by electro-spinning technique. The nano-fibrous adsorbents with imino-acetic acid functional groups were characterized and demonstrated by fourier transform infrared spectrometry (FT-IR) and the scanning electron microscopy (SEM). The effect of the adsorbents to remove heavy metals such as lead (Pb) and copper (Cu) ions from the aqueous solution was studied. The maximum adsorption percentage (SP) of the metal ions can reach 93.08% for Cu (II) and 96.69% for Pb(II), respectively. Furthermore, it shows that the adsorption procedure of the adsorbents is spontaneous and endothermic, and adsorption rate fits well with pseudo-second-order kinetic model. Most importantly, the reusability of the nanofibers for removal of metal ions was also demonstrated to be used at least five times.
Preparing oxidized fractions of polyvinyl alcohol of a given molecular mass
NASA Astrophysics Data System (ADS)
Zimin, Yu. S.; Kutlugil'dina, G. G.; Mustafin, A. G.
2016-10-01
The effect of two oxidizers (an oxygen-ozone mixture and hydrogen peroxide) on the kinetics of the oxidative degradation of polyvinyl alcohol in aqueous solutions is studied. Degradation of the polymer is proved not only by a reduction in the weight of oxidized fractions, but in the intrinsic viscosity of their aqueous solutions as well (and thus the average molecular weight of the resulting fractions). It is shown that the degree of the destructive reactions of polyvinyl alcohol grows along with the duration of the process, increasing the initial concentrations of H2O2 and raising the temperature. These results can be used in obtaining oxidized fractions of polyvinyl alcohol that have predetermined molecular weights.
A composite hydrogels-based photonic crystal multi-sensor
NASA Astrophysics Data System (ADS)
Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng
2015-04-01
A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; Chakravarty, Bornali; Zheng, Fei
Human fatty acid synthase (hFAS) is a homodimeric multidomain enzyme that catalyzes a series of reactions leading to the de novo biosynthesis of long-chain fatty acids, mainly palmitate. The carboxy-terminal thioesterase (TE) domain determines the length of the fatty acyl chain and its ultimate release by hydrolysis. Because of the upregulation of hFAS in a variety of cancers, it is a target for antiproliferative agent development. Dietary long-chain polyunsaturated fatty acids (PUFAs) have been known to confer beneficial effects on many diseases and health conditions, including cancers, inflammations, diabetes, and heart diseases, but the precise molecular mechanisms involved have notmore » been elucidated. We report the crystal structure of the hFAS TE domain covalently modified and inactivated by methyl {gamma}-linolenylfluorophosphonate. Whereas the structure confirmed the phosphorylation by the phosphonate head group of the active site serine, it also unexpectedly revealed the binding of the 18-carbon polyunsaturated {gamma}-linolenyl tail in a long groove-tunnel site, which itself is formed mainly by the emergence of an {alpha} helix (the 'helix flap'). We then found inhibition of the TE domain activity by the PUFA dihomo-{gamma}-linolenic acid; {gamma}- and {alpha}-linolenic acids, two popular dietary PUFAs, were less effective. Dihomo-{gamma}-linolenic acid also inhibited fatty acid biosynthesis in 3T3-L1 preadipocytes and selective human breast cancer cell lines, including SKBR3 and MDAMB231. In addition to revealing a novel mechanism for the molecular recognition of a polyunsaturated fatty acyl chain, our results offer a new framework for developing potent FAS inhibitors as therapeutics against cancers and other diseases.« less
NASA Astrophysics Data System (ADS)
Rostamnia, Sadegh; Doustkhah, Esmail
2015-07-01
Water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 were successfully synthesized. β-Cyclodextrin acts as stabilizer and structure directing agent of Fe3O4. Subsequently, the dispersion of Fe3O4@β-CD was applied for the Kabachnik-Fields multicomponent reaction through three-component synthesis of an amine, aldehyde, and dimethylphosphonate. β-CD had also a drastic effect in accelerating the catalysis of phosphonate synthesis. By this protocol, phosphonate derivatives were synthesized in high yields and the catalyst was recycled for 10 successful runs.
Sharma, Ajit K; Khare, Prateek; Singh, Jayant K; Verma, Nishith
2013-04-01
A novel nanocomposite polyvinyl alcohol precursor-based material dispersed with the web of carbon microfibers and carbon nanofibers is developed as lithium (Li)-ion electrolyte battery separator. The primary synthesis steps of the separator material consist of esterification of polyvinyl acetate to produce polyvinyl alcohol gel, ball-milling of the surfactant dispersed carbon micro-nanofibers, mixing of the milled micron size (~500 nm) fibers to the reactant mixture at the incipience of the polyvinyl alcohol gel formation, and the mixing of hydrophobic reagents along with polyethylene glycol as a plasticizer, to produce a thin film of ~25 μm. The produced film, uniformly dispersed with carbon micro-nanofibers, has dramatically improved performance as a battery separator, with the ion conductivity of the electrolytes (LiPF6) saturated film measured as 0.119 S-cm(-1), approximately two orders of magnitude higher than that of polyvinyl alcohol. The other primary characteristics of the produced film, such as tensile strength, contact angle, and thermal stability, are also found to be superior to the materials made of other precursors, including polypropylene and polyethylene, discussed in the literature. The method of producing the films in this study is novel, simple, environmentally benign, and economically viable. Copyright © 2012 Elsevier B.V. All rights reserved.
Singh, Rina; Singh, Jagjit; Singh, Ramanpreet; Nanda, Sonia
2013-01-01
Objective:To determine the effect of different retraction cord medicaments on surface detail reproduction of polyvinyl siloxane impression materials and compare this effect on any two brands of commercially available polyvinyl siloxane impression materials. Material and methods: Four stainless steel dies were made according to ADA specification no.19. Three dies were treated with aluminium chloride (5%), ferric sulphate (13.3%) and epinephrine (0.1%) while the fourth one was left untreated to serve as control. Two impression materials (Dentsply and 3M ESPE) were used. Results: All the three medicaments adversely affected the surface detail reproduction of both the brands of the polyvinyl siloxane impression materials. These effects were statistically significant as compared to untreated control. The impressions of 3M ESPE brand have shown better surface detail reproduction as compared to Dentsply impression material. Conclusion: Surface detail reproduction of the polyvinyl siloxane impression materials is adversely affected by the retraction cord medicaments. The presence of moisture or any traces of the medicaments should be removed from the tooth surface to provide a dry field for the correct reproduction of the surface detail of these materials. Key words:Polyvinyl Siloxane, retraction cord medicaments, surface detail reproduction. PMID:24455069