Science.gov

Sample records for polyvinylpyrrolidone ultrafine fibers

  1. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers

    NASA Astrophysics Data System (ADS)

    Yu, Deng-Guang; Shen, Xia-Xia; Branford-White, Chris; White, Kenneth; Zhu, Li-Min; Bligh, S. W. Annie

    2009-02-01

    Oral fast-dissolving drug delivery membranes (FDMs) for poorly water-soluble drugs were prepared via electrospinning technology with ibuprofen as the model drug and polyvinylpyrrolidone (PVP) K30 as the filament-forming polymer and drug carrier. Results from differential scanning calorimetry, x-ray diffraction, and morphological observations demonstrated that ibuprofen was distributed in the ultrafine fibers in the form of nanosolid dispersions and the physical status of drug was an amorphous or molecular form, different from that of the pure drug and a physical mixture of PVP and ibuprofen. Fourier-transform infrared spectroscopy results illustrated that the main interactions between PVP and ibuprofen were mediated through hydrogen bonding. Pharmacotechnical tests showed that FDMs with different drug contents had almost the same wetting and disintegrating times, about 15 and 8 s, respectively, but significantly different drug dissolution rates due to the different physical status of the drug and the different drug-release-controlled mechanisms. 84.9% and 58.7% of ibuprofen was released in the first 20 s for FDMs with a drug-to-PVP ratio of 1:4 and 1:2, respectively. Electrospun ultrafine fibers have the potential to be used as solid dispersions to improve the dissolution profiles of poorly water-soluble drugs or as oral fast disintegrating drug delivery systems.

  2. Ultrafine PBI fibers and yarns

    NASA Technical Reports Server (NTRS)

    Leal, J. R.; Tan, M.

    1979-01-01

    Gentle precisely controlled process is used to draw polybenzimidazole (PBI) fibers to denier as low as 0.17 per fiber. Yarns of lightweight fibers could be useful in applications where lightweight textiles must withstand high temperatures, corrosion, or radiation.

  3. Ultrafine PBI fibers and yarns

    NASA Technical Reports Server (NTRS)

    Leal, J. R.; Tan, M.

    1979-01-01

    Gentle precisely controlled process is used to draw polybenzimidazole (PBI) fibers to denier as low as 0.17 per fiber. Yarns of lightweight fibers could be useful in applications where lightweight textiles must withstand high temperatures, corrosion, or radiation.

  4. Ultrafine particle and fiber production in microgravity

    NASA Technical Reports Server (NTRS)

    Webb, George W. (Inventor)

    1988-01-01

    In a system and method for producing ultrafine particles and ultrafine fibers of a given source material by evaporating and condensing the material in a gas atmosphere that includes inert gas. A smaller, more narrow size distribution is accomplished by producing the particles and fibers in a microgravity environment in order to reduce particle coalescence caused by convection currents. Particle coalescence also is reduced in an Earth gravity environment by controlling the convection currents. Condensed particles are collected either by providing an electrostatic field or a spatially varying magnetic field or by causing the gas to move through a filter which collects the particles. Nonferromagnetic material fibers are produced and collected by electrodes which produce an electro- static field. Ferromagnetic particles are collected by spatially varying magnetic fields.

  5. Biomimetic Branched Hollow Fibers Templated by Self-assembled Fibrous Polyvinylpyrrolidone (PVP) Structures in Aqueous Solution

    PubMed Central

    Qiu, Penghe; Mao, Chuanbin

    2010-01-01

    Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. Based on this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering. PMID:20158250

  6. Biomimetic branched hollow fibers templated by self-assembled fibrous polyvinylpyrrolidone structures in aqueous solution.

    PubMed

    Qiu, Penghe; Mao, Chuanbin

    2010-03-23

    Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. On the basis of this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering.

  7. Cytocompatible and water stable ultrafine protein fibers for tissue engineering

    NASA Astrophysics Data System (ADS)

    Jiang, Qiuran

    This dissertation proposal focuses on the development of cytocompatible and water stable protein ultrafine fibers for tissue engineering. The protein-based ultrafine fibers have the potential to be used for biomedicine, due to their biocompatibility, biodegradability, similarity to natural extracellular matrix (ECM) in physical structure and chemical composition, and superior adsorption properties due to their high surface to volume ratio. However, the current technologies to produce the protein-based ultrafine fibers for biomedical applications still have several problems. For instance, the current electrospinning and phase separation technologies generate scaffolds composed of densely compacted ultrafine fibers, and cells can spread just on the surface of the fiber bulk, and hardly penetrate into the inner sections of scaffolds. Thus, these scaffolds can merely emulate the ECM as a two dimensional basement membrane, but are difficult to mimic the three dimensional ECM stroma. Moreover, the protein-based ultrafine fibers do not possess sufficient water stability and strength for biomedical applications, and need modifications such as crosslinking. However, current crosslinking methods are either high in toxicity or low in crosslinking efficiency. To solve the problems mentioned above, zein, collagen, and gelatin were selected as the raw materials to represent plant proteins, animal proteins, and denatured proteins in this dissertation. A benign solvent system was developed specifically for the fabrication of collagen ultrafine fibers. In addition, the gelatin scaffolds with a loose fibrous structure, high cell-accessibility and cell viability were produced by a novel ultralow concentration phase separation method aiming to simulate the structure of three dimensional (3D) ECM stroma. Non-toxic crosslinking methods using citric acid as the crosslinker were also developed for electrospun or phase separated scaffolds from these three proteins, and proved to be

  8. Ultrafine cellulose acetate fibers with nanoscale structural features.

    PubMed

    Zhang, Lifeng; Hsieh, You-Lo

    2008-09-01

    Nano-structural features were introduced to ultrafine cellulose acetate (CA) fibers by electrospinning of its mixtures with either poly(vinyl pyrrolidone) PVP or beta-cyclodextrin (beta-CD) in DMF, followed by dissolution of the added PVP or beta-CD. The presence of the charge-holding PVP enabled fiber formation from CA below its entanglement chain length and improved the electrospinning efficiency to produce bicomponent fibers with wide ranging diameters from 30 to 650 nm. At up to 50% contents, the PVP in the bicomponent fibers was phase-separated from CA and, upon removal, resulting in highly angulated fiber surfaces with nanometer-size spherulites and sub-micron size ridges and grooves. Adding beta-CD to CA enabled fiber formation at concentrations below the chain entanglement concentration Ce (16.5%). Hydrogen bonding between beta-CD and CA, as evident by FTIR, helped to distribute beta-CD as individual molecules in the CA matrix and producing more uniform and finer (130-150 nm in diameters) fibers, irrespective of their beta-CD contents. Removal of beta-CD from the fibers originally containing 40% beta-CD, generated nanoporous fibers with 2-nm nanopores and 70% increase in specific surface and doubled pore volume.

  9. Mesosilica-coated ultrafine fibers for highly efficient laccase encapsulation

    NASA Astrophysics Data System (ADS)

    Wang, Shiwen; Chen, Wei; He, Sha; Zhao, Qilong; Li, Xiaohong; Sun, Jiashu; Jiang, Xingyu

    2014-05-01

    In this paper, we present a simple but efficient biomimetic method to encapsulate laccase on mesoporous silica-modified electrospun (ES) ultrafine fibers. Because of the mild immobilization conditions (room temperature, aqueous condition), the encapsulated laccase retained a high activity of 94%. Because of the protection from the silica layer, the laccase worked efficiently at 60 °C and retained a long-term activity in the presence of proteinase K. After recycling for 10 times the laccase still preserved 96% of its original reactivity. More remarkably, the immobilized laccase on fibers could completely recover its activity after thermal denature, while the free laccase permanently lost the activity. We also demonstrated that the laccase on silica-coated fibers exhibited an enhanced decolorization capability of Brilliant Blue KN-R (BBKN-R) as compared to the free laccase, showing its great potential for industrial applications.In this paper, we present a simple but efficient biomimetic method to encapsulate laccase on mesoporous silica-modified electrospun (ES) ultrafine fibers. Because of the mild immobilization conditions (room temperature, aqueous condition), the encapsulated laccase retained a high activity of 94%. Because of the protection from the silica layer, the laccase worked efficiently at 60 °C and retained a long-term activity in the presence of proteinase K. After recycling for 10 times the laccase still preserved 96% of its original reactivity. More remarkably, the immobilized laccase on fibers could completely recover its activity after thermal denature, while the free laccase permanently lost the activity. We also demonstrated that the laccase on silica-coated fibers exhibited an enhanced decolorization capability of Brilliant Blue KN-R (BBKN-R) as compared to the free laccase, showing its great potential for industrial applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01166j

  10. Magnetic anisotropy of ultrafine 316L stainless steel fibers

    NASA Astrophysics Data System (ADS)

    Shyr, Tien-Wei; Huang, Shih-Ju; Wur, Ching-Shuei

    2016-12-01

    An as-received 316L stainless steel fiber with a diameter of 20 μm was drawn using a bundle drawing process at room temperature to form ultrafine stainless steel fibers with diameters of 12, 8, and 6 μm. The crystalline phases of the fibers were analyzed using the X-ray diffraction (XRD) profile fitting technique. The grain sizes of γ-austenite and α‧-martensite were reduced to nanoscale sizes after the drawing process. XRD analysis and focused ion beam-scanning electron microscope observations showed that the newly formed α‧-martensitic grains were closely arrayed in the drawing direction. The magnetic property was measured using a superconducting quantum interference device vibrating sample magnetometer. The magnetic anisotropy of the fibers was observed by applying a magnetic field parallel and perpendicular to the fiber axis. The results showed that the microstructure anisotropy including the shape anisotropy, magnetocrystalline anisotropy, and the orientation of the crystalline phases strongly contributed to the magnetic anisotropy.

  11. Electrospinning of oriented and nonoriented ultrafine fibers of biopolymers

    NASA Astrophysics Data System (ADS)

    Vu, David

    2005-07-01

    Chitosan has long been known as a biocompatible and biodegradable material suitable for tissue engineering applications. Unfortunately, conventional chitosan solutions cannot be used for electrospinning due to their high conductivity, viscosity and surface tension. We have developed a method to produce clear chitosan solutions with conductivities, surface tension and viscosities that facilitate their processing into micron and submicron fibers via electrospinning. Acetic acid, carbon dioxide and organic solvents are key ingredients in preparing the chitosan solutions. Oriented and non oriented chitosan fibers were produced with the ultimate goal of designing a suitable tissue engineering scaffold. Circularly oriented, continuous, and aligned nanofibers were produced via this technique in the form of a thin membrane or fibrous "mat". Chitosan fiber diameters ranged from 5 micrometers down to 100 nanometers. The structure and mechanical properties of oriented and randomly aligned chitosan fiber deposits could potentially be exploited for cartilage tissue engineering. Ultrafine fibers of starch acetate (SA) also were prepared by the electrospinning process. In this study, solvent mixtures based on DMF, DMSO, pyrindine, acetic acid, acetone, THF, DMC, chloroform were used. A two-solvent formulation was used to study the effect of viscosity, surface tension, and conductivity to the fiber diameter. Also, water and ethanol were used to decrease the boiling point of the solvent, and to make bundled fibers. Several techniques such as scanning electron microscopy, conductmetry, viscometry, and tensiometry were used in this study. The results showed that the combined effects of viscosity, surface tension, and conductivity are of great importance in controlling the diameter of the fibers. We were able to produce SA fibers that was less than 40 nm in diameter. The dependence of fiber diameter on flow-rate, electric field and solvents also was investigated. A rotating disk and a

  12. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties.

    PubMed

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-09

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  13. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties

    PubMed Central

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-01

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning. PMID:28067299

  14. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties

    NASA Astrophysics Data System (ADS)

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-01

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  15. Direct Electrospinning of Ultrafine Fibers with Interconnected Macropores Enabled by in Situ Mixing Microfluidics.

    PubMed

    Liu, Wanjun; Zhu, Lei; Huang, Chen; Jin, Xiangyu

    2016-12-21

    Porous ultrafine fibers are of great importance to various applications. Herein, we report a method to directly fabricate macro-porous ultrafine fibers by an in situ mixing microfluidics which allows for the simultaneous electrospinning of solution immediately after mixing. The formation mechanism of macro-pores should be attributed to the incomplete mixing coupled with nonsolvent-induced phase separation, which was elucidated by systematical investigation of various solvent systems and mixing solvents. The diameter of the macro-porous fibers can be tuned from 1.80 ± 0.40 to 6.75 ± 0.48 μm by adjusting the solution concentration and the feeding rate of mixing solvent. The results indicated that macro-porous fibers exhibited higher specific surface area (48.66 ± 8.30 m(2) g(-1)), larger pore size (116.73 nm) and pore volume (0.169 ± 0.007 cm(3) g(-1)) than conventional electrospun porous fibers, enabling the high oil absorption capacities of 95.68, 57.98, and 34.82 g g(-1) for silicon oil, motor oil, and peanut oil, respectively. Our method has greatly expanded the solution scope for electrospinning from stable solution systems to unstable or substable solution systems, thus providing intriguing opportunities for the investigation and fabrication of heterogeneous fibers by in situ mixing of various immiscible solvents/solutions. Our findings can serve as guidelines for the electrospinning of ultrafine fibers with interconnected macro-pores (>50 nm).

  16. Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning.

    PubMed

    Huang, Zheng-Ming; He, Chuang-Long; Yang, Aizhao; Zhang, Yanzhong; Han, Xiao-Jian; Yin, Junlin; Wu, Qingsheng

    2006-04-01

    This article describes an electrospinning process to fabricate double-layered ultrafine fibers. A bioabsorbable polymer, Polycaprolactone (PCL), was used as the outer layer or the shell and two medically pure drugs, Resveratrol (RT, a kind of antioxidant) and Gentamycin Sulfate (GS, an antibiotic), were used as the inner layers or the cores. Morphology and microstructure of the ultrafine fibers were characterized by scanning electron microscope (SEM) and transmission electron microscopy (TEM), whereas mechanical performance of them was understood through tensile test. In vitro degradation rates of the nanofibrous membranes were determined by measuring their weight loss when immersed in pH 7.4 phosphate-buffered saline (PBS) mixed with certain amount of Pseudomonas lipase for a maximum of 7 days. The drug release behaviors of the RT and GS were measured using a high performance liquid chromatography (HPLC) and ultraviolet-visible (UV-vis) spectroscopy, respectively. It has been found that the drug solutions without any fiber-forming additive could be encapsulated in the PCL ultrafine fibers, although they alone cannot be made into a fiber form. Beads on the fiber surface influenced the tensile behavior of the ultrafine fibers remarkably. When the core solvent was miscible with the shell solvent, higher drug concentration decreased the bead formation and thus favored the mechanical performance. The situation, however, became different if the two solvents were immiscible with each other. The degradation rate was closely related to hydrophilicity of the drugs in the cores. Higher hydrophilicity apparently led to faster degradation. The release profiles of the RT and GS exhibited a sustained release characteristic, with no burst release phenomenon.

  17. Fabrication, gastromucoadhesivity, swelling, and degradation of zein-chitosan composite ultrafine fibers.

    PubMed

    Wongsasulak, Saowakon; Puttipaiboon, Natthon; Yoovidhya, Tipaporn

    2013-06-01

    Fabrication, via electrospinning, and characterization of an ultrafine structure architected from a blend of hydrophobic zein and hydrophilic chitosan (CS) were conducted. Poly(ethylene oxide) (PEO) and nonionic surfactant, namely, Tween 40, were employed to improve the electrospinnability of the blend, while ethanol was used as a solvent for zein. The effects of ethanol (EtOH) concentration (85% and 90%) and ratio of zein/PEO/CS (95/2.5/2.5 and 87.5/10/2.5) on the fiber morphology as well as gastromucoadhesivity against porcine stomach mucosa were then investigated; polymer-mucosa adhesion was also investigated via Fourier-transform infrared spectroscopy. Swelling and degradation of the composite ultrafine fibers were investigated under 2 simulated gastric conditions, namely, at pH 2 without pepsin and at pH 1.2 with pepsin. Using 85% EtOH as a solvent for zein resulted in a spider-web-like morphology; the maximum detachment force (MDF), which is an indirect indicator of the gastromucoadhesivity was nevertheless higher. Zein-based ultrafine fibers exhibited higher MDF than the zein-PEO-CS composite; however, the cohesiveness of the composite fibers was higher. FTIR spectroscopic results indicated molecular interactions between the composite fibers and mucin functional groups. Swelling of the composite ultrafine fibers in simulated gastric fluid (SGF) at pH 2 without pepsin was not different from that in SGF at pH 1.2 with pepsin. Nevertheless, degradation of the composite fibers in SGF at pH 2 without pepsin was much less than that in SGF at pH 1.2 with pepsin; only 20% degradation was noted in the former case. © 2013 Institute of Food Technologists®

  18. Ultrafine particle and fiber production in micro-gravity

    NASA Technical Reports Server (NTRS)

    Webb, George W.

    1987-01-01

    The technique of evaporation and condensation of material in an inert gas is investigated for the purpose of preparing ultrafine particles (of order 10 nm in diameter) with a narrow distribution of sizes. Gravity-driven convection increases the rate of coalescence of the particles, leading to larger sizes and a broader distribution. Analysis and experimental efforts to investigate coalescence of particles are presented. The possibility of reducing coalescence in microgravity is discussed. An experimental test in reduced gravity to be performed in a KC135 aircraft is described briefly.

  19. Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Li, Dawei; Li, Guohui; Luo, Lei; Ullah, Naseeb; Wei, Qufu; Huang, Fenglin

    2015-02-01

    A novel laccase biosensor based on a new composite of laccase-gold nanoparticles (Au NPs)-crosslinked zein ultrafine fibers (CZUF) has been fabricated for catechol determination in real solution samples. Firstly, crosslinked zein ultrafine fibers containing gold nanoparticles (A-CZUF) were prepared by combining electrospinning and one-step reduction method using poly(ethyleneimine) (PEI) as reducing and crosslinking agent. A smooth morphology and relative average distribution of A-CZUF were depicted by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The Fourier transform infrared spectroscopy (FT-IR) analysis indicated that PEI molecules attached to the surface of the zein ultrafine fibers via the reaction of functional groups between PEI and glyoxal. The results obtained from ultraviolet visible spectroscopy (UV-vis spectroscopy), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA) for A-CZUF confirmed the existence of Au NPS coated on the surface of CZUF. Square wave voltammetry (SWV) and cyclic voltammetry (CV) were used to detect the electrochemical performance of the proposed biosensor. The results demonstrated that this biosensor possessed a high sensitive detection to catechol, which was attributed to the direct electron transfer (DET) facilitated by Au NPs and high catalytic ability obtained from laccase. In addition, the proposed biosensor exhibited good reproducibility, stability and selectivity.

  20. The preparation and characterization of highly aligned poly(epsilon-caprolactone)/poly ethylene oxide/chitosan ultrafine fiber for the application to tissue scaffold.

    PubMed

    Nien, Yu-Hsun; Wang, Jia-Yi; Tsai, Yan-Sheng

    2013-07-01

    The purpose of this study was to fabricate poly(epsilon-caprolactone) (PCL)/poly ethylene oxid (PEO)/chitosan (CS) ultrafine fiber in both aligned and random structures using electrospinning technique and their process parameters were optimized. The aligned and random PCL/PEO/chitosan ultrafine fibers were also used as scaffold for tissue engineering and their cell affinity was investigated. In the first part, we inspected the effect of environment conditions, solution properties, process parameters on PCL/PEO/chitosan ultrafine fiber. In the second part, the apparatus of electrospinning to manufacture highly aligned PCL/PEO/chitosan ultrafine fiber was developed. The effects of process parameters such as flow rate, design of collector and rotation speed of collecting drum on the morphology of ultrafine fiber were discussed. In addition, the cross link of PCL/PEO/chitosan ultrafine fiber by cross-linking agent was examined, too. The physical properties, chemical properties, and cell affinities of the aligned PCL/PEO/chitosan ultrafine fiber with or without cross link were measured. The chemical analysis and tensile strength of the ultrafine fiber were characterized using Fourier Transfer Infared Spectrophotometer and Universal Tensile Machine, respectively. The results show that the aligned PCL/PEO/chitosan ultrafine fibrous mat had the capacity to induce cellular alignment and enhance cellular elongation.

  1. Mechanical and electrical properties of electrospun PVDF/MWCNT ultrafine fibers using rotating collector

    PubMed Central

    2014-01-01

    Poly(vinylidene fluoride) (PVDF) ultrafine fibers with different proportions of multi-walled carbon nanotube (MWCNT) embedded have been fabricated using a modified electrospinning device with a rotating collector. With the increasing of MWCNT content, the β phase was noticeable enhanced, and the fibers became more elastic, which was manifested by Young's modulus decreased drastically. Furthermore, with adding the amounts of MWCNTs, the density of carbon nanotube (CNT)-CNT junctions among the fibers increased accordingly. When the MWCNT content was of 1.2 wt.%, a stable three-dimensional conducting network was formed. After this percolation threshold, the density of CNT-CNT junctions among the fibers tended to be a constant quantity, leading to a stabilized conductivity consequently. It is hoped that our results can be helpful for the fabrication of flexible devices, piezoelectric devices, force transducer, and so on. PACS 81.05.Qk; 81.16.-c PMID:25288915

  2. Mechanical and electrical properties of electrospun PVDF/MWCNT ultrafine fibers using rotating collector.

    PubMed

    Wang, Shu-Hua; Wan, Yong; Sun, Bin; Liu, Ling-Zhi; Xu, Weijiang

    2014-01-01

    Poly(vinylidene fluoride) (PVDF) ultrafine fibers with different proportions of multi-walled carbon nanotube (MWCNT) embedded have been fabricated using a modified electrospinning device with a rotating collector. With the increasing of MWCNT content, the β phase was noticeable enhanced, and the fibers became more elastic, which was manifested by Young's modulus decreased drastically. Furthermore, with adding the amounts of MWCNTs, the density of carbon nanotube (CNT)-CNT junctions among the fibers increased accordingly. When the MWCNT content was of 1.2 wt.%, a stable three-dimensional conducting network was formed. After this percolation threshold, the density of CNT-CNT junctions among the fibers tended to be a constant quantity, leading to a stabilized conductivity consequently. It is hoped that our results can be helpful for the fabrication of flexible devices, piezoelectric devices, force transducer, and so on. 81.05.Qk; 81.16.-c.

  3. Electromagnetic wave absorption properties of composites with ultrafine hollow magnetic fibers

    NASA Astrophysics Data System (ADS)

    Yi, Jin Woo; Lee, Sang Bok; Kim, Jin Bong; Lee, Sang Kwan; Park, O. Ok

    2014-06-01

    Ultrafine hollow magnetic fibers were prepared by electroless plating using hydrolyzed polyester fiber as a sacrificial substrate. These hollow fibers can be served for lightweight and efficient electromagnetic (EM) absorbing materials. As observed from SEM and EDS analysis, hollow structures consisting of Ni inner layer and Fe or Fe-Co outer layer were obtained. By introducing Co onto Fe, oxidation of the Fe layer was successfully prevented making it possible to enhance the complex permeability compared to a case in which only Fe was used. Polymeric composites containing the hollow fibers with different weight fractions and fiber lengths were prepared by a simple mixing process. The electromagnetic wave properties of the composites were measured by a vector network analyzer and it was found that the hollow magnetic fibers show a clear resonance peak of the complex permittivity around the X-band range (8-12 GHz) and the resonance frequency strongly depends on the fiber concentration and length. A possible explanation for the unique resonance is that the hollow fibers possess relatively low electrical conductivity and a long mean free path due to their oxidized phase and hollow structure. The calculated EM wave absorption with the measured EM wave properties showed that the composite containing 30 wt% hollow Ni/Fe-Co (7:3) fibers in length of 180 μm exhibited multiple absorbance peaks resulting in a broad absorption bandwidth of 4.2 GHz. It is obvious that this multiple absorbance is attributed to the resonance characteristic of the composite.

  4. Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex.

    PubMed

    Dias Antunes, Mariana; da Silva Dannenberg, Guilherme; Fiorentini, Ângela Maria; Pinto, Vânia Zanella; Lim, Loong-Tak; da Rosa Zavareze, Elessandra; Dias, Alvaro Renato Guerra

    2017-11-01

    The aim of this study was to produce ultrafine fibers from zein incorporated with a complex of eucalyptus essential oil (EEO) and β-cyclodextrin (β-CD) with antimicrobial properties by electrospinning technique. The EEO was characterized by chemical composition and antimicrobial tests against three Gram positive and four Gram negative bacteria. The inclusion complex (IC) was prepared with β-CD and EEO by co-precipitation technique and added at different concentrations in zein polymer solution using aqueous ethanol as solvent. The morphology, thermal properties, functional groups, and antimicrobial activity against L. monocytogenes and S. aureus of the ultrafine fibers were evaluated. The composite membranes containing 24% IC exhibited a greater reduction of growth as compared to the fibers without addition of IC. For L. monocytogenes the growth reduction was 28.5% and for S. aureus it was 24.3%. The electrospun IC-β-CD/EEO composite membranes are promising for use in antimicrobial applications, such as food packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mechanistic insights into formation of SnO₂ nanotubes: asynchronous decomposition of poly(vinylpyrrolidone) in electrospun fibers during calcining process.

    PubMed

    Wu, Jinjin; Zeng, Dawen; Wang, Xiaoxia; Zeng, Lei; Huang, Qingwu; Tang, Gen; Xie, Changsheng

    2014-09-23

    The formation mechanism of SnO2 nanotubes (NTs) fabricated by generic electrospinning and calcining was revealed by systematically investigating the structural evolution of calcined fibers, product composition, and released volatile byproducts. The structural evolution of the fibers proceeded sequentially from dense fiber to wire-in-tube to nanotube. This remarkable structural evolution indicated a disparate thermal decomposition of poly(vinylpyrrolidone) (PVP) in the interior and the surface of the fibers. PVP on the surface of the outer fibers decomposed completely at a lower temperature (<340 °C), due to exposure to oxygen, and SnO2 crystallized and formed a shell on the fiber. Interior PVP of the fiber was prone to loss of side substituents due to the oxygen-deficient decomposition, leaving only the carbon main chain. The rest of the Sn crystallized when the pores formed resulting from the aggregation of SnO2 nanocrystals in the shell. The residual carbon chain did not decompose completely at temperatures less than 550 °C. We proposed a PVP-assisted Ostwald ripening mechanism for the formation of SnO2 NTs. This work directs the fabrication of diverse nanostructure metal oxide by generic electrospinning method.

  6. Activation of corn cellulose with alcohols to improve its dissolvability in fabricating ultrafine fibers via electrospinning.

    PubMed

    Chen, Haizhen; Ni, Jinping; Chen, Jing; Xue, Wenwen; Wang, Jinggang; Na, Haining; Zhu, Jin

    2015-06-05

    Water and four small molecular alcohols are respectively used to activate corn cellulose (CN cellulose) with the aim to improve the dissolvability in DMAc/LiCl. Among all these activated agents, monohydric alcohols are found to produce the optimal effect of activation in the whole process including of activating, dissolving, and electrospinning of CN cellulose. Meanwhile, well distributed fibers with the diameter of 500nm-2μm are fabricated in electrospinning. Understanding the activation effect of monohydric alcohols with water and polyhydric alcohols, the most effective activated agent is ascertained with the characteristics of small molecular size, low viscosity, and single functionality. This work is definitely initiated to understand the critical principle of CN cellulose in dissolving. Accordingly, a feasible methodology is also established to prepare ultrafine cellulose fibers with good morphology in electrospinning.

  7. Preparation of silica-sustained electrospun polyvinylpyrrolidone fibers with uniform mesopores via oxidative removal of template molecules by H{sub 2}O{sub 2} treatment

    SciTech Connect

    Kang, Haigang; Zhu, Yihua; Shen, Jianhua; Yang, Xiaoling; Chen, Cheng; Cao, Huimin; Li, Chungzhong

    2010-07-15

    Silica-sustained electrospun PVP fibers with uniform mesopores were synthesized via facile oxidative removal of template molecules by H{sub 2}O{sub 2} extraction. Tetraethyl orthosilicate, polyvinylpyrrolidone (PVP), and triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer pluronic P{sub 123} compose the electrospinning sol to fabricate the silica-sustained PVP hybrid fibers. The effect of different post-treatment methods on the pore size distribution was investigated by calcination and extraction, respectively. Experimental results showed that oxidative removal of structure-directing agent P{sub 123} in the hybrid fibers by H{sub 2}O{sub 2} treatment can easily form narrow pore size distribution, and the incorporation of 3D silica skeleton built by hot steam aging facilitated preserving the original cylindrical morphology of fibers. Scanning electron microscopy (SEM), N{sub 2} adsorption-desorption isotherm, transmission electron microscopy (TEM), X-ray diffraction (XRD), FT-IR spectra and thermogravimetric analysis (TGA) were used to characterize the hybrid fibers. The hybrid fibers can be expected to have potential applications in drug release or tissue engineering because of their suitable pore size, large surface area and good biocompatibility.

  8. Ultrafine polybenzimidazole (PBI) fibers. [separators for alkaline batteries and dfuel cells

    NASA Technical Reports Server (NTRS)

    Chenevey, E. C.

    1979-01-01

    Mats were made from ultrafine polybenzimidazole (PBI) fibers to provide an alternate to the use of asbestos as separators in fuel cells and alkaline batteries. To minimize distortion during mat drying, a process to provide a dry fibrid was developed. Two fibrid types were developed: one coarse, making mats for battery separators; the other fine, making low permeability matrices for fuel cells. Eventually, it was demonstrated that suitable mat fabrication techniques yielded fuel cell separators from the coarser alkaline battery fibrids. The stability of PBI mats to 45% KOH at 123 C can be increased by heat treatment at high temperatures. Weight loss data to 1000 hours exposure show the alkali resistance of the mats to be superior to that of asbestos.

  9. Preparation and evaluation of magnetic nanocomposite fibers containing α″-Fe16N2 and α-Fe nanoparticles in polyvinylpyrrolidone via magneto-electrospinning

    NASA Astrophysics Data System (ADS)

    Kartikowati, Christina W.; Suhendi, Asep; Zulhijah, Rizka; Ogi, Takashi; Iwaki, Toru; Okuyama, Kikuo

    2016-01-01

    Two kinds of ferromagnetic nanocomposite fiber comprising α″-Fe16N2 and α-Fe nanoparticles (NPs), which have the highest magnetic moments as hard and soft magnetic materials, respectively, embedded in polyvinylpyrrolidone (PVP) have been synthesized via the magneto-electrospinning method. Both α″-Fe16N2 and α-Fe were single-domain core-shell NPs with an average outer diameter of 50 nm and Al2O3 as the shell. Ferrofluid precursors used for the electrospinning were prepared by dispersing these NPs in a PVP-toluene-methanol solution. The results show that applying the magnetic field in the same direction as the electric field resulted in smaller and more uniform fiber diameters. Nanocomposite fibers containing α″-Fe16N2 had smaller diameters than those containing α-Fe NPs. These magnetic-field effects on the fiber formation were explained by referring to the kinetic energy of the moving jet in the electrospinning process. In addition, magnetic hysteresis curves showed an enhancement of the magnetic coercivity (H c) and remanence (M r) by 22.9% and 22.25%, respectively. These results imply a promising possibility of constructing bulk magnetic materials using α″-Fe16N2 NPs, which furthermore reveals attractive features for many other magnetic applications, such as magnetic sensors.

  10. Preparation and evaluation of magnetic nanocomposite fibers containing α″-Fe₁₆N₂ and α-Fe nanoparticles in polyvinylpyrrolidone via magneto-electrospinning.

    PubMed

    Kartikowati, Christina W; Suhendi, Asep; Zulhijah, Rizka; Ogi, Takashi; Iwaki, Toru; Okuyama, Kikuo

    2016-01-15

    Two kinds of ferromagnetic nanocomposite fiber comprising α″-Fe16N2 and α-Fe nanoparticles (NPs), which have the highest magnetic moments as hard and soft magnetic materials, respectively, embedded in polyvinylpyrrolidone (PVP) have been synthesized via the magneto-electrospinning method. Both α″-Fe16N2 and α-Fe were single-domain core-shell NPs with an average outer diameter of 50 nm and Al2O3 as the shell. Ferrofluid precursors used for the electrospinning were prepared by dispersing these NPs in a PVP-toluene-methanol solution. The results show that applying the magnetic field in the same direction as the electric field resulted in smaller and more uniform fiber diameters. Nanocomposite fibers containing α″-Fe16N2 had smaller diameters than those containing α-Fe NPs. These magnetic-field effects on the fiber formation were explained by referring to the kinetic energy of the moving jet in the electrospinning process. In addition, magnetic hysteresis curves showed an enhancement of the magnetic coercivity (H(c)) and remanence (M(r)) by 22.9% and 22.25%, respectively. These results imply a promising possibility of constructing bulk magnetic materials using α″-Fe16N2 NPs, which furthermore reveals attractive features for many other magnetic applications, such as magnetic sensors.

  11. Vegetation collection efficiency of ultrafine particles: From single fiber to porous media

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yeng; Khlystov, Andrey; Katul, Gabriel G.

    2014-01-01

    A number of parameterization schemes are available to determine the collection efficiency of ultrafine particles (UFP) onto vegetated surfaces. One approach represents the vegetated elements as a fibrous filter with a characteristic fiber size that is difficult to a priori determine, while the other, a more conventional approach, represents vegetation as a porous medium. To date, no attempts have been made to compare the performance of these two distinct approaches or bridge them so as to show the necessary conditions leading to their potential equivalence. In a wind tunnel study, the UFP collection efficiencies of pine branches at five different wind speeds, two branch orientations, and two packing densities were measured and analyzed using these two vegetation representations. This vegetation type was selected because pines are a dominant species in the Southeastern United States and pine needles geometrically resemble fibrous material with a well-defined foliage diameter. The porous media and the fibrous filter representations described well observed UFP deposition at the branch scale. Conditions promoting their equivalence are thus explored. The difficult to determine effective fiber diameter was recovered from conventional canopy attributes such as the leaf area index by matching the collection efficiencies of UFP for the two vegetation representations. These results provide a working "aerodynamic" definition of the effective single-fiber diameter thereby rendering the simplified single-fiber formulation usable in large-scale atmospheric deposition models. Furthermore, the aerodynamic correction factor allows upscaling of pine needles to an effective leaf area index and provides some quantification of the effect of needle spatial clustering on UFP deposition. The applicability of the results to other vegetation species remains to be verified.

  12. Ultrafine Au and Ag Nanoparticles Synthesized from Self-Assembled Peptide Fibers and Their Excellent Catalytic Activity.

    PubMed

    Xu, Wenlong; Hong, Yue; Hu, Yuanyuan; Hao, Jingcheng; Song, Aixin

    2016-07-18

    The self-assembly of an amphiphilic peptide molecule to form nanofibers facilitated by Ag(+) ions was investigated. Ultrafine AgNPs (NPs=nanoparticles) with an average size of 1.67 nm were synthesized in situ along the fibers due to the weak reducibility of the -SH group on the peptide molecule. By adding NaBH4 to the peptide solution, ultrafine AgNPs and AuNPs were synthesized with an average size of 1.35 and 1.18 nm, respectively. The AuNPs, AgNPs, and AgNPs/nanofibers all exhibited excellent catalytic activity toward the reduction of 4-nitrophenol, with turnover frequency (TOF) values of 720, 188, and 96 h(-1) , respectively. Three dyes were selected for catalytic degradation by the prepared nanoparticles and the nanoparticles showed selective catalysis activity toward the different dyes. It was a surprising discovery that the ultrafine AuNPs in this work had an extremely high catalytic activity toward methylene blue, with a reaction rate constant of 0.21 s(-1) and a TOF value of 1899 h(-1) .

  13. Prediction of thermal conductivity of polyvinylpyrrolidone (PVP) electrospun nanocomposite fibers using artificial neural network and prey-predator algorithm.

    PubMed

    Khan, Waseem S; Hamadneh, Nawaf N; Khan, Waqar A

    2017-01-01

    In this study, multilayer perception neural network (MLPNN) was employed to predict thermal conductivity of PVP electrospun nanocomposite fibers with multiwalled carbon nanotubes (MWCNTs) and Nickel Zinc ferrites [(Ni0.6Zn0.4) Fe2O4]. This is the second attempt on the application of MLPNN with prey predator algorithm for the prediction of thermal conductivity of PVP electrospun nanocomposite fibers. The prey predator algorithm was used to train the neural networks to find the best models. The best models have the minimal of sum squared error between the experimental testing data and the corresponding models results. The minimal error was found to be 0.0028 for MWCNTs model and 0.00199 for Ni-Zn ferrites model. The predicted artificial neural networks (ANNs) responses were analyzed statistically using z-test, correlation coefficient, and the error functions for both inclusions. The predicted ANN responses for PVP electrospun nanocomposite fibers were compared with the experimental data and were found in good agreement.

  14. Effect of ultrafine grinding on physicochemical and antioxidant properties of dietary fiber from wine grape pomace.

    PubMed

    Zhu, Feng-Mei; Du, Bin; Li, Jun

    2014-01-01

    Wine grape pomace dietary fiber powders were prepared by superfine grinding, whose effects were investigated on the composition, functional and antioxidant properties of the wine grape pomace dietary fiber products. The results showed that superfine grinding could effectively pulverize the fiber particles to submicron scale. As particle size decrease, the functional properties (water-holding capacity, water-retention capacity, swelling capacity, oil-binding capacity, and nitrite ion absorption capacity) of wine grape pomace dietary fiber were significantly (p < 0.05) decreased and a redistribution of fiber components from insoluble to soluble fractions was observed. The antioxidant activities of wine grape pomace and dietary fiber before and after grinding were in terms of DPPH radical scavenging activity, ABTS diammonium salt radical scavenging activity, ferric reducing antioxidant power, and total phenolic content. Compared with dietary fiber before and after grinding, micronized insoluble dietary fiber showed increased ABTS radical scavenging activity, ferric reducing antioxidant power, and total phenolic content yet decreased DPPH radical scavenging activity. Positive correlations were detected between ABTS radical scavenging activity, ferric reducing antioxidant power, and total phenolic content.

  15. Morphology of Nano and Micro Fiber Structures in Ultrafine Particles Filtration

    SciTech Connect

    Kimmer, Dusan; Vincent, Ivo; Fenyk, Jan; Petras, David; Zatloukal, Martin; Sambaer, Wannes; Zdimal, Vladimir

    2011-07-15

    Selected procedures permitting to prepare homogeneous nanofibre structures of the desired morphology by employing a suitable combination of variables during the electrospinning process are presented. A comparison (at the same pressure drop) was made of filtration capabilities of planar polyurethane nanostructures formed exclusively by nanofibres, space polycarbonate nanostructures having bead spacers, structures formed by a combination of polymethyl methacrylate micro- and nanofibres and polypropylene meltblown microstructures, through which ultrafine particles of ammonium sulphate 20-400 nm in size were filtered. The structures studied were described using a new digital image analysis technique based on black and white images obtained by scanning electron microscopy. More voluminous structures modified with distance microspheres and having a greater thickness and mass per square area of the material, i.e. structures possessing better mechanical properties, demanded so much in nanostructures, enable preparation of filters having approximately the same free volume fraction as flat nanofibre filters but an increased effective fibre surface area, changed pore size morphology and, consequently, a higher filter quality.

  16. Morphology of Nano and Micro Fiber Structures in Ultrafine Particles Filtration

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Fenyk, Jan; Petras, David; Zatloukal, Martin; Sambaer, Wannes; Zdimal, Vladimir

    2011-07-01

    Selected procedures permitting to prepare homogeneous nanofibre structures of the desired morphology by employing a suitable combination of variables during the electrospinning process are presented. A comparison (at the same pressure drop) was made of filtration capabilities of planar polyurethane nanostructures formed exclusively by nanofibres, space polycarbonate nanostructures having bead spacers, structures formed by a combination of polymethyl methacrylate micro- and nanofibres and polypropylene meltblown microstructures, through which ultrafine particles of ammonium sulphate 20-400 nm in size were filtered. The structures studied were described using a new digital image analysis technique based on black and white images obtained by scanning electron microscopy. More voluminous structures modified with distance microspheres and having a greater thickness and mass per square area of the material, i.e. structures possessing better mechanical properties, demanded so much in nanostructures, enable preparation of filters having approximately the same free volume fraction as flat nanofibre filters but an increased effective fibre surface area, changed pore size morphology and, consequently, a higher filter quality.

  17. Electrospun Ultrafine Fiber Composites Containing Fumed Silica: From Solution Rheology to Materials with Tunable Wetting.

    PubMed

    Dufficy, Martin K; Geiger, Mackenzie T; Bonino, Christopher A; Khan, Saad A

    2015-11-17

    Fumed silica (FS) particles with hydrophobic (R805) or hydrophilic (A150) surface functionalities are incorporated in polyacrylonitrile (PAN) fibers by electrospinning to produce mats with controlled wettability. Rheological measurements are conducted to elucidate the particle-polymer interactions and characterize the system while microscopic and analytic tools are used to examine FS location within both fibers and films to aid in the fundamental understanding of wetting behavior. Unlike traditional polymers, we find these systems to be gel-like, yet electrospinnable; the fumed silica networks break down into smaller aggregates during the electrospinning process and disperse both within and on the surface of the fibers. Composite nanofiber mats containing R805 FS exhibit an apparent contact angle over 130° and remain hydrophobic over 30 min, while similar mats with A150 display rapid surface-wetting with a static contact angle of ∼30°. Wicking experiments reveal that the water absorption properties can be further manipulated, with R805 FS-impregnated mats taking up only 8% water relative to mat weight in 15 min. In contrast, PAN fibers containing A150 FS absorb 425% of water in the same period, even more than the pure PAN fiber (371%). The vastly different responses to water demonstrate the versatility of FS in surface modification, especially for submicron fibrous mats. The role of fumed silica in controlling wettability is discussed in terms of their surface functionality, placement on nanofibers and induced surface roughness.

  18. Effect of particle-fiber friction coefficient on ultrafine aerosol particles clogging in nanofiber based filter

    NASA Astrophysics Data System (ADS)

    Sambaer, Wannes; Zatloukal, Martin; Kimmer, Dusan

    2013-04-01

    Realistic SEM image based 3D filter model considering transition/free molecular flow regime, Brownian diffusion, aerodynamic slip, particle-fiber and particle-particle interactions together with a novel Euclidian distance map based methodology for the pressure drop calculation has been utilized for a polyurethane nanofiber based filter prepared via electrospinning process in order to more deeply understand the effect of particle-fiber friction coefficient on filter clogging and basic filter characteristics. Based on the performed theoretical analysis, it has been revealed that the increase in the fiber-particle friction coefficient causes, firstly, more weaker particle penetration in the filter, creation of dense top layers and generation of higher pressure drop (surface filtration) in comparison with lower particle-fiber friction coefficient filter for which deeper particle penetration takes place (depth filtration), secondly, higher filtration efficiency, thirdly, higher quality factor and finally, higher quality factor sensitivity to the increased collected particle mass. Moreover, it has been revealed that even if the particle-fiber friction coefficient is different, the cake morphology is very similar.

  19. Structural and dynamic characterization of ultrafine fibers based on the poly-3-hydroxybutyrate-dipyridamole system

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Karpova, S. G.; Staroverova, O. V.; Krutikova, A. A.; Orlov, N. A.; Kucherenko, E. L.; Iordanskii, A. L.

    2016-11-01

    The fibrous materials (the mats) based on poly-3-hydroxybutyrate (PHB) containing the drug, dipiridomole (DPD) were produced by electrospinning (ES). Thermophysical and dynamical properties of the single filaments and the mats were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and probe electron paramagnetic resonance spectroscopy (EPR). The effect of annealing temperature on the structure and crystallinity of the fibers was examined. It was shown that the loading of DPD influences on both the melting enthalpy and the morphology of the fibers. Besides the analysis of EPR spectra revealed that there are two populations of spin-probes distributed in the rigid and nonrigid amorphous regions of the PHB fibers respectively. For all fibrous materials with different content of DPD (0-5%) the correlation between thermophysical (DSC) and dynamic data (EPR) was observed.

  20. Improving High Precision and Continuous Process of Ultra-Fine Piercing by SiC Fiber Punch

    NASA Astrophysics Data System (ADS)

    Kurimoto, Shinji; Hirota, Kenji; Tokumoto, Daisuke; Mori, Toshihiko

    A newly developed ultra-fine micro piercing has been demonstrated successfully with only a few technical points that need improvement. The die material is mild steel and the strength of the die is equal or sometimes smaller than that of the pierced material. Therefore, pierced scrap accumulated in the die hole may stop the punch advancement. If the pierced material rises up unevenly from the die, a lateral force acts on the punch and the punch defect advances and thus results in shaving the surface of the hole. In this study, the advancing defects were suppressed by using a decompression chamber under the die. In doing so, the scrap is sucked away from the die hole at each stroke and the foil, material to be pierced, is pulled down through two holes that are 1mm apart from the die hole. The results of our experiment show a high precision continuous ultra-fine piercing process can be carried out with relative ease for various engineering materials.

  1. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers.

    PubMed

    Quirós, Jennifer; Borges, João P; Boltes, Karina; Rodea-Palomares, Ismael; Rosal, Roberto

    2015-12-15

    The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Direct electrospinning of Ag/polyvinylpyrrolidone nanocables

    NASA Astrophysics Data System (ADS)

    Song, Jie; Chen, Menglin; Olesen, Mikkel Buster; Wang, Chenxuan; Havelund, Rasmus; Li, Qiang; Xie, Erqing; Yang, Rong; Bøggild, Peter; Wang, Chen; Besenbacher, Flemming; Dong, Mingdong

    2011-12-01

    Core-sheath silver nanowire/polyvinylpyrrolidone (AgNW/PVP) nanocables have been fabricated via an efficient single-spinneret electrospinning method. The core-sheath structure is revealed by combining several characterization methods. A possible formation mechanism of the AgNW/PVP nanocable involving a strong stretching during the electrospinning process is proposed. Further, electrical measurements were performed on AgNW/PVP nanocables as well as bare AgNWs, which indicated the nanocables became insulating due to the isolation of highly conductive AgNWs by insulating PVP sheath. Therefore, the described fabrication method holds potential for the fabrication of low-cost metal/polymer composite materials for nanoelectronic applications in general.

  3. Physicochemical and functional characterization of the collagen-polyvinylpyrrolidone copolymer.

    PubMed

    Leyva-Gómez, Gerardo; Lima, Enrique; Krötzsch, Guillermo; Pacheco-Marín, Rosario; Rodríguez-Fuentes, Nayeli; Quintanar-Guerrero, David; Krötzsch, Edgar

    2014-08-07

    Collagen-polyvinylpyrrolidone (C-PVP) is a copolymer that is generated from the γ irradiation of a mixture of type I collagen and low-molecular-weight PVP. It is characterized by immunomodulatory, fibrolytic, and antifibrotic properties. Here, we used various physicochemical and biological strategies to characterize the structure, biochemical susceptibility, as well as its effects on metabolic activity in fibroblasts. C-PVP contained 16 times more PVP than collagen, but only 55.8% of PVP was bonded. Nevertheless, the remaining PVP exerted strong structural activity due to the existence of weak bonds that provided shielding in the NMR spectra. On SEM and AFM, freeze-dried C-PVP appeared as a film that uniformly covered the collagen fibers. Size analysis revealed the presence of abundant PVP molecules in the solution of the copolymer with a unique dimension related to macromolecular combinations. Calorimetric analysis showed that the copolymer in solution exhibited structural changes at 110 °C, whereas the lyophilized form showed such changes at temperatures below 50 °C. The copolymer presented a rheopectic behavior, with a predominant effect of the collagen. C-PVP had biological effects on the expression of integrin α2 and prolyl-hydroxylase but did not interact with cells through the collagen receptors because it did not inhibit or slow contraction.

  4. Subwavelength structure for sound absorption from graphene oxide-doped polyvinylpyrrolidone nanofibers

    NASA Astrophysics Data System (ADS)

    Qamoshi, Khadijeh; Rasuli, Reza

    2016-09-01

    We study the sound absorption of the reinforced polyvinylpyrrolidone nanofibers with graphene oxide. It is shown that reinforced nanofibers can acquire impedance-matched surface to airborne sound at special frequencies. To obtain such surface, nanofibers were spun with polyvinylpyrrolidone polymer that was doped by graphene oxide with concentrations of 0, 6 and 12 wt%. It was found that fibers without graphene oxide were spun continuously and randomly, whereas by doping with graphene oxide, the mode of fibers is changed and some nodes form on the fibers coating. The sound absorption coefficient was measured by an impedance tube based on 105341-1 ISO standard. Measurements in the frequency range from 700 to 1600 Hz show that use of graphene oxide as a reinforcing phase increases sound absorption coefficient of the samples at a frequency ~1500 Hz up to ~40 %. Angular eigenfrequency and dissipation coefficient of the samples were obtained by impedance measurement for the prepared samples. Results show that doping the polymer with graphene oxide causes an increase in the angular eigenfrequency and the dissipation coefficient.

  5. Ultrafine cementitious grout

    DOEpatents

    Ahrens, Ernst H.

    1999-01-01

    An ultrafine cementitious grout in three particle grades containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 30 wt. % to about 70 wt. % Portland cement; from about 30 wt. % to about 70 wt. % pumice containing at least 70% amorphous silicon dioxide; and from 1.2 wt. % to about 5.0 wt. % superplasticizer. The superplasticizer is dispersed in the mixing water prior to the addition of dry grout and the W/CM ratio is about 0.4 to 1/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 .mu.m in width.

  6. Ultrafine cementitious grout

    DOEpatents

    Ahrens, Ernst H.

    1998-01-01

    An ultrafine cementitious grout having a particle size 90% of which are less than 6 .mu.m in diameter and an average size of about 2.5 .mu.m or less, and preferably 90% of which are less than 5 .mu.m in diameter and an average size of about 2 .mu.m or less containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 40 wt. % to about 50 wt. % Portland cement; from about 50 wt. % to about 60 wt. % pumice containing at least 60% amorphous silicon dioxide; and from 0.1 wt. % to about 1.5 wt. % superplasticizer. The grout is mixed with water in the W/CM ratio of about 0.4-0.6/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 .mu.m in width.

  7. Ultrafine cementitious grout

    SciTech Connect

    Ahrens, E.H.

    1999-10-19

    An ultrafine cementitious grout in three particle grades containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 30 wt. % to about 70 wt. % Portland cement; from about 30 wt. % to about 70 wt. % pumice containing at least 70% amorphous silicon dioxide; and from 1.2 wt. % to about 5.0 wt. % superplasticizer. The superplasticizer is dispersed in the mixing water prior to the addition of dry grout and the W/CM ratio is about 0.4 to 1/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 {mu}m in width.

  8. Component dynamics in polyvinylpyrrolidone concentrated aqueous solutions

    NASA Astrophysics Data System (ADS)

    Busselez, Rémi; Arbe, Arantxa; Cerveny, Silvina; Capponi, Sara; Colmenero, Juan; Frick, Bernhard

    2012-08-01

    2H-nuclear magnetic resonance (NMR) and neutron scattering (NS) on isotopically labelled samples have been combined to investigate the structure and dynamics of polyvinylpyrrolidone (PVP) aqueous solutions (4 water molecules/monomeric unit). Neutron diffraction evidences the nanosegregation of polymer main-chains and water molecules leading to the presence of water clusters. NMR reveals the same characteristic times and spectral shape as those of the slower process observed by broadband dielectric spectroscopy in this system [S. Cerveny et al., J. Chem. Phys. 128, 044901 (2008)], 10.1063/1.2822332. The temperature dependence of such relaxation time crosses over from a cooperative-like behavior at high temperatures to an Arrhenius behavior at lower temperatures. Below the crossover, NMR features the spectral shape as due to a symmetric distribution of relaxation times and the underlying motions as isotropic. NS results on the structural relaxation of both components-isolated via H/D labeling-show (i) anomalously stretched and non-Gaussian functional forms of the intermediate scattering functions and (ii) a strong dynamic asymmetry between the components that increases with decreasing temperature. Strong heterogeneities associated to the nanosegregated structure and the dynamic asymmetry are invoked to explain the observed anomalies. On the other hand, at short times the atomic displacements are strongly coupled for PVP and water, presumably due to H-bond formation and densification of the sample upon hydration.

  9. Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration.

    PubMed

    Zhang, Can; Yuan, Huihua; Liu, Huanhuan; Chen, Xiao; Lu, Ping; Zhu, Ting; Yang, Long; Yin, Zi; Heng, Boon Chin; Zhang, Yanzhong; Ouyang, Hongwei

    2015-01-01

    Physical property of substrates such as stiffness and topography have been reported to induce mesenchymal stem cells differentiation into bone, muscle and neuron lineages. Human-induced pluripotent stem cells (hiPSCs) are a highly promising cell source for regenerative medicine. However, physical properties have not yet been reported to successfully induce pluripotent stem cells into specific lineages. This study aimed to develop a robust, stepwise topographic strategy to induce hiPSCs differentiate into teno-lineage. A novel spinning approach termed stable jet electrospinning (SJES), is utilized to fabricate continuous well-aligned ultrafine fibers (891 ± 71 nm), which mimic the native tendon's microstructure and mechanical properties. hiPSCs are first differentiated into MSCs on smooth plastic surface as confirmed by the differentiations into three mesenchymal lineages and expression of characteristic MSC surface markers through an EMT (Epithelial-Mesenchymal Transition) process. Subsequently, the hiPSC derived MSCs are seeded onto well-aligned fibers to differentiate into tenocyte-like cells through activating mechanic-signal pathway. The in situ tendon repair study further confirms that aligned fiber scaffold with hiPSC-MSCs had significant effect on improving the structural and mechanical properties of tendon injury repair. These findings indicate that the stepwise physical substrate change strategy can be adopted to induce hiPSCs differentiation for tendon tissue regeneration. Copyright © 2015. Published by Elsevier Ltd.

  10. Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth.

    PubMed

    Yuan, Huihua; Zhou, Qihui; Li, Biyun; Bao, Min; Lou, Xiangxin; Zhang, Yanzhong

    2015-11-05

    Electrospinning has been widely used to produce ultrafine fibers in microscale and nanoscale; however, traditional electrospinning processes are currently beset by troublesome limitations in fabrication of 3D periodic porous structures because of the chaotic nature of the electrospinning jet. Here we report a novel strategy to print 3D poly(L-lactic acid) (PLLA) ultrafine fibrous scaffolds with the fiber diameter of approximately 2 μm by combining a stable jet electrospinning method and an X-Y stage technique. Our approach allows linearly deposited electrospun ultrafine fibers to assemble into 3D structures with tunable pore sizes and desired patterns. Process conditions (e.g., plotting speed, feeding rate, and collecting distance) were investigated in order to achieve stable jet printing of ultrafine PLLA fibers. The proposed 3D scaffold was successfully used for cell penetration and growth, demonstrating great potential for tissue engineering applications.

  11. Phenolic profile and in vitro antioxidant capacity of insoluble dietary fiber powders from citrus (Citrus junos Sieb. ex Tanaka) pomace as affected by ultrafine grinding.

    PubMed

    Tao, Bingbing; Ye, Fayin; Li, Hang; Hu, Qiang; Xue, Shan; Zhao, Guohua

    2014-07-23

    The effects of mechanical and jet grindings on the proximate composition, phenolics, and antioxidant capacity of insoluble antioxidant dietary fiber powder from citrus pomace (IADFP-CP) were investigated in comparison with ordinary grinding. IADFP-CP from jet grinding showed higher levels of crude fat, total sugar, and free phenolics and lower levels of crude protein and bound phenolics than that from ordinary grinding. Totally, 14 phenolics (9 free, 1 bound, and 4 free/bound) in IADFP-CP were identified by RP-HPLC-DAD/ESI-Q-TOF-MS/MS. Hesperidin accounted for >57% of total phenolics in IADFP-CP. Among IADFP-CPs, the jet-ground presented the highest free phenolics but the lowest bound phenolics. The IADFP-CP from jet grinding presented the highest antioxidant capacity of free phenolics (by DPPH and FRAP assays), followed by the ones from mechanical and then ordinary grinding. The present study suggests that jet grinding could improve the extraction of phenolic compounds from IADFP-CP and increase the antioxidant capacities of free phenolics and the resultant powder.

  12. Ultrafine cementitious grout

    DOEpatents

    Ahrens, E.H.

    1998-07-07

    An ultrafine cementitious grout is described having a particle size 90% of which are less than 6 {micro}m in diameter and an average size of about 2.5 {micro}m or less, and preferably 90% of which are less than 5 {micro}m in diameter and an average size of about 2 {micro}m or less containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 40 wt. % to about 50 wt. % Portland cement; from about 50 wt. % to about 60 wt. % pumice containing at least 60% amorphous silicon dioxide; and from 0.1 wt. % to about 1.5 wt. % superplasticizer. The grout is mixed with water in the W/CM ratio of about 0.4--0.6/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 {micro}m in width. 4 figs.

  13. Incorporation of silver nanoparticles into the bulk of the electrospun ultrafine polyimide nanofibers via a direct ion exchange self-metallization process.

    PubMed

    Han, Enlin; Wu, Dezhen; Qi, Shengli; Tian, Guofeng; Niu, Hongqing; Shang, Gongping; Yan, Xiaona; Yang, Xiaoping

    2012-05-01

    This paper reports our works on the preparation of the silver-nanoparticle-incorporated ultrafine polyimide (PI) ultrafine fibers via a direct ion exchange self-metallization technique using silver ammonia complex cation ([Ag(NH(3))(2)](+)) as the silver precursor and pyromellitic dianhydride (PMDA)/4,4'-oxidianiline (4,4'-ODA) polyimide as the matrix. The polyimide precursor, poly(amic acid) (PAA), was synthesized and then electrospun into ultrafine fibers. By thermally treating the silver(I)-doped PAA ultrafine fibers, where the silver(I) ions were loaded through the ion exchange reactions of the carboxylic acid groups of the PAA macromolecules with the [Ag(NH(3))(2)](+) cations in an aqueous solution, ultrafine polyimide fibers embedded with silver nanoparticles with diameters less than 20 nm were successfully fabricated. The fiber-electrospinning process, the ion exchange process, and various factors influencing the hybrid ultrafine fibers preparation process such as the thermal treatment atmospheres and the thermal catalytic oxidative degradation effect of the reduced silver nanoparticles were discussed. The ultrafine fibers were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA).

  14. Ultrafine particles in cities.

    PubMed

    Kumar, Prashant; Morawska, Lidia; Birmili, Wolfram; Paasonen, Pauli; Hu, Min; Kulmala, Markku; Harrison, Roy M; Norford, Leslie; Britter, Rex

    2014-05-01

    Ultrafine particles (UFPs; diameter less than 100 nm) are ubiquitous in urban air, and an acknowledged risk to human health. Globally, the major source for urban outdoor UFP concentrations is motor traffic. Ongoing trends towards urbanisation and expansion of road traffic are anticipated to further increase population exposure to UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation of emissions and population exposure is still lacking. Our analysis suggests that the average exposure to outdoor UFPs in Asian cities is about four-times larger than that in European cities but impacts on human health are largely unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts.

  15. Fabrication of Polyvinylpyrrolidone Micro-/Nanostructures Utilizing Microcontact Printing

    ERIC Educational Resources Information Center

    Sanders, Wesley C.

    2015-01-01

    This paper describes a laboratory exercise that provides students enrolled in introductory nanotechnology courses with an opportunity to synthesize polymer structures with micro- and nanoscale dimensions. Polyvinylpyrrolidone (PVP) films deposited on corrugated PDMS stamps using student-built spin coaters were transferred to clean, dry substrates…

  16. Fabrication of Polyvinylpyrrolidone Micro-/Nanostructures Utilizing Microcontact Printing

    ERIC Educational Resources Information Center

    Sanders, Wesley C.

    2015-01-01

    This paper describes a laboratory exercise that provides students enrolled in introductory nanotechnology courses with an opportunity to synthesize polymer structures with micro- and nanoscale dimensions. Polyvinylpyrrolidone (PVP) films deposited on corrugated PDMS stamps using student-built spin coaters were transferred to clean, dry substrates…

  17. Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity.

    PubMed

    Tsekova, Petya B; Spasova, Mariya G; Manolova, Nevena E; Markova, Nadya D; Rashkov, Iliya B

    2017-04-01

    Novel fibrous materials from cellulose acetate (CA) and polyvinylpyrrolidone (PVP) containing curcumin (Curc) with original design were prepared by one-pot electrospinning or dual spinneret electrospinning. The electrospun materials were characterized by scanning electron microscopy (SEM), fluorescence microscopy, Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), differential scanning calorimetry (DSC), water contact angle measurements, and microbiological tests. It was found that the incorporation of Curc into the CA and PVP solutions resulted in an increase of the solution viscosity and obtaining fibers with larger diameters (ca. 1.5μm) compared to the neat CA (ca. 800nm) and PVP fibers (ca. 500nm). The incorporation of PVP resulted in increased hydrophilicity of the fibers and in faster Curc release. Curc was found in the amorphous state in the Curc-containing fibers and these mats exhibited antibacterial activity against Staphylococcus aureus (S. aureus). The results suggest that, due to their complex architecture, the obtained new antibacterial materials are suitable for wound dressing applications, which necessitate diverse release behaviors of the bioactive compound.

  18. Interdiffusion at the interface between poly(vinylpyrrolidone) and epoxy

    SciTech Connect

    Oyama, H.T.; Wightman, J.P.; Lesko, J.J.; Reifsnider, K.L.

    1996-12-31

    The study of polymer-polymer interfaces is recently attracting great interest. So far, most studies have focused on the interface between thermoplastic polymers, even though the interface between thermoplastic and thermoset polymers is also very important in numerous areas such as adhesion and composites. In the present study, bilayer films of thermoplastic poly(vinylpyrrolidone) and a thermoset epoxy were prepared and their compositional profiles at the interface were examined by electron microprobe analysis.

  19. Fiber

    MedlinePlus

    ... 2016:chap 213. National Research Council. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). The National Academies Press. ...

  20. Fabrication of mucoadhesive chitosan coated polyvinylpyrrolidone/cyclodextrin/clotrimazole sandwich patches for oral candidiasis.

    PubMed

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Panomsuk, Suwanee; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2015-11-05

    This study aims to fabricate clotrimazole (CZ)-composite sandwich nanofibers using electrospinning. The CZ-loaded polyvinylpyrrolidone (PVP)/hydroxypropyl-β-cyclodextrin (HPβCD) fiber was coated with chitosan-cysteine (CS-SH)/polyvinyl alcohol (PVA) to increase the mucoadhesive properties and to achieve a sustained release of the drug from the nanofibers. The nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffractometry (XRD). The nanofibers mechanical and mucoadhesive properties, drug release, antifungal activity and cytotoxicity were also assessed. The fibers were in the nanoscale with good mucoadhesive properties. The XRPD revealed a molecular dispersion of amorphous CZ in the nanofibers. The initial fast release of CZ from the nanofibers was achieved. Moreover, the sandwich nanofibers coated for longer times resulted in slower release rates compared with the shorter coating times. The CZ-loaded nanofibers killed the Candida significantly faster than the commercial CZ lozenges at 5, 15 and 30 min and were safe for a 2-h incubation. Therefore, these nanofibers may be promising candidates for the treatment of oral candidiasis.

  1. Transdermal Delivery of Functional Collagen Via Polyvinylpyrrolidone Microneedles

    PubMed Central

    Sun, Wenchao; Inayathullah, Mohammed; Manoukian, Martin A. C.; Malkovskiy, Andrey V.; Manickam, Sathish; Marinkovich, M. Peter; Lane, Alfred T.; Tayebi, Lobat; Seifalian, Alexander M.; Rajadas, Jayakumar

    2017-01-01

    Collagen makes up a large proportion of the human body, particularly the skin. As the body ages, collagen content decreases, resulting in wrinkled skin and decreased wound healing capabilities. This paper presents a method of delivering type I collagen into porcine and human skin utilizing a polyvinylpyrrolidone microneedle delivery system. The microneedle patches were made with concentrations of 1, 2, 4, and 8% type I collagen (w/w). Microneedle structures and the distribution of collagen were characterized using scanning electron microscopy and confocal microscopy. Patches were then applied on the porcine and human skin, and their effectiveness was examined using fluorescence microscopy. The results illustrate that this microneedle delivery system is effective in delivering collagen I into the epidermis and dermis of porcine and human skin. Since the technique presented in this paper is quick, safe, effective and easy, it can be considered as a new collagen delivery method for cosmetic and therapeutic applications. PMID:26066056

  2. Ileocolonic ulcer treated by endoscopic application of collagen-polyvinylpyrrolidone

    PubMed Central

    de Hoyos Garza, Andrés; Aguilar, Edgar A Esparza; Checa Richards, Griselda

    2007-01-01

    Ulceration is a complication that may occur after an ileocolonic anastomosis. Most of the etiologies remain speculative. The case of a 33-year-old woman with eosinophilic colitis is reported, in whom a colectomy with an ileocolonic anastomosis was performed. After four months, the patient presented with a stenosis in the ileocolonic anastomosis, necessitating surgical restoration. Four weeks later, the patient presented with rectal bleeding, and a colonoscopy showed an ulcer in the anastomosis. Collagen-polyvinylpyrrolidone was applied into and on the surface of the ulcer, and five days later the procedure was repeated. Follow-up endoscopies at seven days and three months showed complete healing of the ulcer and the patient remained without bleeding throughout a further four weeks of follow-up tests. It was concluded that this biological product could be an excellent treatment for these lesions. PMID:17703251

  3. Removal of polyvinylpyrrolidone from wastewater using different methods.

    PubMed

    Julinová, Markéta; Kupec, Jan; Houser, Josef; Slavík, Roman; Marusincová, Hana; Cervenáková, Lenka; Klívar, Stanislav

    2012-12-01

    Polyvinylpyrrolidone (PVP) is a frequently used polymer in the pharmaceutical and foodstuff industries. Because it is not subject to metabolic changes and is virtually nondegradable, trace concentrations of PVP are often found in community wastewaters. The literature finds that the partial removal of PVP in wastewater treatment plants probably occurs through sorption. The primary objective of this study was to find an effective method to remove PVP from wastewaters. In this regard, the literature indicates the theoretical potential to use specific enzymes (e.g., gamma-lactamases, amidases) to gradually degrade PVP molecules. Polyvinylpyrrolidone biodegradability tests were conducted using suitable heterogeneous cultures (activated sludge) collected from a conventional wastewater treatment plant, treatment plants connected to a pharmaceutical factory, and using select enzymes. Aerobic biodegradation of PVP in a conventional wastewater environment was ineffective, even after adaptation of activated sludge using the nearly identical monomer 1-methyl-2-pyrrolidone. Another potential method for PVP removal involves pretreating the polymer prior to biological degradation. Based on the results (approximately 10 to 15% biodegradation), pretreatment was partially effective, realistically, it could only be applied with difficulty at wastewater treatment plants. Sorption of PVP to an active carbon sorbent (Chezacarb S), which corresponded to the Langmuir isotherm, and sorption to activated sludge, which corresponded to the Freundlich isotherm, were also evaluated. From these sorption tests, it can be concluded that the considerable adsorption of PVP to activated sludge occurred primarily at low PVP concentrations. Based on the test results, the authors recommend the following methods for PVP removal from wastewater: (1) sorption; (2) application of specific microorganisms; and (3) alkaline hydrolysis, which is the least suitable of the three for use in wastewater treatment

  4. Encapsulation of plai oil/2-hydroxypropyl-β-cyclodextrin inclusion complexes in polyvinylpyrrolidone (PVP) electrospun nanofibers for topical application.

    PubMed

    Tonglairoum, Prasopchai; Chuchote, Tudduo; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Opanasopit, Praneet

    2014-06-01

    The aim of this study was to prepare electrospun polyvinylpyrrolidone (PVP)/2-hydroxypropyl-β-cyclodextrin (HPβCD) nanofiber mats and to incorporate plai oil (Zingiber Cassumunar Roxb.). The plai oil with 10, 20 and 30% wt to polymer were incorporated in the PVP/HPβCD solution and electrospun to obtain nanofibers. The morphology and structure of the PVP and PVP/HPβCD nanofiber mats with and without the plai oil were analyzed using scanning electron microscopy (SEM). The thermal behaviors of the nanofiber mats were characterized using differential scanning calorimeter (DSC). Terpinen-4-ol was used as a marker of the plai oil. The amount of plai oil remaining in the PVP/HPβCD nanofiber mats was determined using gas chromatography-mass spectoscopy (GC-MS). The SEM images revealed that all of the fibers were smooth. The average diameter of fibers was 212-450 nm, and decreased with the increasing of plai oil content. The release characteristics of plai oil from the fiber showed the fast release followed by a sustained release over the experimental time of 24 h. The release rate ranged was in the order of 10% > 20% ∼ 30% plai oil within 24 h. Electrospun fibers with 20% plai oil loading provided the controlled release and also showed the highest plai oil content. Hence, this electrospun nanofiber has a potential for use as an alternative topical application.

  5. Preparation of electrospun polyurethane filter media and their collection mechanisms for ultrafine particles.

    PubMed

    Choi, Hyun-Jin; Kim, Sang Bum; Kim, Sung Hyun; Lee, Myong-Hwa

    2014-03-01

    Electrospinning is a simple and versatile process to produce polymer nanofibers, which are useful for ultrafine particle filtration. In this study, a polyurethane filter with an average fiber diameter of 150-250 nm was prepared through the electrospinning process and its filtration characteristics were investigated. We found that the electrospun fiber diameter was highly dependent on the polyurethane concentration, electric field, and tip-to-collector distance. As the polyurethane concentration, electric field, and tip-to-collector distance under the same electric field increased, the fiber diameter increased. We also found that the produced filter media had a minimum collection efficiency at particles sizes from 80 to 100 nm, which implies an electrostatic attraction between the filter and the test particles. Furthermore, we observed that interception was a predominant collection mechanism at Peclet numbers higher than 10 in nanofiber filtration for ultrafine particles. A polyurethane nanofiber filter with excellent mechanical properties was prepared, and the effect of operating conditions on fiber morphology was examined. The filter fabricated by an electrospinning process is charged and has high filtration efficiency due to electrostatic force. Therefore, it can be a good alternative to control hazardous ultrafine particles.

  6. Effect of reductant and PVP on morphology and magnetic property of ultrafine Ni powders prepared via hydrothermal route

    SciTech Connect

    Zhang, Jun Wang, Xiucai; Li, Lili; Li, Chengxuan; Peng, Shuge

    2013-10-15

    Graphical abstract: The ultrafine Ni powders with the shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using different reductants. Their saturation magnetization, remanent magnetization and coercivity sequentially increase, and the coercivity of hexagonal sheet-like Ni powders increases by 25% compared with the Ni bulk counterpart. - Highlights: • The ultrafine Ni powders with various shapes of sphere, fish-bone, hexagonal sheet, etc. • Facile and one-step hydrothermal reduction using three reductants and PVP additive was developed. • Magnetic properties of the ultrafine Ni powders with different shapes were measured. • Compared with bulk Ni material, coercivity of hexagonal sheet Ni increases by 25%. • The formation mechanism of the shapes was suggested. - Abstract: The ultrafine nickel particles with different shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using hydrazine hydrate, sodium hypophosphite and ethylene glycol as reductants, polyvinylpyrrolidone as structure-directing agent. It has been verified with the characterization of X-ray powder diffraction and transmission/scanning electronic microscopy that as-prepared products belong to face-centered cubic structure of nickel microcrystals with high purity and fine dispersity. The magnetic hysteresis loops measured at room temperature reveal that the values of saturation magnetization, remanent magnetization and coercivity rise sequentially from silknet, sphere to hexagonal sheet. In comparison with nickel bulk counterpart, the coercivity of the hexagonal sheet nickel powders increases by 25%.

  7. Alternative Synthesis Route of Biocompatible Polyvinylpyrrolidone Nanoparticles and Their Effect on Pathogenic Microorganisms.

    PubMed

    Milosavljevic, Vedran; Jelinkova, Pavlina; Jimenez Jimenez, Ana Maria; Moulick, Amitava; Haddad, Yazan; Buchtelova, Hana; Krizkova, Sona; Heger, Zbynek; Kalina, Lukas; Richtera, Lukas; Kopel, Pavel; Adam, Vojtech

    2017-01-03

    Herein we describe a novel alternative synthesis route of polyvinylpyrrolidone nanoparticles using salting-out method at a temperature close to polyvinylpyrrolidone decomposition. At elevated temperatures, the stability of polyvinylpyrrolidone decreases and the opening of pyrrolidone ring fractions occurs. This leads to cross-linking process, where separate units of polyvinylpyrrolidone interact among themselves and rearrange to form nanoparticles. The formation/stability of these nanoparticles was confirmed by transmission electron microscopy, X-ray photoelectron spectroscopy, mass spectrometry, infrared spectroscopy, and spectrophotometry. The obtained nanoparticles possess exceptional biocompatibility. No toxicity and genotoxicity was found in normal human prostate epithelium cells (PNT1A) together with their high hemocompatibility. The antimicrobial effects of polyvinylpyrrolidone nanoparticles were tested on bacterial strains isolated from the wounds of patients suffering from hard-to-heal infections. Molecular analysis (qPCR) confirmed that the treatment can induce the regulation of stress-related survival genes. Our results strongly suggest that the polyvinylpyrrolidone nanoparticles have great potential to be developed into a novel antibacterial compound.

  8. Properties of Polyvinylpyrrolidone in a Deep Eutectic Solvent.

    PubMed

    Sapir, Liel; Stanley, Christopher B; Harries, Daniel

    2016-05-19

    Deep eutectic solvents (DES) are mixtures of two or more components with high melting temperatures, which form a liquid at room temperature. These DES hold great promise as green solvents for chemical processes, as they are inexpensive and environmentally friendly. Specifically, they present a unique solvating environment to polymers that is different from water. Here, we use small angle neutron scattering to study the polymer properties of the common, water-soluble, polyvinylpyrrolidone (PVP) in the prominent DES formed by a 1:2 molar mixture of choline chloride and urea. We find that the polymer adopts a slightly different structure in DES than in water, so that at higher concentrations the polymer favors a more expanded conformation compared to the same concentration in water. Yet, the osmotic pressure of PVP solutions in DES is very similar to that in water, indicating that both solvents are of comparable quality and that the DES components interact favorably with PVP. The osmotic pressure measurements within this novel class of promising solvents should be of value toward future technological applications as well as for osmotic stress experiments in nonaqueous environments.

  9. Gamma radiation-induced synthesis and characterization of Polyvinylpyrrolidone nanogels

    NASA Astrophysics Data System (ADS)

    Ges, A. A.; Viltres, H.; Borja, R.; Rapado, M.; Aguilera, Y.

    2017-01-01

    Due to the importance of bioactive peptides, proteins and drug for pharmaceutical purpose, there is a growing interest for suitable delivery systems, able to increase their bioavailability and to target them to the desired location. Some of the most studied delivery systems involve encapsulation or entrapment of drugs into biocompatible polymeric devices. A multitude of techniques have been described for the synthesis of nanomaterials from polymers, however, the use of ionizing radiation (γ, e-), to obtain nano- and microgels polymer is characterized by the possibility of obtaining products with a high degree of purity. Although, in the world, electronic radiation is used for this purpose, gamma radiation has not been utilized for these purposes. In this paper is developed the formulation the formulation of Polyvinylpyrrolidone (PVP) nanogels synthesized by gamma radiation techniques, for their evaluation as potential system of drug delivery. Experiments were performed in absence of oxygen using aqueous solutions of PVP (0.05% -1%). Crosslinking reactions were carried out at 25° C in a gamma irradiation chamber with a 60Co source (MPX-γ 30). The Viscosimetry, Light Scattering, X-Ray Diffraction and Transmission Electron Microscopy (TEM), were used as characterization techniques.

  10. Photoalignment of a Bisazodioxodibenzothiophene in a Polyvinylpyrrolidone Matrix

    NASA Astrophysics Data System (ADS)

    Chaplanova, J. D.; Larykava, S. N.; Agabekov, V. E.; Mikulich, V. S.; Gracheva, E. A.

    2016-09-01

    Photoalignment of thin films of dipotassium 3,7-bis[1-(4-hydroxy-3-carboxylate)phenylazo]-5,5'-dioxodibenzothiophene (AtA-2) that were prepared by spin-coating of dye solutions in H2O and DMF and aqueous solutions of polyvinylpyrrolidone (PVP) was studied. The UV absorption band of the dye cis-isomer, the position and intensity of which depended on the PVP concentration in the stock solutions, was recorded upon irradiation of films of AtA-2 in a PVP matrix [AtA-2(PVP)] with unfi ltered light from a DRT-1000 lamp in a vacuum or an Ar atmosphere. PVP facilitated trans-cis isomerization of AtA-2 and increased the stability of the cis-isomer with respect to thermal relaxation into the initial trans-isomer. The dichroic ratio (DR) of AtA-2(PVP) films irradiated with linearly polarized light (blue LED with λ = 450 nm, I = 15 mW/cm2) increased by 1.5 times as the PVP concentration in the stock solutions increased from 1.0 to 10.0 mass%. The morphology and roughness of the films depended on the nature of the solvents used to prepare them.

  11. Properties of radiation-synthesized polyvinylpyrrolidone/chitosan hydrogel blends

    NASA Astrophysics Data System (ADS)

    Mahmud, Maznah; Daik, Rusli; Adam, Zainah

    2015-09-01

    Poly(vinylpyrrolidone) (PVP)-crosslinked chitosan hydrogels were prepared by gamma radiation at various doses; 1, 3 5, 7, 10, 15, 20, 25 and 30kGy. Gamma radiation was used as a crosslinking tool which requires no chemical initiator, no heating process and need no purification step on the end products obtained. The hydrogel formulations were composed of 6% chitosan with average molecular weight (Mw) = 48 800 g/mol and 14% PVP with Mw = 10 000 g/mol in 2% lactic acid. Physical properties of hydrogels such as gel fraction and swelling property at pH 5.5 and pH 7.0 as well as syneresis activity were determined. It was found that different radiation dose induces different effect on hydrogels' network formed. Morphological study of hydrogels has been carried out by scanning electron microscope (SEM). From these preliminary evaluations, it can be concluded that gamma radiation is an effective tool for network development of hydrogels and it also induces enhancement on characteristics of hydrogels synthesized.

  12. [Stability of probucol-polyvinylpyrrolidone solid dispersion systems].

    PubMed

    Kubo, Yoshitada; Yagi, Naomi; Sekikawa, Hitoshi

    2011-04-01

    After solid dispersion systems of probucol-polyvinylpyrrolidone K30 (1 : 9 in weight ratio) were exposed to light (10000 lx) for 7 days, 84% of the probucol remained. Commercial probucol fine granules were thus fairly stable under light exposure. When solid dispersion systems were stored in heat-sealed packages at relative humidity (R.H.) of 75% and 92% for 30 days at 30°C, the weight of the samples increased by 22% and 43%, respectively. When these solid dispersion systems were dissolved in water, the probucol concentration decreased with the duration of storage. The crystalline nature of probucol in the solid dispersion systems could not be detected by powder X-ray diffraction or differential scanning calorimetry. After passing the dissolution medium through the membrane filter, retention time of the residue on the filter in the HPLC method corresponded to that of probucol. These results suggest that the partial crystallization of probucol in the solid dispersion systems may occur during storage under these conditions. Solid dispersion systems in heat-sealed packages were fairly stable when stored under room conditions or in light-resistant tightly sealed containers for 5 months.

  13. Properties of radiation-synthesized polyvinylpyrrolidone/chitosan hydrogel blends

    SciTech Connect

    Mahmud, Maznah; Daik, Rusli; Adam, Zainah

    2015-09-25

    Poly(vinylpyrrolidone) (PVP)-crosslinked chitosan hydrogels were prepared by gamma radiation at various doses; 1, 3 5, 7, 10, 15, 20, 25 and 30kGy. Gamma radiation was used as a crosslinking tool which requires no chemical initiator, no heating process and need no purification step on the end products obtained. The hydrogel formulations were composed of 6% chitosan with average molecular weight (Mw) = 48 800 g/mol and 14% PVP with Mw = 10 000 g/mol in 2% lactic acid. Physical properties of hydrogels such as gel fraction and swelling property at pH 5.5 and pH 7.0 as well as syneresis activity were determined. It was found that different radiation dose induces different effect on hydrogels’ network formed. Morphological study of hydrogels has been carried out by scanning electron microscope (SEM). From these preliminary evaluations, it can be concluded that gamma radiation is an effective tool for network development of hydrogels and it also induces enhancement on characteristics of hydrogels synthesized.

  14. Ultrafine-grained titanium for medical implants

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Stolyarov, Vladimir V.; Latysh, Vladimir V.; Raab, Georgy J.

    2002-01-01

    We disclose ultrafine-grained titanium. A coarse-grained titanium billet is subjected to multiple extrusions through a preheated equal channel angular extrusion (ECAE) die, with billet rotation between subsequent extrusions. The resulting billet is cold processed by cold rolling and/or cold extrusion, with optional annealing. The resulting ultrafine-grained titanium has greatly improved mechanical properties and is used to make medical implants.

  15. Method for synthesizing ultrafine powder materials

    DOEpatents

    Buss, Richard J.; Ho, Pauline

    1988-01-01

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400.degree. K. (127.degree.C.). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material.

  16. Silicon-dioxide-polyvinylpyrrolidone as a wound dressing for skin defects in a murine model.

    PubMed

    Öri, Ferenc; Dietrich, Richard; Ganz, Cornelia; Dau, Michael; Wolter, Daniel; Kasten, Annika; Gerber, Thomas; Frerich, Bernhard

    2017-01-01

    There is a high demand for temporary wound dressings that improve wound healing and regeneration. Silicon (as SiO2) has been shown to support the growth and collagen formation in biological systems. A nanocomposite was made from PVP (polyvinylpyrrolidon), nano-sized silica aggregates and water and served for fabrication of a wet dressing material (SiO2-PVP gel, by cross-linking the gel) and a freeze-dried dressing material (SiO2-PVP fleece). Materials were characterized by SAXS, DSC, EDX and viscosity measurements. A 10 mm circular defect was set on both sides of the back of SKH1-hr mice (n = 40) and both dressing materials were compared with untreated controls. After 3, 6, 9, 12 and 15 days, the defect regions were explanted and evaluated by histomorphometric measurements and CD31-immunohistochemistry. The microstructure of the compound was composed of fiber like structures. SiO2 nano-aggregates inside the composite remained stable and embedded in a rigid amorphous PVP fraction. In animal experiments, all groups showed a non-irritated defect closure after 9 days. EDX of SiO2-PVP gel and fleeces revealed SiO2-PVP diffusion into the wound. Wound contraction was significantly enhanced after treatment with SiO2-PVP gel followed by SiO2-PVP fleece compared to controls. Re-epithelialization was increased in SiO2-PVP treated wounds and the regenerated epidermis showed a well-differentiated layer structure compared to untreated controls. The results indicate that silica diffuses from the dressing into the wound. Both dressings affect the wound healing. The SiO2-based wound dressing may counteract scarring and might be suitable as a temporary wound dressing. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. X-ray diffraction investigation of ultrafine boron nitride powders

    SciTech Connect

    Gurov, S.V.; Chukalin, V.I.; Rezchikova, T.V.; Torbov, V.J.; Troitskii, V.N.

    1986-01-01

    This paper presents an x-ray diffraction analysis of ultrafine boron nitride powders of different mean particle sizes. Diffraction spectra of the ultrafine boron nitride powders were obtained using a DRON-1 apparatus. The experimental facts are indicative of a turbostratic character of deformation of the hexagonal lattice of ultrafinely divided boron nitride.

  18. Exposure to ultrafine particles in asphalt work.

    PubMed

    Elihn, Karine; Ulvestad, Bente; Hetland, Siri; Wallen, Anna; Randem, Britt Grethe

    2008-12-01

    An epidemiologic study has demonstrated that asphalt workers show increased loss of lung function and an increase of biomarkers of inflammation over the asphalt paving season. The aim of this study was to investigate which possible agent(s) causes the inflammatory reaction, with emphasis on ultrafine particles. The workers' exposure to total dust, polycyclic aromatic hydrocarbons, and NO(2) was determined by personal sampling. Exposure to ultrafine particles was measured by means of particle counters and scanning mobility particle sizer mounted on a van following the paving machine. The fractions of organic and elemental carbon were determined. Asphalt paving workers were exposed to ultrafine particles with medium concentration of about 3.4 x 10(4)/cm(3). Ultrafine particles at the paving site originated mainly from asphalt paving activities and traffic exhaust; most seemed to originate from asphalt fumes. Oil mist exceeded occupational limits on some occasions. Diesel particulate matter was measured as elemental carbon, which was low, around 3 microg/m(3). NO(2) and total dust did not exceed limits. Asphalt pavers were exposed to relatively high concentrations of ultrafine particles throughout their working day, with possible adverse health effects.

  19. Preparation and Thermal Stability of Ultrafine Nickel Powders Containing hcp-Ni Nanocrystallites Using Liquid-Phase Reduction Method

    NASA Astrophysics Data System (ADS)

    Xia, Zhimei; Jin, Shengming; Liu, Kun

    2016-10-01

    Ultrafine nickel powders containing hexagonal close-packed nickel (hcp-Ni) nanocrystallites were prepared using liquid-phase reduction with NiC2O4, NaOH, polyvinylpyrrolidone (PVP), and ethylene glycol (EG). The nickel powders were characterized by XRD and SEM. TG analysis was used to determine the thermal stability of ultrafine nickel powders. The results showed that nickel powders with 45.1 pct of hcp-Ni nanocrystallites were synthesized under the following conditions: a reflux time of 3 hours, an NiC2O4-to-EG molar ratio of 0.01, 5 g/L PVP, and 85 g/L NaOH. SEM results illustrated that spherical particles of size 500 nm were obtained. The results of thermal stability showed that the antioxidant property at high temperature was improved with the increase of hcp-Ni content. The oxidation rate of nickel powders with 43.3 pct hcp-Ni was less than 50 pct even if the temperature was up to 873 K (600 °C).

  20. Controlling growth of ZnO rods by polyvinylpyrrolidone (PVP) and their optical properties

    NASA Astrophysics Data System (ADS)

    Wei, S. F.; Lian, J. S.; Jiang, Q.

    2009-05-01

    ZnO rods with different morphologies were synthesized through a wet chemical method by addition of polyvinylpyrrolidone (PVP). By adjusting the concentration of the additive in the growth solution, we can control the diameter, ratio of length to diameter and density of ZnO rods. FESEM images showed that the rods in nanoscale could be obtained at the polyvinylpyrrolidone concentration of 1.0 mM. Meanwhile, the resonant Raman scattering and photoluminescence spectra showed that the crystalline quality and the optical property of ZnO rods were improved through moderate addition of polyvinylpyrrolidone (concentration of 1.0 mM) in the growth solution. In addition, the possible mechanism of the PVP effect on the growth of ZnO rods was discussed based on the FT-IR spectra.

  1. Photochromic polyoxotungstoeuropate K 12[EuP 5W 30O 110]/polyvinylpyrrolidone nanocomposite films

    NASA Astrophysics Data System (ADS)

    Zhang, Tie Rui; Lu, Ran; Liu, Xin Li; Zhao, Ying Ying; Li, Tie Jin; Yao, Jian Nian

    2003-05-01

    A novel photochromic nanocomposite film containing polyoxotungstoeuropate K 12[EuP 5W 30O 110] entrapped in polyvinylpyrrolidone has been prepared through a spin-on coating technique. Thus-obtained amorphous nanocomposite film was characterized by IR spectra, UV-vis absorption spectra, XRD, SEM, TG-DTA, and ESR. Results show that polyoxotungstoeuropate interacts with polyvinylpyrrolidone strongly and disperses homogeneously in the matrix. The composite film exhibits good photochromic properties. When irradiated with UV light, the transparent film changes from colorless to blue. Then, bleaching occurs when the film is in contact with ambient air or O 2 in the dark. The photochromism of the composite film is due to charge transfer by reduction of polyoxotungstoeuropate and oxidation of polyvinylpyrrolidone.

  2. Synthesis of ultrafine powders by microwave heating

    DOEpatents

    Meek, T.T.; Sheinberg, H.; Blake, R.D.

    1987-04-24

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has dissolved. The resulting material is an ultrafine powder. This method can be used to make Al/sub 2/O/sub 3/, NiO /plus/ Al/sub 2/O/sub 3/ and NiO as well as a number of other materials including GaBa/sub 2/Cu/sub 3/O/sub x/. 1 tab.

  3. Synthesis of ultrafine powders by microwave heating

    DOEpatents

    Meek, Thomas T.; Sheinberg, Haskell; Blake, Rodger D.

    1988-01-01

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has been removed. The resulting material is an ultrafine powder. This method can be used to make Al.sub.2 O.sub.3, NiO+Al.sub.2 O.sub.3 and NiO as well as a number of other materials including GaBa.sub.2 Cu.sub.3 O.sub.x.

  4. Processing of Bimodal Grain-Sized Ultrafine-Grained Dual Phase Microalloyed V-Nb Steel with 1370 MPa Strength and 16 pct Uniform Elongation Through Warm Rolling and Intercritical Annealing

    NASA Astrophysics Data System (ADS)

    Papa Rao, M.; Subramanya Sarma, V.; Sankaran, S.

    2014-11-01

    Ultrafine-grained dual phase microalloyed V-Nb steel with ultimate tensile strength of 1371 MPa and uniform elongation of 16 pct characterized by bimodal ferrite grain structure was obtained through warm rolling and subsequent intercritical annealing. The bimodal ferrite grain structure with uniform dispersion of Nb/V carbides and strong γ-fiber texture promoted high strain hardening rate and high uniform elongation and high strength is attributed to ultrafine-grained ferrite and martensite.

  5. [Investigation on composites of europium fluorescent complexes and polyvinylpyrrolidone].

    PubMed

    Hao, Chao-wei; Zhao, Ying; Xu, Yi-zhuang; Wang, Du-jin; Xu, Duan-fu

    2008-09-01

    In order to investigate the relationship between the aggregation structure and fluorescence properties of composites of rare earth fluorescent complexes and polymers, the fluorescent complexes of Eu(TTA)3 x 2H2O and Eu(TTA)3 x (TPPO)2 were synthesized by the reaction of TTA (2-thenoyltrifluoroacetone), TPPO (triphenylphosphine oxide) and EuCl3, and their composites with polyvinylpyrrolidone (PVP K30) were prepared. The fluorescence spectroscopy, FTIR spectroscopy and TEM were used to characterize these composites. Fluorescence spectroscopy results indicated that the fluorescence intensity of the PVP/Eu(TTA)3 x 2H2O composites is obviously improved compared with that of the Eu(TTA)3 x 2H2O complexes. For the composites with the molar ratio of the complexes to the repeat unit of PVP being 1:35, the intensity of 612 nm emission peak of the composites is 5.5 times for PVP/Eu(TTA)3 x 2H2O and 0.3 times for PVP/Eu(TTA)3 x (TPPO)2 higher than that of the corresponding pure rare earth fluorescent complexes. And the emission intensity ratio of 612 to 590 nm peak is 14.7 in PVP/Eu (TTA)3 x 2H2O composite, larger than that of Eu(TTA)3 x 2H2O complexes. These results suggested that the luminescent properties of the europium fluorescent complexes were obviously enhanced in the presence of PVP matrix and there are interactions between the fluorescence complexes and PVP molecules. In the presence of PVPK30, the FTIR spectra of the Eu(TTA)3 x 2H2O complexes were obviously influenced as well. Based on the curve-fitting results of IR spectra of PVP/Eu(TTA)3 2H2O composites with the molar ratio of repeat unit of PVP to Eu(TTA)3 x 2H2O being 7:1 and 2:1, multiple absorption peaks of nu C=O are observed. The IR spectral variations indicated that there are coordination interactions between Eu3+ ions and the carbonyl groups of PVP, and multiple coordination fashion exists. TEM results showed that there are microphase separation structures in PVP/Eu(TTA)3 x 2H2O and PVP/Eu(TTA)3 x (TPPO)2

  6. Ultrafine Condensation Particle Counter Instrument Handbook

    SciTech Connect

    Kuang, C.

    2016-02-01

    The Model 3776 Ultrafine Condensation Particle Counter (UCPC; pictured in Appendix A) is designed for researchers interested in airborne particles smaller than 20 nm. With sensitivity to particles down to 2.5 nm in diameter, this UCPC is ideally suited for atmospheric and climate research, particle formation and growth studies, combustion and engine exhaust research, and nanotechnology research.

  7. Ultrafine particle characteristics in seven industrial plants.

    PubMed

    Elihn, Karine; Berg, Peter

    2009-07-01

    Ultrafine particles are considered as a possible cause of some of the adverse health effects caused by airborne particles. In this study, the particle characteristics were measured in seven Swedish industrial plants, with a special focus on the ultrafine particle fraction. Number concentration, size distribution, surface area concentration, and mass concentration were measured at 10 different job activities, including fettling, laser cutting, welding, smelting, core making, moulding, concreting, grinding, sieving powders, and washing machine goods. A thorough particle characterization is necessary in workplaces since it is not clear yet which choice of ultrafine particle metric is the best to measure in relation to health effects. Job activities were given a different order of rank depending on what particle metric was measured. An especially high number concentration (130 x 10(3) cm(-3)) and percentage of ultrafine particles (96%) were found at fettling of aluminium, whereas the highest surface area concentration (up to 3800 mum(2) cm(-3)) as well as high PM10 (up to 1 mg m(-3)) and PM1 (up to 0.8 mg m(-3)) were found at welding and laser cutting of steel. The smallest geometric mean diameter (22 nm) was found at core making (geometric standard deviation: 1.9).

  8. Personal exposure to ultrafine particles.

    PubMed

    Wallace, Lance; Ott, Wayne

    2011-01-01

    Personal exposure to ultrafine particles (UFP) can occur while people are cooking, driving, smoking, operating small appliances such as hair dryers, or eating out in restaurants. These exposures can often be higher than outdoor concentrations. For 3 years, portable monitors were employed in homes, cars, and restaurants. More than 300 measurement periods in several homes were documented, along with 25 h of driving two cars, and 22 visits to restaurants. Cooking on gas or electric stoves and electric toaster ovens was a major source of UFP, with peak personal exposures often exceeding 100,000 particles/cm³ and estimated emission rates in the neighborhood of 10¹² particles/min. Other common sources of high UFP exposures were cigarettes, a vented gas clothes dryer, an air popcorn popper, candles, an electric mixer, a toaster, a hair dryer, a curling iron, and a steam iron. Relatively low indoor UFP emissions were noted for a fireplace, several space heaters, and a laser printer. Driving resulted in moderate exposures averaging about 30,000 particles/cm³ in each of two cars driven on 17 trips on major highways on the East and West Coasts. Most of the restaurants visited maintained consistently high levels of 50,000-200,000 particles/cm³ for the entire length of the meal. The indoor/outdoor ratios of size-resolved UFP were much lower than for PM₂.₅ or PM₁₀, suggesting that outdoor UFP have difficulty in penetrating a home. This in turn implies that outdoor concentrations of UFP have only a moderate effect on personal exposures if indoor sources are present. A time-weighted scenario suggests that for typical suburban nonsmoker lifestyles, indoor sources provide about 47% and outdoor sources about 36% of total daily UFP exposure and in-vehicle exposures add the remainder (17%). However, the effect of one smoker in the home results in an overwhelming increase in the importance of indoor sources (77% of the total).

  9. Ultrafine particle deposition in subjects with asthma.

    PubMed

    Chalupa, David C; Morrow, Paul E; Oberdörster, Günter; Utell, Mark J; Frampton, Mark W

    2004-06-01

    Ambient air particles in the ultrafine size range (diameter < 100 nm) may contribute to the health effects of particulate matter. However, there are few data on ultrafine particle deposition during spontaneous breathing, and none in people with asthma. Sixteen subjects with mild to moderate asthma were exposed for 2 hr, by mouthpiece, to ultrafine carbon particles with a count median diameter (CMD) of 23 nm and a geometric standard deviation of 1.6. Deposition was measured during spontaneous breathing at rest (minute ventilation, 13.3 +/- 2.0 L/min) and exercise (minute ventilation, 41.9 +/- 9.0 L/min). The mean +/- SD fractional deposition was 0.76 +/- 0.05 by particle number and 0.69 +/- 0.07 by particle mass concentration. The number deposition fraction increased as particle size decreased, reaching 0.84 +/- 0.03 for the smallest particles (midpoint CMD = 8.7 nm). No differences between sexes were observed. The deposition fraction increased during exercise to 0.86 +/- 0.04 and 0.79 +/- 0.05 by particle number and mass concentration, respectively, and reached 0.93 +/- 0.02 for the smallest particles. Experimental deposition data exceeded model predictions during exercise. The deposition at rest was greater in these subjects with asthma than in previously studied healthy subjects (0.76 +/- 0.05 vs. 0.65 +/- 0.10, p < 0.001). The efficient respiratory deposition of ultrafine particles increases further in subjects with asthma. Key words: air pollution, asthma, deposition, dosimetry, inhalation, ultrafine particles.

  10. Separation of human eosinophils in density gradients of polyvinylpyrrolidone-coated silica gel (Percoll).

    PubMed Central

    Gärtner, I

    1980-01-01

    A method for isolation of eosinophils from human peripheral blood using isosmolar solutions of polyvinylpyrrolidone-coated silica gel (Percoll) is described. The purity ranged from 86 to 99% eosinophils in the final preparation and the recovery was 38-56%. The separation technique did not affect the viability or the metabolic capacities of the cells. PMID:6252099

  11. Polyvinylpyrrolidone induced artefactual prolongation of activated partial thromboplastin times in intravenous drug users with renal failure.

    PubMed

    Kristoffersen, A H; Bjånes, T K; Jordal, S; Leh, S; Leh, F; Svarstad, E

    2016-05-01

    Essentials Prolonged activated partial thromboplastin times (APTT) were found in drug users with renal failure. An oral methadone solution containing polyvinylpyrrolidone (PVP) had been injected intravenously. Spiking normal plasma with increasing concentrations of PVP resulted in artifically prolonged APTT. APTT prolongation may indicate PVP deposits as underlying cause in patients with renal failure.

  12. Spectral properties of zinc sulfide sols stabilized by high-molecular polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Evstrop'ev, S. K.; Gatchin, Yu. A.; Evstrop'ev, K. S.; Dukel'skii, K. V.; Kislyakov, I. M.

    2015-12-01

    Spectral properties of zinc sulfide sols stabilized by high-molecular polyvinylpyrrolidone have been studied. It is shown that the absorption spectra of colloidal solutions in the UV spectral range are determined by the quantum-confinement effect, exhibiting a dependence of the absorption edge on the size of zinc sulfide nanocrystals.

  13. Concentrated ambient ultrafine particle exposure induces cardiac change in young healthy volunteers

    EPA Science Inventory

    Exposure to ambient ultrafine particles has been associated with cardiopulmonary toxicity and mortality. Adverse effects specifically linked to ultrafine particles include loss of sympathovagal balance and altered hemostasis. To characterize the effects of ultrafine particles in ...

  14. Concentrated ambient ultrafine particle exposure induces cardiac change in young healthy volunteers

    EPA Science Inventory

    Exposure to ambient ultrafine particles has been associated with cardiopulmonary toxicity and mortality. Adverse effects specifically linked to ultrafine particles include loss of sympathovagal balance and altered hemostasis. To characterize the effects of ultrafine particles in ...

  15. Ultrafine fibrous gelatin scaffolds with deep cell infiltration mimicking 3D ECMs for soft tissue repair.

    PubMed

    Jiang, Qiuran; Xu, Helan; Cai, Shaobo; Yang, Yiqi

    2014-07-01

    In this research, ultrafine fibrous scaffolds with deep cell infiltration and sufficient water stability have been developed from gelatin, aiming to mimic the extracellular matrices (ECMs) as three dimensional (3D) stromas for soft tissue repair. The ultrafine fibrous scaffolds produced from the current technologies of electrospinning and phase separation are either lack of 3D oriented fibrous structure or too compact to be penetrated by cells. Whilst electrospun scaffolds are able to emulate two dimensional (2D) ECMs, they cannot mimic the 3D ECM stroma. In this work, ultralow concentration phase separation (ULCPS) has been developed to fabricate gelatin scaffolds with 3D randomly oriented ultrafine fibers and loose structures. Besides, a non-toxic citric acid crosslinking system has been established for the ULCPS method. This system could endow the scaffolds with sufficient water stability, while maintain the fibrous structures of scaffolds. Comparing with electrospun scaffolds, the ULCPS scaffolds showed improved cytocompatibility and more importantly, cell infiltration. This research has proved the possibility of using gelatin ULCPS scaffolds as the substitutes of 3D ECMs.

  16. Understanding Detonation Corner Turning within Ultra-Fine TATB: Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Sinibaldi, Jose; Vitello, Peter; May, Chadd

    2013-06-01

    Detonation corner turning within insensitive high explosives has demonstrated difficulties as the insensitivity of the high explosive increases. Experiments tend to report breakout profiles, which show times of arrival of the detonation wave at the surface of the IHE charge. Although, various reactive flow models are able to predict these breakout profiles, none of these models agree perfectly with each other. Models predict major differences in pressure profiles and in the internal detonation wave propagation characteristics. Thus, the objective of this study was to provide detailed accounts of the wave propagation within an ultra-fine TATB charge, through the use embedded fiber-optic diagnostics that allowed measuring the detonation wave propagation within the ultra-fine TATB charges. In addition, these experiments were also instrumented at multiple points with Photonic Doppler Velocimetry to provide dynamic pressure profiles at the hemispherical surface; and orthogonal streak cameras to provide the conventional breakout profiles. Comparisons between experimental data and simulation results using a high resolution reactive flow model for ultra-fine TATB will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Primitive ultrafine matrix in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Rambaldi, E. R.; Fredriksson, B. J.; Fredriksson, K.

    1981-01-01

    Ultrafine matrix material has been concentrated by sieving and filtering disaggregated samples of six ordinary chondrites of different classes. This component(s), 'Holy Smoke' (HS), is enriched in both volatile, e.g. Na, K, Zn, Sb, and Pb, as well as refractory elements, e.g. W and REE; however, the element ratios vary greatly among the different chondrites. SEM studies show that HS contains fragile crystals, differing in composition, and apparently in gross disequilibrium not only among themselves but also with the major mineral phases and consequently thermodynamic equilibration did not occur. Thus HS must have originated from impacting bodies and/or was inherent in the 'primitive' regolith. Subsequent impact brecciation and reheating appears to have altered, to varying degrees, the original composition of this ultrafine matrix material. Recent 'cosmic dust' studies may indicate that HS still exists in the solar system. Survival of such delicate material must be considered in all theories for the origin of chondrites.

  18. Ultra-fine grinding of coal

    SciTech Connect

    Wang Shoulu; Wang Xinguo; Gao Ying

    1997-12-31

    Clean coal is known by its low ash content. Most coals contain a large amount of ash, some of which are finely distributed in the coal matrix. With the conventional cleaning process, such ash can not be removed efficiently. From existing coal preparation plants, much middling and high-ash slime come out as by-products and are used only as inferior fuel. Beijing Graduate School, China University of Mining and Technology, has developed a process for deep-cleaning of coal. This process includes ultra-fine grinding of coal to liberate the locked ash minerals followed by efficient separation with selective coagulation-flotation. With this process, concentrate can be extracted from inferior coal or ultra-clean coal can be obtained from conventional concentrate. Tumbling and vibrating ball mills are conventional for general grinding. However, for ultra-fine grinding they are inefficient and consume much more power. This paper gives some aspects of an ultra-fine grinding mill developed by Beijing Graduate School. The Ultra-Fine Grinding Mill is a JMI series wet grinding mill, and consists of a static horizontal closed tube with a rotor inside. The rotor assembly includes: a horizontal shaft, two vaned disks being fixed apart at the shaft, and longitudinal bar deflectors fixed across the disks. Sufficient clearance is allowed between the disk and end plates of the tube and between the disk rim and tube wall. This configuration enables free passage of grinding medium and pulp within the mill. While the mill is in operation, four principal movements of grinding medium and pulp are created: inward radially by deflectors, oppositely axial by vanes, tangential by rotation, and vibrating due to vortices behind the deflectors.

  19. Ultrafine polysaccharide nanofibrous membranes for water purification.

    PubMed

    Ma, Hongyang; Burger, Christian; Hsiao, Benjamin S; Chu, Benjamin

    2011-04-11

    Ultrafine polysaccharide nanofibers (i.e., cellulose and chitin) with 5-10 nm diameters were employed as barrier layers in a new class of thin-film nanofibrous composite (TFNC) membranes for water purification. In addition to concentration, the viscosity of the polysaccharide nanofiber coating suspension was also found to be affected by the pH value and ionic strength. When compared with two commercial UF membranes (PAN10 and PAN400), 10-fold higher permeation flux with above 99.5% rejection ratio were achieved by using ultrafine cellulose nanofibers-based TFNC membranes for ultrafiltration of oil/water emulsions. The very high surface-to-volume ratio and negatively charged surface of cellulose nanofibers, which lead to a high virus adsorption capacity as verified by MS2 bacteriophage testing, offer further opportunities in drinking water applications. The low cost of raw cellulose/chitin materials, the environmentally friendly fabrication process, and the impressive high-flux performance indicate that such ultrafine polysaccharide nanofibers-based TFNC membranes can surpass conventional membrane systems in many different water applications.

  20. Dependence of the solubility of natural flavonoids in water on the concentration of miramistin, polyvinylpyrrolidone, and human serum albumin

    NASA Astrophysics Data System (ADS)

    Lipkovska, N. A.; Barvinchenko, V. N.; Fedyanina, T. V.

    2014-05-01

    In organized media of the cationic surfactant miramistin and the polymers polyvinylpyrrolidone and human serum albumin, the solubility of natural flavonoids quercetin and rutin increased by one or two orders of magnitude. The increase was more significant for hydrophobic quercetin than for hydrophilic rutin. The solubility also depended on the structure and self-organization of molecules in organized media and the site of flavonoids in them. The calculated binding constants increased in the series polyvinylpyrrolidone < miramistin < human serum albumin.

  1. Positron annihilation lifetime study of polyvinylpyrrolidone for nanoparticle-stabilizing pharmaceuticals.

    PubMed

    Shpotyuk, O; Bujňáková, Z; Baláž, P; Ingram, A; Shpotyuk, Y

    2016-01-05

    Positron annihilation lifetime spectroscopy was applied to characterize free-volume structure of polyvinylpyrrolidone used as nonionic stabilizer in the production of many nanocomposite pharmaceuticals. The polymer samples with an average molecular weight of 40,000 g mol(-1) were pelletized in a single-punch tableting machine under an applied pressure of 0.7 GPa. Strong mixing in channels of positron and positronium trapping were revealed in the polyvinylpyrrolidone pellets. The positron lifetime spectra accumulated under normal measuring statistics were analysed in terms of unconstrained three- and four-term decomposition, the latter being also realized under fixed 0.125 ns lifetime proper to para-positronium self-annihilation in a vacuum. It was shown that average positron lifetime extracted from each decomposition was primary defined by long-lived ortho-positronium component. The positron lifetime spectra treated within unconstrained three-term fitting were in obvious preference, giving third positron lifetime dominated by ortho-positronium pick-off annihilation in a polymer matrix. This fitting procedure was most meaningful, when analysing expected positron trapping sites in polyvinylpyrrolidone-stabilized nanocomposite pharmaceuticals.

  2. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis

    DOE PAGES

    Zhai, Yueming; DuChene, Joseph S.; Wang, Yi-Chung; ...

    2016-07-04

    After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. In this paper, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different frommore » its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. Finally, these insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.« less

  3. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis

    SciTech Connect

    Zhai, Yueming; DuChene, Joseph S.; Wang, Yi-Chung; Qiu, Jingjing; Johnston-Peck, Aaron C.; You, Bo; Guo, Wenxiao; DiCiaccio, Benedetto; Qian, Kun; Zhao, Evan W.; Ooi, Frances; Hu, Dehong; Su, Dong; Stach, Eric A.; Zhu, Zihua; Wei, Wei David

    2016-07-04

    After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. In this paper, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different from its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. Finally, these insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.

  4. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis

    SciTech Connect

    Zhai, Yueming; DuChene, Joseph S.; Wang, Yi-Chung; Qiu, Jingjing; Johnston-Peck, Aaron C.; You, Bo; Guo, Wenxiao; DiCiaccio, Benedetto; Qian, Kun; Zhao, Evan W.; Ooi, Frances; Hu, Dehong; Su, Dong; Stach, Eric A.; Zhu, Zihua; Wei, Wei David

    2016-07-04

    After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. In this paper, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different from its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. Finally, these insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.

  5. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis

    NASA Astrophysics Data System (ADS)

    Zhai, Yueming; Duchene, Joseph S.; Wang, Yi-Chung; Qiu, Jingjing; Johnston-Peck, Aaron C.; You, Bo; Guo, Wenxiao; Diciaccio, Benedetto; Qian, Kun; Zhao, Evan W.; Ooi, Frances; Hu, Dehong; Su, Dong; Stach, Eric A.; Zhu, Zihua; Wei, Wei David

    2016-08-01

    After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. Herein, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different from its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. These insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.

  6. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis.

    PubMed

    Zhai, Yueming; DuChene, Joseph S; Wang, Yi-Chung; Qiu, Jingjing; Johnston-Peck, Aaron C; You, Bo; Guo, Wenxiao; DiCiaccio, Benedetto; Qian, Kun; Zhao, Evan W; Ooi, Frances; Hu, Dehong; Su, Dong; Stach, Eric A; Zhu, Zihua; Wei, Wei David

    2016-08-01

    After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. Herein, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different from its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. These insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.

  7. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis

    SciTech Connect

    Zhai, Yueming; DuChene, Joseph S.; Wang, Yi-Chung; Qiu, Jingjing; Johnston-Peck, Aaron C.; You, Bo; Guo, Wenxiao; DiCiaccio, Benedetto; Qian, Kun; Zhao, Evan W.; Ooi, Frances; Hu, Dehong; Su, Dong; Stach, Eric A.; Zhu, Zihua; Wei, Wei David

    2016-07-04

    After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. Herein, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally diferent from its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. These insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.

  8. Characterization of ultrafine Ag-Cu powders

    SciTech Connect

    Li, Z.Q.; Chen, T.B

    2002-08-15

    Supersaturated, ultrafine Ag-Cu powders prepared by arc discharge method were characterized by X-ray diffractometry and transmission electron microscopy. Peak shape analysis and Rietveld refinement of the X-ray diffraction pattern were applied to better refine the structure of the Ag-Cu powders. Experimental results indicate that the as-prepared Ag-Cu powders are mainly comprised of three fcc phases with different Ag contents. Besides, small particles with low-symmetry structures were also observed in the specimen. The formation of the Ag-Cu powders is discussed.

  9. Composite materials for medical purposes based on polyvinylpyrrolidone modified with ketoprofen and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Nikitin, L. N.; Vasil'Kov, A. Yu.; Banchero, M.; Manna, L.; Naumkin, A. V.; Podshibikhin, V. L.; Abramchuk, S. S.; Buzin, M. I.; Korlyukov, A. A.; Khokhlov, A. R.

    2011-07-01

    A method for obtaining composite medical materials based on polyvinylpyrrolidone (PVP K15) modified with ketoprofen in a medium of supercritical carbon dioxide and with Ag nanoparticles prepared by metal vapor synthesis is developed. A system in which ketoprofen and Ag nanoparticles with an average size of ˜16 nm are uniformly distributed over the bulk of PVP is obtained. It is found that the yield of ketoprofen from the composite in the physiological solution is higher than that for an analogous system obtained by mechanical mixing of the components.

  10. The research of far infrared flame retardant polyester staple fiber

    NASA Astrophysics Data System (ADS)

    Li, Qingshan; Zhang, Kaijun; Luo, Jinqong; Li, Ji’an; Jiang, Jian; Liang, Qianqian; Jin, Yongxia; Liu, Bing

    2017-01-01

    Far infrared flame retardant slices was prepared, fiber with far infrared flame retardant composite function was also prepared by the method of melt spinning. Scanning electron microscopy (SEM) was used to observe the fibrous microscopic structure. In the SEM images, functional ultrafine powder particle size and distribution in the fiber were visible. The results show that the functional ultrafine powder is evenly distributed on the fibrous surface, which is closely combined with fiber, and the far infrared emissivity is F, which is more than (8 to 14 microns) 0.88. Far infrared flame retardant polyester fiber has not only good flame retardant, but also environmental health effect: releasing negative ions and launch far-infrared, which shows wide application prospect. The fiber was processed into far-infrared flame retardant electric blanket, whose functional indicators and flame retardant properties are not reduced.

  11. CARDIOVASCULAR EFFECTS OF ULTRAFINE CARBON PARTICLES IN HYPERTENSIVE RATS (SHR)

    EPA Science Inventory

    Rationale: Epidemiological evidence suggests that ultrafine particles are associated with adverse cardiovascular effects, specifically in elderly individuals with preexisting cardiovascular disease. The objective of this study was (i) to assess cardiopulmonary responses in adult ...

  12. Ultrafine particle measurement and related EPA research studies

    EPA Science Inventory

    Webinar slides to present information on measuring ultrafine particles at the request of the 2013 MARAMA Monitoring Committee. The talk covers near-road monitoring, instrument intercomparison, and general overview of UFP monitoring technology.

  13. ULTRAFINE PARTICLE DEPOSITION IN HEALTHY SUBJECTS VS. PATIENTS WTH COPD

    EPA Science Inventory

    Individuals affected with chronic obstructive pulmonary disease (COPD) have increased susceptibility to adverse health effects from exposure to particulate air pollution. The dosimetry of ultrafine aerosols (diameter # 0.1 :m) is not well characterized in the healthy or diseas...

  14. CARDIOVASCULAR EFFECTS OF ULTRAFINE CARBON PARTICLES IN HYPERTENSIVE RATS (SHR)

    EPA Science Inventory

    Rationale: Epidemiological evidence suggests that ultrafine particles are associated with adverse cardiovascular effects, specifically in elderly individuals with preexisting cardiovascular disease. The objective of this study was (i) to assess cardiopulmonary responses in adult ...

  15. ULTRAFINE PARTICLE DEPOSITION IN HEALTHY SUBJECTS VS. PATIENTS WTH COPD

    EPA Science Inventory

    Individuals affected with chronic obstructive pulmonary disease (COPD) have increased susceptibility to adverse health effects from exposure to particulate air pollution. The dosimetry of ultrafine aerosols (diameter # 0.1 :m) is not well characterized in the healthy or diseas...

  16. Ultrafine particle measurement and related EPA research studies

    EPA Science Inventory

    Webinar slides to present information on measuring ultrafine particles at the request of the 2013 MARAMA Monitoring Committee. The talk covers near-road monitoring, instrument intercomparison, and general overview of UFP monitoring technology.

  17. The relationship between the glass transition temperature and water vapor absorption by poly(vinylpyrrolidone)

    PubMed

    Oksanen, C A; Zografi, G

    1990-06-01

    Water associated with amorphous solids is known to affect significantly the physical and chemical properties of dosage form ingredients. An analysis of water vapor absorption isotherms of poly(vinylpyrrolidone) measured in this and other laboratories, over the range -40 to 60 degrees C, along with the measurement of the glass transition temperature of poly(vinylpyrrolidone) as a function of water content is reported. It is observed that the amount of water vapor absorbed at a particular relative humidity increases with decreasing temperature, along with a significant change in the shape of the isotherm. It is also shown that at any temperature, along with a significant change in the shape of the isotherm. It is also shown that at any temperature the state of the solid changes from a highly viscous glass to a much less viscous rubber in the region where absorbed water appears to enter into a "solvent-like" state. Further, the apparent "tightly bound" state, observed at low relative humidities, appears to exist when the polymer enters into a very viscous glassy state. It is concluded that the apparent states of water and polymer are interrelated in a dynamic manner and, therefore, that they cannot be uncoupled by simple thermodynamic analyses based only on a water-binding model.

  18. Characterization and solubility study of norfloxacin-polyethylene glycol, polyvinylpyrrolidone and carbopol 974p solid dispersions.

    PubMed

    Gorajana, Adinarayana; Kit, Wong W; Dua, Kamal

    2015-01-01

    Norfloxacin has a low aqueous solubility which leads to poor dissolution. Keeping this fact in mind the purpose of the present study is to formulate and evaluate norfloxacin solid dispersion. Solid dispersions were prepared using hydrophilic carriers like polyethylene glycol (PEG) 4000, polyvinylpyrrolidone (PVP) k30 and carbopol 974pNF (CP) in various ratios using solvent evaporation technique. These formulations were evaluated using solubility studies, dissolution studies; Fourier transmitted infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetery (DSC). The influence of polymer type and drug to polymer ratio on the solubility and dissolution rate of norfloxacin was also evaluated. FTIR analysis showed no interaction of all three polymers with norfloxacin. The results from XRD and DSC analyses of the solid dispersion preparations showed that norfloxacin existsin its amorphous form. Among the Norfloxacin: PEG solid dispersions, Norfloxacin: PEG 1:14 ratio showed the highest dissolution rate at pH 6.8. For norfloxacin: PVP solid dispersions, norfloxacin: PVP 1:10 ratio showed the highest dissolution rate at pH 6.8. For Norfloxacin: CP solid dispersions, norfloxacin: P 1:2 ratio showed the highest dissolution rate at pH 6.8. The solid dispersion of norfloxacin with polyethylene glycol (PEG) 4000, polyvinylpyrrolidone (PVP) k30 and carbopol 974p NF (CP), lends an ample credence for better therapeutic efficacy.

  19. Reverse Taylor Tests on Ultrafine Grained Copper

    SciTech Connect

    Mishra, A.; Meyers, M. A.; Martin, M.; Thadhani, N. N.; Gregori, F.; Asaro, R. J.

    2006-07-28

    Reverse Taylor impact tests have been carried out on ultrafine grained copper processed by Equal Channel Angular Pressing (ECAP). Tests were conducted on an as-received OFHC Cu rod and specimens that had undergone sequential ECAP passes (2 and 8). The average grain size ranged from 30 {mu}m for the initial sample to less than 0.5 {mu}m for the 8-pass samples. The dynamic deformation states of the samples, captured by high speed digital photography were compared with computer simulations run in AUTODYN-2D using the Johnson-Cook constitutive equation with constants obtained from stress-strain data and by fitting to an experimentally measured free surface velocity trace. The constitutive response of copper of varying grain sizes was obtained through quasistatic and dynamic mechanical tests and incorporation into constitutive models.

  20. Filtration of ultrafine metallic particles in industry.

    PubMed

    Bémer, D; Morele, Y; Régnier, R

    2015-01-01

    Thermal metal spraying, metal cutting and arc welding processes generate large quantities of ultrafine particles that cause the irreversible clogging of industrial filters. The aim of the study performed was to identify the causes of the clogging of cartridge filters and investigate other paths for cleaning them. This study required the development of a test bench capable of reproducing a thermal spraying process to test the performances of different filtration techniques. This test instrument first, permitted the precise characterization of the aerosol generated by the process and, second, defined the clogging and cleaning conditions for filters. Several parameters were tested: the type of filter, online and off-line cleaning, pre-coating, cleaning by jets of high-speed compressed air via a probe.

  1. Spectral and Luminescence Properties of Sols and Coatings Containing CdS/ZnS QDs and Polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Evstrop'ev, K. S.; Gatchin, Yu. A.; Evstrop'ev, S. K.; Dukel'skii, K. V.; Kislyakov, I. M.; Pegasova, N. A.; Bagrov, I. V.

    2016-03-01

    Spectral and luminescence properties of sols and composition coatings containing cadmium and zinc sulfides and high-molecular polyvinylpyrrolidone have been studied. It is shown that the absorption spectra of colloidal solutions in the UV spectral range are determined by the quantum-confinement effect and exhibit a dependence of the absorption edge on the size of cadmium sulfide nanocrystals. The size of forming particles of metal sulfides has been found to decrease with an increase in the relative content of polyvinylpyrrolidone. It is shown that the order of mixing of the initial components when synthesizing sols also determines the difference in the size of forming particles and their spectral properties.

  2. Ultrafine ash aerosols from coal combustion: Characterization and health effects

    SciTech Connect

    William P. Linak; Jong-Ik Yoo; Shirley J. Wasson; Weiyan Zhu; Jost O.L. Wendt; Frank E. Huggins; Yuanzhi Chen; Naresh Shah; Gerald P. Huffman; M. Ian Gilmour

    2007-07-01

    Ultrafine coal fly-ash particles withdiameters less than 0.5 {mu}m typically comprise less than 1% of the total fly-ash mass. This paper reports research focused on both characterization and health effects of primary ultrafine coal ash aerosols alone. Ultrafine, fine, and coarse ash particles were segregated and collected from a coal burned in a 20 kW laboratory combustor and two additional coals burned in an externally heated drop tube furnace. Extracted samples from both combustors were characterized by transmission electron microscopy (TEM), wavelength dispersive X-ray fluorescence(WD-XRF) spectroscopy, Moessbauer spectroscopy, and X-ray absorption fine structure (XAFS) spectroscopy. Pulmonary inflammation was characterized by albumin concentrations in mouse lung lavage fluid after instillation of collected particles in saline solutions and a single direct inhalation exposure. Results indicate that coal ultrafine ash sometimes contains significant amounts of carbon, probably soot originating from coal tar volatiles, depending on coal type and combustion device. Surprisingly, XAFS results revealed the presence of chromium and thiophenic sulfur in the ultrafine ash particles. The instillation results suggested potential lung injury, the severity of which could be correlated with the carbon (soot) content of the ultrafines. This increased toxicity is consistent with theories in which the presence of carbon mediates transition metal (i.e., Fe) complexes, as revealed in this work by TEM and XAFS spectroscopy, promoting reactive oxygenspecies, oxidation-reduction cycling, and oxidative stress. 24 refs., 7 figs.

  3. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/ polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil

    USDA-ARS?s Scientific Manuscript database

    In this study poly(lactic acid)(PLA) and polyvinylpyrrolidone (PVP) micro and nanofibers mats loaded with copaiba (Copaifera sp.) oil were produced by solution blow spinning (SBS). The copaiba (Copaifera sp.) oil was characterized by gas chromatography (GC). Neat PLA and four PLA/ PVP blends contain...

  4. Scanning-free BOTDA based on ultra-fine digital optical frequency comb.

    PubMed

    Jin, Chao; Guo, Nan; Feng, Yuanhua; Wang, Liang; Liang, Hao; Li, Jianping; Li, Zhaohui; Yu, Changyuan; Lu, Chao

    2015-02-23

    We realize a scanning-free Brillouin optical time domain analyzer (BOTDA) based on an ultra-fine digital optical frequency comb (DOFC) with 1.95MHz frequency spacing and 2GHz bandwidth. The DOFC can be used to reconstruct the Brillouin gain spectrum (BGS) and locate the Brillouin frequency shift (BFS) without frequency scanning and thus can improve the measurement speed about 100 times compared with the conventional BOTDA. This scanning-free BOTDA scheme has also been demonstrated experimentally with 51.2m spatial resolution over 10km standard single mode fiber (SSMF) and with resolution of 1.5°C for temperature and 43.3με for strain measurement respectively.

  5. Effect of chronic douching with polyvinylpyrrolidone-iodine on iodine absorption and thyroid function

    SciTech Connect

    Safran, M.; Braverman, L.E.

    1982-07-01

    Daily vaginal douching with polyvinylpyrrolidone-iodine in 12 euthyroid volunteers for 14 days resulted in a significant increase in serum total iodine concentration and urine iodine excretion. The increase in serum total iodine was associated with a marked decrease in 24-hour /sup 123/I uptake by the thyroid and a small but significant increase in serum thyrotropin (TSH) concentration. However, values for serum TSH never rose above the normal range. No significant changes in serum thyroxine (T4), free T4 index (FTI), or triiodothyronine concentrations were observed, although serum T4 and FTI did decrease slightly during treatment. The findings suggest that iodine is absorbed across the vaginal mucosa and that the subsequent increase in serum total iodine does induce subtle increases in serum TSH concentration. There was no evidence, however, of overt hypothyroidism in these euthyroid women.

  6. Porous microspheres of manganese-cerium mixed oxides by a polyvinylpyrrolidone assisted solvothermal method

    NASA Astrophysics Data System (ADS)

    Schmit, F.; Bois, L.; Chiriac, R.; Toche, F.; Chassagneux, F.; Descorme, C.; Besson, M.; Khrouz, L.

    2017-04-01

    Mixed cerium manganese oxides were synthesized using a polyvinylpyrrolidone (PVP) assisted solvothermal method. Materials obtained after calcination at 400 °C were characterized by X-ray diffraction, scanning and transmission electron microscopies, electron paramagnetic resonance (EPR), Raman spectroscopy, thermal analysis and nitrogen adsorption/desorption isotherms. The influence of the synthesis parameters on the oxide structure, such as the Mn:Ce ratio or the amount of PVP, was discussed. Micrometric spheres of mixed Mn-Ce oxides, resulting from the aggregation of 100 nm porous snowflakes, were successfully synthesized. These snowflakes were formed from the aggregation of smaller oriented crystallites (size 4 nm). The hydrothermal stability of these materials was also investigated.

  7. Oxidation of polyvinylpyrrolidone and an ethoxylate surfactant in phase-inversion wastewater.

    PubMed

    Loraine, Gregory A

    2008-04-01

    In this paper, components of an industrial wastewater that cause operational problems during biological treatment were oxidized by UV light and hydrogen peroxide (UV/H202). Preoxidation of wastewater was shown to remove polyvinylpyrrolidone (PVP) and ethoxylate surfactant and increase overall biodegradability. Several UV intensities and hydrogen peroxide concentrations were tested to find optimal conditions for the complete depolymerization of PVP in a synthetic wastewater composed of high concentrations of hydroxyl radical scavengers. To compare treatment options, absorption isotherms for PVP on granular activated carbon (GAC) in water and in the synthetic phase-inversion wastewater matrix were determined. The data were extrapolated to estimate the cost of using UV/H2O2, GAC, or off-site treatment. It was found that UV/H2O2 pretreatment was economically viable. Incomplete oxidation of an ethoxylate surfactant increased foaming tendency and foam stability; however, extended oxidation (> 90 minutes) destroyed the foam.

  8. Comparison between polyvinylpyrrolidone and silica nanoparticles as carriers for indomethacin in a solid state dispersion.

    PubMed

    Watanabe, Tomoyuki; Hasegawa, Susumu; Wakiyama, Naoki; Kusai, Akira; Senna, Mamoru

    2003-01-02

    States of interaction between indomethacin (IM) and polyvinylpyrrolidone (PVP) in an amorphous solid dispersion prepared by co-grinding were compared with those between IM and silica nanoparticles. Changes in the carbon chemical states of the solid dispersions were evaluated based on the chemical shift in the 13C-CP/MAS-NMR. Hydrogen bonds between the amide carbonyl of PVP particles and the carboxyl groups of IM molecules were formed by co-grinding. Despite the wide difference in carrier properties, the apparent equilibrium solubility (AES) of IM in the ground IM-PVP mixture was predicted by solid state NMR on the basis of the relationship previously established for IM with SiO(2). This indicates that AES is affected solely by the state of IM, irrespective of the carrier species, and despite carrier-dependent chemical interactions.

  9. Fluorescence Sensing of Nitrite Ions on Polyvinylpyrrolidone/Zinc Oxide Composites Prepared by Impregnation Method

    NASA Astrophysics Data System (ADS)

    Yuliati, L.; So'ad, S. Z. M.; Alim, N. S.; Lintang, H. O.

    2017-05-01

    A series of polyvinylpyrrolidone/zinc oxide (PVP/ZnO) composites with different loading amounts of PVP was prepared by an impregnation method. Successful formation of the composites was analyzed by the Fourier transform infrared (FTIR), diffuse reflectance ultraviolet-visible (DR UV-Vis) and fluorescence spectroscopies. Prepared composites were then further tested as fluorescence sensors by conducting quenching studies in the presence of nitrite ions (NO2 -). Among the prepared composites, the ZnO with 1% PVP exhibited the highest sensing performance for the NO2 -detection (Ksv = 0.07 µM-1). The efficiency of the composite was ca. 1.7 and 1.4 times higher than the bare ZnO and the best composite prepared by the physical mixing method, respectively. These results suggested that impregnation method is a suitable method to prepare the PVP/ZnO composites as fluorescence sensor for the NO2 -detection.

  10. Coaxial electrospinning of liquid crystal-containing poly(vinylpyrrolidone) microfibres

    PubMed Central

    Enz, Eva; Baumeister, Ute

    2009-01-01

    Summary With the relatively new technique of coaxial electrospinning, composite fibres of poly(vinylpyrrolidone) with the liquid crystal 4-cyano-4′-octylbiphenyl in its smectic phase as core material could be produced. The encapsulation leads to remarkable confinement effects on the liquid crystal, inducing changes in its phase sequence. We conducted a series of experiments to determine the effect of varying the relative flow rates of inner and outer fluid as well as of the applied voltage during electrospinning on these composite fibres. From X-ray diffraction patterns of oriented fibres we could also establish the orientation of the liquid crystal molecules to be parallel to the fibre axis, a result unexpected when considering the viscosity anisotropy of the liquid crystal kept in its smectic phase during electrospinning. PMID:20300504

  11. Solid-State Synthesis of Silver Nanoparticles at Room Temperature: Poly(vinylpyrrolidone) as a Tool.

    PubMed

    Debnath, Dipen; Kim, Chorong; Kim, Sung H; Geckeler, Kurt E

    2010-03-16

    Silver nanoparticles have been used for a long time and recently various methods have been additionally developed for their production. Here we report for the first time a solid-state high-speed vibration milling method for the synthesis of silver nanoparticles, in which poly(vinylpyrrolidone) is used for the reduction of the silver salt. The synthesis is performed at room temperature and no surfactant to direct the anisotropic growth of the nanoparticles is required. The formation of the nanoparticles was studied by UV-Visible spectroscopy, transmission electron microscopy, and powder X-ray diffraction techniques. The nanoparticles synthesized were found to be uniform in size and shape with an average diameter of less than 5 nm. In addition, the antimicrobial activity of these silver nanoparticles was investigated against Escherichia coli and found to be positive.

  12. Regulating rheological properties of binding medium for additive technologies using polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Zemtsov, A. E.; Golunov, A. V.; Golunova, A. S.

    2017-08-01

    The paper considers the process of discreet element (droplet) formation in additive manufacturing. The urgency of the research is proved by using the inkjet method while forming fine powders in additive technologies. The binder rheological properties determine the formation accuracy for a discrete element of a three-dimensional part. The article suggests indicators that allow an operative assessment of a binder suitability for usage in the fine powder formation process. As a result of the research, the geometric parameters of the jetting apparatus forming the powder according to the Binder Jetting technology were aligned with the compositions studied. A comparative analysis of the known binders rheological properties with the prepared ones is carried out. The use of polyvinylpyrrolidone is proposed to regulate the rheological properties of binding materials used in additive technologies.

  13. In vitro corrosion of dental Au-based casting alloys in polyvinylpyrrolidone-iodine solution.

    PubMed

    Takasusuki, Norio; Ida, Yusuke; Hirose, Yukito; Ochi, Morio; Endo, Kazuhiko

    2013-01-01

    The corrosion and tarnish behaviors of two Au-based casting alloys (ISO type 1 and type 4 Au alloys) and their constituent pure metals, Au, Ag, Cu, Pt, and Pd in a polyvinylpyrrolidone-iodine solution were examined. The two Au alloys actively corroded, and the main anodic reaction for both was dissolution of Au as AuI₂(-). The amount of Au released from the ISO type 1 Au alloy was significantly larger than that from the ISO type 4 Au alloy (P<0.05). Visible light spectrophotometry revealed that the type 1 alloy exhibited higher susceptibility to tarnishing than the type 4 alloy. The corrosion forms of the two Au alloys were found to be completely different, i.e., the type 1 alloy exhibited the corrosion attack over the entire exposed surface with a little irregularity whereas the type 4 alloy exhibited typical intergranular corrosion, which was caused by local cells produced by segregation of Pd and Pt.

  14. In vitro corrosion of dental Ag-based alloys in polyvinylpyrrolidone iodine solution.

    PubMed

    Ochi, Morio; Endo, Kazuhiko; Ohno, Hiroki; Takasusuki, Norio; Matsubara, Hideki; Maida, Takeo

    2005-09-01

    The corrosion and tarnish behaviors of three Ag-based alloys (Ag-Pd-Cu-Au alloy, Ag-In alloy, and Ag-Sn-Zn alloy) in polyvinylpyrrolidone iodine (povidone-iodine) solution were examined. The degree of tarnish was evaluated by visible-ray spectrocolorimetry. Corrosion potential measurements and analyses of corrosion products by X-ray diffractometry were carried out to elucidate the corrosion mechanism. The corrosion rate of the three Ag-based alloys in povidone-iodine solution at its practical concentration used as a gargle solution was so fast that the alloys tarnished within 10 seconds of immersion with the formation of AgI. Thermodynamic consideration and the results of surface analysis by X-ray diffractometry revealed that the main anodic and cathodic reactions were Ag + I(-)-->AgI + e- and I2 + 2e(-)-->2I- respectively.

  15. Polyvinylpyrrolidone (PVP)-capped Pt Nanocubes with Superior Peroxidase-like Activity

    SciTech Connect

    Ye, Haihang; Liu, Y.; chhabra, ashima; lilla, emily; xia, xiaohu

    2017-01-01

    Peroxidase mimics of inorganic nanoparticles are expected to circumvent the inherent issues of natural peroxidases, providing enhanced performance in important applications such as diagnosis and imaging. Despite the report of a variety of peroxidase mimics in the past decade, very limited progress has been made on improving their catalytic efficiency. The catalytic efficiencies of most previously reported mimics are only up to one order of magnitude higher than those of natural peroxidases. In this work, we demonstrate a type of highly efficient peroxidase mimic – polyvinylpyrrolidone (PVP)-capped Pt nanocubes of sub-10 nm in size. These PVP-capped Pt cubes are ~200-fold more active than the natural counterparts and exhibit a record-high specific catalytic efficiency. In addition to the superior efficiency, the new mimic shows several other promising features, including excellent stabilities, well-controlled uniformity in both size and shape, controllable sizes, and facile and scalable production.

  16. Sensitive and rapid determination of quinoline yellow in drinks using polyvinylpyrrolidone-modified electrode.

    PubMed

    Zhang, Shenghui; Shi, Zhen; Wang, Jinshou

    2015-04-15

    A novel electrochemical sensor using polyvinylpyrrolidone (PVP)-modified carbon paste electrode was developed for the sensitive and rapid determination of quinoline yellow. In 0.1M, pH 6.5 phosphate buffer, an irreversible oxidation wave at 0.97 V was observed for quinoline yellow. PVP exhibited strong accumulation ability to quinoline yellow, and consequently increased the oxidation peak current of quinoline yellow remarkably. The effects of pH value, amount of PVP, accumulation potential and time were studied on the oxidation signals of quinoline yellow. The linear range was from 5×10(-8) to 1×10(-6) M, and the limit of detection was evaluated to be 2.7×10(-8) M. It was used to detect quinoline yellow in different drink samples, and the results consisted with the values that obtained by high-performance liquid chromatography. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Pulmonary response to inhaled Kevlar aramid synthetic fibers in rats.

    PubMed

    Lee, K P; Kelly, D P; Kennedy, G L

    1983-11-01

    Groups of male rats were exposed to specially prepared ultrafine Kevlar pulp fibers (du Pont's registered trademark for certain aramid fibers) at atmospheric concentrations of either 0.1, 0.5, 3.0, or 18 mg/m3 for 2 weeks. Rats were killed at 0 and 2 weeks and 3 and 6 months postexposure (PE) except the rats exposed to 18 mg/m3, which were killed 0, 4, and 14 days and 1, 3, and 6 months PE. Another group of male rats was exposed to 18 mg/m3 (respirable dust approximately 2.5 mg/m3) of commercial Kevlar fibers for 2 weeks and were killed at 0 and 2 weeks and 3 and 6 months PE. Inhaled ultrafine Kevlar fibers were mostly phagocytized by alveolar macrophages (dust cells) in the alveolar ducts and adjoining alveoli after exposure to either 0.1 or 0.5 micrograms/m3. Most dust cells had disappeared and lungs showed a normal appearance throughout 6 months PE. The pulmonary response almost satisfied the biological criteria for a nuisance dust. Rats exposed to 3 mg/m3 ultrafine Kevlar fibers revealed occasional patchy thickening of alveolar ducts with dust cells and inflammatory cells but with no collagen fibers deposited throughout 6 months PE. After exposure to 18 mg/m3 ultrafine Kevlar, the respiratory bronchioles, alveolar ducts, and adjoining alveoli showed granulomatous lesions with dust cells by 2 weeks PE. The granulomatous lesions converted to patchy fibrotic thickening with dust cells after 1 month PE. The fibrotic lesions were markedly reduced in cellularity, size, and numbers from 3 to 6 months PE but revealed networks of reticulum fibers with slight collagen fiber deposition.

  18. Cryopreservation of Indian red jungle fowl (Gallus gallus murghi) semen with polyvinylpyrrolidone.

    PubMed

    Rakha, Bushra Allah; Ansari, Muhammad Sajjad; Akhter, Shamim; Zafar, Zartasha; Hussain, Iftikhar; Santiago-Moreno, Julian; Blesbois, Elisabeth

    2017-10-01

    The Indian red jungle fowl is a sub-species of the genus Gallus native to South Asia; facing high risk of extinction in its native habitat. During cryopreservation, permeable cryoprotectants like glycerol are usually employed and we previously showed encouraging results with 20% glycerol. Because bird spermatozoa contain very little intracellular water, the possibility of replacing an internal cryoprotectant by an external one is opened. In the present study, we tested the replacement of internal cryoprotectant glycerol by the external cryoprotectant Polyvinylpyrrolidone (PVP). PVP is a non-permeable cryoprotectant and keeps the sperm in glassy state both in cooling and warming stages without making ice crystallization within the sperm cell. We evaluated the effect of various levels of polyvinylpyrrolidone (PVP) on Indian red jungle fowl semen quality and fertility outcomes. The qualifying semen ejaculates collected from eight mature cocks were pooled, divided into five aliquots, diluted (37 °C) with red fowl semen extender having PVP [0% (control) 4% (w/v), 6% (w/v), 8% (w/v) and 10% (w/v)]. Diluted semen was cryopreserved and stored in liquid nitrogen. The whole experiment was repeated/replicated for five times independently. Sperm motility, plasma membrane integrity, viability and acrosome integrity were recorded highest (P < 0.05) with 6% PVP at post-dilution, cooling, equilibration and freeze-thawing. Higher (P < 0.05) no. of fertile eggs, fertility, no. of hatched chicks, percent hatch and hatchability was recorded with 6% PVP compared to control. It is concluded that 6% PVP maintained better post-taw quality and fertility of Indian red jungle fowl spermatozoa than glycerol and can be used in routine practice avoiding the contraceptive effects of glycerol. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Measurements of hygroscopicity and volatility of atmospheric ultrafine particles during ultrafine particle formation events at urban, industrial, and coastal sites.

    PubMed

    Park, Kihong; Kim, Jae-Seok; Park, Seung Ho

    2009-09-01

    The tandem differential mobility analyzer (TDMA) technique was applied to determine the hygroscopicity and volatility of atmospheric ultrafine particles in three sites of urban Gwangju, industrial Yeosu, and coastal Taean in South Korea. A database for the hygroscopicity and volatility of the known compositions and sizes of the laboratory-generated particles wasfirst constructed for comparison with the measured properties of atmospheric ultrafine particles. Distinct differences in hygroscopicity and volatility of atmospheric ultrafine particles werefound between a "photochemical event" and a "combustion event" as well as among different sites. At the Gwangju site, ultrafine particles in the "photochemical event" were determined to be more hygroscopic (growth factor (GF) = 1.05-1.33) than those in the "combustion event" (GF = 1.02-1.12), but their hygroscopicity was not as high as pure ammonium sulfate or sulfuric acid particles in the laboratory-generated database, suggesting they were internally mixed with less soluble species. Ultrafine particles in the "photochemical event" at the Yeosu site, having a variety of SO2, CO, and VOC emission sources, were more hygroscopic (GF = 1.34-1.60) and had a higher amount of volatile species (47-75%)than those observed at the Gwangju site. Ultrafine particle concentration at the Taean site increased during daylight hours with low tide, having a higher GF (1.34-1.80) than the Gwangju site and a lower amount of volatile species (17-34%) than the Yeosu site. Occasionally ultrafine particles were externally mixed according to their hygroscopicity and volatility, and TEM/EDS data showed that each type of particle had a distinct morphology and elemental composition.

  20. Preparation of an Ultrafine Rebamipide Ophthalmic Suspension with High Transparency.

    PubMed

    Matsuda, Takakuni; Hiraoka, Shogo; Urashima, Hiroki; Ogura, Ako; Ishida, Tatsuhiro

    2017-01-01

    A 2% commercially available, milky-white, rebamipide micro-particle suspension is used to treat dry eyes, and it causes short-term blurring of the patient's vision. In the current study, to improve the transparency of a rebamipide suspension, we attempted to obtain a clear rebamipide suspension by transforming the rebamipide particles to an ultrafine state. In the initial few efforts, various rebamipide suspensions were prepared using a neutralizing crystallization method with additives, but the suspensions retained their opaque quality. However, as a consequence of several critical improvements in the neutralizing crystallization methods such as selection of additives for crystallization, process parameters during crystallization, the dispersion method, and dialysis, we obtained an ultrafine rebamipide suspension (2%) that was highly transparent (transmittance at 640 nm: 59%). The particle size and transparency demonstrated the fewest level of changes at 25°C after 3 years, compared to initial levels. During that period, no obvious particle sedimentation was observed. The administration of this ultrafine rebamipide suspension (2%) increased the conjunctival mucin, which was comparable to the commercially available micro-particle suspension (2%). The corneal and conjunctival concentration of rebamipide following ocular administration of the ultrafine suspension was slightly higher than that of the micro-particle suspension. The ultrafine rebamipide suspension (eye-drop formulation) with a highly transparent ophthalmic clearness should improve a patient's QOL by preventing even a shortened period of blurred vision.

  1. Preparation of ultrafine fenofibrate powder by solidification process from emulsion.

    PubMed

    Huang, Qiao-Ping; Wang, Jie-Xin; Zhang, Zhi-Bing; Shen, Zhi-Gang; Chen, Jian-Feng; Yun, Jimmy

    2009-02-23

    The solidification process from emulsion, which consisted of emulsifier, water and molten drug as oil phase without use of any organic solvent, was firstly employed to prepare ultrafine fenofibrate (FF) powder. The effects of stirring speed and volume ratios of hot emulsion to cold water on the particle size and morphology were discussed as well as the impacts of different emulsifiers on emulsion. The produced ultrafine powder was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, specific surface area analysis and a dissolution test. XRD patterns and FT-IR spectra showed that the ultrafine FF was crystalline powder with the structure and the components similar to those of bulk drug. The product had a mean particle size of about 3 microm with a narrow distribution from 1 microm to 5 microm. The specific surface area reached up to 6.23 m(2)/g, which was about 25 folds as large as that of bulk FF. In the dissolution tests, about 96.1% of ultrafine FF was dissolved after 120 min, while there was only 38.1% of bulk drug dissolved, proving that the dissolution property of ultrafine FF was significantly improved when compared to commercial drug.

  2. The sintering behavior of ultrafine alumina particles

    SciTech Connect

    Bonevich, J.E.; Marks, L.D. )

    1992-06-01

    Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic ({gamma}) and orthorhombic ({delta}) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the closed-packed {l brace}111{r brace} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure locked-in' during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically-sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region.

  3. Fabrication of CH₃NH₃PbI₃/PVP Composite Fibers via Electrospinning and Deposition.

    PubMed

    Chao, Li-Min; Tai, Ting-Yu; Chen, Yueh-Ying; Lin, Pei-Ying; Fu, Yaw-Shyan

    2015-08-21

    In our study, one-dimensional PbI₂/polyvinylpyrrolidone (PVP) composition fibers have been prepared by using PbI₂ and PVP as precursors dissolved in N,N-dimethylformamide via a electrospinning process. Dipping the fibers into CH₃NH₃I solution changed its color, indicating the formation of CH₃NH₃PbI₃, to obtain CH₃NH₃PbI₃/PVP composite fibers. The structure, morphology and composition of the all as-prepared fibers were characterized by using X-ray diffraction and scanning electron microscopy.

  4. Thermally stable hydrophobicity in electrospun silica/polydimethylsiloxane hybrid fibers

    NASA Astrophysics Data System (ADS)

    Wei, Zhonglin; Li, Jianjun; Wang, Chao; Cao, Jungang; Yao, Yongtao; Lu, Haibao; Li, Yibin; He, Xiaodong

    2017-01-01

    In order to improve practical performances of silica-based inorganic/organic hybrid fibers, silica/polydimethylsiloxane hydrophobic fibers were successfully prepared by electrospinning. Silica sol and polydimethylsiloxane can be mixed homogeneously and become stable precursor solution in dichloromethane, which allows the transformation of silica/polydimethylsiloxane precursor solution into ultrafine fibers. Flame can ignite organic groups in polydimethylsiloxane directly and destroy the hydrophobicity of hybrid fibers, but hydrophobic feature may survive if electrospun hybrid membrane is combined with thin stainless-steel-304 gauze of 150 meshes due to its thermally stable hydrophobicity (>600 °C).

  5. Polymer degradation and ultrafine particles - Potential inhalation hazards for astronauts

    NASA Technical Reports Server (NTRS)

    Ferin, J.; Oberdoerster, G.

    1992-01-01

    To test the hypothesis that exposure to ultrafine particles results in an increased interstiatilization of the particles which is accompanied by an acute pathological inflammation, rats were exposed to titanium dioxide (TiO2) particles by intratracheal instillation and by inhalation. Both acute intratracheal instillation and subchronic inhalation studies on rats show that ultrafine TiO2 particles access the pulmonary interstitium to a larger extent than fine particles and that they elicit an inflammatory response as indicated by PMN increase in lavaged cells. The release of ultrafine particles into the air of an enclosed environment from a thermodegradation event or from other sources is a potential hazard for astronauts. Knowing the mechanisms of action is a prerequisite for technical or medical countermeasures.

  6. Investigation of oxidation process of mechanically activated ultrafine iron powders

    NASA Astrophysics Data System (ADS)

    Lysenko, E. N.; Nikolaev, E. V.; Vlasov, V. A.; Zhuravkov, S. P.

    2016-02-01

    The oxidation of mechanically activated ultrafine iron powders was studied using X- ray powder diffraction and thermogravimetric analyzes. The powders with average particles size of 100 nm were made by the electric explosion of wire, and were subjected to mechanical activation in planetary ball mill for 15 and 40 minutes. It was shown that a certain amount of FeO phase is formed during mechanical activation of ultrafine iron powders. According to thermogravimetric analysis, the oxidation process of non-milled ultrafine iron powders is a complex process and occurs in three stages. The preliminary mechanical activation of powders considerably changes the nature of the iron powders oxidation, leads to increasing in the temperature of oxidation onset and shifts the reaction to higher temperatures. For the milled powders, the oxidation is more simple process and occurs in a single step.

  7. Polymer degradation and ultrafine particles - Potential inhalation hazards for astronauts

    NASA Technical Reports Server (NTRS)

    Ferin, J.; Oberdoerster, G.

    1992-01-01

    To test the hypothesis that exposure to ultrafine particles results in an increased interstiatilization of the particles which is accompanied by an acute pathological inflammation, rats were exposed to titanium dioxide (TiO2) particles by intratracheal instillation and by inhalation. Both acute intratracheal instillation and subchronic inhalation studies on rats show that ultrafine TiO2 particles access the pulmonary interstitium to a larger extent than fine particles and that they elicit an inflammatory response as indicated by PMN increase in lavaged cells. The release of ultrafine particles into the air of an enclosed environment from a thermodegradation event or from other sources is a potential hazard for astronauts. Knowing the mechanisms of action is a prerequisite for technical or medical countermeasures.

  8. Theoretical interpretation of abnormal ultrafine-grained material deformation dynamics

    NASA Astrophysics Data System (ADS)

    Borodin, Elijah N.; Mayer, Alexander E.

    2016-02-01

    Some recent experiments with ultrafine-grained metal samples reveal that it has an abnormal mechanical response on the intensive dynamical loading caused by its impact or electron beam irradiations. On the basis of the original plasticity model, which takes into account dislocation slip and grain boundary sliding, we show that this response is usual for such structure. Moreover, our calculations predict an inverse Hall-Petch relation for ultrafine grained metals at extremely high strain rates (above 107 s-1), while the classical low strain rate experiments and molecular dynamic simulations detects such inverse Hall-Petch relation only for nanocrystalline materials. The main outcomes of present work are the described plasticity model and the conclusions that the ultrafine-grained metals (with grains of about 100-200 nm in diameter) has to have maximal dynamic shear strength and it is the most persistent to dynamic spall fracture because of maximal energy dissipation in it.

  9. Electrospun ultrafine fibrous wheat glutenin scaffolds with three-dimensionally random organization and water stability for soft tissue engineering.

    PubMed

    Xu, Helan; Cai, Shaobo; Sellers, Alexander; Yang, Yiqi

    2014-08-20

    Wheat glutenin, the highly crosslinked protein from wheat, was electrospun into scaffolds with ultrafine fibers oriented randomly and evenly in three dimensions to simulate native extracellular matrices of soft tissues. The scaffolds were intrinsically water-stable without using any external crosslinkers and could support proliferation and differentiation of adipose-derived mesenchymal stem cells for soft tissue engineering. Regeneration of soft tissue favored water-stable fibrous protein scaffolds with three-dimensional arrangement and large volumes, which could be difficult to obtain via electrospinning. Wheat glutenin is an intrinsically water-stable protein due to the 2% cysteine in its amino acid composition. In this research, the disulfide crosslinks in wheat glutenin were cleaved while the backbones were preserved. The treated wheat glutenin was dissolved in aqueous solvent with an anionic surfactant and then electrospun into bulky scaffolds composed of ultrafine fibers oriented randomly in three dimensions. The scaffolds could maintain their fibrous structures after incubated in PBS for up to 35 days. In vitro study indicated that the three-dimensional wheat glutenin scaffolds well supported uniform distribution and adipogenic differentiation of adipose derived mesenchymal stem cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Focusing particle concentrator with application to ultrafine particles

    DOEpatents

    Hering, Susanne; Lewis, Gregory; Spielman, Steven R.

    2013-06-11

    Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.

  11. Pelletization studies of ultra-fine clean coal

    SciTech Connect

    Mehta, R.H.; Parekh, B.K.

    1995-10-01

    Handling of fine coal is an importance issue for coal as well as the utility industry. Reconstitution in the form of a pellet or briquette would be desirable if it could be done economically. This paper evaluates the effectiveness of three binders e.g., asphalt-emulsion, corn starch and Brewex, in forming pellets of ultra-fine clean coal. It was fond that asphalt emulsion and corn starch were not effective binders for ultra-fine clean coal, however, Brewex provided excellent quality of pellets, which exceeded all the minimum quality requirements of coal pellets.

  12. Injection with ultra-fine cement into fine sand layer

    SciTech Connect

    Tamura, Masahito; Goto, Toshiyoshi; Ogino, Takuya; Shimizu, Kazunari

    1994-12-31

    In-situ injection test was carried out in fine sand layer with ordinary portland, colloid and ultra-fine cement. Permeability of the sand layer was 10{sup {minus}3} cm/sec. Suspension grout with ordinary portland and colloid cement was impossible to permeate into the sand. However with ultra fine cement small solidified sand was obtained and with ultra-fine cement-waterglass grout, water cement ratio of 0.8 and waterglass concentration of 75%, solidified sand with expected volume can be obtained.

  13. A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone.

    PubMed

    Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2011-04-04

    Formulations containing amorphous active pharmaceutical ingredients (APIs) present great potential to overcome problems of limited bioavailability of poorly soluble APIs. In this paper, we directly compare for the first time spray drying and milling as methods to produce amorphous dispersions for two binary systems (poorly soluble API)/excipient: sulfathiazole (STZ)/polyvinylpyrrolidone (PVP) and sulfadimidine (SDM)/PVP. The coprocessed mixtures were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and intrinsic dissolution tests. PXRD and DSC confirmed that homogeneous glassy solutions (mixture with a single glass transition) of STZ/PVP were obtained for 0.05 ≤ X(PVP) (PVP weight fraction) < 1 by spray drying and for 0.6 ≤ X(PVP) < 1 by milling (at 400 rpm), and homogeneous glassy solutions of SDM/PVP were obtained for 0 < X(PVP) < 1 by spray drying and for 0.7 ≤ X(PVP) < 1 by milling. For these amorphous composites, the value of T(g) for a particular API/PVP ratio did not depend on the processing technique used. Variation of T(g) versus concentration of PVP was monotonic for all the systems and matched values predicted by the Gordon-Taylor equation indicating that there are no strong interactions between the drugs and PVP. The fact that amorphous SDM can be obtained on spray drying but not amorphous STZ could not be anticipated from the thermodynamic driving force of crystallization, but may be due to the lower molecular mobility of amorphous SDM compared to amorphous STZ. The solubility of the crystalline APIs in PVP was determined and the activities of the two APIs were fitted to the Flory-Huggins model. Comparable values of the Flory-Huggins interaction parameter (χ) were determined for the two systems (χ = -1.8 for SDM, χ = -1.5 for STZ) indicating that the two APIs have similar miscibility with PVP. Zones of stability and instability of the amorphous dispersions

  14. Biocompatible and biodegradable ultrafine fibrillar scaffold materials for tissue engineering by facile grafting of L-lactide onto chitosan.

    PubMed

    Skotak, Maciej; Leonov, Alexei P; Larsen, Gustavo; Noriega, Sandra; Subramanian, Anuradha

    2008-07-01

    A chitosan derivative was prepared with good yields using a "one pot" approach by grafting L-lactide oligomers via ring opening polymerization. Side chains are primarily attached to hydroxyl groups located on carbons 3 and 6 of the glucosamine ring, while the amine group remains nonfunctionalized. By increasing the L-lactide to chitosan ratio, side chain length is controlled. This allows the manipulation of the biodegradation rate and hydrophilicity of the tissue engineering scaffold material. This general synthetic route renders functionalized chitosan soluble in a broad range of organic solvents, facilitating formation of ultrafine fibers via electrospinning. Cytotoxicity tests using fibroblasts (L929 cell line) performed on electrospun L-lactide modified chitosan fibers showed that the specimen with the highest molar ratio of L-lactide (1:24) investigated in this study is the most promising material for tissue engineering purposes, while less stable formulations might still find application in drug delivery vehicles.

  15. A new and superior ultrafine cementitious grout

    SciTech Connect

    Ahrens, E.H.

    1997-04-01

    Sealing fractures in nuclear waste repositories concerns all programs investigating deep burial as a means of disposal. Because the most likely mechanism for contaminant migration is by dissolution and movement through groundwater, sealing programs are seeking low-viscosity sealants that are chemically, mineralogically, and physically compatible with the host rock. This paper presents the results of collaborative work directed by Sandia National Laboratories (SNL) and supported by Whiteshell Laboratories, operated by Atomic Energy of Canada, Ltd. The work was undertaken in support of the Waste Isolation Pilot Plant (WIPP), an underground nuclear waste repository located in a salt formation east of Carlsbad, NM. This effort addresses the technology associated with long-term isolation of nuclear waste in a natural salt medium. The work presented is part of the WIPP plugging and sealing program, specifically the development and optimization of an ultrafine cementitious grout that can be injected to lower excessive, strain-induced hydraulic conductivity in the fractured rock termed the Disturbed Rock Zone (DRZ) surrounding underground excavations. Innovative equipment and procedures employed in the laboratory produced a usable cement-based grout; 90% of the particles were smaller than 8 microns and the average particle size was 4 microns. The process involved simultaneous wet pulverization and mixing. The grout was used for a successful in situ test underground at the WIPP. Injection of grout sealed microfractures as small as 6 microns (and in one rare instance, 3 microns) and lowered the gas transmissivity of the DRZ by up to three orders of magnitude. Following the WIPP test, additional work produced an improved version of the grout containing particles 90% smaller than 5 microns and averaging 2 microns. This grout will be produced in dry form, ready for the mixer.

  16. A chemical analyzer for charged ultrafine particles

    NASA Astrophysics Data System (ADS)

    Gonser, S. G.; Held, A.

    2013-04-01

    New particle formation is a frequent phenomenon in the atmosphere and of major significance for the earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP) capable of analyzing particles with diameters below 30 nm. A bulk of size separated particles is collected electrostatically on a metal filament, resistively desorbed and consequently analyzed for its molecular composition in a time of flight mass spectrometer. We report of technical details as well as characterization experiments performed with the CAChUP. Our instrument was tested in the laboratory for its detection performance as well as for its collection and desorption capabilities. The manual application of known masses of camphene (C10H16) to the desorption filament resulted in a detection limit between 0.5 and 5 ng, and showed a linear response of the mass spectrometer. Flow tube experiments of 25 nm diameter secondary organic aerosol from ozonolysis of alpha-pinene also showed a linear relation between collection time and the mass spectrometer's signal intensity. The resulting mass spectra from the collection experiments are in good agreement with published work on particles generated by the ozonolysis of alpha-pinene. A sensitivity study shows that the current setup of CAChUP is ready for laboratory measurements and for the observation of new particle formation events in the field.

  17. A chemical analyzer for charged ultrafine particles

    NASA Astrophysics Data System (ADS)

    Gonser, S. G.; Held, A.

    2013-09-01

    New particle formation is a frequent phenomenon in the atmosphere and of major significance for the Earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP) capable of analyzing particles with diameters below 30 nm. A bulk of size-separated particles is collected electrostatically on a metal filament, resistively desorbed and subsequently analyzed for its molecular composition in a time of flight mass spectrometer. We report on technical details as well as characterization experiments performed with the CAChUP. Our instrument was tested in the laboratory for its detection performance as well as for its collection and desorption capabilities. The manual application of defined masses of camphene (C10H16) to the desorption filament resulted in a detection limit between 0.5 and 5 ng, and showed a linear response of the mass spectrometer. Flow tube experiments of 25 nm diameter secondary organic aerosol from ozonolysis of alpha-pinene also showed a linear relation between collection time and the mass spectrometer's signal intensity. The resulting mass spectra from the collection experiments are in good agreement with published work on particles generated by the ozonolysis of alpha-pinene. A sensitivity study shows that the current setup of CAChUP is ready for laboratory measurements and for the observation of new particle formation events in the field.

  18. Acid-base interactions and complex formation while recovering copper(II) ions from aqueous solutions using cellulose adsorbent in the presence of polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Nikiforova, T. E.; Kozlov, V. A.; Islyaikin, M. K.

    2012-12-01

    The sorption properties of nontreated cotton cellulose and cellulose modified with polyvinylpyrrolidone with respect to copper(II) ions are investigated. It is established that modified cellulose adsorbents have high sorption capability associated with the formation of new sorption centers during treatment with nitrogen-containing polymer. A mechanism is proposed for acid-base interactions in aqueous solutions of acids, bases, and salts during copper(II) cation recovery using cellulose adsorbent with the participation of polyvinylpyrrolidone.

  19. Poly(vinylpyrrolidone): a new reductant for preparation of tellurium nanorods, nanowires, and tubes from TeO2

    NASA Astrophysics Data System (ADS)

    Zhu, Ying-Jie; Hu, Xian-Luo; Wang, Wei-Wei

    2006-02-01

    A new approach has been developed for the preparation of tellurium with various morphologies by a simple hydrothermal method using TeO2 and poly(vinylpyrrolidone) (PVP). In this method, PVP acts not only as a surfactant but also as a reducing reagent, thus no additional reductants are needed. By control of the reaction conditions, tellurium nanorods, nanowires, and tubes have been prepared. Our experiments showed that pyrrole and polyethylene glycol (PEG) can also be used as reducing reagents.

  20. LASER DESORPTION IONIZATION OF ULTRAFINE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line analysis of ultrafine aerosol particle in the 12 to 150 nm size range is performed by
    laser desorption/ionization. Particles are size selected with a differential mobility analyzer and then
    sent into a linear time-of-flight mass spectrometer where they are ablated w...

  1. Benign joining of ultrafine grained aerospace aluminum alloys using nanotechnology.

    PubMed

    Longtin, Rémi; Hack, Erwin; Neuenschwander, Jürg; Janczak-Rusch, Jolanta

    2011-12-22

    Ultrafine grained aluminum alloys have restricted applicability due to their limited thermal stability. Metalized 7475 alloys can be soldered and brazed at room temperature using nanotechnology. Reactive foils are used to release heat for milliseconds directly at the interface between two components leading to a metallurgical joint without significantly heating the bulk alloy, thus preserving its mechanical properties.

  2. ULTRAFINE ASH AEROSOLS FROM COAL COMBUSTION: CHARACTERIZATION AND HEALTH EFFECTS

    EPA Science Inventory

    Ultrafine coal fly ash particles, defined here as those with diameters less than 0.5 micrometer, typically comprise less than 1% of the total fly ash mass. These particles are formed almost exclusively through ash vaporization, nucleation, and coagulation/condensation mechanisms,...

  3. LASER DESORPTION IONIZATION OF ULTRAFINE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line analysis of ultrafine aerosol particle in the 12 to 150 nm size range is performed by
    laser desorption/ionization. Particles are size selected with a differential mobility analyzer and then
    sent into a linear time-of-flight mass spectrometer where they are ablated w...

  4. Production of ultrafine sumatriptan succinate particles for pulmonary delivery.

    PubMed

    Yang, Zong-Yang; Le, Yuan; Hu, Ting-Ting; Shen, Zhigang; Chen, Jian-Feng; Yun, Jimmy

    2008-09-01

    Drug particle physical properties are critical for the efficiency of a drug delivered to the lung. The purpose of this study was to produce ultrafine sumatriptan succinate particles for inhalation. Sumatriptan succinate particles were produced via reactive precipitation without any surfactants. Several low toxic organic solvents such as acetone, isopropanol, and tetrahydrofuran were investigated as the reaction medium. And the dry powder was obtained via spray drying. FT-IR, HPLC, SEM and XRD were exploited to characterize the physicochemical properties of the ultrafine sumatriptan succinate dry powder. The aerosol performance of the powder was evaluated using an Aeroliser connected to a multi stage liquid impinger operating at 60 l/min. The mean particle size of the ultrafine sumatriptan succinate particles obtained under optimum conditions was in the range of 630-679 nm and consequently they were in the respirable range. The spray-dried powder whose fine particle fraction was increased up to 50.6 +/- 8.2% showed good aerosol performance whereas the vacuum-dried powder was approximate 18.2 +/- 3.0%. Good aerosol performance ultrafine sumatriptan succinate particles could be produced by reactive precipitation without any additives followed by spray drying at the optimum parameters.

  5. CARDIOVASCULAR RESPONSES TO ULTRAFINE CARBON PARTICLE EXPOSURES IN RATS

    EPA Science Inventory

    TD-02-042 (U. KODAVANTI) GPRA # 10108

    Cardiovascular Responses to Ultrafine Carbon Particle Exposures in Rats.
    V. Harder1, B. Lentner1, A. Ziesenis1, E. Karg1, L. Ruprecht1, U. Kodavanti2, A. Stampfl3, J. Heyder1, H. Schulz1
    GSF- Institute for Inhalation Biology1, I...

  6. Health hazards of ultrafine metal and metal oxide powders

    NASA Technical Reports Server (NTRS)

    Boylen, G. W., Jr.; Chamberlin, R. I.; Viles, F. J.

    1969-01-01

    Study reveals that suggested threshold limit values are from two to fifty times lower than current recommended threshold limit values. Proposed safe limits of exposure to the ultrafine dusts are based on known toxic potential of various materials as determined in particle size ranges.

  7. Ultrafine and respirable particles in an automotive grey iron foundry.

    PubMed

    Evans, Douglas E; Heitbrink, William A; Slavin, Thomas J; Peters, Thomas M

    2008-01-01

    Ultrafine particle number and respirable particle mass concentrations were measured throughout an automotive grey iron foundry during winter, spring and summer using a particle concentration mapping procedure. Substantial temporal and spatial variability was observed in all seasons and attributed, in part, to the batch nature of operations, process emission variability and frequent work interruptions. The need for fine mapping grids was demonstrated, where elevations in particle concentrations were highly localized. Ultrafine particle concentrations were generally greatest during winter when incoming make-up air was heated with direct fire, natural gas burners. Make-up air drawn from roof level had elevated respirable mass and ultrafine number concentrations above ambient outdoor levels, suggesting inadvertent recirculation of foundry process emissions. Elevated respirable mass concentrations were highly localized on occasions (e.g. abrasive blasting and grinding), depended on the area within the facility where measurements were obtained, but were largely unaffected by season. Particle sources were further characterized by measuring their respective number and mass concentrations by particle size. Sources that contributed to ultrafine particles included process-specific sources (e.g. melting and pouring operations), and non-process sources (e.g. direct fire natural gas heating units, a liquid propane-fuelled sweeper and cigarette smoking) were additionally identified.

  8. CARDIOVASCULAR RESPONSES TO ULTRAFINE CARBON PARTICLE EXPOSURES IN RATS

    EPA Science Inventory

    TD-02-042 (U. KODAVANTI) GPRA # 10108

    Cardiovascular Responses to Ultrafine Carbon Particle Exposures in Rats.
    V. Harder1, B. Lentner1, A. Ziesenis1, E. Karg1, L. Ruprecht1, U. Kodavanti2, A. Stampfl3, J. Heyder1, H. Schulz1
    GSF- Institute for Inhalation Biology1, I...

  9. ULTRAFINE ASH AEROSOLS FROM COAL COMBUSTION: CHARACTERIZATION AND HEALTH EFFECTS

    EPA Science Inventory

    Ultrafine coal fly ash particles, defined here as those with diameters less than 0.5 micrometer, typically comprise less than 1% of the total fly ash mass. These particles are formed almost exclusively through ash vaporization, nucleation, and coagulation/condensation mechanisms,...

  10. Polymer degradation and ultrafine particles: Potential inhalation hazards for astronauts

    NASA Astrophysics Data System (ADS)

    Ferin, J.; Oberdörster, G.

    When Teflon is heated the developing fumes produce in exposed humans an influenza-like syndrome (polymer fume fever) or also severe toxic effects like pulmonary edema, pneumonitis and death. The decomposition products and the resulting health effects are temperature-dependent. The toxic effects seem to be related to the ultrafine particulate fraction of the fume. To test the hypothesis that exposure to ultrafine particles results in an increased interstitialization of the particles which is accompanied by an acute pathological inflammation, rats were exposed to titanium dioxide (TiO 2) particles by intratracheal instillation and by inhalation. Both acute intratracheal instillation and subchronic inhalation studies on rats show that ultrafine TiO 2 particles (˜20 nm diameter) access the pulmonary interstitium to a larger extent than fine particles (˜250 nm diameter) and that they elicit an inflammatory response as indicated by PMN increase in lavaged cells. The release of ultrafine particles into the air of an enclosed environment from a thermodegradation event or from other sources is a potential hazard for astronauts. Knowing the mechanisms of action is a prerequisite for technical or medical countermeasures.

  11. Physicochemical characterisation and biological evaluation of polyvinylpyrrolidone-iodine engineered polyurethane (Tecoflex(®)).

    PubMed

    Khandwekar, Anand P; Doble, Mukesh

    2011-05-01

    Bacterial adhesion and encrustation are the known causes for obstruction or blockage of urethral catheters and ureteral stents, which often hinders their effective use within the urinary tract. In this in vitro study, polyvinylpyrrolidone-iodine (PVP-I) complex modified polyurethane (Tecoflex(®)) systems were created by physically entrapping the modifying species during the reversible swelling of the polymer surface region. The presence of the PVP-I molecules on this surfaces were verified by ATR-FTIR, AFM and SEM-EDAX analysis, while wettability of the films was investigated by water contact angle measurements. The modified surfaces were investigated for its suitability as a urinary tract biomaterial by comparing its lubricity and ability to resist bacterial adherence and encrustation with that of base polyurethane. The PVP-I modified polyurethane showed a nanopatterned surface topography and was highly hydrophilic and more lubricious than control polyurethane. Adherence of both the gram positive Staphylococcus aureus (by 86%; **P < 0.01) and gram-negative Pseudomonas aeruginosa (by 80%; *P < 0.05) was significantly reduced on the modified surfaces. The deposition of struvite and hydroxyapatite the major components of urinary tract encrustations were significantly less on PVP-I modified polyurethane as compared to base polyurethane, especially reduction in hydroxyapatite encrustation was particularly marked. These results demonstrated that the PVP-I entrapment process can be applied on polyurethane in order to reduce/lower complications associated with bacterial adhesion and deposition of encrustation on polyurethanes.

  12. Molecular mechanism of the protective effect of monomer polyvinylpyrrolidone on antioxidants - experimental and computational studies.

    PubMed

    Liu, W; Wang, J; Li, M; Tang, W; Han, J

    2016-12-01

    We previously developed a lutein-polyvinylpyrrolidone (PVP) complex with improved aqueous saturation solubility and stability, though the conjugation mechanism is still unclear. In this paper, experiments with astaxanthin-PVP complex and curcumin-PVP complex were carried out, which indicated that PVP could improve the solubility and stability of astaxanthin and curcumin. We aimed to construct a computational model capable of understanding the protective effect in complexes formed between PVP and antioxidants, through which the binding mode of PVP and antioxidants was investigated with molecular modelling in order to obtain the interactions, binding energy, binding site and surface area between PVP and antioxidants. Solubility enhancement was attributed to the H-bonds between PVP and antioxidants, and the saturation solubility was curcumin > lutein > astaxanthin. Binding energy, binding site and surface area were beneficial for the stability of complex, and the stability enhancement was lutein > astaxanthin > curcumin. The experimental results were in agreement with the computational results. Furthermore, we established a method for the exploration of a similar system with other polymer complexes. Additionally, the proposed PVP model could predict the interactions between PVP and various ligands, such as antioxidants and drugs.

  13. Polyvinylpyrrolidone as binder for castable supercapacitor electrodes with high electrochemical performance in organic electrolytes

    NASA Astrophysics Data System (ADS)

    Aslan, M.; Weingarth, D.; Jäckel, N.; Atchison, J. S.; Grobelsek, I.; Presser, V.

    2014-11-01

    Polyvinylpyrrolidone (PVP) is presented as a "greener" alternative to commonly used supercapacitor binders, namely polyvinylidenedifluoride (PVDF) or polytetrafluoroethylene (PTFE). The key advantages of using PVP are that it is non-toxic and soluble in ethanol and it can be used to spray coat or drain cast activated carbon (AC) electrodes directly on a current collector such as aluminum foil - in contrast to PTFE that requires rolling or PVDF that requires toxic N-methylpyrrolidone (NMP). The electrodes with the best mechanical stability incorporated 3.5 mass% of 1.300.000 g mol-1 PVP. Compared to PTFE or PVDF, the resulting pore volume was significantly higher and the specific surface area significantly larger when using PVP (normalized to the amount of AC). A good electrochemical performance was observed in organic electrolytes for AC-PVP electrodes: 112 or 97 F g-1 at 0.1 A g-1 in 1 M TEA-BF4 in propylene carbonate or acetonitrile, respectively. The performance stability was comparable to PTFE-bound electrodes when adjusting the maximum cell voltage to 2.5 V while preserving the manufacturing features of PVDF-AC films. (Electro)chemical stability is shown by electrochemical testing and infrared vibrational spectroscopy for propylene carbonate and acetonitrile.

  14. Polyvinylpyrrolidone/polyvinyl butyral composite as a stable binder for castable supercapacitor electrodes in aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Aslan, M.; Weingarth, D.; Herbeck-Engel, P.; Grobelsek, I.; Presser, V.

    2015-04-01

    Mixtures of polyvinylpyrrolidone/polyvinyl butyral (PVP/PVB) are attractive binders for the preparation of carbon electrodes for aqueous electrolyte supercapacitors. The use of PVP/PVB offers several key advantages: They are soluble in ethanol and can be used to spray coat or drain cast activated carbon (AC) electrodes directly on a current collector. Infrared spectroscopy and contact angle measurements show that the PVP-to-PVB ratio determines the degree of binder hydrophilicity. Within our study, the most favorable performance was obtained for AC electrodes with a composition of AC + 1.5 mass% PVP + 6.0 mass% PVB; such electrodes were mechanically stabile and water resistant with a PVP release of less than 5% of total PVP while PVB itself is water insoluble. Compared to when using PVDF, the specific surface area (SSA) of the assembled electrodes was 10% higher, indicating a reduced pore blocking tendency. A good electrochemical performance was observed in different aqueous electrolytes for composite electrodes with the optimized binder composition: 160 F g-1 at 1 A g-1 for 1 M H2SO4 and 6 M KOH and 120 F g-1 for 1 M NaCl. The capacitance was slightly reduced by 2.5% after cycling to 1.2 V with 1.28 A g-1 in 1 M NaCl for 10,000 times.

  15. Synthesis of Polyvinylpyrrolidone (PVP)-Green Tea Extract Composite Nanostructures using Electrohydrodynamic Spraying Technique

    NASA Astrophysics Data System (ADS)

    Kamaruddin; Edikresnha, D.; Sriyanti, I.; Munir, M. M.; Khairurrijal

    2017-05-01

    Green Tea Extract (GTE) as an active substance has successfully loaded to PVP nanostructures using electrohydrodynamic spraying technique. The precursor solution was the mixture of ethanolic polyvinylpyrrolidone (PVP) with a molecular weight of 1,300 kg/mol and ethanolic GTE solutions at a weight concentration of 4 wt.% and 2 wt.%, respectively, and it was estimated that the entanglement number was 2. The electrospraying was conducted at the voltage of 15 kV, the flow rate of 10 µL/min., and the distance between the collector and the tip of the nozzle of 10 cm. The SEM images showed that the PVP/GTE nanostructures had a combination of agglomerated beads (less spherical particles) and nanofibers. This occurred because if the PVP concentration is low, the PVP/GTE composite has weak core structures that cause the shell to be easily agglomerated each other. The intermolecular interaction between PVP and GTE in the PVP/GTE nanostructures occurred as confirmed by the peak at 3396 cm-1, which is the carboxyl group, proving that the PVP/GTE nanostructures contained water, alcohols, and phenols. The peak at 1040 cm-1, which is the stretching of C-O group in amino acid, gave another proof to the intermolecular interaction.

  16. Molecular mobility in mixtures of absorbed water and solid poly(vinylpyrrolidone).

    PubMed

    Oksanen, C A; Zografi, G

    1993-06-01

    Poly(vinylpyrrolidone) (PVP) was used as model system to examine molecular mobility in mixtures of absorbed water with solid amorphous polymers. Water vapor absorption isotherms were determined, along with diffusion and proton NMR relaxation measurements of absorbed water. Concurrently, measurements of glass transition temperatures (Tg) and carbon-13 NMR relaxation times for PVP were determined as a function of water content. Two water contents were used as reference points: Wm, obtained from the fit of water absorption isotherms to the BET equation, corresponding to the first shoulder in the sigmoid isotherm; and Wg, the amount of water necessary to depress Tg to the isotherm temperature. Translational diffusion coefficients of water, along with proton T1 relaxation time constants, show that both the translational and the rotational mobility of the water is hindered by the presence of the solid polymer and that the absorbed water is most likely represented by two or more populations of water with different modes or time scales of motion. The presence of "tightly bound" or immobilized water at levels corresponding to Wm, however, is unlikely, since water molecules maintain a high degree of mobility, even at the lowest levels of water. Above Wg, water shows an increase in mobility with increasing water content, but it is always less mobile than bulk water. With increasing water content, carbon-13 T1 relaxation time constants for PVP, measured under the same conditions as above, indicate a major increase in the molecular mobility of carbon atoms associated with the pyrrolidone side chains.

  17. Identification of ɛ-caprolactam, melamine and urea in polyvinylpyrrolidone powders by micellar electrokinetic chromatography.

    PubMed

    Amini, A

    2014-03-01

    A sodium dodecyl sulfate micellar electrokinetic chromatography (SDS-MEKC) method for the simultaneous separation and identification of ɛ-caprolactam, melamine and urea deliberately added to polyvinylpyrrolidone (povidone) products has been developed. All samples to be analyzed contained paracetamol as an internal marker (IM). The optimized separations were performed in 50mM phosphate buffer (pH 7.0) containing 2% (w/v) sodium dodecyl sulfate (SDS) in fused silica capillaries with UV absorption detection at 200nm. The method was validated with respect to repeatability and intermediate precision, selectivity and robustness with satisfactory results. The relative migration times (RMT) were found to be between 0.03% and 0.13% for intra-day precision and between 0.50% and 0.60% for inter-day precision in four days. The detection limits were determined to be 1.3 (11.5μM), 0.4 (3.5μM) and 41μg/ml (0.4mM) for ɛ-caprolactam, melamine and urea, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Development of Itraconazole Liquisolid Compact: Effect of Polyvinylpyrrolidone on the Dissolution Properties.

    PubMed

    Gong, Wei; Wang, Yuli; Sun, Lei; Yang, Jiahui; Shan, Li; Yang, Meiyan; Gao, Chunsheng

    2016-01-01

    The aim of this work was to utilize the liquisolid technique to enhance dissolution of itraconazole (ITZ). Liquisolid tablets of ITZ were formulated by using N-methyl-2-pyrrolidone as liquid vehicle, polyvinylpyrrolidone (PVP) as a precipitation inhibitor and magnesium aluminometasilicate Neusilin® as a carrier and coating material. The effect of PVP level on stability of liquid medication, physicomechnanical properties and dissolution rate of liquisolid compacts was studied in detail. The crystallinity of formulated drug and the interaction between excipients were examined by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). All the liquisolid tablets showed higher drug dissolution rates than the conventional, directly compressed tablets. The flowability of liquisolid powders was slightly improved as the proportion of PVP in ITZ-NMP mixture increased. Moreover, the stability of liquid medication and wetting ability of liquisolid tablets were improved by PVP. The presence of low amount of PVP (≤ 1%) in liquisolid formulation could enhance dissolution of ITZ liquisolid tablets, whereas the percentage of PVP over 5% decreased the dissolution of ITZ from liquisolid tablets. Both DSC and XRPD suggested reduction or loss of ITZ crystallinity upon liquisolid formulations indicating that the drug was almost solubilized and molecularly dispersed with excipients within the liquisolid matrix. It could be shown that increased solubility, wetting properties and surface area available for dissolution contributed to the improvement of the dissolution of ITZ from liquisolid tablets.

  19. Polyvinylpyrrolidone molecular weight controls silica shell thickness on Au nanoparticles with diglycerylsilane as precursor.

    PubMed

    Vanderkooy, Alan; Brook, Michael A

    2012-08-01

    Several strategies have been described for the preparation of silica-encapsulated gold nanoparticles (SiO(2)-AuNP), which typically suffer from an initial interface between gold and silica that is difficult to control, and layer thicknesses that are very sensitive to minor changes in silane concentration and incubation time. The silica shell thicknesses are normally equal to or larger than the gold particles themselves, which is disadvantageous when the particles are to be used for biodiagnostic applications. We present a facile and reproducible method to produce very thin silica shells (3-5 nm) on gold nanoparticles: the process is highly tolerant to changes in reaction conditions. The method utilized polyvinylpyrrolidone (PVP) of specific molecular weights to form the interface between gold and silica. The method further requires a nontraditional silica precursor, diglycerylsilane, which efficiently undergoes sol-gel processing at neutrality. Under these conditions, higher molecular weight PVP leads to thicker silica shells: PVP acts as the locus for silica growth into an interpenetrating organic-inorganic hybrid structure.

  20. Evaluation of the separation performance of polyvinylpyrrolidone as a virtual stationary phase for chromatographic NMR.

    PubMed

    Huang, Shaohua; Wu, Rui; Bai, Zhengwu; Yang, Ying; Li, Suying; Dou, Xiaowei

    2014-09-01

    Polyvinylpyrrolidone (PVP) was used as a virtual stationary phase to separate p-xylene, benzyl alcohol, and p-methylphenol by the chromatographic NMR technique. The effects of concentration and weight-average molecular weight (Mw) of PVP, solvent viscosity, solvent polarity, and sample temperature on the resolution of these components were investigated. It was found that both higher PVP concentration and higher PVP Mw caused the increase of diffusion resolution for the three components. Moreover, the diffusion resolution did not change at viscosity-higher solvents. Moreover, the three components showed different resolution at different solvents. As temperature increased, the diffusion resolution between p-xylene and benzyl alcohol gradually increased, and the one between p-xylene and p-methylphenol slightly increased from 278 to 298 K and then decreased above 298 K. It was also found that the polarity of the analytes played an important role for the separation by affecting the diffusion coefficient. Copyright © 2014 John Wiley & Sons, Ltd.

  1. The physical and chemical properties of the polyvinylalcohol/polyvinylpyrrolidone/hydroxyapatite composite hydrogel.

    PubMed

    Ma, Yahui; Bai, Tongchun; Wang, Fei

    2016-02-01

    A hydrogel of polyvinylalcohol (PVA)/polyvinylpyrrolidone (PVP)/hydroxyapatite (HA) was prepared by a repeated freezing and thawing technique. The effect of HA on the hydrogel was evaluated by comparing the physical and chemical properties of PVA/PVP/HA and PVA/PVP hydrogels. By using theoretical models, the information about the swelling kinetics and the dehydration kinetics have been obtained. From the analysis of structure, mechanical properties, and molecular interaction, the application of PVA/PVP/HA hydrogel as a biomaterial has been evaluated. Relative to PVA/PVP, the PVA/PVP/HA hydrogel is of denser network structure, lower water content, larger storage modulus, and higher dehydration activation energy. These results reveal that, as HA fills in the hydrogel, the molecular interaction is enhanced, the free space of network is compressed, and the diffusion activation energy of water is increased. In spite of its water content being decreased, it is still in the range of meeting the requirement of bio-application. When the hydrogel is subjected to external forces, the matrix will transfer the load to the HA powder, thus enhance the strength of the hydrogel. For application in bio-materials, HA will still have osteoinductivity because its crystalline structure is not interrupted in PVA/PVP/HA hydrogel environment.

  2. Composite thin film by hydrogen-bonding assembly of polymer brush and poly(vinylpyrrolidone).

    PubMed

    Yang, Shuguang; Zhang, Yongjun; Wang, Li; Hong, Song; Xu, Jian; Chen, Yongming; Li, Chengming

    2006-01-03

    Based on hydrogen-bonding layer-by-layer (LBL) assembly in aqueous solution, poly(vinylpyrrolidone) (PVPON) and a spherical polymer brush with a poly(methylsilsesquioxane) (PSQ) core and poly(acrylic acid) (PAA) hair chains were used to fabricate composite multilayer thin films. Hydrogen bonding as the driving force was confirmed by FT-IR spectrometry. A simple method (Filmetric F20) was introduced to determine the thickness and refractive index of the films. The film thickness was found to be a linear function of the number of bilayers. The average increase in thickness per bilayer is 28.3 nm. The film morphology was characterized with scanning electron microscopy and atomic force microscopy. The images obtained from the two instruments show a great resemblance. The films were further calcined to get an inorganic film by removing the organic components, or treated with tetrabutylammonium fluoride (TBAF) to remove the PSQ core and get an organic film. The optical properties and morphological changes induced by these treatments were also studied.

  3. Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties.

    PubMed

    Khalil, Ahmed M; Hassan, Mohammad L; Ward, Azza A

    2017-02-10

    Nanofibrillated cellulose (NFC) isolated from rice straw pulp was used with polyvinylpyrrolidone (PVP) and silver nanoparticles (AgNPs) to prepare nanocomposites in the form of flexible films. The later films have promising mechanical and electrical conductivity properties. The isolated cellulose nanofibers were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Silver nanoparticles prepared via in-situ reduction in PVP were characterized using TEM and UV-vis spectroscopy. Tensile properties, microscopic structure, and electrical properties of nanocomposites films were studied. TEM and UV-vis spectroscopy proved the in-situ formation of AgNPs in PVP matrix. Films with good flexibility and tensile strength properties could be obtained from NFC/PVP/AgNPs as revealed from the (SEM) images and tensile properties testing. The electrical conductivity of NFC/PVP/AgNPs supports this system to be an excellent choice for sensitive electronic components packing as it can be used as antistatic and electrostatic dissipative materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of substrates on naproxen-polyvinylpyrrolidone solid dispersions formed via the drop printing technique.

    PubMed

    Hsu, Hsin-Yun; Toth, Scott J; Simpson, Garth J; Taylor, Lynne S; Harris, Michael T

    2013-02-01

    Solid dispersions have been used to improve the bioavailability of poorly water-soluble drugs. However, drug solid-state phase, compositional uniformity, and scale-up problems are issues that need to be addressed. To allow for highly controllable products, the drop printing (DP) technique can provide precise dosages and predictable compositional uniformity of active pharmaceutical ingredients in two-/three-dimensional structures when integrated with edible substrates. With different preparation conditions, DP was conducted to fabricate naproxen (NAP)-polyvinylpyrrolidone solid dispersions with chitosan and hydroxypropyl methylcellulose films as the substrate. Scanning electron microscopy, X-ray diffraction, second harmonic generation microscopy, and atomic force microscopy analyses were performed to characterize the microstructure and spatial distribution of NAP in the solid dispersions. The results identified that composition, temperature, and substrate type all had an impact on morphology and crystallization of samples. The surface energy approach was combined with classical nucleation theory to evaluate the affinity between the nucleus of NAP and substrates. Finally, the collective results of the drug were correlated to the release profile of NAP within each sample.

  5. The potential application of chlorin e6-polyvinylpyrrolidone formulation in photodynamic therapy.

    PubMed

    Chin, William Wei Lim; Heng, Paul Wan Sia; Bhuvaneswari, Ramaswamy; Lau, Weber Kam On; Olivo, Malini

    2006-11-01

    Much research has been focused on developing effective drug delivery systems for the preparation of chlorins as potential photosensitizers for PDT. This report describes the evaluation of a new water-soluble formulation of chlorin e6 consisting of a complex of trisodium salt chlorin e6 and polyvinylpyrrolidone (Ce6-PVP) for application in photodynamic therapy (PDT) with 2 specific aims: (i) to investigate its fluorescence kinetics in skin, normal and tumor tissue after intravenous administration, and (ii) to investigate its PDT efficacy. Our results demonstrate that this new formulation possesses photosensitizing properties with rapid accumulation in tumor tissue observed within 1 h after intravenous administration. Although high selectivity in tumor tissue was found between the period of 3 and 6 h, the efficacy of Ce6-PVP mediated PDT was best at 1 h drug-light interval. It is suggested that, the extent of tumor necrosis post PDT is dependent on the plasma concentration of Ce6-PVP, implying a vascular mediated cell death mechanism. A faster clearance rate of Ce6-PVP from the skin of nude mice was observed compared to Ce6. The new formulation of Ce6-PVP seems to show promise as an effective therapeutic agent.

  6. Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen.

    PubMed

    Miyazaki, Tamaki; Yoshioka, Sumie; Aso, Yukio; Kojima, Shigeo

    2004-11-01

    The inhibition of crystallization of amorphous acetaminophen (ACTA) by polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) was studied using amorphous solid dispersions prepared by melt quenching. Co-melting with PVP and PAA decreased the average molecular mobility, as indicated by increases in glass transition temperature and enthalpy relaxation time. The ACTA/PAA dispersion exhibited much slower crystallization than the ACTA/PVP dispersion with a similar glass transition temperature value, indicating that interaction between ACTA and polymers also contributed to the stabilizing effect of these polymers. The carboxyl group of PAA may interact with the hydroxyl group of ACTA more intensely than the carbonyl group of PVP does, resulting in the stronger stabilizing effect of PAA. Dielectric relaxation spectroscopy showed that the number of water molecules tightly binding to PVP per monomer unit was larger than that to PAA. Furthermore, a small amount of absorbed water decreased the stabilizing effect of PVP, but not that of PAA. These findings suggest that the stronger stabilizing effect of PAA is due to the stronger interaction with ACTA. The ability of PAA to decrease the molecular mobility of solid dispersion was also larger than that of PVP, as indicated by the longer enthalpy relaxation time.

  7. Designing and adjusting the thickness of polyvinylpyrrolidone waveguide layer on plasmonic nanofilm for humidity sensing

    NASA Astrophysics Data System (ADS)

    Feng, Zhiqing; Bai, Lan; Guo, Lijiao; Cao, Baosheng; Wu, Jinlei; He, Yangyang

    2017-01-01

    We developed a fast response and high-resolution plasmonic waveguide sensor for sensing environmental humidity by converting the optical signal in the visible light region. The sensor was designed as a layer-on-layer film structure in which the hydrophilic polymer of polyvinylpyrrolidone (PVP) film served as the waveguide layer and was dip-coated onto the plasmonic gold (Au) nanofilm for sensing the environmental humidity. The amount of the absorbed water molecules on the PVP layer could affect the refractive index and thickness of the PVP, leading to a shift of the surface plasmon resonance peak position of Au nanofilm at the different order modes of the waveguide. The theoretic calculations indicated that the optimal thickness of the waveguide layer on the Au nanofilm ranged from 550 to 650 nm. By adjusting the thickness of the PVP layer to 560 nm, the high-resolution optical signals were observed in the visible light region with the humidity shifts ranging from 11% to 85% relative humidity (RH). Our work details a successful attempt to design and prepare the plasmonic waveguide sensor with the lost-cost polymer as the sensing layer for real-time detection of environmental humidity.

  8. Monodisperse polyvinylpyrrolidone-coated CoFe2O4 nanoparticles: Synthesis, characterization and cytotoxicity study

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Ma, Yingying; Mu, Jingbo; Zhang, Zhixiao; Zhang, Xiaoliang; Zhang, Lina; Che, Hongwei; Bai, Yongmei; Hou, Junxian; Xie, Hailong

    2016-03-01

    In this study, monodisperse cobalt ferrite (CoFe2O4) nanoparticles were prepared successfully with various additions of polyvinylpyrrolidone (PVP) by sonochemical method, in which PVP served as a stabilizer and dispersant. The effects and roles of PVP on the morphology, microstructure and magnetic properties of the obtained CoFe2O4 were investigated in detail by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID). It was found that PVP-coated CoFe2O4 showed relatively well dispersion with narrow size distribution. The field-dependent magnetization curves indicated superparamagnetic behavior of PVP-coated CoFe2O4 with moderate saturation magnetization and hydrophilic character at room temperature. More importantly, the in vitro cytotoxicity testing exhibited negligible cytotoxicity of as-prepared PVP-CoFe2O4 even at the concentration as high as 150 μg/mL after 24 h treatment. Considering the superparamagnetic properties, hydrophilic character and negligible cytotoxicity, the monodisperse CoFe2O4 nanoparticles hold great potential in a variety of biomedical applications.

  9. Optimization of strength and ductility in nanotwinned ultrafine grained Ag: twin density and grain orientations

    DOE PAGES

    Ott, R. T.; Geng, J.; Besser, M. F.; ...

    2015-06-27

    Nanotwinned ultrafine grained Ag thick films with different twin densities and orientations have been synthesized by magnetron sputtering with a wide-range of deposition rates. The twin boundary (TB) spacings and orientations as well as the grain size for the different deposition conditions have been characterized by both synchrotron X-ray scattering and transmission electron microscopy (TEM). Structural characterization combined with uniaxial tensile tests of the free-standing films reveals a large increase in the yield strength for films deposited at high deposition rates without any accompanying change in the TB spacing – a behavior that is in contrast with what has beenmore » reported in the literature. We find that films deposited at lower deposition rates exhibit more randomly oriented grains with a lower overall twin density (averaged over all the grains) than the more heavily twinned grains with strong <111> fiber texture in the films deposited at higher deposition rates. The TB spacing in the twinned grains, however, does not show any significant dependence on the deposition rate. The dependence of the strength and ductility on the twin density and orientations can be described by two different soft deformation modes: 1) untwinned grains and 2) nanowinned grains that are not oriented with <111> along the growth direction. The untwinned grains provide relatively low resistance to slip, and thus decreased strength, while the nanotwinned grains that are not oriented with <111> along the growth direction are softer than nanotwinned grains that are oriented with <111> along the growth direction. We reveal that an ultrafine-grained (150-200 nm) structure consisting of a mixture of nanotwinned (~ 8-12 nm spacing) and untwined grains yields the best combination of high strength and uniform tensile ductility.« less

  10. Optimization of strength and ductility in nanotwinned ultrafine grained Ag: twin density and grain orientations

    SciTech Connect

    Ott, R. T.; Geng, J.; Besser, M. F.; Kramer, M. J.; Wang, Y. M.; Park, E. S.; LeSar, R.; King, A. H.

    2015-06-27

    Nanotwinned ultrafine grained Ag thick films with different twin densities and orientations have been synthesized by magnetron sputtering with a wide-range of deposition rates. The twin boundary (TB) spacings and orientations as well as the grain size for the different deposition conditions have been characterized by both synchrotron X-ray scattering and transmission electron microscopy (TEM). Structural characterization combined with uniaxial tensile tests of the free-standing films reveals a large increase in the yield strength for films deposited at high deposition rates without any accompanying change in the TB spacing – a behavior that is in contrast with what has been reported in the literature. We find that films deposited at lower deposition rates exhibit more randomly oriented grains with a lower overall twin density (averaged over all the grains) than the more heavily twinned grains with strong <111> fiber texture in the films deposited at higher deposition rates. The TB spacing in the twinned grains, however, does not show any significant dependence on the deposition rate. The dependence of the strength and ductility on the twin density and orientations can be described by two different soft deformation modes: 1) untwinned grains and 2) nanowinned grains that are not oriented with <111> along the growth direction. The untwinned grains provide relatively low resistance to slip, and thus decreased strength, while the nanotwinned grains that are not oriented with <111> along the growth direction are softer than nanotwinned grains that are oriented with <111> along the growth direction. We reveal that an ultrafine-grained (150-200 nm) structure consisting of a mixture of nanotwinned (~ 8-12 nm spacing) and untwined grains yields the best combination of high strength and uniform tensile ductility.

  11. Development of silicon nitride composites with continuous fiber reinforcement

    SciTech Connect

    Starr, T.L.; Mohr, D.L.; Lackey, W.J.; Hanigofsky, J.A.

    1993-10-01

    The composites were fabricated using ultrafine Si powders prepared by attritor milling; the powders exhibits full conversion to Si nitride in < 3 h at {le} 1200 C (these conditions reduce degradation of the fibers compared to conventional). Effects of processing conditions on fiber properties and the use of fiber coatings to improve stability during processing as well as change the fiber-matrix interfacial properties were investigated. A duplex carbon-silicon carbide coating, deposited by CVD, reduced fiber degradation in processing, and it modified the fiber-matrix adhesion. Si nitride matrix composites were fabricated using reaction sintering, forming laminates, filament-wound plates, and tubes. In each case, an attritor milled Si powder slurry is infiltrated into ceramic fiber preforms or tows, which are then assembled to form a 3-D structure for reaction sintering. The resulting composites have properties comparable to chemical vapor infiltration densified composites, with reasonable strengths and graceful composite fracture behavior.

  12. Fabrication of CH3NH3PbI3/PVP Composite Fibers via Electrospinning and Deposition

    PubMed Central

    Chao, Li-Min; Tai, Ting-Yu; Chen, Yueh-Ying; Lin, Pei-Ying; Fu, Yaw-Shyan

    2015-01-01

    In our study, one-dimensional PbI2/polyvinylpyrrolidone (PVP) composition fibers have been prepared by using PbI2 and PVP as precursors dissolved in N,N-dimethylformamide via a electrospinning process. Dipping the fibers into CH3NH3I solution changed its color, indicating the formation of CH3NH3PbI3, to obtain CH3NH3PbI3/PVP composite fibers. The structure, morphology and composition of the all as-prepared fibers were characterized by using X-ray diffraction and scanning electron microscopy. PMID:28793517

  13. Pulmonary cellular effects in rats following aerosol exposures to ultrafine Kevlar aramid fibrils: evidence for biodegradability of inhaled fibrils.

    PubMed

    Warheit, D B; Kellar, K A; Hartsky, M A

    1992-10-01

    Previous chronic inhalation studies have shown that high concentrations of Kevlar fibrils produced fibrosis and cystic keratinizing tumors in rats following 2-year inhalation exposures. The current studies were undertaken to evaluate mechanisms and to assess the toxicity of inhaled Kevlar fibrils relative to other reference materials. Rats were exposed to ultrafine Kevlar fibers (fibrils) for 3 or 5 days at concentrations ranging from 600-1300 fibers/cc (gravimetric concentrations ranging from 2-13 mg/m3). A complete characterization of the fiber aerosol and dose was carried out. These measurements included gravimetric concentrations, mass median aerodynamic diameter, fiber number, and count median lengths and diameters of the aerosol. Following exposures, cells and fluids from groups of sham- and fiber-exposed animals were recovered by bronchoalveolar lavage (BAL). Alkaline phosphatase, lactate dehydrogenase (LDH), protein, and N-acetyl glucosaminidase (NAG) values were measured in BAL fluids at several time points postexposure. Alveolar macrophages were cultured and studied for morphology, chemotaxis, and phagocytosis by scanning electron microscopy. The lungs of additional exposed animals were processed for deposition, cell labeling, retained dose, and lung clearance studies, as well as fiber dimensions (from digested lung tissue), histopathology, and transmission electron microscopy. Five-day exposures to Kevlar fibrils elicited a transient granulocytic inflammatory response with concomitant increases in BAL fluid levels of alkaline phosphatase, NAG, LDH, and protein. Unlike the data from silica and asbestos exposures where inflammation persisted, biochemical parameters returned to control levels at time intervals between 1 week and 1 month postexposure. Macrophage function in Kevlar-exposed alveolar macrophages was not significantly different from sham controls at any time period. Cell labeling studies were carried out immediately after exposure, as well as 1

  14. Effect of hydrogen bonding interactions on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone.

    PubMed

    Karavas, Evangelos; Ktistis, Georgios; Xenakis, Aristotelis; Georgarakis, Emmanouel

    2006-06-01

    Solid dispersion systems are widely investigated for the dissolution enhancement of poorly water soluble drugs. Nevertheless, very limited commercial use has been achieved due to the poor predictability of such systems caused by the lack of a basic understanding of the dissolution optimization mechanism. In the present study an investigation of the release mechanism is performed for solid dispersion systems composed by polyvinylpyrrolidone (PVP) and felodipine (FEL), based on a correlation of their hydrophilicity with the intensity of interactions. The existing interactions were evaluated by using NMR and UV spectroscopy while molecular simulation techniques were also enabled. It was found that the interactions that take place correspond to the creation of hydrogen bonds. The correlation between the intensity of interactions and the concentration of PVP in the matrix showed a sigmoid function. The interactions are impressively increased for polymer concentration exceeding 75% (w/w). This phenomenon was well explained by using the molecular simulation technique. A similar sigmoid pattern was found for the function between dissolution profiles and polymer concentration in the matrix, indicating that the intensity of interactions promotes the dissolution enhancement. Investigation of the solubility and the particle size distribution of FEL in the binary system appeared to have similar behaviour indicating that the interactions affect the release profile through these two factors. The hydrophilicity of PVP does not significantly affect this enhancement as the contact angle was found to be linear to PVP concentration. Microscopic observation of the dissolution behaviour showed that FEL remains in fine dispersion in aqueous solution, verifying the release mechanism.

  15. Preparation and characterization of solid dispersion freeze-dried efavirenz - polyvinylpyrrolidone K-30.

    PubMed

    Fitriani, Lili; Haqi, Alianshar; Zaini, Erizal

    2016-01-01

    The aim of this research is to prepare and characterize solid dispersion of efavirenz - polyvinylpyrrolidone (PVP) K-30 by freeze drying to increase its solubility. Solid dispersion of efavirenz - PVP K-30 was prepared by solvent evaporation method with ratio 2:1, 1:1, and 1:2 and dried using a freeze dryer. Characterizations were done by scanning electron microscopy (SEM), powder X-ray diffraction analysis, differential thermal analysis (DTA), and Fourier transform infrared (FT-IR) spectroscopy. Solubility test was carried out in CO2-free distilled water, and efavirenz assay was conducted using high-performance liquid chromatography with acetonitrile:acetic acid (80:20) as the mobile phases. Powder X-ray diffractogram showed a decrease in the peak intensity, which indicated the crystalline altered to amorphous phase. DTA thermal analysis showed a decrease in the melting point of the solid dispersion compared to intact efavirenz. SEM results indicated the changes in the morphology of the crystal into an amorphous form compared to pure components. FT-IR spectroscopy analysis showed a shift wavenumber of the spectrum efavirenz and PVP K-30. The solubility of solid dispersion at ratio 2:1, 1:1, and 1:2 was 6.777 μg/mL, 6.936 μg/mL, and 14,672 μg/mL, respectively, whereas the solubility of intact efavirenz was 0.250 μg/mL. In conclusion, the solubility of solid dispersion increased significantly (P < 0.05).

  16. Preparation and characterization of solid dispersion freeze-dried efavirenz – polyvinylpyrrolidone K-30

    PubMed Central

    Fitriani, Lili; Haqi, Alianshar; Zaini, Erizal

    2016-01-01

    The aim of this research is to prepare and characterize solid dispersion of efavirenz – polyvinylpyrrolidone (PVP) K-30 by freeze drying to increase its solubility. Solid dispersion of efavirenz – PVP K-30 was prepared by solvent evaporation method with ratio 2:1, 1:1, and 1:2 and dried using a freeze dryer. Characterizations were done by scanning electron microscopy (SEM), powder X-ray diffraction analysis, differential thermal analysis (DTA), and Fourier transform infrared (FT-IR) spectroscopy. Solubility test was carried out in CO2-free distilled water, and efavirenz assay was conducted using high-performance liquid chromatography with acetonitrile:acetic acid (80:20) as the mobile phases. Powder X-ray diffractogram showed a decrease in the peak intensity, which indicated the crystalline altered to amorphous phase. DTA thermal analysis showed a decrease in the melting point of the solid dispersion compared to intact efavirenz. SEM results indicated the changes in the morphology of the crystal into an amorphous form compared to pure components. FT-IR spectroscopy analysis showed a shift wavenumber of the spectrum efavirenz and PVP K-30. The solubility of solid dispersion at ratio 2:1, 1:1, and 1:2 was 6.777 μg/mL, 6.936 μg/mL, and 14,672 μg/mL, respectively, whereas the solubility of intact efavirenz was 0.250 μg/mL. In conclusion, the solubility of solid dispersion increased significantly (P < 0.05). PMID:27429930

  17. Effect of pH and biological media on polyvinylpyrrolidone-capped silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lau, Chew Ping; Abdul-Wahab, Mohd Firdaus; Jaafar, Jafariah; Chan, Giek Far; Rashid, Noor Aini Abdul

    2016-07-01

    Toxicity and mobility of silver nanoparticles (AgNPs) vary in different surrounding environments. Surface coatings or functionalization, temperature, pH, dissolved oxygen concentration, nanoparticle concentration, the presence of organic matter, and ionic strength are factors which dictate the transformation of AgNPs in terms of aggregation and stabilization. Thus, the purpose of this study is to investigate the behavior of polyvinylpyrrolidone (PVP)-capped AgNPs at different pHs (pH 2 to 10) and in different biological media (0.1 M phosphate buffer, nutrient broth, P5 and modified P5 media) analyzed using UV-Vis spectroscopy and zeta potential analyzer. The PVP-capped AgNPs changed its behavior in the presence of varying media, after 24 h incubation with shaking at 200 rpm at 30°C. No aggregation was observed at pH 4 to 10, but distinctive at very low pH of 2. Low pH further destabilized PVP-capped AgNPs after 24 h of incubation. High ionic strength 0.1 M phosphate buffer also resulted in slow aggregation and eventually destabilized the nanoparticles. Biological media (nutrient broth, P5 and modified P5 media) containing organic components caused aggregation of the PVP-capped AgNPs. The increase in glucose and nutrient broth concentrations led to increased aggregation. However, PVP-capped AgNPs stabilized after 24 h incubation in media containing a high concentration of glucose and nutrient broth. The results demonstrate that low pH value, high ionic strength and the content of the biological media can influence the stability of AgNPs. This provides information on the aggregation behavior of PVP-capped AgNPs and can possibly further predict the fate, transport as well as the toxicity of silver nanoparticles after being released into the aquatic environment.

  18. Miscibility behavior and formation mechanism of stabilized felodipine-polyvinylpyrrolidone amorphous solid dispersions.

    PubMed

    Karavas, Evangelos; Ktistis, Georgios; Xenakis, Aristotelis; Georgarakis, Emmanouel

    2005-07-01

    In the present study, solid dispersion systems of felodipine (FEL) with polyvinylpyrrolidone (PVP) were developed, in order to enhance solid state stability and release kinetics. The prepared systems were characterized by using Differential Scanning Calorimetry, X-Ray Diffraction, and Scanning Electron Microscopy techniques, while the interactions which take place were identified by using Fourier Transformation-Infrared Spectroscopy. Due to the formation of hydrogen bonds between the carbonyl group of PVP and the amino groups of FEL, transition of FEL from crystalline to amorphous state was achieved. The dispersion of FEL was found to be in nano-scale particle sizes and dependent on the FEL/PVP ratio. This modification leads to partial miscibility of the two components, as it was verified by DSC and optimal glass dispersion of FEL into the polymer matrix since no crystalline structure was detected with XRD. The above deformation has a significant effect on the dissolution enhancement and the release kinetics of FEL, as it causes the pattern to change from linear to logarithmic. An impressive optimization of the dissolution profile is observed corresponding to a rapid release of FEL in the system containing 10% w/w of FEL, releasing 100% in approximately 20 min. The particle size of dispersed FEL into PVP matrix could be classified as the main parameter affecting dissolution optimization. The mechanism of such enhancement consists of the lower energy required for the dissolution due to the amorphous transition and the fine dispersion, which leads to an optimal contact surface of the drug substance with the dissolution media. The prepared systems are stable during storage at 40 +/- 1 degrees C and relative humidity of 75 +/- 5%. Addition of sodium docusate as surfactant does not affect the release kinetics, but only the initial burst due to its effect on the surface tension and wettability of the systems.

  19. Preparation of antifouling polyvinylpyrrolidone (PVP 40K) modified polyethersulfone (PES) ultrafiltration (UF) membrane for water purification

    NASA Astrophysics Data System (ADS)

    Vatsha, Banele; Ngila, Jane Catherine; Moutloali, Richard M.

    This study reports the fabrication of polyethersulfone (PES) membrane using the phase inversion method in the presence of polyvinylpyrrolidone (PVP, 40K) as pore-forming agent. The membranes were made from two PES concentration types, i.e. 16 and 18 wt.%. The effect of high molecular weight PVP concentration (2-10%) was examined in order to obtain a membrane with good performance, i.e. high water flux and reasonable Bovine Serum Albumin (BSA, protein model solution) rejection. The optimised membranes were characterised by ATR-FTIR, AFM, SEM, contact angle and dead-end membrane filtration tests. It was found that PVP moieties have positive influence in the prepared PES membranes. SEM surface and cross-sectional images were used to observed morphological changes as PVP content was varied. The pore sizes increased with PVP content for membranes prepared from 16 wt.% PES polymer, whereas at the higher PVP content in 18 wt.% PES membrane, pore sizes tend to decrease or completely disappear. The CA decreased gradually for the 16 wt.% PES with increasing PVP content whereas in the 18 wt.% PES the CA decreased initially before tapering off or increasing slightly. The rejection of BSA solution by both neat PES and PVP-containing PES membrane was above 85%. AFM surface topography exhibited increase in roughness value with PVP content. FTIR/ATR spectra corroborated the functional composition of neat PES and PVP molecule dispersed on PES membrane backbone. The results attained confirmed the potential industrial application of PVP molecule to minimise fouling tendencies.

  20. Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/ SiO(2) composite materials.

    PubMed

    Yoshida, M; Prasad, P N

    1996-03-20

    Sol-gel-processed composite materials of polyvinylpyrrolidone (PVP) and SiO(2) were studied for optical waveguide applications. PVP is a polymer that can be crosslinked, so it is expected to have high thermal stability after crosslinking. However, thermal crosslinking and thermal decomposition of pure PVP take place around the same temperature, 200 °C, therefore pure PVP had a high optical propagation loss as a result of the absorption of the decomposed molecules after crosslinking. The incorporation of sol-gel-processed SiO(2) prevented the thermal decomposition of PVP and provided remarkably low optical propagation losses. The PVP/SiO(2)composite material also produced thick (>2-µm) crack-free films when the PVP concentration was 50% or higher. An optical propagation loss of 0.2 dB/cm was achieved at 633 nm in the 50% PVP/SiO(2) composite planar waveguide. Several aspects of the thermal stability of the waveguides were evaluated. The slab waveguide was then used for fabrication of channel waveguides with a selective laser-densification technique. This technique used metal lines fabricated with photolithography on the slab waveguide as a light absorbent, and these metal lines were heated by an Ar laser. The resultant channel waveguide had an optical propagation loss of 0.9 dB/ cm at 633 nm. This technique provides lower absorption loss and scattering loss compared with the direct laser-densification technique, which uses UV lasers, and produces narrow waveguides that are difficult to fabricate with a CO(2) laser.

  1. Effect of polyvinylpyrrolidone on cerium oxide nanoparticle characteristics prepared by a facile heat treatment technique

    NASA Astrophysics Data System (ADS)

    Baqer, Anwar Ali; Matori, Khamirul Amin; Al-Hada, Naif Mohammed; Shaari, Abdul Halim; Saion, Elias; Chyi, Josephine Liew Ying

    An aqueous medium composed of polyvinylpyrrolidone (PVP) and cerium nitrates at calcination temperature was utilised in the production of cerium oxide (CeO2) semiconductor nanoparticles. A variety of analytical approaches was utilized to examine the structural, morphological and optical characteristics of the resulting nanoparticles. Differential thermal (DTA) and thermogravimetric (TGA) analyses, indicated that the best calcination temperatures for achieving CeO2 nanoparticle production were more than 485 °C. The results from Fourier-transform infrared (FTIR) verified the formation of a crystalline structure after calcination procedures were performed to remove residual organic compounds. Additionally, results from X-ray diffraction (XRD) analysis confirmed the cubic fluorite structure of the CeO2 produced. Samples were also analysed by energy dispersive spectroscopy (EDXA) which indicated the existence of O and Ce in the samples. Field emission scanning electron microscopy (FESEM) was used in the characterisation of nanoparticle morphological features. Transmission electron microscopy (TEM) was employed to estimate typical nanoparticle and distribution within sample. This analysis indicated that mean particle sizes were inversely correlated with PVP concentration, with nanoparticle sizes ranging between 12 ± 7 nm at 0.03 g/mL PVP and 6 ± 2 nm at 0.05 g/mL PVP. These results corroborated those obtained by XRD analysis. A UV-vis spectrophotometer was utilised in the demonstration of optical properties and to examine the band gap energy of samples. The potential UV-shielding properties of the nanoparticles were demonstrated by the observed blue shift of the estimated optical energy band, i.e. from 3.35 to 3.43 eV, whilst PL spectra results indicated that decreasing particle size was associated with diminishing photoluminescence intensity.

  2. Visible-light photochromic nanocomposite thin films based on polyvinylpyrrolidone and polyoxometalates supported on clay minerals

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-yu; Dong, Qi; Meng, Qing-ling; Yang, Jun-Yan; Feng, Wei; Han, Xiang-kui

    2014-10-01

    A novel reversible photochromic nanocomposite film was prepared by entrapping phosphomolybdic acid supported on the sodium bentonite (PMoA/Na-MMT) into polyvinylpyrrolidone (PVPd). The microstructure, thermal stability, photochromic behavior and mechanism of the hybrid film were investigated. Fourier transform infrared spectroscopy (FT-IR) results illustrated that the Keggin geometry of polyoxometalates (PMoA) and organic groups of PVPd were still preserved inside the composites and non-covalent bond interaction was built between PMoA/Na-MMT and PVPd polymer matrix. Transmission electron microscopy (TEM) image showed that PMoA nanoparticles were finely dispersed in Na-MMT which exhibited fine stratified structure. Atomic force microscopy (AFM) images indicated that the surface topography of polymeric matrix changed after adding PMoA/Na-MMT, and the surface appearance of nanocomposite film was different before and after visible-light irradiation. The stability of the hybrid film and the effect of the perturbation of Na-MMT on the stability were determined by means of the thermogravimetric analysis (TG) and differential thermal analysis (DTA). Irradiated with visible light, the ultraviolet--visible spectra (UV-vis) showed that the hybrid films changed from colorless to blue and could recover the colorless state gradually in air, where oxygen played an important role during the bleaching process. The hybrid films exhibited excellent bleaching ability during the heating. According to the X-ray photoelectron spectroscopy (XPS) analysis, the appearance of Mo5+ species indicated the photo-reduction reaction between PMoA/Na-MMT and PVPd matrix occurred according to the proton transfer mechanism, and the photochromic reactions were found to exhibit first-order kinetics.

  3. Aggregation Kinetics of Citrate and Polyvinylpyrrolidone Coated Silver Nanoparticles in Monovalent and Divalent Electrolyte Solutions

    PubMed Central

    Huynh, Khanh An; Chen, Kai Loon

    2011-01-01

    The aggregation kinetics of silver nanoparticles (AgNPs) that were coated with two commonly used capping agents—citrate and polyvinylpyrrolidone (PVP)—were investigated. Time-resolved dynamic light scattering (DLS) was employed to measure the aggregation kinetics of the AgNPs over a range of monovalent and divalent electrolyte concentrations. The aggregation behavior of citrate-coated AgNPs in NaCl was in excellent agreement with the predictions based on Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, and the Hamaker constant of citrate-coated AgNPs in aqueous solutions was derived to be 3.7 × 10-20 J. Divalent electrolytes were more efficient in destabilizing the citrate-coated AgNPs, as indicated by the considerably lower critical coagulation concentrations (2.1 mM CaCl2 and 2.7 mM MgCl2 vs. 47.6 mM NaCl). The PVP-coated AgNPs were significantly more stable than citrate-coated AgNPs in both NaCl and CaCl2, which is likely due to steric repulsion imparted by the large, non-charged polymers. The addition of humic acid resulted in the adsorption of the macromolecules on both citrate- and PVP-coated AgNPs. The adsorption of humic acid induced additional electrosteric repulsion that elevated the stability of both nanoparticles in suspensions containing NaCl or low concentrations of CaCl2. Conversely, enhanced aggregation occurred for both nanoparticles at high CaCl2 concentrations due to interparticle bridging by humic acid clusters. PMID:21630686

  4. Antitumor activity of tumor necrosis factor-alpha conjugated with polyvinylpyrrolidone on solid tumors in mice.

    PubMed

    Kamada, H; Tsutsumi, Y; Yamamoto, Y; Kihira, T; Kaneda, Y; Mu, Y; Kodaira, H; Tsunoda, S I; Nakagawa, S; Mayumi, T

    2000-11-15

    We attempted the development of a novel polymer conjugation to further improve the therapeutic potency of antitumor cytokines compared with PEGylation for clinical application. Compared with native tumor necrosis factor (TNF)-alpha in vitro, specific bioactivities of polyvinyl-pyrrolidone (PVP)-modified TNF-alphas (PVP-TNF-alphas) were decreased by increasing the degree of PVP attachment. PVP-TNF-alpha fraction 3, Mr 101,000, had the most effective antitumor activity of the various PVP-TNF-alphas in vivo. PVP-TNF-alpha fraction 3 had >200-fold higher antitumor effect than native TNF-alpha, and the antitumor activity of PVP-TNF-alpha fraction 3 was >2-fold higher than that of MPEG-TNF-alpha (Mr 108,000), which had the highest antitumor activity among the polyethylene glycol (PEG)-conjugated TNF-alphas. Additionally, a high dose of native TNF-alpha induced toxic side effects such as body weight reduction, piloerection. and tissue inflammation, whereas no side effects were observed after i.v. administration of PVP-TNF-alpha fraction 3. The plasma half-life of PVP-TNF-alpha fraction 3 (360 min) was about 80- and 3-fold longer than those of native TNF-alpha (4.6 mm) and MPEG-TNF-alpha (122 min), respectively. The mechanism of increased antitumor effect in vivo caused the prolongation of plasma half-life and increase in stability. These results suggested that PVP is a useful polymeric modifier for bioconjugation of TNF-alpha to increase its antitumor potency, and multifunctionally bioconjugated TNF-alpha may be a potentiated antitumor agent for clinical use.

  5. Cosolvency approach for assessing the solubility of drugs in poly(vinylpyrrolidone).

    PubMed

    Chen, Xin; Fadda, Hala M; Aburub, Aktham; Mishra, Dinesh; Pinal, Rodolfo

    2015-10-15

    The log-linear cosolvency model was applied for estimating the solubility of four drugs: ritonavir, griseofulvin, itraconazole and ketoconazole in poly(vinylpyrrolidone) (PVP). Cosolvent mixtures consisted of PVP mixed in different proportions with N-ethylpyrrolidone, which served as the monomeric analogue of the repeating unit of the polymer. Solubility in the monomer-polymer mixtures was determined by HPLC. As the configuration of the solvating unit in the solvent mixture changed from entirely monomeric to increasingly polymeric, the solubility of the drugs decreased in a fashion that follows the log-linear cosolvency model. The linear relationship was used to obtain estimates for the solubility of the drugs in the different grades of PVP. The solubility of the drugs in PVP is low (from <1% to ∼15% w/w). Among the set of drug solutes, ritonavir exhibited the highest solubility in PVP (w/w). Mixing with the monomer is most favorable for griseofulvin among the four drugs. However, the detrimental effect of polymerization on its solubility is more pronounced than for ritonavir. The mixing of itraconazole with the monomer is more favorable than the mixing of ketoconazole. However, despite the molecular similarity between ketaconazole and itraconazole, the solubility of the latter is particularly affected by the polymeric configuration of the solvating unit, to the point of exhibiting differences in solubility resulting from the chain length of the grade of PVP used. The log-linear cosolvency model is a useful tool for estimating the solubility of the drugs in the polymer at room temperature, while providing quantitative information on the differences in mixing behavior of the four model compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    PubMed

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  7. [Research on ultrafine grinding technology of improving dissolution rates of effective components in Sanjie Zhentong capsule].

    PubMed

    Xu, Zhong-kun; Gao, Jin; Qin, Jian-ping; Chen, Guang-bo; Wang, Zhen-zhong; Xiao, Wei

    2015-05-01

    The effects of ultrafine grinding on the dissolution rates of the effective components in Sanjie Zhentong capsule (SZC) were studied in this experiment. Fine and ultrafine powder of SZC intermediates were made by ordinary grinding and ultrafine grinding technology, and then granulated by wet granulation. SZC were prepared by fine powder, ultrafine powder and ultrafine granules, respectively. With resveratrol and loureirin B as investigated indexes, dissolution rates of the four intermediates in SZC were determined by cup method and HPLC. The dissolution rates of resveratrol in SZC prepared by fine powder, ultrafine powder and ultrafine granules were 26.11%, 63.27%, 67.49%, respectively; and the dissolution rates of loureirin B were 7.160%, 20.29%, 23.05%, respectively. The dissolution rate of resveratrol and loureirin B in SZC prepared by ultrafine granules was the best. D90 size of ultrafine grinding was 13.221 μm and could improve the dissolution rates of resveratrol and loureirin B in SZC.

  8. Physicochemical characterization of Baizhi particles by ultrafine pulverization

    NASA Astrophysics Data System (ADS)

    Yang, Lian-Wei; Sun, Peng; Gai, Guo-Sheng; Yang, Yu-Fen; Wang, Yu-Rong

    2011-04-01

    Baizhi, as a medicinal plant, has been demonstrated to be useful for the treatment of aches and pains in China. The physicochemical characterization of Baizhi particles is greatly influenced by ultrafine pulverization. To study the physicochemical characterization of Baizhi, the raw plant material of Baizhi was ground to 6 μm particles by a high speed centrifugal sheering (HSCS) pulverizer. The micron particles were characterized by optical microscopy and scanning electron microscopy (SEM). Imperatorin is one of the active ingredients of Baizhi, and its extraction yield is determined to evaluate the chemical characterization of Baizhi powder. Imperatorin was analyzed by high performance liquid chromatography (HPLC). The results show that after ultrafine pulverization, the plant cell walls are broken into pieces and the extraction yield of imperatorin is increased by 11.93% compared with the normal particles.

  9. Highly efficient and controllable method to fabricate ultrafine metallic nanostructures

    SciTech Connect

    Cai, Hongbing; Zhang, Kun; Pan, Nan E-mail: xpwang@ustc.edu.cn; Luo, Yi; Wang, Xiaoping E-mail: xpwang@ustc.edu.cn; Yu, Xinxin; Tian, Yangchao

    2015-11-15

    We report a highly efficient, controllable and scalable method to fabricate various ultrafine metallic nanostructures in this paper. The method starts with the negative poly-methyl-methacrylate (PMMA) resist pattern with line-width superior to 20 nm, which is obtained from overexposing of the conventionally positive PMMA under a low energy electron beam. The pattern is further shrunk to sub-10 nm line-width through reactive ion etching. Using the patter as a mask, we can fabricate various ultrafine metallic nanostructures with the line-width even less than 10 nm. This ion tailored mask lithography (ITML) method enriches the top-down fabrication strategy and provides potential opportunity for studying quantum effects in a variety of materials.

  10. Analysis of the ultrafine fraction of the Apollo 14 regolith

    NASA Technical Reports Server (NTRS)

    Finkelman, R. B.

    1973-01-01

    Analyses were obtained on more than 2400 randomly selected particles from the sub-37 micron (ultrafine) fraction of ten Apollo 14 regolith samples. The analyses were conducted with an energy dispersive electron microprobe system. The semiquantitative data were used to group the particles into ten categories. The pyroxene/plagioclase and olivine/plagioclase ratios are inconsistent with those ratios in the Apollo 14 breccias and rocks. The data suggest that fragmented basalts similar to Apollo 12 olivine basalts may have made significant contributions to the ultrafine fraction of the Fra Mauro regolith. Among a number of unusual particles encountered are brown, birefringent lath-shaped grains with 60 wt % SiO2 and 34 wt % FeO(FeSi2O5) and a glass with 20 to 25 wt % CaO, 0 to 8 wt % MgO, 40 to 45 wt % Al2O3 and approximately 30 wt % SiO2.

  11. SPD processing and superplasticity in ultrafine-grained alloys

    SciTech Connect

    Valiev, R.Z.; Islamgaliev, R.K.

    2000-07-01

    Severe plastic deformation (SPD), for example by intense plastic straining under high pressure, is an innovative technique for producing ultrafine-grained (UFG) metals and alloys. The SPD fabricated UFG structures can lead to enhanced superplasticity, which, however, depends strongly on processing parameters. The present paper focuses on examples of attaining enhanced superplasticity in several alloys, subjected to SPD and considers the relationship between processing--UFG structures--superplastic properties in SPD produced materials.

  12. Traffic emission factors of ultrafine particles: effects from ambient air.

    PubMed

    Janhäll, Sara; Molnar, Peter; Hallquist, Mattias

    2012-09-01

    Ultrafine particles have a significant detrimental effect on both human health and climate. In order to abate this problem, it is necessary to identify the sources of ultrafine particles. A parameterisation method is presented for estimating the levels of traffic-emitted ultrafine particles in terms of variables describing the ambient conditions. The method is versatile and could easily be applied to similar datasets in other environments. The data used were collected during a four-week period in February 2005, in Gothenburg, as part of the Göte-2005 campaign. The specific variables tested were temperature (T), relative humidity (RH), carbon monoxide concentration (CO), and the concentration of particles up to 10 μm diameter (PM(10)); all indicators are of importance for aerosol processes such as coagulation and gas-particle partitioning. These variables were selected because of their direct effect on aerosol processes (T and RH) or as proxies for aerosol surface area (CO and PM(10)) and because of their availability in local monitoring programmes, increasing the usability of the parameterization. Emission factors are presented for 10-100 nm particles (ultrafine particles; EF(ufp)), for 10-40 nm particles (EF(10-40)), and for 40-100 nm particles (EF(40-100)). For EF(40-100) no effect of ambient conditions was found. The emission factor equations are calculated based on an emission factor for NO(x) of 1 g km(-1), thus the particle emission factors are easily expressed in units of particles per gram of NO(x) emitted. For 10-100 nm particles the emission factor is EF(ufp) = 1.8 × 10(15) × (1 - 0.095 × CO - 3.2 × 10(-3) × T) particles km(-1). Alternative equations for the EFs in terms of T and PM(10) concentration are also presented.

  13. Structural properties of ultrafine Ba-hexaferrite nanoparticles

    SciTech Connect

    Makovec, Darko; Primc, Darinka; Sturm, Saso; Kodre, Alojz; Hanzel, Darko; Drofenik, Miha

    2012-12-15

    Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was studied using X-ray diffractometry (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDXS), X-ray absorption fine structure (XAFS), and Moessbauer spectroscopy (MS), to be compared to the structure of larger nanoparticles and the bulk. The nanoparticles were synthesized with hydrothermal treatment of an appropriate suspension of Ba and Fe hydroxides in the presence of a large excess of OH{sup -}. The ultrafine nanoparticles were formed in a discoid shape, {approx}10 nm wide and only {approx}3 nm thick, comparable to the size of the hexagonal unit cell in the c-direction. The HRTEM image analysis confirmed the hexaferrite structure, whereas EDXS showed the composition matching the BaFe{sub 12}O{sub 19} formula. XAFS and MS analyses showed considerable disorder of the structure, most probably responsible for the low magnetization. - Graphical abstract: Left: HREM image of an ultrafine Ba-hexaferrite nanoparticle (inset: TEM image of the nanoparticles); Right: the experimental HRTEM image is compared with calculated image and corresponding atomic model. Highlights: Black-Right-Pointing-Pointer Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was compared to the structure of the bulk. Black-Right-Pointing-Pointer Thickness the discoid nanoparticles was comparable to the size of the hexagonal unit cell in the c-direction. Black-Right-Pointing-Pointer Considerable disorder of the nanoparticles' structure is most probably responsible for their low magnetization.

  14. OBSERVATION OF ULTRAFINE CHANNELS OF SOLAR CORONA HEATING

    SciTech Connect

    Ji, Haisheng; Cao, Wenda; Goode, Philip R.

    2012-05-01

    We report the first direct observations of dynamical events originating in the Sun's photosphere and subsequently lighting up the corona. Continuous small-scale, impulsive events have been tracked from their origin in the photosphere on through to their brightening of the local corona. We achieve this by combining high-resolution ground-based data from the 1.6 m aperture New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO), and satellite data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The NST imaging observations in helium I 10830 A reveal unexpected complexes of ultrafine, hot magnetic loops seen to be reaching from the photosphere to the base of the corona. Most of these ultrafine loops are characterized by an apparently constant, but surprisingly narrow diameter of about 100 km all along each loop, and the loops originate on the solar surface from intense, compact magnetic field elements. The NST observations detect the signature of upward injections of hot plasma that excite the ultrafine loops from the photosphere to the base of the corona. The ejecta have their individual footpoints in the intergranular lanes between the Sun's ubiquitous, convectively driven granules. In many cases, AIA/SDO detects cospatial and cotemporal brightenings in the overlying, million degree coronal loops in conjunction with the upward injections along the ultrafine loops. Segments of some of the more intense upward injections are seen as rapid blueshifted events in simultaneous H{alpha} blue wing images observed at BBSO. In sum, the observations unambiguously show impulsive coronal heating events from upward energy flows originating from intergranular lanes on the solar surface accompanied by cospatial mass flows.

  15. Ultrafine cement seals slow leak in casing collar

    SciTech Connect

    Mac Eachern, D. ); Young, S.C. )

    1992-09-07

    This paper reports that an ultrafine cement squeeze effectively sealed a difficult casing collar leak in the protective casing in a deep, high-temperature well in Mobile Bay. The leak was sealed in one operation without perforating the casing, giving greater confidence in casing integrity and allowing the well to be drilled to total depth (TD). Restoring pressure integrity of the casing with this procedure saved approximately $250,000.

  16. Ultrafine Betulin Formulation with Biocompatible Carriers Exhibiting Improved Dissolution Rate.

    PubMed

    Myza, Svetlana A; Shakhtshneidera, Tatyana P; Mikhailenkob, Mikhail A; Ogienkoc, Andrey G; Bogdanovaa, Ekaterina G; Ogienkoe, Anna A; Kuznetsovaf, Svetlana A; Boldyrevaa, Elena V; Boldyreva, Vladimir V

    2015-08-01

    The purpose of this research was to develop new methods of increasing dissolution rate and solubility of betulin extracted from birch bark. The ultrafine formulation of betulin with polyethylene glycol and β-glycine was obtained by freeze-drying. The rate of release of betulin from the formulation into water was significantly higher in comparison with the initial betulin sample and its composite with polyethylene glycol obtained by ball-milling.

  17. Polyvinylpyrrolidone (PVP)-assisted solvothermal synthesis of flower-like SrCO{sub 3}:Tb{sup 3+} phosphors

    SciTech Connect

    Xue, Yannan; Ren, Xiaolei; Zhai, Xuefeng; Yu, Min

    2012-02-15

    Graphical abstract: A simple solvothermal method for the synthesis of flower-like SrCO{sub 3}:Tb{sup 3+} phosphors with the assistance of polyvinylpyrrolidone (PVP, K30). Highlights: Black-Right-Pointing-Pointer Well-crystallized flower-like SrCO{sub 3}:Tb{sup 3+} phosphors could be easily prepared by a simple solvothermal method with the assistance of polyvinylpyrrolidone (PVP). Black-Right-Pointing-Pointer The amount of PVP and the reaction time have a strong effect on controlling the morphology and optical properties of SrCO{sub 3}:Tb{sup 3+} particles. Black-Right-Pointing-Pointer The main synthesizing process and the growth mechanism for the formation of final samples were proposed. -- Abstract: Well-crystallized flower-like SrCO{sub 3}:Tb{sup 3+} phosphors have been synthesized by an inexpensive and friendly solvothermal process using polyvinylpyrrolidone (PVP, K30) as an additive without further annealing treatment. X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), and field emission scanning electron microscopy (FESEM) as well as photoluminescence spectroscopy (PL) were used to characterize the resulting samples. The amount of PVP and the reaction time have strong effect on the morphology of the SrCO{sub 3}:Tb{sup 3+} particles. The results of XRD confirm the formation of a well-crystallized SrCO{sub 3} phase with an orthorhombic structure. The possible formation mechanism for flower-like SrCO{sub 3}:Tb{sup 3+} phosphor is proposed. The SrCO{sub 3}:Tb{sup 3+} phosphors show the characteristic {sup 5}D{sub 4}-{sup 7}F{sub J} (J = 6, 5, 4, 3) emission lines with green emission {sup 5}D{sub 4}-{sup 7}F{sub 5} (544 nm) as the most prominent group under ultraviolet excitation.

  18. Study of fine and ultrafine particles for coal cleaning

    SciTech Connect

    Birlingmair, D.; Buttermore, W.; Chmielewski, T.; Pollard, J.

    1990-04-01

    During the second quarter of work on this new project, critical review of the literature continued. Several new references related to gravity separation were identified and evaluated. A synopsis was assembled to summarize techniques developed by various researchers for the float/sink separation of ultrafine coal. In the reviewed literature, it was commonly concluded that substantial improvements in washability results for ultrafine coals can be obtained only through the application of dynamic (centrifugal) procedures, and through the use of dispersing aids such as ultrasound and surfactants. These results suggest the presence of physicochemical phenomena, typical of colloidal systems. In theoretical studies this quarter, the effects of Brownian motion on fine particle sedimentation have been identified and theoretically quantitated. The interaction between Brownian and gravitational forces was calculated, and a model was prepared to permit estimation of critical particle size in float/sink separations. In laboratory studies this quarter, aliquots of Upper Freeport coal were prepared and subjected to laboratory float/sink separations to investigate the relative effectiveness of static and centrifugal techniques for fine and ultrafine coal. This series will verify results of earlier work and provide a basis for comparing the effects which may result from further modifications to the separation techniques resulting from insights gained in the basic phenomena governing float/sink processes. 15 refs., 6 figs., 1 tab.

  19. Exposure to airborne ultrafine particles from cooking in Portuguese homes.

    PubMed

    Bordado, J C; Gomes, J F; Albuquerque, P C

    2012-10-01

    Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted of the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables, or pasta, and frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased from a baseline of 42.7 microm2/cm3 (increased to 72.9 microm2/cm3 due to gas burning) to a maximum of 890.3 microm2/cm3 measured during fish boiling in water and a maximum of 4500 microm2/cm3 during meat frying. This clearly shows that a domestic activity such as cooking can lead to exposures as high as those of occupational exposure activities. The approach of this study considers the determination of alveolar deposited surface area of aerosols generated from cooking activities, namely, typical Portuguese dishes. This type of measurement has not been done so far, in spite of the recognition that cooking activity is a main source of submicrometer and ultrafine aerosols. The results have shown that the levels of generated aerosols surpass the outdoor concentrations in a major European town, which calls for further determinations, contributing to a better assessment of exposure of individuals to domestic activities such as this one.

  20. Eu-Doped BaTiO3 Powder and Film from Sol-Gel Process with Polyvinylpyrrolidone Additive

    PubMed Central

    García-Hernández, Margarita; García-Murillo, Antonieta; de J. Carrillo-Romo, Felipe; Jaramillo-Vigueras, David; Chadeyron, Geneviève; De la Rosa, Elder; Boyer, Damien

    2009-01-01

    Transparent BaTiO3:Eu3+ films were prepared via a sol-gel method and dip-coating technique, using barium acetate, titanium butoxide, and polyvinylpyrrolidone (PVP) as modifier viscosity. BaTiO3:Eu3+ films ~500 nm thick, crystallized after thermal treatment at 700 ºC. The powders revealed spherical and rod shape morphology. The optical quality of films showed a predominant band at 615 nm under 250 nm excitation. A preliminary luminescent test provided the properties of the Eu3+ doped BaTiO3. PMID:19865533

  1. The influence of polyvinylpyrrolidone on freezing of bovine IVF blastocysts following biopsy.

    PubMed

    Suzuki, T; Saha, S; Sumantri, C; Takagi, M; Boediono, A

    1995-12-01

    A study was conducted to develop a better freezing protocol for in vitro developed biopsied bovine blastocysts. Biopsied blastocysts were exposed to 1.8 M ethylene glycol (EG) + 0.05 M trehalose (T) and different concentration (5, 10, and 20%) of polyvinylpyrrolidone (PVP). Exposure to the solutions alone did not affect their in vitro development (Experiment 1). Experiments 2, 3, and 4 tested the viability of biopsied blastocysts cryopreserved in 1.8 M EG + different concentrations of T (0, 0.05, 0.1, and 0.3 M), 1.8 M EG + different concentrations of PVP (0, 5, 10, and 20%), and 1.8 M EG + 0.05 M T + different concentrations of PVP (0, 5, 10, and 20%), respectively. The proportion of biopsied blastocysts that reexpanded following cryopreservation in 1.8 M EG + 0.05 M T (38.5%) and 1.8 M EG + 0.1 M T (36.1%) was significantly (P < 0.05) higher than the proportion that reexpanded in 1.8 M EG + 0.3 M T (13.9%) (Experiment 2). The viability and the percentage of embryos that developed to > 250 microns in diameter in the 5, 10, and 20% PVP groups (77.8 and 50.0%, 78.1 and 43.8%, 76.9 and 65.4%, respectively) were significantly higher than those that developed cryopreserved without PVP (55.1 and 20.7%) (Experiment 3). Optimum development of in vitro culture of frozen-thawed biopsied blastocysts was obtained using 1.8 M EG + 0.05 M T and 20% PVP. Analysis of blastocysts > 250 microns in diameter showed that the number of ICM cells of biopsied blastocysts cryopreserved in 1.8 M EG + 0.05 M T with or without PVP was not different from the number of unfrozen biopsied blastocysts. These results indicate that PVP has some beneficial effect on freezing of biopsied bovine blastocysts.

  2. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol.

    PubMed

    Wang, Dengjun; Ge, Liqiang; He, Jianzhou; Zhang, Wei; Jaisi, Deb P; Zhou, Dongmei

    2014-08-01

    The increasing application of engineered nanoparticles (ENPs) has heightened the concern that these ENPs would eventually be released to the environment and may enter into life cycle of living beings. In this regard, it is essential to understand how these ENPs transport and retain in natural soils because they are considered to be a major repository for ENPs. Herein, transport and retention of polyvinylpyrrolidone (PVP)-coated silver nanoparticles (PVP-AgNPs) were investigated over a wide range of physicochemical factors in water-saturated columns packed with an Ultisol rich in clay-size particles. Higher mobility of PVP-AgNPs occurred at larger soil grain size, lower solution ionic strength and divalent cation concentration, higher flow rate, and greater PVP concentrations. Most breakthrough curves (BTCs) for PVP-AgNPs exhibited significant amounts of retardation in the soil due to its large surface area and quantity of retention sites. In contrast to colloid filtration theory, the shapes of retention profiles (RPs) for PVP-AgNPs were either hyperexponential or nonmonotonic (a peak in particle retention down-gradient from the column inlet). The BTCs and hyperexponential RPs were successfully described using a 1-species model that considered time- and depth-dependent retention. Conversely, a 2-species model that included reversibility of retained PVP-AgNPs had to be employed to better simulate the BTCs and nonmonotonic RPs. As the retained concentration of species 1 approached the maximum solid-phase concentration, a second mobile species (species 2, i.e., the same PVP-AgNPs that are reversibly retained) was released that could be retained at a different rate than species 1 and thus yielded the nonmonotonic RPs. Some retained PVP-AgNPs were likely to irreversibly deposit in the primary minimum associated with microscopic chemical heterogeneity (favorable sites). Transmission electron microscopy and energy-dispersive X-ray spectroscopy analysis suggested that these

  3. Fiber webs

    Treesearch

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  4. Molecular Dynamics, Recrystallization Behavior, and Water Solubility of the Amorphous Anticancer Agent Bicalutamide and Its Polyvinylpyrrolidone Mixtures.

    PubMed

    Szczurek, Justyna; Rams-Baron, Marzena; Knapik-Kowalczuk, Justyna; Antosik, Agata; Szafraniec, Joanna; Jamróz, Witold; Dulski, Mateusz; Jachowicz, Renata; Paluch, Marian

    2017-03-07

    In this paper, we investigated the molecular mobility and physical stability of amorphous bicalutamide, a poorly water-soluble drug widely used in prostate cancer treatment. Our broadband dielectric spectroscopy measurements and differential scanning calorimetry studies revealed that amorphous BIC is a moderately fragile material with a strong tendency to recrystallize from the amorphous state. However, mixing the drug with polymer polyvinylpyrrolidone results in a substantial improvement of physical stability attributed to the antiplasticizing effect governed by the polymer additive. Furthermore, IR study demonstrated the existence of specific interactions between the drug and excipient. We found out that preparation of bicalutamide-polyvinylpyrrolidone mixture in a 2-1 weight ratio completely hinder material recrystallization. Moreover, we determined the time-scale of structural relaxation in the glassy state for investigated materials. Because molecular mobility is considered an important factor governing crystallization behavior, such information was used to approximate the long-term physical stability of an amorphous drug and drug-polymer systems upon their storage at room temperature. Moreover, we found that such systems have distinctly higher water solubility and dissolution rate in comparison to the pure amorphous form, indicating the genuine formulation potential of the proposed approach.

  5. Concentrations of ultrafine particles at a highway toll collection booth and exposure implications for toll collectors.

    PubMed

    Cheng, Yu-Hsiang; Huang, Cheng-Hsiung; Huang, Hsiao-Lin; Tsai, Chuen-Jinn

    2010-12-15

    Research regarding the magnitude of ultrafine particle levels at highway toll stations is limited. This study measured ambient concentrations of ultrafine particles at a highway toll station from October 30 to November 1 and November 5 to November 6, 2008. A scanning mobility particle sizer was used to measure ultrafine particle concentrations at a ticket/cash tollbooth. Levels of hourly average ultrafine particles at the tollbooth were about 3-6 times higher than those in urban backgrounds, indicating that a considerable amount of ultrafine particles are exhausted from passing vehicles. A bi-modal size distribution pattern with a dominant mode at about <6 nm and a minor mode at about 40 nm was observed at the tollbooth. The high amounts of nanoparticles in this study can be attributed to gas-to-particle reactions in fresh fumes emitted directly from vehicles. The influences of traffic volume, wind speed, and relative humidity on ultrafine particle concentrations were also determined. High ambient concentrations of ultrafine particles existed under low wind speed, low relative humidity, and high traffic volume. Although different factors account for high ambient concentrations of ultrafine particles at the tollbooth, measurements indicate that toll collectors who work close to traffic emission sources have a high exposure risk. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Processing, Application and Characterization of (Ultra)fine and Nanometric Materials in Energetic Compositions

    DTIC Science & Technology

    2005-01-01

    PROCESSING, APPLICATION AND CHARACTERIZATION OF (ULTRA)FINE AND NANOMETRIC MATERIALS IN ENERGETIC COMPOSITIONS A. E. D. M. van der...explosives (insensitive munitions), gun/rocket propellants and pyrotechnic compositions and their ingredients. The application of reactive, (ultra)fine and...nanometric materials in these compositions has gained increased interest over the past few years. Current research topics focus on the processing

  7. Fabrication of an ultrafine fish gelatin nanofibrous web from an aqueous solution by electrospinning.

    PubMed

    Kwak, Hyo Won; Shin, Munju; Lee, Jeong Yun; Yun, Haesung; Song, Dae Woong; Yang, Yesol; Shin, Bong-Seob; Park, Young Hwan; Lee, Ki Hoon

    2017-09-01

    Electrospinning of aqueous gelatin solution obtained from bovine or porcine sources has been difficult to achieve without additional facilities, such as a temperature control oven or heating cover. Gelatin from cold-water fish has low contents of proline (Pro) and hydroxyproline (Hyp) compared with mammalian-derived gelatin. For this reason, the fish-derived gelatin maintains a sol state without showing gelation behavior at room temperature. In the present study, we prepared an ultrafine fish gelatin nanofibrous web by electrospinning from aqueous solutions without any additive polymers or temperature control facilities. The concentration and viscosity of fish gelatin are the most important factor in determining the electrospinnability and fiber diameter. Electrospinning of aqueous fish gelatin has the highest nanofiber productivity compared to other organic solvent systems. Using glutaraldehyde vapor (GTA), the water stability was improved and substantial enhancement was achieved in the mechanical properties. Finally, the cytotoxicity of a fish gelatin nanofibrous scaffold was evaluated based on a cell proliferation study by culturing human dermal fibroblasts (HDFs) compared with a fish gelatin film and nanofibrous mat from mammalian gelatin. The result shows better initial cell attachment and proliferation compared with the fish gelatin film and no significant difference compared with mammalian-derived gelatin nanofibrous mat. We expect that electrospinning of aqueous fish gelatin could be an effective alternative mammalian gelatin source. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Hydrogen Embrittlement of a 1500-MPa Tensile Strength Level Steel with an Ultrafine Elongated Grain Structure

    NASA Astrophysics Data System (ADS)

    Nie, Yihong; Kimura, Yuuji; Inoue, Tadanobu; Yin, Fuxing; Akiyama, Eiji; Tsuzaki, Kaneaki

    2012-05-01

    A deformation of a tempered martensitic structure ( i.e., tempforming) at 773 K (500 °C) was applied to a 0.6 pct C-2 pct Si-1 pct Cr steel. The hydrogen embrittlement (HE) property of the tempformed (TF) steel was investigated by a slow strain rate test (SSRT) and an accelerated atmospheric corrosion test (AACT). Hydrogen content within the samples after SSRT and AACT was measured by thermal desorption spectrometry (TDS). The tempforming at 773 K (500 °C) using multipass caliber rolling with an accumulative are reduction of 76 pct resulted in the evolution of an ultrafine elongated grain (UFEG) structure with a strong <110>//rolling direction (RD) fiber deformation texture and a dispersion of spheroidized cementite particles. The SSRT of the pre-hydrogen-charged notched specimens and the AACT demonstrated that the TF sample had superior potential for HE resistance to the conventional quenched and tempered (QT) sample at a tensile strength of 1500 MPa. The TDS analysis also indicated that the hydrogen might be mainly trapped by reversible trapping sites such as grain boundaries and dislocations in the TF sample, and the hydrogen trapping states of the TF sample were similar to those of the QT sample. The QT sample exhibited hydrogen-induced intergranular fracture along the boundaries of coarse prior-austenite grains. In contrast, the hydrogen-induced cracking occurred in association with the UFEG structure in the TF sample, leading to the higher HE resistance of the TF sample.

  9. Fabrication of ultrafine manganese oxide-decorated carbon nanofibers for high-performance electrochemical capacitors

    SciTech Connect

    Yang, Ying; Lee, Sungsik; Brown, Dennis E.; Zhao, Hairui; Li, Xinsong; Jiang, Daqiang; Hao, Shijie; Zhao, Yongxiang; Cong, Daoyong; Zhang, Xin; Ren, Yang

    2016-09-01

    Ultrafine manganese oxide-decorated carbon nanofibers (MnOn-CNF) as a new type of electrode materials are facilely fabricated by direct conversion of Mn, Zn-trimesic acid (H3BTC) metal organic framework fibers (Mn-ZnBTC). The construction and evolution of Mn-ZnBTC precursors are investigated by SEM and in situ high-energy XRD. The manganese oxides are highly dispersed onto the porous carbon nanofibers formed simultaneously, verified by TEM, X-ray absorption fine structure (XAFS), Raman, ICP-AES and N2 adsorption techniques. As expected, the resulting MnOn-CNF composites are highly stable, and can be cycled up to 5000 times with a high capacitance retention ratio of 98% in electrochemical capacitor measurements. They show a high capacitance of up to 179 F g–1 per mass of the composite electrode, and a remarkable capacitance of up to 18290 F g–1 per active mass of the manganese(IV) oxide, significantly exceeding the theoretical specific capacitance of manganese(IV) oxide (1370 F g–1). The maximum energy density is up to 19.7 Wh kg–1 at the current density of 0.25 A g–1, even orders higher than those of reported electric double-layer capacitors and pseudocapacitors. The excellent capacitive performance can be ascribed to the joint effect of easy accessibility, high porosity, tight contact and superior conductivity integrated in final MnOn-CNF composites.

  10. Biological significance of nanograined/ultrafine-grained structures: Interaction with fibroblasts.

    PubMed

    Misra, R D K; Thein-Han, W W; Pesacreta, T C; Somani, M C; Karjalainen, L P

    2010-08-01

    Given the need to develop high strength/weight ratio bioimplants with enhanced cellular response, we describe here a study focused on the processing-structure-functional property relationship in austenitic stainless steel that was processed using an ingenious phase reversion approach to obtain an nanograined/ultrafine-grained (NG/UFG) structure. The cellular activity between fibroblast and NG/UFG substrate is compared with the coarse-grained (CG) substrate. A comparative investigation of NG/UFG and CG structures illustrated that cell attachment, proliferation, viability, morphology and spread are favorably modulated and significantly different from the conventional CG structure. These observations were further confirmed by expression levels of vinculin and associated actin cytoskeleton. Immunofluorescence studies demonstrated increased vinculin concentrations associated with actin stress fibers in the outer regions of the cells and cellular extensions on NG/UFG substrate. These observations suggest enhanced cell-substrate interaction and activity. The cellular attachment response on NG/UFG substrate is attributed to grain size and hydrophilicity and is related to more open lattice in the positions of high-angle grain boundaries.

  11. The persistence, transport and health effects of regional ultrafine particles

    NASA Astrophysics Data System (ADS)

    Spada, Nicholas James

    Due to the multitude of health studies that have shown the ability of ultrafine particles (UFPs, DP < 100 nm) to penetrate deep into lung tissue, diffuse into the bloodstream, and eventually cause heart and lung disease, my thesis will focus on these effectively unmonitored airborne pollutants. UFPs are commonly detected near busy roadways and other high-temperature combustion sources in the form of heavy metals (copper, lead, zinc, iron) and toxic organics (benzo{a}pyrene, coronene). Studies of UFPs during the 1970s expressed a nucleic propensity for coagulation and growth. Because many of the UFPs studied were generated from heavy-duty diesel engines operating with ≥0.3 wt % sulfur, the resulting sulfur-containing UFPs were hydrophilic and water vapor readily condensed on the generated nuclei. Due to their increased size, UFPs tend to settle out of air streams quickly; thus, limiting their impact regime to near-roadway influence and labeling them as local pollutants. By using highly size- and time-resolved impactors with TeflonRTM ultrafine after-filters (targeting DP < 90 nm), new evidence suggests the persistence of UFPs for greater periods of time and transport than previously predicted. Techniques developed during the Roseville rail yard study, refined during the Watt Ave/Arden Way study and applied across California's central valley have shown low levels of UFPs in a regional background. For cities in constrictive topography and meteorology (such as Bakersfield, Fresno and Los Angeles), winter inversions and stagnant weather can saturate the region with ultrafine heavy metals and carcinogenic organics, similar to the disasters during the middle of the last century.

  12. Comparison Between Different Processing Schedules for the Development of Ultrafine-Grained Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Karmakar, Anish; Sivaprasad, S.; Nath, S. K.; Misra, R. D. K.; Chakrabarti, Debalay

    2014-05-01

    A comparative study was carried out on the development of ultrafine-grained dual-phase (DP) (ferrite-martensite) structures in a low-carbon microalloyed steel processed using two thermomechanical processing routes, (i) intercritical deformation and (ii) warm-deformation and intercritical annealing. The samples were deformed using Gleeble3500® simulator, maintaining a constant total strain ( ɛ = 1) and strain rate ( = 1/s). Evolution of microstructure and micro-texture was investigated by SEM, TEM, and EBSD. Ultrafine-grained DP structures could be formed by careful selection of deformation temperature, T def (for intercritical deformation) or annealing temperature, T anneal (for warm-deformation and annealing). Overall, the ferrite grain sizes ranged from 1.5 to 4.0 μm, and the sizes and fractions of the uniformly distributed fine-martensitic islands ranged from 1.5 to 3.0 μm and 15 to 45 pct, respectively. Dynamic strain-induced austenite-to-ferrite transformation followed by continuous (dynamic) recrystallization of the ferrite dictated the grain refinement during intercritical deformation, while, continuous (static) recrystallization by pronounced recovery dictated the grain refinement during the warm-deformation and the annealing. Regarding intercritical deformation, the samples cooled to T def indicated finer grain size compared with the samples heated to T def, which are explained in terms of the effects of strain partitioning on the ferrite and the heating during deformation. Alpha-fiber components dominated the texture in all the samples, and the fraction of high-angle boundaries (with >15 deg misorientation) increased with the increasing T def or T anneal, depending on the processing schedule. Fine carbide particles, microalloyed precipitates and austenitic islands played important roles in defining the mechanism of grain refinement that involved retarding conventional ferrite recrystallization and ferrite grain growth. With regard to the intercritical

  13. Process for making ultra-fine ceramic particles

    DOEpatents

    Stangle, Gregory C.; Venkatachari, Koththavasal R.; Ostrander, Steven P.; Schulze, Walter A.

    1995-01-01

    A process for producing ultra-fine ceramic particles in which droplets are formed from a ceramic precursor mixture containing a metal cation, a nitrogen-containing fuel, a solvent, and an anion capable of participating in an anionic oxidation-reduction reaction with the nitrogen containing fuel. The nitrogen-containing fuel contains at least three nitrogen atoms, at least one oxygen atom, and at least one carbon atom. The ceramic precursor mixture is dried to remove at least 85 weight percent of the solvent, and the dried mixture is then ignited to form a combusted powder.

  14. Stabilization of ultrafine metal nanocatalysts on thin carbon sheets

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofang; Cui, Xinrui; Liu, Yiding; Yin, Yadong

    2015-10-01

    A novel strategy was proposed to anchor ultrafine metal nanoparticles (NPs) on thin carbon sheets for highly stable and efficient heterogeneous catalysts. In this facile approach, a dense monolayer of ultrafine AuNPs was sandwiched between a silica core and a resin shell, followed by carbonization of the shell at a high temperature and then selective removal of the silica core. The shrinkage of the shells during carbonization facilitates partial embedment of the AuNPs on the carbon shell surface and provides superior stability against particle sintering during high temperature/mechanical post-treatments and catalytic reactions. It was also found that diffusion of reactants to the surface of AuNPs could be maximized by reducing the thickness of the hollow shells or simply by cracking the shells into thin carbon sheets, both significantly benefiting the catalytic efficiency. The advantages of this ultra-stable architecture together with the densely dispersed catalytic sites were demonstrated by their high stability and superior catalytic activity in reducing hydrophilic 4-nitrophenol and hydrophobic nitrobenzene.A novel strategy was proposed to anchor ultrafine metal nanoparticles (NPs) on thin carbon sheets for highly stable and efficient heterogeneous catalysts. In this facile approach, a dense monolayer of ultrafine AuNPs was sandwiched between a silica core and a resin shell, followed by carbonization of the shell at a high temperature and then selective removal of the silica core. The shrinkage of the shells during carbonization facilitates partial embedment of the AuNPs on the carbon shell surface and provides superior stability against particle sintering during high temperature/mechanical post-treatments and catalytic reactions. It was also found that diffusion of reactants to the surface of AuNPs could be maximized by reducing the thickness of the hollow shells or simply by cracking the shells into thin carbon sheets, both significantly benefiting the

  15. Method for the production of ultrafine particles by electrohydrodynamic micromixing

    DOEpatents

    DePaoli, David W.; Hu, Zhong Cheng; Tsouris, Constantinos

    2001-01-01

    The present invention relates to a method for the rapid production of homogeneous, ultrafine inorganic material via liquid-phase reactions. The method of the present invention employs electrohydrodynamic flows in the vicinity of an electrified injector tube placed inside another tube to induce efficient turbulent mixing of two fluids containing reactive species. The rapid micromixing allows liquid-phase reactions to be conducted uniformly at high rates. This approach allows continuous production of non-agglomerated, monopispersed, submicron-sized, sphere-like powders.

  16. Ductile Fe83C17 Alloys of Ultrafine Networklike Microstructure

    NASA Astrophysics Data System (ADS)

    Ho, C. M.; Leung, C. C.; Yip, Y. L.; Mok, S. W.; Kui, H. W.

    2010-12-01

    Fe83C17 alloy melt can be cast readily into white cast iron. It is brittle, with a compressive strength of ~1300 MPa. By a fluxing technique, a Fe83C17 melt can be quenched into a crystalline solid of ultrafine networklike microstructure, with a hardness value of ~536 HV, a yield strength of ~2000 MPa, and a strain to failure of about 18 pct. In particular, a cube made of Fe83C17 network alloy can be compressed to a disk.

  17. Enhanced column flotation of fine and ultrafine coal

    SciTech Connect

    Slomka, B.J.; Buttermore, W.H.; Birlingmair, D.H.; Dawson, M.R.; Pollard, J.L.; Enustun, B.V.

    1992-12-01

    A 2-inch diameter, twenty-foot tall, glass laboratory flotation column was modified to incorporate digital control of critical operating parameters. Different column control strategies were explored including location of the froth interface, and manipulation of volumetric flow ratios. Column flotation tests were performed with both fine (-250{mu}m) and ultrafine (-5{mu}m) Pittsburgh seam coal. Both moisture- and ash-free (MAF) recovery, and ash rejection were improved when the partition of the column`s liquid content into froth and tailings was directly controlled. MAF recovery and ash rejection were also enhanced by brief exposure of the coarser feed to pulsed sonic energy.

  18. Enhanced column flotation of fine and ultrafine coal

    SciTech Connect

    Slomka, B.J.; Buttermore, W.H.; Birlingmair, D.H.; Dawson, M.R.; Pollard, J.L.; Enustun, B.V.

    1992-01-01

    A 2-inch diameter, twenty-foot tall, glass laboratory flotation column was modified to incorporate digital control of critical operating parameters. Different column control strategies were explored including location of the froth interface, and manipulation of volumetric flow ratios. Column flotation tests were performed with both fine (-250[mu]m) and ultrafine (-5[mu]m) Pittsburgh seam coal. Both moisture- and ash-free (MAF) recovery, and ash rejection were improved when the partition of the column's liquid content into froth and tailings was directly controlled. MAF recovery and ash rejection were also enhanced by brief exposure of the coarser feed to pulsed sonic energy.

  19. Calibration of TSI model 3025 ultrafine condensation particle counter

    SciTech Connect

    Kesten, J.; Reineking, A.; Porstendoerfer, J. )

    1991-01-01

    The registration efficiency of the TSI model 3025 ultrafine condensation particle counter for Ag and NaCl particles of between 2 and 20 nm in diameter was determined. Taking into account the different shapes of the input aerosol size distributions entering the differential mobility analyzer (DMA) and the transfer function of the DMA, the counting efficiencies of condensation nucleus counters (CNC) for monodisperse Ag and NaCl particles were estimated. In addition, the dependence of the CNC registration efficiency on the particle concentration was investigated.

  20. Natural fibers

    Treesearch

    Craig M. Clemons; Daniel F. Caulfield

    2005-01-01

    The term “natural fibers” covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and agrobased bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement. Below...

  1. Fiber diffraction without fibers.

    PubMed

    Poon, H-C; Schwander, P; Uddin, M; Saldin, D K

    2013-06-28

    Postprocessing of diffraction patterns of completely randomly oriented helical particles, as measured, for example, in so-called "diffract-and-destroy" experiments with an x-ray free electron laser can yield "fiber diffraction" patterns expected of fibrous bundles of the particles. This will allow "single-axis alignment" to be performed computationally, thus obviating the need to do this by experimental means such as forming fibers and laser or flow alignment. The structure of such particles may then be found by either iterative phasing methods or standard methods of fiber diffraction.

  2. Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration.

    PubMed

    Zuo, Yi; Yang, Fang; Wolke, Joop G C; Li, Yubao; Jansen, John A

    2010-04-01

    Inherent brittleness and slow degradation are the major drawbacks for the use of calcium phosphate cements (CPCs). To address these issues, biodegradable ultrafine fibers were incorporated into the CPC in this study. Four types of fibers made of poly(epsilon-caprolactone) (PCL) (PCL12: 1.1 microm, PCL15: 1.4 microm, PCL18: 1.9 microm) and poly(l-lactic acid) (PLLA4: 1.4 microm) were prepared by electrospinning using a special water pool technique, then mixed with the CPC at fiber weight fractions of 1%, 3%, 5% and 7%. After incubation of the composites in simulated body fluid for 7 days, they were characterized by a gravimetric measurement for porosity evaluation, a three-point bending test for mechanical properties, microcomputer topography and scanning electron microscopy for morphological observation. The results indicated that the incorporation of ultrafine fibers increases the fracture resistance and porosity of CPCs. The toughness of the composites increased with the fiber fraction but was not affected by the fiber diameter. It was found that the incorporated fibers formed a channel-like porous structure in the CPCs. After degradation of the fibers, the created space and high porosity of the composite cement provides inter-connective channels for bone tissue in growth and facilitates cement resorption. Therefore, we concluded that this electrospun fiber-CPC composite may be beneficial to be used as bone fillers.

  3. Polyvinylpyrrolidone-Poly(ethylene glycol) Modified Silver Nanorods Can Be a Safe, Noncarrier Adjuvant for HIV Vaccine.

    PubMed

    Liu, Ye; Balachandran, Yekkuni L; Li, Dan; Shao, Yiming; Jiang, Xingyu

    2016-03-22

    One of the biggest obstacles for the development of HIV vaccines is how to sufficiently trigger crucial anti-HIV immunities via a safe manner. We herein integrated surface modification-dependent immunostimulation against HIV vaccine and shape-dependent biosafety and designed a safe noncarrier adjuvant based on silver nanorods coated by both polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG). Such silver nanorods can significantly elevate crucial immunities of HIV vaccine and overcome the toxicity, which is a big problem for other existing adjuvants. This study thus provided a principle for designing a safe and high-efficacy material for an adjuvant and allow researchers to really have a safe and effective prophylaxis against HIV. We expect this material approach to be applicable to other types of vaccines, whether they are preventative or therapeutic.

  4. Effect of polyvinylpyrrolidone on the structure and laser damage resistance of sol gel silica anti-reflective films

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Xu, Yao; Wu, Dong; Sun, Yuhan; Jiang, Xiaodong; Wei, Xiaofeng

    2008-03-01

    The effect of polyvinylpyrrolidone (PVP) on the structure and laser-induced damage threshold (LIDT) of sol-gel silica anti-reflective films is investigated. The results of dynamic light scattering, transmission electron microscopy, and small angle X-ray scattering, show that the PVP molecules surrounded the silica sol particles through the strong hydrogen bonds between Si-OH groups and the PVP. As a result, the growth of silica particles was restricted and thus the interface layer between the silica particles and the solvent become thickened with PVP content. Furthermore, the PVP reduced the porosity of the film, so the anti-reflection properties of the film were weakened. A multi-fractal analysis showed that the appropriate addition of PVP, 1 weight percent (wt%), could improve the surface fractal structure of the film, but that higher PVP content resulted in reduced surface uniformity. The addition of PVP lead to improved LIDT.

  5. Spectrophotometric determination of L-cysteine by using polyvinylpyrrolidone-stabilized silver nanoparticles in the presence of barium ions.

    PubMed

    Bamdad, Farzad; Khorram, Fateme; Samet, Maryam; Bamdad, Kourosh; Sangi, Mohammad Reza; Allahbakhshi, Fateme

    2016-05-15

    In this article a simple and selective colorimetric probe for cysteine determination using silver nano particles (AgNPS) is described. The determination process was based upon the surface plasmon resonance properties of polyvinylpyrrolidone-stabilized AgNPS. Interaction of AgNPS with cysteine molecules in the presence of barium ions induced a red shift in the surface plasmon resonance (SPR) maximum of AgNPs, as a result of nanoparticle aggregation. Consequently, yellow color of AgNP solution was changed to pink. The linear range for the determination of cysteine was 3.2-8.2 μM (R=0.9965) with a limit of detection equal to 2.8 μM (3σ). The proposed method was successfully applied to the determination of cysteine in human plasma samples. Acceptable recovery results of the spiked samples confirmed the validity of the proposed method.

  6. Selective hydrogenation of m-chloronitrobenzene to m-chloroaniline over polyvinylpyrrolidone-stabilized Pt and Pt/Sn catalysts

    NASA Astrophysics Data System (ADS)

    Li, Feng; Ma, Rui; Song, Hualin; Song, Hua; Yu, Dezhi

    2015-05-01

    A Pt-polyvinylpyrrolidone (PVP) catalyst was synthesized via chemical reduction of platinum ions with hydrazine hydrate in a PVP/ n-butanol/H2PtCl6 aqueous solution. Its catalytic activity was evaluated by the liquid-phase hydrogenation of m-chloronitrobenzene ( m-CNB) to m-chloroaniline ( m-CAN) under mild conditions ( T = 303 K, p = 0.1 MPa). The as prepared catalyst exhibited higher activity and selectivity than prepared via conventional ethanol reduction with the same platinum load. The catalytic performance of PVP-Pt catalyst was remarkably improved by addition of 0.2 wt % Sn4+. The modification mechanism may be related with the interaction of Sn4+ with nitro group of m-CNB and -NH2 in m-CAN.

  7. Sensitive Adsorptive Voltammetric Method for Determination of Bisphenol A by Gold Nanoparticle/Polyvinylpyrrolidone-Modified Pencil Graphite Electrode.

    PubMed

    Yaman, Yesim Tugce; Abaci, Serdar

    2016-05-25

    A novel electrochemical sensor gold nanoparticle (AuNP)/polyvinylpyrrolidone (PVP) modified pencil graphite electrode (PGE) was developed for the ultrasensitive determination of Bisphenol A (BPA). The gold nanoparticles were electrodeposited by constant potential electrolysis and PVP was attached by passive adsorption onto the electrode surface. The electrode surfaces were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The parameters that affected the experimental conditions were researched and optimized. The AuNP/PVP/PGE sensor provided high sensitivity and selectivity for BPA recognition by using square wave adsorptive stripping voltammetry (SWAdSV). Under optimized conditions, the detection limit was found to be 1.0 nM. This new sensor system offered the advantages of simple fabrication which aided the expeditious replication, low cost, fast response, high sensitivity and low background current for BPA. This new sensor system was successfully tested for the detection of the amount of BPA in bottled drinking water with high reliability.

  8. Spectrophotometric determination of L-cysteine by using polyvinylpyrrolidone-stabilized silver nanoparticles in the presence of barium ions

    NASA Astrophysics Data System (ADS)

    Bamdad, Farzad; Khorram, Fateme; Samet, Maryam; Bamdad, Kourosh; Sangi, Mohammad Reza; Allahbakhshi, Fateme

    2016-05-01

    In this article a simple and selective colorimetric probe for cysteine determination using silver nano particles (AgNPS) is described. The determination process was based upon the surface plasmon resonance properties of polyvinylpyrrolidone-stabilized AgNPS. Interaction of AgNPS with cysteine molecules in the presence of barium ions induced a red shift in the surface plasmon resonance (SPR) maximum of AgNPs, as a result of nanoparticle aggregation. Consequently, yellow color of AgNP solution was changed to pink. The linear range for the determination of cysteine was 3.2-8.2 μM (R = 0.9965) with a limit of detection equal to 2.8 μM (3σ). The proposed method was successfully applied to the determination of cysteine in human plasma samples. Acceptable recovery results of the spiked samples confirmed the validity of the proposed method.

  9. Using polyvinylpyrrolidone to enhance the enzymatic hydrolysis of lignocelluloses by reducing the cellulase non-productive adsorption on lignin.

    PubMed

    Cai, Cheng; Qiu, Xueqing; Zeng, Meijun; Lin, Meilu; Lin, Xuliang; Lou, Hongming; Zhan, Xuejuan; Pang, Yuxia; Huang, Jinhao; Xie, Lingshan

    2017-03-01

    Polyvinylpyrrolidone (PVP) is an antifouling polymer to resist the adsorption of protein on solid surface. Effects of PVP on the enzymatic hydrolysis of pretreated lignocelluloses and its mechanism were studied. Adding 1g/L of PVP8000, the enzymatic digestibility of eucalyptus pretreated by dilute acid (Eu-DA) was increased from 28.9% to 73.4%, which is stronger than the classic additives, such as PEG, Tween and bovine serum albumin. Compared with PEG4600, the adsorption of PVP8000 on lignin was larger, and the adsorption layer was more stable and hydrophilic. Therefore, PVP8000 reduced 73.1% of the cellulase non-productive adsorption on lignin and enhanced the enzymatic hydrolysis of lignocelluloses greatly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Process and apparatus for producing ultrafine explosive particles

    DOEpatents

    McGowan, Michael J.

    1992-10-20

    A method and an improved eductor apparatus for producing ultrafine explosive particles is disclosed. The explosive particles, which when incorporated into a binder system, have the ability to propagate in thin sheets, and have very low impact sensitivity and very high propagation sensitivity. A stream of a solution of the explosive dissolved in a solvent is thoroughly mixed with a stream of an inert nonsolvent by obtaining nonlaminar flow of the streams by applying pressure against the flow of the nonsolvent stream, to thereby diverge the stream as it contacts the explosive solution, and violently agitating the combined stream to rapidly precipitate the explosive particles from the solution in the form of generally spheroidal, ultrafine particles. The two streams are injected coaxially through continuous, concentric orifices of a nozzle into a mixing chamber. Preferably, the nonsolvent stream is injected centrally of the explosive solution stream. The explosive solution stream is injected downstream of and surrounds the nonsolvent solution stream for a substantial distance prior to being ejected into the mixing chamber.

  11. Dissolution of populations of ultrafine grains with applications to feldspars

    SciTech Connect

    Talman, S.J.; Nesbitt, H.W. )

    1988-06-01

    Mineral dissolution studies are difficult to interpret when the solid reactant displays a wide range in grain sizes, since the rate of dissolution of the finest grains may not be simply related to their surface area. The transient apparent rate of dissolution of a population of fine-grained reactants is modeled to predict changes to the solution composition, as well as changes in the size distribution of ultra-fine particles as functions of time. The model is applies to the experimental data on Amelia albite of Hodlren and Berner (1979) from which both solution composition and grain size distribution have been obtained. The observed size distribution cannot be duplicated if the dissolution rate is proportional to surface area (i.e. dV/dt=Kr{sup 2}); other contributions to the rate, such as dependence on grain size and the specific contributions from edges and corners, must be invoked. The observed grain size distribution and pseudo-parabolic rate can be reproduced when the rate of dissolution of the fine grains is proportional to its radius (i.e. dV/dt=Kr). The rate constant, K, is consistent with a rate limited by dissolution at the edges of the grains. The possibility of predicting both the contributions of ultrafine particles to the observed dissolution rate and the time evolution of the grain size distribution makes the model a useful tool for interpreting mineral dissolution data.

  12. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-04-22

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30-500 nm, number concentration in range of 5 × 10²-10⁷ /cm³. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles.

  13. [Health effects of ambient ultrafine particles--the project UFIREG].

    PubMed

    Dostál, Miroslav; Pastorková, Anna; Lanzinger, Stefanie; Schneider, Alexandra; Bastian, Susanne; Senghaas, Monika; Erzen, Ziva; Novák, Jiří; Kolodnitska, Teťana; Šrám, Radim J; Peters, Annette

    2015-01-01

    The project "Ultrafine particles--an evidence based contribution to the development of regional and European environmental and health policy" (UFIREG) started in July 2011 and ended in December 2014. It was implemented through the Central Europe Programme and co-financed by the European Regional Development Fund. Five cities in four Central European countries participated in the study: Augsburg (Germany), Chernivtsi (Ukraine), Dresden (Germany), Ljubljana (Slovenia) and Prague (Czech Republic). The aim of the UFIREG project was to improve the knowledge base on possible health effects of ambient ultrafine particles (UFP) and to raise overall awareness of environmental and health care authorities and the population. Epidemiological studies in the frame of the UFIREG project have assessed the short-term effects of UFP on human mortality and morbidity, especially in relation to cardiovascular and respiratory diseases. Official statistics were used to determine the association between air pollution concentration and daily (cause-specific: respiratory and cardiovascular) hospital admissions and mortality. Associations of UFP levels and health effects were analysed for each city by use of Poisson regression models adjusting for a number of confounding factors. Results on morbidity and mortality effects of UFP were heterogeneous across the five European cities investigated. Overall, an increase in respiratory hospital admissions and mortality could be detected for increases in UFP concentrations. Results on cardiovascular health were less conclusive. Further multi-centre studies such as UFIREG are needed preferably investigating several years in order to produce powerful results.

  14. [Worker exposure to ultrafine particles during carbon black treatment].

    PubMed

    Mikołajczyk, Urszula; Bujak-Pietrek, Stella; Szadkowska-Stańczyk, Irena

    2015-01-01

    The aim of the project was to assess the exposure of workers to ultrafine particles released during handling and packing of carbon black. The assessment included the results of the measurements performed in a carbon black handling plant before, during, and after work shift. The number concentration of particles within the dimension range 10-1000 nm and 10-100 nm was assayed by a condensation particle counter (CPC). The mass concentration of particles was determined by a DustTrak II DRX aerosol concentration monitor. The surface area concentration of the particles potentially deposited in the alveolar (A) and tracheo-bronchial (TB) regions was estimated by an AeroTrak 9000 nanoparticle monitor. An average mass concentration of particles during the process was 6-fold higher than that before its start, while a 3-fold increase in the average number concentration of particles within the dimension range 10-1000 nm and 10-100 nm was observed during the process. At the same time a 4-fold increase was found in the surface area concentration of the particles potentially deposited in the A and TB regions. During the process of carbon black handling and packing a significantly higher values of each of the analysed parameters, characterizing the exposure to ultrafine particles, were noted. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  15. Defect structure of ultrafine MgB{sub 2} nanoparticles

    SciTech Connect

    Bateni, Ali; Somer, Mehmet E-mail: msomer@ku.edu.tr; Repp, Sergej; Erdem, Emre E-mail: msomer@ku.edu.tr; Thomann, Ralf; Acar, Selçuk

    2014-11-17

    Defect structure of MgB{sub 2} bulk and ultrafine particles, synthesized by solid state reaction route, have been investigated mainly by the aid of X-band electron paramagnetic resonance spectrometer. Two different amorphous Boron (B) precursors were used for the synthesis of MgB{sub 2}, namely, boron 95 (purity 95%–97%, <1.5 μm) and nanoboron (purity >98.5%, <250 nm), which revealed bulk and nanosized MgB{sub 2}, respectively. Scanning and transmission electron microscopy analysis demonstrate uniform and ultrafine morphology for nanosized MgB{sub 2} in comparison with bulk MgB{sub 2}. Powder X-ray diffraction data show that the concentration of the by-product MgO is significantly reduced when nanoboron is employed as precursor. It is observed that a significant average particle size reduction for MgB{sub 2} can be achieved only by using B particles of micron or nano size. The origin and the role of defect centers were also investigated and the results proved that at nanoscale MgB{sub 2} material contains Mg vacancies. Such vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications.

  16. Ultrafine coal single stage dewatering and briquetting process

    SciTech Connect

    Wilson, J.W.; Honaker, R.Q.

    1995-12-31

    It is well known that a large portion of the pyrite particles in the coal seams of the Illinois Basin are finely disseminated within the coal matrix. In order to liberate these micron size pyrite particles, one must use a fine grinding operation. The ultrafine coal particles are difficult to dewater and create problems in coal transportation, as well as in storage and handling at utility plants. The objective of this research project is to combine the ultrafine coal dewatering and briquetting processes into a single stage operation. This will be accomplished by the use of bitumen based emulsions for dewatering and a compaction device for briquetting. During this reporting period, several types of coal samples with various particle size distributions have been tested for use in the dewatering and briquetting processes. Furthermore, various bitumen emulsions have been tested to determine the optimum dewatering reagent. These dewatering and pelletizing tests were carried out using a lab-scale ram extruder. Discharge from the dewatering and briquetting processes was tested to determine compliance with current federal and state requirements. The influence of bitumen emulsion on the sulfur content of coal pellets made were also examined. In addition, a ram extruder which can be operated continuously to simulate a rotary press operation, has been built and is currently being tested for use in the fine coal dewatering and pelletizing process.

  17. Light scattering of ultrafine silica particles by VUV synchrotron radiation.

    PubMed

    Shu, Jinian; Wilson, Kevin R; Arrowsmith, Alan N; Ahmed, Musahid; Leone, Stephen R

    2005-06-01

    Vacuum ultraviolet (VUV) light scattering from ultrafine silica particles is studied with an aerosol instrument recently established at the Advanced Light Source (ALS) in Berkeley. Silica particles, size-selected by a differential mobility analyzer, are introduced into vacuum through a set of aerodynamic lenses to form a particle beam. The scattered photons from the crossing area of the VUV synchrotron beam and particle beam are detected with a rotatable VUV photon detector. The angular distributions of scattered photons (ADSP) originating from 70, 100, 200 nm diameter silica particles are measured with 145.9 and 118.1 nm synchrotron radiation. These angular distributions show strong forward scattering. The measured ADSPs are consistent with simulation of Mie scattering. The refractive indices of silica particles, 2.6 + 1.1i and 1.6 + 0.0001i for 118.1 and 145.9 nm, respectively, are obtained by fitting the measured ADSPs; the least average percentage deviations are 18% and 6%, respectively. The scattered fluxes at widely different wavelengths (visible versus VUV) also exhibit clear size sensitivity. Under comparable experimental conditions of photon fluxes and detection efficiencies, limits of particle size detection of 70 and 250 nm are obtained, respectively, when using 118.1 and 532 nm illumination. As anticipated, VUV scattering is a more sensitive probe for ultrafine particles, which will find application in detection of these ubiquitous species beyond the confines of a laboratory.

  18. Directly electrospun ultrafine nanofibres with Cu grid spinneret

    NASA Astrophysics Data System (ADS)

    Li, Wenwang; Zheng, Gaofeng; Wang, Xiang; Zhang, Yulong; Li, Lei; Wang, Lingyun; Wang, Han; Sun, Daoheng

    2011-04-01

    A hydrophobic Cu grid was used as an electrospinning spinneret to fabricate ultrafine organic nanofibres. The Cu grid used in this study was that which holds samples in TEM. Due to the hydrophobic surface and larger contact angle of the electrospinning solution on the Cu grid surface, the solution flow was divided into several finer ones by the holes in the Cu grid instead of accumulating. Each finer flow was stretched into individual jets and established a multi-jet mode by the electrical field force. The finer jets played an important role in decreasing the diameter of the nanofibre. The charge repulsion force among charged jets enhanced the whipping instability motion of the liquid jets, which improved the uniformity of the nanofibre and decreased the diameter of the nanofibre. An ultrafine uniform nanofibre of diameter less than 80 nm could be fabricated directly with the novel Cu grid spinneret without any additive. This study provided a unique way to promote the application of one-dimensional organic nanostructures in micro/nanosystems.

  19. Defects and failure in ultra-fine copper magnet wire

    SciTech Connect

    Murr, L.E.; Flores, R.D.

    1998-08-04

    The flow processes in wire drawing and extrusion are extremely nonhomogeneous and depend prominently on the die half-angle, the fractional reduction, the velocity vector, the friction shear factor between the die and the wire surface, and the strain hardening capacity of the drawing metal. Structural damage during wire drawing for a given microstructure has been found to correlate with the amount of hydrostatic stress developed. Nonmetallic inclusions such as oxide particles and more recently hard metallic inclusions can nucleate voids and cracks along with an insidious phenomenon called central burst or cupping. In addition, there appears to be a microstructural distinction around the wire centerline which has not been investigated in any systematic manner. In fact, microstructural characterization of drawn copper magnet wires seems to have received little or no consideration, especially utilizing transmission electron microscopy (TEM). This study represents an effort to rectify these shortcomings by applying light metallography (LM) and TEM to the study of a wide range of copper rod and drawn wire microstructures, including ultra-fine wire microstructures. The authors define ultra-fine wire to be smaller than 44 gauge (<50 {micro}m diameter; which is roughly one-third the diameter of a human hair).

  20. Exposure visualisation of ultrafine particle counts in a transport microenvironment

    NASA Astrophysics Data System (ADS)

    Kaur, S.; Clark, R. D. R.; Walsh, P. T.; Arnold, S. J.; Colvile, R. N.; Nieuwenhuijsen, M. J.

    An increasing number of studies indicate that short-term peak exposures, such as those seen in the transport microenvironment, pose particular health threats. Short-term exposure can only be sufficiently characterised using portable, fast-response monitoring instrumentation with detailed summaries of individual activity. In this paper, we present an exposure visualisation system that addresses this issue—it allows the simultaneous presentation of mobile video imagery synchronised with measured real-time ultrafine particle count exposure of an individual. The combined data can be examined in detail for the contribution of the surrounding environment and the individual's activities to their peak and overall exposure. The exposure visualisation system is demonstrated and evaluated around the DAPPLE study site in Central London using different modes of transport (walking, cycling, bus, car and taxi). The video images, synchronised with the exposure profile, highlight the extent to which ultrafine particle exposure is associated with traffic density and proximity to pollutant source. The extremely rapid decline in concentration with increasing distance away from the pollutant source, such as from the main street to the backstreets, is clearly evident. The visualisation technique allows these data to be presented to both technical audiences and laypersons thus making it an effective environmental risk communication tool. Some exposure peaks however are not obviously associated with any event recorded on video—in these cases it will be necessary to use advanced dispersion modelling techniques to investigate meteorological conditions and other variables influencing in-street conditions to identify their possible causes.

  1. Volatility and mixing states of ultrafine particles from biomass burning.

    PubMed

    Maruf Hossain, A M M; Park, Seungho; Kim, Jae-Seok; Park, Kihong

    2012-02-29

    Fine and ultrafine carbonaceous aerosols produced from burning biomasses hold enormous importance in terms of assessing radiation balance and public health hazards. As such, volatility and mixing states of size-selected ultrafine particles (UFP) emitted from rice straw, oak, and pine burning were investigated by using volatility tandem differential mobility analyzer (VTDMA) technique in this study. Rice straw combustion produced unimodal size distributions of emitted aerosols, while bimodal size distributions from combustions of oak (hardwood) and pine (softwood) were obtained. A nearness of flue gas temperatures and a lower CO ratio of flaming combustion (FC) to smoldering combustion (SC) were characteristic differences found between softwood and hardwood. SC emitted larger mode particles in higher numbers than smaller mode particles, while the converse was true for FC. Rice straw open burning UFPs exhibited a volatilization behavior similar to that between FC and SC. In addition, internal mixing states were observed for size-selected UFPs in all biomasses for all combustion conditions, while external mixing states were only observed for rice straw combustion. Results for FC and open burning suggested there was an internal mixing of volatile organic carbon (OC) and non-volatile core (e.g., black carbon (BC)), while the SC in rice straw produced UFPs devoid of non-volatile core. Also, it was found that volatility of constituting OC in FC and SC particles was different. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Monitoring exposure to airborne ultrafine particles in Lisbon, Portugal.

    PubMed

    Gomes, João Fernando Pereira; Bordado, João Carlos Moura; Albuquerque, Paula Cristina Silva

    2012-06-01

    The aim of this study is to contribute to the assessment of exposure levels of ultrafine particles (UFP) in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung-deposited alveolar surface area (resulting from exposure to UFP) in a major avenue leading to the town centre during late Spring, as well as in indoor buildings facing it. This study revealed differentiated patterns for week days and weekends, consistent with PM(2.5) and PM(10) patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels could be directly related with the fluxes of automobile traffic. During a typical week, UFP alveolar deposited surface area varied between 35.0 and 89.2 µm(2)/cm(3), which is comparable with levels reported for other towns such in Germany and United States. The measured values allowed the determination of the number of UFP per cm(3), which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32-63%) outdoor, which is somewhat lower than levels observed in houses in Ontario.

  3. Fine and ultrafine particle emissions from microwave popcorn.

    PubMed

    Zhang, Q; Avalos, J; Zhu, Y

    2014-04-01

    This study characterized fine (PM2.5 ) and ultrafine particle (UFP, diameter < 100 nm) emissions from microwave popcorn and analyzed influential factors. Each pre-packed popcorn bag was cooked in a microwave oven enclosed in a stainless steel chamber for 3 min. The number concentration and size distribution of UFPs and PM2.5 mass concentration were measured inside the chamber repeatedly for five different flavors under four increasing power settings using either the foil-lined original package or a brown paper bag. UFPs and PM2.5 generated by microwaving popcorn were 150-560 and 350-800 times higher than the emissions from microwaving water, respectively. About 90% of the total particles emitted were in the ultrafine size range. The emitted PM concentrations varied significantly with flavor. Replacing the foil-lined original package with a brown paper bag significantly reduced the peak concentration by 24-87% for total particle number and 36-70% for PM2.5 . A positive relationship was observed between both UFP number and PM2.5 mass and power setting. The emission rates of microwave popcorn ranged from 1.9 × 10(10) to 8.0 × 10(10) No./min for total particle number and from 134 to 249 μg/min for PM2.5 .

  4. Dynamics of ultrafine particles inside a roadway tunnel.

    PubMed

    Mishra, V K; Aggarwal, M L; Berghmans, P; Frijns, E; Int Panis, L; Chacko, K M

    2015-12-01

    Size-segregated ultrafine particles from motor vehicles were investigated in the Craeybeckx tunnel (E19 motorway, Antwerp, Belgium) at two measurement sites, at 100 and 300 m inside the tunnel, respectively, during March 2008. It was observed that out of the three size modes, nucleation, Aitken, and accumulation, Aitken mode was the most dominant size fraction inside the tunnel. The diurnal variation in ultrafine particle (UFP) levels closely follows the vehicular traffic inside the tunnel, which was maximum during office rush hours, both in the morning and evening and minimum during night-time around 3 am. The tunnel data showed very high growth rates in comparison with free atmosphere. The average condensation sink during the growth period was 14.1-17.3 × 10(-2) s(-1). The average growth rate (GR) of geometric mean diameter was found to be 18.6 ± 2.45 nm h(-1). It was observed that increase in Aitken mode was related to the numbers of heavy-duty vehicles (HDV), as they emit mainly in the Aitken mode. The higher Aitken mode during traffic jams correlated well with HDV numbers. At the end of the tunnel, sudden dilution leading to fast coagulation was responsible for the sudden drop in the UFP number concentration.

  5. Evaluation of the of antibacterial efficacy of polyvinylpyrrolidone (PVP) and tri-sodium citrate (TSC) silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Dey, Arindam; Dasgupta, Abhirup; Kumar, Vijay; Tyagi, Aakriti; Verma, Anita Kamra

    2015-09-01

    We present silver nanoparticles as the new age broad spectrum antibiotic. Siver nanoparticles exhibit unique physical and chemical properties that make them suitable for understanding their biological potential as antimicrobials. In this study, we explored the antibacterial activity of silver nanoparticles (TSC-AgNPs) and silver nanoparticles doped with polyvinylpyrrolidone (PVP-AgNPs) against Gram-negative and Gram-positive bacteria, Escherichia coli (DH5α) and Staphylococcus aureus, (ATCC 13709). Nucleation and growth kinetics during the synthesis process of AgNPs were precisely controlled using citrate (TSC) and further doped with polyvinylpyrrolidone (PVP). This resulted in the formation of two different sized nanoparticles 34 and 54 nm with PDI of 0.426 and 0.643. The physical characterization was done by nanoparticle tracking analysis and scanning electron microscopy, the results of which are in unison with the digital light scattering data. We found the bactericidal effect for both TSC-AgNPs and PVP-AgNPs to be dose-dependent as determined by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against E. coli and S. aureus. Interestingly, we also observed that AgNPs showed enhanced antimicrobial activity with a MIC of 26.75 and 13.48 µg/ml for E. coli and S. aureus, respectively, while MBC for AgNPs are 53.23 and 26.75 µg/ml for E. coli and S. aureus, respectively. Moreover, AgNPs showed increased DNA degradation as observed confirming its higher efficacy as antibacterial agent than the PVP doped AgNPs.

  6. Back to the roots: photodynamic inactivation of bacteria based on water-soluble curcumin bound to polyvinylpyrrolidone as a photosensitizer.

    PubMed

    Winter, Sandra; Tortik, Nicole; Kubin, Andreas; Krammer, Barbara; Plaetzer, Kristjan

    2013-10-01

    Photodynamic inactivation (PDI), the light-induced and photosensitizer-mediated overproduction of reactive oxygen species in microorganisms, represents a convincing approach to treat infections with (multi-resistant) pathogens. Due to its favourable photoactive properties combined with excellent biocompatibility, curcumin derived from the roots of turmeric (Curcuma longa) has been identified as an advantageous photosensitizer for PDI. To overcome the poor water solubility and the rapid decay of the natural substance at physiological pH, we examined the applicability of polyvinylpyrrolidone curcumin (PVP-C) in an acidified aqueous solution (solubility of PVP-C up to 2.7 mM) for photoinactivation of Gram(+) and Gram(-) bacteria. Five micromolar PVP-C incubated for 5 minutes and illuminated using a blue light LED array (435 ± 10 nm, 33.8 J cm(-2)) resulted in a >6 log10 reduction of the number of viable Staphylococcus aureus. At this concentration, longer incubation periods result in a lower phototoxicity, most likely due to degeneration of curcumin. Upon an increase of the PVP-C concentration to 50 μM (incubation for 15 or 25 min) a complete eradication of Staphylococcus aureus can be achieved. As expected for a non-cationic photosensitizer, cell wall permeabilization with CaCl2 prior to addition of 50 μM PVP-C for 15 min is necessary to induce a drop in the count of the Gram(-) Escherichia coli for more than 3 log10. As both constituents of the formulation, curcumin (E number E100) and polyvinylpyrrolidone (E1201), have been approved as food additives, a PDI based on PCP-C might allow for a very sparing clinical application (e.g. for disinfection of wounds) or even for employment in aseptic production of foodstuffs.

  7. Measurement of clay surface areas by polyvinylpyrrolidone (PVP) sorption and its use for quantifying illite and smectite abundance

    USGS Publications Warehouse

    Blum, A.E.; Eberl, D.D.

    2004-01-01

    A new method has been developed for quantifying smectite abundance by sorbing polyvinylpyrrolidone (PVP) on smectite particles dispersed in aqueous solution. The sorption density of PVP-55K on a wide range of smectites, illites and kaolinites is ???0.99 mg/m2, which corresponds to ???0.72 g of PVP-55K per gram of montmorillonite. Polyvinylpyrrolidone sorption on smectites is independent of layer charge and solution pH. PVP sorption on Si02, Fe 2O3 and ZnO normalized to the BET surface area is similar to the sorption densities on smectites. ??-Al 2O3, amorphous Al(OH)3 and gibbsite have no PVP sorption over a wide range of pH, and sorption of PVP by organics is minimal. The insensitivity of PVP sorption densities to mineral layer charge, solution pH and mineral surface charge indicates that PVP sorption is not localized at charged sites, but is controlled by more broadly distributed sorption mechanisms such as Van der Waals' interactions and/or hydrogen bonding. Smectites have very large surface areas when dispersed as single unit-cell-thick particles (???725 m2/g) and usually dominate the total surface areas of natural samples in which smectites are present. In this case, smectite abundance is directly proportional to PVP sorption. In some cases, however, the accurate quantification of smectite abundance by PVP sorption may require minor corrections for PVP uptake by other phases, principally illite and kaolinite. Quantitative XRD can be combined with PVP uptake measurements to uniquely determine the smectite concentration in such sample. ?? 2004, The Clay Minerals Society.

  8. Flocculation, hydrophobic agglomeration and filtration of ultrafine coal

    NASA Astrophysics Data System (ADS)

    Yu, Zhimin

    In coal preparation plant circuits, fine coal particles are aggregated either by oil agglomeration or by flocculation. In a new hydrophobic agglomeration process, recently developed hydrophobic latices are utilized. While the selectivity of such aggregation processes determines the beneficiation results, the degree of aggregation has a strong effect on fine coal filtration. The aim of this research was to study the fundamentals and analyze the common grounds for these processes, including the potential effect of the coal surface properties. The selective flocculation tests, in which three types of coal, which differed widely in surface wettability, and three additives (hydrophobic latices, a semi-hydrophobic flocculant and a typical hydrophilic polyelectrolyte) were utilized, showed that coal wettability plays a very important role in selective flocculation. The abstraction of a hydrophobic latex on coal and silica revealed that the latex had a much higher affinity towards hydrophobic coal than to hydrophilic mineral matter. As a result, the UBC-1 hydrophobic latex flocculated only hydrophobic coal particles while the polyelectrolyte (PAM) flocculated all the tested coal samples and minerals, showing no selectivity in the fine coal beneficiation. The oil agglomeration was tested using kerosene emulsified with various surfactants (e.g. cationic, anionic and non-ionic). Surfactants enhance not only oil emulsification, hence reducing oil consumption (down to 0.25--0.5%), but also entirely change the electrokinetic properties of the droplets and affect the interaction energy between oil droplets and coal particles. Consequently, the results found in the course of the experimental work strongly indicate that even oxidized coals can be agglomerated if cationic surfactants are used to emulsify the oil. Oil agglomeration of the Ford-4 ultrafine coal showed that even at extremely low oil consumption (0.25 to 0.5%), a clean coal product with an ash content around 5% at over

  9. Bioactive TiO2 fiber films prepared by electrospinning method.

    PubMed

    Chen, S J; Yu, H Y; Yang, B C

    2013-01-01

    Electrospining method was used to prepare bioactive TiO(2) fibers films in this study. The acetic acid/ethanol/tetrabutyl titanate/polyvinylpyrrolidone (PVP) solvent system was used as precursor for the electrospining. The TiO(2) fiber structures (including its fiber diameter, morphology, and phase composition) could be controlled by changing feeding rate, PVP concentration and sinter temperature. The fiber films were subjected to simulated body fluid soaking experiments and MG63 cells culture experiments to study their bioactivity. According to the X-ray diffraction and MTT assay results, the fiber containing with anatase showed better apatite formation ability than that without anatase at the early stage, while cell proliferated on anatase-rutile TiO(2) fiber was better than that on other samples (p < 0.05).Some string beads in the fiber were beneficial for apatite formation, while the cell proliferated best on the fiber film without string beads (p < 0.05). The fiber with a diameter of 200 nm had the best apatite formation ability and osteoblast compatibility (p < 0.05). The results showed that the TiO(2) fiber film structure had great influence on its bioactivity. It indicated that the electronspining method is an effective way to prepare bioactive titania fiber films, and it is possible to control the structure of the films in the spinning process to optimize the bioactivity of TiO(2) fiber.

  10. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution.

  11. Ultrafine particle deposition to vegetation branches: wind tunnel investigation of the effect of canopy medium and particle size and charge

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Lin, M.; Katul, G. G.

    2012-12-01

    Ultrafine particles (UFP) have attracted much attention in recent years due to their influence on atmospheric concentrations of cloud condensation nuclei (CCN) and the consequent effect on cloud albedo and global climate. To understand UFP lifetime in the atmosphere, both sources and sinks need to be known. One important sink for UFP is removal by vegetation. The main collection mechanism by vegetation is Brownian diffusion with a possible contribution of electrostatic forces. Here we report measurements of collection efficiency of UFP by pine and juniper branches in a wind tunnel at different wind speeds, branch orientations, and packing densities. The effect of particle charge is also investigated. Two modeling approached have been developed to describe UFP deposition to vegetation branches. One treats vegetation as a fibrous filter with a characteristic fiber size; the other treats it as a random porous medium. The experiments agreed well with predictions from both models within 20%. Upon bridging these two modeling approaches, estimates of the effective fiber diameter can now be derived from conventional canopy attributes, such as the leaf area index. These results can benefit future air quality and climate models incorporating UFP.

  12. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    PubMed

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  13. Vascular effects of ultrafine particles in persons with type 2 diabetes

    EPA Science Inventory

    BACKGROUND: Diabetes confers an increased risk for cardiovascular effects of airborne particles. OBJECTIVE: We hypothesized that inhalation of elemental carbon ultrafine particles (UFP) would activate blood platelets and vascular endothelium in people with type 2 diabetes. ...

  14. Cardiovascular Effects in Adults with Metabolic Syndrome Exposed to Concentrated Ultrafine Air Pollution Particles

    EPA Science Inventory

    RATIONALE: Epidemiologic studies report associations between ambient air pollution particulate matter (PM) and various indices of cardiopulmonary morbidity and mortality. A leading hypothesis contends that smaller ultrafine (UF) particles induce a greater physiologic response bec...

  15. Super-stable ultrafine beta-tungsten nanocrystals with metastable phase and related magnetism.

    PubMed

    Xiao, J; Liu, P; Liang, Y; Li, H B; Yang, G W

    2013-02-07

    Ultrafine tungsten nanocrystals (average size of 3 nm) with a metastable phase (beta-tungsten with A15 structure, β-W) have been prepared by laser ablation of tungsten in liquid nitrogen. The as-prepared metastable nanocrystals exhibited super-stablity, and can keep the same metastable structure over a period of 6 months at room temperature. This super-stability is attributed to the nanosized confinement effect of ultrafine nanocrystals. The magnetism measurements showed that the β-W nanocrystals have weak ferromagnetic properties at 2 K, which may arise from surface defects and unpaired electrons on the surface of the ultrafine nanocrystals. These findings provided useful information for the application of ultrafine β-W nanocrystals in microelectronics and spintronics.

  16. Surface impurity diffusion-induced recrystallization of ultrafine-grained molybdenum

    NASA Astrophysics Data System (ADS)

    Grabovetskaya, G. P.; Mishin, I. P.; Kolobov, Yu. R.; Ratochka, I. V.; Zabudchenko, O. V.

    2007-05-01

    Methods of scanning and transmission electron microscopy are used to perform a comparative analysis of the structur evolution of ultrafine-grained molybdenum subjected to nickel-free annealing and to diffusion annealing accompanied by nickel penetration from the surface into the bulk of Mo(Ni) specimens. The kinetics of nickel diffusion-induced recrystallization of ultrafine-grained molybdenum in the temperature interval 1123 1223 K is investigated and the recrystallization activation energy is determined. Plausible reasons for a decrease in the nickel diffusion-induced recrystallization temperature of ultrafine-grained molybdenum as compared to its fine-grained cousin are discussed. The nickel diffusivity in ultrafine-grained molybdenum along grain boundaries is estimated on the basis of the results obtained.

  17. SOURCE STRENGTHS OF ULTRAFINE AND FINE PARTICLES DUE TO COOKING WITH A GAS STOVE

    EPA Science Inventory

    Cooking, particularly frying, is an important source of particles indoors. Few studies have measured a full range of particle sizes, including ultrafine particles, produced during cooking. In this study, semicontinuous instruments with fine size discriminating ability were us...

  18. Cardiovascular Effects in Adults with Metabolic Syndrome Exposed to Concentrated Ultrafine Air Pollution Particles

    EPA Science Inventory

    RATIONALE: Epidemiologic studies report associations between ambient air pollution particulate matter (PM) and various indices of cardiopulmonary morbidity and mortality. A leading hypothesis contends that smaller ultrafine (UF) particles induce a greater physiologic response bec...

  19. SOURCE STRENGTHS OF ULTRAFINE AND FINE PARTICLES DUE TO COOKING WITH A GAS STOVE

    EPA Science Inventory

    Cooking, particularly frying, is an important source of particles indoors. Few studies have measured a full range of particle sizes, including ultrafine particles, produced during cooking. In this study, semicontinuous instruments with fine size discriminating ability were us...

  20. Vascular effects of ultrafine particles in persons with type 2 diabetes

    EPA Science Inventory

    BACKGROUND: Diabetes confers an increased risk for cardiovascular effects of airborne particles. OBJECTIVE: We hypothesized that inhalation of elemental carbon ultrafine particles (UFP) would activate blood platelets and vascular endothelium in people with type 2 diabetes. ...

  1. Ultrafine Particulate Matter Increases Cardiac Ischemia/Reperfusion Injury via Mitochondrial Permeability Transition Pore.

    EPA Science Inventory

    Ultrafine Particulate Matter (UFP) has been associated with increased cardiovascular morbidity and mortality. However, the mechanisms that drive PM associated cardiovascular disease and dysfunction remain unclear. We examined the impact of intratracheal instillation of 100 ᠊...

  2. UPREGULATION OF TISSUE FACTOR IN HUMAN ENDOTHELIAL CELLS FOLLOWING ULTRAFINE PARTICLE EXPOSURE

    EPA Science Inventory

    Epidemiology studies have linked the exposure to air pollutant particles with increased cardiovascular mortality and morbidity, but the mechanisms remain unknown. In our laboratory we have tested the hypothesis that the ultrafine fraction of ambient pollutant particles would cau...

  3. UPREGULATION OF TISSUE FACTOR IN HUMAN ENDOTHELIAL CELLS FOLLOWING ULTRAFINE PARTICLE EXPOSURE

    EPA Science Inventory

    Epidemiology studies have linked the exposure to air pollutant particles with increased cardiovascular mortality and morbidity, but the mechanisms remain unknown. In our laboratory we have tested the hypothesis that the ultrafine fraction of ambient pollutant particles would cau...

  4. Fiber biology

    USDA-ARS?s Scientific Manuscript database

    Cotton fiber cells arising from seed epidermis is the most important agricultural textile commodity in the world. To produce fully mature fibers, approximately two months of fiber developmental process are required. The timing of four distinctive fiber development stages consisting of initiation, ...

  5. The characteristics of particle charging and deposition during powder coating processes with ultrafine powder

    NASA Astrophysics Data System (ADS)

    Meng, Xiangbo; Zhu, Jingxu Jesse; Zhang, Hui

    2009-03-01

    In a preceding work, the mechanisms of particle charging and deposition during powder coating processes were explored with coarse polyurethane powder. In this paper, the developed mechanisms were further examined with ultrafine polyurethane powder in order to meet the growing needs for ultrafine powder in finishing industries. This study first verified the previous findings in particle deposition, which account for a cone-shaped pattern formed by deposited particles on the substrate and a rise in particle accumulation in the fringe region. It was further demonstrated with ultrafine powder that, as disclosed by using coarse powder, the primary charging of in-flight particles competes with back corona in particle deposition processes, and the highest deposition efficiency is a compromise by balancing their effects. In comparison with coarse powder, ultrafine powder presents a faster reduction in the deposition rate with extended spraying duration, but shows some superiority in the uniformity of the deposited layer. In the case of charging characteristics of the deposited particles, it was further substantiated with ultrafine powder that the secondary charging mechanism takes predominance in determining the distribution of local charge-to-mass ratios. It was also disclosed that ultrafine powder shows a decreasing charge-to-mass ratio with increased charging voltage in the deposited layer, opposite to the increasing tendency of coarse powder. However, it was commonly demonstrated by both coarse and ultrafine powders that the charge-to-mass ratio of the deposited particles decreases with the extended spraying durations. In comparison, ultrafine powder is more likely to produce uniform charge-to-mass ratio distributions in the deposited layer, which contrast sharply with the ones associated with the coarse powder. In conclusion, it is believed that this study supplements the preceding study and is of great help in providing a comprehensive understanding of the mechanisms

  6. Selective separation of ultra-fine particles by magnetophoresis

    SciTech Connect

    Ying, T.; Prenger, F. Coyne; Wingo, R. M.; Worl, L. A.

    2002-01-01

    The selective and-specific extraction of species of interest fiom local environmental and other sample sources are importaut fbr scientific research, industrial processes, and environmental applications. A novel process for selective separation of ultrafine particles using 'magnetophoresis' is investigated. The principle of this process is that the direction and velocity of particle movement in a magnetic field are determined by magnetic, gravitational, and drag fbrces. By controlling these fbrces, one is able to control the migration rates of different species and then magnetically fiactionate mixtures of species into discrete groups. This study demonstrated for the fist time the selective separation of various species, such as iron (111) oxide, cupric (11) oxide, samarium (In) oxide, and cerium (III) oxide, by magnetophoresis. To better understand this phenomenon, a fbrce-balance model was developed that provides a good interpretation of the experimental results.

  7. Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions.

    PubMed

    Stone, Vicki; Johnston, Helinor; Clift, Martin J D

    2007-12-01

    Nanotechnology is involved with the creation and/or manipulation of materials at the nanometer (nm) scale, and has arisen as a consequence of the novel properties that materials exhibit within the "nano" size range. The attraction of producing, and exploiting nanparticles (NPs; one dimension less than 100 nm) is a consequence of the fact that the properties are often strikingly different from bulk forms composed from the same material. As a consequence, the field of nanotechnology has generated substantial interest resulting in incorporation of NPs into a wide variety of products including electronics, food, clothing, medicines, cosmetics and sporting equipment. While there is general recognition that nanotechnology has the potential to advance science, quality of life and to generate substantial financial gains, a number of reports suggest that potential toxicity should be considered in order to allow the safe and sustainable development of such products. For example, substances which are ordinarily innocuous can elicit toxicity due to the altered chemical and physical properties that become evident within nano dimensions leading to potentially detrimental consequences for the producer, consumer or environment. Research into respirable air pollution particles (PM10) has focused on the role of ultrafine particle (diameter less than 100 nm) in inducing oxidative stress leading to inflammation and resulting in exacerbation of preexisting respiratory and cardiovascular disease. Epidemiological studies have repeatedly found a positive correlation between the level of particulate air pollution and increased morbidity and mortality rates in both adults and children. Such studies have also identified a link between respiratory ill health and the number of ambient ultrafine particles. In vivo and in vitro toxicology studies confirm that for low solubility, low toxicity materials such as TiO2, carbon black and polystyrene beads, ultrafine particles are more toxic and

  8. Special Grain Boundaries in Ultrafine-Grained Tungsten

    NASA Astrophysics Data System (ADS)

    Dudka, O. V.; Ksenofontov, V. A.; Sadanov, E. V.; Starchenko, I. V.; Mazilova, T. I.; Mikhailovskij, I. M.

    2016-07-01

    Field ion microscopy and computer simulation were used for the study of an atomic structure high-angle grain boundary in hard-drawn ultrafine-grained tungsten wire. These boundaries with special misorientations are beyond the scope of the coincident site lattice model. It was demonstrated that the special non-coincident grain boundaries are the plane-matching boundaries, and rigid-body displacements of adjacent nanograins are normal to the <110> misorientation axis. The vectors of rigid-body translations of grains are described by broad asymmetric statistical distribution. Mathematical modeling showed that special incommensurate boundaries with one grain oriented along the {211} plane have comparatively high cohesive energies. The grain-boundary dislocations ½<110> were revealed and studied at the line of local mismatch of {110} atomic planes of adjacent grains.

  9. Forecasting ultrafine particle concentrations from satellite and in situ observations

    NASA Astrophysics Data System (ADS)

    Crippa, P.; Castruccio, S.; Pryor, S. C.

    2017-02-01

    Recent innovations in remote sensing technologies and retrievals offer the potential for predicting ultrafine particle (UFP) concentrations from space. However, the use of satellite observations to provide predictions of near-surface UFP concentrations is limited by the high frequency of incomplete predictor values (due to missing observations), the lack of models that account for the temporal dependence of UFP concentrations, and the large uncertainty in satellite retrievals. Herein we present a novel statistical approach designed to address the first two limitations. We estimate UFP concentrations by using lagged estimates of UFP and concurrent satellite-based observations of aerosol optical properties, ultraviolet solar radiation flux, and trace gas concentrations, wherein an expectation maximization algorithm is used to impute missing values in the satellite observations. The resulting model of UFP (derived by using an autoregressive moving average model with exogenous inputs) explains 51 and 28% of the day-to-day variability in concentrations at two sites in eastern North America.

  10. Clustering Dynamics of Ultra-fine Particulate Systems

    NASA Astrophysics Data System (ADS)

    Dutt, Meenakshi; Elliott, James

    2008-03-01

    Length scales of particles and their surrounding medium strongly determines the nature of their interactions with one another and their responses to external fields. We are interested in systems of ultrafine particles (0.1 - 1.0 micron) such as volcanic ash, solid aerosols, or fine powders for pharmaceutical ihalation applications. We develop a numerical model for these systems using the Derjaguin-Muller-Toporov (DMT) adhesion theory along with the van der Waals attraction between the particles and their contact mechanical interactions. We study the dynamics of these systems in the absence and presence of gravity by controlling the particle size, and thereby, the surface properties of the particles. The high surface energies of these particles causes them to agglomerate as they gravitationally settle. We explore their internal structure as a function of their particle size.

  11. Flotation classification of ultrafine particles -- A novel classification approach

    SciTech Connect

    Qiu Guanzhou; Luo Lin; Hu Yuehua; Xu Jin; Wang Dianzuo

    1995-12-31

    This paper introduces a novel classification approach named the flotation classification approach which works by controlling interactions between particles. It differs considerably from the conventional classification processes operating on mechanical forces. In the present test, the micro-bubble flotation technology is grafted onto hydro-classification. Selective aggregation and dispersion of ultrafine particles are achieved through governing the interactions in the classification process. A series of laboratory classification tests for {minus}44 gm kaolin have been conducted on a classification column. As a result, about 92% recovery for minus 2 {micro}m size fraction Kaolin in the final product is obtained. In addition, two criteria for the classification are set up. Finally, a principle of classifying and controlling the interactions between particles is discussed in terms of surface thermodynamics and hydrodynamics.

  12. Fabrication of ultra-fine nanostructures using edge transfer printing

    NASA Astrophysics Data System (ADS)

    Xue, Mianqi; Li, Fengwang; Cao, Tingbing

    2012-03-01

    The exploration of new methods and techniques for application in diverse fields, such as photonics, microfluidics, biotechnology and flexible electronics is of increasing scientific and technical interest for multiple uses over distance of 10-100 nm. This article discusses edge transfer printing -- a series of unconventional methods derived from soft lithography for nanofabrication. It possesses the advantages of easy fabrication, low-cost and great serviceability. In this paper, we show how to produce exposed edges and use various materials for edge transfer printing, while nanoskiving, nanotransfer edge printing and tunable cracking for nanogaps are introduced. Besides this, different functional materials, such as metals, inorganic semiconductors and polymers, as well as localised heating and charge patterning, are described here as unconventional ``inks'' for printing. Edge transfer printing, which can effectively produce sub-100 nm scale ultra-fine structures, has broad applications, including metallic nanowires as nanoelectrodes, semiconductor nanowires for chemical sensors, heterostructures of organic semiconductors, plasmonic devices and so forth.

  13. Luminescence of ultrafine magnesium oxide ceramics with deep traps

    NASA Astrophysics Data System (ADS)

    Nikiforov, S. V.; Kortov, V. S.; Kiryakov, A. N.; Petrovykh, K. A.

    2017-05-01

    Thermoluminescence (TL) of ultrafine anion-defective magnesium oxide ceramics with a grain size of about 150 nm, which were thermally treated in highly reducing conditions at T=1100-1400 °C, has been studied after high-dose irradiation with a pulse electron beam (130 keV). Thermal treatment was found to cause TL intensity grow, which is associated with an increasing concentration of F-type centers. It was shown that varying occupancy of deep trapping centers changes a yield of the TL peak at 380 K. A hypothesis was made that the traps which are responsible for the TL peak at 380 K mainly have a hole nature in the samples under study.

  14. [Study on ultrafine vibration extraction technology of Rhizoma Chuanxiong].

    PubMed

    Dai, Long

    2009-04-01

    To explore the best ultrafine vibration extraction technology of Rhizoma Chuanxiong. Using the content of ligustrazine hydrochloride and ferulic acid as determination indexes, quadrature test was used to choose extraction times, time, solvent amount and to compare with the result of conventional extraction technology. The best condition of the Rhizoma chuanxiong was with 90% ethanol of 4 times volume, extracting 2 times in 25 degrees C, 15 minutes each time. Comparing with conventional extraction technology, extraction time of UVET was 1/6, solvent amount was 4/7, the extraction rate of marker components was 1.19 and 1.09 times, respectivley. UVET can improve the extracting rate of effective constituents, reduce the time and solvent amount and be used in industrialization.

  15. Artificial ultra-fine aerosol tracers for highway transect studies

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas A.; Barnes, David E.; Wuest, Leann; Gribble, David; Buscho, David; Miller, Roger S.; De la Croix, Camille

    2016-07-01

    The persistent evidence of health impacts of roadway aerosols requires extensive information for urban planning to avoid putting populations at risk, especially in-fill projects. The required information must cover both highway aerosol sources as well as transport into residential areas under a variety of roadway configurations, traffic conditions, downwind vegetation, and meteorology. Such studies are difficult and expensive to do, but were easier in the past when there was a robust fine aerosol tracer uniquely tied to traffic - lead. In this report we propose and test a modern alternative, highway safety flare aerosols. Roadway safety flares on vehicles in traffic can provide very fine and ultra-fine aerosols of unique composition that can be detected quantitatively far downwind of roadways due to a lack of upwind interferences. The collection method uses inexpensive portable aerosol collection hardware and x-ray analysis protocols. The time required for each transect is typically 1 h. Side by side tests showed precision at ± 4%. We have evaluated this technique both by aerosol removal in vegetation in a wind tunnel and by tracking aerosols downwind of freeways as a function of season, highway configuration and vegetation coverage. The results show that sound walls for at-grade freeways cause freeway pollution to extend much farther downwind than standard models predict. The elevated or fill section freeway on a berm projected essentially undiluted roadway aerosols at distances well beyond 325 m, deep into residential neighborhoods. Canopy vegetation with roughly 70% cover reduced very fine and ultra-fine aerosols by up to a factor of 2 at distances up to 200 m downwind.

  16. Ultrafine grinding of low-rank coal: Final report

    SciTech Connect

    Bouchillon, C.W.; Steele, W.G.

    1986-08-01

    A study of ultrafine grinding of low-rank coals in a fluid-energy mill was undertaken. This report presents the results of the Phase I effort which included a review of the literature on ultrafine grinding, a review of theories of grinding, a combined grinding and drying experiment on Martin Lake Texas lignite, an evaluation of the energy requirements for the process, and an evaluation of the properties of the products from the grinding tests. A sample of Martin Lake Texas lignite was obtained and a series of tests were conducted in a fluid-energy mill at the Ergon, Inc., Micro-Energy Division development facility at Vicksburg, MS. The grinding fluids used were air at 116 F and steam at 225, 310, 350, 400, and 488 F as measured in the mill. The products of these tests were analyzed for volatile mattr, ash, total moisture, equilibrium moisture, heating value, density distribution, aerodynamic particle size classification, angle of repose, porosity, density, and particle size distribution. ASTM test procedures were followed where applicable. Ultimate and ash mineral analyses were also conducted on the samples. Results of the various tests are presented in detail in the report. In general, the fluid energy mill was used succssfully in simultaneous grinding and drying of the lignite. Particle size reduction to less than 10 microns on a population basis was achieved. The equilibrium moisture of the samples decreased with increasing grinding fluid temperatures. Density distribution studies showed that a significant fraction of the ash appeared in the >1.6 specific gravity particles. The energy required for the grinding/drying process increased with increasing mill temperatures. 29 refs., 18 figs., 13 tabs.

  17. Ultrafine Particulate Ferrous Iron and Anthracene Associations with Mitochondrial Dysfunction

    SciTech Connect

    Faiola, Celia; Johansen, Anne M.; Rybka, Sara; Nieber, Annika; Thomas-Bradley, Carin; Bryner, Stephanie; Johnston, Justin M.; Engelhard, Mark H.; Nachimuthu, Ponnusamy; Owens, Kalyn S.

    2011-04-20

    The ultrafine size fraction of ambient particles (ultrafine particles, UFP, diameter < 100 nm) has been identified as being far more potent in their adverse health effects than their larger counterparts, yet, the detailed mechanisms for why UFP display such distinctive toxicity are not well understood. In the present study, ambient UFP were exposed to mitochondria while monitoring electron transport chain (ETC) activity as a model system for biochemical toxicity. UFP samples were collected in rural (Ellensburg, WA) and urban environments (Seattle, WA) and chemically characterized for total trace metals, ferrous (Fe(II)) and easily reducible ferric (Fe(III)) iron, polycyclic aromatic hydrocarbons, and surface constituents with X-ray photoelectron spectroscopy (XPS). Low doses of UFP (8 µg mL-1) caused a decrease in mitochondrial ETC function compared to controls in 94% of the samples after The 20 min of exposure. Significant correlations exist between initial %ETC inhibition (0-10 min) and Fe(II) (R=0.55, P=0.03, N=15), anthracene (R=0.74, P<0.01, N=13), and %C-O surface bonds (R=0.56, P=0.03, N=15), whereby anthracene and %C-O correlate as well (R=0.58, P=0.03, N=14). No significant associations were identified with total Fe and other trace metals. Results from this study indicate that the redox active fraction of Fe as well as the abundance of anthracene-related, C-O containing, surface structures may contribute to the initial detrimental behavior of UFP, thus supporting the idea that the Fe(II)/Fe(III) and certain efficient hydroquinone/quinone redox pairs may play an important role likely due to their potential to produce reactive oxygen species (ROS).

  18. [Distribution of atmospheric ultrafine particles during haze weather in Hangzhou].

    PubMed

    Chen, Qiu-Fang; Sun, Zai; Xie, Xiao-Fang

    2014-08-01

    Atmospheric ultrafine particles (UFPs) were monitored with fast mobility particle sizer (FMPS) in continuous haze weather and the haze fading process during December 6 to 11, 2013 in Hangzhou. Particle concentration and size distribution were studied associated with meteorological factors. The results showed that number concentrations were the highest at night and began to reduce in the morning. There was a small peak at 8 o'clock in the morning and 18 o'clock in the afternoon. It showed an obvious peak traffic source, which indicated that traffic emissions played a great role in the atmospheric pollution. During haze weather, the highest number concentration of UFPs reached 8 x 10(4) cm(-3). Particle size spectrum distribution was bimodal, the peak particle sizes were 15 nm and 100 nm respectively. Majority of UFPs were Aitken mode and Accumulation mode and the size of most particles concentrated near 100 nm. Average CMD(count medium diameter) was 85.89 nm. During haze fading process, number concentration and particles with size around 100 nm began to reduce and peak size shifted to small size. Nuclear modal particles increased and were more than accumulation mode. Average CMD was 58.64 nm. Meteorological factors such as the visibility and wind were negatively correlated with the particle number concentration. Correlation coefficient R were -0.225 and - 0.229. The humidity was correlated with number concentration. Correlation coefficient R was 0.271. The atmosphere was stable in winter and the level temperature had small correlation with number concentration. Therefore, study on distribution of atmospheric ultrafine particles during haze weather had the significance on the formation mechanism and control of haze weather.

  19. Refinement of Ferrite Grain Size near the Ultrafine Range by Multipass, Thermomechanical Compression

    NASA Astrophysics Data System (ADS)

    Patra, S.; Neogy, S.; Kumar, Vinod; Chakrabarti, D.; Haldar, A.

    2012-11-01

    Plane-strain compression testing was carried out on a Nb-Ti-V microalloyed steel, in a GLEEBLE3500 simulator using a different amount of roughing, intermediate, and finishing deformation over the temperature range of 1373 K to 1073 K (1100 °C to 800 °C). A decrease in soaking temperature from 1473 K to 1273 K (1200 °C to 1000 °C) offered marginal refinement in the ferrite ( α) grain size from 7.8 to 6.6 μm. Heavy deformation using multiple passes between A e3 and A r3 with true strain of 0.8 to 1.2 effectively refined the α grain size (4.1 to 3.2 μm) close to the ultrafine size by dynamic-strain-induced austenite ( γ) → ferrite ( α) transformation (DSIT). The intensities of microstructural banding, pearlite fraction in the microstructure (13 pct), and fraction of the harmful "cube" texture component (5 pct) were reduced with the increase in finishing deformation. Simultaneously, the fractions of high-angle (>15 deg misorientation) boundaries (75 to 80 pct), beneficial gamma-fiber (ND//<111>) texture components, along with {332}<133> and {554}<225> components were increased. Grain refinement and the formation of small Fe3C particles (50- to 600-nm size) increased the hardness of the deformed samples (184 to 192 HV). For the same deformation temperature [1103 K (830 °C)], the difference in α-grain sizes obtained after single-pass (2.7 μm) and multipass compression (3.2 μm) can be explained in view of the static- and dynamic-strain-induced γ → α transformation, strain partitioning between γ and α, dynamic recovery and dynamic recrystallization of the deformed α, and α-grain growth during interpass intervals.

  20. Lung response to ultrafine Kevlar aramid synthetic fibrils following 2-year inhalation exposure in rats.

    PubMed

    Lee, K P; Kelly, D P; O'Neal, F O; Stadler, J C; Kennedy, G L

    1988-07-01

    Four groups of 100 male and 100 female rats were exposed to ultrafine Kevlar fibrils at concentrations of 0, 2.5, 25, and 100 fibrils/cc for 6 hr/day, 5 days/week for 2 years. One group was exposed to 400 fibrils/cc for 1 year and allowed to recover for 1 year. At 2.5 fibrils/cc, the lungs had normal alveolar architecture with a few dust-laden macrophages (dust cell response) in the alveolar airspaces. At 25 fibrils/cc, the lungs showed a dust cell response, slight Type II pneumocyte hyperplasia, alveolar bronchiolarization, and a negligible amount of collagenized fibrosis in the alveolar duct region. At 100 fibrils/cc, the same pulmonary responses were seen as at 25 fibrils/cc. In addition, cystic keratinizing squamous cell carcinoma (CKSCC) was found in 4 female rats, but not in male rats. Female rats had more prominent foamy alveolar macrophages, cholesterol granulomas, and alveolar bronchiolarization. These pulmonary lesions were related to the development of CKSCC. The lung tumors were derived from metaplastic squamous cells in areas of alveolar bronchiolarization. At 400 fibrils/cc following 1 year of recovery, the lung dust content, average fiber length, and the pulmonary lesions were markedly reduced, but slight centriacinar emphysema and minimal collagenized fibrosis were found in the alveolar duct region. One male and 6 female rats developed CKSCC. The lung tumors were a unique type of experimentally induced tumors in the rats and have not been seen as spontaneous tumors in man or animals. Therefore, the relevance of this type of lung tumor to the human situation is minimal.

  1. A branch scale analytical model for predicting the vegetation collection efficiency of ultrafine particles

    NASA Astrophysics Data System (ADS)

    Lin, M.; Katul, G. G.; Khlystov, A.

    2012-05-01

    The removal of ultrafine particles (UFP) by vegetation is now receiving significant attention given their role in cloud physics, human health and respiratory related diseases. Vegetation is known to be a sink for UFP, prompting interest in their collection efficiency. A number of models have tackled the UFP collection efficiency of an isolated leaf or a flat surface; however, up-scaling these theories to the ecosystem level has resisted complete theoretical treatment. To progress on a narrower scope of this problem, simultaneous experimental and theoretical investigations are carried out at the “intermediate” branch scale. Such a scale retains the large number of leaves and their interaction with the flow without the heterogeneities and added geometric complexities encountered within ecosystems. The experiments focused on the collection efficiencies of UFP in the size range 12.6-102 nm for pine and juniper branches in a wind tunnel facility. Scanning mobility particle sizers were used to measure the concentration of each diameter class of UFP upstream and downstream of the vegetation branches thereby allowing the determination of the UFP vegetation collection efficiencies. The UFP vegetation collection efficiency was measured at different wind speeds (0.3-1.5 m s-1), packing density (i.e. volume fraction of leaf or needle fibers; 0.017 and 0.040 for pine and 0.037, 0.055 for juniper), and branch orientations. These measurements were then used to investigate the performance of a proposed analytical model that predicts the branch-scale collection efficiency using conventional canopy properties such as the drag coefficient and leaf area density. Despite the numerous simplifications employed, the proposed analytical model agreed with the wind tunnel measurements mostly to within 20%. This analytical tractability can benefit future air quality and climate models incorporating UFP.

  2. Natural fibers

    Treesearch

    Craig M. Clemons

    2010-01-01

    The term “natural fibers” covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and plant-based bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement....

  3. Emission of ultrafine particles from the incineration of municipal solid waste: A review

    NASA Astrophysics Data System (ADS)

    Jones, Alan M.; Harrison, Roy M.

    2016-09-01

    Ultrafine particles (diameter <100 nm) are of great topical interest because of concerns over possible enhanced toxicity relative to larger particles of the same composition. While combustion processes, and especially road traffic exhaust are a known major source of ultrafine particle emissions, relatively little is known of the magnitude of emissions from non-traffic sources. One such source is the incineration of municipal waste, and this article reviews studies carried out on the emissions from modern municipal waste incinerators. The effects of engineering controls upon particle emissions are considered, as well as the very limited information on the effects of changing waste composition. The results of measurements of incinerator flue gas, and of atmospheric sampling at ground level in the vicinity of incinerators, show that typical ultrafine particle concentrations in flue gas are broadly similar to those in urban air and that consequently, after the dispersion process dilutes incinerator exhaust with ambient air, ultrafine particle concentrations are typically indistinguishable from those that would occur in the absence of the incinerator. In some cases the ultrafine particle concentration in the flue gas may be below that in the local ambient air. This appears to be a consequence of the removal of semi-volatile vapours in the secondary combustion zone and abatement plant, and the high efficiency of fabric filters for ultrafine particle collection.

  4. Development and performance evaluation of a high-volume ultrafine particle concentrator for inhalation toxicological studies.

    PubMed

    Gupta, Tarun; Demokritou, Philip; Koutrakis, Petros

    2004-12-01

    This article presents the development and performance evaluation of a high-volume ultrafine particle concentrator. The ultrafine particle concentrator consists of several units, including a size-selective inlet; a condensational growth unit; a series of two virtual impactors (concentrators); a thermal size restoration device; an air cooler; and a size-selective outlet. Ambient ultrafine particles are condensationally grown to supermicrometer sizes and then are concentrated by a factor of 40 to 50 using a two-stage virtual impactor. Subsequently, ultrafine particle size distribution is restored, using a thermal method. The Harvard ultrafine concentrated ambient particle system (HUCAPS) delivers 58 lpm of concentrated aerosol that can be used for in vivo or in vitro inhalation toxicological studies. Overall, pressure drop through the system is only 2.2 kPa, which is adequately low for inhalation toxicological exposure tests. The performance of this system was evaluated using single-component artificial aerosols with a variety of physicochemical properties as well as ambient air. These experiments showed that for an optimum supersaturation ratio of 3.0, all ultrafine particles grow and get concentrated by about the same enrichment factor, regardless of their composition and surface properties.

  5. Preparation of long alumina fibers by sol-gel method using tartaric acid

    NASA Astrophysics Data System (ADS)

    Tan, Hong-Bin

    2011-12-01

    Long alumina fibers were prepared by sol-gel method. The spinning sol was obtained by mixing aluminum nitrate, tartaric acid, and polyvinylpyrrolidone with a mass ratio of 10:3:1.5. Thermogravimetry-differential scanning calorimetry (TG-DSC), Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibers. A little of α-Al2O3 phase is observed in the alumina precursor gel fibers sintered at 1273 K. The fibers with a uniform diameter can be obtained when sintered at 1473 K, and its main phase is also indentified as α-Al2O3.

  6. A Two-Step Approach for Producing an Ultrafine-Grain Structure in Cu-30Zn Brass (Postprint)

    DTIC Science & Technology

    2015-08-13

    200 words) A two-step approach involving cryogenic rolling and subsequent recrystallization annealing was developed to produce an ultrafine-grain...b s t r a c t A two-step approach involving cryogenic rolling and subsequent recrystallization annealing was devel- oped to produce an ultrafine...7,8]. One way to overcome this problem and thereby develop a more homogeneous ultrafine-grain structure may be recrystallization annealing following

  7. Microstructure Evolution and Mechanical Behavior of Ultrafine Ti-6Al-4V During Low Temperature Superplastic Deformation (Postprint)

    DTIC Science & Technology

    2016-09-13

    AFRL-RX-WP-JA-2017-0191 MICROSTRUCTURE EVOLUTION AND MECHANICAL BEHAVIOR OF ULTRAFINE TIE6ALE4V DURING LOW-TEMPERATURE SUPERPLASTIC...SUBTITLE MICROSTRUCTURE EVOLUTION AND MECHANICAL BEHAVIOR OF ULTRAFINE TIE6ALE4V DURING LOW- TEMPERATURE SUPERPLASTIC DEFORMATION (POSTPRINT) 5a...influence of microstructure evolution on the low-temperature superplasticity of ultrafine Ti6Al4V was established. For this purpose, the static and

  8. Liquefaction of coals using ultra-fine particle, unsupported catalysts: In situ generation by rapid expansion of supercritical fluid solutions

    SciTech Connect

    Not Available

    1991-09-01

    The purpose of this program is to design and fabricate an experimental ultra-fine particle generation system; use this system to generate ultra-fine, iron compound, catalyst particles; and to access the ability of these ultra-fine catalyst particles to improve the performance of the solubilization stage of two-stage, catalytic-catalytic liquefaction processes. The effort applied to this program during this reporting period was devoted to experimental design and fabrication tasks.

  9. Influence of Ultrafine 2CaO·SiO2 Powder on Hydration Properties of Reactive Powder Concrete

    PubMed Central

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-01-01

    In this research, we assessed the influence of an ultrafine 2CaO·SiO2 powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO2. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO2 powder has the potential to improve the performance of a reactive powder cementitious system. PMID:28793560

  10. Influence of Ultrafine 2CaO·SiO₂ Powder on Hydration Properties of Reactive Powder Concrete.

    PubMed

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-09-17

    In this research, we assessed the influence of an ultrafine 2CaO·SiO₂ powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO₂. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO₂ powder has the potential to improve the performance of a reactive powder cementitious system.

  11. Radial forces within muscle fibers in rigor.

    PubMed

    Maughan, D W; Godt, R E

    1981-01-01

    Considering the widely accepted cross-bridge model of muscle contraction (Huxley. 1969. Science [Wash. D. C.]. 164:1356-1366), one would expect that attachment of angled cross-bridges would give rise to radial as well as longitudinal forces in the muscle fiber. These forces would tend, in most instances, to draw the myofilaments together and to cause the fiber to decrease in width. Using optical techniques, we have observed significant changes in the width of mechanically skinned frog muscle fibers when the fibers are put into rigor by deleting ATP from the bathing medium. Using a high molecular weight polymer polyvinylpyrrolidone (PVP-40; number average mol. wt. (Mn) = 40,000) in the bathing solution, we were able to estimate the magnitude of the radial forces by shrinking the relaxed fiber to the width observed with rigor induction. With rigor, fiber widths decreased up to approximately 10%, with shrinking being greater at shorter sarcomere spacing and at lower PVP concentrations. At higher PVP concentrations, some fibers actually swelled slightly. Radial pressures seen with rigor in 2 and 4% PVP ranged up to 8.9 x 10(3) N/m2. Upon rigor induction, fibers exerted a longitudinal force of approximately 1 x 10(5) N/m2 that was inhibited by high PVP concentrations (greater than or equal to 13%). In very high PVP concentrations (greater than or equal to 20%), fibers exerted an anomalous force, independent of ATP, which ranged up to 6 x 10(4) N/m2 at 60% PVP. Assuming that all the radial force is the result of cross-bridge attachment, we calculated that rigor cross-bridges exert a radial force of 0.2 x 1.2 x 10(-9) N per thick filament in sarcomeres near rest length. This force is of roughly the same order of magnitude as the longitudinal force per thick filament in rigor contraction or in maximal (calcium-activated) contraction of skinned fibers in ATP-containing solutions. Inasmuch as widths of fibers stretched well beyond overlap of thick and thin filaments

  12. Dually enriched Cu:CdS@ZnS QDs with both polyvinylpyrrolidone twisting and SiO2 loading for improved cell imaging.

    PubMed

    Li, Mei; Xu, Chaoying; Wu, Lan; Wu, Peng; Hou, Xiandeng

    2015-02-28

    Through harvesting of the increased Stokes shift of CdS QDs via Cu-doping, the concentration-quenching or aggregation-quenching of CdS QDs was largely alleviated. A dually-enriched strategy with both polyvinylpyrrolidone (PVP) twisting and SiO2 loading was developed for generating a highly luminescent doped-dots (d-dots) assembly for improved cell imaging.

  13. Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite.

    PubMed

    Holopainen, Jani; Santala, Eero; Heikkilä, Mikko; Ritala, Mikko

    2014-12-01

    Calcium carbonate (CaCO3) fibers were prepared by electrospinning followed by annealing. Solutions consisting of calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and polyvinylpyrrolidone (PVP) dissolved in ethanol or 2-methoxyethanol were used for the fiber preparation. By varying the precursor concentrations in the electrospinning solutions CaCO3 fibers with average diameters from 140 to 290 nm were obtained. After calcination the fibers were identified as calcite by X-ray diffraction (XRD). The calcination process was studied in detail with high temperature X-ray diffraction (HTXRD) and thermogravimetric analysis (TGA). The initially weak fiber-to-substrate adhesion was improved by adding a strengthening CaCO3 layer by spin or dip coating Ca(NO3)2/PVP precursor solution on the CaCO3 fibers followed by annealing of the gel formed inside the fiber layer. The CaCO3 fibers were converted to nanocrystalline hydroxyapatite (HA) fibers by treatment in a dilute phosphate solution. The resulting hydroxyapatite had a plate-like crystal structure with resemblance to bone mineral. The calcium carbonate and hydroxyapatite fibers are interesting materials for bone scaffolds and bioactive coatings. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Use of polyvinylpyrrolidone-iodine solution for sterilisation and preservation improves mechanical properties and osteogenesis of allografts

    PubMed Central

    Zhao, Yantao; Hu, Xiantong; Li, Zhonghai; Wang, Fuli; Xia, Yang; Hou, Shuxun; Zhong, Hongbin; Zhang, Feimin; Gu, Ning

    2016-01-01

    Allografts eliminate the disadvantages associated with autografts and synthetic scaffolds but are associated with a disease-transmission risk. Therefore, allograft sterilisation is crucial. We aimed to determine whether polyvinylpyrrolidone-iodine (PVP-I) can be used for sterilisation and as a new wet-preservation method. PVP-I–sterilised and preserved allografts demonstrated improved mechanical property, osteogenesis, and excellent microbial inhibition. A thigh muscle pouch model of nude mice showed that PVP-I–preserved allografts demonstrated better ectopic formation than Co60-sterilised allografts (control) in vivo (P < 0.05). Furthermore, the PVP-I–preserved group showed no difference between 24 h and 12 weeks of allograft preservation (P > 0.05). PVP-I–preserved allografts showed more hydrophilic surfaces and PVP-I–sterilised tendons showed higher mechanical strength than Co60-sterilised tendons (P < 0.05). The level of residual PVP-I was higher without washing and with prolonged preservation (P < 0.05). In vitro cellular tests showed that appropriate PVP-I concentration was nontoxic to preosteoblast cells, and cellular differentiation measured by alkaline phosphatase activity and osteogenic gene markers was enhanced (P < 0.05). Therefore, the improved biological performance of implanted allografts may be attributable to better surface properties and residual PVP-I, and PVP-I immersion can be a simple, easy method for allograft sterilisation and preservation. PMID:27934929

  15. Cryomilling-induced solid dispersion of poor glass forming/poorly water-soluble mefenamic acid with polyvinylpyrrolidone K12.

    PubMed

    Kang, Naewon; Lee, Jangmi; Choi, Ji Na; Mao, Chen; Lee, Eun Hee

    2015-06-01

    The effect of mechanical impact on the polymorphic transformation of mefenamic acid (MFA) and the formation of a solid dispersion of mefenamic acid, a poor glass forming/poorly-water soluble compound, with polyvinylpyrrolidone (PVP) K12 was investigated. The implication of solid dispersion formation on solubility enhancement of MFA, prepared by cryomilling, was investigated. Solid state characterization was conducted using powder X-ray diffraction (PXRD) and Fourier-transform infrared (FTIR) spectroscopy combined with crystal structure analysis. Apparent solubility of the mixtures in pH 7.4 buffer was measured. A calculation to compare the powder patterns and FTIR spectra of solid dispersions with the corresponding physical mixtures was conducted. Solid state characterization showed that (1) MFA I transformed to MFA II when pure MFA I was cryogenically milled (CM); and (2) MFA forms a solid dispersion when MFA was cryogenically milled with PVP K12. FTIR spectral analysis showed that hydrogen bonding facilitated by mechanical impact played a major role in forming solid dispersions. The apparent solubility of MFA was significantly improved by making a solid dispersion with PVP K12 via cryomilling. This study highlights the importance of cryomilling with a good hydrogen bond forming excipient as a technique to prepare solid dispersion, especially when a compound shows a poor glass forming ability and therefore, is not easy to form amorphous forms by conventional method.

  16. Degradation of poly(ether sulfone)/polyvinylpyrrolidone membranes by sodium hypochlorite: insight from advanced electrokinetic characterizations.

    PubMed

    Hanafi, Yamina; Szymczyk, Anthony; Rabiller-Baudry, Murielle; Baddari, Kamel

    2014-11-18

    Poly(ether sulfone) (PES)/polyvinylpyrrolidone (PVP) membranes are widely used in various industrial fields such as drinking water production and in the dairy industry. However, the use of oxidants to sanitize the processing equipment is known to impair the integrity and lifespan of polymer membranes. In this work we showed how thorough electrokinetic measurements can provide essential information regarding the mechanism of degradation of PES/PVP membranes by sodium hypochlorite. Tangential streaming current measurements were performed with ultrafiltration and nanofiltration PES/PVP membranes for various aging times. The electrokinetic characterization of membranes was complemented by FTIR-ATR spectroscopy. Results confirmed that sodium hypochlorite induces the degradation of both PES and PVP. This latter is easily oxidized by sodium hypochlorite, which leads to an increase in the negative charge density of the membrane due to the formation of carboxylic acid groups. The PVP was also found to be partly released from the membrane with aging time. Thanks to the advanced electrokinetic characterization implemented in this work it was possible for the first time to demonstrate that two different mechanisms are involved in the degradation of PES. Phenol groups were first formed as a result of the oxidation of PES aromatic rings by substitution of hydrogen by hydroxyl radicals. For more severe aging conditions, this membrane degradation mechanism was followed by the formation of sulfonic acid functions, thus indicating a second degradation process through scission of PES chains.

  17. Novel polyvinylpyrrolidones to improve delivery of poorly water-soluble drugs: from design to synthesis and evaluation.

    PubMed

    Niemczyk, Anna I; Williams, Adrian C; Rawlinson-Malone, Clare F; Hayes, Wayne; Greenland, Barnaby W; Chappell, David; Khutoryanskaya, Olga; Timmins, Peter

    2012-08-06

    Polyvinylpyrrolidone is widely used in tablet formulations with the linear form acting as a wetting agent and disintegrant, whereas the cross-linked form is a superdisintegrant. We have previously reported that simply mixing the commercial cross-linked polymer with ibuprofen disrupted drug crystallinity with consequent improvements in drug dissolution behavior. In this study, we have designed and synthesized novel cross-linking agents containing a range of oligoether moieties that have then been polymerized with vinylpyrrolidone to generate a suite of novel excipients with enhanced hydrogen-bonding capabilities. The polymers have a porous surface and swell in the most common solvents and in water, properties that suggest their value as disintegrants. The polymers were evaluated in simple physical mixtures with ibuprofen as a model poorly water-soluble drug. The results show that the novel PVPs induce the drug to become "X-ray amorphous", which increased dissolution to a greater extent than that seen with commercial cross-linked PVP. The polymers stabilize the amorphous drug with no evidence for recrystallization seen after 20 weeks of storage.

  18. Influence of polyvinylpyrrolidone quantity on the solubility, crystallinity and oral bioavailability of fenofibrate in solvent-evaporated microspheres.

    PubMed

    Yousaf, Abid Mehmood; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jong Oh; Youn, Yu Seok; Cho, Kwan Hyung; Yong, Chul Soon; Choi, Han-Gon

    2016-06-01

    The objective of this study is to explore the influence of polyvinylpyrrolidone (PVP) quantity on the solubility, crystallinity and oral bioavailability of poorly water-soluble fenofibrate in solvent-evaporated microspheres. Numerous microspheres were prepared with fenofibrate, sodium lauryl sulphate (SLS) and PVP using the spray-drying technique. Their aqueous solubility, dissolution, physicochemical properties and pharmacokinetics in rats were assessed. The drug in the solvent-evaporated microspheres composed of fenofibrate, PVP and SLS at the weight ratio of 1:0.5:0.25 was not entirely changed to the amorphous form and partially in the microcrystalline state. However, the microspheres at the weight ratio of 1:4:0.25 provided the entire conversion to the amorphous form. The latter microspheres, with an improvement of about 115 000-fold in aqueous solubility and 5.6-fold improvement in oral bioavailability compared with the drug powder, gave higher aqueous solubility and oral bioavailability compared with the former. Thus, PVP quantity played an important role in these properties of fenofibrate in the solvent-evaporated microspheres.

  19. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    NASA Astrophysics Data System (ADS)

    Zhang, Jinyu; Zhou, Guowei; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d100), and cell parameter (a0) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d100 and a0 continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%.

  20. Assessment of the transport of polyvinylpyrrolidone-stabilised zero-valent iron nanoparticles in a silica sand medium

    NASA Astrophysics Data System (ADS)

    Liang, Bin; Xie, Yingying; Fang, Zhanqiang; Tsang, Eric Pokeung

    2014-07-01

    Nano zero-valent iron has been considered a promising material for in situ remediation, but its strong tendency to form aggregates makes it difficult to transport in porous media. Thus, stabilization techniques are required to overcome this limitation. In this study, we use polyvinylpyrrolidone (PVP) to synthesise to stabilise iron nanoparticles. The effects of various factors such as nZVI influent concentrations, flow velocity, Ca2+, Mg2+ and humic acid on the transport behaviour of the PVP-nZVI particles were considered. A sedimentation test indicated that PVP-nZVI particles with diameters ranging from 50 to 80 nm were more stable than Bare-nZVI particles. Column experiments demonstrated that PVP-nZVI also exhibited better mobility in silica sand than Bare-nZVI. Due to either the straining or blocking effect, the effluent relative concentration ( C/ C 0) plateau increased with increasing particle concentration. Increasing the flow velocity increased the C/ C 0, resulting in the reduction of overall single-collector contact efficiency ( η 0). Humic acid (HA) enhanced the mobility of PVP-nZVI, and the sedimentation test in the presence of HA suggested that decreased attachment of PVP-nZVI to the silica sand surface rather than decreased aggregation was the primary mechanism of this enhanced mobility.

  1. Au-induced polyvinylpyrrolidone aggregates with bound water for the highly shape-selective synthesis of silica nanostructures.

    PubMed

    Zhang, Jianhui; Liu, Huaiyong; Wang, Zhenlin; Ming, Naiben

    2008-01-01

    Novel Au-induced polyvinylpyrrolidone (PVP) aggregates with bound water (PVP-water) were created for the highly shape-selective synthesis of distinctive silica nanostructures, such as core-shell spheres, rods, snakes, tubes, capsules, thornlike, and dendritic morphologies. A water/PVP/n-pentanol system was first designed to bind water to PVP, and then Au nanoparticles were used to induce the PVP-water species to aggregate into distinctive soft structures by exploiting the interplay between PVP and gold. This was confirmed by the IR absorption spectra. The bound water in the soft structures was consumed during the hydrolysis of tetraethylorthosilicate and the target silica nanostructures were obtained. The soft structures, and therefore, the silica morphologies, can be readily tuned by adjusting the experimental parameters. The tunable Au-induced PVP-water soft structures reported herein open up new dimensions for the synthesis of distinctive nanomaterials (other than silica) that have new physicochemical properties and applications. These soft structures were also successfully extended to synthesize ZnO and SnO(2) particles with remarkable shapes, such as spheres, leaves, T-shaped structures, and dendritic morphologies.

  2. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels.

    PubMed

    Wang, Zhuang; Quik, Joris T K; Song, Lan; Van Den Brandhof, Evert-Jan; Wouterse, Marja; Peijnenburg, Willie J G M

    2015-06-01

    The present study investigated how humic substances (HS) modify the aquatic toxicity of silver nanoparticles (AgNPs) as these particles agglomerate in water and interact with HS. An alga species (Raphidocelis subcapitata), a cladoceran species (Chydorus sphaericus), and a freshwater fish larva (Danio rerio), representing organisms of different trophic levels, were exposed to colloids of the polyvinylpyrrolidone-coated AgNPs in the presence and absence of HS. Results show that the presence of HS alleviated the aquatic toxicity of the AgNP colloids to all the organisms in a dose-dependent manner. The particle size distribution of the AgNPs' colloidal particles shifted to lower values due to the presence of HS, implying that the decrease in the toxicity of the AgNP colloids cannot be explained by the variation of agglomeration size. The surface charge of the AgNPs was found to be more negative in the presence of high concentrations of HS, suggesting an electrostatic barrier by which HS might limit interactions between particles and algae cells; indeed, this effect reduced the algae toxicity. Observations on silver ions (Ag(+)) release show that HS inhibit AgNP dissolution, depending on the concentrations of HS. When toxic effects were expressed as a function of each Ag-species, toxicity of the free Ag(+) was found to be much higher than that of the agglomerated particles. © 2015 SETAC.

  3. Predicting kinetic nanocrystal shapes through multi-scale theory and simulation: Polyvinylpyrrolidone-mediated growth of Ag nanocrystals.

    PubMed

    Balankura, Tonnam; Qi, Xin; Zhou, Ya; Fichthorn, Kristen A

    2016-10-14

    In the shape-controlled synthesis of colloidal Ag nanocrystals, structure-directing agents, particularly polyvinylpyrrolidone (PVP), are known to be a key additive in making nanostructures with well-defined shapes. Although many Ag nanocrystals have been successfully synthesized using PVP, the mechanism by which PVP actuates shape control remains elusive. Here, we present a multi-scale theoretical framework for kinetic Wulff shape predictions that accounts for the chemical environment, which we used to probe the kinetic influence of the adsorbed PVP film. Within this framework, we use umbrella-sampling molecular dynamics simulations to calculate the potential of mean force and diffusion coefficient profiles of Ag atom deposition onto Ag(100) and Ag(111) in ethylene glycol solution with surface-adsorbed PVP. We use these profiles to calculate the mean-first passage times and implement extensive Brownian dynamics simulations, which allows the kinetic effects to be quantitatively evaluated. Our results show that PVP films can regulate the flux of Ag atoms to be greater towards Ag(111) than Ag(100). PVP's preferential binding towards Ag(100) over Ag(111) gives PVP its flux-regulating capabilities through the lower free-energy barrier of Ag atoms to cross the lower-density PVP film on Ag(111) and enhanced Ag trapping by the extended PVP film on Ag(111). Under kinetic control, {100}-faceted nanocrystals will be formed when the Ag flux is greater towards Ag(111). The predicted kinetic Wulff shapes are in agreement with the analogous experimental system.

  4. Predicting kinetic nanocrystal shapes through multi-scale theory and simulation: Polyvinylpyrrolidone-mediated growth of Ag nanocrystals

    NASA Astrophysics Data System (ADS)

    Balankura, Tonnam; Qi, Xin; Zhou, Ya; Fichthorn, Kristen A.

    2016-10-01

    In the shape-controlled synthesis of colloidal Ag nanocrystals, structure-directing agents, particularly polyvinylpyrrolidone (PVP), are known to be a key additive in making nanostructures with well-defined shapes. Although many Ag nanocrystals have been successfully synthesized using PVP, the mechanism by which PVP actuates shape control remains elusive. Here, we present a multi-scale theoretical framework for kinetic Wulff shape predictions that accounts for the chemical environment, which we used to probe the kinetic influence of the adsorbed PVP film. Within this framework, we use umbrella-sampling molecular dynamics simulations to calculate the potential of mean force and diffusion coefficient profiles of Ag atom deposition onto Ag(100) and Ag(111) in ethylene glycol solution with surface-adsorbed PVP. We use these profiles to calculate the mean-first passage times and implement extensive Brownian dynamics simulations, which allows the kinetic effects to be quantitatively evaluated. Our results show that PVP films can regulate the flux of Ag atoms to be greater towards Ag(111) than Ag(100). PVP's preferential binding towards Ag(100) over Ag(111) gives PVP its flux-regulating capabilities through the lower free-energy barrier of Ag atoms to cross the lower-density PVP film on Ag(111) and enhanced Ag trapping by the extended PVP film on Ag(111). Under kinetic control, {100}-faceted nanocrystals will be formed when the Ag flux is greater towards Ag(111). The predicted kinetic Wulff shapes are in agreement with the analogous experimental system.

  5. Polyvinylpyrrolidone stabilized-Ru nanoclusters loaded onto reduced graphene oxide as high active catalyst for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao; Hao, Jinghao; Ma, Qianli; Li, Chuanqi; Liu, Yushan; Li, Baojun; Liu, Zhongyi

    2017-06-01

    Ruthenium/reduced graphene oxide nanocomposites (Ru/rGO NCs) were synthesized via an electrostatic self-assembly approach. Polyvinylpyrrolidone (PVP) stabilized and positively charged metallic ruthenium nanoclusters about 1.2 nm were synthesized and uniformly loaded onto negatively charged graphene oxide (GO) sheets via strong electrostatic interactions. The as-prepared Ru/rGO NCs exhibited superior performance in catalytic hydrolysis of sodium borohydride (NaBH4) to generate H2. The hydrogen generation rate was up to 14.87 L H2 min-1 gcat -1 at 318 K with relatively low activation energy of 38.12 kJ mol-1. Kinetics study confirmed that the hydrolysis of NaBH4 was first order with respect to concentration of catalysts. Besides, the conversion of NaBH4 remained at 97% and catalytic activity retained more than 70% after 5 reaction cycles at room temperature. These results suggested that the Ru/rGO NCs have a promising prospect in the field of clean energy.

  6. Graphene/polyvinylpyrrolidone/polyaniline nanocomposite-modified electrode for simultaneous determination of parabens by high performance liquid chromatography.

    PubMed

    Kajornkavinkul, Suphunnee; Punrat, Eakkasit; Siangproh, Weena; Rodthongkum, Nadnudda; Praphairaksit, Narong; Chailapakul, Orawon

    2016-02-01

    A nanocomposite of graphene (G), polyvinylpyrrolidone (PVP) and polyaniline (PANI) modified onto screen-printed carbon electrode (SPCE) using an electrospraying technique was developed for simultaneous determination of five parabens in beverages and cosmetic products by high performance liquid chromatography. PVP and PANI were used as the dispersing agents of graphene, and also for the enhancement of electrochemical conductivity of the electrode. The electrochemical behavior of each paraben was investigated using the G/PVP/PANI nanocomposite-modified SPCE, compared to the unmodified SPCE. Using HPLC along with amperometric detection at a controlled potential of +1.2V vs Ag/AgCl, the chromatogram of five parabens obtained from the modified SPCE exhibits well defined peaks and higher current response than those of its unmodified counterpart. Under the optimal conditions, the calibration curves of five parabens similarly provide a linear range between 0.1 and 30 µg mL(-1) with the detection limits of 0.01 µg mL(-1) for methyl paraben (MP), ethyl paraben (EP) and propyl paraben (PP), 0.02 and 0.03 µg mL(-1) for isobutyl paraben (IBP) and butyl paraben (BP), respectively. Furthermore, this proposed method was applied for the simultaneous determination of five parabens in real samples including a soft drink and a cosmetic product with satisfactory results, yielding the recovery in the range of 90.4-105.0%. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Facile Electrospinning Synthesis of Carbonized Polyvinylpyrrolidone (PVP)/g-C3 N4 Hybrid Films for Photoelectrochemical Applications.

    PubMed

    Wang, Yan; Zhao, Xu; Tian, Yang; Wang, Yanbin; Jan, Abdul Khaliq; Chen, Yutong

    2017-01-05

    The film-forming ability and conductivity of graphitic carbon nitride (g-C3 N4 ) are still unsatisfying, despite much progress having been made in g-C3 N4 -related photocatalysts. New methods for synthesizing g-C3 N4 films coupled with excellent conductive materials are of significance. Herein, a facile method for synthesizing novel carbonized polyvinylpyrrolidone (PVP)/g-C3 N4 (CPVP /g-C3 N4 ) films have been developed through an electrospinning technique. Nanocarbons are generated by in situ carbonization of PVP in the films, which could enhance the photoelectrochemical (PEC) performance of the films due to its good conductivity. The coverage of the CPVP /g-C3 N4 film is good and the films exhibit excellent PEC performance. Furthermore, the thickness of the films can be adjusted by varying the electrospinning time and substantially controlling the PEC performance, of which the photocurrent densities under visible-light irradiation are 3.55, 4.92, and 6.64 μA cm(-2) with spinning times of 40, 70, and 120 min, respectively. The photocurrent does not decrease until testing at 4000 s and the coverage is still good after the tests, which indicates the good stability of the films. The excellent PEC performance of the films and facile preparation method enables promising applications in energy and environmental remediation areas. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hai; Xie, Qiuping; Kang, Muxing; Zhang, Bo; Zhang, Hui; Chen, Jin; Zhai, Chuanxin; Yang, Deren; Jiang, Biao; Wu, Yulian

    2009-09-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet β-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into β-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.

  9. High-Temperature Cross-Linking of Carbon Nanotube Multi-Yarn Using Polyvinylpyrrolidone as a Binding Agent.

    PubMed

    Misak, H; Asmatulu, R; Whitman, J; Mall, S

    2015-03-01

    Carbon nanotube (CNT) multi-yarn was cross-linked together at elevated temperatures using a poly- mer, with the intent of improving their strength and electrical conductivity. They were functionalized using an acid treatment and immersed in a bath of different concentrations (0.5%, 0.1%, and 0.2%) of polyvinylpyrrolidone (PVP). Then they were placed in an oven at various temperatures (180 °C, 200 °C, and 220 °C) in order to cause cross-linking among the carbon nanotube yarns. The phys- ical, chemical, electrical, and mechanical properties of the cross-linked yarns were investigated. The yarns cross-linked at higher temperatures and greater concentrations of PVP had a greater increase in linear mass density, indicating that the cross-linking process had worked as expected. Yarns that were cross-linked at lower temperatures had greater tensile strength and better spe- cific electrical conductivity. Those that were treated with a greater concentration of polymer had a greater ultimate tensile strength. All these results are encouraging first step, but still need further development if CNT yarn is to replace copper wire.

  10. Sensitive Adsorptive Voltammetric Method for Determination of Bisphenol A by Gold Nanoparticle/Polyvinylpyrrolidone-Modified Pencil Graphite Electrode

    PubMed Central

    Yaman, Yesim Tugce; Abaci, Serdar

    2016-01-01

    A novel electrochemical sensor gold nanoparticle (AuNP)/polyvinylpyrrolidone (PVP) modified pencil graphite electrode (PGE) was developed for the ultrasensitive determination of Bisphenol A (BPA). The gold nanoparticles were electrodeposited by constant potential electrolysis and PVP was attached by passive adsorption onto the electrode surface. The electrode surfaces were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The parameters that affected the experimental conditions were researched and optimized. The AuNP/PVP/PGE sensor provided high sensitivity and selectivity for BPA recognition by using square wave adsorptive stripping voltammetry (SWAdSV). Under optimized conditions, the detection limit was found to be 1.0 nM. This new sensor system offered the advantages of simple fabrication which aided the expeditious replication, low cost, fast response, high sensitivity and low background current for BPA. This new sensor system was successfully tested for the detection of the amount of BPA in bottled drinking water with high reliability. PMID:27231912

  11. A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone-graphene nanosheets-nickel nanoparticles-chitosan nanocomposite.

    PubMed

    Liu, Zhiguang; Guo, Yujing; Dong, Chuan

    2015-05-01

    In this report, a new nanocomposite was successfully synthesized by chemical deposition of nickel nanoparticles (NiNPs) on polyvinylpyrrolidone (PVP) stabilized graphene nanosheets (GNs) with chitosan (CS) as the protective coating. The as obtained nanocomposite (PVP-GNs-NiNPs-CS) was characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Benefiting from the synergistic effect of GNs (large surface area and high conductivity), NiNPs (high electrocatalytic activity towards the glucose oxidation) and CS (good film-forming and antifouling ability), a nonenzymatic electrochemical glucose sensor was established. The nanocomposite displays greatly enhanced electrocatalytic activity towards the glucose oxidation in NaOH solution. The PVP-GNs-NiNPs-CS based electrochemical glucose sensor demonstrates good sensitivity, wide linear range (0.1 μM-0.5 mM), outstanding detection limit (30 nM), attractive selectivity, good reproducibility, high stability as well as prominent feasibility for the real sample analysis. The proposed experiment might open up a new possibility for widespread use of non-enzymatic sensors for monitoring blood glucose owing to its advantages of low cost, simple preparation and excellent properties for glucose detection.

  12. Structural Phase Transition Effect on Resistive Switching Behavior of MoS2 -Polyvinylpyrrolidone Nanocomposites Films for Flexible Memory Devices.

    PubMed

    Zhang, Peng; Gao, Cunxu; Xu, Benhua; Qi, Lin; Jiang, Changjun; Gao, Meizhen; Xue, Desheng

    2016-04-01

    The 2H phase and 1T phase coexisting in the same molybdenum disulfide (MoS2 ) nanosheets can influence the electronic properties of the materials. The 1T phase of MoS2 is introduced into the 2H-MoS2 nanosheets by two-step hydrothermal synthetic methods. Two types of nonvolatile memory effects, namely write-once read-many times memory and rewritable memory effect, are observed in the flexible memory devices with the configuration of Al/1T@2H-MoS2 -polyvinylpyrrolidone (PVP)/indium tin oxide (ITO)/polyethylene terephthalate (PET) and Al/2H-MoS2 -PVP/ITO/PET, respectively. It is observed that structural phase transition in MoS2 nanosheets plays an important role on the resistive switching behaviors of the MoS2 -based device. It is hoped that our results can offer a general route for the preparation of various promising nanocomposites based on 2D nanosheets of layered transition metal dichalcogenides for fabricating the high performance and flexible nonvolatile memory devices through regulating the phase structure in the 2D nanosheets.

  13. Laser-assisted synthesis, and structural and thermal properties of ZnS nanoparticles stabilised in polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Onwudiwe, Damian C.; Krüger, Tjaart P. J.; Jordaan, Anine; Strydom, Christien A.

    2014-12-01

    Zinc sulphide (ZnS) nanoparticles have been synthesised by a green approach involving laser irradiation of an aqueous solution of zinc acetate (Znac2) and sodium sulphide (Na2S·9H2O) or thioacetamide (TAA) in polyvinylpyrrolidone (PVP). The structural and morphological properties of the prepared samples were analysed using a transmission electron microscope, TEM, a high resolution transmission electron microscope, HRTEM, X-ray diffraction, and Raman spectroscopy. The thermal properties were studied using a simultaneous thermal analyser (SDTA). Better dispersed and larger particles were obtained by using sodium sulphide (Na2S) instead of TAA as the sulphur source. X-ray diffraction (XRD) analyses and Raman measurement show that the particles have a cubic structure, which is usually a low temperature phase of ZnS. There were phonon softening and line broadening of the peaks which are attributed to the phonon confinement effect. The average crystallite size of the ZnS nanoparticles estimated from the XRD showed a reduction in size from 13.62 to 10.42 nm for samples obtained from Na2S, and 9.13 to 8.16 nm for samples obtained from TAA, with an increase in the time of irradiation. The thermal stability of PVP was increased due to the incorporation of the ZnS nanoparticles in the matrices. The absorption spectra showed that the nanoparticles exhibit quantum confinement effects.

  14. Long-term stabilisation potential of poly(vinylpyrrolidone) for amorphous lactose in spray-dried composites.

    PubMed

    Berggren, Jonas; Alderborn, Göran

    2004-02-01

    The aim of this study was to investigate the potential of poly(vinylpyrrolidone) (PVP) to inhibit the crystallisation of amorphous lactose during storage of the composites up to 6 months. Short-term stability was assessed by microcalorimetry over 10 days and long-term stability by storage in desiccators with different relative humidities for 3 and 6 months. The solid-state structure of the particles after storage was analysed by differential scanning calorimetry. It was found that the presence of PVP increased the critical relative humidity (RH) for crystallisation relative to the pure lactose and both the proportion and the molecular weight of the PVP affected the stabilisation of the amorphous phase. The difference in critical RH between the materials increased over time. The T(g) of the materials was generally reduced due to the absorption of water and it is suggested that the inhibiting effect therefore is related mainly to a specific interaction between lactose and PVP, rather than to a counteracting effect of the polymer on the moisture induced depression of T(g).

  15. Adsorption of Polyvinylpyrrolidone and its Impact on Maintenance of Aqueous Supersaturation of Indomethacin via Crystal Growth Inhibition.

    PubMed

    Patel, Dhaval D; Anderson, Bradley D

    2015-09-01

    This study explored the adsorption and crystal growth inhibitory effects of polyvinylpyrrolidone (PVP) on indomethacin crystals in an aqueous medium. A solution depletion method was used to construct adsorption isotherms of PVPs with different molecular weights and N-vinylpyrrolidone onto indomethacin crystals. The affinity for and extent of maximum adsorption of PVP on indomethacin crystals were significantly higher than that of N-vinylpyrrolidone, which was attributed to cooperative interactions between PVP and the surface of indomethacin. The extent of PVP adsorption onto indomethacin crystals in terms of mg/m(2) was greater for higher molecular weight PVP but less on a molar basis indicating an increased percentage of loops and tails for the higher molecular weight PVP. PVP significantly inhibited the crystal growth of indomethacin at a high degree of supersaturation as compared with N-vinylpyrrolidone, which was attributed to a change in indomethacin crystal growth mechanism leading to a change in the rate limiting step from bulk diffusion to surface integration. Higher molecular weight PVPs are better inhibitors of the crystal growth of indomethacin than lower molecular weight PVPs, which was attributed in part to a greater barrier for surface diffusion of indomethacin provided by a thicker adsorption layer of PVP. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Evolution of structure and properties of granules containing microcrystalline cellulose and polyvinylpyrrolidone during high-shear wet granulation.

    PubMed

    Osei-Yeboah, Frederick; Feng, Yushi; Sun, Changquan Calvin

    2014-01-01

    Granulation behavior of microcrystalline cellulose (MCC) in the presence of 2.5% polyvinylpyrrolidone (PVP) was systematically studied. Complex changes in flowability and tabletability of lubricated MCC granules are correlated to changes in intragranular porosity, morphology, surface smoothness, size distribution, and specific surface area (SSA). With 2.5% PVP, the use of 45% granulation water leads to 84% reduction in tablet tensile strength and 76% improvement in powder flow factor. The changes in powder performance are explained by granule densification and surface smoothing. The granulating water level corresponding to the onset of overgranulation, 45%, is significantly lower than the 70% water required for unlubricated MCC granules without PVP. At more than 45% water levels, MCC-PVP granules flow well but cannot be compressed into intact tablets. Such changes in powder performance correspond to the rapid growth into large and dense spheres with smooth surface. Compared with MCC alone, the onset of the phase of fast granule size enlargement occurs at a lower water level when 2.5% PVP is used. Although the use of 2.5% PVP hastens granule nucleation and growth rate, the mechanisms of overgranulation are the same, that is, size enlargement, granule densification, surface smoothing, and particle rounding in both systems.

  17. Induction of apoptosis and cell cycle arrest by polyvinylpyrrolidone K-30 and protective effect of alpha-tocopherol.

    PubMed

    Wang, Yu-Bao; Lou, Yang; Luo, Zhao-Feng; Zhang, Dong-Fang; Wang, Yu-Zhen

    2003-09-05

    Polyvinylpyrrolidone is a macromolecular polymer with widespread use in industry as well as in medicine for various purposes. Its effect on cells cultured in vitro, however, has not been fully investigated. To elucidate this issue, we studied the influence of PVP K-30 on cultured HeLa cells. PVP K-30 treatment produced a dose- and time-dependent toxicity to HeLa cells. Cells exposed to PVP K-30 exhibited several morphological features of apoptosis. Gel electrophoresis of DNA from PVP K-30-treated cells showed typical apoptotic ladder. And flow cytometric analysis demonstrated that PVP K-30 induced cell cycle arrest at G2/M phase and the subsequent appearance of sub-G1 population. In addition, it was shown that procaspase-3 was activated in response to PVP K-30 treatment. We also found that alpha-tocopherol efficiently protected HeLa cells from PVP K-30 cytotoxicity. This is the first demonstration that PVP K-30 could induce apoptosis in HeLa cells and cell cycle arrest at G2/M phase, and that PVP K-30 toxicity could be attenuated by alpha-tocopherol.

  18. Use of polyvinylpyrrolidone-iodine solution for sterilisation and preservation improves mechanical properties and osteogenesis of allografts

    NASA Astrophysics Data System (ADS)

    Zhao, Yantao; Hu, Xiantong; Li, Zhonghai; Wang, Fuli; Xia, Yang; Hou, Shuxun; Zhong, Hongbin; Zhang, Feimin; Gu, Ning

    2016-12-01

    Allografts eliminate the disadvantages associated with autografts and synthetic scaffolds but are associated with a disease-transmission risk. Therefore, allograft sterilisation is crucial. We aimed to determine whether polyvinylpyrrolidone-iodine (PVP-I) can be used for sterilisation and as a new wet-preservation method. PVP-I-sterilised and preserved allografts demonstrated improved mechanical property, osteogenesis, and excellent microbial inhibition. A thigh muscle pouch model of nude mice showed that PVP-I-preserved allografts demonstrated better ectopic formation than Co60-sterilised allografts (control) in vivo (P < 0.05). Furthermore, the PVP-I-preserved group showed no difference between 24 h and 12 weeks of allograft preservation (P > 0.05). PVP-I-preserved allografts showed more hydrophilic surfaces and PVP-I-sterilised tendons showed higher mechanical strength than Co60-sterilised tendons (P < 0.05). The level of residual PVP-I was higher without washing and with prolonged preservation (P < 0.05). In vitro cellular tests showed that appropriate PVP-I concentration was nontoxic to preosteoblast cells, and cellular differentiation measured by alkaline phosphatase activity and osteogenic gene markers was enhanced (P < 0.05). Therefore, the improved biological performance of implanted allografts may be attributable to better surface properties and residual PVP-I, and PVP-I immersion can be a simple, easy method for allograft sterilisation and preservation.

  19. Differences in the interaction between aryl propionic acid derivatives and poly(vinylpyrrolidone) K30: A multi-methodological approach.

    PubMed

    Gashi, Zehadin; Censi, Roberta; Malaj, Ledjan; Gobetto, Roberto; Mozzicafreddo, Matteo; Angeletti, Mauro; Masic, Admir; Di Martino, Piera

    2009-11-01

    The present work aims at the application of several methods to explain differences in the physical interaction of some aryl propionic acid derivatives (ibuprofen [IBP], ketoprofen [KET], flurbiprofen [FLU], naproxen [NAP], fenbufen [FEN]) with poly(vinylpyrrolidone) (PVP) K30, stored together at 298 +/- 0.5 K and 22% RH. X-ray powder diffractometry and (13)C-solid state NMR demonstrated that IBP was able to strongly interact with the polymer, while weak interaction was observed for KET, FLU, NAP, and the least for FEN. The interaction of comelted drug and PVP was studied by differential scanning calorimetry by applying the Gordon-Taylor equation, which revealed that small molar drug volumes may favour the drug diffusion through the PVP amorphous chains increasing the polymer free volume and decreasing the mixture T(g). The molecular docking study revealed that intermolecular energy is mainly due to the contribution of van der Waals energy component, causing the differences among the drugs, and is related to the drug-PVP surface contact area in the complex formed. Solid-state kinetic study demonstrated that IBP molecules are involved in a three-dimensional diffusion mechanism within the polymer favoured by its low molar volume that reduces molecular hindrance, and by the weakness of its crystal lattice, which facilitates crystallinity loss and stabilisation of the amorphous phase. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  20. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles.

    PubMed

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-12-28

    The effect of nanoparticle size (30-120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T(2) relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics.

  1. 24-gauge ultrafine cryoprobe with diameter of 550 μm and its cooling performance.

    PubMed

    Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao

    2014-12-01

    This paper describes the development of a novel cryoprobe with the same size as a 24-gauge injection needle and the evaluation of its cooling performance. This ultrafine cryoprobe was designed to reduce the invasiveness and extend application areas of cryosurgery. The ultrafine cryoprobe has a double-tube structure and consists of two stainless steel microtubes. The outer diameter of the cryoprobe is 550 μm, and the inner tube has a 70-μm inner diameter to depressurize the high-pressure refrigerant. By solving the bioheat transfer equation and considering freezing phenomena, the relationship between the size of the frozen region and the heat transfer coefficient of the refrigerant flow in an ultrafine cryoprobe was derived analytically. The results showed that the size of the frozen region is strongly affected by the heat transfer coefficient. A high heat transfer coefficient such as that of phase change heat transfer is required to generate a frozen region of sufficient size. In the experiment, trifluoromethane (HFC-23) was used as the refrigerant, and the cooling effects of the gas and liquid phase states at the inlet were evaluated. When the ultrafine cryoprobe was cooled using a liquid refrigerant, the surface temperature was approximately -50°C, and the temperature distribution on the surface was uniform for a thermally insulated condition. However, for the case with vaporized refrigerant, the temperature distribution was not uniform. Therefore, it was concluded that the cooling mechanism using liquid refrigerant was suitable for ultrafine cryoprobes. Furthermore, to simulate cryosurgery, a cooling experiment using hydrogel was conducted. The results showed that the surface temperature of the ultrafine cryoprobe reached -35°C and formed a frozen region with a radius of 4 mm in 4 min. These results indicate that the ultrafine cryoprobe can be applied in actual cryosurgeries for small affected areas.

  2. Ultrafine particle transport and deposition in a large scale 17-generation lung model.

    PubMed

    Islam, Mohammad S; Saha, Suvash C; Sauret, Emilie; Gemci, Tevfik; Yang, Ian A; Gu, Y T

    2017-09-05

    To understand how to assess optimally the risks of inhaled particles on respiratory health, it is necessary to comprehend the uptake of ultrafine particulate matter by inhalation during the complex transport process through a non-dichotomously bifurcating network of conduit airways. It is evident that the highly toxic ultrafine particles damage the respiratory epithelium in the terminal bronchioles. The wide range of in silico available and the limited realistic model for the extrathoracic region of the lung have improved understanding of the ultrafine particle transport and deposition (TD) in the upper airways. However, comprehensive ultrafine particle TD data for the real and entire lung model are still unavailable in the literature. Therefore, this study is aimed to provide an understanding of the ultrafine particle TD in the terminal bronchioles for the development of future therapeutics. The Euler-Lagrange (E-L) approach and ANSYS fluent (17.2) solver were used to investigate ultrafine particle TD. The physical conditions of sleeping, resting, and light activity were considered in this modelling study. A comprehensive pressure-drop along five selected path lines in different lobes was calculated. The non-linear behaviour of pressure-drops is observed, which could aid the health risk assessment system for patients with respiratory diseases. Numerical results also showed that ultrafine particle-deposition efficiency (DE) in different lobes is different for various physical activities. Moreover, the numerical results showed hot spots in various locations among the different lobes for different flow rates, which could be helpful for targeted therapeutical aerosol transport to terminal bronchioles and the alveolar region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comparison of gene expression profiles induced by coarse, fine, and ultrafine particulate matter.

    PubMed

    Huang, Yuh-Chin T; Karoly, Edward D; Dailey, Lisa A; Schmitt, Michael T; Silbajoris, Robert; Graff, Donald W; Devlin, Robert B

    2011-01-01

    Coarse, fine, and ultrafine particulate matter (PM) fractions possess different physical properties and chemical compositions and may produce different adverse health effects. Studies were undertaken to determine whether or not gene expression patterns may be used to discriminate among the three size fractions. Airway epithelial cells obtained from 6 normal individuals were exposed to Chapel Hill coarse, fine or ultrafine PM (250 μg/ml) for 6 and 24 h (n=3 different individuals each). RNA was isolated and hybridized to Affymetrix cDNA microarrays. Significant genes were identified and mapped to canonical pathways. Expression of selected genes was confirmed by reverse-transcription polymerase chain reaction (RT-PCR). The numbers of genes altered by coarse, fine, and ultrafine PM increased from 0, 6, and 17 at 6 h to 1281, 302, and 455 at 24 h, respectively. The NRF2-mediated oxidative stress response, cell cycle:G2/M DNA damage checkpoint regulation, and mitotic roles of polo-like kinase were the top three pathways altered by all three fractions. Fine and ultrafine PM displayed more similar gene expression patterns. One example was the increased expression of metallothionein isoforms, reflecting the higher zinc content associated with fine and ultrafine fractions. A set of 10 genes was identified that could discriminate fine and ultrafine PM from coarse PM. These results indicate that common properties shared by the three size fractions as well as size-specific factors, e.g., compositions, may determine the effects on gene expression. Genomic markers may be used to discriminate coarse from fine and ultrafine PM.

  4. Fiber Techniques

    ERIC Educational Resources Information Center

    Nalle, Leona

    1976-01-01

    Describes a course in fiber techniques, which covers design methods involving fibers and fabric, that students in the Art Department at Sleeping Giant Junior High School had the opportunity to learn. (Author/RK)

  5. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.

    PubMed

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering.

  6. Multiwalled carbon nanotube (MWCNT) reinforced cellulose fibers by electrospinning.

    PubMed

    Lu, Ping; Hsieh, You-Lo

    2010-08-01

    Multiwalled carbon nanotubes (MWCNTs) were successfully incorporated in ultrafine cellulose fibers by electrospinning MWCNT-loaded cellulose acetate (CA) solutions, followed by deacetylation of CA to cellulose (cell). The mean fiber diameter reduced from 321 nm of the as-spun fibers to 257 and 228 nm of those with 0.11 and 0.55 wt % MWCNTs, respectively, and became more uniform. Hydrolysis of CA to cell further reduced the mean fiber sizes by another 8-16%. The MWCNTs were observed to be well-aligned along the fiber axes. The MWCNT/cell composite fibers had increased specific surface, from 4.27 m(2)/g to 5.07 and 7.69 m(2)/g at 0.11 and 0.55 wt % MWCNTs, respectively, and much improved water wettability. The mechanical properties of the fibers were also greatly enhanced with increased MWCNT loading levels. The fact that MWCNTs were observed in only about a third of the fibers at a very low 0.55 wt % loading suggests significantly higher tensile strength may be achieved by a further increase in MWCNT loadings.

  7. Dietary Fiber

    MedlinePlus

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble ... types have important health benefits. Good sources of dietary fiber include Whole grains Nuts and seeds Fruit and ...

  8. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds.

    PubMed

    Jiang, Qiuran; Reddy, Narendra; Yang, Yiqi

    2010-10-01

    This paper reports a new method of cross-linking electrospun zein fibers using citric acid as a non-toxic cross-linker to enhance the water stability and cytocompatibility of zein fibers for tissue engineering and other medical applications. The electrospun structure has many advantages over other types of structures and protein-based biomaterials possess unique properties preferred for tissue engineering and other medical applications. However, ultrafine fiber matrices developed from proteins have poor mechanical properties and morphological stability in the aqueous environments required for medical applications. Efforts have been made to improve the water stability of electrospun protein scaffolds using cross-linking and other approaches, but the current methods have major limitations, such as cytotoxicity and low efficiency. In this research electrospun zein fibers were cross-linked with citric acid without using any toxic catalysts. The stability of the cross-linked fibers in phosphate-buffered saline and their ability to support the attachment, spreading and proliferation of mouse fibroblast cells were studied. The cross-linked electrospun fibers retained their ultrafine fibrous structure even after immersion in PBS at 37 degrees C for up to 15 days. Citric acid cross-linked electrospun zein scaffolds showed better attachment, spreading and proliferation of fibroblast cells than uncross-linked electrospun zein fibers, cross-linked zein films and electrospun polylactide fibers.

  9. One-dimensional multiferroic bismuth ferrite fibers obtained by electrospinning techniques

    NASA Astrophysics Data System (ADS)

    Baji, Avinash; Mai, Yiu-Wing; Li, Qian; Wong, Shing-Chung; Liu, Yun; Yao, Q. W.

    2011-06-01

    We report the fabrication of novel multiferroic nanostructured bismuth ferrite (BiFeO3) fibers using the sol-gel based electrospinning technique. Phase pure BiFeO3 fibers were prepared by thermally annealing the electrospun BiFeO3/polyvinylpyrrolidone composite fibers in air for 1 h at 600 °C. The x-ray diffraction pattern of the fibers (BiFeO3) obtained showed that their crystalline structures were rhombohedral perovskite structures. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images revealed that the BiFeO3 fibers were composed of fine grained microstructures. The grains were self-assembled and self-organized to yield dense and continuous fibrous structures. The magnetic hysteresis loops of these nanostructured fibers displayed the expected ferromagnetic behavior, whereby a coercivity of ~ 250 Oe and a saturation magnetization of ~ 1.34 emu g - 1 were obtained. The ferroelectricity and ferroelectric domain structures of the fibers were confirmed using piezoresponse force microscopy (PFM). The piezoelectric hysteresis loops and polar domain switching behavior of the fibers were examined. Such multiferroic fibers are significant for electroactive applications and nano-scale devices.

  10. One-dimensional multiferroic bismuth ferrite fibers obtained by electrospinning techniques.

    PubMed

    Baji, Avinash; Mai, Yiu-Wing; Li, Qian; Wong, Shing-Chung; Liu, Yun; Yao, Q W

    2011-06-10

    We report the fabrication of novel multiferroic nanostructured bismuth ferrite (BiFeO(3)) fibers using the sol-gel based electrospinning technique. Phase pure BiFeO(3) fibers were prepared by thermally annealing the electrospun BiFeO(3)/polyvinylpyrrolidone composite fibers in air for 1 h at 600 °C. The x-ray diffraction pattern of the fibers (BiFeO(3)) obtained showed that their crystalline structures were rhombohedral perovskite structures. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images revealed that the BiFeO(3) fibers were composed of fine grained microstructures. The grains were self-assembled and self-organized to yield dense and continuous fibrous structures. The magnetic hysteresis loops of these nanostructured fibers displayed the expected ferromagnetic behavior, whereby a coercivity of ∼ 250 Oe and a saturation magnetization of ∼ 1.34 emu g(-1) were obtained. The ferroelectricity and ferroelectric domain structures of the fibers were confirmed using piezoresponse force microscopy (PFM). The piezoelectric hysteresis loops and polar domain switching behavior of the fibers were examined. Such multiferroic fibers are significant for electroactive applications and nano-scale devices.

  11. The immobilization of proteins on biodegradable polymer fibers via click chemistry.

    PubMed

    Shi, Quan; Chen, Xuesi; Lu, Tiancheng; Jing, Xiabin

    2008-03-01

    A facile and efficient method to immobilize bioactive proteins onto polymeric substrate was established. Testis-specific protease 50 (TSP50) was immobilized on ultrafine biodegradable polymer fibers, i.e., (1) to prepare a propargyl-containing polymer P(LA90-co-MPC10) by introducing propargyl group into a cyclic carbonate monomer (5-methyl-5-propargyloxycarbonyl-1,3-dioxan-2-one, MPC) and copolymerizing it with l-lactide; (2) to electrospin the functionalized polymer into ultrafine fibers; (3) to azidize the TSP50, and (4) to perform the click reaction between the propargyl groups on the fibers and the azido groups on the protein. The TSP50-immobilized fibers can resist non-specific protein adsorptions but preserve specific recognition and combination with anti-TSP50. ELISA tests were carried out by using HRP-goat-anti-mouse-IgG(H+L) as secondary antibody and o-phenylenediamine (OPDA)/H(2)O(2) as substrate to detect the combination of immobilized TSP50 with anti-TSP50. The results showed that anti-TSP50 can be selectively adsorbed from its solution onto the TSP50-immobilized fibers in the presence of BSA of as high as 10(4) times concentration. TSP50 immobilized on the fiber and anti-TSP50 combined to the fiber were also quantitatively determined. Anti-TSP50 can be then eluted off from the fiber when pH changes. The eluted fiber can re-combine anti-TSP50 at an efficiency of 75% compared to the original TSP50-immobilized fiber. Therefore, the TSP50-immobilized fibers can be used in the detection, separation, and purification of anti-TSP50. The "click" method can lead to a universal strategy to protein immobilization.

  12. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress.

    PubMed

    Araujo, Jesus A; Barajas, Berenice; Kleinman, Michael; Wang, Xuping; Bennett, Brian J; Gong, Ke Wei; Navab, Mohamad; Harkema, Jack; Sioutas, Constantinos; Lusis, Aldons J; Nel, Andre E

    2008-03-14

    Air pollution is associated with significant adverse health effects, including increased cardiovascular morbidity and mortality. Exposure to particulate matter with an aerodynamic diameter of <2.5 microm (PM(2.5)) increases ischemic cardiovascular events and promotes atherosclerosis. Moreover, there is increasing evidence that the smallest pollutant particles pose the greatest danger because of their high content of organic chemicals and prooxidative potential. To test this hypothesis, we compared the proatherogenic effects of ambient particles of <0.18 microm (ultrafine particles) with particles of <2.5 microm in genetically susceptible (apolipoprotein E-deficient) mice. These animals were exposed to concentrated ultrafine particles, concentrated particles of <2.5 microm, or filtered air in a mobile animal facility close to a Los Angeles freeway. Ultrafine particle-exposed mice exhibited significantly larger early atherosclerotic lesions than mice exposed to PM(2.5) or filtered air. Exposure to ultrafine particles also resulted in an inhibition of the antiinflammatory capacity of plasma high-density lipoprotein and greater systemic oxidative stress as evidenced by a significant increase in hepatic malondialdehyde levels and upregulation of Nrf2-regulated antioxidant genes. We conclude that ultrafine particles concentrate the proatherogenic effects of ambient PM and may constitute a significant cardiovascular risk factor.

  13. Roles of grain boundaries in improving fracture toughness of ultrafine-grained metals

    NASA Astrophysics Data System (ADS)

    Shimokawa, T.; Tanaka, M.; Kinoshita, K.; Higashida, K.

    2011-06-01

    In order to improve the fracture toughness in ultrafine-grained metals, we investigate the interactions among crack tips, dislocations, and grain boundaries in aluminum bicrystal models containing a crack and <112> tilt grain boundaries using molecular dynamics simulations. The results of previous computer simulations showed that grain refinement makes materials brittle if grain boundaries behave as obstacles to dislocation movement. However, it is actually well known that grain refinement increases fracture toughness of materials. Thus, the role of grain boundaries as dislocation sources should be essential to elucidate fracture phenomena in ultrafine-grained metals. A proposed mechanism to express the improved fracture toughness in ultrafine-grained metals is the disclination shielding effect on the crack tip mechanical field. Disclination shielding can be activated when two conditions are present. First, a transition of dislocation sources from crack tips to grain boundaries must occur. Second, the transformation of grain-boundary structure into a neighboring energetically stable boundary must occur as dislocations are emitted from the grain boundary. The disclination shielding effect becomes more pronounced as antishielding dislocations are continuously emitted from the grain boundary without dislocation emissions from crack tips, and then ultrafine-grained metals can sustain large plastic deformation without fracture with the drastic increase of the mobile dislocation density. Consequently, it can be expected that the disclination shielding effect can improve the fracture toughness in ultrafine-grained metals.

  14. Collection efficiency of ultrafine particles by an electrostatic precipitator under DC and pulse operating modes

    SciTech Connect

    Zukeran, Akinori; Looy, P.C.; Chakrabarti, A.; Berezin, A.A.; Jayaram, S.; Cross, J.D.; Ito, Tairo; Chang, J.S.

    1999-10-01

    High particle collection efficiency in terms of particle weight/volume mg/m{sup 3} is well achieved by a conventional electrostatic precipitator (ESP). However, the collection efficiencies in terms of number density for the ultrafine (particle size between 0.01--0.1 {micro}m) or submicrometer particles by a conventional ESP are still relatively low. Therefore, it is necessary to improve the collection efficiency for ultrafine particles. In this paper, attempts have been made to improve the ultrafine particle collection efficiency by controlling dust loading, as well as using the short pulse energizations. The present version of the ESP consists of three sets of wire-plate-type electrodes. For the ESP under dc operation modes, experimental results show that the collection efficiency for dc applied voltage decreases with increasing dust loading when particle density is larger than 2.5 x 10{sup 10} particles/m{sup 3} due to inefficient collections of ultrafine particles. However, under pulse operating modes without dc bias, high particle collection efficiency for ultrafine particles was obtained, which is thought to be due to the enhancement of particle charging by electrons.

  15. Association Between Short-term Exposure to Ultrafine Particles and Mortality in Eight European Urban Areas.

    PubMed

    Stafoggia, Massimo; Schneider, Alexandra; Cyrys, Josef; Samoli, Evangelia; Andersen, Zorana Jovanovic; Bedada, Getahun Bero; Bellander, Tom; Cattani, Giorgio; Eleftheriadis, Konstantinos; Faustini, Annunziata; Hoffmann, Barbara; Jacquemin, Bénédicte; Katsouyanni, Klea; Massling, Andreas; Pekkanen, Juha; Perez, Noemi; Peters, Annette; Quass, Ulrich; Yli-Tuomi, Tarja; Forastiere, Francesco

    2017-03-01

    Epidemiologic evidence on the association between short-term exposure to ultrafine particles and mortality is weak, due to the lack of routine measurements of these particles and standardized multicenter studies. We investigated the relationship between ultrafine particles and particulate matter (PM) and daily mortality in eight European urban areas. We collected daily data on nonaccidental and cardiorespiratory mortality, particle number concentrations (as proxy for ultrafine particle number concentration), fine and coarse PM, gases and meteorologic parameters in eight urban areas of Finland, Sweden, Denmark, Germany, Italy, Spain, and Greece, between 1999 and 2013. We applied city-specific time-series Poisson regression models and pooled them with random-effects meta-analysis. We estimated a weak, delayed association between particle number concentration and nonaccidental mortality, with mortality increasing by approximately 0.35% per 10,000 particles/cm increases in particle number concentration occurring 5 to 7 days before death. A similar pattern was found for cause-specific mortality. Estimates decreased after adjustment for fine particles (PM2.5) or nitrogen dioxide (NO2). The stronger association found between particle number concentration and mortality in the warmer season (1.14% increase) became null after adjustment for other pollutants. We found weak evidence of an association between daily ultrafine particles and mortality. Further studies are required with standardized protocols for ultrafine particle data collection in multiple European cities over extended study periods.

  16. On the assessment of exposure to airborne ultrafine particles in urban environments.

    PubMed

    Gomes, João Fernando Pereira; Bordado, João Carlos Moura; Albuquerque, Paula Cristina Silva

    2012-01-01

    The aim of this study was to contribute to the assessment of exposure levels of ultrafine particles in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung deposited alveolar surface area (resulting from exposure to ultrafine particles) in a major avenue leading to the town center during late spring, as well as in indoor buildings facing it. Data revealed differentiated patterns for week days and weekends, consistent with PM(2.5) and PM₁₀ patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels may be directly correlated with fluxes in automobile traffic. During a typical week, amounts of ultrafine particles per alveolar deposited surface area varied between 35 and 89.2 μm²/cm³, which are comparable with levels reported for other towns in Germany and the United States. The measured values allowed for determination of the number of ultrafine particles per cubic centimeter, which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32 to 63%) outdoors, which is somewhat lower than levels observed in houses in Ontario.

  17. Preparation of Ultrafine W-Cu Composite Powder Using Ultrasonic-Assisted Electroless Plating

    NASA Astrophysics Data System (ADS)

    Huang, Limei; Luo, Laima; Ding, Xiaoyu; Zan, Xiang; Hong, Yu; Cheng, Jigui; Wu, Yucheng; Luo, Guangnan; Zhu, Liu

    2013-07-01

    W-Cu ultrafine/nanocomposite powders have high sintering activity, so ultrafine/nanotechnology of W-Cu composite powders is one of the main methods to obtain fully dense, high-performance W-Cu composite materials. Cu-coated ultrafine W composite powders were synthesized by ultrasonic-assisted electroless plating process with non-noble metal activation pretreatment at room temperature in this paper. The growth mechanism of Cu layers and surface morphologies and composition of initial ultrafine W powders, pretreated W powders and Cu-coated W powders were analyzed by field emission scanning electron microscopy (FE-SEM), and energy dispersion spectrometry (EDS). The results show that the uniformly Cu coated W composite powder is successfully synthesized without conventional sensitization and activation steps by ultrasonic-assisted electroless plating at room temperature. The Cu layers on the ultrafine W powders had cell structure with dense, uniform distribution. The growth mechanism of Cu layers appears as follows: the surfaces of pretreated W powders appear linear-like and lamellar-like surface defects which act as activated sites. The reactants in the plating solution were adsorbed on catalytic activity surfaces of powders and happened oxidation-reduction reaction. The growth and aggregation mechanisms of Cu particles after nucleation are stripy Cu-cells grew up, bend, bifurcated, and aggregated, then wounding into a cellular structure, like "wrapping wool clusters" in the life. Finally, Cu cells grow up and merge into a layer.

  18. Microstructure stability and mechanical properties of ultrafine-grained zirconium alloy under prolonged thermal exposure

    NASA Astrophysics Data System (ADS)

    Sharkeev, Yurii P.; Eroshenko, Anna Yu.; Uvarkin, Pavel V.; Tolmachev, Alexey I.; Akhmetova, Nesibeli K.

    2016-11-01

    The paper describes the experimental results in microstructure thermal stability and mechanical properties of ultrafine-grained zirconium alloy with 1 mass % Nb (Zr-1 mass %Nb) under prolonged thermal exposure. Ultrafine-grained zirconium alloy is produced by severe plastic deformation (SPD) method. It was proved that SPD method including multiple abc-pressing and multi-pass rolling, as well as further pre-recrystallizing annealing enhances the formation of ultrafine-grained structures with mean element size of 0.2 µm. Thermostability time interval of ultrafine-grained structure and the mechanical properties (in case of microhardness) under prolonged thermal exposure (up to 360 hours) for zirconium alloy was experimentally determined. It was proved that ultrafine-grained structure is stable at 400°C within 10 hours whilst keeping the microhardness level attained after SPD. In cases of continuous annealing time from 24 to 360 hours recrystallization processes develop intensively, followed by the decrease in microhardness and intensive growth of structure elements within the alloy.

  19. Ultrafine particle air pollution inside diesel-propelled passenger trains.

    PubMed

    Abramesko, Victoria; Tartakovsky, Leonid

    2017-04-05

    Locomotives with diesel engines are used worldwide and are an important source of air pollution. Pollutant emissions by locomotive engines affect the air quality inside passenger trains. This study is aimed at investigating ultrafine particle (UFP) air pollution inside passenger trains and providing a basis for assessing passenger exposure to this pollutant. The concentrations of UFPs inside the carriages of push-pull trains are dramatically higher when the train operates in pull mode. This clearly shows that locomotive engine emissions are a dominant factor in train passengers' exposure to UFPs. The highest levels of UFP air pollution are observed inside the carriages of pull trains close to the locomotive. In push mode, the UFP number concentrations were lower by factors of 2.6-43 (depending on the carriage type) compared to pull mode. The UFP concentrations are substantially lower in diesel multiple-unit trains than in trains operating in pull mode. A significant influence of the train movement regime on the UFP NC inside a carriage is observed.

  20. Pedestrians in Traffic Environments: Ultrafine Particle Respiratory Doses

    PubMed Central

    Manigrasso, Maurizio; Natale, Claudio; Vitali, Matteo; Protano, Carmela; Avino, Pasquale

    2017-01-01

    Particulate matter has recently received more attention than other pollutants. PM10 and PM2.5 have been primarily monitored, whereas scientists are focusing their studies on finer granulometric sizes due both to their high number concentration and their high penetration efficiency into the respiratory system. The purpose of this study is to investigate the population exposure to UltraFine Particles (UFP, submicrons in general) in outdoor environments. The particle number doses deposited into the respiratory system have been compared between healthy individuals and persons affected by Chronic Obstructive Pulmonary Disease (COPD). Measurements were performed by means of Dust Track and Nanoscan analyzers. Forty minute walking trails through areas with different traffic densities in downtown Rome have been considered. Furthermore, particle respiratory doses have been estimated for persons waiting at a bus stop, near a traffic light, or along a high-traffic road, as currently occurs in a big city. Large differences have been observed between workdays and weekdays: on workdays, UFP number concentrations are much higher due to the strong contribution of vehicular exhausts. COPD-affected individuals receive greater doses than healthy individuals due to their higher respiratory rate. PMID:28282961

  1. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    PubMed

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements

  2. Workplace Measurements of Ultrafine Particles-A Literature Review.

    PubMed

    Viitanen, Anna-Kaisa; Uuksulainen, Sanni; Koivisto, Antti J; Hämeri, Kaarle; Kauppinen, Timo

    2017-08-01

    Workers are exposed to ultrafine particles (UFP) in a number of occupations. In order to summarize the current knowledge regarding occupational exposure to UFP (excluding engineered nanoparticles), we gathered information on UFP concentrations from published research articles. The aim of our study was to create a basis for future epidemiological studies that treat UFP as an exposure factor. The literature search found 72 publications regarding UFP measurements in work environments. These articles covered 314 measurement results and tabled concentrations. Mean concentrations were compared to typical urban UFP concentration level, which was considered non-occupational background concentration. Mean concentrations higher than the typical urban UFP concentration were reported in 240 workplace measurements. The results showed that workers' exposure to UFP may be significantly higher than their non-occupational exposure to background concentration alone. Mean concentrations of over 100 times the typical urban UFP concentration were reported in welding and metal industry. However, according to the results of the review, measurements of the UFP in work environments are, to date, too limited and reported too heterogeneous to allow us to draw general conclusions about workers' exposure. Harmonization of measurement strategies is essential if we are to generate more reliable and comparable data in the future. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  3. The morphology of ultrafine particles on and near major freeways

    SciTech Connect

    Barone, Teresa L; Zhu, Yifang

    2008-01-01

    The morphology of ultrafine particles (UFPs; diameter < 100 nm) collected on and near major Los Angeles freeways in April 2006 is reported. Samples were size selected with a differential mobility analyzer, collected by a nanometer aerosol sampler, and analyzed using a transmission electron microscope. Typical observed morphologies included aggregates, spheres, irregularly shaped particles, and particles with multiple inclusions. For freeway aerosols with 50 nm electrical mobility diameter, most (>90%) electron-opaque particles were surrounded by an electron-transparent material. This suggests that much of these particles were heterogeneously internally mixed. The fraction of UFPs in a given morphology class collected on and at increasing downwind distance from the I-405 freeway was compared. The fraction of aggregates measured 90 m downwind of I-405 was significantly less than the fraction measured on the freeway (p-value < 0.01). Because aggregates are a primary aerosol (directly emitted), this may indicate that secondary aerosol (formed in the atmosphere) becomes more prevalent with increasing distance from the freeway. The fraction of particles with multiple inclusions measured 90 m downwind of I-405 was significantly greater than the fraction measured on the freeway (p-value < 0.01). The increase in the number of particles with multiple inclusions with increasing distance from the freeway suggests that dilution does not prevent particles from colliding and merging which may alter the particle size distribution.

  4. Synthesis of Strontium Ferrite Ultrafine Particles Using Microemulsion Processing.

    PubMed

    Chen, Dong-Hwang; Chen, Yuh-Yuh

    2001-04-01

    The strontium ferrite ultrafine particles have been prepared using the microemulsion processing. The mixed hydroxide precursor was obtained via the coprecipitation of Sr(2+) and Fe(3+) in a water-in-oil microemulsion of water/CTAB/n-butanol/isooctane. According to the investigation on the thermochemical properties by TGA/DTA and the phase analysis by XRD, it was shown that the precursor could yield pure strontium ferrite after calcination at 700 degrees C for 5 h while using an appropriate molar ratio of Sr/Fe in microemulsions. From TEM measurement, the diameters of the precursor and calcined particles were 3.8+/-0.7 and 50-100 nm, respectively. The magnetic properties characterized by a SQUID magnetometer showed that the saturation magnetization, remanent magnetization, coercivity, and squareness ratio were 55 emu/g, 28 emu/g, 492 Oe, and 0.51, respectively. The magnetization was also observed to increase with the decrease of temperature at 5-400 K. Compared with those reported earlier, the quite low coercivity implies the potential application of final product in the high-density perpendicular recording media. Copyright 2001 Academic Press.

  5. Room Temperature Dynamic Strain Aging in Ultrafine-Grained Titanium

    NASA Astrophysics Data System (ADS)

    Lopes, Felipe Perissé D.; Lu, Chia Hui; Zhao, Shiteng; Monteiro, Sergio N.; Meyers, Marc A.

    2015-10-01

    Dynamic strain aging (DSA) in coarse-grained (CG) titanium is usually observed at intermediate to high temperatures 473 K to 973 K (200 °C to 700 °C) and is characterized by serrations in the stress vs strain curves. In the present work, despite the absence of apparent serrations, ultrafine-grained titanium (UFG Ti) undergoes DSA at room temperature, exhibited through an abnormal increase in the elastic limit and negative strain rate sensitivity. This effect is observed at 293 K (20 °C) in the strain rate interval of 10-4 to 10-2 s-1, and at 203 K (-70 °C) and 373 K (100 °C) in a distinct strain rate range. Based on a calculated activation energy of 17.3 kJ/mol and microstructural observations by transmission electron microscopy, it is proposed that the dominant mechanism for DSA in UFG Ti involves interstitial solutes interacting with dislocations emitted from grain boundaries. The interstitials migrate from the grain boundaries along dislocation lines bowing out as they are emitted from the boundaries, a mechanism with a low calculated activation energy which is comparable with the experimental measurements. The dislocation velocities and interstitial diffusion along the dislocation cores are consistent.

  6. Micromechanics of Ultrafine Particle Adhesion—Contact Models

    NASA Astrophysics Data System (ADS)

    Tomas, Jürgen

    2009-06-01

    Ultrafine, dry, cohesive and compressible powders (particle diameter d<10 μm) show a wide variety of flow problems that cause insufficient apparatus and system reliability of processing plants. Thus, the understanding of the micromechanics of particle adhesion is essential to assess the product quality and to improve the process performance in particle technology. Comprehensive models are shown that describe the elastic-plastic force-displacement and frictional moment-angle behavior of adhesive contacts of isotropic smooth spheres. By the model stiff particles with soft contacts, a sphere-sphere interaction of van der Waals forces without any contact deformation describes the stiff attractive term. But, the soft micro-contact response generates a flattened contact, i.e. plate-plate interaction, and increasing adhesion. These increasing adhesion forces between particles directly depend on this frozen irreversible deformation. Thus, the adhesion force is found to be load dependent. It contributes to the tangential forces in an elastic-plastic frictional contact with partially sticking and micro-slip within the contact plane. The load dependent rolling resistance and torque of mobilized frictional contact rotation (spin around its principal axis) are also shown. This reasonable combination of particle contact micromechanics and powder continuum mechanics is used to model analytically the macroscopic friction limits of incipient powder consolidation, yield and cohesive steady-state shear flow on physical basis.

  7. In vitro biocompatibility of an ultrafine grained zirconium.

    PubMed

    Saldaña, Laura; Méndez-Vilas, Antonio; Jiang, Ling; Multigner, Marta; González-Carrasco, Jose L; Pérez-Prado, María T; González-Martín, María L; Munuera, Luis; Vilaboa, Nuria

    2007-10-01

    We have investigated a novel ultrafine grained (UFG) Zr obtained by severe plastic deformation (SPD) which resulted in a refinement of the grain size by several orders of magnitude. Compared to conventional Zr, higher hardness values were measured on UFG Zr. Polished surfaces having similar topographical features from both materials were prepared, as assessed by atomic force microscopy (AFM). Surface hydrophobicity of Zr, evaluated by measuring water contact angles, was unaffected by grain size reduction. In vitro biocompatibility was addressed on conventional and UFG Zr surfaces and, for comparative purposes, a polished Ti6Al4V alloy was also investigated. Cell attachment and spreading, actin and beta-tubulin cytoskeleton reorganisation, fibronectin secretion and cellular distribution as well as cell viability were evaluated by culturing human osteoblastic Saos-2 cells on the surfaces. The osteoblastic response to conventional Zr was found to be essentially identical to Ti6Al4V and was not affected by grain size reduction. In order to evaluate the ability of the surfaces to promote osteogenic maturation and bone matrix mineralisation, human mesenchymal cells from bone marrow were switched to the osteoblastic phenotype by incubation in osteogenic induction media. Compared to undifferentiated mesenchymal cells, alkaline phosphatase activity and formation of mineralisation nodules were enhanced to the same extent on both Zr surfaces and Ti6Al4V alloy after induction of osteoblastic differentiation. In summary, improved mechanical properties together with excellent in vitro biocompatibility make UFG Zr a promising biomaterial for surgical implants.

  8. Ultrafine particle size as a tracer for aircraft turbine emissions.

    PubMed

    Riley, Erin A; Gould, Timothy; Hartin, Kris; Fruin, Scott A; Simpson, Christopher D; Yost, Michael G; Larson, Timothy

    2016-08-01

    Ultrafine particle number (UFPN) and size distributions, black carbon, and nitrogen dioxide concentrations were measured downwind of two of the busiest airports in the world, Los Angeles International Airport (LAX) and Hartsfield-Jackson International Airport (ATL - Atlanta, GA) using a mobile monitoring platform. Transects were located between 5 km and 10 km from the ATL and LAX airports. In addition, measurements were taken at 43 additional urban neighborhood locations in each city and on freeways. We found a 3-5 fold increase in UFPN concentrations in transects under the landing approach path to both airports relative to surrounding urban areas with similar ground traffic characteristics. The latter UFPN concentrations measured were distinct in size distributional properties from both freeways and across urban neighborhoods, clearly indicating different sources. Elevated concentrations of Black Carbon (BC) and NO2 were also observed on airport transects, and the corresponding pattern of elevated BC was consistent with the observed excess UFPN concentrations relative to other urban locations.

  9. Exposure to Inhalable, Respirable, and Ultrafine Particles in Welding Fume

    PubMed Central

    Pesch, Beate

    2012-01-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m−3 for inhalable and 1.29 mg m−3 for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m−3). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements

  10. Recycling concrete: An undiscovered source of ultrafine particles

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Morawska, Lidia

    2014-06-01

    While concrete recycling is practiced worldwide, there are many unanswered questions in relation to ultrafine particle (UFP; Dp < 100 nm) emissions and exposure around recycling sites. In particular: (i) Does recycling produce UFPs and in what quantities? (ii) How do they disperse around the source? (iii) What impact does recycling have on ambient particle number concentrations (PNCs) and exposure? (iv) How effective are commonly used dust respirators to limit exposure? We measured size-resolved particles in the 5-560 nm range at five distances between 0.15 and 15.15 m that were generated by an experimentally simulated concrete recycling source and found that: (i) the size distributions were multimodal, with up to ˜93% of total PNC in the UFP size range; and (ii) dilution was a key particle transformation mechanism. UFPs showed a much slower decay rate, requiring ˜62% more distance to reach 10% of their initial concentration compared with their larger counterparts in the 100-560 nm size range. Compared with typical urban exposure during car journeys, exposure decay profiles showed up to ˜5 times higher respiratory deposition within 10 m of the source. Dust respirators were found to remove half of total PNC; however the removal factor for UFPs was only ˜57% of that observed in the 100-560 nm size range. These findings highlight a need for developing an understanding of the nature of the particles as well as for better control measures to limit UFP exposure.

  11. Impact Toughness of Ultrafine-Grained Interstitial-Free Steel

    NASA Astrophysics Data System (ADS)

    Saray, Onur; Purcek, Gencaga; Karaman, Ibrahim; Maier, Hans J.

    2012-11-01

    Impact toughness of an ultrafine-grained (UFG) interstitial-free (IF) steel produced by equal-channel angular extrusion/pressing (ECAE/P) at room temperature was investigated using Charpy impact tests. The UFG IF steel shows an improved combination of strength and impact toughness compared with the corresponding coarse-grained (CG) one. The CG IF steel samples underwent a transition in fracture toughness values with decreasing temperature because of a sudden change in fracture mode from microvoid coalescence (ductile) to cleavage (brittle) fracture. Grain refinement down to the submicron (≈320 nm) levels increased the impact energies in the upper shelf and lower shelf regions, and it considerably decreased the ductile-to-brittle transition temperature (DBTT) from 233 K (-40 °C) for the CG steel to approximately 183 K (-90 °C) for the UFG steel. Also, the sudden drop in DBTT with a small transition range for the CG sample changed to a more gradual decrease in energy for the UFG sample. The improvement in toughness after UFG formation was attributed to the combined effects of grain refinement and delamination and/or separation in the heavily deformed microstructure. Although an obvious change from the ductile fracture by dimples to the brittle fracture by cleavage was recognized at 233 K (-40 °C) for the CG steel, no fully brittle fracture occurred even at 103 K (-170 °C) in the UFG steel.

  12. Outdoor ultrafine particle concentrations in front of fast food restaurants.

    PubMed

    Vert, Cristina; Meliefste, Kees; Hoek, Gerard

    2016-01-01

    Ultrafine particles (UFPs) have been associated with negative effects on human health. Emissions from motor vehicles are the principal source of UFPs in urban air. A study in Vancouver suggested that UFP concentrations were related to density of fast food restaurants near the monitoring sites. A previous monitoring campaign could not separate the contribution of restaurants from road traffic. The main goal of this study has been the quantification of fast food restaurants' contribution to outdoor UFP concentrations. A portable particle number counter (DiscMini) has been used to carry out mobile monitoring in a largely pedestrianized area in the city center of Utrecht. A fixed route passing 17 fast food restaurants was followed on 8 days. UFP concentrations in front of the restaurants were 1.61 times higher than in a nearby square without any local sources used as control area and 1.22 times higher compared with all measurements conducted in between the restaurants. Adjustment for other sources such as passing mopeds, smokers or candles did not explain the increase. In conclusion, fast food restaurants result in significant increases in outdoor UFP concentrations in front of the restaurant.

  13. Insights on wood combustion generated proinflammatory ultrafine particles (UFP).

    PubMed

    Corsini, Emanuela; Ozgen, Senem; Papale, Angela; Galbiati, Valentina; Lonati, Giovanni; Fermo, Paola; Corbella, Lorenza; Valli, Gianluigi; Bernardoni, Vera; Dell'Acqua, Manuela; Becagli, Silvia; Caruso, Donatella; Vecchi, Roberta; Galli, Corrado L; Marinovich, Marina

    2017-01-15

    This study aimed to collect, characterize ultrafine particles (UFP) generated from the combustion of wood pellets and logs (softwood and hardwood) and to evaluate their pro-inflammatory effects in THP-1 and A549 cells. Both cell lines responded to UFP producing interleukin-8 (IL-8), with wood log UFP being more active compared to pellet UFP. With the exception of higher effect observed with beech wood log UFP in THP-1, the ability of soft or hard woods to induce IL-8 release was similar. In addition, on weight mass, IL-8 release was similar or lower compared to diesel exhaust particles (DEP), arguing against higher biological activity of smaller size particles. UFP-induced IL-8 could be reduced by SB203580, indicating a role of p38MAPK activation in IL-8 production. The higher activity of beech wood log UFP in THP-1 was not due to higher uptake or endotoxin contamination. Qualitatively different protein adsorption profiles were observed, with less proteins bound to beech UFP compared to conifer UFP or DEP, which may provide higher intracellular availability of bioactive components, i.e. levoglucosan and galactosan, toward which THP-1 were more responsive compared to A549 cells. These results contribute to our understanding of particles emitted by domestic appliances and their biological effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Ultrafine particle number fluxes over and in a deciduous forest

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Barthelmie, R. J.; Larsen, S. E.; Sørensen, L. L.

    2017-01-01

    Ultrafine particles (UFP, particles with diameters (Dp) < 100 nm) play a key role in climate forcing; thus, there is interest in improved understanding of atmosphere-surface exchange of these particles. Long-term flux measurements from a deciduous forest in the Midwestern USA (taken during December 2012 to May 2014) show that although a substantial fraction of the data period indicates upward fluxes of UFP, on average, the forest is a net sink for UFP during both leaf-active and leaf-off periods. The overall mean above-canopy UFP number flux computed from this large data set is -4.90 × 106 m-2 s-1 which re-emphasizes the importance of these ecosystems to UFP removal from the atmosphere. Although there remain major challenges to accurate estimation of the UFP number flux and in drawing inferences regarding the actual surface exchange from measurements taken above the canopy, the above the canopy mean flux is shown to be downward throughout the day (except at 23.00) with largest-magnitude fluxes during the middle of the day. On average, nearly three quarters of the total UFP capture by this ecosystem occurs at the canopy. This fraction increases to 78% during the leaf-active period, but the over-storey remains dominant over the subcanopy even during the leaf-off period.

  15. Ultrafine particle size as a tracer for aircraft turbine emissions

    NASA Astrophysics Data System (ADS)

    Riley, Erin A.; Gould, Timothy; Hartin, Kris; Fruin, Scott A.; Simpson, Christopher D.; Yost, Michael G.; Larson, Timothy

    2016-08-01

    Ultrafine particle number (UFPN) and size distributions, black carbon, and nitrogen dioxide concentrations were measured downwind of two of the busiest airports in the world, Los Angeles International Airport (LAX) and Hartsfield-Jackson International Airport (ATL - Atlanta, GA) using a mobile monitoring platform. Transects were located between 5 km and 10 km from the ATL and LAX airports. In addition, measurements were taken at 43 additional urban neighborhood locations in each city and on freeways. We found a 3-5 fold increase in UFPN concentrations in transects under the landing approach path to both airports relative to surrounding urban areas with similar ground traffic characteristics. The latter UFPN concentrations measured were distinct in size distributional properties from both freeways and across urban neighborhoods, clearly indicating different sources. Elevated concentrations of Black Carbon (BC) and NO2 were also observed on airport transects, and the corresponding pattern of elevated BC was consistent with the observed excess UFPN concentrations relative to other urban locations.

  16. ULTRAFINE CARBON PARTICLES INDUCE IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS THROUGH A POST-TRANSCRIPTIONAL MECHANISM

    EPA Science Inventory

    Ultrafine carbon particles induce IL-8 expression in human airway
    epithelial cells through a post-transcritpional mechanism
    Epidemiological studies suggest that ultrafine particles contribute to
    particulate matter (PM) - induced adverse health effects. IL-8 is an
    i...

  17. Atmospheric pressure plasma assisted calcination of composite submicron fibers

    NASA Astrophysics Data System (ADS)

    Medvecká, Veronika; Kováčik, Dušan; Tučeková, Zlata; Zahoranová, Anna; Černák, Mirko

    2016-08-01

    The plasma assisted calcination of composite organic/inorganic submicron fibers for the preparation of inorganic fibers in submicron scale was studied. Aluminium butoxide/polyvinylpyrrolidone fibers prepared by electrospinning were treated using low-temperature plasma generated by special type of dielectric barrier discharge, so called diffuse coplanar surface barrier discharge (DCSBD) at atmospheric pressure in ambient air, synthetic air, oxygen and nitrogen. Effect of plasma treatment on base polymer removal was investigated by using Attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy. Influence of working gas on the base polymer reduction was studied by energy-dispersive X-ray spectroscopy (EDX) and CHNS elemental analysis. Changes in fibers morphology were observed by scanning electron microscopy (SEM). High efficiency of organic template removal without any degradation of fibers was observed after plasma treatment in ambient air. Due to the low-temperature approach and short exposure time, the plasma assisted calcination is a promising alternative to the conventional thermal calcination. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  18. Delamination Effect on Impact Properties of Ultrafine-Grained Low-Carbon Steel Processed by Warm Caliber Rolling

    NASA Astrophysics Data System (ADS)

    Inoue, Tadanobu; Yin, Fuxing; Kimura, Yuuji; Tsuzaki, Kaneaki; Ochiai, Shojiro

    2010-02-01

    Bulk ultrafine-grained (UFG) low-carbon steel bars were produced by caliber rolling, and the impact and tensile properties were investigated. Initial samples with two different microstructures, ferrite-pearlite and martensite (or bainite), were prepared and then caliber rolling was conducted at 500 °C. The microstructures in the rolled bars consisted of an elongated UFG structure with a strong α-fiber texture. The rolled bar consisting of spheroidal cementite particles that distributed uniformly in the elongated ferrite matrix of transverse grain sizes 0.8 to 1.0 μm exhibited the best strength-ductility balance and impact properties. Although the yield strength in the rolled bar increased 2.4 times by grain refinement, the upper-shelf energy did not change, and its value was maintained from 100 °C to -40 °C. In the rolled bars, cracks during an impact test branched parallel to the longitudinal direction of the test samples as temperatures decreased. Delamination caused by such crack branching appeared, remarkably, near the ductile-to-brittle transition temperature (DBTT). The effect of delamination on the impact properties was associated with crack propagation on the basis of the microstructural features in the rolled bars. In conclusion, the strength-toughness balance is improved by refining crystal grains and controlling their shape and orientation; in addition, delamination effectively enhances the low-temperature toughness.

  19. Al-Coated Conductive Fibrous Filter with Low Pressure Drop for Efficient Electrostatic Capture of Ultrafine Particulate Pollutants.

    PubMed

    Choi, Dong Yun; Jung, Soo-Ho; Song, Dong Keun; An, Eun Jeong; Park, Duckshin; Kim, Tae-Oh; Jung, Jae Hee; Lee, Hye Moon

    2017-05-17

    Here, we demonstrate a new strategy of air filtration based on an Al-coated conductive fibrous filter for high efficient nanoparticulate removals. The conductive fibrous filter was fabricated by a direct decomposition of Al precursor ink, AlH3{O(C4H9)2}, onto surfaces of a polyester air filter via a cost-effective and scalable solution-dipping process. The prepared conductive filters showed a low sheet resistance (<1.0 Ω sq(-1)), robust mechanical durability and high oxidative stability. By electrostatic force between the charged fibers and particles, the ultrafine particles of 30-400 nm in size were captured with a removal efficiency of ∼99.99%. Moreover, the conductive filters exhibited excellent performances in terms of the pressure drop (∼4.9 Pa at 10 cm s(-1)), quality factor (∼2.2 Pa(-1) at 10 cm s(-1)), and dust holding capacity (12.5 μg mm(-2)). After being cleaned by water, the filtration efficiency and pressure drop of the conductive filter was perfectly recovered, which indicates its good recyclability. It is expected that these promising features make the conductive fibrous filter have a great potential for use in low-cost and energy-efficient air cleaning devices as well as other relevant research areas.

  20. Effects of poly(2-hydroxyethyl methacrylate) and poly(vinyl-pyrrolidone) hydrogel implants on myopic and normal chick sclera

    PubMed Central

    Su, James; Iomdina, Elena; Tarutta, Elena; Ward, Brian; Song, Jie; Wildsoet, Christine F.

    2008-01-01

    There has been generally little attention paid to the utilization of biomaterials as an anti-myopia treatment. The purpose of this study was to investigate whether polymeric hydrogels, either implanted or injected adjacent to the outer scleral surface, slow ocular elongation. White Leghorn (gallus gallus domesticus) chicks were used at 2 weeks of age. Chicks had either (1) strip of poly(2-hydroxyethyl methacrylate) (pHEMA) implanted monocularly against the outer sclera at the posterior pole, or (2) an in situ polymerizing gel [main ingredient: poly(vinyl-pyrrolidone) (PVP)] injected monocularly at the same location. Some of the eyes injected with the polymer were fitted with a diffuser or a −10D lens. In each experiment, ocular lengths were measured at regular intervals by high frequency A-scan ultrasonography, and chicks were sacrificed for histology at staged intervals. No in vivo signs of either orbital or ocular inflammation were observed. The pHEMA implant significantly increased scleral thickness by the third week, and the implant became encapsulated with fibrous tissue. The PVP-injected eyes left otherwise untreated, showed a significant increase in scleral thickness, due to increased chondrocyte proliferation and extracellular matrix deposition. However, there was no effect of the PVP injection on ocular elongation. In eyes wearing optical devices, there was no effect on either scleral thickness or ocular elongation. These results represent “proof of principle” that scleral growth can be manipulated without adverse inflammatory responses. However, since neither approach slowed ocular elongation, additional factors must influence scleral surface area expansion in the avian eye. PMID:19109950

  1. Influence of polyvinylpyrrolidone, microcrystalline cellulose and colloidal silicon dioxide on technological characteristics of a high-dose Petiveria alliacea tablet.

    PubMed

    García-Pérez, Martha-Estrella; Lemus-Rodríguez, Zoe; Hung-Arbelo, Mario; Vistel-Vigo, Marlen

    2017-08-03

    Petiveria alliacea L. (Phytolaccaceae) is a perennial shrub used by its immunomodulatory, anticancerogenic and anti-inflammatory properties. This study determined the influence of polyvinylpyrrolidone (PVP), colloidal silicon dioxide (CSD) and microcrystalline cellulose (MC) on the technological characteristic of a high-dose P. alliacea tablet prepared by the wet granulation method. The botanical and pharmacognostic analysis of the plant material was firstly performed, followed by a 2(3) factorial design considering three factors at two levels: (a) the binder (PVP) incorporated in formulation at 10% and 15% (w/w); (b) the compacting agent (CSD) added at 10% and 15% (w/w) and; (c) the diluent (MC) included at 7.33% and 12.46% (w/w). The analysis of pharmaceutical performance and the accelerated and long-term stability of the best prototype were also completed. The binder, compacting agent and the interaction binder/diluent had a significant impact on breaking force of high-dose P. alliacea tablet. The optimum formula was found to contain 15% (w/w) of CSD, 7.33% (w/w) of MC and 10% (w/w) of PVP. At these conditions, the tablet shows a breaking force of 77.96 N, a friability of 0.39%, a total phenol content of 1.30 mg/tablet and a maximum disintegration time of 6 min. The use of adequate amounts of PVP, MC and CSD as per the factorial design allowed the preparation of a tablet suitable for administration, despite the inappropriate flow and compressibility properties of the P. alliacea powder.

  2. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-08-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe3O4 and γ-Fe2O3 NPs with particle sizes ranging from 20 to 50 nm, and Fe0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  3. Polyvinylpyrrolidone-Based Bio-Ink Improves Cell Viability and Homogeneity during Drop-On-Demand Printing

    PubMed Central

    Ng, Wei Long; Yeong, Wai Yee; Naing, May Win

    2017-01-01

    Drop-on-demand (DOD) bioprinting has attracted huge attention for numerous biological applications due to its precise control over material volume and deposition pattern in a contactless printing approach. 3D bioprinting is still an emerging field and more work is required to improve the viability and homogeneity of printed cells during the printing process. Here, a general purpose bio-ink was developed using polyvinylpyrrolidone (PVP) macromolecules. Different PVP-based bio-inks (0%–3% w/v) were prepared and evaluated for their printability; the short-term and long-term viability of the printed cells were first investigated. The Z value of a bio-ink determines its printability; it is the inverse of the Ohnesorge number (Oh), which is the ratio between the Reynolds number and a square root of the Weber number, and is independent of the bio-ink velocity. The viability of printed cells is dependent on the Z values of the bio-inks; the results indicated that the cells can be printed without any significant impairment using a bio-ink with a threshold Z value of ≤9.30 (2% and 2.5% w/v). Next, the cell output was evaluated over a period of 30 min. The results indicated that PVP molecules mitigate the cell adhesion and sedimentation during the printing process; the 2.5% w/v PVP bio-ink demonstrated the most consistent cell output over a period of 30 min. Hence, PVP macromolecules can play a critical role in improving the cell viability and homogeneity during the bioprinting process. PMID:28772551

  4. Polyvinylpyrrolidone-Based Bio-Ink Improves Cell Viability and Homogeneity during Drop-On-Demand Printing.

    PubMed

    Ng, Wei Long; Yeong, Wai Yee; Naing, May Win

    2017-02-16

    Drop-on-demand (DOD) bioprinting has attracted huge attention for numerous biological applications due to its precise control over material volume and deposition pattern in a contactless printing approach. 3D bioprinting is still an emerging field and more work is required to improve the viability and homogeneity of printed cells during the printing process. Here, a general purpose bio-ink was developed using polyvinylpyrrolidone (PVP) macromolecules. Different PVP-based bio-inks (0%-3% w/v) were prepared and evaluated for their printability; the short-term and long-term viability of the printed cells were first investigated. The Z value of a bio-ink determines its printability; it is the inverse of the Ohnesorge number (Oh), which is the ratio between the Reynolds number and a square root of the Weber number, and is independent of the bio-ink velocity. The viability of printed cells is dependent on the Z values of the bio-inks; the results indicated that the cells can be printed without any significant impairment using a bio-ink with a threshold Z value of ≤9.30 (2% and 2.5% w/v). Next, the cell output was evaluated over a period of 30 min. The results indicated that PVP molecules mitigate the cell adhesion and sedimentation during the printing process; the 2.5% w/v PVP bio-ink demonstrated the most consistent cell output over a period of 30 min. Hence, PVP macromolecules can play a critical role in improving the cell viability and homogeneity during the bioprinting process.

  5. [Toxicological evaluation of colloidal nano-sized silver stabilized polyvinylpyrrolidone. III. Enzymological, biochemical markers, state of antioxidant defense system].

    PubMed

    Gmoshinsky, I V; Shipelin, V A; Vorozhko, I V; Sentsova, T B; Soto, S Kh; Avren'eva, L I; Guseva, G V; Kravchenko, L V; Khotimchenko, S A; Tutelyan, V A

    2016-01-01

    Nanosized colloidal silver (NCS) with primary nanoparticles (NPs) size in the range of 10-80 nm in aqueous suspension was administered to rats with initial weight 80±10 gfor the first 30 day intragastrically and for lasting 62 days with the diet consumed in doses of 0.1; 1.0 and 10 mg/kg of body weight b.w) per day based on silver (Ag). The control animals received deionized water and carrier of NPs - aqueous solution of stabilizer polyvinylpyrrolidone. Activity (Vmax) was determined in liver of microsomal mixed function monooxygenase isoforms CYP 1A1, 1A2 and 2B1 against their specific substrates, the activity of liver conjugating enzymes (glutathione-S-transferase and UDP-glucuronosyltransferase) in the microsomal fraction and a cytosol, and the overall and non-sedimentable activities of lysosomal hydrolases. In blood plasma there were evaluated malonic dialdehyde, PUFA diene conjugates, in erythrocytes - the activity of antioxidant enzymes. A set of standard biochemical indicators of blood serum was also determined. The studies revealed changes in a number of molecular markers of toxic action. Among them - the increase in the activity of key enzymes I and II stages of detoxification of xenobiotics, indicating its functional overvoltage; reducing the activity of glutathione peroxidase (GP), the total arylsulfatase A and B, β-galactosidase (in the absence of changes in their non-sedimentable activity), levels of uric acid, increased alkaline phosphatase activity. These changes occurred mainly at the dose Ag of 10 mg/kg b.w., except for the GP to which the threshold dose was 1 mg/kg b.w. No significant changes in the studied markers in a dose Ag 0,1 mg/kg b.w. were identified. Possible mechanisms of the toxic action of silver NPs are discussed.

  6. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    SciTech Connect

    Zhang, Jinyu; Zhou, Guowei Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  7. Effect of multidirectional forging and equal channel angular pressing on ultrafine grain formation in a Cu- Cr-Zr alloy

    NASA Astrophysics Data System (ADS)

    Shakhova, I.; Belyakov, A.; Kaibyshev, R.

    2014-08-01

    The microstructure evolution was investigated in a Cu-0.3%Cr-0.5%Zr alloy subjected to large plastic deformation at temperature of 400 °C. Two methods of large plastic deformation, i.e., equal channel angular pressing (ECAP) and multidirectional forging (MDF) were used. The large plastic deformations resulted in the development of new ultrafine grains. The formation of new ultrafine grains occurred as a result of continuous reaction, i.e., progressive increase in the misorientations of deformation subboundaries. The faster kinetics of microstructure evolution was observed during MDF as compared to ECAP. The MDF to a total strain of 4 resulted in the formation of uniform ultrafine grained structure, while ECAP to the same strain led to the heterogeneous microstructure consisting of new ultrafine grains and coarse remnants of original grains. Corresponding area fractions of ultrafine grains comprised 0.23 and 0.59 in the samples subjected to ECAP and MDF, respectively.

  8. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults

    NASA Astrophysics Data System (ADS)

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-11-01

    The criteria for designating an “Active Fault” not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault’s latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones.

  9. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults

    PubMed Central

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-01-01

    The criteria for designating an “Active Fault” not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault’s latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones. PMID:27827413

  10. Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Hao, T.; Fan, Z. Q.; Zhang, T.; Luo, G. N.; Wang, X. P.; Liu, C. S.; Fang, Q. F.

    2014-12-01

    In this study, equal-channel angular pressing (ECAP) was employed to refine the grain size of tungsten at relatively low temperatures. The small punch (SP) test results show that the ultrafine-grained tungsten appears an evident improvement in both strength and ductility compared with primary coarse-grained tungsten. The analysis results from SP test data indicate that the ductile-to-brittle transition temperature (DBTT) of the ultrafine-grained tungsten decrease to 386 °C and 322 °C due to the ECAP processing at 800 °C and 950 °C, respectively. The reason of the improvement in both strength and ductility of the ultrafine-grained tungsten produced by ECAP is discussed.

  11. Patterned synthesis of laterally oriented ultrafine ZnO nanowires by controlled metalorganic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Lee, D. H.; Son, K.; Park, W. I.

    2010-06-01

    Selective and lateral growth of ultrafine ZnO nanowires using metalorganic chemical vapour deposition (MOCVD) is studied. For selective growth of ZnO nanowires, oxidized substrates were patterned with Au layers, which serve as nucleation sites for the initial stage of ZnO nanowire growth. Electron microscopy confirmed that ultrafine ZnO nanowires with a mean diameter in the range ~8-20 nm were rooted selectively in Au patterns and laterally extended to several micrometres on the substrate surfaces. Interestingly, nanowire bridges crosslinking the Au patterns or nanowire link-ups were frequently observed, indicating that self-organizing electrical interconnects and optical networks can be developed. Photoresponse measurements showed that exposure of the ultrafine ZnO nanowires to ultraviolet light rapidly increased the channel current from ~150 to ~400 nA at an applied bias voltage of 1 V.

  12. Ultrafine particles preserved in the fault gouge of the Arima-Takatsuki Tectonic Line, Japan

    NASA Astrophysics Data System (ADS)

    Asayama, S.; Hirono, T.

    2015-12-01

    Coseismic friction causes comminution, grain-size reduction, and amorphization of minerals. These ultrafine particles are preserved in the fault: for example, particles (size of some tens of nanometers) have been reported only in the latest slip zone within the Taiwan Chelungpu fault that slipped during the 1999 Chi-Chi earthquake. On the other hand, these ultrafine particles might dissolve in the pore water and then disappear, because amorphous fine minerals have generally high water solubility. This indicates that the preserved ultrafine particles have potential as a proxy for identifying the slip zone of the most recent earthquake along a fault. However, the occurrence in the active faults has not been fully reported. Thus, we investigated the slip zone within the Arima-Takatsuki Tectonic Line considered to have slipped at the 1596 Keicho-Fushimi earthquake, and reported mineral particles within the slip zone together with the development of advanced method to quantify amorphous component.

  13. Characterization of pure Ni ultrafine/nanoparticles synthesized by electromagnetic levitational gas condensation method

    SciTech Connect

    Khodaei, Azin Hasannasab, Malihe; Amousoltani, Narges; Kermanpur, Ahmad

    2016-02-15

    Highlights: • Ni ultrafine/nanoparticles were produced using the single-step ELGC method. • Ar and He–20%Ar gas mixtures were used as the condensing gas under 1 atm. • Effects of gas type and flow rate on particle size distribution were investigated. • The nanoparticles showed both high saturation magnetization and low coercivity. - Abstract: In this work, Ni ultrafine/nanoparticles were directly produced using the one-step, relatively large-scale electromagnetic levitational gas condensation method. In this process, Ni vapors ascending from the levitated droplet were condensed by Ar and He–20%Ar gas mixtures under atmospheric pressure. Effects of type and flow rate of the condensing gas on the size, size distribution and crystallinity of Ni particles were investigated. The particles were characterized by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The process parameters for the synthesis of the crystalline Ni ultrafine/nanoparticles were determined.

  14. Electrospinning preparation and photoluminescence properties of erbium complex doped composite fibers.

    PubMed

    Cui, Xiao; Zhang, He Ming; Wu, Tie Feng

    2011-09-01

    In this paper, an Er(III) complex of Er(DBM)3IPD, where DBM=1,3-diphenyl-propane-1,3-dione and IPD=4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline, is synthesized and doped into poly(vinylpyrrolidone) submicron fibers through electrospinning technique. The crystal structure and morphology are investigated in detail. The composite fibers exhibit smooth and uniform morphology on the substrate, with an average diameter of ∼1.4 μm. Photophysical data suggest that DBM ligand sensitizes Er(III) center efficiently and provides an optimal condition for radiative decay, and low temperature can enhance the emission intensity by suppressing the quenching effect. It is found that the photostability of Er(III) complex doped composite fibers is largely improved compared with that of pure complex.

  15. Electrospinning preparation and photoluminescence properties of erbium complex doped composite fibers

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Zhang, He Ming; Wu, Tie Feng

    2011-09-01

    In this paper, an Er(III) complex of Er(DBM) 3IPD, where DBM = 1,3-diphenyl-propane-1,3-dione and IPD = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline, is synthesized and doped into poly(vinylpyrrolidone) submicron fibers through electrospinning technique. The crystal structure and morphology are investigated in detail. The composite fibers exhibit smooth and uniform morphology on the substrate, with an average diameter of ˜1.4 μm. Photophysical data suggest that DBM ligand sensitizes Er(III) center efficiently and provides an optimal condition for radiative decay, and low temperature can enhance the emission intensity by suppressing the quenching effect. It is found that the photostability of Er(III) complex doped composite fibers is largely improved compared with that of pure complex.

  16. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation.

    PubMed

    Jørgensen, Rikke Bramming; Buhagen, Morten; Føreland, Solveig

    2016-07-01

    To investigate the exposure to number concentration of ultrafine particles and the size distribution in the breathing zone of workers during rehabilitation of a subsea tunnel. Personal exposure was measured using a TSI 3091 Fast Mobility Particle Sizer (FMPS), measuring the number concentration of submicrometre particles (including ultrafine particles) and the particle size distribution in the size range 5.6-560 nm. The measurements were performed in the breathing zone of the operators by the use of a conductive silicone tubing. Working tasks studied were operation of the slipforming machine, operations related to finishing the verge, and welding the PVC membrane. In addition, background levels were measured. Arithmetic mean values of ultrafine particles were in the range 6.26×10(5)-3.34×10(6). Vertical PVC welding gave the highest exposure. Horizontal welding was the work task with the highest maximum peak exposure, 8.1×10(7) particles/cm(3). Background concentrations of 4.0×10(4)-3.1×10(5) were found in the tunnel. The mobility diameter at peak particle concentration varied between 10.8 nm during horizontal PVC welding and during breaks and 60.4 nm while finishing the verge. PVC welding in a vertical position resulted in very high exposure of the worker to ultrafine particles compared to other types of work tasks. In evaluations of worker exposure to ultrafine particles, it seems important to distinguish between personal samples taken in the breathing zone of the worker and more stationary work area measurements. There is a need for a portable particle-sizing instrument for measurements of ultrafine particles in working environments. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. What does respirator certification tell us about filtration of ultrafine particles?

    PubMed

    Eninger, Robert M; Honda, Takeshi; Reponen, Tiina; McKay, Roy; Grinshpun, Sergey A

    2008-05-01

    Recent interest in exposures to ultrafine particles (less than 100 nm) in both environmental and occupational settings led the authors to question whether the protocols used to certify respirator filters provide adequate attention to ultrafine aerosols. The authors reviewed the particle size distribution of challenge aerosols and evaluated the aerosol measurement method currently employed in the National Institute for Occupational Safety and Health (NIOSH) particulate respirator certification protocol for its ability to measure the contribution of ultrafine particles to filter penetration. Also considered were the differences between mechanical and electrically charged (electret) filters in light of the most penetrating particle size. It was found that the sodium chloride (NaCl) and dioctylphthalate (DOP) aerosols currently used in respirator certification tests contain a significant fraction of particles in the ultrafine region. However, the photometric method deployed in the certification test is not capable of adequately measuring light scatter of particles below approximately 100 nm in diameter. Specifically, 68% (by count) and 8% (by mass) of the challenge NaCl aerosol particles and 10% (by count) and 0.3% (by mass) of the DOP particles below 100 nm do not significantly contribute to the filter penetration measurement. In addition, the most penetrating particle size for electret filters likely occurs at 100 nm or less under test conditions similar to those used in filter certification. The authors conclude, therefore, that the existing NIOSH certification protocol may not represent a worst-case assessment for electret filters because it has limited ability to determine the contribution of ultrafine aerosols, which include the most penetrating particle size for electret filters. Possible strategies to assess ultrafine particle penetration in the certification protocol are discussed.

  18. Interfacial Control of Creep Deformation in Ultrafine Lamellar TiAl

    SciTech Connect

    Hsiung, L M

    2002-11-26

    Solute effect on the creep resistance of two-phase lamellar TiAl with an ultrafine microstructure creep-deformed in a low-stress (LS) creep regime [where a linear creep behavior was observed] has been investigated. The resulted deformation substructure and in-situ TEM experiment revealed that interface sliding by the motion of pre-existing interfacial dislocations is the predominant deformation mechanism in LS creep regime. Solute segregation at lamellar interfaces and interfacial precipitation caused by the solute segregation result in a beneficial effect on the creep resistance of ultrafine lamellar TiAl in LS creep regime.

  19. Ultrafine particle concentration and new particle formation in a coastal arid environment

    NASA Astrophysics Data System (ADS)

    Alfoldy, Balint; Kotob, Mohamed; Obbard, Jeffrey P.

    2017-04-01

    Arid environments can be generally characterised by high coarse aerosol load due to the wind-driven erosion of the upper earth crust (i.e. Aeolian dust). On the other hand, anthropogenic activities and/or natural processes also generate significant numbers of particles in the ultrafine size range. Ultrafine particles (also referred as nano-particles) is considered as aerosol particles with the diameter less than 100 nm irrespectively their chemical composition. Due to their small size, these particles represent negligible mass portion in the total atmospheric particulate mass budget. On the other hand, these particles represent the majority of the total particle number budget and have the major contribution in the total aerosol surface distribution. Ultrafine particles are characterised by high mobility (diffusion) and low gravitational settling velocity. Consequently, these particles can be transported long distances and their atmospheric lifetime is relatively high (i.e. in the Accumulation Mode). Ultrafine particles play important role in the atmosphere as they take part in the atmospheric chemistry (high surface), impact the climate (sulphate vs. black carbon), and implies significant health effects due to their deep lung penetration and high mobility in the body. The Atmospheric Laboratory of Qatar University is conducting real-time monitoring of ultrafine particles and regularly taking aerosol samples for chemical analysis at the university campus. In this paper, recent results are presented regarding the size distribution and chemical composition of the ultrafine aerosol particles. Based on the concentration variation in time, sources of ultrafine particles can be clearly separated from the sources of fine or coarse particles. Several cases of new particle formation events have been observed and demonstrated in the paper, however, the precursors of the secondary aerosol particles are still unknown. Literature references suggest that among the sulphuric acid

  20. Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite

    PubMed Central

    Lee, Seoung Wan; Kim, Jeong Tae; Hong, Sung Hwan; Park, Hae Jin; Park, Jun-Young; Lee, Nae Sung; Seo, Yongho; Suh, Jin Yoo; Eckert, Jürgen; Kim, Do Hyang; Park, Jin Man; Kim, Ki Buem

    2014-01-01

    The outstading mechanical properties of bimodal ultrafine eutectic composites (BUECs) containing length scale hierarchy in eutectic structure were demonstrated by using AFM observation of surface topography with quantitative height measurements and were interpreted in light of the details of the deformation mechanisms by three different interface modes. It is possible to develop a novel strain accommodated eutectic structure for triggering three different interface-controlled deformation modes; (I) rotational boundary mode, (II) accumulated interface mode and (III) individual interface mode. A strain accommodated microstructure characterized by the surface topology gives a hint to design a novel ultrafine eutectic alloys with excellent mechanical properties. PMID:25265897

  1. Grain Size Threshold for Enhanced Irradiation Resistance in Nanocrystalline and Ultrafine Tungsten

    DOE PAGES

    El Atwani, Osman; Hinks, Jonathan; Greaves, Graeme; ...

    2017-02-21

    Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Average bubble density, projected bubble area and the corresponding change in volume were measured via transmission electron microscopy and plotted as a function of grain size for two ion fluences. Nanocrystalline grains of less than 35 nm size possess ~10–20 times lower change in volume than ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficiency.

  2. Purification of single-wall carbon nanotubes by using ultrafine gold particles

    NASA Astrophysics Data System (ADS)

    Nihey, Fumiyuki; Mizoguti, Eiji; Yudasaka, Masako; Iijima, Sumio; Ichihashi, Toshinari; Nakamura, Kazuo

    2000-03-01

    The purification of single-wall carbon nanotubes (SWNTs) is needed to enable detailed characterization and some application of this material. We report a purification method utilizing ultrafine gold particles as catalysts to selectively oxidize carbonaceous impurities in SWNT soot. The ultrafine gold particles with a diameter of 20 nm were dispersed in the soot in combination with benzalkonium chloride as surfactant. Thermogravimetric analyses and electron microscopy observations revealed that oxidation occured at about 330^circC for carbonaceous impurities and at about 410^circC for SWNTs. This selective oxidation enabled us to purify SWNTs and make the quantitative analyses of SWNTs.

  3. Effect of surface moisture on dielectric behavior of ultrafine BaTiO3 particulates.

    NASA Technical Reports Server (NTRS)

    Mountvala, A. J.

    1971-01-01

    The effects of adsorbed H2O on the dielectric properties of ultrafine BaTiO3 particulates of varying particle size and environmental history were determined. The dielectric behavior depends strongly on surface hydration. No particle size dependence of dielectric constant was found for dehydroxylated surfaces in ultrafine particulate (unsintered) BaTiO3 materials. For equivalent particle sizes, the ac conductivity is sensitive to surface morphology. Reactions with H2O vapor appear to account for the variations in dielectric properties. Surface dehydration was effectively accomplished by washing as-received powders in isopropanol.

  4. Effect of surface moisture on dielectric behavior of ultrafine BaTiO3 particulates.

    NASA Technical Reports Server (NTRS)

    Mountvala, A. J.

    1971-01-01

    The effects of adsorbed H2O on the dielectric properties of ultrafine BaTiO3 particulates of varying particle size and environmental history were determined. The dielectric behavior depends strongly on surface hydration. No particle size dependence of dielectric constant was found for dehydroxylated surfaces in ultrafine particulate (unsintered) BaTiO3 materials. For equivalent particle sizes, the ac conductivity is sensitive to surface morphology. Reactions with H2O vapor appear to account for the variations in dielectric properties. Surface dehydration was effectively accomplished by washing as-received powders in isopropanol.

  5. Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite.

    PubMed

    Lee, Seoung Wan; Kim, Jeong Tae; Hong, Sung Hwan; Park, Hae Jin; Park, Jun-Young; Lee, Nae Sung; Seo, Yongho; Suh, Jin Yoo; Eckert, Jürgen; Kim, Do Hyang; Park, Jin Man; Kim, Ki Buem

    2014-09-30

    The outstading mechanical properties of bimodal ultrafine eutectic composites (BUECs) containing length scale hierarchy in eutectic structure were demonstrated by using AFM observation of surface topography with quantitative height measurements and were interpreted in light of the details of the deformation mechanisms by three different interface modes. It is possible to develop a novel strain accommodated eutectic structure for triggering three different interface-controlled deformation modes; (I) rotational boundary mode, (II) accumulated interface mode and (III) individual interface mode. A strain accommodated microstructure characterized by the surface topology gives a hint to design a novel ultrafine eutectic alloys with excellent mechanical properties.

  6. Surface ATRP of hydrophilic monomers from ultrafine aqueous silica sols using anionic polyelectrolytic macroinitiators.

    PubMed

    Vo, Cong-Duan; Schmid, Andreas; Armes, Steven P; Sakai, Kenichi; Biggs, Simon

    2007-01-16

    A convenient two-step route was developed to prepare new anionic ATRP macroinitiators from near-monodisperse poly(2-hydroxyethyl methacrylate) precursors by partial esterification with 2-bromoisobutyryl bromide, followed by esterification of the remaining hydroxyl groups using excess 2-sulfobenzoic acid cyclic anhydride. These new macroinitiators can be electrostatically adsorbed onto ultrafine cationic Ludox CL silica sols; subsequent surface polymerization of various hydrophilic monomers in aqueous solution at room temperature afforded a range of polymer-grafted ultrafine silica sols. The resulting sterically stabilized particles were characterized by dynamic light scattering, transmission electron microscopy, aqueous electrophoresis, FTIR spectroscopy, and elemental microanalyses.

  7. Monodispersed Ultrafine Zeolite Crystal Particles by Microwave Hydrothermal Synthesis

    SciTech Connect

    Hu, Michael Z.; Harris, Michael Tyrone; Khatri, Lubna

    2008-01-01

    Microwave hydrothermal synthesis of zeolites is reviewed. Monodispersed ultrafine crystal particles of zeolite (Silicalite-1) have been synthesized in batch reactor vessels by microwave irradiation heating of aqueous basic silicate precursor solutions with tetra propyl ammonium hydroxide as the templating molecule. The effects of major process parameters (such as synthesis temperature, microwave heating rate, volume ratio (i.e., the volume of the initial synthesis solution over the total volume of the reactor vessel), and synthesis time on the zeolite particle characteristics are studied using a computer-controlled microwave reactor system that allows real-time monitoring and control of reaction medium temperature. The changes in the morphology, size and crystal structure of the particles are investigated using scanning electron microscope, dynamic light scattering, X-ray diffraction, and BET surface analysis. We have found that the synthesis temperature, volume ratio, and heating rate play a significant role in controlling the particle size, uniformity, and morphology. Microwave processing has generated new morphologies of zeolite particles (i.e., uniform block-shaped particles that contain mixed gel-nanocrystallites and agglomerated crystal particles) that could not be made by a conventional hydrothermal process. At higher synthesis temperature and lower volume ratio, irregular block-shaped particles were produced, whereas increasing the volume ratio promoted the formation of monodispersed single-crystal particles with uniform shape. Our results clearly demonstrate that faster microwave heating is advantageous to enhance the zeolite crystallization kinetics and produces larger-size crystal particles in shorter time. In addition, zeolite crystallization mechanisms, depending on the microwave heating rate, were also discussed.

  8. Ultrafine particle removal and generation by portable air cleaners

    NASA Astrophysics Data System (ADS)

    Waring, Michael S.; Siegel, Jeffrey A.; Corsi, Richard L.

    Portable air cleaners can both remove and generate pollutants indoors. To investigate these phenomena, we conducted a two-phase investigation in a 14.75 m 3 stainless steel chamber. In the first phase, particle size-resolved (12.6-514 nm diameter) clean air delivery rates (CADR) and efficiencies were determined, as were ozone emission rates, for two high-efficiency particle arresting (HEPA) filters, one electrostatic precipitator with a fan, and two ion generators without fans. The two HEPA air cleaners had count average CADR (standard deviation) of 188 (30) and 324 (44) m 3 h -1; the electrostatic precipitator 284 (62) m 3 h -1; and the two ion generators 41 (11) and 35 (13) m 3 h -1. The electrostatic precipitator emitted ozone at a rate of 3.8±0.2 mg h -1, and the two ion generators 3.3±0.2 and 4.3±0.2 mg h -1. Ozone initiates reactions with certain unsaturated organic compounds that produce ultrafine and fine particles, carbonyls, other oxidized products, and free radicals. During the second phase, five different ion generators were operated separately in the presence of a plug-in liquid or solid air freshener, representing a strong terpene source. For air exchange rates of between 0.49 and 0.96 h -1, three ion generators acted as steady-state net particle generators in the entire measured range of 4.61-157 nm, and two generated particles in the range of approximately 10 to 39-55 nm. Terpene and aldehyde concentrations were also sampled for one ion generator, and concentrations of terpenes decreased and formaldehyde increased. Given these results, the pollutant removal benefits of ozone-generating air cleaners may be outweighed by the generation of indoor pollution.

  9. Roadside measurements of ultrafine particles at a busy urban intersection.

    PubMed

    Wang, Yungang; Zhu, Yifang; Salinas, Robert; Ramirez, David; Karnae, Saritha; John, Kuruvilla

    2008-11-01

    A field sampling campaign on ultrafine particles (UFPs, diameter <100 nm) was conducted at a busy traffic intersection from December 2006 to June 2007 in Corpus Christi, TX. This traffic intersection consisted of South Padre Island Drive (SPID, Highway 358) and Staples Street. Traffic densities on SPID were 9102/hr and 7880/hr for weekdays and weekends, respectively. Staples Street traffic densities were 2795/hr and 2572/hr, respectively. There were approximately 3.7% heavy-duty diesel vehicles (HDDVs) on both roadways. Peak traffic flows occurred early in the morning and late in the evening during weekdays and around noon on weekends. The average UFP total number concentration collected by a condensation particle counter (CPC 3785; TSI) was 66 x 10(3) cm(-3). A direct relationship between the UFP number concentration and traffic density was observed, but the HDDV traffic density was found to be a better estimator of the UFP number concentration than total traffic density. A scanning mobility particle sizer (SMPS 3936 with DMA 3081 and CPC 3785, TSI) measuring the particle size distribution from 7 to 290 nm was rotated among four corners of the intersection. The upwind and downwind size distributions were both bimodal in shape, exhibiting a nucleation mode at 10-30 nm and a secondary mode at 50-70 nm. The highest and lowest particle concentrations were observed on the downwind and upwind sides of both roadways, respectively, indicating the importance of wind direction. Wind speed also played an important role in overall particle concentrations; UFP concentrations were inversely proportional to wind speed. A negative correlation was observed between particle number concentrations and ambient temperature. The particle number concentration was 3.5 times greater when traffic was idling at a red light than moving at a green light.

  10. Carbohydrate modified ultrafine ceramic nanoparticles for allergen immunotherapy.

    PubMed

    Pandey, Ravi Shankar; Sahu, Satish; Sudheesh, M S; Madan, Jitender; Kumar, Manoj; Dixit, Vinod Kumar

    2011-08-01

    The uses of drug-delivery systems in allergen specific immunotherapy appear to be a promising approach due to their ability to act as adjuvants, transport the allergens to immune-competent cells and tissues and reduce the number of administrations. The aim of this work was to evaluate the carbohydrate modified ultrafine ceramic core based nanoparticles (aquasomes) as adjuvant/delivery vehicle in specific immunotherapy using ovalbumin (OVA) as an allergen model. Prepared nanoparticles were characterized for size, shape, zeta potential, antigen integrity, surface adsorption efficiency and in vitro release. The humoral and cellular-induced immune responses generated by OVA adsorbed aquasomes were studied by two intradermal immunizations in BALB/c mice. OVA sensitized mice were treated with OVA adsorbed aquasomes and OVA adsorbed aluminum hydroxide following established protocol. Fifteen days after therapy, animals were challenged with OVA and different signs of anaphylactic shock were evaluated. Developed aquasomes possessed a negative zeta potential (-11.3 mV) and an average size of 47 nm with OVA adsorption efficiency of ~60.2 μg mg(-1) of hydroxyapatite core. In vivo immune response after two intradermal injections with OVA adsorbed aquasomes resulted in a mixed Th1/Th2-type immune response. OVA-sensitized mice model, treatment with OVA adsorbed aquasomes elicited lower levels of IgE (p<0.05), serum histamine and higher survival rate in comparison with alum adsorbed OVA. Symptoms of anaphylactic shock in OVA aquasome-treated mice were weaker than the one induced in the alum adsorbed OVA group. Results from this study demonstrate the valuable use of aquasomes in allergen immunotherapy. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Ultrafine particle characteristics in a rubber manufacturing factory.

    PubMed

    Kim, Boowook; Lee, Jong Seong; Choi, Byung-Soon; Park, So-Young; Yoon, Jin-Ha; Kim, Hyunwook

    2013-07-01

    According to epidemiological research, exposure to rubber fumes can cause various types of cancer and can lead to an increase in death rate because of cardiovascular diseases. In this study, we have assessed the characteristics of ultrafine particles emitted into the air during the manufacturing of rubber products using waste tires. To assess the aerosol distribution of rubber fumes in the workplace from a product during curing, we have performed particle number concentration mapping using a handheld condensation particle counter. The particle number concentration of each process, count median diameter (CMD), and nanoparticle ratio (<100nm) were determined using an electrical low-pressure impactor (ELPI), and the surface area concentration was determined using a surface area monitor. The shape and composition of the sampled rubber fumes were analyzed using an ELPI-transmission electron microscopy grid method. Further, the rubber fume mass concentration was determined according to the Methods for the Determination of Hazardous Substances 47/2. The results of particle mapping show that the rubber fumes were distributed throughout the air of the workplace. The concentration was the highest during the final process of the work. The particle number concentration and the surface area concentration were 545 000cm(-3) and 640 µm(2) cm(-3), respectively, approximately 10- and 4-fold higher than those in the outdoor background. During the final process, the CMD and the nanoparticle ratio were 26nm and 94%, respectively. Most of the rubber fume particles had a compact shape because of the coagulation between particles. The main components of these fumes were silicon and sulfur, and heavy metals such as zinc were detected in certain particles. The filter concentration of the rubber fumes was 0.22mg m(-3), lower than the UK workplace exposure limit of 0.6mg m(-3). Therefore, the rubber manufacturing process is a potentially dangerous process that produces a high concentration

  12. Infiltration of outdoor ultrafine particles into a test house.

    PubMed

    Rim, Donghyun; Wallace, Lance; Persily, Andrew

    2010-08-01

    Ultrafine particles (UFP) (<100 nm) have been related to adverse human health effects such as oxidative stress and cardiovascular mortality. However, human exposure to particles of outdoor origin is heavily dependent on their infiltration into homes. The infiltration factor (Finf) and its variation as a function of several factors becomes of enormous importance in epidemiological studies. The objective of this study is to investigate the transport of UFP into a residential building and to determine the functional dependence of infiltration on particle size and air change rate. A secondary objective was to estimate the values of the penetration coefficient P and composite deposition rate kcomp that enter into the definition of Finf. Using continuous measurements of indoor and outdoor concentrations of size-resolved particles ranging from 5 to 100 nm in a manufactured test house, particle penetration through the building, composite deposition, and the resulting value of Finf were calculated for two cases: closed windows and one window open 7.5 cm. Finf ranged from close to 0 (particles<10 nm) to 0.3 (particles>80 nm) with windows closed and from 0 to 0.6 with one window open. The penetration coefficient (closed windows) increased from about 0.2 for 10-nm particles to an asymptote near 0.6 for particles from 30-100 nm. Open window penetration coefficients were higher, ranging from 0.6 to 0.8. Closed-window composite deposition rates, which included losses to the furnace filter and to the ductwork as well as to interior surfaces, monotonically decreased from levels of about 1.5 h(-1) for 10-nm particles to 0.3 h(-1) for 100-nm particles. For the open-window case, composite deposition rates were higher for particles<20 nm, reaching values of 3.5 h(-1). Mean standard errors associated with estimates of P, kcomp, and Finf for two series of measurements ranged from 1.0% to 4.4%.

  13. Ultrafine-grained Aluminm and Boron Carbide Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Vogt, Rustin

    Cryomilling is a processing technique used to generate homogenously distributed boron carbide (B4C) particulate reinforcement within an ultrafine-grained aluminum matrix. The motivation behind characterizing a composite consisting of cryomilled aluminum B4C metal matrix composite is to design and develop a high-strength, lightweight aluminum composite for structural and high strain rate applications. Cryomilled Al 5083 and B4C powders were synthesized into bulk composite by various thermomechanical processing methods to form plate and extruded geometries. The effects of processing method on microstructure and mechanical behavior for the final consolidated composite were investigated. Cryomilling for extended periods of time in liquid nitrogen has shown to increase strength and thermal stability. The effects associated with cryomilling with stearic acid additions (as a process-control agent) on the degassing behavior of Al powders is investigated and results show that the liberation of compounds associated with stearic acid were suppressed in cryomilled Al powders. The effect of thermal expansion mismatch strain on strengthening due to geometrically necessary dislocations resulting from quenching is investigated and found not to occur in bulk cryomilled Al 5083 and B 4C composites. Previous cryomilled Al 5083 and B4C composites have exhibited ultrahigh strength associated with considerable strain-to-failure (>14 pct.) at high strain rates (>103/s) during mechanical testing, but only limited strain-to-failure (˜0.75 pct.) at quasi-static strain rates (10-3/s). The increased strain to failure at high strain rates is attributed to micro-flaw developments, including kinking, extensive axial splitting, and grain growth were observed after high strain rate deformation, and the significance of these mechanisms is considered.

  14. Controllable synthesis and down-conversion properties of flower-like NaY(MoO{sub 4}){sub 2} microcrystals via polyvinylpyrrolidone-mediated

    SciTech Connect

    Lin, Han; Yan, Xiaohong; Wang, Xiangfu

    2013-08-15

    Double alkaline rare-earth molybdates NaY(MoO{sub 4}){sub 2} with multilayered flower-like architectures have been successfully synthesized via hydrothermal method in polyvinylpyrrolidone (PVP)-modified processes. The crystal structure and morphology of the obtained products were characterized by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that reaction time and the amount of PVP have crucial influences on the morphology of the resulting novel microstructures. Under 450 nm excitation, Ho{sup 3+}/Yb{sup 3+} co-doped NaY(MoO{sub 4}){sub 2} samples exhibit 539 nm green emission and 960–1200 nm broadband near-infrared emission, corresponding to the characteristic lines of Ho{sup 3+} and Yb{sup 3+}, respectively. Moreover, increasing Yb{sup 3+} doping enhances the energy transfer efficiency from Ho{sup 3+} to Yb{sup 3+}. - Graphical abstract: Low and high-magnification SEM images demonstrate the perfect flower-like NaY(MoO{sub 4}){sub 2} prepared in the presence of PVP; Detailed TEM and HRTEM images further manifest the single-crystalline feature. Highlights: • NaY(MoO{sub 4}){sub 2} flower-like microstructures were synthesized by hydrothermal method using polyvinylpyrrolidone. • Polyvinylpyrrolidone induces the growth of the NaY(MoO{sub 4}){sub 2} to form multilayered architectures. • Flowerlike NaY(MoO{sub 4}){sub 2}: Ho{sup 3+}, Yb{sup 3+} phosphors were investigated as a downconversion layer candidate.

  15. Immobilization of Rhodococcus erythropolis B4 on radiation crosslinked poly(vinylpyrrolidone) hydrogel: Application to the degradation of polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Djefal-Kerrar, A.; Gais, S.; Ouallouche, K.; Nacer Khodja, A.; Mahlous, M.; Hacène, H.

    2007-12-01

    A poly(vinylpyrrolidone) (PVP) hydrogel crosslinked by gamma radiation was used to immobilize, by adsorption, Rhodococcus erythropolis B4 strain. Immobilized cells were tested for their capacity to degrade naphthalene and anthracene, under aerobic conditions. The results showed that, the strain fixed is capable of growing in the presence of naphthalene or anthracene as a unique source of carbon. It was also shown that, the fixed strain can be preserved by freeze-drying for further use. The biodegradation capacity was improved during the second use.

  16. Separation of iron and cobalt using 59Fe and 60Co by dialysis of polyvinylpyrrolidone-metal complexes: a greener approach.

    PubMed

    Lahiri, Susanta; Sarkar, Soumi

    2007-04-01

    An environmentally benign method to separate iron and cobalt has been developed using a safe chemical, polyvinylpyrrolidone (PVP). The method involves dialysis of PVP-Fe and PVP-Co complexes against triple-distilled water. (59)Fe and (60)Co were used as radioactive tracers of iron and cobalt throughout the experiment. No other chemicals are required for clean separation of cobalt from iron. The optimum condition for separation has been obtained at pH 5 using 10% aqueous solution of PVP. The method is applicable from trace scale to macro-scale. Very high separation factors have been obtained.

  17. Polymer structure and antimicrobial activity of polyvinylpyrrolidone-based iodine nanofibers prepared with high-speed rotary spinning technique.

    PubMed

    Sebe, István; Szabó, Barnabás; Nagy, Zsombor K; Szabó, Dóra; Zsidai, László; Kocsis, Béla; Zelkó, Romána

    2013-12-15

    Poly(vinylpyrrolidone)/poly(vinylpyrrolidone-vinylacetate)/iodine nanofibers of different polymer ratios were successfully prepared by a high-speed rotary spinning technique. The obtained fiber mats were subjected to detailed morphological analysis using an optical and scanning electron microscope (SEM), while the supramolecular structure of the samples was analyzed by positron annihilation lifetime spectroscopy (PALS). The maximum dissolved iodine of the fiber samples was determined, and microbiological assay was carried out to test their effect on the bacterial growth. SEM images showed that the polymer fibers were linear, homogenous, and contained no beads. The PALS results, both the o-positronium (o-Ps) lifetime values and distributions, revealed the changes of the free volume holes of fibers as a function of their composition and the presence of iodine. The micro- and macrostructural characterisation of polymer fiber mats enabled the selection of the required composition from the point of their applicability as a wound dressing. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Superstimulation of follicular growth in Thai native heifers by a single administration of follicle stimulating hormone dissolved in polyvinylpyrrolidone.

    PubMed

    Chasombat, Jakkhaphan; Sakhong, Denpong; Nagai, Takashi; Parnpai, Rangsun; Vongpralub, Thevin

    2013-01-01

    This study was undertaken to determine whether a single i.m. injection of FSH dissolved in 10 ml of 30% (wt/vol) polyvinylpyrrolidone (PVP; MW=40,000) to form FSHp would induce follicular growth in Thai native heifers and to determine its optimal dose. In Group 1, heifers (n=4) were given multiple i.m. injections of FSHp every 12 h for 3 days at decreasing doses, for a total of 100 mg (control). In Groups 2, 3 and 4, heifers (n=4 in each group) were given single i.m. injections of FSHp at 50, 100 and 150 mg. All heifers received a single injection of 750 μg PGF2α 48 h after the initiation of exogenous FSH treatment. Ovaries of treated heifers were examined by transrectal ultrasonography every day until they showed estrus. Group 3 showed significantly higher numbers of ovulation follicles, significantly higher growth rates of follicles per day and significantly larger diameters of follicles and corpora lutea than groups 1 and 2 but not Group 4 (P<0.05). Group 4 showed significantly higher numbers of large follicles (≥5 mm in diameter), unovulated follicles and ovulations, a significantly higher growth rate of follicles per day, and significantly larger diameters of follicles and corpora lutea (P<0.05) than those of the other groups. This indicates a state of overstimulation of ovaries in this group. Besides, the plasma levels of FSH in Group 4 were significantly higher (P<0.05) than in the other group and were maintained in the range of 2.2-0.7 ng/ml over a period of 6 to 66 h after the FSHp injection. Meanwhile, the plasma levels of P4 and E2 did not differ in any of the groups in the period of 0 to 96 h during the superstimulation program. In conclusion, it was demonstrated that a single i.m. injection of 100 mg FSHp was the most effective dose for superstimulation of follicular growth in Thai native heifers under the experimental conditions in this study.

  19. Assemblies of polyvinylpyrrolidone-capped tetrahedral and spherical Pt nanoparticles in polyelectrolytes: hydrogen underpotential deposition and electrochemical characterization.

    PubMed

    Jaber, Sarah; Nasr, Pamela; Xin, Yan; Sleem, Fatima; Halaoui, Lara I

    2013-09-28

    Polyvinylpyrrolidone (PVP)-capped Pt nanoparticles (NPs) were synthesized in mostly tetrahedral (TH-Pt, [edge] = 4.3 ± 0.7 nm) or spherical (S-Pt, [d] = 3.4 ± 0.8 nm) shapes and assembled layer-by-layer in poly(diallyldimethylammonium) chloride on electrodes driven by electrostatic and hydrophobic interactions. The nanostructured Pt electrodes were characterized using hydrogen underpotential deposition (H(upd)) in 1 M H2SO4. The H(upd) charge increased linearly with the PDDA-Pt NP adsorption cycle measured up to 10 cycles revealing a linear incorporation of Pt NPs per cycle, indicative of reproducible surface charge reversal despite the submonolayer NP coverage imaged by TEM on a PDDA layer, and showing the feasibility of charge and mass transport in the thickness of the films. H(upd) at both PVP-TH-Pt and PVP-S-Pt occurred in two states, a major weak-adsorption H(W) peak, and a minor strong-adsorption state H(S) appearing as a shoulder. H(upd) features and other electrochemical processes at assemblies of PVP-Pt NP in PDDA were compared to assemblies of 2.5 nm polyacrylate-capped Pt NPs in PDDA and to polycrystalline Pt. Results indicated that H(W) adsorption likely occurs on a PVP-modified Pt NP surface without being accompanied by PVP desorption, while H(S) occurs on free (100) sites. The PVP-Pt NPs were resistant to surface oxidation and were stable against usual surface restructuring when scanned into the Pt-oxide potential region as they remained modified with PVP. O2 evolution was also suppressed by PVP-capping compared to PAC-Pt NPs and polycryst-Pt, but the assemblies were electrocatalytic for hydrogen evolution, hydrogen oxidation, and oxygen reduction. Increasing anodic polarization increased the H(W) charge but without causing a potential shift, indicating absence of PVP decapping or Pt surface restructuring, but possibly some structural polymer rearrangement increasing the accessibility of buried sites for H-adsorption.

  20. ENHANCED TOXICITY OF CHARGED CARBON NANOTUBES AND ULTRAFINE CARBON BLACK PARTICLES

    EPA Science Inventory

    Man-made carbonaceous nano-particles such as single and multi-walled carbon nano-tubes (CNT) and ultra-fine carbon black (UFCB) particles are finding increasing applications in industry, but their potential toxic effects is of concern. In aqueous media, these particles cluster in...

  1. Ultrafine particle generation by high-velocity impact of metal projectiles

    NASA Astrophysics Data System (ADS)

    Stabile, L.; Iannitti, G.; Vigo, P.; Ruggiero, A.; Russi, A.; Buonanno, G.

    2014-05-01

    Ultrafine particle generation through mechanical processes was not carefully deepened so far, even if it could be related to the human health-based researches. In particular, the evaluation of ultrafine particles produced in battlefield scenarios can be useful to quantify the exposure of soldiers to particles carrying toxic heavy metals. In the present work ultrafine particle generation during high-velocity impact of metal projectiles was deepened performing symmetrical high velocity Taylor impacts of copper cylinder tests (Rod-on-Rod tests) by means of a gas-gun facility. Particle number distributions and total concentrations were measured through one-second-time resolution instruments in a chamber where impact events at different velocities were performed. Particle number generation per impact was also evaluated. Particle concentrations in the 106 part. cm-3 range were measured corresponding to particle generations higher than 1012 particles per impact, then comparable to those typical of combustion sources. Particle number distribution showed a unimodal distribution with a 10 nm mode. Summarizing, the performed experimental campaign revealed an extremely high generation of ultrafine particles from mechanical processes.

  2. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    EPA Science Inventory

    This paper/presentation is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practicall...

  3. Soot, organics and ultrafine ash from air- and oxy-fired coal combustion

    EPA Science Inventory

    This paper is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practically relevant s...

  4. Controlled Exposure of Humans with Metabolic Syndrome to Concentrated Ultrafine Ambient Particulate Matter Causes Cardiovascular Effects

    EPA Science Inventory

    Background: Many studies have reported associations between PM2.5 and adverse cardiovascular effects. However there is increased concern that ultrafine PM (aerodynamic diameter less than 0.1 micron) may be disproportionately toxic relative to the 0.1 to 2.5 micron fraction of PM2...

  5. PULMONARY AND CARDIAC GENE EXPRESSION FOLLOWING ACUTE ULTRAFINE CARBON PARTICLE INHALATION IN HYPERTENSIVE RATS

    EPA Science Inventory

    Inhalation of ultrafine carbon particles (ufCP) causes cardiac physiological changes without marked pulmonary injury or inflammation. We hypothesized that acute ufCP exposure of 13 months old Spontaneously Hypertensive (SH) rats will cause differential effects on the lung and hea...

  6. A mechanism for the production of ultrafine particles from concrete fracture.

    PubMed

    Jabbour, Nassib; Rohan Jayaratne, E; Johnson, Graham R; Alroe, Joel; Uhde, Erik; Salthammer, Tunga; Cravigan, Luke; Faghihi, Ehsan Majd; Kumar, Prashant; Morawska, Lidia

    2017-03-01

    While the crushing of concrete gives rise to large quantities of coarse dust, it is not widely recognized that this process also emits significant quantities of ultrafine particles. These particles impact not just the environments within construction activities but those in entire urban areas. The origin of these ultrafine particles is uncertain, as existing theories do not support their production by mechanical processes. We propose a hypothesis for this observation based on the volatilisation of materials at the concrete fracture interface. The results from this study confirm that mechanical methods can produce ultrafine particles (UFP) from concrete, and that the particles are volatile. The ultrafine mode was only observed during concrete fracture, producing particle size distributions with average count median diameters of 27, 39 and 49 nm for the three tested concrete samples. Further volatility measurements found that the particles were highly volatile, showing between 60 and 95% reduction in the volume fraction remaining by 125 °C. An analysis of the volatile fraction remaining found that different volatile material is responsible for the production of particles between the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    EPA Science Inventory

    This paper/presentation is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practicall...

  8. Combustion of PTFE: The effects of gravity on ultrafine particle generation

    NASA Technical Reports Server (NTRS)

    McKinnon, Thomas; Todd, Paul; Oberdorster, Gunter

    1996-01-01

    The objective of this project is to obtain an understanding of the effect of gravity on the toxicity of ultrafine particle and gas phase materials produced when fluorocarbon polymers are thermally degraded or burned. The motivation for the project is to provide a basic technical foundation on which policies for spacecraft health and safety with regard to fire and polymers can be formulated.

  9. OXIDATIVE STRESS AND LIPID MEDIATORS INDUCED IN ALVEOLAR MACHROPHAGES BY ULTRAFINE PARTICLES

    EPA Science Inventory

    In ambient aerosols, ultrafine particles (UFP) and their agglomerates are considered to be major factors contributing to adverse health effects. Reactivity of agglomerated UFP of elemental carbon (EC), Printex 90, Printex G, and diesel exhaust particles (DEP) was evaluated by the...

  10. DESIGN AND CHARACTERIZATION OF AN ULTRAFINE COAL ASH AEROSOL GENERATOR FOR DIRECT ANIMAL EXPOSURE STUDIES

    EPA Science Inventory

    Primary ultrafine particulate matter (PM) is produced during pulverized coal combustion by the nucleation and heterogeneous condensation of vapor-phase species. This differs from the mechanisms that control the formation of the supermicron fly ash that is heavily influenced by t...

  11. Method for producing ultrafine-grained materials using repetitive corrugation and straightening

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Jiang, Honggang; Huang, Jianyu

    2001-01-01

    A method of refining the grain structure and improving the hardness and strength properties of a metal or metal alloy workpiece is disclosed. The workpiece is subjected to forces that corrugate and then straighten the workpiece. These steps are repeated until an ultrafine-grained product having improved hardness and strength is produced.

  12. The Effects of Vegetation Barriers on Near-road Ultrafine Particle Number and Carbon Monoxide Concentrations

    EPA Science Inventory

    Numerous studies have shown that people living in near-roadway communities (within 100 m of the road) are exposed to high ultrafine particle (UFP) number concentrations, which may be associated with adverse health effects. Vegetation barriers have been shown to affect pollutant t...

  13. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  14. ULTRAFINE PARTICLE CONCENTRATIONS NEAR FREEWAYS AT NIGHT OR EARLY MORNING UNDER CALM WEATHER CONDITIONS

    EPA Science Inventory

    There is evidence that ultrafine (UF) particles dominate the number concentrations in close proximity to the roadway. The UF particles are also known to be more toxic than larger sizes of PM on an equal mass basis. In this work, UF particle number concentrations were measured u...

  15. TRANSLOCATION AND POTENTIAL NEUROLOGICAL EFFECTS OF FINE AND ULTRAFINE PARTICLES: A CRITICAL UPDATE

    EPA Science Inventory

    This proceedings book is a collection of seminars presented in a symposium organized by by Munich's GSF-National Research Center for Environment and Health. Research presented at this symposium indicated inhaled ultrafine particulate matter quickly exits the lungs and target...

  16. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  17. Comparing Inhaled Ultrafine versus Fine Zinc Oxide Particles in Healthy Adults

    PubMed Central

    Beckett, William S.; Chalupa, David F.; Pauly-Brown, Andrea; Speers, Donna M.; Stewart, Judith C.; Frampton, Mark W.; Utell, Mark J.; Huang, Li-Shan; Cox, Christopher; Zareba, Wojciech; Oberdörster, Günter

    2005-01-01

    Rationale: Zinc oxide is a common, biologically active constituent of particulate air pollution as well as a workplace toxin. Ultrafine particles (< 0.1 μm diameter) are believed to be more potent than an equal mass of inhaled accumulation mode particles (0.1–1.0 μm diameter). Objectives: We compared exposure–response relationships for respiratory, hematologic, and cardiovascular endpoints between ultrafine and accumulation mode zinc oxide particles. Methods: In a human inhalation study, 12 healthy adults inhaled 500 μg/m3 of ultrafine zinc oxide, the same mass of fine zinc oxide, and filtered air while at rest for 2 hours. Measurements and Main Results: Preexposure and follow-up studies of symptoms, leukocyte surface markers, hemostasis, and cardiac electrophysiology were conducted to 24 hours post-exposure. Induced sputum was sampled 24 hours after exposure. No differences were detected between any of the three exposure conditions at this level of exposure. Conclusions: Freshly generated zinc oxide in the fine or ultrafine fractions inhaled by healthy subjects at rest at a concentration of 500 μg/m3 for 2 hours is below the threshold for acute systemic effects as detected by these endpoints. PMID:15735058

  18. The exposure to coarse, fine and ultrafine particle emissions from concrete mixing, drilling and cutting activities.

    PubMed

    Azarmi, Farhad; Kumar, Prashant; Mulheron, Mike

    2014-08-30

    Building activities generate coarse (PM10≤10μm), fine (PM2.5≤2.5μm) and ultrafine particles (<100nm) making it necessary to understand both the exposure levels of operatives on site and the dispersion of ultrafine particles into the surrounding environment. This study investigates the release of particulate matter, including ultrafine particles, during the mixing of fresh concrete (incorporating Portland cement with Ground Granulated Blastfurnace Slag, GGBS or Pulverised Fuel Ash, PFA) and the subsequent drilling and cutting of hardened concrete. Particles were measured in the 5-10,000nm size range using a GRIMM particle spectrometer and a fast response differential mobility spectrometer (DMS50). The mass concentrations of PM2.5-10 fraction contributed ∼52-64% of total mass released. The ultrafine particles dominated the total particle number concentrations (PNCs); being 74, 82, 95 and 97% for mixing with GGBS, mixing with PFA, drilling and cutting, respectively. Peak values measured during the drilling and cutting activities were 4 and 14 times the background. Equivalent emission factors were calculated and the total respiratory deposition dose rates for PNCs for drilling and cutting were 32.97±9.41×10(8)min(-1) and 88.25±58.82×10(8)min(-1). These are a step towards establishing number and mass emission inventories for particle exposure during construction activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. CARDIOVASCULAR RESPONSES IN UNRESTRAINED WKY-RATS TO INHALED ULTRAFINE CARBON PARTICLES

    EPA Science Inventory

    Abstract
    This study provides evidence for adverse cardiac effects of inhaled ultrafine particles (UFPs) in healthy WKY rats. Short term exposure (24 h) with carbon UFPs (180 ?g?m ?) induced a moderate but significant heart rate increase of 18 bpm (4.8 %) in association with a ...

  20. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive.

    PubMed

    Cao, Xingyan; Ren, Jingjie; Zhou, Yihui; Wang, Qiuju; Gao, Xuliang; Bi, Mingshu

    2015-03-21

    The suppression effect of ultrafine mists on methane/air explosions with methane concentrations of 6.5%, 8%, 9.5%, 11%, and 13.5% were experimentally studied in a closed visual vessel. Ultrafine water/NaCl solution mist as well as pure water mist was adopted and the droplet sizes of mists were measured by phase doppler particle analyzer (PDPA). A high speed camera was used to record the flame evolution processes. In contrast to pure water mist, the flame propagation speed, the maximum explosion overpressure (ΔP(max)), and the maximum pressure rising rate ((dP/dt)max) decreased significantly, with the "tulip" flame disappearing and the flame getting brighter. The results show that the suppressing effect on methane explosion by ultrafine water/NaCl solution mist is influenced by the mist amount and methane concentration. With the increase of the mist amount, the pressure, and the flame speed both descended significantly. And when the mist amount reached 74.08 g/m(3) and 37.04 g/m(3), the flames of 6.5% and 13.5% methane explosions can be absolutely suppressed, respectively. All of results indicate that addition of NaCl can improve the suppression effect of ultrafine pure water mist on the methane explosions, and the suppression effect is considered due to the combination effect of physical and chemical inhibitions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. OXIDATIVE STRESS AND LIPID MEDIATORS INDUCED IN ALVEOLAR MACHROPHAGES BY ULTRAFINE PARTICLES

    EPA Science Inventory

    In ambient aerosols, ultrafine particles (UFP) and their agglomerates are considered to be major factors contributing to adverse health effects. Reactivity of agglomerated UFP of elemental carbon (EC), Printex 90, Printex G, and diesel exhaust particles (DEP) was evaluated by the...

  2. Fundamental Characteristics of Grooving Aiming at Reduction of Kerf Loss Using an Ultrafine Wire Tool

    NASA Astrophysics Data System (ADS)

    Sakamoto, Satoshi; Hayashi, Keitoku; Gemma, Masaya; Kondo, Yasuo; Yamaguchi, Kenji; Yakou, Takao; Arakawa, Susumu

    2017-09-01

    Thinning of silicon wafers and reduction of kerf loss can minimize the manufacturing costs of semiconductor products. Currently, the volume of kerf loss is about the same as the volume of the wafer itself. Therefore, we study slicing techniques for silicon wafers that result in reduced kerf loss by using an ultrafine wire tool and fine abrasive grains. As a first step, grooving characteristics using an ultrafine tungsten wire tool and fine abrasive grains are investigated in this paper. A borosilicate glass is used as the work material. The main conclusions are as follows: Precision machining using ultrafine wire tool is possible and the kerf loss decreases because the groove width decreases. However, a larger diameter of the wire tool results in a deeper groove. A faster relative speed produces a shorter wire tool lifetime, but a deeper groove. To supply enough abrasive grains to the machined portion, it is necessary to use abrasive grains having a suitable particle size for the specific diameter of the ultrafine wire tool.

  3. DESIGN AND CHARACTERIZATION OF AN ULTRAFINE COAL ASH AEROSOL GENERATOR FOR DIRECT ANIMAL EXPOSURE STUDIES

    EPA Science Inventory

    Primary ultrafine particulate matter (PM) is produced during pulverized coal combustion by the nucleation and heterogeneous condensation of vapor-phase species. This differs from the mechanisms that control the formation of the supermicron fly ash that is heavily influenced by t...

  4. CARDIOVASCULAR RESPONSES IN UNRESTRAINED WKY-RATS TO INHALED ULTRAFINE CARBON PARTICLES

    EPA Science Inventory

    Abstract
    This study provides evidence for adverse cardiac effects of inhaled ultrafine particles (UFPs) in healthy WKY rats. Short term exposure (24 h) with carbon UFPs (180 ?g?m ?) induced a moderate but significant heart rate increase of 18 bpm (4.8 %) in association with a ...

  5. ANALYSIS OF TOTAL RESPIRATORY DEPOSITION OF INHALED ULTRAFINE PARTICLES IN ADULT SUBJECTS AT VARIOUS BREATHING PATTERNS

    EPA Science Inventory

    Ultrafine particles are ubiquitous in the ambient air and their unique physicochemical characteristics may pose a potential health hazard. Accurate lung dose information is essential to assess a potential health risk to exposure to these particles. In the present study, we measur...

  6. TRANSLOCATION AND POTENTIAL NEUROLOGICAL EFFECTS OF FINE AND ULTRAFINE PARTICLES: A CRITICAL UPDATE

    EPA Science Inventory

    This proceedings book is a collection of seminars presented in a symposium organized by by Munich's GSF-National Research Center for Environment and Health. Research presented at this symposium indicated inhaled ultrafine particulate matter quickly exits the lungs and target...

  7. DEPOSITION DISTRIBUTION OF NANO AND ULTRAFINE PARTICLES IN HUMAN LUNGS DURING CONTROLLED MOUTH BREATHING

    EPA Science Inventory

    Nano and ultrafine particles are abundant in the atmosphere and the level of human exposure to these tiny particles is expected to increase markedly as industrial activities increase manufacturing nano-sized materials. Exposure-dose relationships and site-specific internal dose a...

  8. ENHANCED TOXICITY OF CHARGED CARBON NANOTUBES AND ULTRAFINE CARBON BLACK PARTICLES

    EPA Science Inventory

    Man-made carbonaceous nano-particles such as single and multi-walled carbon nano-tubes (CNT) and ultra-fine carbon black (UFCB) particles are finding increasing applications in industry, but their potential toxic effects is of concern. In aqueous media, these particles cluster in...

  9. UP-REGULATION OF TISSUE FACTOR IN HUMAN PULMONARY ARTERY ENDOTHELIAL CELLS AFTER ULTRAFINE PARTICLE EXPOSURE

    EPA Science Inventory

    Background: Epidemiology studies have linked exposure to pollutant particles to

    increased cardiovascular mortality and morbidity, but the mechanisms remain unknown.

    Objectives: We tested the hypothesis that the ultrafine fraction of ambient pollutant

    particle...

  10. ULTRAFINE PARTICLE CONCENTRATIONS NEAR FREEWAYS AT NIGHT OR EARLY MORNING UNDER CALM WEATHER CONDITIONS

    EPA Science Inventory

    There is evidence that ultrafine (UF) particles dominate the number concentrations in close proximity to the roadway. The UF particles are also known to be more toxic than larger sizes of PM on an equal mass basis. In this work, UF particle number concentrations were measured u...

  11. DEPOSITION DISTRIBUTION OF NANO AND ULTRAFINE PARTICLES IN HUMAN LUNGS DURING CONTROLLED MOUTH BREATHING

    EPA Science Inventory

    Nano and ultrafine particles are abundant in the atmosphere and the level of human exposure to these tiny particles is expected to increase markedly as industrial activities increase manufacturing nano-sized materials. Exposure-dose relationships and site-specific internal dose a...

  12. SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...

  13. Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area.

    PubMed

    Sager, Tina M; Kommineni, C; Castranova, Vincent

    2008-12-01

    The production and use of nanoparticles is growing rapidly due to the unique physical and chemical properties associated with their nano size and large surface area. Since nanoparticles have unique physicochemical properties, their bioactivity upon exposure to workers or consumers is of interest. In this study, the issue of what dose metric (mass dose versus surface area dose) is appropriate for toxicological studies has been addressed. Rats were exposed by intratracheal instillation to various doses of ultrafine or fine TiO2. At 1, 7, or 42 days post-exposure, inflammatory and cytotoxic potential of each particle type was compared on both a mass dosage (mg/rat) as well as an equal surface area dosage (cm2 of particles per cm2 of alveolar epithelium) basis. The findings of the study show that on a mass basis the ultrafine particles caused significantly more inflammation and were significantly more cytotoxic than the fine sized particles. However, when doses were equalized based on surface area of particles delivered, the ultrafine particles were only slightly more inflammogenic and cytotoxic when compared to the fine sized particles. Lung burden data indicate that ultrafine TiO2 appears to migrate to the interstitium to a much greater extent than fine TiO2. This study suggests that surface area of particles may be a more appropriate dose metric for pulmonary toxicity studies than mass of particles.

  14. Controlled Exposure of Humans with Metabolic Syndrome to Concentrated Ultrafine Ambient Particulate Matter Causes Cardiovascular Effects

    EPA Science Inventory

    Background: Many studies have reported associations between PM2.5 and adverse cardiovascular effects. However there is increased concern that ultrafine PM (aerodynamic diameter less than 0.1 micron) may be disproportionately toxic relative to the 0.1 to 2.5 micron fraction of PM2...

  15. The Effects of Vegetation Barriers on Near-road Ultrafine Particle Number and Carbon Monoxide Concentrations

    EPA Science Inventory

    Numerous studies have shown that people living in near-roadway communities (within 100 m of the road) are exposed to high ultrafine particle (UFP) number concentrations, which may be associated with adverse health effects. Vegetation barriers have been shown to affect pollutant t...

  16. UP-REGULATION OF TISSUE FACTOR IN HUMAN PULMONARY ARTERY ENDOTHELIAL CELLS AFTER ULTRAFINE PARTICLE EXPOSURE

    EPA Science Inventory

    Background: Epidemiology studies have linked exposure to pollutant particles to

    increased cardiovascular mortality and morbidity, but the mechanisms remain unknown.

    Objectives: We tested the hypothesis that the ultrafine fraction of ambient pollutant

    particle...

  17. PULMONARY AND CARDIAC GENE EXPRESSION FOLLOWING ACUTE ULTRAFINE CARBON PARTICLE INHALATION IN HYPERTENSIVE RATS

    EPA Science Inventory

    Inhalation of ultrafine carbon particles (ufCP) causes cardiac physiological changes without marked pulmonary injury or inflammation. We hypothesized that acute ufCP exposure of 13 months old Spontaneously Hypertensive (SH) rats will cause differential effects on the lung and hea...

  18. [Elemental size distribution of airborne fine and ultrafine particulate matters in the suburb of Shanghai, China].

    PubMed

    Lin, Jun; Liu, Wei; Li, Yan; Bao, Liang-Man; Li, Yu-Lan; Xu, Zhong-Yang; Wu, Wei-Wei; Chen, Dong-Liang; He, Wei

    2009-04-15

    The elemental size distributions of airborne fine/ultrafine particulate matters in the suburb of Shanghai were studied using synchrotron X-ray fluorescence. Median mass aerodynamic diameter (MMAD), elemental correlation coefficient as well as enrichment factor (EF) of each size fraction were calculated to characterize the sources of elements in fine/ultrafine particulate matters. Ca and Ti distributed mainly in coarse particles (> 2 microm) with size independent enrichment factors between 0.1 and 3.2, and the correlation coefficient between Ca and Ti was as high as 0.933, which implied strong contribution from nature sources, such as soil dusts and resuspended dusts. However, V, Cr, Mn, Ni, Zn, Cu, Pb, Cl, S mainly distributed in 0.1-1.0 microm particulate matters with MMAD between 0.56-0.94 microm. The EF of V, Cr, Ni, Cu, Zn, Pb increased with decreasing particle size. The highest EF were found for Pb in ultrafine particulate matters (< 0.1 microm) with EF of 2,023.7-2,244.2. The evidences suggested that these elements were significantly influenced by anthropogenic sources and enriched in fine/ultrafine particles smaller than 1 microm. Fe distributed uniformly in the particles larger than 0.2 microm with MMAD of 1.3 microm. The results indicated non-negligible influences of remote transmission of anthropogenic pollutions.

  19. Liquefaction of coals using ultra-fine particle, unsupported catalysts: In situ generation by rapid expansion of supercritical fluid solutions

    SciTech Connect

    Not Available

    1992-05-01

    The purpose of this program is to design and fabricate an experimental ultra-fine particle generation system; use this system to generate ultra-fine, iron compound, catalyst particles; and to access the ability of these ultra-fine catalyst particles to improve the performance of the solubilization stage of two-stage, catalytic-catalytic liquefaction processes. The effort applied to this program during this reporting period focused on assembling the supercritical particle generation/collection system. Effort was applied to constructing a shakedown testing plan also.

  20. Association of particulate air pollution and acute mortality: involvement of ultrafine particles?

    NASA Technical Reports Server (NTRS)

    Oberdorster, G.; Gelein, R. M.; Ferin, J.; Weiss, B.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    Recent epidemiological studies show an association between particulate air pollution and acute mortality and morbidity down to ambient particle concentrations below 100 micrograms/m3. Whether this association also implies a causality between acute health effects and particle exposure at these low levels is unclear at this time; no mechanism is known that would explain such dramatic effects of low ambient particle concentrations. Based on results of our past and most recent inhalation studies with ultrafine particles in rats, we propose that such particles, that is, particles below approximately 50 nm in diameter, may contribute to the observed increased mortality and morbidity In the past we demonstrated that inhalation of highly insoluble particles of low intrinsic toxicity, such as TiO2, results in significantly increased pulmonary inflammatory responses when their size is in the ultrafine particle range, approximately 20 nm in diameter. However, these effects were not of an acute nature and occurred only after prolonged inhalation exposure of the aggregated ultrafine particles at concentrations in the milligrams per cubic meter range. In contrast, in the course of our most recent studies with thermodegradation products of polytetrafluoroethylene (PTFE) we found that freshly generated PTFE fumes containing singlet ultrafine particles (median diameter 26 nm) were highly toxic to rats at inhaled concentrations of 0.7-1.0 x 10(6) particles/cm3, resulting in acute hemorrhagic pulmonary inflammation and death after 10-30 min of exposure. We also found that work performance of the rats in a running wheel was severely affected by PTFE fume exposure. These results confirm reports from other laboratories of the highly toxic nature of PTFE fumes, which cannot be attributed to gas-phase components of these fumes such as HF, carbonylfluoride, or perfluoroisobutylene, or to reactive radicals. The calculated mass concentration of the inhaled ultrafine PTFE particles in our

  1. A new approach for on-line measurements of the chemistry of individual ultrafine particles

    NASA Astrophysics Data System (ADS)

    Zauscher, M. D.; Lewis, G. S.; Hering, S. V.; Prather, K. A.

    2009-12-01

    Ultrafine aerosol particles, those with diameters less than 100nm, are abundant in the atmosphere and play a crucial role in climate through cloud formation and have a greater effect on human health than larger particles. The chemistry of ultrafine particles helps determine whether they will act as cloud condensation nuclei (CCN) as well as how they will affect human health. However, it is difficult to study the chemistry of ultrafine particles due to their low mass and small size for optical detection. Typically, long collection times are required to collect ultrafine particles onto substrates, leading to loss of temporal information and individual particle chemistry and source information. Single particle mass spectrometers that rely on optical detection of particles for subsequent chemical analysis cannot effectively analyze ultrafine particles. Growth of particles through condensation has been used in various sizing (i.e. condensation particle counter (CPC), cloud condensation nuclei counter (CCNc)), as well as chemical (i.e. particle into liquid system (PILS) and condensation growth and impaction system (C-GIS)) instruments. In order to study ultrafine particles, we couple a laminar flow, water condensation growth tube (GT) with an aerodynamic focusing lens aerosol time-of-flight mass spectrometer (ATOFMS). The GT used here is similar in principle to the water-based CPC. The particles are exposed to a region of high supersaturation where they grow in size by water vapor condensation. We have coupled this GT to a single particle mass spectrometry ATOFMS system. Using this combined approach, we are able to detect polystyrene latex spheres (PSLs) as small as 38nm compared to the lower size limit of 90 nm of the ATOFMS without the GT. A series of inorganic and organic chemical standards representative of ambient particles show that by evaporating the particles between the GT and ATOFMS, there is little change in the chemistry of the particles that have undergone

  2. Electrospinning of Grooved Polystyrene Fibers: Effect of Solvent Systems

    NASA Astrophysics Data System (ADS)

    Liu, Wanjun; Huang, Chen; Jin, Xiangyu

    2015-05-01

    Secondary surface texture is of great significance to morphological variety and further expands the application areas of electrospun nanofibers. This paper presents the possibility of directly electrospinning grooved polystyrene (PS) fibers using both single and binary solvent systems. Solvents were classified as low boiling point solvent (LBPS): dichloromethane (DCM), acetone (ACE), and tetrahydrofuran (THF); high boiling point solvent (HBPS): N, N-dimethylformamide (DMF) and cyclohexanone (CYCo); and non-solvent (NS): 1-butanol (BuOH). By the systematic selection and combination of these solvents at given parameters, we found that single solvent systems produced non-grooved fibers. LBPS/DMF solvent systems resulted in fibers with different grooved textures, while LBPS/CYCo led to fibers with double grooved texture. Grooved fibers can also be fabricated from LBPS/LBPS, NS/LBPS, and NS/HBPS systems under specific conditions. The results indicated that the difference of evaporation rate (DER) between the two solvents played a key role in the formation of grooved texture. The formation of this unique texture should be attributed to three separate mechanisms, namely void-based elongation, wrinkle-based elongation, and collapsed jet-based elongation. Our findings can serve as guidelines for the preparation of ultrafine fibers with grooved secondary texture.

  3. Ultrafine and respirable particle exposure during vehicle fire suppression

    PubMed Central

    Fent, Kenneth W.

    2015-01-01

    Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters’ potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator’s shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 107 particles per cm3, 170 mg m−3 respirable particle mass, 4700 μm2 cm−3 active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 104 particles per cm3, 0.36 mg m−3 respirable particle mass, 92 μm2 cm−3 active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 105 particles per cm3, 2.7 mg m−3 respirable particle mass, 320 μm2 cm−3 active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The wind direction

  4. Ultrafine and respirable particle exposure during vehicle fire suppression.

    PubMed

    Evans, Douglas E; Fent, Kenneth W

    2015-10-01

    Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters' potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator's shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 10(7) particles per cm(3), 170 mg m(-3) respirable particle mass, 4700 μm(2) cm(-3) active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 10(4) particles per cm(3), 0.36 mg m(-3) respirable particle mass, 92 μm(2) cm(-3) active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 10(5) particles per cm(3), 2.7 mg m(-3) respirable particle mass, 320 μm(2) cm(-3) active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The

  5. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles

    PubMed Central

    Oberdörster, Günter; Oberdörster, Eva; Oberdörster, Jan

    2005-01-01

    Although humans have been exposed to airborne nanosized particles (NSPs; < 100 nm) throughout their evolutionary stages, such exposure has increased dramatically over the last century due to anthropogenic sources. The rapidly developing field of nanotechnology is likely to become yet another source through inhalation, ingestion, skin uptake, and injection of engineered nanomaterials. Information about safety and potential hazards is urgently needed. Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices. Collectively, some emerging concepts of nanotoxicology can be identified from the results of these studies. When inhaled, specific sizes of NSPs are efficiently deposited by diffusional mechanisms in all regions of the respiratory tract. The small size facilitates uptake into cells and transcytosis across epithelial and endothelial cells into the blood and lymph circulation to reach potentially sensitive target sites such as bone marrow, lymph nodes, spleen, and heart. Access to the central nervous system and ganglia via translocation along axons and dendrites of neurons has also been observed. NSPs penetrating the skin distribute via uptake into lymphatic channels. Endocytosis and biokinetics are largely dependent on NSP surface chemistry (coating) and in vivo surface modifications. The greater surface area per mass compared with larger-sized particles of the same chemistry renders NSPs more active biologically. This activity includes a potential for inflammatory and pro-oxidant, but also antioxidant, activity, which can explain early findings showing mixed results in terms of toxicity of NSPs to environmentally relevant species. Evidence of mitochondrial distribution and oxidative stress response after NSP endocytosis points to a need

  6. Novel ultrafine grain size processing of soft magnetic materials.

    SciTech Connect

    Michael, Joseph Richard; Robino, Charles Victor

    2009-01-01

    High performance soft magnetic alloys are used in solenoids in a wide variety of applications. These designs are currently being driven to provide more margin, reliability, and functionality through component size reductions; thereby providing greater power to drive ratio margins as well as decreases in volume and power requirements. In an effort to produce soft magnetic materials with improved properties, we have conducted an initial examination of one potential route for producing ultrafine grain sizes in the 49Fe-49Co-2V alloy. The approach was based on a known method for the production of very fine grain sizes in steels, and consisted of repeated, rapid phase transformation cycling through the ferrite to austenite transformation temperature range. The results of this initial attempt to produce highly refined grain sizes in 49Fe-49Co-2V were successful in that appreciable reductions in grain size were realized. The as-received grain size was 15 {micro}m with a standard deviation of 9.5 {micro}m. For the temperature cycling conditions examined, grain refinement appears to saturate after approximately ten cycles at a grain size of 6 {micro}m with standard deviation of 4 {micro}m. The process also reduces the range of grain sizes present in these samples as the largest grain noted in the as received and treated conditions were 64 and 26 {micro}m, respectively. The results were, however, complicated by the formation of an unexpected secondary ferritic constituent and considerable effort was directed at characterizing this phase. The analysis indicates that the phase is a V-rich ferrite, known as {alpha}{sub 2}, that forms due to an imbalance in the partitioning of vanadium during the heating and cooling portions of the thermal cycle. Considerable but unsuccessful effort was also directed at understanding the conditions under which this phase forms, since it is conceivable that this phase restricts the degree to which the grains can be refined. Due to this difficulty

  7. Residential infiltration of fine and ultrafine particles in Edmonton

    NASA Astrophysics Data System (ADS)

    Kearney, Jill; Wallace, Lance; MacNeill, Morgan; Héroux, Marie-Eve; Kindzierski, Warren; Wheeler, Amanda

    2014-09-01

    Airborne indoor particles arise from both indoor sources and ambient particles that have infiltrated indoors. The intra-urban variability of infiltration factors (Finf) is a source of measurement error in epidemiological studies estimating exposure from a central site measurement, hence information on the within and between-home variability of Finf is useful to better characterize ambient PM exposure. The objective of this paper was to estimate magnitudes and predictors of daily residential infiltration factors (Finf) and ambient/non-ambient components of indoor ultrafine particle (UFP) and fine particle (FP) concentrations. FPs and UFPs were measured continuously for 7 consecutive days in 74 Edmonton homes in winter and summer 2010 (50 homes in each season). Simultaneous measurements of outdoor (near-home) FP and ambient (at a central site) UFP concentrations were also measured. Daily infiltration factors were estimated for each home; considerable variability was seen within and between homes. For FPs, seasonal-averaged Finf (the average of the 7 daily Finf estimates) ranged from 0.10 to 0.92 in winter (median = 0.30, n = 49) and 0.31 to 0.99 in summer (median = 0.68, n = 48). For UFPs, the seasonal-averaged Finf ranged from 0.08 to 0.47 across homes in winter (median = 0.21, n = 33 houses) and from 0.16 to 0.94 in summer (median = 0.57, n = 48). The higher median Finf in summer was attributed to a high frequency of open windows. Daily infiltration factors were also estimated based on the indoor/outdoor PM1 sulfur ratio. These estimates were poorly correlated with DustTrak-based FP infiltration factor estimates; the difference may be due to losses of volatile components on the PM1 filter samples. Generalized linear mixed models were used to identify variables significantly associated with Finf and the non-ambient component of indoor FP and UFP concentrations. Wind speed was consistently associated with Finf across all seasons for both FPs and UFPs. The use of an

  8. Preparation and mechanical properties of silicon oxycarbide fibers from electrospinning/sol-gel process

    SciTech Connect

    Wang, Xiaofei; Gong, Cairong; Fan, Guoliang

    2011-12-15

    Graphical abstract: Ceramic fibers, silicon oxycarbide (SiOC) fibers were demonstrated and showed higher mechanical properties from electrospinning/sol-gel process at 1000 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer SiOC fibers with low cost are promising to substitute the non-oxide fibers. Black-Right-Pointing-Pointer Successful preparation of SiOC fibers by electrospinning/sol-gel process. Black-Right-Pointing-Pointer Confirmation of the designed product using material characterization methods. Black-Right-Pointing-Pointer The SiOC fibers prepared at 1000 Degree-Sign C possess higher strength (967 MPa). -- Abstract: Silicon oxycarbide (SiOC) fibers were produced through the electrospinning of the solution containing vinyltrimethoxysilane and tetraethoxysilane in the course of sol-gel reaction with pyrolysis to ceramic. The effect of the amount of spinning agent Polyvinylpyrrolidone (PVP) on the dope spinnability was investigated. At a mass ratio of PVP/alkoxides = 0.05, the spinning sol exhibited an optimal spinnable time of 50 min and generated a large quantity of fibers. Electrospun fibers were characterized by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis-differential scanning calorimetry (TGA-DSC), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM results revealed that the SiOC fibers had a smooth surface and dense cross-section, free of residue pores and cracks. The XPS results gave high content of SiC (13.99%) in SiOC fibers. The SiOC fibers prepared at 1000 Degree-Sign C had a high tensile strength of 967 MPa and Young's modulus of 58 GPa.

  9. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  10. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  11. Acute health effects of urban fine and ultrafine particles on children with atopic dermatitis.

    PubMed

    Song, Sanghwan; Lee, Kiyoung; Lee, Young-Mi; Lee, Jung-Hyun; Lee, Sang Il; Yu, Seung-Do; Paek, Domyung

    2011-04-01

    Although ambient particulate pollutants have been shown to exacerbate existing allergic symptoms of mucous membranes including rhinitis and asthma, the effects on skin such as atopic dermatitis in childhood deserve further study. We investigated the effects of urban particulate pollutants including ultrafine particles on atopic severity in children with atopic dermatitis. We included 41 schoolchildren, 8-12 years old, who had been diagnosed with atopic dermatitis. For 67 consecutive days, all of them measured their symptoms in a diary. To assess exposure, the daily ambient mass concentrations of particulate matter less than 10, 2.5 and 1 μm (PM(10), PM(2.5) and PM(1), respectively) and concentrations of submicron particles (0.01- 1 μm) were measured at a local school. The mean mass concentrations of PM(10), PM(2.5) and PM(1) were 74.0, 57.8 and 50.8 μg/m(3), respectively. The mean concentrations were 41,335/cm(3) ultrafine particles (UFPs) and 8577/cm(3) accumulation mode (0.1-1 μm) particles. Significant associations were found between the concentrations of ultrafine particles and the itchiness symptom in children with atopic dermatitis. An interquartile range (IQR) increase in previous day ultrafine particles concentration (IQR: 28-140/m(3)) was significantly associated with a 3.1% (95% confidence interval, 0.2-6.1) increase in the itch symptom score for children with atopic dermatitis. The results suggested that the concentration of ambient ultrafine particles may exacerbate skin symptoms in children with atopic dermatitis. Copyright © 2011. Published by Elsevier Inc.

  12. Size resolved ultrafine particles emission model--a continues size distribution approach.

    PubMed

    Nikolova, Irina; Janssen, Stijn; Vrancken, Karl; Vos, Peter; Mishra, Vinit; Berghmans, Patrick

    2011-08-15

    A new parameterization for size resolved ultrafine particles (UFP) traffic emissions is proposed based on the results of PARTICULATES project (Samaras et al., 2005). It includes the emission factors from the Emission Inventory Guidebook (2006) (total number of particles, #/km/veh), the shape of the corresponding particle size distribution given in PARTICULATES and data for the traffic activity. The output of the model UFPEM (UltraFine Particle Emission Model) is a sum of continuous distributions of ultrafine particles emissions per vehicle type (passenger cars and heavy duty vehicles), fuel (petrol and diesel) and average speed representative for urban, rural and highway driving. The results from the parameterization are compared with measured total number of ultrafine particles and size distributions in a tunnel in Antwerp (Belgium). The measured UFP concentration over the entire campaign shows a close relation to the traffic activity. The modelled concentration is found to be lower than the measured in the campaign. The average emission factor from the measurement is 4.29E+14 #/km/veh whereas the calculated is around 30% lower. A comparison of emission factors with literature is done as well and in overall a good agreement is found. For the size distributions it is found that the measured distributions consist of three modes--Nucleation, Aitken and accumulation and most of the ultrafine particles belong to the Nucleation and the Aitken modes. The modelled Aitken mode (peak around 0.04-0.05 μm) is found in a good agreement both as amplitude of the peak and the number of particles whereas the modelled Nucleation mode is shifted to smaller diameters and the peak is much lower that the observed. Time scale analysis shows that at 300 m in the tunnel coagulation and deposition are slow and therefore neglected. The UFPEM emission model can be used as a source term in dispersion models. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats.

    PubMed

    Takenaka, S; Karg, E; Roth, C; Schulz, H; Ziesenis, A; Heinzmann, U; Schramel, P; Heyder, J

    2001-08-01

    The cardiovascular system is currently considered a target for particulate matter, especially for ultrafine particles. In addition to autonomic or cytokine mediated effects, the direct interaction of inhaled materials with the target tissue must be examined to understand the underlying mechanisms. In the first approach, pulmonary and systemic distribution of inhaled ultrafine elemental silver (EAg) particles was investigated on the basis of morphology and inductively coupled plasma mass spectrometry (ICP-MS) analysis. Rats were exposed for 6 hr at a concentration of 133 microg EAg m(3) (3 x 10(6) cm(3), 15 nm modal diameter) and were sacrificed on days 0, 1, 4, and 7. ICP-MS analysis showed that 1.7 microg Ag was found in the lungs immediately after the end of exposure. Amounts of Ag in the lungs decreased rapidly with time, and by day 7 only 4% of the initial burden remained. In the blood, significant amounts of Ag were detected on day 0 and thereafter decreased rapidly. In the liver, kidney, spleen, brain, and heart, low concentrations of Ag were observed. Nasal cavities, especially the posterior portion, and lung-associated lymph nodes showed relatively high concentrations of Ag. For comparison, rats received by intratracheal instillation either 150 microL aqueous solution of 7 microg silver nitrate (AgNO(3) (4.4 microg Ag) or 150 microL aqueous suspension of 50 microg agglomerated ultrafine EAg particles. A portion of the agglomerates remained undissolved in the alveolar macrophages and in the septum for at least 7 days. In contrast, rapid clearance of instilled water-soluble AgNO(3) from the lung was observed. These findings show that although instilled agglomerates of ultrafine EAg particles were retained in the lung, Ag was rapidly cleared from the lung after inhalation of ultrafine EAg particles, as well as after instillation of AgNO(3), and entered systemic pathways.

  14. Microstructure of warm rolling and pearlitic transformation of ultrafine-grained GCr15 steel

    SciTech Connect

    Sun, Jun-Jie; Lian, Fu-Liang; Liu, Hong-Ji; Jiang, Tao; Guo, Sheng-Wu; Du, Lin-Xiu; Liu, Yong-Ning

    2014-09-15

    Pearlitic transformation mechanisms have been investigated in ultra-fine grained GCr15 steel. The ultrafine-grained steel, whose grain size was less than 1 μm, was prepared by thermo-mechanical treatment at 873 K and then annealing at 923 K for 2 h. Pearlitic transformation was conducted by reheating the ultra-fine grained samples at 1073 K and 1123 K for different periods of time and then cooling in air. Scanning electron microscope observation shows that normal lamellar pearlite, instead of granular cementite and ferrite, cannot be formed when the grain size is approximately less than 4(± 0.6) μm, which yields a critical grain size for normal lamellar pearlitic transformations in this chromium alloyed steel. The result confirms that grain size has a great influence on pearlitic transformation by increasing the diffusion rate of carbon atoms in the ultra-fine grained steel, and the addition of chromium element doesn't change this pearlitic phase transformation rule. Meanwhile, the grain growth rate is reduced by chromium alloying, which is beneficial to form fine grains during austenitizing, thus it facilitating pearlitic transformation by divorced eutectoid transformation. Moreover, chromium element can form a relatively high gradient in the frontier of the undissolved carbide, which promotes carbide formation in the frontier of the undissolved carbide, i.e., chromium promotes divorced eutectoid transformation. - Highlights: • Ultrafine-grained GCr15 steel was obtained by warm rolling and annealing technology. • Reduction of grain size makes pearlite morphology from lamellar to granular. • Adding Cr does not change normal pearlitic phase transformation rule in UFG steel. • Cr carbide resists grain growth and facilitates pearlitic transformation by DET.

  15. Relationship of pulmonary toxicity and carcinogenicity of fine and ultrafine granular dusts in a rat bioassay

    PubMed Central

    Kolling, Angelika; Ernst, Heinrich; Rittinghausen, Susanne; Heinrich, Uwe

    2011-01-01

    The current carcinogenicity study with female rats focused on the toxicity and carcinogenicity of intratracheally instilled fine and ultrafine granular dusts. The positive control, crystalline silica, elicited the greatest magnitude and progression of pulmonary inflammatory reactions, fibrosis and the highest incidence of primary lung tumors (39.6%). Addition of poly-2-vinylpyridine-N-oxide decreased inflammatory responses, fibrosis, and the incidence of pulmonary tumors induced by crystalline quartz to 21.4%. After repeated instillation of soluble, ultrafine amorphous silica (15 mg) a statistically significant tumor response (9.4%) was observed, although, the inflammatory response in the lung was not as persistently severe as in rats treated with carbon black. Instillation of ultrafine carbon black (5 mg) caused a lung tumor incidence of 15%. In contrast to a preceding study using a dose of 66 mg coal dust, lung tumors were not detected after exposure to the same coal dust at a dose of 10 mg in this study. Pulmonary inflammatory responses to coal dust were very low indicating a mechanistic threshold for the development of lung tumors connected with particle related chronic inflammation. The animals treated with ultrafine carbon black and ultrafine amorphous silica showed significantly more severe lesions in non-cancerous endpoints when compared to animals treated with fine coal dust. Furthermore, carbon black treated rats showed more severe non-cancerous lung lesions than amorphous silica treated rats. Our data show a relationship between tumor frequencies and increasing scores when using a qualitative scoring system for specific non-cancerous endpoints such as inflammation, fibrosis, epithelial hyperplasia, and squamous metaplasia. PMID:21819261

  16. Processing, mechanical behavior and biocompatibility of ultrafine grained zirconium fabricated by accumulative roll bonding

    NASA Astrophysics Data System (ADS)

    Jiang, Ling

    The aim of this study is to produce large quantities of bulk zirconium with an ultrafine grained microstructure and with enhanced properties. Accumulative roll bonding (ARB), a severe plastic deformation technique based on rolling, is chosen due to its availability in industrial environment. The texture, microstructure and mechanical behavior of bulk ultrafine grained (ufg) Zr fabricated by accumulative roll bonding is investigated by electron backscatter diffraction, transmission electron microscopy and mechanical testing. A reasonably homogeneous and equiaxed ufg structure, with a large fraction of high angle boundaries (HABs, ˜70%), can be obtained in Zr after only two ARB cycles. The average grain size, counting only HABs (theta>15°), is 400 nm. (Sub)grain size is equal to 320 nm. The yield stress and ultimate tensile stress (UTS) values are nearly double those from conventionally processed Zr with only a slight loss of ductility. Optimum processing conditions include large thickness reductions per pass (˜75%), which enhance grain refinement, and a rolling temperature (T ˜ 0.3Tm) at which a sufficient number of slip modes are activated, with an absence of significant grain growth. Grain refinement takes place by geometrical thinning and grain subdivision by the formation of geometrically necessary boundaries. The formation of equiaxed grains by geometric dynamic recrystallization is facilitated by enhanced diffusion due to adabatic heating. Optical microscopy examination and shear testing suggest accepted bonding quality compared to that achieved in materials processed by diffusion bonding and that obtained in other ARB studies. Biocompatibility of ultrafine grained Zr processed by large strain rolling is studied by evaluating the behavior of human osteoblast cells. It is suggested that ultrafine grained Zr has a similar good biocompatibility as Ti6Al4V alloy and conventional Zr with a large grain size have. The improved mechanical properties together with

  17. Fabrication and thermo-mechanical behavior of ultra-fine porous copper.

    PubMed

    Kreuzeder, Marius; Abad, Manuel-David; Primorac, Mladen-Mateo; Hosemann, Peter; Maier, Verena; Kiener, Daniel

    2015-01-01

    Porous materials with ligament sizes in the submicrometer to nanometer regime have a high potential for future applications such as catalysts, actuators, or radiation tolerant materials, which require properties like high strength-to-weight ratio, high surface-to-volume ratio, or large interface density as for radiation tolerance. The objective of this work was to manufacture ultra-fine porous copper, to determine the thermo-mechanical properties, and to elucidate the deformation behavior at room as well as elevated temperatures via nanoindentation. The experimental approach for manufacturing the foam structures used high pressure torsion, subsequent heat treatments, and selective dissolution. Nanoindentation at different temperatures was successfully conducted on the ultra-fine porous copper, showing a room temperature hardness of 220 MPa. During high temperature experiments, oxidation of the copper occurred due to the high surface area. A model, taking into account the mechanical properties of the copper oxides formed during the test, to describe the measured mechanical properties in dependence on the proceeding oxidation was developed. The strain rate sensitivity of the copper foam at room temperature was ∼0.03 and strongly correlated with the strain rate sensitivity of ultra-fine grained bulk copper. Although oxidation occurred near the surface, the rate-controlling process was still the deformation of the underlying copper. An increase in the strain rate sensitivity was observed, comparably to that of ultra-fine-grained copper, which can be linked to thermally activated processes at grain boundaries. Important insights into the effects of oxidation on the deformation behavior were obtained by assessing the activation volume. Oxidation of the ultra-fine porous copper foam, thereby hindering dislocations to exit to the surface, resulted in a pronounced reduction of the apparent activation volume from ~800 to ~50 b(3), as also typical for ultra-fine grained

  18. Optical Fibers

    NASA Astrophysics Data System (ADS)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  19. Vacuum fiber-fiber coupler

    NASA Astrophysics Data System (ADS)

    Heinrici, Axel; Bjelajac, Goran; Jonkers, Jeroen; Jakobs, Stefan; Olschok, Simon; Reisgen, Uwe

    2017-02-01

    Research and development carried out by the ISF Welding and Joining Institute of RWTH Aachen University has proven that combining high power laser and low vacuum atmosphere provides a welding performance and quality, which is comparable to electron beam welding. The developed welding machines are still using a beam forming which takes place outside the vacuum and the focusing laser beam has to be introduced to the vacuum via a suitable window. This inflexible design spoils much of the flexibility of modern laser welding. With the target to bring a compact, lightweight flying optics with flexible laser transport fibers into vacuum chambers, a high power fiber-fiber coupler has been adapted by II-VI HIGHYAG that includes a reliable vacuum interface. The vacuum-fiber-fiber coupler (V-FFC) is tested with up to 16 kW sustained laser power and the design is flexible in terms of a wide variety of laser fiber plug systems and vacuum flanges. All that is needed to implement the V-FFC towards an existing or planned vacuum chamber is an aperture of at least 100 mm (4 inch) diameter with any type of vacuum or pressure flange. The V-FFC has a state-of-the-art safety interface which allows for fast fiber breakage detection for both fibers (as supported by fibers) by electric wire breakage and short circuit detection. Moreover, the System also provides connectors for cooling and electric signals for the laser beam optics inside the vacuum. The V-FFC has all necessary adjustment options for coupling the laser radiation to the receiving fiber.

  20. ULTRAFINE CARBON PARTICLES INDUCE INTERLEUKIN-8 GENE TRANSCRIPTION AND P38 MAPK ACTIVATION IN NORMAL BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies suggest that ultrafine particles contribute to particulate matter-induced adverse health effects. Interleukin (IL)-8 is an important proinflammatory cytokine in the human lung that is induced in respiratory cells exposed to a variety of environmental insul...

  1. Ultrafine particulate matter exposure in vitro impairs vasorelaxant response in superoxide dismutase 2 deficient and aged murine aortic rings

    EPA Science Inventory

    Epidemiological studies positively associate exposure to inhaled ultrafine particulate matter (UFPM) and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure....

  2. Exposure for ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats*

    EPA Science Inventory

    Rationale: Exposure to particulate matter is a risk factor for cardiopulmonary disease but the related molecular mechanisms are poorly understood. Previously we studied cardiovascular responses in healthy WKY rats following inhalation exposure to ultrafine carbon particles (UfCPs...

  3. Effect of ultrafine gold particles and cationic surfactant on burning as-grown single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Yudasaka, M.; Nihey, F.; Iijima, S.

    2000-10-01

    Mizoguti et al. (Chem. Phys. Lett. 321 (2000) 297) reported that amorphous carbon (a-C) contained in as-grown single-wall carbon nanotubes could be burned preferentially by using ultrafine gold particles and cationic surfactant, benzalkonium chloride (BKC). We confirmed this result and found additionally that the optimum concentration of the ultrafine gold particles and BKC were, respectively, 0.6 atom% and 7 g/l. We studied the roles of ultrafine gold particles and BKC in this phenomenon; the ultrafine gold particles catalyzed the oxidation of carbonaceous materials leading to the decrease of the burning temperatures. BKC had the function of homogenizing the a-C aggregation states, which resulted in the burning of a-C in a narrow temperature range.

  4. Ultrafine particulate matter exposure in vitro impairs vasorelaxant response in superoxide dismutase 2 deficient and aged murine aortic rings

    EPA Science Inventory

    Epidemiological studies positively associate exposure to inhaled ultrafine particulate matter (UFPM) and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure....

  5. Long-term assessment of ultrafine particles on major roadways in Las Vegas, Nevada and Detroit, Michigan

    EPA Science Inventory

    This is a presentation at the National Air Monitoring conference, given at the request of OAQPS partners. The presentation will cover ultrafine particle data collected at three locations - Las Vegas, Detroit, and Research Triangle Park.

  6. Long-term assessment of ultrafine particles on major roadways in Las Vegas, Nevada and Detroit, Michigan

    EPA Science Inventory

    This is a presentation at the National Air Monitoring conference, given at the request of OAQPS partners. The presentation will cover ultrafine particle data collected at three locations - Las Vegas, Detroit, and Research Triangle Park.

  7. ULTRAFINE CARBON PARTICLES INDUCE INTERLEUKIN-8 GENE TRANSCRIPTION AND P38 MAPK ACTIVATION IN NORMAL BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies suggest that ultrafine particles contribute to particulate matter-induced adverse health effects. Interleukin (IL)-8 is an important proinflammatory cytokine in the human lung that is induced in respiratory cells exposed to a variety of environmental insul...

  8. Exposure for ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats*

    EPA Science Inventory

    Rationale: Exposure to particulate matter is a risk factor for cardiopulmonary disease but the related molecular mechanisms are poorly understood. Previously we studied cardiovascular responses in healthy WKY rats following inhalation exposure to ultrafine carbon particles (UfCPs...

  9. Fireblocking Fibers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    PBI was originally developed for space suits. In 1980, the need for an alternative to asbestos and stricter government anti-pollution standards led to commercialization of the fire blocking fiber. PBI is used for auto racing driver suits and aircraft seat covers. The fiber does not burn in air, is durable and easily maintained. It has been specified by a number of airliners and is manufactured by Hoechst-Celanese Corporation.

  10. Nanocomposite Fibers

    DTIC Science & Technology

    2003-01-01

    attempts to prepare carbon nanotube , CNT, containing fiber material. Modulus and tenacity tests on experimentally prepared nanosilica filled PET...individual entities of nanofibers, such as carbon nanotubes and SiC whiskers, silica and clay, into polymers with the goal of producing new forms of...if carbon nanotube (CNT) particle implanted fibers are used, one would expect a great increase in the electrical conductivity of the so-reinforced

  11. Dietary fiber.

    PubMed

    Madar, Z; Thorne, R

    1987-01-01

    Studies done on dietary fiber (DF) over the past five years are presented in this Review. The involvement of dietary fiber in the control of plasma glucose and lipid levels is now established. Two dietary fiber sources (soybean and fenugreek) were studied in our laboratory and are discussed herein. These sources were found to be potentially beneficial in the reduction of plasma glucose in non-insulin dependent diabetes mellitus subjects. They are shown to be acceptable by human subjects and are easy to use either in a mixture of milk products and in cooking. The mechanism by which dietary fiber alters the nutrient absorption is also discussed. The effect of DF on gastric emptying, transit time, adsorption and glucose transport may contribute to reducing plasma glucose and lipid levels. DF was found to be effective in controlling blood glucose and lipid levels of pregnant diabetic women. Dietary fiber may also be potentially beneficial in the reduction of exogenous insulin requirements in these subjects. However, increased consumption of DF may cause adverse side effects; the binding capabilities of fiber may affect nutrient availability, particularly that of minerals and prolonged and high DF dosage supplementation must be regarded cautiously. This is particularly true when recommending such a diet for pregnant or lactating women, children or subjects with nutritional disorders. Physiological effects of DF appear to depend heavily on the source and composition of fiber. Using a combination of DF from a variety of sources may reduce the actual mass of fiber required to obtain the desired metabolic effects and will result in a more palatable diet. Previously observed problems, such as excess flatus, diarrhea and mineral malabsorption would also be minimized.

  12. Determinants of personal exposure to PM2.5, ultrafine particle counts, and CO in a transport microenvironment.

    PubMed

    Kaur, S; Nieuwenhuijsen, M J

    2009-07-01

    Short-term human exposure concentrations to PM2.5, ultrafine particle counts (particle range: 0.02-1 microm), and carbon monoxide (CO) were investigated at and around a street canyon intersection in Central London, UK. During a four week field campaign, groups of four volunteers collected samples at three timings (morning, lunch, and afternoon), along two different routes (a heavily trafficked route and a backstreet route) via five modes of transport (walking, cycling, bus, car, and taxi). This was followed by an investigation into the determinants of exposure using a regression technique which incorporated the site-specific traffic counts, meteorological variables (wind speed and temperature) and the mode of transport used. The analyses explained 9, 62, and 43% of the variability observed in the exposure concentrations to PM2.5, ultrafine particle counts, and CO in this study, respectively. The mode of transport was a statistically significant determinant of personal exposure to PM2.5, ultrafine particle counts, and CO, and for PM2.5 and ultrafine particle counts it was the most important determinant. Traffic count explained little of the variability in the PM2.5 concentrations, but it had a greater influence on ultrafine particle count and CO concentrations. The analyses showed that temperature had a statistically significant impact on ultrafine particle count and CO concentrations. Wind speed also had a statistically significant effect but smaller. The small proportion in variability explained in PM2.5 by the model compared to the largest proportion in ultrafine particle counts and CO may be due to the effect of long-range transboundary sources, whereas for ultrafine particle counts and CO, local traffic is the main source.

  13. Effect of polyethersulfone concentration on flat and hollow fiber membrane performance

    SciTech Connect

    Wood, H.; Wang, J. ); Sourirajan, S. )

    1993-11-01

    Flat and hollow fiber (HF) membranes are made in order to determine the effect of the polyethersulfone (PES) concentration in the precursor film-casting solution on the resultant flat and hollow fiber membrane performance. The additive polyvinylpyrrolidone (PVP) is included in the film-casting solution to ensure that membranes can be made over wide variations in the PES polymer concentration. In general, membrane permeability decreases and solute separation ability increases as the PES concentration increases. However, for both flat and HF membranes, performance is strongly dependent on whether the PES concentration is above or below the critical value. Flux greatly decreases and solute-separation ability increases when the critical PES concentration is at the critical value. 20 refs., 1 fig., 4 tabs.

  14. Dissolution difference of ginsenosides from ultrafine granular powder and common powder traditional pieces of Panacis Quinquefolii Radix in vitro.

    PubMed

    Xu, Hao-qi; Chen, Sha; Zhang, Jun; Yang, Shi-lin; Cheng, Jin-le; Peng, Li-hua; Liu, An

    2015-07-01

    The dissolution of Panacis Quinquefolii Radix ultrafine granular powder and common powder, traditional pieces in water and simulated gastric juice in vitro was compared, and the effect of particles size of Panacis Quinquefolii Radix on the dissolution was studied. HPLC method was used for determination of five ginsenosides including Rg1, Re, Rb1, Rc and Rd from ultrafine granular powder and common powder, traditional pieces of Panacis Quinquefolii Radix at different points in time, furthermore, the dissolution curves of Panacis Quinquefolii Radix ultrafine granular powder and common powder, traditional pieces were obtained. The dissolution characteristics of the three Panacis Quinquefolii Radix forms were also compared in this study. According to the results, the dissolution rates of ginsenosides from ultrafine granular powder exceeded 90% of the total content with 5 min, significantly higher than that of the other two forms in water in vitro. At the same time, the dissolved amount of the ultrafine granular powder was fourteen percent higher than that of the traditional pieces and eight percent higher than that of the common powder. Under the condition of simulated gastric juice in vitro, the dissolution rates of ginsenosides from ultrafine granular powder were little lower than that of the other two, but the maximum dissolved amount of the former was fourteen percent higher than that of the common powder and five percent higher than that of the extracts. Therefore the conclusion is that micronization of Panacis Quinquefolii Radix contributed to dissolution of effective components.

  15. Changes in pulmonary lavage fluid of guinea pigs exposed to ultrafine zinc oxide with adsorbed sulfuric acid

    SciTech Connect

    Conner, M.W.; Flood, W.H.; Rogers, A.E.; Amdur, M.O.

    1989-01-01

    Ultrafine metal oxide particles (diameters less than 0.1 microns) and sulfur dioxide are important products of coal combustion. Interaction of these products in the effluent stream results in formation of ultrafine particles with adsorbed sulfur compounds, including sulfuric acid. The toxicity of ultrafine zinc oxide particles with adsorbed sulfuric acid was evaluated by comparing pulmonary lavage fluid from guinea pigs exposed for 1, 2, 3, 4, or 5 consecutive daily 3-h periods to ultrafine zinc oxide generated in the presence of sulfur dioxide (ZnO + SO/sub 2/) to pulmonary lavage fluid from guinea pigs exposed to an equivalent concentration of ultrafine ZnO. Two groups of guinea pigs exposed either to SO/sub 2/ or to particle-free furnace gas served as additional controls. Cells, protein, and activities of lactate dehydrogenase, acid phosphatase, and alkaline phosphatase were increased in lavage fluid obtained from guinea pigs exposed to ZnO + SO/sub 2/ as compared to guinea pigs exposed to ZnO. These results demonstrate the potential importance of ultrafine metal oxides as carries of sulfuric acid derived from fossil fuel combustion.

  16. Controlled exposure of humans with metabolic syndrome to concentrated ultrafine ambient particulate matter causes cardiovascular effects.

    PubMed

    Devlin, Robert B; Smith, Candice B; Schmitt, Michael T; Rappold, Ana G; Hinderliter, Alan; Graff, Don; Carraway, Martha Sue

    2014-07-01

    Many studies have reported associations between air pollution particles with an aerodynamic diameter <2.5 μm (fine particulate matter (PM)) and adverse cardiovascular effects. However, there is an increased concern that so-called ultrafine PM which comprises the smallest fraction of fine PM (aerodynamic diameter <0.1 μm) may be disproportionately toxic relative to the 0.1-2.5 μm fraction. Ultrafine PM is not routinely measured in state monitoring networks and is not homogenously dispersed throughout an airshed but rather located in hot spots such as near combustion sources (e.g., roads), making it difficult for epidemiology studies to associate exposure to ultrafine PM with adverse health effects. Thirty four middle-aged individuals with metabolic syndrome were exposed for 2 h while at rest in a randomized crossover design to clean air and concentrated ambient ultrafine particles (UCAPS) for 2 h. To further define potential risk, study individuals carrying the null allele for GSTM1 (a prominent antioxidant gene) were identified by genotyping. Blood was obtained immediately prior to exposure, and at 1 and 20 h afterward. Continuous Holter monitoring began immediately prior to exposure and continued for 24 h. Based on changes we observed in previous CAPS studies, we hypothesized that ultrafine CAPS would cause changes in markers of blood inflammation and fibrinolysis as well as changes in heart rate variability and cardiac repolarization. GSTM1 null individuals had altered cardiac repolarization as seen by a change in QRS complexity following exposure to UCAPS and both the entire study population as well as GSTM1 null individuals had increased QT duration. Blood plasminogen and thrombomodulin were decreased in the whole population following UCAPS exposure, whereas C-reactive protein (CRP) and SAA were increased. This controlled human exposure study is the first to show that ambient ultrafine particles can cause cardiovascular changes in people with metabolic

  17. Occupational exposures and determinants of ultrafine particle concentrations during laser hair removal procedures.

    PubMed

    Eshleman, Emily J; LeBlanc, Mallory; Rokoff, Lisa B; Xu, Yinyin; Hu, Rui; Lee, Kachiu; Chuang, Gary S; Adamkiewicz, Gary; Hart, Jaime E

    2017-03-29

    Occupational exposures to ultrafine particles in the plume generated during laser hair removal procedures, the most commonly performed light based cosmetic procedure, have not been thoroughly characterized. Acute and chronic exposures to ambient ultrafine particles have been associated with a number of negative respiratory and cardiovascular health effects. Thus, the aim of this study was to measure airborne concentrations of particles in a diameter size range of 10 nm to 1 μm in procedure rooms during laser hair removal procedures. TSI Model 3007 Condensation Particle Counters were used to quantify the particle count concentrations in the waiting and procedure rooms of a dermatology office. Particle concentrations were sampled before, during, and after laser hair removal procedures, and characteristics of each procedure were noted by the performing dermatologist. Twelve procedures were sampled over 4 days. Mean ultrafine particle concentrations in the waiting and procedure rooms were 14,957.4 particles/cm(3) and 22,916.8 particles/cm(3) (p < 0.0001), respectively. Compared to background ultrafine particle concentrations before the procedure, the mean concentration in the procedure room was 2.89 times greater during the procedure (p = 0.009) and 2.09 times greater after the procedure (p = 0.007). Duration of procedure (p = 0.006), body part (p = 0.013), and the use of pre-laser lotion/type of laser (p = 0.039), were the most important predictors of ultrafine particle concentrations. Use of a smoke evacuator (a recommended form of local exhaust ventilation) positioned at 30.5 cm from the source, as opposed to the recommended 1-2 in., lowered particle concentrations, but was not a statistically significant predictor (p = 0.49). Laser hair removal procedures can generate high exposures to ultrafine particles for dermatologists and other individuals performing laser hair removal, with exposure varying based on multiple determinants.

  18. Carbon nanotube fibers and ribbons produced by a novel wet-spinning process

    NASA Astrophysics Data System (ADS)

    Capps, Ryan Cody

    Carbon nanotubes have exciting potential to provide high performance materials of the future. One of the main challenges is assembling the billions of miles of individual nanotubes in each pound of product nanotube fiber or sheet in such a way that the properties of the individual nanotubes are most effectively utilized. In this study a novel wet fiber spinning method was developed in which carbon nanotubes dispersed in a surfactant are injected into a rotating acid bath which coagulates the dispersion to form a macroscopic fiber. This flocculation method produces highly conducting carbon nanotube fibers and sheets without the need for a polymer binder. The mechanical strength is sufficient for several applications and can be improved by either heat treatment or by incorporation of a polymer in the yarn, and subsequent draw. Poly(Vinyl Alcohol) (PVA)-treated fibers yield outstanding mechanical properties and a toughness that is comparable to spider silk. Other polymers, such as polyvinylpyrrolidone (PVP) also enhance mechanical properties. Inorganic additives, such as platinum, can be incorporated into the fiber matrix to provide multifunctionality.

  19. Antimicrobial activity of electrospun poly(butylenes succinate) fiber mats containing PVP-capped silver nanoparticles.

    PubMed

    Tian, Ligang; Wang, Pingli; Zhao, Zhiguo; Ji, Junhui

    2013-12-01

    In this study, biodegradable poly(butylenes succinate) (PBS) fiber mats containing silver nanoparticles (AgNPs) were prepared by the electrospinning process. Small AgNPs (<10 nm) were simply synthesized using polyvinylpyrrolidone as the capping agent as well as the reductant. The morphology of the PBS-AgNPs fiber mats and the distribution of the AgNPs were well characterized by TEM and SEM. The release of Ag from the PBS fiber mats was quantitively determined by ICP. The PBS fiber mats with 0.29 % AgNPs content showed strong antimicrobial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli with the efficacy as high as 99 %. The effective bactericidal activity on E. coli was demonstrated for a short contacting time with the PBS-AgNPs fiber mats. In addition, the long-term release performance of Ag from the fiber mats can keep inhibiting the bacterial growth in the mats over a long period of time.

  20. Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene-polyvinylpyrrolidone composite film.

    PubMed

    Deng, Peihong; Xu, Zhifeng; Zeng, Rongying; Ding, Chunxia

    2015-08-01

    The graphene-polyvinylpyrrolidone composite film modified acetylene black paste electrode (GR-PVP/ABPE) was fabricated and used to determine vanillin. In 0.1M H3PO4 solution, the oxidation peak current of vanillin increased significantly at GR-PVP/ABPE compared with bare ABPE, PVP/ABPE and GR/ABPE. The oxidation mechanism was discussed. The experimental conditions that exert influence on the voltammetric determination of vanillin, such as supporting electrolytes, pH values, accumulation potential and accumulation time, were optimized. Besides, the interference, repeatability, reproducibility and stability measurements were also evaluated. Under the optimal experimental conditions, the oxidation peak current was proportional to vanillin concentration in the range of 0.02-2.0 μM, 2.0-40 μM and 40-100 μM. The detection limit was 10nM. This sensor was used successfully for vanillin determination in various food samples.