Science.gov

Sample records for polyvinylpyrrolidone ultrafine fibers

  1. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers

    NASA Astrophysics Data System (ADS)

    Yu, Deng-Guang; Shen, Xia-Xia; Branford-White, Chris; White, Kenneth; Zhu, Li-Min; Bligh, S. W. Annie

    2009-02-01

    Oral fast-dissolving drug delivery membranes (FDMs) for poorly water-soluble drugs were prepared via electrospinning technology with ibuprofen as the model drug and polyvinylpyrrolidone (PVP) K30 as the filament-forming polymer and drug carrier. Results from differential scanning calorimetry, x-ray diffraction, and morphological observations demonstrated that ibuprofen was distributed in the ultrafine fibers in the form of nanosolid dispersions and the physical status of drug was an amorphous or molecular form, different from that of the pure drug and a physical mixture of PVP and ibuprofen. Fourier-transform infrared spectroscopy results illustrated that the main interactions between PVP and ibuprofen were mediated through hydrogen bonding. Pharmacotechnical tests showed that FDMs with different drug contents had almost the same wetting and disintegrating times, about 15 and 8 s, respectively, but significantly different drug dissolution rates due to the different physical status of the drug and the different drug-release-controlled mechanisms. 84.9% and 58.7% of ibuprofen was released in the first 20 s for FDMs with a drug-to-PVP ratio of 1:4 and 1:2, respectively. Electrospun ultrafine fibers have the potential to be used as solid dispersions to improve the dissolution profiles of poorly water-soluble drugs or as oral fast disintegrating drug delivery systems.

  2. Ultrafine PBI fibers and yarns

    NASA Technical Reports Server (NTRS)

    Leal, J. R.; Tan, M.

    1979-01-01

    Gentle precisely controlled process is used to draw polybenzimidazole (PBI) fibers to denier as low as 0.17 per fiber. Yarns of lightweight fibers could be useful in applications where lightweight textiles must withstand high temperatures, corrosion, or radiation.

  3. Cytocompatible and water stable ultrafine protein fibers for tissue engineering

    NASA Astrophysics Data System (ADS)

    Jiang, Qiuran

    This dissertation proposal focuses on the development of cytocompatible and water stable protein ultrafine fibers for tissue engineering. The protein-based ultrafine fibers have the potential to be used for biomedicine, due to their biocompatibility, biodegradability, similarity to natural extracellular matrix (ECM) in physical structure and chemical composition, and superior adsorption properties due to their high surface to volume ratio. However, the current technologies to produce the protein-based ultrafine fibers for biomedical applications still have several problems. For instance, the current electrospinning and phase separation technologies generate scaffolds composed of densely compacted ultrafine fibers, and cells can spread just on the surface of the fiber bulk, and hardly penetrate into the inner sections of scaffolds. Thus, these scaffolds can merely emulate the ECM as a two dimensional basement membrane, but are difficult to mimic the three dimensional ECM stroma. Moreover, the protein-based ultrafine fibers do not possess sufficient water stability and strength for biomedical applications, and need modifications such as crosslinking. However, current crosslinking methods are either high in toxicity or low in crosslinking efficiency. To solve the problems mentioned above, zein, collagen, and gelatin were selected as the raw materials to represent plant proteins, animal proteins, and denatured proteins in this dissertation. A benign solvent system was developed specifically for the fabrication of collagen ultrafine fibers. In addition, the gelatin scaffolds with a loose fibrous structure, high cell-accessibility and cell viability were produced by a novel ultralow concentration phase separation method aiming to simulate the structure of three dimensional (3D) ECM stroma. Non-toxic crosslinking methods using citric acid as the crosslinker were also developed for electrospun or phase separated scaffolds from these three proteins, and proved to be

  4. Ultrafine cellulose acetate fibers with nanoscale structural features.

    PubMed

    Zhang, Lifeng; Hsieh, You-Lo

    2008-09-01

    Nano-structural features were introduced to ultrafine cellulose acetate (CA) fibers by electrospinning of its mixtures with either poly(vinyl pyrrolidone) PVP or beta-cyclodextrin (beta-CD) in DMF, followed by dissolution of the added PVP or beta-CD. The presence of the charge-holding PVP enabled fiber formation from CA below its entanglement chain length and improved the electrospinning efficiency to produce bicomponent fibers with wide ranging diameters from 30 to 650 nm. At up to 50% contents, the PVP in the bicomponent fibers was phase-separated from CA and, upon removal, resulting in highly angulated fiber surfaces with nanometer-size spherulites and sub-micron size ridges and grooves. Adding beta-CD to CA enabled fiber formation at concentrations below the chain entanglement concentration Ce (16.5%). Hydrogen bonding between beta-CD and CA, as evident by FTIR, helped to distribute beta-CD as individual molecules in the CA matrix and producing more uniform and finer (130-150 nm in diameters) fibers, irrespective of their beta-CD contents. Removal of beta-CD from the fibers originally containing 40% beta-CD, generated nanoporous fibers with 2-nm nanopores and 70% increase in specific surface and doubled pore volume.

  5. Magnetic anisotropy of ultrafine 316L stainless steel fibers

    NASA Astrophysics Data System (ADS)

    Shyr, Tien-Wei; Huang, Shih-Ju; Wur, Ching-Shuei

    2016-12-01

    An as-received 316L stainless steel fiber with a diameter of 20 μm was drawn using a bundle drawing process at room temperature to form ultrafine stainless steel fibers with diameters of 12, 8, and 6 μm. The crystalline phases of the fibers were analyzed using the X-ray diffraction (XRD) profile fitting technique. The grain sizes of γ-austenite and α‧-martensite were reduced to nanoscale sizes after the drawing process. XRD analysis and focused ion beam-scanning electron microscope observations showed that the newly formed α‧-martensitic grains were closely arrayed in the drawing direction. The magnetic property was measured using a superconducting quantum interference device vibrating sample magnetometer. The magnetic anisotropy of the fibers was observed by applying a magnetic field parallel and perpendicular to the fiber axis. The results showed that the microstructure anisotropy including the shape anisotropy, magnetocrystalline anisotropy, and the orientation of the crystalline phases strongly contributed to the magnetic anisotropy.

  6. Electrospinning of oriented and nonoriented ultrafine fibers of biopolymers

    NASA Astrophysics Data System (ADS)

    Vu, David

    2005-07-01

    Chitosan has long been known as a biocompatible and biodegradable material suitable for tissue engineering applications. Unfortunately, conventional chitosan solutions cannot be used for electrospinning due to their high conductivity, viscosity and surface tension. We have developed a method to produce clear chitosan solutions with conductivities, surface tension and viscosities that facilitate their processing into micron and submicron fibers via electrospinning. Acetic acid, carbon dioxide and organic solvents are key ingredients in preparing the chitosan solutions. Oriented and non oriented chitosan fibers were produced with the ultimate goal of designing a suitable tissue engineering scaffold. Circularly oriented, continuous, and aligned nanofibers were produced via this technique in the form of a thin membrane or fibrous "mat". Chitosan fiber diameters ranged from 5 micrometers down to 100 nanometers. The structure and mechanical properties of oriented and randomly aligned chitosan fiber deposits could potentially be exploited for cartilage tissue engineering. Ultrafine fibers of starch acetate (SA) also were prepared by the electrospinning process. In this study, solvent mixtures based on DMF, DMSO, pyrindine, acetic acid, acetone, THF, DMC, chloroform were used. A two-solvent formulation was used to study the effect of viscosity, surface tension, and conductivity to the fiber diameter. Also, water and ethanol were used to decrease the boiling point of the solvent, and to make bundled fibers. Several techniques such as scanning electron microscopy, conductmetry, viscometry, and tensiometry were used in this study. The results showed that the combined effects of viscosity, surface tension, and conductivity are of great importance in controlling the diameter of the fibers. We were able to produce SA fibers that was less than 40 nm in diameter. The dependence of fiber diameter on flow-rate, electric field and solvents also was investigated. A rotating disk and a

  7. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties

    NASA Astrophysics Data System (ADS)

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-01

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  8. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties.

    PubMed

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-09

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  9. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties

    PubMed Central

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-01

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning. PMID:28067299

  10. Direct Electrospinning of Ultrafine Fibers with Interconnected Macropores Enabled by in Situ Mixing Microfluidics.

    PubMed

    Liu, Wanjun; Zhu, Lei; Huang, Chen; Jin, Xiangyu

    2016-12-21

    Porous ultrafine fibers are of great importance to various applications. Herein, we report a method to directly fabricate macro-porous ultrafine fibers by an in situ mixing microfluidics which allows for the simultaneous electrospinning of solution immediately after mixing. The formation mechanism of macro-pores should be attributed to the incomplete mixing coupled with nonsolvent-induced phase separation, which was elucidated by systematical investigation of various solvent systems and mixing solvents. The diameter of the macro-porous fibers can be tuned from 1.80 ± 0.40 to 6.75 ± 0.48 μm by adjusting the solution concentration and the feeding rate of mixing solvent. The results indicated that macro-porous fibers exhibited higher specific surface area (48.66 ± 8.30 m(2) g(-1)), larger pore size (116.73 nm) and pore volume (0.169 ± 0.007 cm(3) g(-1)) than conventional electrospun porous fibers, enabling the high oil absorption capacities of 95.68, 57.98, and 34.82 g g(-1) for silicon oil, motor oil, and peanut oil, respectively. Our method has greatly expanded the solution scope for electrospinning from stable solution systems to unstable or substable solution systems, thus providing intriguing opportunities for the investigation and fabrication of heterogeneous fibers by in situ mixing of various immiscible solvents/solutions. Our findings can serve as guidelines for the electrospinning of ultrafine fibers with interconnected macro-pores (>50 nm).

  11. Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning.

    PubMed

    Huang, Zheng-Ming; He, Chuang-Long; Yang, Aizhao; Zhang, Yanzhong; Han, Xiao-Jian; Yin, Junlin; Wu, Qingsheng

    2006-04-01

    This article describes an electrospinning process to fabricate double-layered ultrafine fibers. A bioabsorbable polymer, Polycaprolactone (PCL), was used as the outer layer or the shell and two medically pure drugs, Resveratrol (RT, a kind of antioxidant) and Gentamycin Sulfate (GS, an antibiotic), were used as the inner layers or the cores. Morphology and microstructure of the ultrafine fibers were characterized by scanning electron microscope (SEM) and transmission electron microscopy (TEM), whereas mechanical performance of them was understood through tensile test. In vitro degradation rates of the nanofibrous membranes were determined by measuring their weight loss when immersed in pH 7.4 phosphate-buffered saline (PBS) mixed with certain amount of Pseudomonas lipase for a maximum of 7 days. The drug release behaviors of the RT and GS were measured using a high performance liquid chromatography (HPLC) and ultraviolet-visible (UV-vis) spectroscopy, respectively. It has been found that the drug solutions without any fiber-forming additive could be encapsulated in the PCL ultrafine fibers, although they alone cannot be made into a fiber form. Beads on the fiber surface influenced the tensile behavior of the ultrafine fibers remarkably. When the core solvent was miscible with the shell solvent, higher drug concentration decreased the bead formation and thus favored the mechanical performance. The situation, however, became different if the two solvents were immiscible with each other. The degradation rate was closely related to hydrophilicity of the drugs in the cores. Higher hydrophilicity apparently led to faster degradation. The release profiles of the RT and GS exhibited a sustained release characteristic, with no burst release phenomenon.

  12. Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Li, Dawei; Li, Guohui; Luo, Lei; Ullah, Naseeb; Wei, Qufu; Huang, Fenglin

    2015-02-01

    A novel laccase biosensor based on a new composite of laccase-gold nanoparticles (Au NPs)-crosslinked zein ultrafine fibers (CZUF) has been fabricated for catechol determination in real solution samples. Firstly, crosslinked zein ultrafine fibers containing gold nanoparticles (A-CZUF) were prepared by combining electrospinning and one-step reduction method using poly(ethyleneimine) (PEI) as reducing and crosslinking agent. A smooth morphology and relative average distribution of A-CZUF were depicted by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The Fourier transform infrared spectroscopy (FT-IR) analysis indicated that PEI molecules attached to the surface of the zein ultrafine fibers via the reaction of functional groups between PEI and glyoxal. The results obtained from ultraviolet visible spectroscopy (UV-vis spectroscopy), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA) for A-CZUF confirmed the existence of Au NPS coated on the surface of CZUF. Square wave voltammetry (SWV) and cyclic voltammetry (CV) were used to detect the electrochemical performance of the proposed biosensor. The results demonstrated that this biosensor possessed a high sensitive detection to catechol, which was attributed to the direct electron transfer (DET) facilitated by Au NPs and high catalytic ability obtained from laccase. In addition, the proposed biosensor exhibited good reproducibility, stability and selectivity.

  13. The preparation and characterization of highly aligned poly(epsilon-caprolactone)/poly ethylene oxide/chitosan ultrafine fiber for the application to tissue scaffold.

    PubMed

    Nien, Yu-Hsun; Wang, Jia-Yi; Tsai, Yan-Sheng

    2013-07-01

    The purpose of this study was to fabricate poly(epsilon-caprolactone) (PCL)/poly ethylene oxid (PEO)/chitosan (CS) ultrafine fiber in both aligned and random structures using electrospinning technique and their process parameters were optimized. The aligned and random PCL/PEO/chitosan ultrafine fibers were also used as scaffold for tissue engineering and their cell affinity was investigated. In the first part, we inspected the effect of environment conditions, solution properties, process parameters on PCL/PEO/chitosan ultrafine fiber. In the second part, the apparatus of electrospinning to manufacture highly aligned PCL/PEO/chitosan ultrafine fiber was developed. The effects of process parameters such as flow rate, design of collector and rotation speed of collecting drum on the morphology of ultrafine fiber were discussed. In addition, the cross link of PCL/PEO/chitosan ultrafine fiber by cross-linking agent was examined, too. The physical properties, chemical properties, and cell affinities of the aligned PCL/PEO/chitosan ultrafine fiber with or without cross link were measured. The chemical analysis and tensile strength of the ultrafine fiber were characterized using Fourier Transfer Infared Spectrophotometer and Universal Tensile Machine, respectively. The results show that the aligned PCL/PEO/chitosan ultrafine fibrous mat had the capacity to induce cellular alignment and enhance cellular elongation.

  14. Mechanical and electrical properties of electrospun PVDF/MWCNT ultrafine fibers using rotating collector

    PubMed Central

    2014-01-01

    Poly(vinylidene fluoride) (PVDF) ultrafine fibers with different proportions of multi-walled carbon nanotube (MWCNT) embedded have been fabricated using a modified electrospinning device with a rotating collector. With the increasing of MWCNT content, the β phase was noticeable enhanced, and the fibers became more elastic, which was manifested by Young's modulus decreased drastically. Furthermore, with adding the amounts of MWCNTs, the density of carbon nanotube (CNT)-CNT junctions among the fibers increased accordingly. When the MWCNT content was of 1.2 wt.%, a stable three-dimensional conducting network was formed. After this percolation threshold, the density of CNT-CNT junctions among the fibers tended to be a constant quantity, leading to a stabilized conductivity consequently. It is hoped that our results can be helpful for the fabrication of flexible devices, piezoelectric devices, force transducer, and so on. PACS 81.05.Qk; 81.16.-c PMID:25288915

  15. Electromagnetic wave absorption properties of composites with ultrafine hollow magnetic fibers

    NASA Astrophysics Data System (ADS)

    Yi, Jin Woo; Lee, Sang Bok; Kim, Jin Bong; Lee, Sang Kwan; Park, O. Ok

    2014-06-01

    Ultrafine hollow magnetic fibers were prepared by electroless plating using hydrolyzed polyester fiber as a sacrificial substrate. These hollow fibers can be served for lightweight and efficient electromagnetic (EM) absorbing materials. As observed from SEM and EDS analysis, hollow structures consisting of Ni inner layer and Fe or Fe-Co outer layer were obtained. By introducing Co onto Fe, oxidation of the Fe layer was successfully prevented making it possible to enhance the complex permeability compared to a case in which only Fe was used. Polymeric composites containing the hollow fibers with different weight fractions and fiber lengths were prepared by a simple mixing process. The electromagnetic wave properties of the composites were measured by a vector network analyzer and it was found that the hollow magnetic fibers show a clear resonance peak of the complex permittivity around the X-band range (8-12 GHz) and the resonance frequency strongly depends on the fiber concentration and length. A possible explanation for the unique resonance is that the hollow fibers possess relatively low electrical conductivity and a long mean free path due to their oxidized phase and hollow structure. The calculated EM wave absorption with the measured EM wave properties showed that the composite containing 30 wt% hollow Ni/Fe-Co (7:3) fibers in length of 180 μm exhibited multiple absorbance peaks resulting in a broad absorption bandwidth of 4.2 GHz. It is obvious that this multiple absorbance is attributed to the resonance characteristic of the composite.

  16. Activation of corn cellulose with alcohols to improve its dissolvability in fabricating ultrafine fibers via electrospinning.

    PubMed

    Chen, Haizhen; Ni, Jinping; Chen, Jing; Xue, Wenwen; Wang, Jinggang; Na, Haining; Zhu, Jin

    2015-06-05

    Water and four small molecular alcohols are respectively used to activate corn cellulose (CN cellulose) with the aim to improve the dissolvability in DMAc/LiCl. Among all these activated agents, monohydric alcohols are found to produce the optimal effect of activation in the whole process including of activating, dissolving, and electrospinning of CN cellulose. Meanwhile, well distributed fibers with the diameter of 500nm-2μm are fabricated in electrospinning. Understanding the activation effect of monohydric alcohols with water and polyhydric alcohols, the most effective activated agent is ascertained with the characteristics of small molecular size, low viscosity, and single functionality. This work is definitely initiated to understand the critical principle of CN cellulose in dissolving. Accordingly, a feasible methodology is also established to prepare ultrafine cellulose fibers with good morphology in electrospinning.

  17. Mechanistic insights into formation of SnO₂ nanotubes: asynchronous decomposition of poly(vinylpyrrolidone) in electrospun fibers during calcining process.

    PubMed

    Wu, Jinjin; Zeng, Dawen; Wang, Xiaoxia; Zeng, Lei; Huang, Qingwu; Tang, Gen; Xie, Changsheng

    2014-09-23

    The formation mechanism of SnO2 nanotubes (NTs) fabricated by generic electrospinning and calcining was revealed by systematically investigating the structural evolution of calcined fibers, product composition, and released volatile byproducts. The structural evolution of the fibers proceeded sequentially from dense fiber to wire-in-tube to nanotube. This remarkable structural evolution indicated a disparate thermal decomposition of poly(vinylpyrrolidone) (PVP) in the interior and the surface of the fibers. PVP on the surface of the outer fibers decomposed completely at a lower temperature (<340 °C), due to exposure to oxygen, and SnO2 crystallized and formed a shell on the fiber. Interior PVP of the fiber was prone to loss of side substituents due to the oxygen-deficient decomposition, leaving only the carbon main chain. The rest of the Sn crystallized when the pores formed resulting from the aggregation of SnO2 nanocrystals in the shell. The residual carbon chain did not decompose completely at temperatures less than 550 °C. We proposed a PVP-assisted Ostwald ripening mechanism for the formation of SnO2 NTs. This work directs the fabrication of diverse nanostructure metal oxide by generic electrospinning method.

  18. Ultrafine polybenzimidazole (PBI) fibers. [separators for alkaline batteries and dfuel cells

    NASA Technical Reports Server (NTRS)

    Chenevey, E. C.

    1979-01-01

    Mats were made from ultrafine polybenzimidazole (PBI) fibers to provide an alternate to the use of asbestos as separators in fuel cells and alkaline batteries. To minimize distortion during mat drying, a process to provide a dry fibrid was developed. Two fibrid types were developed: one coarse, making mats for battery separators; the other fine, making low permeability matrices for fuel cells. Eventually, it was demonstrated that suitable mat fabrication techniques yielded fuel cell separators from the coarser alkaline battery fibrids. The stability of PBI mats to 45% KOH at 123 C can be increased by heat treatment at high temperatures. Weight loss data to 1000 hours exposure show the alkali resistance of the mats to be superior to that of asbestos.

  19. Preparation and evaluation of magnetic nanocomposite fibers containing α″-Fe16N2 and α-Fe nanoparticles in polyvinylpyrrolidone via magneto-electrospinning

    NASA Astrophysics Data System (ADS)

    Kartikowati, Christina W.; Suhendi, Asep; Zulhijah, Rizka; Ogi, Takashi; Iwaki, Toru; Okuyama, Kikuo

    2016-01-01

    Two kinds of ferromagnetic nanocomposite fiber comprising α″-Fe16N2 and α-Fe nanoparticles (NPs), which have the highest magnetic moments as hard and soft magnetic materials, respectively, embedded in polyvinylpyrrolidone (PVP) have been synthesized via the magneto-electrospinning method. Both α″-Fe16N2 and α-Fe were single-domain core-shell NPs with an average outer diameter of 50 nm and Al2O3 as the shell. Ferrofluid precursors used for the electrospinning were prepared by dispersing these NPs in a PVP-toluene-methanol solution. The results show that applying the magnetic field in the same direction as the electric field resulted in smaller and more uniform fiber diameters. Nanocomposite fibers containing α″-Fe16N2 had smaller diameters than those containing α-Fe NPs. These magnetic-field effects on the fiber formation were explained by referring to the kinetic energy of the moving jet in the electrospinning process. In addition, magnetic hysteresis curves showed an enhancement of the magnetic coercivity (H c) and remanence (M r) by 22.9% and 22.25%, respectively. These results imply a promising possibility of constructing bulk magnetic materials using α″-Fe16N2 NPs, which furthermore reveals attractive features for many other magnetic applications, such as magnetic sensors.

  20. Preparation and evaluation of magnetic nanocomposite fibers containing α″-Fe₁₆N₂ and α-Fe nanoparticles in polyvinylpyrrolidone via magneto-electrospinning.

    PubMed

    Kartikowati, Christina W; Suhendi, Asep; Zulhijah, Rizka; Ogi, Takashi; Iwaki, Toru; Okuyama, Kikuo

    2016-01-15

    Two kinds of ferromagnetic nanocomposite fiber comprising α″-Fe16N2 and α-Fe nanoparticles (NPs), which have the highest magnetic moments as hard and soft magnetic materials, respectively, embedded in polyvinylpyrrolidone (PVP) have been synthesized via the magneto-electrospinning method. Both α″-Fe16N2 and α-Fe were single-domain core-shell NPs with an average outer diameter of 50 nm and Al2O3 as the shell. Ferrofluid precursors used for the electrospinning were prepared by dispersing these NPs in a PVP-toluene-methanol solution. The results show that applying the magnetic field in the same direction as the electric field resulted in smaller and more uniform fiber diameters. Nanocomposite fibers containing α″-Fe16N2 had smaller diameters than those containing α-Fe NPs. These magnetic-field effects on the fiber formation were explained by referring to the kinetic energy of the moving jet in the electrospinning process. In addition, magnetic hysteresis curves showed an enhancement of the magnetic coercivity (H(c)) and remanence (M(r)) by 22.9% and 22.25%, respectively. These results imply a promising possibility of constructing bulk magnetic materials using α″-Fe16N2 NPs, which furthermore reveals attractive features for many other magnetic applications, such as magnetic sensors.

  1. Ultrafine Au and Ag Nanoparticles Synthesized from Self-Assembled Peptide Fibers and Their Excellent Catalytic Activity.

    PubMed

    Xu, Wenlong; Hong, Yue; Hu, Yuanyuan; Hao, Jingcheng; Song, Aixin

    2016-07-18

    The self-assembly of an amphiphilic peptide molecule to form nanofibers facilitated by Ag(+) ions was investigated. Ultrafine AgNPs (NPs=nanoparticles) with an average size of 1.67 nm were synthesized in situ along the fibers due to the weak reducibility of the -SH group on the peptide molecule. By adding NaBH4 to the peptide solution, ultrafine AgNPs and AuNPs were synthesized with an average size of 1.35 and 1.18 nm, respectively. The AuNPs, AgNPs, and AgNPs/nanofibers all exhibited excellent catalytic activity toward the reduction of 4-nitrophenol, with turnover frequency (TOF) values of 720, 188, and 96 h(-1) , respectively. Three dyes were selected for catalytic degradation by the prepared nanoparticles and the nanoparticles showed selective catalysis activity toward the different dyes. It was a surprising discovery that the ultrafine AuNPs in this work had an extremely high catalytic activity toward methylene blue, with a reaction rate constant of 0.21 s(-1) and a TOF value of 1899 h(-1) .

  2. Effect of ultrafine grinding on physicochemical and antioxidant properties of dietary fiber from wine grape pomace.

    PubMed

    Zhu, Feng-Mei; Du, Bin; Li, Jun

    2014-01-01

    Wine grape pomace dietary fiber powders were prepared by superfine grinding, whose effects were investigated on the composition, functional and antioxidant properties of the wine grape pomace dietary fiber products. The results showed that superfine grinding could effectively pulverize the fiber particles to submicron scale. As particle size decrease, the functional properties (water-holding capacity, water-retention capacity, swelling capacity, oil-binding capacity, and nitrite ion absorption capacity) of wine grape pomace dietary fiber were significantly (p < 0.05) decreased and a redistribution of fiber components from insoluble to soluble fractions was observed. The antioxidant activities of wine grape pomace and dietary fiber before and after grinding were in terms of DPPH radical scavenging activity, ABTS diammonium salt radical scavenging activity, ferric reducing antioxidant power, and total phenolic content. Compared with dietary fiber before and after grinding, micronized insoluble dietary fiber showed increased ABTS radical scavenging activity, ferric reducing antioxidant power, and total phenolic content yet decreased DPPH radical scavenging activity. Positive correlations were detected between ABTS radical scavenging activity, ferric reducing antioxidant power, and total phenolic content.

  3. Morphology of Nano and Micro Fiber Structures in Ultrafine Particles Filtration

    SciTech Connect

    Kimmer, Dusan; Vincent, Ivo; Fenyk, Jan; Petras, David; Zatloukal, Martin; Sambaer, Wannes; Zdimal, Vladimir

    2011-07-15

    Selected procedures permitting to prepare homogeneous nanofibre structures of the desired morphology by employing a suitable combination of variables during the electrospinning process are presented. A comparison (at the same pressure drop) was made of filtration capabilities of planar polyurethane nanostructures formed exclusively by nanofibres, space polycarbonate nanostructures having bead spacers, structures formed by a combination of polymethyl methacrylate micro- and nanofibres and polypropylene meltblown microstructures, through which ultrafine particles of ammonium sulphate 20-400 nm in size were filtered. The structures studied were described using a new digital image analysis technique based on black and white images obtained by scanning electron microscopy. More voluminous structures modified with distance microspheres and having a greater thickness and mass per square area of the material, i.e. structures possessing better mechanical properties, demanded so much in nanostructures, enable preparation of filters having approximately the same free volume fraction as flat nanofibre filters but an increased effective fibre surface area, changed pore size morphology and, consequently, a higher filter quality.

  4. Morphology of Nano and Micro Fiber Structures in Ultrafine Particles Filtration

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Fenyk, Jan; Petras, David; Zatloukal, Martin; Sambaer, Wannes; Zdimal, Vladimir

    2011-07-01

    Selected procedures permitting to prepare homogeneous nanofibre structures of the desired morphology by employing a suitable combination of variables during the electrospinning process are presented. A comparison (at the same pressure drop) was made of filtration capabilities of planar polyurethane nanostructures formed exclusively by nanofibres, space polycarbonate nanostructures having bead spacers, structures formed by a combination of polymethyl methacrylate micro- and nanofibres and polypropylene meltblown microstructures, through which ultrafine particles of ammonium sulphate 20-400 nm in size were filtered. The structures studied were described using a new digital image analysis technique based on black and white images obtained by scanning electron microscopy. More voluminous structures modified with distance microspheres and having a greater thickness and mass per square area of the material, i.e. structures possessing better mechanical properties, demanded so much in nanostructures, enable preparation of filters having approximately the same free volume fraction as flat nanofibre filters but an increased effective fibre surface area, changed pore size morphology and, consequently, a higher filter quality.

  5. Effect of particle-fiber friction coefficient on ultrafine aerosol particles clogging in nanofiber based filter

    NASA Astrophysics Data System (ADS)

    Sambaer, Wannes; Zatloukal, Martin; Kimmer, Dusan

    2013-04-01

    Realistic SEM image based 3D filter model considering transition/free molecular flow regime, Brownian diffusion, aerodynamic slip, particle-fiber and particle-particle interactions together with a novel Euclidian distance map based methodology for the pressure drop calculation has been utilized for a polyurethane nanofiber based filter prepared via electrospinning process in order to more deeply understand the effect of particle-fiber friction coefficient on filter clogging and basic filter characteristics. Based on the performed theoretical analysis, it has been revealed that the increase in the fiber-particle friction coefficient causes, firstly, more weaker particle penetration in the filter, creation of dense top layers and generation of higher pressure drop (surface filtration) in comparison with lower particle-fiber friction coefficient filter for which deeper particle penetration takes place (depth filtration), secondly, higher filtration efficiency, thirdly, higher quality factor and finally, higher quality factor sensitivity to the increased collected particle mass. Moreover, it has been revealed that even if the particle-fiber friction coefficient is different, the cake morphology is very similar.

  6. Electrospun Ultrafine Fiber Composites Containing Fumed Silica: From Solution Rheology to Materials with Tunable Wetting.

    PubMed

    Dufficy, Martin K; Geiger, Mackenzie T; Bonino, Christopher A; Khan, Saad A

    2015-11-17

    Fumed silica (FS) particles with hydrophobic (R805) or hydrophilic (A150) surface functionalities are incorporated in polyacrylonitrile (PAN) fibers by electrospinning to produce mats with controlled wettability. Rheological measurements are conducted to elucidate the particle-polymer interactions and characterize the system while microscopic and analytic tools are used to examine FS location within both fibers and films to aid in the fundamental understanding of wetting behavior. Unlike traditional polymers, we find these systems to be gel-like, yet electrospinnable; the fumed silica networks break down into smaller aggregates during the electrospinning process and disperse both within and on the surface of the fibers. Composite nanofiber mats containing R805 FS exhibit an apparent contact angle over 130° and remain hydrophobic over 30 min, while similar mats with A150 display rapid surface-wetting with a static contact angle of ∼30°. Wicking experiments reveal that the water absorption properties can be further manipulated, with R805 FS-impregnated mats taking up only 8% water relative to mat weight in 15 min. In contrast, PAN fibers containing A150 FS absorb 425% of water in the same period, even more than the pure PAN fiber (371%). The vastly different responses to water demonstrate the versatility of FS in surface modification, especially for submicron fibrous mats. The role of fumed silica in controlling wettability is discussed in terms of their surface functionality, placement on nanofibers and induced surface roughness.

  7. Structural and dynamic characterization of ultrafine fibers based on the poly-3-hydroxybutyrate-dipyridamole system

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Karpova, S. G.; Staroverova, O. V.; Krutikova, A. A.; Orlov, N. A.; Kucherenko, E. L.; Iordanskii, A. L.

    2016-11-01

    The fibrous materials (the mats) based on poly-3-hydroxybutyrate (PHB) containing the drug, dipiridomole (DPD) were produced by electrospinning (ES). Thermophysical and dynamical properties of the single filaments and the mats were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and probe electron paramagnetic resonance spectroscopy (EPR). The effect of annealing temperature on the structure and crystallinity of the fibers was examined. It was shown that the loading of DPD influences on both the melting enthalpy and the morphology of the fibers. Besides the analysis of EPR spectra revealed that there are two populations of spin-probes distributed in the rigid and nonrigid amorphous regions of the PHB fibers respectively. For all fibrous materials with different content of DPD (0-5%) the correlation between thermophysical (DSC) and dynamic data (EPR) was observed.

  8. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers.

    PubMed

    Quirós, Jennifer; Borges, João P; Boltes, Karina; Rodea-Palomares, Ismael; Rosal, Roberto

    2015-12-15

    The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals.

  9. Direct electrospinning of Ag/polyvinylpyrrolidone nanocables

    NASA Astrophysics Data System (ADS)

    Song, Jie; Chen, Menglin; Olesen, Mikkel Buster; Wang, Chenxuan; Havelund, Rasmus; Li, Qiang; Xie, Erqing; Yang, Rong; Bøggild, Peter; Wang, Chen; Besenbacher, Flemming; Dong, Mingdong

    2011-12-01

    Core-sheath silver nanowire/polyvinylpyrrolidone (AgNW/PVP) nanocables have been fabricated via an efficient single-spinneret electrospinning method. The core-sheath structure is revealed by combining several characterization methods. A possible formation mechanism of the AgNW/PVP nanocable involving a strong stretching during the electrospinning process is proposed. Further, electrical measurements were performed on AgNW/PVP nanocables as well as bare AgNWs, which indicated the nanocables became insulating due to the isolation of highly conductive AgNWs by insulating PVP sheath. Therefore, the described fabrication method holds potential for the fabrication of low-cost metal/polymer composite materials for nanoelectronic applications in general.

  10. Subwavelength structure for sound absorption from graphene oxide-doped polyvinylpyrrolidone nanofibers

    NASA Astrophysics Data System (ADS)

    Qamoshi, Khadijeh; Rasuli, Reza

    2016-09-01

    We study the sound absorption of the reinforced polyvinylpyrrolidone nanofibers with graphene oxide. It is shown that reinforced nanofibers can acquire impedance-matched surface to airborne sound at special frequencies. To obtain such surface, nanofibers were spun with polyvinylpyrrolidone polymer that was doped by graphene oxide with concentrations of 0, 6 and 12 wt%. It was found that fibers without graphene oxide were spun continuously and randomly, whereas by doping with graphene oxide, the mode of fibers is changed and some nodes form on the fibers coating. The sound absorption coefficient was measured by an impedance tube based on 105341-1 ISO standard. Measurements in the frequency range from 700 to 1600 Hz show that use of graphene oxide as a reinforcing phase increases sound absorption coefficient of the samples at a frequency ~1500 Hz up to ~40 %. Angular eigenfrequency and dissipation coefficient of the samples were obtained by impedance measurement for the prepared samples. Results show that doping the polymer with graphene oxide causes an increase in the angular eigenfrequency and the dissipation coefficient.

  11. Ultrafine cementitious grout

    SciTech Connect

    Ahrens, E.H.

    1999-10-19

    An ultrafine cementitious grout in three particle grades containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 30 wt. % to about 70 wt. % Portland cement; from about 30 wt. % to about 70 wt. % pumice containing at least 70% amorphous silicon dioxide; and from 1.2 wt. % to about 5.0 wt. % superplasticizer. The superplasticizer is dispersed in the mixing water prior to the addition of dry grout and the W/CM ratio is about 0.4 to 1/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 {mu}m in width.

  12. Ultrafine cementitious grout

    DOEpatents

    Ahrens, Ernst H.

    1999-01-01

    An ultrafine cementitious grout in three particle grades containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 30 wt. % to about 70 wt. % Portland cement; from about 30 wt. % to about 70 wt. % pumice containing at least 70% amorphous silicon dioxide; and from 1.2 wt. % to about 5.0 wt. % superplasticizer. The superplasticizer is dispersed in the mixing water prior to the addition of dry grout and the W/CM ratio is about 0.4 to 1/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 .mu.m in width.

  13. Ultrafine cementitious grout

    DOEpatents

    Ahrens, Ernst H.

    1998-01-01

    An ultrafine cementitious grout having a particle size 90% of which are less than 6 .mu.m in diameter and an average size of about 2.5 .mu.m or less, and preferably 90% of which are less than 5 .mu.m in diameter and an average size of about 2 .mu.m or less containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 40 wt. % to about 50 wt. % Portland cement; from about 50 wt. % to about 60 wt. % pumice containing at least 60% amorphous silicon dioxide; and from 0.1 wt. % to about 1.5 wt. % superplasticizer. The grout is mixed with water in the W/CM ratio of about 0.4-0.6/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 .mu.m in width.

  14. Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth.

    PubMed

    Yuan, Huihua; Zhou, Qihui; Li, Biyun; Bao, Min; Lou, Xiangxin; Zhang, Yanzhong

    2015-11-05

    Electrospinning has been widely used to produce ultrafine fibers in microscale and nanoscale; however, traditional electrospinning processes are currently beset by troublesome limitations in fabrication of 3D periodic porous structures because of the chaotic nature of the electrospinning jet. Here we report a novel strategy to print 3D poly(L-lactic acid) (PLLA) ultrafine fibrous scaffolds with the fiber diameter of approximately 2 μm by combining a stable jet electrospinning method and an X-Y stage technique. Our approach allows linearly deposited electrospun ultrafine fibers to assemble into 3D structures with tunable pore sizes and desired patterns. Process conditions (e.g., plotting speed, feeding rate, and collecting distance) were investigated in order to achieve stable jet printing of ultrafine PLLA fibers. The proposed 3D scaffold was successfully used for cell penetration and growth, demonstrating great potential for tissue engineering applications.

  15. Ultrafine cementitious grout

    DOEpatents

    Ahrens, E.H.

    1998-07-07

    An ultrafine cementitious grout is described having a particle size 90% of which are less than 6 {micro}m in diameter and an average size of about 2.5 {micro}m or less, and preferably 90% of which are less than 5 {micro}m in diameter and an average size of about 2 {micro}m or less containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 40 wt. % to about 50 wt. % Portland cement; from about 50 wt. % to about 60 wt. % pumice containing at least 60% amorphous silicon dioxide; and from 0.1 wt. % to about 1.5 wt. % superplasticizer. The grout is mixed with water in the W/CM ratio of about 0.4--0.6/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 {micro}m in width. 4 figs.

  16. Phenolic profile and in vitro antioxidant capacity of insoluble dietary fiber powders from citrus (Citrus junos Sieb. ex Tanaka) pomace as affected by ultrafine grinding.

    PubMed

    Tao, Bingbing; Ye, Fayin; Li, Hang; Hu, Qiang; Xue, Shan; Zhao, Guohua

    2014-07-23

    The effects of mechanical and jet grindings on the proximate composition, phenolics, and antioxidant capacity of insoluble antioxidant dietary fiber powder from citrus pomace (IADFP-CP) were investigated in comparison with ordinary grinding. IADFP-CP from jet grinding showed higher levels of crude fat, total sugar, and free phenolics and lower levels of crude protein and bound phenolics than that from ordinary grinding. Totally, 14 phenolics (9 free, 1 bound, and 4 free/bound) in IADFP-CP were identified by RP-HPLC-DAD/ESI-Q-TOF-MS/MS. Hesperidin accounted for >57% of total phenolics in IADFP-CP. Among IADFP-CPs, the jet-ground presented the highest free phenolics but the lowest bound phenolics. The IADFP-CP from jet grinding presented the highest antioxidant capacity of free phenolics (by DPPH and FRAP assays), followed by the ones from mechanical and then ordinary grinding. The present study suggests that jet grinding could improve the extraction of phenolic compounds from IADFP-CP and increase the antioxidant capacities of free phenolics and the resultant powder.

  17. Incorporation of silver nanoparticles into the bulk of the electrospun ultrafine polyimide nanofibers via a direct ion exchange self-metallization process.

    PubMed

    Han, Enlin; Wu, Dezhen; Qi, Shengli; Tian, Guofeng; Niu, Hongqing; Shang, Gongping; Yan, Xiaona; Yang, Xiaoping

    2012-05-01

    This paper reports our works on the preparation of the silver-nanoparticle-incorporated ultrafine polyimide (PI) ultrafine fibers via a direct ion exchange self-metallization technique using silver ammonia complex cation ([Ag(NH(3))(2)](+)) as the silver precursor and pyromellitic dianhydride (PMDA)/4,4'-oxidianiline (4,4'-ODA) polyimide as the matrix. The polyimide precursor, poly(amic acid) (PAA), was synthesized and then electrospun into ultrafine fibers. By thermally treating the silver(I)-doped PAA ultrafine fibers, where the silver(I) ions were loaded through the ion exchange reactions of the carboxylic acid groups of the PAA macromolecules with the [Ag(NH(3))(2)](+) cations in an aqueous solution, ultrafine polyimide fibers embedded with silver nanoparticles with diameters less than 20 nm were successfully fabricated. The fiber-electrospinning process, the ion exchange process, and various factors influencing the hybrid ultrafine fibers preparation process such as the thermal treatment atmospheres and the thermal catalytic oxidative degradation effect of the reduced silver nanoparticles were discussed. The ultrafine fibers were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA).

  18. Ultrafine particles in cities.

    PubMed

    Kumar, Prashant; Morawska, Lidia; Birmili, Wolfram; Paasonen, Pauli; Hu, Min; Kulmala, Markku; Harrison, Roy M; Norford, Leslie; Britter, Rex

    2014-05-01

    Ultrafine particles (UFPs; diameter less than 100 nm) are ubiquitous in urban air, and an acknowledged risk to human health. Globally, the major source for urban outdoor UFP concentrations is motor traffic. Ongoing trends towards urbanisation and expansion of road traffic are anticipated to further increase population exposure to UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation of emissions and population exposure is still lacking. Our analysis suggests that the average exposure to outdoor UFPs in Asian cities is about four-times larger than that in European cities but impacts on human health are largely unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts.

  19. Fabrication of Polyvinylpyrrolidone Micro-/Nanostructures Utilizing Microcontact Printing

    ERIC Educational Resources Information Center

    Sanders, Wesley C.

    2015-01-01

    This paper describes a laboratory exercise that provides students enrolled in introductory nanotechnology courses with an opportunity to synthesize polymer structures with micro- and nanoscale dimensions. Polyvinylpyrrolidone (PVP) films deposited on corrugated PDMS stamps using student-built spin coaters were transferred to clean, dry substrates…

  20. Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity.

    PubMed

    Tsekova, Petya B; Spasova, Mariya G; Manolova, Nevena E; Markova, Nadya D; Rashkov, Iliya B

    2017-04-01

    Novel fibrous materials from cellulose acetate (CA) and polyvinylpyrrolidone (PVP) containing curcumin (Curc) with original design were prepared by one-pot electrospinning or dual spinneret electrospinning. The electrospun materials were characterized by scanning electron microscopy (SEM), fluorescence microscopy, Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), differential scanning calorimetry (DSC), water contact angle measurements, and microbiological tests. It was found that the incorporation of Curc into the CA and PVP solutions resulted in an increase of the solution viscosity and obtaining fibers with larger diameters (ca. 1.5μm) compared to the neat CA (ca. 800nm) and PVP fibers (ca. 500nm). The incorporation of PVP resulted in increased hydrophilicity of the fibers and in faster Curc release. Curc was found in the amorphous state in the Curc-containing fibers and these mats exhibited antibacterial activity against Staphylococcus aureus (S. aureus). The results suggest that, due to their complex architecture, the obtained new antibacterial materials are suitable for wound dressing applications, which necessitate diverse release behaviors of the bioactive compound.

  1. Fiber

    MedlinePlus

    ... it can help with weight control. Fiber aids digestion and helps prevent constipation . It is sometimes used ... fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  2. Interdiffusion at the interface between poly(vinylpyrrolidone) and epoxy

    SciTech Connect

    Oyama, H.T.; Wightman, J.P.; Lesko, J.J.; Reifsnider, K.L.

    1996-12-31

    The study of polymer-polymer interfaces is recently attracting great interest. So far, most studies have focused on the interface between thermoplastic polymers, even though the interface between thermoplastic and thermoset polymers is also very important in numerous areas such as adhesion and composites. In the present study, bilayer films of thermoplastic poly(vinylpyrrolidone) and a thermoset epoxy were prepared and their compositional profiles at the interface were examined by electron microprobe analysis.

  3. Fabrication of mucoadhesive chitosan coated polyvinylpyrrolidone/cyclodextrin/clotrimazole sandwich patches for oral candidiasis.

    PubMed

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Panomsuk, Suwanee; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2015-11-05

    This study aims to fabricate clotrimazole (CZ)-composite sandwich nanofibers using electrospinning. The CZ-loaded polyvinylpyrrolidone (PVP)/hydroxypropyl-β-cyclodextrin (HPβCD) fiber was coated with chitosan-cysteine (CS-SH)/polyvinyl alcohol (PVA) to increase the mucoadhesive properties and to achieve a sustained release of the drug from the nanofibers. The nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffractometry (XRD). The nanofibers mechanical and mucoadhesive properties, drug release, antifungal activity and cytotoxicity were also assessed. The fibers were in the nanoscale with good mucoadhesive properties. The XRPD revealed a molecular dispersion of amorphous CZ in the nanofibers. The initial fast release of CZ from the nanofibers was achieved. Moreover, the sandwich nanofibers coated for longer times resulted in slower release rates compared with the shorter coating times. The CZ-loaded nanofibers killed the Candida significantly faster than the commercial CZ lozenges at 5, 15 and 30 min and were safe for a 2-h incubation. Therefore, these nanofibers may be promising candidates for the treatment of oral candidiasis.

  4. Transdermal Delivery of Functional Collagen Via Polyvinylpyrrolidone Microneedles

    PubMed Central

    Sun, Wenchao; Inayathullah, Mohammed; Manoukian, Martin A. C.; Malkovskiy, Andrey V.; Manickam, Sathish; Marinkovich, M. Peter; Lane, Alfred T.; Tayebi, Lobat; Seifalian, Alexander M.; Rajadas, Jayakumar

    2017-01-01

    Collagen makes up a large proportion of the human body, particularly the skin. As the body ages, collagen content decreases, resulting in wrinkled skin and decreased wound healing capabilities. This paper presents a method of delivering type I collagen into porcine and human skin utilizing a polyvinylpyrrolidone microneedle delivery system. The microneedle patches were made with concentrations of 1, 2, 4, and 8% type I collagen (w/w). Microneedle structures and the distribution of collagen were characterized using scanning electron microscopy and confocal microscopy. Patches were then applied on the porcine and human skin, and their effectiveness was examined using fluorescence microscopy. The results illustrate that this microneedle delivery system is effective in delivering collagen I into the epidermis and dermis of porcine and human skin. Since the technique presented in this paper is quick, safe, effective and easy, it can be considered as a new collagen delivery method for cosmetic and therapeutic applications. PMID:26066056

  5. Ileocolonic ulcer treated by endoscopic application of collagen-polyvinylpyrrolidone

    PubMed Central

    de Hoyos Garza, Andrés; Aguilar, Edgar A Esparza; Checa Richards, Griselda

    2007-01-01

    Ulceration is a complication that may occur after an ileocolonic anastomosis. Most of the etiologies remain speculative. The case of a 33-year-old woman with eosinophilic colitis is reported, in whom a colectomy with an ileocolonic anastomosis was performed. After four months, the patient presented with a stenosis in the ileocolonic anastomosis, necessitating surgical restoration. Four weeks later, the patient presented with rectal bleeding, and a colonoscopy showed an ulcer in the anastomosis. Collagen-polyvinylpyrrolidone was applied into and on the surface of the ulcer, and five days later the procedure was repeated. Follow-up endoscopies at seven days and three months showed complete healing of the ulcer and the patient remained without bleeding throughout a further four weeks of follow-up tests. It was concluded that this biological product could be an excellent treatment for these lesions. PMID:17703251

  6. Removal of polyvinylpyrrolidone from wastewater using different methods.

    PubMed

    Julinová, Markéta; Kupec, Jan; Houser, Josef; Slavík, Roman; Marusincová, Hana; Cervenáková, Lenka; Klívar, Stanislav

    2012-12-01

    Polyvinylpyrrolidone (PVP) is a frequently used polymer in the pharmaceutical and foodstuff industries. Because it is not subject to metabolic changes and is virtually nondegradable, trace concentrations of PVP are often found in community wastewaters. The literature finds that the partial removal of PVP in wastewater treatment plants probably occurs through sorption. The primary objective of this study was to find an effective method to remove PVP from wastewaters. In this regard, the literature indicates the theoretical potential to use specific enzymes (e.g., gamma-lactamases, amidases) to gradually degrade PVP molecules. Polyvinylpyrrolidone biodegradability tests were conducted using suitable heterogeneous cultures (activated sludge) collected from a conventional wastewater treatment plant, treatment plants connected to a pharmaceutical factory, and using select enzymes. Aerobic biodegradation of PVP in a conventional wastewater environment was ineffective, even after adaptation of activated sludge using the nearly identical monomer 1-methyl-2-pyrrolidone. Another potential method for PVP removal involves pretreating the polymer prior to biological degradation. Based on the results (approximately 10 to 15% biodegradation), pretreatment was partially effective, realistically, it could only be applied with difficulty at wastewater treatment plants. Sorption of PVP to an active carbon sorbent (Chezacarb S), which corresponded to the Langmuir isotherm, and sorption to activated sludge, which corresponded to the Freundlich isotherm, were also evaluated. From these sorption tests, it can be concluded that the considerable adsorption of PVP to activated sludge occurred primarily at low PVP concentrations. Based on the test results, the authors recommend the following methods for PVP removal from wastewater: (1) sorption; (2) application of specific microorganisms; and (3) alkaline hydrolysis, which is the least suitable of the three for use in wastewater treatment

  7. Encapsulation of plai oil/2-hydroxypropyl-β-cyclodextrin inclusion complexes in polyvinylpyrrolidone (PVP) electrospun nanofibers for topical application.

    PubMed

    Tonglairoum, Prasopchai; Chuchote, Tudduo; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Opanasopit, Praneet

    2014-06-01

    The aim of this study was to prepare electrospun polyvinylpyrrolidone (PVP)/2-hydroxypropyl-β-cyclodextrin (HPβCD) nanofiber mats and to incorporate plai oil (Zingiber Cassumunar Roxb.). The plai oil with 10, 20 and 30% wt to polymer were incorporated in the PVP/HPβCD solution and electrospun to obtain nanofibers. The morphology and structure of the PVP and PVP/HPβCD nanofiber mats with and without the plai oil were analyzed using scanning electron microscopy (SEM). The thermal behaviors of the nanofiber mats were characterized using differential scanning calorimeter (DSC). Terpinen-4-ol was used as a marker of the plai oil. The amount of plai oil remaining in the PVP/HPβCD nanofiber mats was determined using gas chromatography-mass spectoscopy (GC-MS). The SEM images revealed that all of the fibers were smooth. The average diameter of fibers was 212-450 nm, and decreased with the increasing of plai oil content. The release characteristics of plai oil from the fiber showed the fast release followed by a sustained release over the experimental time of 24 h. The release rate ranged was in the order of 10% > 20% ∼ 30% plai oil within 24 h. Electrospun fibers with 20% plai oil loading provided the controlled release and also showed the highest plai oil content. Hence, this electrospun nanofiber has a potential for use as an alternative topical application.

  8. Effect of reductant and PVP on morphology and magnetic property of ultrafine Ni powders prepared via hydrothermal route

    SciTech Connect

    Zhang, Jun Wang, Xiucai; Li, Lili; Li, Chengxuan; Peng, Shuge

    2013-10-15

    Graphical abstract: The ultrafine Ni powders with the shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using different reductants. Their saturation magnetization, remanent magnetization and coercivity sequentially increase, and the coercivity of hexagonal sheet-like Ni powders increases by 25% compared with the Ni bulk counterpart. - Highlights: • The ultrafine Ni powders with various shapes of sphere, fish-bone, hexagonal sheet, etc. • Facile and one-step hydrothermal reduction using three reductants and PVP additive was developed. • Magnetic properties of the ultrafine Ni powders with different shapes were measured. • Compared with bulk Ni material, coercivity of hexagonal sheet Ni increases by 25%. • The formation mechanism of the shapes was suggested. - Abstract: The ultrafine nickel particles with different shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using hydrazine hydrate, sodium hypophosphite and ethylene glycol as reductants, polyvinylpyrrolidone as structure-directing agent. It has been verified with the characterization of X-ray powder diffraction and transmission/scanning electronic microscopy that as-prepared products belong to face-centered cubic structure of nickel microcrystals with high purity and fine dispersity. The magnetic hysteresis loops measured at room temperature reveal that the values of saturation magnetization, remanent magnetization and coercivity rise sequentially from silknet, sphere to hexagonal sheet. In comparison with nickel bulk counterpart, the coercivity of the hexagonal sheet nickel powders increases by 25%.

  9. Ultrafine-grained titanium for medical implants

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Stolyarov, Vladimir V.; Latysh, Vladimir V.; Raab, Georgy J.

    2002-01-01

    We disclose ultrafine-grained titanium. A coarse-grained titanium billet is subjected to multiple extrusions through a preheated equal channel angular extrusion (ECAE) die, with billet rotation between subsequent extrusions. The resulting billet is cold processed by cold rolling and/or cold extrusion, with optional annealing. The resulting ultrafine-grained titanium has greatly improved mechanical properties and is used to make medical implants.

  10. Alternative Synthesis Route of Biocompatible Polyvinylpyrrolidone Nanoparticles and Their Effect on Pathogenic Microorganisms.

    PubMed

    Milosavljevic, Vedran; Jelinkova, Pavlina; Jimenez Jimenez, Ana Maria; Moulick, Amitava; Haddad, Yazan; Buchtelova, Hana; Krizkova, Sona; Heger, Zbynek; Kalina, Lukas; Richtera, Lukas; Kopel, Pavel; Adam, Vojtech

    2017-01-03

    Herein we describe a novel alternative synthesis route of polyvinylpyrrolidone nanoparticles using salting-out method at a temperature close to polyvinylpyrrolidone decomposition. At elevated temperatures, the stability of polyvinylpyrrolidone decreases and the opening of pyrrolidone ring fractions occurs. This leads to cross-linking process, where separate units of polyvinylpyrrolidone interact among themselves and rearrange to form nanoparticles. The formation/stability of these nanoparticles was confirmed by transmission electron microscopy, X-ray photoelectron spectroscopy, mass spectrometry, infrared spectroscopy, and spectrophotometry. The obtained nanoparticles possess exceptional biocompatibility. No toxicity and genotoxicity was found in normal human prostate epithelium cells (PNT1A) together with their high hemocompatibility. The antimicrobial effects of polyvinylpyrrolidone nanoparticles were tested on bacterial strains isolated from the wounds of patients suffering from hard-to-heal infections. Molecular analysis (qPCR) confirmed that the treatment can induce the regulation of stress-related survival genes. Our results strongly suggest that the polyvinylpyrrolidone nanoparticles have great potential to be developed into a novel antibacterial compound.

  11. Photoalignment of a Bisazodioxodibenzothiophene in a Polyvinylpyrrolidone Matrix

    NASA Astrophysics Data System (ADS)

    Chaplanova, J. D.; Larykava, S. N.; Agabekov, V. E.; Mikulich, V. S.; Gracheva, E. A.

    2016-09-01

    Photoalignment of thin films of dipotassium 3,7-bis[1-(4-hydroxy-3-carboxylate)phenylazo]-5,5'-dioxodibenzothiophene (AtA-2) that were prepared by spin-coating of dye solutions in H2O and DMF and aqueous solutions of polyvinylpyrrolidone (PVP) was studied. The UV absorption band of the dye cis-isomer, the position and intensity of which depended on the PVP concentration in the stock solutions, was recorded upon irradiation of films of AtA-2 in a PVP matrix [AtA-2(PVP)] with unfi ltered light from a DRT-1000 lamp in a vacuum or an Ar atmosphere. PVP facilitated trans-cis isomerization of AtA-2 and increased the stability of the cis-isomer with respect to thermal relaxation into the initial trans-isomer. The dichroic ratio (DR) of AtA-2(PVP) films irradiated with linearly polarized light (blue LED with λ = 450 nm, I = 15 mW/cm2) increased by 1.5 times as the PVP concentration in the stock solutions increased from 1.0 to 10.0 mass%. The morphology and roughness of the films depended on the nature of the solvents used to prepare them.

  12. [Stability of probucol-polyvinylpyrrolidone solid dispersion systems].

    PubMed

    Kubo, Yoshitada; Yagi, Naomi; Sekikawa, Hitoshi

    2011-04-01

    After solid dispersion systems of probucol-polyvinylpyrrolidone K30 (1 : 9 in weight ratio) were exposed to light (10000 lx) for 7 days, 84% of the probucol remained. Commercial probucol fine granules were thus fairly stable under light exposure. When solid dispersion systems were stored in heat-sealed packages at relative humidity (R.H.) of 75% and 92% for 30 days at 30°C, the weight of the samples increased by 22% and 43%, respectively. When these solid dispersion systems were dissolved in water, the probucol concentration decreased with the duration of storage. The crystalline nature of probucol in the solid dispersion systems could not be detected by powder X-ray diffraction or differential scanning calorimetry. After passing the dissolution medium through the membrane filter, retention time of the residue on the filter in the HPLC method corresponded to that of probucol. These results suggest that the partial crystallization of probucol in the solid dispersion systems may occur during storage under these conditions. Solid dispersion systems in heat-sealed packages were fairly stable when stored under room conditions or in light-resistant tightly sealed containers for 5 months.

  13. Properties of radiation-synthesized polyvinylpyrrolidone/chitosan hydrogel blends

    SciTech Connect

    Mahmud, Maznah; Daik, Rusli; Adam, Zainah

    2015-09-25

    Poly(vinylpyrrolidone) (PVP)-crosslinked chitosan hydrogels were prepared by gamma radiation at various doses; 1, 3 5, 7, 10, 15, 20, 25 and 30kGy. Gamma radiation was used as a crosslinking tool which requires no chemical initiator, no heating process and need no purification step on the end products obtained. The hydrogel formulations were composed of 6% chitosan with average molecular weight (Mw) = 48 800 g/mol and 14% PVP with Mw = 10 000 g/mol in 2% lactic acid. Physical properties of hydrogels such as gel fraction and swelling property at pH 5.5 and pH 7.0 as well as syneresis activity were determined. It was found that different radiation dose induces different effect on hydrogels’ network formed. Morphological study of hydrogels has been carried out by scanning electron microscope (SEM). From these preliminary evaluations, it can be concluded that gamma radiation is an effective tool for network development of hydrogels and it also induces enhancement on characteristics of hydrogels synthesized.

  14. Properties of radiation-synthesized polyvinylpyrrolidone/chitosan hydrogel blends

    NASA Astrophysics Data System (ADS)

    Mahmud, Maznah; Daik, Rusli; Adam, Zainah

    2015-09-01

    Poly(vinylpyrrolidone) (PVP)-crosslinked chitosan hydrogels were prepared by gamma radiation at various doses; 1, 3 5, 7, 10, 15, 20, 25 and 30kGy. Gamma radiation was used as a crosslinking tool which requires no chemical initiator, no heating process and need no purification step on the end products obtained. The hydrogel formulations were composed of 6% chitosan with average molecular weight (Mw) = 48 800 g/mol and 14% PVP with Mw = 10 000 g/mol in 2% lactic acid. Physical properties of hydrogels such as gel fraction and swelling property at pH 5.5 and pH 7.0 as well as syneresis activity were determined. It was found that different radiation dose induces different effect on hydrogels' network formed. Morphological study of hydrogels has been carried out by scanning electron microscope (SEM). From these preliminary evaluations, it can be concluded that gamma radiation is an effective tool for network development of hydrogels and it also induces enhancement on characteristics of hydrogels synthesized.

  15. Gamma radiation-induced synthesis and characterization of Polyvinylpyrrolidone nanogels

    NASA Astrophysics Data System (ADS)

    Ges, A. A.; Viltres, H.; Borja, R.; Rapado, M.; Aguilera, Y.

    2017-01-01

    Due to the importance of bioactive peptides, proteins and drug for pharmaceutical purpose, there is a growing interest for suitable delivery systems, able to increase their bioavailability and to target them to the desired location. Some of the most studied delivery systems involve encapsulation or entrapment of drugs into biocompatible polymeric devices. A multitude of techniques have been described for the synthesis of nanomaterials from polymers, however, the use of ionizing radiation (γ, e-), to obtain nano- and microgels polymer is characterized by the possibility of obtaining products with a high degree of purity. Although, in the world, electronic radiation is used for this purpose, gamma radiation has not been utilized for these purposes. In this paper is developed the formulation the formulation of Polyvinylpyrrolidone (PVP) nanogels synthesized by gamma radiation techniques, for their evaluation as potential system of drug delivery. Experiments were performed in absence of oxygen using aqueous solutions of PVP (0.05% -1%). Crosslinking reactions were carried out at 25° C in a gamma irradiation chamber with a 60Co source (MPX-γ 30). The Viscosimetry, Light Scattering, X-Ray Diffraction and Transmission Electron Microscopy (TEM), were used as characterization techniques.

  16. Properties of Polyvinylpyrrolidone in a Deep Eutectic Solvent.

    PubMed

    Sapir, Liel; Stanley, Christopher B; Harries, Daniel

    2016-05-19

    Deep eutectic solvents (DES) are mixtures of two or more components with high melting temperatures, which form a liquid at room temperature. These DES hold great promise as green solvents for chemical processes, as they are inexpensive and environmentally friendly. Specifically, they present a unique solvating environment to polymers that is different from water. Here, we use small angle neutron scattering to study the polymer properties of the common, water-soluble, polyvinylpyrrolidone (PVP) in the prominent DES formed by a 1:2 molar mixture of choline chloride and urea. We find that the polymer adopts a slightly different structure in DES than in water, so that at higher concentrations the polymer favors a more expanded conformation compared to the same concentration in water. Yet, the osmotic pressure of PVP solutions in DES is very similar to that in water, indicating that both solvents are of comparable quality and that the DES components interact favorably with PVP. The osmotic pressure measurements within this novel class of promising solvents should be of value toward future technological applications as well as for osmotic stress experiments in nonaqueous environments.

  17. X-ray diffraction investigation of ultrafine boron nitride powders

    SciTech Connect

    Gurov, S.V.; Chukalin, V.I.; Rezchikova, T.V.; Torbov, V.J.; Troitskii, V.N.

    1986-01-01

    This paper presents an x-ray diffraction analysis of ultrafine boron nitride powders of different mean particle sizes. Diffraction spectra of the ultrafine boron nitride powders were obtained using a DRON-1 apparatus. The experimental facts are indicative of a turbostratic character of deformation of the hexagonal lattice of ultrafinely divided boron nitride.

  18. Exposure to ultrafine particles in asphalt work.

    PubMed

    Elihn, Karine; Ulvestad, Bente; Hetland, Siri; Wallen, Anna; Randem, Britt Grethe

    2008-12-01

    An epidemiologic study has demonstrated that asphalt workers show increased loss of lung function and an increase of biomarkers of inflammation over the asphalt paving season. The aim of this study was to investigate which possible agent(s) causes the inflammatory reaction, with emphasis on ultrafine particles. The workers' exposure to total dust, polycyclic aromatic hydrocarbons, and NO(2) was determined by personal sampling. Exposure to ultrafine particles was measured by means of particle counters and scanning mobility particle sizer mounted on a van following the paving machine. The fractions of organic and elemental carbon were determined. Asphalt paving workers were exposed to ultrafine particles with medium concentration of about 3.4 x 10(4)/cm(3). Ultrafine particles at the paving site originated mainly from asphalt paving activities and traffic exhaust; most seemed to originate from asphalt fumes. Oil mist exceeded occupational limits on some occasions. Diesel particulate matter was measured as elemental carbon, which was low, around 3 microg/m(3). NO(2) and total dust did not exceed limits. Asphalt pavers were exposed to relatively high concentrations of ultrafine particles throughout their working day, with possible adverse health effects.

  19. Preparation and Thermal Stability of Ultrafine Nickel Powders Containing hcp-Ni Nanocrystallites Using Liquid-Phase Reduction Method

    NASA Astrophysics Data System (ADS)

    Xia, Zhimei; Jin, Shengming; Liu, Kun

    2016-10-01

    Ultrafine nickel powders containing hexagonal close-packed nickel (hcp-Ni) nanocrystallites were prepared using liquid-phase reduction with NiC2O4, NaOH, polyvinylpyrrolidone (PVP), and ethylene glycol (EG). The nickel powders were characterized by XRD and SEM. TG analysis was used to determine the thermal stability of ultrafine nickel powders. The results showed that nickel powders with 45.1 pct of hcp-Ni nanocrystallites were synthesized under the following conditions: a reflux time of 3 hours, an NiC2O4-to-EG molar ratio of 0.01, 5 g/L PVP, and 85 g/L NaOH. SEM results illustrated that spherical particles of size 500 nm were obtained. The results of thermal stability showed that the antioxidant property at high temperature was improved with the increase of hcp-Ni content. The oxidation rate of nickel powders with 43.3 pct hcp-Ni was less than 50 pct even if the temperature was up to 873 K (600 °C).

  20. Synthesis of ultrafine powders by microwave heating

    DOEpatents

    Meek, Thomas T.; Sheinberg, Haskell; Blake, Rodger D.

    1988-01-01

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has been removed. The resulting material is an ultrafine powder. This method can be used to make Al.sub.2 O.sub.3, NiO+Al.sub.2 O.sub.3 and NiO as well as a number of other materials including GaBa.sub.2 Cu.sub.3 O.sub.x.

  1. Synthesis of ultrafine powders by microwave heating

    DOEpatents

    Meek, T.T.; Sheinberg, H.; Blake, R.D.

    1987-04-24

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has dissolved. The resulting material is an ultrafine powder. This method can be used to make Al/sub 2/O/sub 3/, NiO /plus/ Al/sub 2/O/sub 3/ and NiO as well as a number of other materials including GaBa/sub 2/Cu/sub 3/O/sub x/. 1 tab.

  2. Photochromic polyoxotungstoeuropate K 12[EuP 5W 30O 110]/polyvinylpyrrolidone nanocomposite films

    NASA Astrophysics Data System (ADS)

    Zhang, Tie Rui; Lu, Ran; Liu, Xin Li; Zhao, Ying Ying; Li, Tie Jin; Yao, Jian Nian

    2003-05-01

    A novel photochromic nanocomposite film containing polyoxotungstoeuropate K 12[EuP 5W 30O 110] entrapped in polyvinylpyrrolidone has been prepared through a spin-on coating technique. Thus-obtained amorphous nanocomposite film was characterized by IR spectra, UV-vis absorption spectra, XRD, SEM, TG-DTA, and ESR. Results show that polyoxotungstoeuropate interacts with polyvinylpyrrolidone strongly and disperses homogeneously in the matrix. The composite film exhibits good photochromic properties. When irradiated with UV light, the transparent film changes from colorless to blue. Then, bleaching occurs when the film is in contact with ambient air or O 2 in the dark. The photochromism of the composite film is due to charge transfer by reduction of polyoxotungstoeuropate and oxidation of polyvinylpyrrolidone.

  3. Ultrafine Condensation Particle Counter Instrument Handbook

    SciTech Connect

    Kuang, C.

    2016-02-01

    The Model 3776 Ultrafine Condensation Particle Counter (UCPC; pictured in Appendix A) is designed for researchers interested in airborne particles smaller than 20 nm. With sensitivity to particles down to 2.5 nm in diameter, this UCPC is ideally suited for atmospheric and climate research, particle formation and growth studies, combustion and engine exhaust research, and nanotechnology research.

  4. [Investigation on composites of europium fluorescent complexes and polyvinylpyrrolidone].

    PubMed

    Hao, Chao-wei; Zhao, Ying; Xu, Yi-zhuang; Wang, Du-jin; Xu, Duan-fu

    2008-09-01

    In order to investigate the relationship between the aggregation structure and fluorescence properties of composites of rare earth fluorescent complexes and polymers, the fluorescent complexes of Eu(TTA)3 x 2H2O and Eu(TTA)3 x (TPPO)2 were synthesized by the reaction of TTA (2-thenoyltrifluoroacetone), TPPO (triphenylphosphine oxide) and EuCl3, and their composites with polyvinylpyrrolidone (PVP K30) were prepared. The fluorescence spectroscopy, FTIR spectroscopy and TEM were used to characterize these composites. Fluorescence spectroscopy results indicated that the fluorescence intensity of the PVP/Eu(TTA)3 x 2H2O composites is obviously improved compared with that of the Eu(TTA)3 x 2H2O complexes. For the composites with the molar ratio of the complexes to the repeat unit of PVP being 1:35, the intensity of 612 nm emission peak of the composites is 5.5 times for PVP/Eu(TTA)3 x 2H2O and 0.3 times for PVP/Eu(TTA)3 x (TPPO)2 higher than that of the corresponding pure rare earth fluorescent complexes. And the emission intensity ratio of 612 to 590 nm peak is 14.7 in PVP/Eu (TTA)3 x 2H2O composite, larger than that of Eu(TTA)3 x 2H2O complexes. These results suggested that the luminescent properties of the europium fluorescent complexes were obviously enhanced in the presence of PVP matrix and there are interactions between the fluorescence complexes and PVP molecules. In the presence of PVPK30, the FTIR spectra of the Eu(TTA)3 x 2H2O complexes were obviously influenced as well. Based on the curve-fitting results of IR spectra of PVP/Eu(TTA)3 2H2O composites with the molar ratio of repeat unit of PVP to Eu(TTA)3 x 2H2O being 7:1 and 2:1, multiple absorption peaks of nu C=O are observed. The IR spectral variations indicated that there are coordination interactions between Eu3+ ions and the carbonyl groups of PVP, and multiple coordination fashion exists. TEM results showed that there are microphase separation structures in PVP/Eu(TTA)3 x 2H2O and PVP/Eu(TTA)3 x (TPPO)2

  5. Personal exposure to ultrafine particles.

    PubMed

    Wallace, Lance; Ott, Wayne

    2011-01-01

    Personal exposure to ultrafine particles (UFP) can occur while people are cooking, driving, smoking, operating small appliances such as hair dryers, or eating out in restaurants. These exposures can often be higher than outdoor concentrations. For 3 years, portable monitors were employed in homes, cars, and restaurants. More than 300 measurement periods in several homes were documented, along with 25 h of driving two cars, and 22 visits to restaurants. Cooking on gas or electric stoves and electric toaster ovens was a major source of UFP, with peak personal exposures often exceeding 100,000 particles/cm³ and estimated emission rates in the neighborhood of 10¹² particles/min. Other common sources of high UFP exposures were cigarettes, a vented gas clothes dryer, an air popcorn popper, candles, an electric mixer, a toaster, a hair dryer, a curling iron, and a steam iron. Relatively low indoor UFP emissions were noted for a fireplace, several space heaters, and a laser printer. Driving resulted in moderate exposures averaging about 30,000 particles/cm³ in each of two cars driven on 17 trips on major highways on the East and West Coasts. Most of the restaurants visited maintained consistently high levels of 50,000-200,000 particles/cm³ for the entire length of the meal. The indoor/outdoor ratios of size-resolved UFP were much lower than for PM₂.₅ or PM₁₀, suggesting that outdoor UFP have difficulty in penetrating a home. This in turn implies that outdoor concentrations of UFP have only a moderate effect on personal exposures if indoor sources are present. A time-weighted scenario suggests that for typical suburban nonsmoker lifestyles, indoor sources provide about 47% and outdoor sources about 36% of total daily UFP exposure and in-vehicle exposures add the remainder (17%). However, the effect of one smoker in the home results in an overwhelming increase in the importance of indoor sources (77% of the total).

  6. Ultrafine particle deposition in subjects with asthma.

    PubMed

    Chalupa, David C; Morrow, Paul E; Oberdörster, Günter; Utell, Mark J; Frampton, Mark W

    2004-06-01

    Ambient air particles in the ultrafine size range (diameter < 100 nm) may contribute to the health effects of particulate matter. However, there are few data on ultrafine particle deposition during spontaneous breathing, and none in people with asthma. Sixteen subjects with mild to moderate asthma were exposed for 2 hr, by mouthpiece, to ultrafine carbon particles with a count median diameter (CMD) of 23 nm and a geometric standard deviation of 1.6. Deposition was measured during spontaneous breathing at rest (minute ventilation, 13.3 +/- 2.0 L/min) and exercise (minute ventilation, 41.9 +/- 9.0 L/min). The mean +/- SD fractional deposition was 0.76 +/- 0.05 by particle number and 0.69 +/- 0.07 by particle mass concentration. The number deposition fraction increased as particle size decreased, reaching 0.84 +/- 0.03 for the smallest particles (midpoint CMD = 8.7 nm). No differences between sexes were observed. The deposition fraction increased during exercise to 0.86 +/- 0.04 and 0.79 +/- 0.05 by particle number and mass concentration, respectively, and reached 0.93 +/- 0.02 for the smallest particles. Experimental deposition data exceeded model predictions during exercise. The deposition at rest was greater in these subjects with asthma than in previously studied healthy subjects (0.76 +/- 0.05 vs. 0.65 +/- 0.10, p < 0.001). The efficient respiratory deposition of ultrafine particles increases further in subjects with asthma. Key words: air pollution, asthma, deposition, dosimetry, inhalation, ultrafine particles.

  7. Polyvinylpyrrolidone induced artefactual prolongation of activated partial thromboplastin times in intravenous drug users with renal failure.

    PubMed

    Kristoffersen, A H; Bjånes, T K; Jordal, S; Leh, S; Leh, F; Svarstad, E

    2016-05-01

    Essentials Prolonged activated partial thromboplastin times (APTT) were found in drug users with renal failure. An oral methadone solution containing polyvinylpyrrolidone (PVP) had been injected intravenously. Spiking normal plasma with increasing concentrations of PVP resulted in artifically prolonged APTT. APTT prolongation may indicate PVP deposits as underlying cause in patients with renal failure.

  8. Concentrated ambient ultrafine particle exposure induces cardiac change in young healthy volunteers

    EPA Science Inventory

    Exposure to ambient ultrafine particles has been associated with cardiopulmonary toxicity and mortality. Adverse effects specifically linked to ultrafine particles include loss of sympathovagal balance and altered hemostasis. To characterize the effects of ultrafine particles in ...

  9. Ultrafine fibrous gelatin scaffolds with deep cell infiltration mimicking 3D ECMs for soft tissue repair.

    PubMed

    Jiang, Qiuran; Xu, Helan; Cai, Shaobo; Yang, Yiqi

    2014-07-01

    In this research, ultrafine fibrous scaffolds with deep cell infiltration and sufficient water stability have been developed from gelatin, aiming to mimic the extracellular matrices (ECMs) as three dimensional (3D) stromas for soft tissue repair. The ultrafine fibrous scaffolds produced from the current technologies of electrospinning and phase separation are either lack of 3D oriented fibrous structure or too compact to be penetrated by cells. Whilst electrospun scaffolds are able to emulate two dimensional (2D) ECMs, they cannot mimic the 3D ECM stroma. In this work, ultralow concentration phase separation (ULCPS) has been developed to fabricate gelatin scaffolds with 3D randomly oriented ultrafine fibers and loose structures. Besides, a non-toxic citric acid crosslinking system has been established for the ULCPS method. This system could endow the scaffolds with sufficient water stability, while maintain the fibrous structures of scaffolds. Comparing with electrospun scaffolds, the ULCPS scaffolds showed improved cytocompatibility and more importantly, cell infiltration. This research has proved the possibility of using gelatin ULCPS scaffolds as the substitutes of 3D ECMs.

  10. Dependence of the solubility of natural flavonoids in water on the concentration of miramistin, polyvinylpyrrolidone, and human serum albumin

    NASA Astrophysics Data System (ADS)

    Lipkovska, N. A.; Barvinchenko, V. N.; Fedyanina, T. V.

    2014-05-01

    In organized media of the cationic surfactant miramistin and the polymers polyvinylpyrrolidone and human serum albumin, the solubility of natural flavonoids quercetin and rutin increased by one or two orders of magnitude. The increase was more significant for hydrophobic quercetin than for hydrophilic rutin. The solubility also depended on the structure and self-organization of molecules in organized media and the site of flavonoids in them. The calculated binding constants increased in the series polyvinylpyrrolidone < miramistin < human serum albumin.

  11. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis

    SciTech Connect

    Zhai, Yueming; DuChene, Joseph S.; Wang, Yi-Chung; Qiu, Jingjing; Johnston-Peck, Aaron C.; You, Bo; Guo, Wenxiao; DiCiaccio, Benedetto; Qian, Kun; Zhao, Evan W.; Ooi, Frances; Hu, Dehong; Su, Dong; Stach, Eric A.; Zhu, Zihua; Wei, Wei David

    2016-07-04

    After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. In this paper, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different from its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. Finally, these insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.

  12. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis

    DOE PAGES

    Zhai, Yueming; DuChene, Joseph S.; Wang, Yi-Chung; ...

    2016-07-04

    After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. In this paper, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different frommore » its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. Finally, these insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.« less

  13. Positron annihilation lifetime study of polyvinylpyrrolidone for nanoparticle-stabilizing pharmaceuticals.

    PubMed

    Shpotyuk, O; Bujňáková, Z; Baláž, P; Ingram, A; Shpotyuk, Y

    2016-01-05

    Positron annihilation lifetime spectroscopy was applied to characterize free-volume structure of polyvinylpyrrolidone used as nonionic stabilizer in the production of many nanocomposite pharmaceuticals. The polymer samples with an average molecular weight of 40,000 g mol(-1) were pelletized in a single-punch tableting machine under an applied pressure of 0.7 GPa. Strong mixing in channels of positron and positronium trapping were revealed in the polyvinylpyrrolidone pellets. The positron lifetime spectra accumulated under normal measuring statistics were analysed in terms of unconstrained three- and four-term decomposition, the latter being also realized under fixed 0.125 ns lifetime proper to para-positronium self-annihilation in a vacuum. It was shown that average positron lifetime extracted from each decomposition was primary defined by long-lived ortho-positronium component. The positron lifetime spectra treated within unconstrained three-term fitting were in obvious preference, giving third positron lifetime dominated by ortho-positronium pick-off annihilation in a polymer matrix. This fitting procedure was most meaningful, when analysing expected positron trapping sites in polyvinylpyrrolidone-stabilized nanocomposite pharmaceuticals.

  14. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis

    SciTech Connect

    Zhai, Yueming; DuChene, Joseph S.; Wang, Yi-Chung; Qiu, Jingjing; Johnston-Peck, Aaron C.; You, Bo; Guo, Wenxiao; DiCiaccio, Benedetto; Qian, Kun; Zhao, Evan W.; Ooi, Frances; Hu, Dehong; Su, Dong; Stach, Eric A.; Zhu, Zihua; Wei, Wei David

    2016-07-04

    After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. Herein, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally diferent from its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. These insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.

  15. Composite materials for medical purposes based on polyvinylpyrrolidone modified with ketoprofen and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Nikitin, L. N.; Vasil'Kov, A. Yu.; Banchero, M.; Manna, L.; Naumkin, A. V.; Podshibikhin, V. L.; Abramchuk, S. S.; Buzin, M. I.; Korlyukov, A. A.; Khokhlov, A. R.

    2011-07-01

    A method for obtaining composite medical materials based on polyvinylpyrrolidone (PVP K15) modified with ketoprofen in a medium of supercritical carbon dioxide and with Ag nanoparticles prepared by metal vapor synthesis is developed. A system in which ketoprofen and Ag nanoparticles with an average size of ˜16 nm are uniformly distributed over the bulk of PVP is obtained. It is found that the yield of ketoprofen from the composite in the physiological solution is higher than that for an analogous system obtained by mechanical mixing of the components.

  16. The research of far infrared flame retardant polyester staple fiber

    NASA Astrophysics Data System (ADS)

    Li, Qingshan; Zhang, Kaijun; Luo, Jinqong; Li, Ji’an; Jiang, Jian; Liang, Qianqian; Jin, Yongxia; Liu, Bing

    2017-01-01

    Far infrared flame retardant slices was prepared, fiber with far infrared flame retardant composite function was also prepared by the method of melt spinning. Scanning electron microscopy (SEM) was used to observe the fibrous microscopic structure. In the SEM images, functional ultrafine powder particle size and distribution in the fiber were visible. The results show that the functional ultrafine powder is evenly distributed on the fibrous surface, which is closely combined with fiber, and the far infrared emissivity is F, which is more than (8 to 14 microns) 0.88. Far infrared flame retardant polyester fiber has not only good flame retardant, but also environmental health effect: releasing negative ions and launch far-infrared, which shows wide application prospect. The fiber was processed into far-infrared flame retardant electric blanket, whose functional indicators and flame retardant properties are not reduced.

  17. ULTRAFINE PARTICLE DEPOSITION IN HEALTHY SUBJECTS VS. PATIENTS WTH COPD

    EPA Science Inventory

    Individuals affected with chronic obstructive pulmonary disease (COPD) have increased susceptibility to adverse health effects from exposure to particulate air pollution. The dosimetry of ultrafine aerosols (diameter # 0.1 :m) is not well characterized in the healthy or diseas...

  18. Ultrafine particle measurement and related EPA research studies

    EPA Science Inventory

    Webinar slides to present information on measuring ultrafine particles at the request of the 2013 MARAMA Monitoring Committee. The talk covers near-road monitoring, instrument intercomparison, and general overview of UFP monitoring technology.

  19. CARDIOVASCULAR EFFECTS OF ULTRAFINE CARBON PARTICLES IN HYPERTENSIVE RATS (SHR)

    EPA Science Inventory

    Rationale: Epidemiological evidence suggests that ultrafine particles are associated with adverse cardiovascular effects, specifically in elderly individuals with preexisting cardiovascular disease. The objective of this study was (i) to assess cardiopulmonary responses in adult ...

  20. Filtration of ultrafine metallic particles in industry.

    PubMed

    Bémer, D; Morele, Y; Régnier, R

    2015-01-01

    Thermal metal spraying, metal cutting and arc welding processes generate large quantities of ultrafine particles that cause the irreversible clogging of industrial filters. The aim of the study performed was to identify the causes of the clogging of cartridge filters and investigate other paths for cleaning them. This study required the development of a test bench capable of reproducing a thermal spraying process to test the performances of different filtration techniques. This test instrument first, permitted the precise characterization of the aerosol generated by the process and, second, defined the clogging and cleaning conditions for filters. Several parameters were tested: the type of filter, online and off-line cleaning, pre-coating, cleaning by jets of high-speed compressed air via a probe.

  1. Reverse Taylor Tests on Ultrafine Grained Copper

    SciTech Connect

    Mishra, A.; Meyers, M. A.; Martin, M.; Thadhani, N. N.; Gregori, F.; Asaro, R. J.

    2006-07-28

    Reverse Taylor impact tests have been carried out on ultrafine grained copper processed by Equal Channel Angular Pressing (ECAP). Tests were conducted on an as-received OFHC Cu rod and specimens that had undergone sequential ECAP passes (2 and 8). The average grain size ranged from 30 {mu}m for the initial sample to less than 0.5 {mu}m for the 8-pass samples. The dynamic deformation states of the samples, captured by high speed digital photography were compared with computer simulations run in AUTODYN-2D using the Johnson-Cook constitutive equation with constants obtained from stress-strain data and by fitting to an experimentally measured free surface velocity trace. The constitutive response of copper of varying grain sizes was obtained through quasistatic and dynamic mechanical tests and incorporation into constitutive models.

  2. The relationship between the glass transition temperature and water vapor absorption by poly(vinylpyrrolidone)

    PubMed

    Oksanen, C A; Zografi, G

    1990-06-01

    Water associated with amorphous solids is known to affect significantly the physical and chemical properties of dosage form ingredients. An analysis of water vapor absorption isotherms of poly(vinylpyrrolidone) measured in this and other laboratories, over the range -40 to 60 degrees C, along with the measurement of the glass transition temperature of poly(vinylpyrrolidone) as a function of water content is reported. It is observed that the amount of water vapor absorbed at a particular relative humidity increases with decreasing temperature, along with a significant change in the shape of the isotherm. It is also shown that at any temperature, along with a significant change in the shape of the isotherm. It is also shown that at any temperature the state of the solid changes from a highly viscous glass to a much less viscous rubber in the region where absorbed water appears to enter into a "solvent-like" state. Further, the apparent "tightly bound" state, observed at low relative humidities, appears to exist when the polymer enters into a very viscous glassy state. It is concluded that the apparent states of water and polymer are interrelated in a dynamic manner and, therefore, that they cannot be uncoupled by simple thermodynamic analyses based only on a water-binding model.

  3. Scanning-free BOTDA based on ultra-fine digital optical frequency comb.

    PubMed

    Jin, Chao; Guo, Nan; Feng, Yuanhua; Wang, Liang; Liang, Hao; Li, Jianping; Li, Zhaohui; Yu, Changyuan; Lu, Chao

    2015-02-23

    We realize a scanning-free Brillouin optical time domain analyzer (BOTDA) based on an ultra-fine digital optical frequency comb (DOFC) with 1.95MHz frequency spacing and 2GHz bandwidth. The DOFC can be used to reconstruct the Brillouin gain spectrum (BGS) and locate the Brillouin frequency shift (BFS) without frequency scanning and thus can improve the measurement speed about 100 times compared with the conventional BOTDA. This scanning-free BOTDA scheme has also been demonstrated experimentally with 51.2m spatial resolution over 10km standard single mode fiber (SSMF) and with resolution of 1.5°C for temperature and 43.3με for strain measurement respectively.

  4. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/ polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study poly(lactic acid)(PLA) and polyvinylpyrrolidone (PVP) micro and nanofibers mats loaded with copaiba (Copaifera sp.) oil were produced by solution blow spinning (SBS). The copaiba (Copaifera sp.) oil was characterized by gas chromatography (GC). Neat PLA and four PLA/ PVP blends contain...

  5. Coaxial electrospinning of liquid crystal-containing poly(vinylpyrrolidone) microfibres

    PubMed Central

    Enz, Eva; Baumeister, Ute

    2009-01-01

    Summary With the relatively new technique of coaxial electrospinning, composite fibres of poly(vinylpyrrolidone) with the liquid crystal 4-cyano-4′-octylbiphenyl in its smectic phase as core material could be produced. The encapsulation leads to remarkable confinement effects on the liquid crystal, inducing changes in its phase sequence. We conducted a series of experiments to determine the effect of varying the relative flow rates of inner and outer fluid as well as of the applied voltage during electrospinning on these composite fibres. From X-ray diffraction patterns of oriented fibres we could also establish the orientation of the liquid crystal molecules to be parallel to the fibre axis, a result unexpected when considering the viscosity anisotropy of the liquid crystal kept in its smectic phase during electrospinning. PMID:20300504

  6. Solid-State Synthesis of Silver Nanoparticles at Room Temperature: Poly(vinylpyrrolidone) as a Tool.

    PubMed

    Debnath, Dipen; Kim, Chorong; Kim, Sung H; Geckeler, Kurt E

    2010-03-16

    Silver nanoparticles have been used for a long time and recently various methods have been additionally developed for their production. Here we report for the first time a solid-state high-speed vibration milling method for the synthesis of silver nanoparticles, in which poly(vinylpyrrolidone) is used for the reduction of the silver salt. The synthesis is performed at room temperature and no surfactant to direct the anisotropic growth of the nanoparticles is required. The formation of the nanoparticles was studied by UV-Visible spectroscopy, transmission electron microscopy, and powder X-ray diffraction techniques. The nanoparticles synthesized were found to be uniform in size and shape with an average diameter of less than 5 nm. In addition, the antimicrobial activity of these silver nanoparticles was investigated against Escherichia coli and found to be positive.

  7. Effect of chronic douching with polyvinylpyrrolidone-iodine on iodine absorption and thyroid function

    SciTech Connect

    Safran, M.; Braverman, L.E.

    1982-07-01

    Daily vaginal douching with polyvinylpyrrolidone-iodine in 12 euthyroid volunteers for 14 days resulted in a significant increase in serum total iodine concentration and urine iodine excretion. The increase in serum total iodine was associated with a marked decrease in 24-hour /sup 123/I uptake by the thyroid and a small but significant increase in serum thyrotropin (TSH) concentration. However, values for serum TSH never rose above the normal range. No significant changes in serum thyroxine (T4), free T4 index (FTI), or triiodothyronine concentrations were observed, although serum T4 and FTI did decrease slightly during treatment. The findings suggest that iodine is absorbed across the vaginal mucosa and that the subsequent increase in serum total iodine does induce subtle increases in serum TSH concentration. There was no evidence, however, of overt hypothyroidism in these euthyroid women.

  8. In vitro corrosion of dental Au-based casting alloys in polyvinylpyrrolidone-iodine solution.

    PubMed

    Takasusuki, Norio; Ida, Yusuke; Hirose, Yukito; Ochi, Morio; Endo, Kazuhiko

    2013-01-01

    The corrosion and tarnish behaviors of two Au-based casting alloys (ISO type 1 and type 4 Au alloys) and their constituent pure metals, Au, Ag, Cu, Pt, and Pd in a polyvinylpyrrolidone-iodine solution were examined. The two Au alloys actively corroded, and the main anodic reaction for both was dissolution of Au as AuI₂(-). The amount of Au released from the ISO type 1 Au alloy was significantly larger than that from the ISO type 4 Au alloy (P<0.05). Visible light spectrophotometry revealed that the type 1 alloy exhibited higher susceptibility to tarnishing than the type 4 alloy. The corrosion forms of the two Au alloys were found to be completely different, i.e., the type 1 alloy exhibited the corrosion attack over the entire exposed surface with a little irregularity whereas the type 4 alloy exhibited typical intergranular corrosion, which was caused by local cells produced by segregation of Pd and Pt.

  9. In vitro corrosion of dental Ag-based alloys in polyvinylpyrrolidone iodine solution.

    PubMed

    Ochi, Morio; Endo, Kazuhiko; Ohno, Hiroki; Takasusuki, Norio; Matsubara, Hideki; Maida, Takeo

    2005-09-01

    The corrosion and tarnish behaviors of three Ag-based alloys (Ag-Pd-Cu-Au alloy, Ag-In alloy, and Ag-Sn-Zn alloy) in polyvinylpyrrolidone iodine (povidone-iodine) solution were examined. The degree of tarnish was evaluated by visible-ray spectrocolorimetry. Corrosion potential measurements and analyses of corrosion products by X-ray diffractometry were carried out to elucidate the corrosion mechanism. The corrosion rate of the three Ag-based alloys in povidone-iodine solution at its practical concentration used as a gargle solution was so fast that the alloys tarnished within 10 seconds of immersion with the formation of AgI. Thermodynamic consideration and the results of surface analysis by X-ray diffractometry revealed that the main anodic and cathodic reactions were Ag + I(-)-->AgI + e- and I2 + 2e(-)-->2I- respectively.

  10. Evaluation of the separation performance of polyvinylpyrrolidone as a virtual stationary phase for chromatographic NMR.

    PubMed

    Huang, Shaohua; Wu, Rui; Bai, Zhengwu; Yang, Ying; Li, Suying; Dou, Xiaowei

    2014-09-01

    Polyvinylpyrrolidone (PVP) was used as a virtual stationary phase to separate p-xylene, benzyl alcohol, and p-methylphenol by the chromatographic NMR technique. The effects of concentration and weight-average molecular weight (Mw) of PVP, solvent viscosity, solvent polarity, and sample temperature on the resolution of these components were investigated. It was found that both higher PVP concentration and higher PVP Mw caused the increase of diffusion resolution for the three components. Moreover, the diffusion resolution did not change at viscosity-higher solvents. Moreover, the three components showed different resolution at different solvents. As temperature increased, the diffusion resolution between p-xylene and benzyl alcohol gradually increased, and the one between p-xylene and p-methylphenol slightly increased from 278 to 298 K and then decreased above 298 K. It was also found that the polarity of the analytes played an important role for the separation by affecting the diffusion coefficient.

  11. Porous microspheres of manganese-cerium mixed oxides by a polyvinylpyrrolidone assisted solvothermal method

    NASA Astrophysics Data System (ADS)

    Schmit, F.; Bois, L.; Chiriac, R.; Toche, F.; Chassagneux, F.; Descorme, C.; Besson, M.; Khrouz, L.

    2017-04-01

    Mixed cerium manganese oxides were synthesized using a polyvinylpyrrolidone (PVP) assisted solvothermal method. Materials obtained after calcination at 400 °C were characterized by X-ray diffraction, scanning and transmission electron microscopies, electron paramagnetic resonance (EPR), Raman spectroscopy, thermal analysis and nitrogen adsorption/desorption isotherms. The influence of the synthesis parameters on the oxide structure, such as the Mn:Ce ratio or the amount of PVP, was discussed. Micrometric spheres of mixed Mn-Ce oxides, resulting from the aggregation of 100 nm porous snowflakes, were successfully synthesized. These snowflakes were formed from the aggregation of smaller oriented crystallites (size 4 nm). The hydrothermal stability of these materials was also investigated.

  12. Oxidation of polyvinylpyrrolidone and an ethoxylate surfactant in phase-inversion wastewater.

    PubMed

    Loraine, Gregory A

    2008-04-01

    In this paper, components of an industrial wastewater that cause operational problems during biological treatment were oxidized by UV light and hydrogen peroxide (UV/H202). Preoxidation of wastewater was shown to remove polyvinylpyrrolidone (PVP) and ethoxylate surfactant and increase overall biodegradability. Several UV intensities and hydrogen peroxide concentrations were tested to find optimal conditions for the complete depolymerization of PVP in a synthetic wastewater composed of high concentrations of hydroxyl radical scavengers. To compare treatment options, absorption isotherms for PVP on granular activated carbon (GAC) in water and in the synthetic phase-inversion wastewater matrix were determined. The data were extrapolated to estimate the cost of using UV/H2O2, GAC, or off-site treatment. It was found that UV/H2O2 pretreatment was economically viable. Incomplete oxidation of an ethoxylate surfactant increased foaming tendency and foam stability; however, extended oxidation (> 90 minutes) destroyed the foam.

  13. The sintering behavior of ultrafine alumina particles

    SciTech Connect

    Bonevich, J.E.; Marks, L.D. )

    1992-06-01

    Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic ({gamma}) and orthorhombic ({delta}) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the closed-packed {l brace}111{r brace} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure locked-in' during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically-sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region.

  14. Pulmonary response to inhaled Kevlar aramid synthetic fibers in rats.

    PubMed

    Lee, K P; Kelly, D P; Kennedy, G L

    1983-11-01

    Groups of male rats were exposed to specially prepared ultrafine Kevlar pulp fibers (du Pont's registered trademark for certain aramid fibers) at atmospheric concentrations of either 0.1, 0.5, 3.0, or 18 mg/m3 for 2 weeks. Rats were killed at 0 and 2 weeks and 3 and 6 months postexposure (PE) except the rats exposed to 18 mg/m3, which were killed 0, 4, and 14 days and 1, 3, and 6 months PE. Another group of male rats was exposed to 18 mg/m3 (respirable dust approximately 2.5 mg/m3) of commercial Kevlar fibers for 2 weeks and were killed at 0 and 2 weeks and 3 and 6 months PE. Inhaled ultrafine Kevlar fibers were mostly phagocytized by alveolar macrophages (dust cells) in the alveolar ducts and adjoining alveoli after exposure to either 0.1 or 0.5 micrograms/m3. Most dust cells had disappeared and lungs showed a normal appearance throughout 6 months PE. The pulmonary response almost satisfied the biological criteria for a nuisance dust. Rats exposed to 3 mg/m3 ultrafine Kevlar fibers revealed occasional patchy thickening of alveolar ducts with dust cells and inflammatory cells but with no collagen fibers deposited throughout 6 months PE. After exposure to 18 mg/m3 ultrafine Kevlar, the respiratory bronchioles, alveolar ducts, and adjoining alveoli showed granulomatous lesions with dust cells by 2 weeks PE. The granulomatous lesions converted to patchy fibrotic thickening with dust cells after 1 month PE. The fibrotic lesions were markedly reduced in cellularity, size, and numbers from 3 to 6 months PE but revealed networks of reticulum fibers with slight collagen fiber deposition.

  15. Polymer degradation and ultrafine particles - Potential inhalation hazards for astronauts

    NASA Technical Reports Server (NTRS)

    Ferin, J.; Oberdoerster, G.

    1992-01-01

    To test the hypothesis that exposure to ultrafine particles results in an increased interstiatilization of the particles which is accompanied by an acute pathological inflammation, rats were exposed to titanium dioxide (TiO2) particles by intratracheal instillation and by inhalation. Both acute intratracheal instillation and subchronic inhalation studies on rats show that ultrafine TiO2 particles access the pulmonary interstitium to a larger extent than fine particles and that they elicit an inflammatory response as indicated by PMN increase in lavaged cells. The release of ultrafine particles into the air of an enclosed environment from a thermodegradation event or from other sources is a potential hazard for astronauts. Knowing the mechanisms of action is a prerequisite for technical or medical countermeasures.

  16. Investigation of oxidation process of mechanically activated ultrafine iron powders

    NASA Astrophysics Data System (ADS)

    Lysenko, E. N.; Nikolaev, E. V.; Vlasov, V. A.; Zhuravkov, S. P.

    2016-02-01

    The oxidation of mechanically activated ultrafine iron powders was studied using X- ray powder diffraction and thermogravimetric analyzes. The powders with average particles size of 100 nm were made by the electric explosion of wire, and were subjected to mechanical activation in planetary ball mill for 15 and 40 minutes. It was shown that a certain amount of FeO phase is formed during mechanical activation of ultrafine iron powders. According to thermogravimetric analysis, the oxidation process of non-milled ultrafine iron powders is a complex process and occurs in three stages. The preliminary mechanical activation of powders considerably changes the nature of the iron powders oxidation, leads to increasing in the temperature of oxidation onset and shifts the reaction to higher temperatures. For the milled powders, the oxidation is more simple process and occurs in a single step.

  17. Theoretical interpretation of abnormal ultrafine-grained material deformation dynamics

    NASA Astrophysics Data System (ADS)

    Borodin, Elijah N.; Mayer, Alexander E.

    2016-02-01

    Some recent experiments with ultrafine-grained metal samples reveal that it has an abnormal mechanical response on the intensive dynamical loading caused by its impact or electron beam irradiations. On the basis of the original plasticity model, which takes into account dislocation slip and grain boundary sliding, we show that this response is usual for such structure. Moreover, our calculations predict an inverse Hall-Petch relation for ultrafine grained metals at extremely high strain rates (above 107 s-1), while the classical low strain rate experiments and molecular dynamic simulations detects such inverse Hall-Petch relation only for nanocrystalline materials. The main outcomes of present work are the described plasticity model and the conclusions that the ultrafine-grained metals (with grains of about 100-200 nm in diameter) has to have maximal dynamic shear strength and it is the most persistent to dynamic spall fracture because of maximal energy dissipation in it.

  18. Thermally stable hydrophobicity in electrospun silica/polydimethylsiloxane hybrid fibers

    NASA Astrophysics Data System (ADS)

    Wei, Zhonglin; Li, Jianjun; Wang, Chao; Cao, Jungang; Yao, Yongtao; Lu, Haibao; Li, Yibin; He, Xiaodong

    2017-01-01

    In order to improve practical performances of silica-based inorganic/organic hybrid fibers, silica/polydimethylsiloxane hydrophobic fibers were successfully prepared by electrospinning. Silica sol and polydimethylsiloxane can be mixed homogeneously and become stable precursor solution in dichloromethane, which allows the transformation of silica/polydimethylsiloxane precursor solution into ultrafine fibers. Flame can ignite organic groups in polydimethylsiloxane directly and destroy the hydrophobicity of hybrid fibers, but hydrophobic feature may survive if electrospun hybrid membrane is combined with thin stainless-steel-304 gauze of 150 meshes due to its thermally stable hydrophobicity (>600 °C).

  19. Electrospun ultrafine fibrous wheat glutenin scaffolds with three-dimensionally random organization and water stability for soft tissue engineering.

    PubMed

    Xu, Helan; Cai, Shaobo; Sellers, Alexander; Yang, Yiqi

    2014-08-20

    Wheat glutenin, the highly crosslinked protein from wheat, was electrospun into scaffolds with ultrafine fibers oriented randomly and evenly in three dimensions to simulate native extracellular matrices of soft tissues. The scaffolds were intrinsically water-stable without using any external crosslinkers and could support proliferation and differentiation of adipose-derived mesenchymal stem cells for soft tissue engineering. Regeneration of soft tissue favored water-stable fibrous protein scaffolds with three-dimensional arrangement and large volumes, which could be difficult to obtain via electrospinning. Wheat glutenin is an intrinsically water-stable protein due to the 2% cysteine in its amino acid composition. In this research, the disulfide crosslinks in wheat glutenin were cleaved while the backbones were preserved. The treated wheat glutenin was dissolved in aqueous solvent with an anionic surfactant and then electrospun into bulky scaffolds composed of ultrafine fibers oriented randomly in three dimensions. The scaffolds could maintain their fibrous structures after incubated in PBS for up to 35 days. In vitro study indicated that the three-dimensional wheat glutenin scaffolds well supported uniform distribution and adipogenic differentiation of adipose derived mesenchymal stem cells.

  20. Injection with ultra-fine cement into fine sand layer

    SciTech Connect

    Tamura, Masahito; Goto, Toshiyoshi; Ogino, Takuya; Shimizu, Kazunari

    1994-12-31

    In-situ injection test was carried out in fine sand layer with ordinary portland, colloid and ultra-fine cement. Permeability of the sand layer was 10{sup {minus}3} cm/sec. Suspension grout with ordinary portland and colloid cement was impossible to permeate into the sand. However with ultra fine cement small solidified sand was obtained and with ultra-fine cement-waterglass grout, water cement ratio of 0.8 and waterglass concentration of 75%, solidified sand with expected volume can be obtained.

  1. Focusing particle concentrator with application to ultrafine particles

    DOEpatents

    Hering, Susanne; Lewis, Gregory; Spielman, Steven R.

    2013-06-11

    Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.

  2. A chemical analyzer for charged ultrafine particles

    NASA Astrophysics Data System (ADS)

    Gonser, S. G.; Held, A.

    2013-04-01

    New particle formation is a frequent phenomenon in the atmosphere and of major significance for the earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP) capable of analyzing particles with diameters below 30 nm. A bulk of size separated particles is collected electrostatically on a metal filament, resistively desorbed and consequently analyzed for its molecular composition in a time of flight mass spectrometer. We report of technical details as well as characterization experiments performed with the CAChUP. Our instrument was tested in the laboratory for its detection performance as well as for its collection and desorption capabilities. The manual application of known masses of camphene (C10H16) to the desorption filament resulted in a detection limit between 0.5 and 5 ng, and showed a linear response of the mass spectrometer. Flow tube experiments of 25 nm diameter secondary organic aerosol from ozonolysis of alpha-pinene also showed a linear relation between collection time and the mass spectrometer's signal intensity. The resulting mass spectra from the collection experiments are in good agreement with published work on particles generated by the ozonolysis of alpha-pinene. A sensitivity study shows that the current setup of CAChUP is ready for laboratory measurements and for the observation of new particle formation events in the field.

  3. A chemical analyzer for charged ultrafine particles

    NASA Astrophysics Data System (ADS)

    Gonser, S. G.; Held, A.

    2013-09-01

    New particle formation is a frequent phenomenon in the atmosphere and of major significance for the Earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP) capable of analyzing particles with diameters below 30 nm. A bulk of size-separated particles is collected electrostatically on a metal filament, resistively desorbed and subsequently analyzed for its molecular composition in a time of flight mass spectrometer. We report on technical details as well as characterization experiments performed with the CAChUP. Our instrument was tested in the laboratory for its detection performance as well as for its collection and desorption capabilities. The manual application of defined masses of camphene (C10H16) to the desorption filament resulted in a detection limit between 0.5 and 5 ng, and showed a linear response of the mass spectrometer. Flow tube experiments of 25 nm diameter secondary organic aerosol from ozonolysis of alpha-pinene also showed a linear relation between collection time and the mass spectrometer's signal intensity. The resulting mass spectra from the collection experiments are in good agreement with published work on particles generated by the ozonolysis of alpha-pinene. A sensitivity study shows that the current setup of CAChUP is ready for laboratory measurements and for the observation of new particle formation events in the field.

  4. A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone.

    PubMed

    Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2011-04-04

    Formulations containing amorphous active pharmaceutical ingredients (APIs) present great potential to overcome problems of limited bioavailability of poorly soluble APIs. In this paper, we directly compare for the first time spray drying and milling as methods to produce amorphous dispersions for two binary systems (poorly soluble API)/excipient: sulfathiazole (STZ)/polyvinylpyrrolidone (PVP) and sulfadimidine (SDM)/PVP. The coprocessed mixtures were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and intrinsic dissolution tests. PXRD and DSC confirmed that homogeneous glassy solutions (mixture with a single glass transition) of STZ/PVP were obtained for 0.05 ≤ X(PVP) (PVP weight fraction) < 1 by spray drying and for 0.6 ≤ X(PVP) < 1 by milling (at 400 rpm), and homogeneous glassy solutions of SDM/PVP were obtained for 0 < X(PVP) < 1 by spray drying and for 0.7 ≤ X(PVP) < 1 by milling. For these amorphous composites, the value of T(g) for a particular API/PVP ratio did not depend on the processing technique used. Variation of T(g) versus concentration of PVP was monotonic for all the systems and matched values predicted by the Gordon-Taylor equation indicating that there are no strong interactions between the drugs and PVP. The fact that amorphous SDM can be obtained on spray drying but not amorphous STZ could not be anticipated from the thermodynamic driving force of crystallization, but may be due to the lower molecular mobility of amorphous SDM compared to amorphous STZ. The solubility of the crystalline APIs in PVP was determined and the activities of the two APIs were fitted to the Flory-Huggins model. Comparable values of the Flory-Huggins interaction parameter (χ) were determined for the two systems (χ = -1.8 for SDM, χ = -1.5 for STZ) indicating that the two APIs have similar miscibility with PVP. Zones of stability and instability of the amorphous dispersions

  5. CARDIOVASCULAR RESPONSES TO ULTRAFINE CARBON PARTICLE EXPOSURES IN RATS

    EPA Science Inventory

    TD-02-042 (U. KODAVANTI) GPRA # 10108

    Cardiovascular Responses to Ultrafine Carbon Particle Exposures in Rats.
    V. Harder1, B. Lentner1, A. Ziesenis1, E. Karg1, L. Ruprecht1, U. Kodavanti2, A. Stampfl3, J. Heyder1, H. Schulz1
    GSF- Institute for Inhalation Biology1, I...

  6. LASER DESORPTION IONIZATION OF ULTRAFINE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line analysis of ultrafine aerosol particle in the 12 to 150 nm size range is performed by
    laser desorption/ionization. Particles are size selected with a differential mobility analyzer and then
    sent into a linear time-of-flight mass spectrometer where they are ablated w...

  7. Health hazards of ultrafine metal and metal oxide powders

    NASA Technical Reports Server (NTRS)

    Boylen, G. W., Jr.; Chamberlin, R. I.; Viles, F. J.

    1969-01-01

    Study reveals that suggested threshold limit values are from two to fifty times lower than current recommended threshold limit values. Proposed safe limits of exposure to the ultrafine dusts are based on known toxic potential of various materials as determined in particle size ranges.

  8. ULTRAFINE ASH AEROSOLS FROM COAL COMBUSTION: CHARACTERIZATION AND HEALTH EFFECTS

    EPA Science Inventory

    Ultrafine coal fly ash particles, defined here as those with diameters less than 0.5 micrometer, typically comprise less than 1% of the total fly ash mass. These particles are formed almost exclusively through ash vaporization, nucleation, and coagulation/condensation mechanisms,...

  9. Benign joining of ultrafine grained aerospace aluminum alloys using nanotechnology.

    PubMed

    Longtin, Rémi; Hack, Erwin; Neuenschwander, Jürg; Janczak-Rusch, Jolanta

    2011-12-22

    Ultrafine grained aluminum alloys have restricted applicability due to their limited thermal stability. Metalized 7475 alloys can be soldered and brazed at room temperature using nanotechnology. Reactive foils are used to release heat for milliseconds directly at the interface between two components leading to a metallurgical joint without significantly heating the bulk alloy, thus preserving its mechanical properties.

  10. Acid-base interactions and complex formation while recovering copper(II) ions from aqueous solutions using cellulose adsorbent in the presence of polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Nikiforova, T. E.; Kozlov, V. A.; Islyaikin, M. K.

    2012-12-01

    The sorption properties of nontreated cotton cellulose and cellulose modified with polyvinylpyrrolidone with respect to copper(II) ions are investigated. It is established that modified cellulose adsorbents have high sorption capability associated with the formation of new sorption centers during treatment with nitrogen-containing polymer. A mechanism is proposed for acid-base interactions in aqueous solutions of acids, bases, and salts during copper(II) cation recovery using cellulose adsorbent with the participation of polyvinylpyrrolidone.

  11. Poly(vinylpyrrolidone): a new reductant for preparation of tellurium nanorods, nanowires, and tubes from TeO2

    NASA Astrophysics Data System (ADS)

    Zhu, Ying-Jie; Hu, Xian-Luo; Wang, Wei-Wei

    2006-02-01

    A new approach has been developed for the preparation of tellurium with various morphologies by a simple hydrothermal method using TeO2 and poly(vinylpyrrolidone) (PVP). In this method, PVP acts not only as a surfactant but also as a reducing reagent, thus no additional reductants are needed. By control of the reaction conditions, tellurium nanorods, nanowires, and tubes have been prepared. Our experiments showed that pyrrole and polyethylene glycol (PEG) can also be used as reducing reagents.

  12. Optimization of strength and ductility in nanotwinned ultrafine grained Ag: twin density and grain orientations

    DOE PAGES

    Ott, R. T.; Geng, J.; Besser, M. F.; ...

    2015-06-27

    Nanotwinned ultrafine grained Ag thick films with different twin densities and orientations have been synthesized by magnetron sputtering with a wide-range of deposition rates. The twin boundary (TB) spacings and orientations as well as the grain size for the different deposition conditions have been characterized by both synchrotron X-ray scattering and transmission electron microscopy (TEM). Structural characterization combined with uniaxial tensile tests of the free-standing films reveals a large increase in the yield strength for films deposited at high deposition rates without any accompanying change in the TB spacing – a behavior that is in contrast with what has beenmore » reported in the literature. We find that films deposited at lower deposition rates exhibit more randomly oriented grains with a lower overall twin density (averaged over all the grains) than the more heavily twinned grains with strong <111> fiber texture in the films deposited at higher deposition rates. The TB spacing in the twinned grains, however, does not show any significant dependence on the deposition rate. The dependence of the strength and ductility on the twin density and orientations can be described by two different soft deformation modes: 1) untwinned grains and 2) nanowinned grains that are not oriented with <111> along the growth direction. The untwinned grains provide relatively low resistance to slip, and thus decreased strength, while the nanotwinned grains that are not oriented with <111> along the growth direction are softer than nanotwinned grains that are oriented with <111> along the growth direction. We reveal that an ultrafine-grained (150-200 nm) structure consisting of a mixture of nanotwinned (~ 8-12 nm spacing) and untwined grains yields the best combination of high strength and uniform tensile ductility.« less

  13. Optimization of strength and ductility in nanotwinned ultrafine grained Ag: twin density and grain orientations

    SciTech Connect

    Ott, R. T.; Geng, J.; Besser, M. F.; Kramer, M. J.; Wang, Y. M.; Park, E. S.; LeSar, R.; King, A. H.

    2015-06-27

    Nanotwinned ultrafine grained Ag thick films with different twin densities and orientations have been synthesized by magnetron sputtering with a wide-range of deposition rates. The twin boundary (TB) spacings and orientations as well as the grain size for the different deposition conditions have been characterized by both synchrotron X-ray scattering and transmission electron microscopy (TEM). Structural characterization combined with uniaxial tensile tests of the free-standing films reveals a large increase in the yield strength for films deposited at high deposition rates without any accompanying change in the TB spacing – a behavior that is in contrast with what has been reported in the literature. We find that films deposited at lower deposition rates exhibit more randomly oriented grains with a lower overall twin density (averaged over all the grains) than the more heavily twinned grains with strong <111> fiber texture in the films deposited at higher deposition rates. The TB spacing in the twinned grains, however, does not show any significant dependence on the deposition rate. The dependence of the strength and ductility on the twin density and orientations can be described by two different soft deformation modes: 1) untwinned grains and 2) nanowinned grains that are not oriented with <111> along the growth direction. The untwinned grains provide relatively low resistance to slip, and thus decreased strength, while the nanotwinned grains that are not oriented with <111> along the growth direction are softer than nanotwinned grains that are oriented with <111> along the growth direction. We reveal that an ultrafine-grained (150-200 nm) structure consisting of a mixture of nanotwinned (~ 8-12 nm spacing) and untwined grains yields the best combination of high strength and uniform tensile ductility.

  14. Effect of substrates on naproxen-polyvinylpyrrolidone solid dispersions formed via the drop printing technique.

    PubMed

    Hsu, Hsin-Yun; Toth, Scott J; Simpson, Garth J; Taylor, Lynne S; Harris, Michael T

    2013-02-01

    Solid dispersions have been used to improve the bioavailability of poorly water-soluble drugs. However, drug solid-state phase, compositional uniformity, and scale-up problems are issues that need to be addressed. To allow for highly controllable products, the drop printing (DP) technique can provide precise dosages and predictable compositional uniformity of active pharmaceutical ingredients in two-/three-dimensional structures when integrated with edible substrates. With different preparation conditions, DP was conducted to fabricate naproxen (NAP)-polyvinylpyrrolidone solid dispersions with chitosan and hydroxypropyl methylcellulose films as the substrate. Scanning electron microscopy, X-ray diffraction, second harmonic generation microscopy, and atomic force microscopy analyses were performed to characterize the microstructure and spatial distribution of NAP in the solid dispersions. The results identified that composition, temperature, and substrate type all had an impact on morphology and crystallization of samples. The surface energy approach was combined with classical nucleation theory to evaluate the affinity between the nucleus of NAP and substrates. Finally, the collective results of the drug were correlated to the release profile of NAP within each sample.

  15. Polyvinylpyrrolidone as binder for castable supercapacitor electrodes with high electrochemical performance in organic electrolytes

    NASA Astrophysics Data System (ADS)

    Aslan, M.; Weingarth, D.; Jäckel, N.; Atchison, J. S.; Grobelsek, I.; Presser, V.

    2014-11-01

    Polyvinylpyrrolidone (PVP) is presented as a "greener" alternative to commonly used supercapacitor binders, namely polyvinylidenedifluoride (PVDF) or polytetrafluoroethylene (PTFE). The key advantages of using PVP are that it is non-toxic and soluble in ethanol and it can be used to spray coat or drain cast activated carbon (AC) electrodes directly on a current collector such as aluminum foil - in contrast to PTFE that requires rolling or PVDF that requires toxic N-methylpyrrolidone (NMP). The electrodes with the best mechanical stability incorporated 3.5 mass% of 1.300.000 g mol-1 PVP. Compared to PTFE or PVDF, the resulting pore volume was significantly higher and the specific surface area significantly larger when using PVP (normalized to the amount of AC). A good electrochemical performance was observed in organic electrolytes for AC-PVP electrodes: 112 or 97 F g-1 at 0.1 A g-1 in 1 M TEA-BF4 in propylene carbonate or acetonitrile, respectively. The performance stability was comparable to PTFE-bound electrodes when adjusting the maximum cell voltage to 2.5 V while preserving the manufacturing features of PVDF-AC films. (Electro)chemical stability is shown by electrochemical testing and infrared vibrational spectroscopy for propylene carbonate and acetonitrile.

  16. Monodisperse polyvinylpyrrolidone-coated CoFe2O4 nanoparticles: Synthesis, characterization and cytotoxicity study

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Ma, Yingying; Mu, Jingbo; Zhang, Zhixiao; Zhang, Xiaoliang; Zhang, Lina; Che, Hongwei; Bai, Yongmei; Hou, Junxian; Xie, Hailong

    2016-03-01

    In this study, monodisperse cobalt ferrite (CoFe2O4) nanoparticles were prepared successfully with various additions of polyvinylpyrrolidone (PVP) by sonochemical method, in which PVP served as a stabilizer and dispersant. The effects and roles of PVP on the morphology, microstructure and magnetic properties of the obtained CoFe2O4 were investigated in detail by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID). It was found that PVP-coated CoFe2O4 showed relatively well dispersion with narrow size distribution. The field-dependent magnetization curves indicated superparamagnetic behavior of PVP-coated CoFe2O4 with moderate saturation magnetization and hydrophilic character at room temperature. More importantly, the in vitro cytotoxicity testing exhibited negligible cytotoxicity of as-prepared PVP-CoFe2O4 even at the concentration as high as 150 μg/mL after 24 h treatment. Considering the superparamagnetic properties, hydrophilic character and negligible cytotoxicity, the monodisperse CoFe2O4 nanoparticles hold great potential in a variety of biomedical applications.

  17. The potential application of chlorin e6-polyvinylpyrrolidone formulation in photodynamic therapy.

    PubMed

    Chin, William Wei Lim; Heng, Paul Wan Sia; Bhuvaneswari, Ramaswamy; Lau, Weber Kam On; Olivo, Malini

    2006-11-01

    Much research has been focused on developing effective drug delivery systems for the preparation of chlorins as potential photosensitizers for PDT. This report describes the evaluation of a new water-soluble formulation of chlorin e6 consisting of a complex of trisodium salt chlorin e6 and polyvinylpyrrolidone (Ce6-PVP) for application in photodynamic therapy (PDT) with 2 specific aims: (i) to investigate its fluorescence kinetics in skin, normal and tumor tissue after intravenous administration, and (ii) to investigate its PDT efficacy. Our results demonstrate that this new formulation possesses photosensitizing properties with rapid accumulation in tumor tissue observed within 1 h after intravenous administration. Although high selectivity in tumor tissue was found between the period of 3 and 6 h, the efficacy of Ce6-PVP mediated PDT was best at 1 h drug-light interval. It is suggested that, the extent of tumor necrosis post PDT is dependent on the plasma concentration of Ce6-PVP, implying a vascular mediated cell death mechanism. A faster clearance rate of Ce6-PVP from the skin of nude mice was observed compared to Ce6. The new formulation of Ce6-PVP seems to show promise as an effective therapeutic agent.

  18. The physical and chemical properties of the polyvinylalcohol/polyvinylpyrrolidone/hydroxyapatite composite hydrogel.

    PubMed

    Ma, Yahui; Bai, Tongchun; Wang, Fei

    2016-02-01

    A hydrogel of polyvinylalcohol (PVA)/polyvinylpyrrolidone (PVP)/hydroxyapatite (HA) was prepared by a repeated freezing and thawing technique. The effect of HA on the hydrogel was evaluated by comparing the physical and chemical properties of PVA/PVP/HA and PVA/PVP hydrogels. By using theoretical models, the information about the swelling kinetics and the dehydration kinetics have been obtained. From the analysis of structure, mechanical properties, and molecular interaction, the application of PVA/PVP/HA hydrogel as a biomaterial has been evaluated. Relative to PVA/PVP, the PVA/PVP/HA hydrogel is of denser network structure, lower water content, larger storage modulus, and higher dehydration activation energy. These results reveal that, as HA fills in the hydrogel, the molecular interaction is enhanced, the free space of network is compressed, and the diffusion activation energy of water is increased. In spite of its water content being decreased, it is still in the range of meeting the requirement of bio-application. When the hydrogel is subjected to external forces, the matrix will transfer the load to the HA powder, thus enhance the strength of the hydrogel. For application in bio-materials, HA will still have osteoinductivity because its crystalline structure is not interrupted in PVA/PVP/HA hydrogel environment.

  19. Physicochemical characterisation and biological evaluation of polyvinylpyrrolidone-iodine engineered polyurethane (Tecoflex(®)).

    PubMed

    Khandwekar, Anand P; Doble, Mukesh

    2011-05-01

    Bacterial adhesion and encrustation are the known causes for obstruction or blockage of urethral catheters and ureteral stents, which often hinders their effective use within the urinary tract. In this in vitro study, polyvinylpyrrolidone-iodine (PVP-I) complex modified polyurethane (Tecoflex(®)) systems were created by physically entrapping the modifying species during the reversible swelling of the polymer surface region. The presence of the PVP-I molecules on this surfaces were verified by ATR-FTIR, AFM and SEM-EDAX analysis, while wettability of the films was investigated by water contact angle measurements. The modified surfaces were investigated for its suitability as a urinary tract biomaterial by comparing its lubricity and ability to resist bacterial adherence and encrustation with that of base polyurethane. The PVP-I modified polyurethane showed a nanopatterned surface topography and was highly hydrophilic and more lubricious than control polyurethane. Adherence of both the gram positive Staphylococcus aureus (by 86%; **P < 0.01) and gram-negative Pseudomonas aeruginosa (by 80%; *P < 0.05) was significantly reduced on the modified surfaces. The deposition of struvite and hydroxyapatite the major components of urinary tract encrustations were significantly less on PVP-I modified polyurethane as compared to base polyurethane, especially reduction in hydroxyapatite encrustation was particularly marked. These results demonstrated that the PVP-I entrapment process can be applied on polyurethane in order to reduce/lower complications associated with bacterial adhesion and deposition of encrustation on polyurethanes.

  20. Designing and adjusting the thickness of polyvinylpyrrolidone waveguide layer on plasmonic nanofilm for humidity sensing

    NASA Astrophysics Data System (ADS)

    Feng, Zhiqing; Bai, Lan; Guo, Lijiao; Cao, Baosheng; Wu, Jinlei; He, Yangyang

    2017-01-01

    We developed a fast response and high-resolution plasmonic waveguide sensor for sensing environmental humidity by converting the optical signal in the visible light region. The sensor was designed as a layer-on-layer film structure in which the hydrophilic polymer of polyvinylpyrrolidone (PVP) film served as the waveguide layer and was dip-coated onto the plasmonic gold (Au) nanofilm for sensing the environmental humidity. The amount of the absorbed water molecules on the PVP layer could affect the refractive index and thickness of the PVP, leading to a shift of the surface plasmon resonance peak position of Au nanofilm at the different order modes of the waveguide. The theoretic calculations indicated that the optimal thickness of the waveguide layer on the Au nanofilm ranged from 550 to 650 nm. By adjusting the thickness of the PVP layer to 560 nm, the high-resolution optical signals were observed in the visible light region with the humidity shifts ranging from 11% to 85% relative humidity (RH). Our work details a successful attempt to design and prepare the plasmonic waveguide sensor with the lost-cost polymer as the sensing layer for real-time detection of environmental humidity.

  1. Molecular mechanism of the protective effect of monomer polyvinylpyrrolidone on antioxidants - experimental and computational studies.

    PubMed

    Liu, W; Wang, J; Li, M; Tang, W; Han, J

    2016-12-01

    We previously developed a lutein-polyvinylpyrrolidone (PVP) complex with improved aqueous saturation solubility and stability, though the conjugation mechanism is still unclear. In this paper, experiments with astaxanthin-PVP complex and curcumin-PVP complex were carried out, which indicated that PVP could improve the solubility and stability of astaxanthin and curcumin. We aimed to construct a computational model capable of understanding the protective effect in complexes formed between PVP and antioxidants, through which the binding mode of PVP and antioxidants was investigated with molecular modelling in order to obtain the interactions, binding energy, binding site and surface area between PVP and antioxidants. Solubility enhancement was attributed to the H-bonds between PVP and antioxidants, and the saturation solubility was curcumin > lutein > astaxanthin. Binding energy, binding site and surface area were beneficial for the stability of complex, and the stability enhancement was lutein > astaxanthin > curcumin. The experimental results were in agreement with the computational results. Furthermore, we established a method for the exploration of a similar system with other polymer complexes. Additionally, the proposed PVP model could predict the interactions between PVP and various ligands, such as antioxidants and drugs.

  2. Molecular mobility in mixtures of absorbed water and solid poly(vinylpyrrolidone).

    PubMed

    Oksanen, C A; Zografi, G

    1993-06-01

    Poly(vinylpyrrolidone) (PVP) was used as model system to examine molecular mobility in mixtures of absorbed water with solid amorphous polymers. Water vapor absorption isotherms were determined, along with diffusion and proton NMR relaxation measurements of absorbed water. Concurrently, measurements of glass transition temperatures (Tg) and carbon-13 NMR relaxation times for PVP were determined as a function of water content. Two water contents were used as reference points: Wm, obtained from the fit of water absorption isotherms to the BET equation, corresponding to the first shoulder in the sigmoid isotherm; and Wg, the amount of water necessary to depress Tg to the isotherm temperature. Translational diffusion coefficients of water, along with proton T1 relaxation time constants, show that both the translational and the rotational mobility of the water is hindered by the presence of the solid polymer and that the absorbed water is most likely represented by two or more populations of water with different modes or time scales of motion. The presence of "tightly bound" or immobilized water at levels corresponding to Wm, however, is unlikely, since water molecules maintain a high degree of mobility, even at the lowest levels of water. Above Wg, water shows an increase in mobility with increasing water content, but it is always less mobile than bulk water. With increasing water content, carbon-13 T1 relaxation time constants for PVP, measured under the same conditions as above, indicate a major increase in the molecular mobility of carbon atoms associated with the pyrrolidone side chains.

  3. Development of silicon nitride composites with continuous fiber reinforcement

    SciTech Connect

    Starr, T.L.; Mohr, D.L.; Lackey, W.J.; Hanigofsky, J.A.

    1993-10-01

    The composites were fabricated using ultrafine Si powders prepared by attritor milling; the powders exhibits full conversion to Si nitride in < 3 h at {le} 1200 C (these conditions reduce degradation of the fibers compared to conventional). Effects of processing conditions on fiber properties and the use of fiber coatings to improve stability during processing as well as change the fiber-matrix interfacial properties were investigated. A duplex carbon-silicon carbide coating, deposited by CVD, reduced fiber degradation in processing, and it modified the fiber-matrix adhesion. Si nitride matrix composites were fabricated using reaction sintering, forming laminates, filament-wound plates, and tubes. In each case, an attritor milled Si powder slurry is infiltrated into ceramic fiber preforms or tows, which are then assembled to form a 3-D structure for reaction sintering. The resulting composites have properties comparable to chemical vapor infiltration densified composites, with reasonable strengths and graceful composite fracture behavior.

  4. Pulmonary cellular effects in rats following aerosol exposures to ultrafine Kevlar aramid fibrils: evidence for biodegradability of inhaled fibrils.

    PubMed

    Warheit, D B; Kellar, K A; Hartsky, M A

    1992-10-01

    Previous chronic inhalation studies have shown that high concentrations of Kevlar fibrils produced fibrosis and cystic keratinizing tumors in rats following 2-year inhalation exposures. The current studies were undertaken to evaluate mechanisms and to assess the toxicity of inhaled Kevlar fibrils relative to other reference materials. Rats were exposed to ultrafine Kevlar fibers (fibrils) for 3 or 5 days at concentrations ranging from 600-1300 fibers/cc (gravimetric concentrations ranging from 2-13 mg/m3). A complete characterization of the fiber aerosol and dose was carried out. These measurements included gravimetric concentrations, mass median aerodynamic diameter, fiber number, and count median lengths and diameters of the aerosol. Following exposures, cells and fluids from groups of sham- and fiber-exposed animals were recovered by bronchoalveolar lavage (BAL). Alkaline phosphatase, lactate dehydrogenase (LDH), protein, and N-acetyl glucosaminidase (NAG) values were measured in BAL fluids at several time points postexposure. Alveolar macrophages were cultured and studied for morphology, chemotaxis, and phagocytosis by scanning electron microscopy. The lungs of additional exposed animals were processed for deposition, cell labeling, retained dose, and lung clearance studies, as well as fiber dimensions (from digested lung tissue), histopathology, and transmission electron microscopy. Five-day exposures to Kevlar fibrils elicited a transient granulocytic inflammatory response with concomitant increases in BAL fluid levels of alkaline phosphatase, NAG, LDH, and protein. Unlike the data from silica and asbestos exposures where inflammation persisted, biochemical parameters returned to control levels at time intervals between 1 week and 1 month postexposure. Macrophage function in Kevlar-exposed alveolar macrophages was not significantly different from sham controls at any time period. Cell labeling studies were carried out immediately after exposure, as well as 1

  5. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    PubMed

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  6. Preparation of antifouling polyvinylpyrrolidone (PVP 40K) modified polyethersulfone (PES) ultrafiltration (UF) membrane for water purification

    NASA Astrophysics Data System (ADS)

    Vatsha, Banele; Ngila, Jane Catherine; Moutloali, Richard M.

    This study reports the fabrication of polyethersulfone (PES) membrane using the phase inversion method in the presence of polyvinylpyrrolidone (PVP, 40K) as pore-forming agent. The membranes were made from two PES concentration types, i.e. 16 and 18 wt.%. The effect of high molecular weight PVP concentration (2-10%) was examined in order to obtain a membrane with good performance, i.e. high water flux and reasonable Bovine Serum Albumin (BSA, protein model solution) rejection. The optimised membranes were characterised by ATR-FTIR, AFM, SEM, contact angle and dead-end membrane filtration tests. It was found that PVP moieties have positive influence in the prepared PES membranes. SEM surface and cross-sectional images were used to observed morphological changes as PVP content was varied. The pore sizes increased with PVP content for membranes prepared from 16 wt.% PES polymer, whereas at the higher PVP content in 18 wt.% PES membrane, pore sizes tend to decrease or completely disappear. The CA decreased gradually for the 16 wt.% PES with increasing PVP content whereas in the 18 wt.% PES the CA decreased initially before tapering off or increasing slightly. The rejection of BSA solution by both neat PES and PVP-containing PES membrane was above 85%. AFM surface topography exhibited increase in roughness value with PVP content. FTIR/ATR spectra corroborated the functional composition of neat PES and PVP molecule dispersed on PES membrane backbone. The results attained confirmed the potential industrial application of PVP molecule to minimise fouling tendencies.

  7. Preparation and characterization of solid dispersion freeze-dried efavirenz - polyvinylpyrrolidone K-30.

    PubMed

    Fitriani, Lili; Haqi, Alianshar; Zaini, Erizal

    2016-01-01

    The aim of this research is to prepare and characterize solid dispersion of efavirenz - polyvinylpyrrolidone (PVP) K-30 by freeze drying to increase its solubility. Solid dispersion of efavirenz - PVP K-30 was prepared by solvent evaporation method with ratio 2:1, 1:1, and 1:2 and dried using a freeze dryer. Characterizations were done by scanning electron microscopy (SEM), powder X-ray diffraction analysis, differential thermal analysis (DTA), and Fourier transform infrared (FT-IR) spectroscopy. Solubility test was carried out in CO2-free distilled water, and efavirenz assay was conducted using high-performance liquid chromatography with acetonitrile:acetic acid (80:20) as the mobile phases. Powder X-ray diffractogram showed a decrease in the peak intensity, which indicated the crystalline altered to amorphous phase. DTA thermal analysis showed a decrease in the melting point of the solid dispersion compared to intact efavirenz. SEM results indicated the changes in the morphology of the crystal into an amorphous form compared to pure components. FT-IR spectroscopy analysis showed a shift wavenumber of the spectrum efavirenz and PVP K-30. The solubility of solid dispersion at ratio 2:1, 1:1, and 1:2 was 6.777 μg/mL, 6.936 μg/mL, and 14,672 μg/mL, respectively, whereas the solubility of intact efavirenz was 0.250 μg/mL. In conclusion, the solubility of solid dispersion increased significantly (P < 0.05).

  8. Visible-light photochromic nanocomposite thin films based on polyvinylpyrrolidone and polyoxometalates supported on clay minerals

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-yu; Dong, Qi; Meng, Qing-ling; Yang, Jun-Yan; Feng, Wei; Han, Xiang-kui

    2014-10-01

    A novel reversible photochromic nanocomposite film was prepared by entrapping phosphomolybdic acid supported on the sodium bentonite (PMoA/Na-MMT) into polyvinylpyrrolidone (PVPd). The microstructure, thermal stability, photochromic behavior and mechanism of the hybrid film were investigated. Fourier transform infrared spectroscopy (FT-IR) results illustrated that the Keggin geometry of polyoxometalates (PMoA) and organic groups of PVPd were still preserved inside the composites and non-covalent bond interaction was built between PMoA/Na-MMT and PVPd polymer matrix. Transmission electron microscopy (TEM) image showed that PMoA nanoparticles were finely dispersed in Na-MMT which exhibited fine stratified structure. Atomic force microscopy (AFM) images indicated that the surface topography of polymeric matrix changed after adding PMoA/Na-MMT, and the surface appearance of nanocomposite film was different before and after visible-light irradiation. The stability of the hybrid film and the effect of the perturbation of Na-MMT on the stability were determined by means of the thermogravimetric analysis (TG) and differential thermal analysis (DTA). Irradiated with visible light, the ultraviolet--visible spectra (UV-vis) showed that the hybrid films changed from colorless to blue and could recover the colorless state gradually in air, where oxygen played an important role during the bleaching process. The hybrid films exhibited excellent bleaching ability during the heating. According to the X-ray photoelectron spectroscopy (XPS) analysis, the appearance of Mo5+ species indicated the photo-reduction reaction between PMoA/Na-MMT and PVPd matrix occurred according to the proton transfer mechanism, and the photochromic reactions were found to exhibit first-order kinetics.

  9. Effect of pH and biological media on polyvinylpyrrolidone-capped silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lau, Chew Ping; Abdul-Wahab, Mohd Firdaus; Jaafar, Jafariah; Chan, Giek Far; Rashid, Noor Aini Abdul

    2016-07-01

    Toxicity and mobility of silver nanoparticles (AgNPs) vary in different surrounding environments. Surface coatings or functionalization, temperature, pH, dissolved oxygen concentration, nanoparticle concentration, the presence of organic matter, and ionic strength are factors which dictate the transformation of AgNPs in terms of aggregation and stabilization. Thus, the purpose of this study is to investigate the behavior of polyvinylpyrrolidone (PVP)-capped AgNPs at different pHs (pH 2 to 10) and in different biological media (0.1 M phosphate buffer, nutrient broth, P5 and modified P5 media) analyzed using UV-Vis spectroscopy and zeta potential analyzer. The PVP-capped AgNPs changed its behavior in the presence of varying media, after 24 h incubation with shaking at 200 rpm at 30°C. No aggregation was observed at pH 4 to 10, but distinctive at very low pH of 2. Low pH further destabilized PVP-capped AgNPs after 24 h of incubation. High ionic strength 0.1 M phosphate buffer also resulted in slow aggregation and eventually destabilized the nanoparticles. Biological media (nutrient broth, P5 and modified P5 media) containing organic components caused aggregation of the PVP-capped AgNPs. The increase in glucose and nutrient broth concentrations led to increased aggregation. However, PVP-capped AgNPs stabilized after 24 h incubation in media containing a high concentration of glucose and nutrient broth. The results demonstrate that low pH value, high ionic strength and the content of the biological media can influence the stability of AgNPs. This provides information on the aggregation behavior of PVP-capped AgNPs and can possibly further predict the fate, transport as well as the toxicity of silver nanoparticles after being released into the aquatic environment.

  10. Miscibility behavior and formation mechanism of stabilized felodipine-polyvinylpyrrolidone amorphous solid dispersions.

    PubMed

    Karavas, Evangelos; Ktistis, Georgios; Xenakis, Aristotelis; Georgarakis, Emmanouel

    2005-07-01

    In the present study, solid dispersion systems of felodipine (FEL) with polyvinylpyrrolidone (PVP) were developed, in order to enhance solid state stability and release kinetics. The prepared systems were characterized by using Differential Scanning Calorimetry, X-Ray Diffraction, and Scanning Electron Microscopy techniques, while the interactions which take place were identified by using Fourier Transformation-Infrared Spectroscopy. Due to the formation of hydrogen bonds between the carbonyl group of PVP and the amino groups of FEL, transition of FEL from crystalline to amorphous state was achieved. The dispersion of FEL was found to be in nano-scale particle sizes and dependent on the FEL/PVP ratio. This modification leads to partial miscibility of the two components, as it was verified by DSC and optimal glass dispersion of FEL into the polymer matrix since no crystalline structure was detected with XRD. The above deformation has a significant effect on the dissolution enhancement and the release kinetics of FEL, as it causes the pattern to change from linear to logarithmic. An impressive optimization of the dissolution profile is observed corresponding to a rapid release of FEL in the system containing 10% w/w of FEL, releasing 100% in approximately 20 min. The particle size of dispersed FEL into PVP matrix could be classified as the main parameter affecting dissolution optimization. The mechanism of such enhancement consists of the lower energy required for the dissolution due to the amorphous transition and the fine dispersion, which leads to an optimal contact surface of the drug substance with the dissolution media. The prepared systems are stable during storage at 40 +/- 1 degrees C and relative humidity of 75 +/- 5%. Addition of sodium docusate as surfactant does not affect the release kinetics, but only the initial burst due to its effect on the surface tension and wettability of the systems.

  11. Effect of polyvinylpyrrolidone on cerium oxide nanoparticle characteristics prepared by a facile heat treatment technique

    NASA Astrophysics Data System (ADS)

    Baqer, Anwar Ali; Matori, Khamirul Amin; Al-Hada, Naif Mohammed; Shaari, Abdul Halim; Saion, Elias; Chyi, Josephine Liew Ying

    An aqueous medium composed of polyvinylpyrrolidone (PVP) and cerium nitrates at calcination temperature was utilised in the production of cerium oxide (CeO2) semiconductor nanoparticles. A variety of analytical approaches was utilized to examine the structural, morphological and optical characteristics of the resulting nanoparticles. Differential thermal (DTA) and thermogravimetric (TGA) analyses, indicated that the best calcination temperatures for achieving CeO2 nanoparticle production were more than 485 °C. The results from Fourier-transform infrared (FTIR) verified the formation of a crystalline structure after calcination procedures were performed to remove residual organic compounds. Additionally, results from X-ray diffraction (XRD) analysis confirmed the cubic fluorite structure of the CeO2 produced. Samples were also analysed by energy dispersive spectroscopy (EDXA) which indicated the existence of O and Ce in the samples. Field emission scanning electron microscopy (FESEM) was used in the characterisation of nanoparticle morphological features. Transmission electron microscopy (TEM) was employed to estimate typical nanoparticle and distribution within sample. This analysis indicated that mean particle sizes were inversely correlated with PVP concentration, with nanoparticle sizes ranging between 12 ± 7 nm at 0.03 g/mL PVP and 6 ± 2 nm at 0.05 g/mL PVP. These results corroborated those obtained by XRD analysis. A UV-vis spectrophotometer was utilised in the demonstration of optical properties and to examine the band gap energy of samples. The potential UV-shielding properties of the nanoparticles were demonstrated by the observed blue shift of the estimated optical energy band, i.e. from 3.35 to 3.43 eV, whilst PL spectra results indicated that decreasing particle size was associated with diminishing photoluminescence intensity.

  12. Preparation and characterization of solid dispersion freeze-dried efavirenz – polyvinylpyrrolidone K-30

    PubMed Central

    Fitriani, Lili; Haqi, Alianshar; Zaini, Erizal

    2016-01-01

    The aim of this research is to prepare and characterize solid dispersion of efavirenz – polyvinylpyrrolidone (PVP) K-30 by freeze drying to increase its solubility. Solid dispersion of efavirenz – PVP K-30 was prepared by solvent evaporation method with ratio 2:1, 1:1, and 1:2 and dried using a freeze dryer. Characterizations were done by scanning electron microscopy (SEM), powder X-ray diffraction analysis, differential thermal analysis (DTA), and Fourier transform infrared (FT-IR) spectroscopy. Solubility test was carried out in CO2-free distilled water, and efavirenz assay was conducted using high-performance liquid chromatography with acetonitrile:acetic acid (80:20) as the mobile phases. Powder X-ray diffractogram showed a decrease in the peak intensity, which indicated the crystalline altered to amorphous phase. DTA thermal analysis showed a decrease in the melting point of the solid dispersion compared to intact efavirenz. SEM results indicated the changes in the morphology of the crystal into an amorphous form compared to pure components. FT-IR spectroscopy analysis showed a shift wavenumber of the spectrum efavirenz and PVP K-30. The solubility of solid dispersion at ratio 2:1, 1:1, and 1:2 was 6.777 μg/mL, 6.936 μg/mL, and 14,672 μg/mL, respectively, whereas the solubility of intact efavirenz was 0.250 μg/mL. In conclusion, the solubility of solid dispersion increased significantly (P < 0.05). PMID:27429930

  13. Cosolvency approach for assessing the solubility of drugs in poly(vinylpyrrolidone).

    PubMed

    Chen, Xin; Fadda, Hala M; Aburub, Aktham; Mishra, Dinesh; Pinal, Rodolfo

    2015-10-15

    The log-linear cosolvency model was applied for estimating the solubility of four drugs: ritonavir, griseofulvin, itraconazole and ketoconazole in poly(vinylpyrrolidone) (PVP). Cosolvent mixtures consisted of PVP mixed in different proportions with N-ethylpyrrolidone, which served as the monomeric analogue of the repeating unit of the polymer. Solubility in the monomer-polymer mixtures was determined by HPLC. As the configuration of the solvating unit in the solvent mixture changed from entirely monomeric to increasingly polymeric, the solubility of the drugs decreased in a fashion that follows the log-linear cosolvency model. The linear relationship was used to obtain estimates for the solubility of the drugs in the different grades of PVP. The solubility of the drugs in PVP is low (from <1% to ∼15% w/w). Among the set of drug solutes, ritonavir exhibited the highest solubility in PVP (w/w). Mixing with the monomer is most favorable for griseofulvin among the four drugs. However, the detrimental effect of polymerization on its solubility is more pronounced than for ritonavir. The mixing of itraconazole with the monomer is more favorable than the mixing of ketoconazole. However, despite the molecular similarity between ketaconazole and itraconazole, the solubility of the latter is particularly affected by the polymeric configuration of the solvating unit, to the point of exhibiting differences in solubility resulting from the chain length of the grade of PVP used. The log-linear cosolvency model is a useful tool for estimating the solubility of the drugs in the polymer at room temperature, while providing quantitative information on the differences in mixing behavior of the four model compounds.

  14. Effect of hydrogen bonding interactions on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone.

    PubMed

    Karavas, Evangelos; Ktistis, Georgios; Xenakis, Aristotelis; Georgarakis, Emmanouel

    2006-06-01

    Solid dispersion systems are widely investigated for the dissolution enhancement of poorly water soluble drugs. Nevertheless, very limited commercial use has been achieved due to the poor predictability of such systems caused by the lack of a basic understanding of the dissolution optimization mechanism. In the present study an investigation of the release mechanism is performed for solid dispersion systems composed by polyvinylpyrrolidone (PVP) and felodipine (FEL), based on a correlation of their hydrophilicity with the intensity of interactions. The existing interactions were evaluated by using NMR and UV spectroscopy while molecular simulation techniques were also enabled. It was found that the interactions that take place correspond to the creation of hydrogen bonds. The correlation between the intensity of interactions and the concentration of PVP in the matrix showed a sigmoid function. The interactions are impressively increased for polymer concentration exceeding 75% (w/w). This phenomenon was well explained by using the molecular simulation technique. A similar sigmoid pattern was found for the function between dissolution profiles and polymer concentration in the matrix, indicating that the intensity of interactions promotes the dissolution enhancement. Investigation of the solubility and the particle size distribution of FEL in the binary system appeared to have similar behaviour indicating that the interactions affect the release profile through these two factors. The hydrophilicity of PVP does not significantly affect this enhancement as the contact angle was found to be linear to PVP concentration. Microscopic observation of the dissolution behaviour showed that FEL remains in fine dispersion in aqueous solution, verifying the release mechanism.

  15. Antitumor activity of tumor necrosis factor-alpha conjugated with polyvinylpyrrolidone on solid tumors in mice.

    PubMed

    Kamada, H; Tsutsumi, Y; Yamamoto, Y; Kihira, T; Kaneda, Y; Mu, Y; Kodaira, H; Tsunoda, S I; Nakagawa, S; Mayumi, T

    2000-11-15

    We attempted the development of a novel polymer conjugation to further improve the therapeutic potency of antitumor cytokines compared with PEGylation for clinical application. Compared with native tumor necrosis factor (TNF)-alpha in vitro, specific bioactivities of polyvinyl-pyrrolidone (PVP)-modified TNF-alphas (PVP-TNF-alphas) were decreased by increasing the degree of PVP attachment. PVP-TNF-alpha fraction 3, Mr 101,000, had the most effective antitumor activity of the various PVP-TNF-alphas in vivo. PVP-TNF-alpha fraction 3 had >200-fold higher antitumor effect than native TNF-alpha, and the antitumor activity of PVP-TNF-alpha fraction 3 was >2-fold higher than that of MPEG-TNF-alpha (Mr 108,000), which had the highest antitumor activity among the polyethylene glycol (PEG)-conjugated TNF-alphas. Additionally, a high dose of native TNF-alpha induced toxic side effects such as body weight reduction, piloerection. and tissue inflammation, whereas no side effects were observed after i.v. administration of PVP-TNF-alpha fraction 3. The plasma half-life of PVP-TNF-alpha fraction 3 (360 min) was about 80- and 3-fold longer than those of native TNF-alpha (4.6 mm) and MPEG-TNF-alpha (122 min), respectively. The mechanism of increased antitumor effect in vivo caused the prolongation of plasma half-life and increase in stability. These results suggested that PVP is a useful polymeric modifier for bioconjugation of TNF-alpha to increase its antitumor potency, and multifunctionally bioconjugated TNF-alpha may be a potentiated antitumor agent for clinical use.

  16. Aggregation Kinetics of Citrate and Polyvinylpyrrolidone Coated Silver Nanoparticles in Monovalent and Divalent Electrolyte Solutions

    PubMed Central

    Huynh, Khanh An; Chen, Kai Loon

    2011-01-01

    The aggregation kinetics of silver nanoparticles (AgNPs) that were coated with two commonly used capping agents—citrate and polyvinylpyrrolidone (PVP)—were investigated. Time-resolved dynamic light scattering (DLS) was employed to measure the aggregation kinetics of the AgNPs over a range of monovalent and divalent electrolyte concentrations. The aggregation behavior of citrate-coated AgNPs in NaCl was in excellent agreement with the predictions based on Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, and the Hamaker constant of citrate-coated AgNPs in aqueous solutions was derived to be 3.7 × 10-20 J. Divalent electrolytes were more efficient in destabilizing the citrate-coated AgNPs, as indicated by the considerably lower critical coagulation concentrations (2.1 mM CaCl2 and 2.7 mM MgCl2 vs. 47.6 mM NaCl). The PVP-coated AgNPs were significantly more stable than citrate-coated AgNPs in both NaCl and CaCl2, which is likely due to steric repulsion imparted by the large, non-charged polymers. The addition of humic acid resulted in the adsorption of the macromolecules on both citrate- and PVP-coated AgNPs. The adsorption of humic acid induced additional electrosteric repulsion that elevated the stability of both nanoparticles in suspensions containing NaCl or low concentrations of CaCl2. Conversely, enhanced aggregation occurred for both nanoparticles at high CaCl2 concentrations due to interparticle bridging by humic acid clusters. PMID:21630686

  17. [Research on ultrafine grinding technology of improving dissolution rates of effective components in Sanjie Zhentong capsule].

    PubMed

    Xu, Zhong-kun; Gao, Jin; Qin, Jian-ping; Chen, Guang-bo; Wang, Zhen-zhong; Xiao, Wei

    2015-05-01

    The effects of ultrafine grinding on the dissolution rates of the effective components in Sanjie Zhentong capsule (SZC) were studied in this experiment. Fine and ultrafine powder of SZC intermediates were made by ordinary grinding and ultrafine grinding technology, and then granulated by wet granulation. SZC were prepared by fine powder, ultrafine powder and ultrafine granules, respectively. With resveratrol and loureirin B as investigated indexes, dissolution rates of the four intermediates in SZC were determined by cup method and HPLC. The dissolution rates of resveratrol in SZC prepared by fine powder, ultrafine powder and ultrafine granules were 26.11%, 63.27%, 67.49%, respectively; and the dissolution rates of loureirin B were 7.160%, 20.29%, 23.05%, respectively. The dissolution rate of resveratrol and loureirin B in SZC prepared by ultrafine granules was the best. D90 size of ultrafine grinding was 13.221 μm and could improve the dissolution rates of resveratrol and loureirin B in SZC.

  18. Highly efficient and controllable method to fabricate ultrafine metallic nanostructures

    SciTech Connect

    Cai, Hongbing; Zhang, Kun; Pan, Nan E-mail: xpwang@ustc.edu.cn; Luo, Yi; Wang, Xiaoping E-mail: xpwang@ustc.edu.cn; Yu, Xinxin; Tian, Yangchao

    2015-11-15

    We report a highly efficient, controllable and scalable method to fabricate various ultrafine metallic nanostructures in this paper. The method starts with the negative poly-methyl-methacrylate (PMMA) resist pattern with line-width superior to 20 nm, which is obtained from overexposing of the conventionally positive PMMA under a low energy electron beam. The pattern is further shrunk to sub-10 nm line-width through reactive ion etching. Using the patter as a mask, we can fabricate various ultrafine metallic nanostructures with the line-width even less than 10 nm. This ion tailored mask lithography (ITML) method enriches the top-down fabrication strategy and provides potential opportunity for studying quantum effects in a variety of materials.

  19. Structural properties of ultrafine Ba-hexaferrite nanoparticles

    SciTech Connect

    Makovec, Darko; Primc, Darinka; Sturm, Saso; Kodre, Alojz; Hanzel, Darko; Drofenik, Miha

    2012-12-15

    Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was studied using X-ray diffractometry (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDXS), X-ray absorption fine structure (XAFS), and Moessbauer spectroscopy (MS), to be compared to the structure of larger nanoparticles and the bulk. The nanoparticles were synthesized with hydrothermal treatment of an appropriate suspension of Ba and Fe hydroxides in the presence of a large excess of OH{sup -}. The ultrafine nanoparticles were formed in a discoid shape, {approx}10 nm wide and only {approx}3 nm thick, comparable to the size of the hexagonal unit cell in the c-direction. The HRTEM image analysis confirmed the hexaferrite structure, whereas EDXS showed the composition matching the BaFe{sub 12}O{sub 19} formula. XAFS and MS analyses showed considerable disorder of the structure, most probably responsible for the low magnetization. - Graphical abstract: Left: HREM image of an ultrafine Ba-hexaferrite nanoparticle (inset: TEM image of the nanoparticles); Right: the experimental HRTEM image is compared with calculated image and corresponding atomic model. Highlights: Black-Right-Pointing-Pointer Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was compared to the structure of the bulk. Black-Right-Pointing-Pointer Thickness the discoid nanoparticles was comparable to the size of the hexagonal unit cell in the c-direction. Black-Right-Pointing-Pointer Considerable disorder of the nanoparticles' structure is most probably responsible for their low magnetization.

  20. Ultrafine cement seals slow leak in casing collar

    SciTech Connect

    Mac Eachern, D. ); Young, S.C. )

    1992-09-07

    This paper reports that an ultrafine cement squeeze effectively sealed a difficult casing collar leak in the protective casing in a deep, high-temperature well in Mobile Bay. The leak was sealed in one operation without perforating the casing, giving greater confidence in casing integrity and allowing the well to be drilled to total depth (TD). Restoring pressure integrity of the casing with this procedure saved approximately $250,000.

  1. Ultrafine Betulin Formulation with Biocompatible Carriers Exhibiting Improved Dissolution Rate.

    PubMed

    Myza, Svetlana A; Shakhtshneidera, Tatyana P; Mikhailenkob, Mikhail A; Ogienkoc, Andrey G; Bogdanovaa, Ekaterina G; Ogienkoe, Anna A; Kuznetsovaf, Svetlana A; Boldyrevaa, Elena V; Boldyreva, Vladimir V

    2015-08-01

    The purpose of this research was to develop new methods of increasing dissolution rate and solubility of betulin extracted from birch bark. The ultrafine formulation of betulin with polyethylene glycol and β-glycine was obtained by freeze-drying. The rate of release of betulin from the formulation into water was significantly higher in comparison with the initial betulin sample and its composite with polyethylene glycol obtained by ball-milling.

  2. SPD processing and superplasticity in ultrafine-grained alloys

    SciTech Connect

    Valiev, R.Z.; Islamgaliev, R.K.

    2000-07-01

    Severe plastic deformation (SPD), for example by intense plastic straining under high pressure, is an innovative technique for producing ultrafine-grained (UFG) metals and alloys. The SPD fabricated UFG structures can lead to enhanced superplasticity, which, however, depends strongly on processing parameters. The present paper focuses on examples of attaining enhanced superplasticity in several alloys, subjected to SPD and considers the relationship between processing--UFG structures--superplastic properties in SPD produced materials.

  3. Study of fine and ultrafine particles for coal cleaning

    SciTech Connect

    Birlingmair, D.; Buttermore, W.; Chmielewski, T.; Pollard, J.

    1990-04-01

    During the second quarter of work on this new project, critical review of the literature continued. Several new references related to gravity separation were identified and evaluated. A synopsis was assembled to summarize techniques developed by various researchers for the float/sink separation of ultrafine coal. In the reviewed literature, it was commonly concluded that substantial improvements in washability results for ultrafine coals can be obtained only through the application of dynamic (centrifugal) procedures, and through the use of dispersing aids such as ultrasound and surfactants. These results suggest the presence of physicochemical phenomena, typical of colloidal systems. In theoretical studies this quarter, the effects of Brownian motion on fine particle sedimentation have been identified and theoretically quantitated. The interaction between Brownian and gravitational forces was calculated, and a model was prepared to permit estimation of critical particle size in float/sink separations. In laboratory studies this quarter, aliquots of Upper Freeport coal were prepared and subjected to laboratory float/sink separations to investigate the relative effectiveness of static and centrifugal techniques for fine and ultrafine coal. This series will verify results of earlier work and provide a basis for comparing the effects which may result from further modifications to the separation techniques resulting from insights gained in the basic phenomena governing float/sink processes. 15 refs., 6 figs., 1 tab.

  4. Polyvinylpyrrolidone (PVP)-assisted solvothermal synthesis of flower-like SrCO{sub 3}:Tb{sup 3+} phosphors

    SciTech Connect

    Xue, Yannan; Ren, Xiaolei; Zhai, Xuefeng; Yu, Min

    2012-02-15

    Graphical abstract: A simple solvothermal method for the synthesis of flower-like SrCO{sub 3}:Tb{sup 3+} phosphors with the assistance of polyvinylpyrrolidone (PVP, K30). Highlights: Black-Right-Pointing-Pointer Well-crystallized flower-like SrCO{sub 3}:Tb{sup 3+} phosphors could be easily prepared by a simple solvothermal method with the assistance of polyvinylpyrrolidone (PVP). Black-Right-Pointing-Pointer The amount of PVP and the reaction time have a strong effect on controlling the morphology and optical properties of SrCO{sub 3}:Tb{sup 3+} particles. Black-Right-Pointing-Pointer The main synthesizing process and the growth mechanism for the formation of final samples were proposed. -- Abstract: Well-crystallized flower-like SrCO{sub 3}:Tb{sup 3+} phosphors have been synthesized by an inexpensive and friendly solvothermal process using polyvinylpyrrolidone (PVP, K30) as an additive without further annealing treatment. X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), and field emission scanning electron microscopy (FESEM) as well as photoluminescence spectroscopy (PL) were used to characterize the resulting samples. The amount of PVP and the reaction time have strong effect on the morphology of the SrCO{sub 3}:Tb{sup 3+} particles. The results of XRD confirm the formation of a well-crystallized SrCO{sub 3} phase with an orthorhombic structure. The possible formation mechanism for flower-like SrCO{sub 3}:Tb{sup 3+} phosphor is proposed. The SrCO{sub 3}:Tb{sup 3+} phosphors show the characteristic {sup 5}D{sub 4}-{sup 7}F{sub J} (J = 6, 5, 4, 3) emission lines with green emission {sup 5}D{sub 4}-{sup 7}F{sub 5} (544 nm) as the most prominent group under ultraviolet excitation.

  5. Eu-Doped BaTiO3 Powder and Film from Sol-Gel Process with Polyvinylpyrrolidone Additive

    PubMed Central

    García-Hernández, Margarita; García-Murillo, Antonieta; de J. Carrillo-Romo, Felipe; Jaramillo-Vigueras, David; Chadeyron, Geneviève; De la Rosa, Elder; Boyer, Damien

    2009-01-01

    Transparent BaTiO3:Eu3+ films were prepared via a sol-gel method and dip-coating technique, using barium acetate, titanium butoxide, and polyvinylpyrrolidone (PVP) as modifier viscosity. BaTiO3:Eu3+ films ~500 nm thick, crystallized after thermal treatment at 700 ºC. The powders revealed spherical and rod shape morphology. The optical quality of films showed a predominant band at 615 nm under 250 nm excitation. A preliminary luminescent test provided the properties of the Eu3+ doped BaTiO3. PMID:19865533

  6. The influence of polyvinylpyrrolidone on freezing of bovine IVF blastocysts following biopsy.

    PubMed

    Suzuki, T; Saha, S; Sumantri, C; Takagi, M; Boediono, A

    1995-12-01

    A study was conducted to develop a better freezing protocol for in vitro developed biopsied bovine blastocysts. Biopsied blastocysts were exposed to 1.8 M ethylene glycol (EG) + 0.05 M trehalose (T) and different concentration (5, 10, and 20%) of polyvinylpyrrolidone (PVP). Exposure to the solutions alone did not affect their in vitro development (Experiment 1). Experiments 2, 3, and 4 tested the viability of biopsied blastocysts cryopreserved in 1.8 M EG + different concentrations of T (0, 0.05, 0.1, and 0.3 M), 1.8 M EG + different concentrations of PVP (0, 5, 10, and 20%), and 1.8 M EG + 0.05 M T + different concentrations of PVP (0, 5, 10, and 20%), respectively. The proportion of biopsied blastocysts that reexpanded following cryopreservation in 1.8 M EG + 0.05 M T (38.5%) and 1.8 M EG + 0.1 M T (36.1%) was significantly (P < 0.05) higher than the proportion that reexpanded in 1.8 M EG + 0.3 M T (13.9%) (Experiment 2). The viability and the percentage of embryos that developed to > 250 microns in diameter in the 5, 10, and 20% PVP groups (77.8 and 50.0%, 78.1 and 43.8%, 76.9 and 65.4%, respectively) were significantly higher than those that developed cryopreserved without PVP (55.1 and 20.7%) (Experiment 3). Optimum development of in vitro culture of frozen-thawed biopsied blastocysts was obtained using 1.8 M EG + 0.05 M T and 20% PVP. Analysis of blastocysts > 250 microns in diameter showed that the number of ICM cells of biopsied blastocysts cryopreserved in 1.8 M EG + 0.05 M T with or without PVP was not different from the number of unfrozen biopsied blastocysts. These results indicate that PVP has some beneficial effect on freezing of biopsied bovine blastocysts.

  7. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol.

    PubMed

    Wang, Dengjun; Ge, Liqiang; He, Jianzhou; Zhang, Wei; Jaisi, Deb P; Zhou, Dongmei

    2014-08-01

    The increasing application of engineered nanoparticles (ENPs) has heightened the concern that these ENPs would eventually be released to the environment and may enter into life cycle of living beings. In this regard, it is essential to understand how these ENPs transport and retain in natural soils because they are considered to be a major repository for ENPs. Herein, transport and retention of polyvinylpyrrolidone (PVP)-coated silver nanoparticles (PVP-AgNPs) were investigated over a wide range of physicochemical factors in water-saturated columns packed with an Ultisol rich in clay-size particles. Higher mobility of PVP-AgNPs occurred at larger soil grain size, lower solution ionic strength and divalent cation concentration, higher flow rate, and greater PVP concentrations. Most breakthrough curves (BTCs) for PVP-AgNPs exhibited significant amounts of retardation in the soil due to its large surface area and quantity of retention sites. In contrast to colloid filtration theory, the shapes of retention profiles (RPs) for PVP-AgNPs were either hyperexponential or nonmonotonic (a peak in particle retention down-gradient from the column inlet). The BTCs and hyperexponential RPs were successfully described using a 1-species model that considered time- and depth-dependent retention. Conversely, a 2-species model that included reversibility of retained PVP-AgNPs had to be employed to better simulate the BTCs and nonmonotonic RPs. As the retained concentration of species 1 approached the maximum solid-phase concentration, a second mobile species (species 2, i.e., the same PVP-AgNPs that are reversibly retained) was released that could be retained at a different rate than species 1 and thus yielded the nonmonotonic RPs. Some retained PVP-AgNPs were likely to irreversibly deposit in the primary minimum associated with microscopic chemical heterogeneity (favorable sites). Transmission electron microscopy and energy-dispersive X-ray spectroscopy analysis suggested that these

  8. Concentrations of ultrafine particles at a highway toll collection booth and exposure implications for toll collectors.

    PubMed

    Cheng, Yu-Hsiang; Huang, Cheng-Hsiung; Huang, Hsiao-Lin; Tsai, Chuen-Jinn

    2010-12-15

    Research regarding the magnitude of ultrafine particle levels at highway toll stations is limited. This study measured ambient concentrations of ultrafine particles at a highway toll station from October 30 to November 1 and November 5 to November 6, 2008. A scanning mobility particle sizer was used to measure ultrafine particle concentrations at a ticket/cash tollbooth. Levels of hourly average ultrafine particles at the tollbooth were about 3-6 times higher than those in urban backgrounds, indicating that a considerable amount of ultrafine particles are exhausted from passing vehicles. A bi-modal size distribution pattern with a dominant mode at about <6 nm and a minor mode at about 40 nm was observed at the tollbooth. The high amounts of nanoparticles in this study can be attributed to gas-to-particle reactions in fresh fumes emitted directly from vehicles. The influences of traffic volume, wind speed, and relative humidity on ultrafine particle concentrations were also determined. High ambient concentrations of ultrafine particles existed under low wind speed, low relative humidity, and high traffic volume. Although different factors account for high ambient concentrations of ultrafine particles at the tollbooth, measurements indicate that toll collectors who work close to traffic emission sources have a high exposure risk.

  9. Processing, Application and Characterization of (Ultra)fine and Nanometric Materials in Energetic Compositions

    DTIC Science & Technology

    2005-01-01

    PROCESSING, APPLICATION AND CHARACTERIZATION OF (ULTRA)FINE AND NANOMETRIC MATERIALS IN ENERGETIC COMPOSITIONS A. E. D. M. van der...explosives (insensitive munitions), gun/rocket propellants and pyrotechnic compositions and their ingredients. The application of reactive, (ultra)fine and...nanometric materials in these compositions has gained increased interest over the past few years. Current research topics focus on the processing

  10. Biological significance of nanograined/ultrafine-grained structures: Interaction with fibroblasts.

    PubMed

    Misra, R D K; Thein-Han, W W; Pesacreta, T C; Somani, M C; Karjalainen, L P

    2010-08-01

    Given the need to develop high strength/weight ratio bioimplants with enhanced cellular response, we describe here a study focused on the processing-structure-functional property relationship in austenitic stainless steel that was processed using an ingenious phase reversion approach to obtain an nanograined/ultrafine-grained (NG/UFG) structure. The cellular activity between fibroblast and NG/UFG substrate is compared with the coarse-grained (CG) substrate. A comparative investigation of NG/UFG and CG structures illustrated that cell attachment, proliferation, viability, morphology and spread are favorably modulated and significantly different from the conventional CG structure. These observations were further confirmed by expression levels of vinculin and associated actin cytoskeleton. Immunofluorescence studies demonstrated increased vinculin concentrations associated with actin stress fibers in the outer regions of the cells and cellular extensions on NG/UFG substrate. These observations suggest enhanced cell-substrate interaction and activity. The cellular attachment response on NG/UFG substrate is attributed to grain size and hydrophilicity and is related to more open lattice in the positions of high-angle grain boundaries.

  11. Molecular Dynamics, Recrystallization Behavior, and Water Solubility of the Amorphous Anticancer Agent Bicalutamide and Its Polyvinylpyrrolidone Mixtures.

    PubMed

    Szczurek, Justyna; Rams-Baron, Marzena; Knapik-Kowalczuk, Justyna; Antosik, Agata; Szafraniec, Joanna; Jamróz, Witold; Dulski, Mateusz; Jachowicz, Renata; Paluch, Marian

    2017-03-07

    In this paper, we investigated the molecular mobility and physical stability of amorphous bicalutamide, a poorly water-soluble drug widely used in prostate cancer treatment. Our broadband dielectric spectroscopy measurements and differential scanning calorimetry studies revealed that amorphous BIC is a moderately fragile material with a strong tendency to recrystallize from the amorphous state. However, mixing the drug with polymer polyvinylpyrrolidone results in a substantial improvement of physical stability attributed to the antiplasticizing effect governed by the polymer additive. Furthermore, IR study demonstrated the existence of specific interactions between the drug and excipient. We found out that preparation of bicalutamide-polyvinylpyrrolidone mixture in a 2-1 weight ratio completely hinder material recrystallization. Moreover, we determined the time-scale of structural relaxation in the glassy state for investigated materials. Because molecular mobility is considered an important factor governing crystallization behavior, such information was used to approximate the long-term physical stability of an amorphous drug and drug-polymer systems upon their storage at room temperature. Moreover, we found that such systems have distinctly higher water solubility and dissolution rate in comparison to the pure amorphous form, indicating the genuine formulation potential of the proposed approach.

  12. Comparison Between Different Processing Schedules for the Development of Ultrafine-Grained Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Karmakar, Anish; Sivaprasad, S.; Nath, S. K.; Misra, R. D. K.; Chakrabarti, Debalay

    2014-05-01

    A comparative study was carried out on the development of ultrafine-grained dual-phase (DP) (ferrite-martensite) structures in a low-carbon microalloyed steel processed using two thermomechanical processing routes, (i) intercritical deformation and (ii) warm-deformation and intercritical annealing. The samples were deformed using Gleeble3500® simulator, maintaining a constant total strain ( ɛ = 1) and strain rate ( = 1/s). Evolution of microstructure and micro-texture was investigated by SEM, TEM, and EBSD. Ultrafine-grained DP structures could be formed by careful selection of deformation temperature, T def (for intercritical deformation) or annealing temperature, T anneal (for warm-deformation and annealing). Overall, the ferrite grain sizes ranged from 1.5 to 4.0 μm, and the sizes and fractions of the uniformly distributed fine-martensitic islands ranged from 1.5 to 3.0 μm and 15 to 45 pct, respectively. Dynamic strain-induced austenite-to-ferrite transformation followed by continuous (dynamic) recrystallization of the ferrite dictated the grain refinement during intercritical deformation, while, continuous (static) recrystallization by pronounced recovery dictated the grain refinement during the warm-deformation and the annealing. Regarding intercritical deformation, the samples cooled to T def indicated finer grain size compared with the samples heated to T def, which are explained in terms of the effects of strain partitioning on the ferrite and the heating during deformation. Alpha-fiber components dominated the texture in all the samples, and the fraction of high-angle boundaries (with >15 deg misorientation) increased with the increasing T def or T anneal, depending on the processing schedule. Fine carbide particles, microalloyed precipitates and austenitic islands played important roles in defining the mechanism of grain refinement that involved retarding conventional ferrite recrystallization and ferrite grain growth. With regard to the intercritical

  13. Enhanced column flotation of fine and ultrafine coal

    SciTech Connect

    Slomka, B.J.; Buttermore, W.H.; Birlingmair, D.H.; Dawson, M.R.; Pollard, J.L.; Enustun, B.V.

    1992-12-01

    A 2-inch diameter, twenty-foot tall, glass laboratory flotation column was modified to incorporate digital control of critical operating parameters. Different column control strategies were explored including location of the froth interface, and manipulation of volumetric flow ratios. Column flotation tests were performed with both fine (-250{mu}m) and ultrafine (-5{mu}m) Pittsburgh seam coal. Both moisture- and ash-free (MAF) recovery, and ash rejection were improved when the partition of the column`s liquid content into froth and tailings was directly controlled. MAF recovery and ash rejection were also enhanced by brief exposure of the coarser feed to pulsed sonic energy.

  14. Enhanced column flotation of fine and ultrafine coal

    SciTech Connect

    Slomka, B.J.; Buttermore, W.H.; Birlingmair, D.H.; Dawson, M.R.; Pollard, J.L.; Enustun, B.V.

    1992-01-01

    A 2-inch diameter, twenty-foot tall, glass laboratory flotation column was modified to incorporate digital control of critical operating parameters. Different column control strategies were explored including location of the froth interface, and manipulation of volumetric flow ratios. Column flotation tests were performed with both fine (-250[mu]m) and ultrafine (-5[mu]m) Pittsburgh seam coal. Both moisture- and ash-free (MAF) recovery, and ash rejection were improved when the partition of the column's liquid content into froth and tailings was directly controlled. MAF recovery and ash rejection were also enhanced by brief exposure of the coarser feed to pulsed sonic energy.

  15. Method for the production of ultrafine particles by electrohydrodynamic micromixing

    DOEpatents

    DePaoli, David W.; Hu, Zhong Cheng; Tsouris, Constantinos

    2001-01-01

    The present invention relates to a method for the rapid production of homogeneous, ultrafine inorganic material via liquid-phase reactions. The method of the present invention employs electrohydrodynamic flows in the vicinity of an electrified injector tube placed inside another tube to induce efficient turbulent mixing of two fluids containing reactive species. The rapid micromixing allows liquid-phase reactions to be conducted uniformly at high rates. This approach allows continuous production of non-agglomerated, monopispersed, submicron-sized, sphere-like powders.

  16. Stabilization of ultrafine metal nanocatalysts on thin carbon sheets

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofang; Cui, Xinrui; Liu, Yiding; Yin, Yadong

    2015-10-01

    A novel strategy was proposed to anchor ultrafine metal nanoparticles (NPs) on thin carbon sheets for highly stable and efficient heterogeneous catalysts. In this facile approach, a dense monolayer of ultrafine AuNPs was sandwiched between a silica core and a resin shell, followed by carbonization of the shell at a high temperature and then selective removal of the silica core. The shrinkage of the shells during carbonization facilitates partial embedment of the AuNPs on the carbon shell surface and provides superior stability against particle sintering during high temperature/mechanical post-treatments and catalytic reactions. It was also found that diffusion of reactants to the surface of AuNPs could be maximized by reducing the thickness of the hollow shells or simply by cracking the shells into thin carbon sheets, both significantly benefiting the catalytic efficiency. The advantages of this ultra-stable architecture together with the densely dispersed catalytic sites were demonstrated by their high stability and superior catalytic activity in reducing hydrophilic 4-nitrophenol and hydrophobic nitrobenzene.A novel strategy was proposed to anchor ultrafine metal nanoparticles (NPs) on thin carbon sheets for highly stable and efficient heterogeneous catalysts. In this facile approach, a dense monolayer of ultrafine AuNPs was sandwiched between a silica core and a resin shell, followed by carbonization of the shell at a high temperature and then selective removal of the silica core. The shrinkage of the shells during carbonization facilitates partial embedment of the AuNPs on the carbon shell surface and provides superior stability against particle sintering during high temperature/mechanical post-treatments and catalytic reactions. It was also found that diffusion of reactants to the surface of AuNPs could be maximized by reducing the thickness of the hollow shells or simply by cracking the shells into thin carbon sheets, both significantly benefiting the

  17. Ductile Fe83C17 Alloys of Ultrafine Networklike Microstructure

    NASA Astrophysics Data System (ADS)

    Ho, C. M.; Leung, C. C.; Yip, Y. L.; Mok, S. W.; Kui, H. W.

    2010-12-01

    Fe83C17 alloy melt can be cast readily into white cast iron. It is brittle, with a compressive strength of ~1300 MPa. By a fluxing technique, a Fe83C17 melt can be quenched into a crystalline solid of ultrafine networklike microstructure, with a hardness value of ~536 HV, a yield strength of ~2000 MPa, and a strain to failure of about 18 pct. In particular, a cube made of Fe83C17 network alloy can be compressed to a disk.

  18. Process for making ultra-fine ceramic particles

    DOEpatents

    Stangle, Gregory C.; Venkatachari, Koththavasal R.; Ostrander, Steven P.; Schulze, Walter A.

    1995-01-01

    A process for producing ultra-fine ceramic particles in which droplets are formed from a ceramic precursor mixture containing a metal cation, a nitrogen-containing fuel, a solvent, and an anion capable of participating in an anionic oxidation-reduction reaction with the nitrogen containing fuel. The nitrogen-containing fuel contains at least three nitrogen atoms, at least one oxygen atom, and at least one carbon atom. The ceramic precursor mixture is dried to remove at least 85 weight percent of the solvent, and the dried mixture is then ignited to form a combusted powder.

  19. Calibration of TSI model 3025 ultrafine condensation particle counter

    SciTech Connect

    Kesten, J.; Reineking, A.; Porstendoerfer, J. )

    1991-01-01

    The registration efficiency of the TSI model 3025 ultrafine condensation particle counter for Ag and NaCl particles of between 2 and 20 nm in diameter was determined. Taking into account the different shapes of the input aerosol size distributions entering the differential mobility analyzer (DMA) and the transfer function of the DMA, the counting efficiencies of condensation nucleus counters (CNC) for monodisperse Ag and NaCl particles were estimated. In addition, the dependence of the CNC registration efficiency on the particle concentration was investigated.

  20. Process and apparatus for producing ultrafine explosive particles

    DOEpatents

    McGowan, Michael J.

    1992-10-20

    A method and an improved eductor apparatus for producing ultrafine explosive particles is disclosed. The explosive particles, which when incorporated into a binder system, have the ability to propagate in thin sheets, and have very low impact sensitivity and very high propagation sensitivity. A stream of a solution of the explosive dissolved in a solvent is thoroughly mixed with a stream of an inert nonsolvent by obtaining nonlaminar flow of the streams by applying pressure against the flow of the nonsolvent stream, to thereby diverge the stream as it contacts the explosive solution, and violently agitating the combined stream to rapidly precipitate the explosive particles from the solution in the form of generally spheroidal, ultrafine particles. The two streams are injected coaxially through continuous, concentric orifices of a nozzle into a mixing chamber. Preferably, the nonsolvent stream is injected centrally of the explosive solution stream. The explosive solution stream is injected downstream of and surrounds the nonsolvent solution stream for a substantial distance prior to being ejected into the mixing chamber.

  1. Directly electrospun ultrafine nanofibres with Cu grid spinneret

    NASA Astrophysics Data System (ADS)

    Li, Wenwang; Zheng, Gaofeng; Wang, Xiang; Zhang, Yulong; Li, Lei; Wang, Lingyun; Wang, Han; Sun, Daoheng

    2011-04-01

    A hydrophobic Cu grid was used as an electrospinning spinneret to fabricate ultrafine organic nanofibres. The Cu grid used in this study was that which holds samples in TEM. Due to the hydrophobic surface and larger contact angle of the electrospinning solution on the Cu grid surface, the solution flow was divided into several finer ones by the holes in the Cu grid instead of accumulating. Each finer flow was stretched into individual jets and established a multi-jet mode by the electrical field force. The finer jets played an important role in decreasing the diameter of the nanofibre. The charge repulsion force among charged jets enhanced the whipping instability motion of the liquid jets, which improved the uniformity of the nanofibre and decreased the diameter of the nanofibre. An ultrafine uniform nanofibre of diameter less than 80 nm could be fabricated directly with the novel Cu grid spinneret without any additive. This study provided a unique way to promote the application of one-dimensional organic nanostructures in micro/nanosystems.

  2. Dissolution of populations of ultrafine grains with applications to feldspars

    SciTech Connect

    Talman, S.J.; Nesbitt, H.W. )

    1988-06-01

    Mineral dissolution studies are difficult to interpret when the solid reactant displays a wide range in grain sizes, since the rate of dissolution of the finest grains may not be simply related to their surface area. The transient apparent rate of dissolution of a population of fine-grained reactants is modeled to predict changes to the solution composition, as well as changes in the size distribution of ultra-fine particles as functions of time. The model is applies to the experimental data on Amelia albite of Hodlren and Berner (1979) from which both solution composition and grain size distribution have been obtained. The observed size distribution cannot be duplicated if the dissolution rate is proportional to surface area (i.e. dV/dt=Kr{sup 2}); other contributions to the rate, such as dependence on grain size and the specific contributions from edges and corners, must be invoked. The observed grain size distribution and pseudo-parabolic rate can be reproduced when the rate of dissolution of the fine grains is proportional to its radius (i.e. dV/dt=Kr). The rate constant, K, is consistent with a rate limited by dissolution at the edges of the grains. The possibility of predicting both the contributions of ultrafine particles to the observed dissolution rate and the time evolution of the grain size distribution makes the model a useful tool for interpreting mineral dissolution data.

  3. Ultrafine coal single stage dewatering and briquetting process

    SciTech Connect

    Wilson, J.W.; Honaker, R.Q.

    1995-12-31

    It is well known that a large portion of the pyrite particles in the coal seams of the Illinois Basin are finely disseminated within the coal matrix. In order to liberate these micron size pyrite particles, one must use a fine grinding operation. The ultrafine coal particles are difficult to dewater and create problems in coal transportation, as well as in storage and handling at utility plants. The objective of this research project is to combine the ultrafine coal dewatering and briquetting processes into a single stage operation. This will be accomplished by the use of bitumen based emulsions for dewatering and a compaction device for briquetting. During this reporting period, several types of coal samples with various particle size distributions have been tested for use in the dewatering and briquetting processes. Furthermore, various bitumen emulsions have been tested to determine the optimum dewatering reagent. These dewatering and pelletizing tests were carried out using a lab-scale ram extruder. Discharge from the dewatering and briquetting processes was tested to determine compliance with current federal and state requirements. The influence of bitumen emulsion on the sulfur content of coal pellets made were also examined. In addition, a ram extruder which can be operated continuously to simulate a rotary press operation, has been built and is currently being tested for use in the fine coal dewatering and pelletizing process.

  4. Fine and ultrafine particle emissions from microwave popcorn.

    PubMed

    Zhang, Q; Avalos, J; Zhu, Y

    2014-04-01

    This study characterized fine (PM2.5 ) and ultrafine particle (UFP, diameter < 100 nm) emissions from microwave popcorn and analyzed influential factors. Each pre-packed popcorn bag was cooked in a microwave oven enclosed in a stainless steel chamber for 3 min. The number concentration and size distribution of UFPs and PM2.5 mass concentration were measured inside the chamber repeatedly for five different flavors under four increasing power settings using either the foil-lined original package or a brown paper bag. UFPs and PM2.5 generated by microwaving popcorn were 150-560 and 350-800 times higher than the emissions from microwaving water, respectively. About 90% of the total particles emitted were in the ultrafine size range. The emitted PM concentrations varied significantly with flavor. Replacing the foil-lined original package with a brown paper bag significantly reduced the peak concentration by 24-87% for total particle number and 36-70% for PM2.5 . A positive relationship was observed between both UFP number and PM2.5 mass and power setting. The emission rates of microwave popcorn ranged from 1.9 × 10(10) to 8.0 × 10(10) No./min for total particle number and from 134 to 249 μg/min for PM2.5 .

  5. Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration.

    PubMed

    Zuo, Yi; Yang, Fang; Wolke, Joop G C; Li, Yubao; Jansen, John A

    2010-04-01

    Inherent brittleness and slow degradation are the major drawbacks for the use of calcium phosphate cements (CPCs). To address these issues, biodegradable ultrafine fibers were incorporated into the CPC in this study. Four types of fibers made of poly(epsilon-caprolactone) (PCL) (PCL12: 1.1 microm, PCL15: 1.4 microm, PCL18: 1.9 microm) and poly(l-lactic acid) (PLLA4: 1.4 microm) were prepared by electrospinning using a special water pool technique, then mixed with the CPC at fiber weight fractions of 1%, 3%, 5% and 7%. After incubation of the composites in simulated body fluid for 7 days, they were characterized by a gravimetric measurement for porosity evaluation, a three-point bending test for mechanical properties, microcomputer topography and scanning electron microscopy for morphological observation. The results indicated that the incorporation of ultrafine fibers increases the fracture resistance and porosity of CPCs. The toughness of the composites increased with the fiber fraction but was not affected by the fiber diameter. It was found that the incorporated fibers formed a channel-like porous structure in the CPCs. After degradation of the fibers, the created space and high porosity of the composite cement provides inter-connective channels for bone tissue in growth and facilitates cement resorption. Therefore, we concluded that this electrospun fiber-CPC composite may be beneficial to be used as bone fillers.

  6. Flocculation, hydrophobic agglomeration and filtration of ultrafine coal

    NASA Astrophysics Data System (ADS)

    Yu, Zhimin

    In coal preparation plant circuits, fine coal particles are aggregated either by oil agglomeration or by flocculation. In a new hydrophobic agglomeration process, recently developed hydrophobic latices are utilized. While the selectivity of such aggregation processes determines the beneficiation results, the degree of aggregation has a strong effect on fine coal filtration. The aim of this research was to study the fundamentals and analyze the common grounds for these processes, including the potential effect of the coal surface properties. The selective flocculation tests, in which three types of coal, which differed widely in surface wettability, and three additives (hydrophobic latices, a semi-hydrophobic flocculant and a typical hydrophilic polyelectrolyte) were utilized, showed that coal wettability plays a very important role in selective flocculation. The abstraction of a hydrophobic latex on coal and silica revealed that the latex had a much higher affinity towards hydrophobic coal than to hydrophilic mineral matter. As a result, the UBC-1 hydrophobic latex flocculated only hydrophobic coal particles while the polyelectrolyte (PAM) flocculated all the tested coal samples and minerals, showing no selectivity in the fine coal beneficiation. The oil agglomeration was tested using kerosene emulsified with various surfactants (e.g. cationic, anionic and non-ionic). Surfactants enhance not only oil emulsification, hence reducing oil consumption (down to 0.25--0.5%), but also entirely change the electrokinetic properties of the droplets and affect the interaction energy between oil droplets and coal particles. Consequently, the results found in the course of the experimental work strongly indicate that even oxidized coals can be agglomerated if cationic surfactants are used to emulsify the oil. Oil agglomeration of the Ford-4 ultrafine coal showed that even at extremely low oil consumption (0.25 to 0.5%), a clean coal product with an ash content around 5% at over

  7. Spectrophotometric determination of L-cysteine by using polyvinylpyrrolidone-stabilized silver nanoparticles in the presence of barium ions.

    PubMed

    Bamdad, Farzad; Khorram, Fateme; Samet, Maryam; Bamdad, Kourosh; Sangi, Mohammad Reza; Allahbakhshi, Fateme

    2016-05-15

    In this article a simple and selective colorimetric probe for cysteine determination using silver nano particles (AgNPS) is described. The determination process was based upon the surface plasmon resonance properties of polyvinylpyrrolidone-stabilized AgNPS. Interaction of AgNPS with cysteine molecules in the presence of barium ions induced a red shift in the surface plasmon resonance (SPR) maximum of AgNPs, as a result of nanoparticle aggregation. Consequently, yellow color of AgNP solution was changed to pink. The linear range for the determination of cysteine was 3.2-8.2 μM (R=0.9965) with a limit of detection equal to 2.8 μM (3σ). The proposed method was successfully applied to the determination of cysteine in human plasma samples. Acceptable recovery results of the spiked samples confirmed the validity of the proposed method.

  8. Using polyvinylpyrrolidone to enhance the enzymatic hydrolysis of lignocelluloses by reducing the cellulase non-productive adsorption on lignin.

    PubMed

    Cai, Cheng; Qiu, Xueqing; Zeng, Meijun; Lin, Meilu; Lin, Xuliang; Lou, Hongming; Zhan, Xuejuan; Pang, Yuxia; Huang, Jinhao; Xie, Lingshan

    2017-03-01

    Polyvinylpyrrolidone (PVP) is an antifouling polymer to resist the adsorption of protein on solid surface. Effects of PVP on the enzymatic hydrolysis of pretreated lignocelluloses and its mechanism were studied. Adding 1g/L of PVP8000, the enzymatic digestibility of eucalyptus pretreated by dilute acid (Eu-DA) was increased from 28.9% to 73.4%, which is stronger than the classic additives, such as PEG, Tween and bovine serum albumin. Compared with PEG4600, the adsorption of PVP8000 on lignin was larger, and the adsorption layer was more stable and hydrophilic. Therefore, PVP8000 reduced 73.1% of the cellulase non-productive adsorption on lignin and enhanced the enzymatic hydrolysis of lignocelluloses greatly.

  9. Spectrophotometric determination of L-cysteine by using polyvinylpyrrolidone-stabilized silver nanoparticles in the presence of barium ions

    NASA Astrophysics Data System (ADS)

    Bamdad, Farzad; Khorram, Fateme; Samet, Maryam; Bamdad, Kourosh; Sangi, Mohammad Reza; Allahbakhshi, Fateme

    2016-05-01

    In this article a simple and selective colorimetric probe for cysteine determination using silver nano particles (AgNPS) is described. The determination process was based upon the surface plasmon resonance properties of polyvinylpyrrolidone-stabilized AgNPS. Interaction of AgNPS with cysteine molecules in the presence of barium ions induced a red shift in the surface plasmon resonance (SPR) maximum of AgNPs, as a result of nanoparticle aggregation. Consequently, yellow color of AgNP solution was changed to pink. The linear range for the determination of cysteine was 3.2-8.2 μM (R = 0.9965) with a limit of detection equal to 2.8 μM (3σ). The proposed method was successfully applied to the determination of cysteine in human plasma samples. Acceptable recovery results of the spiked samples confirmed the validity of the proposed method.

  10. Polyvinylpyrrolidone-Poly(ethylene glycol) Modified Silver Nanorods Can Be a Safe, Noncarrier Adjuvant for HIV Vaccine.

    PubMed

    Liu, Ye; Balachandran, Yekkuni L; Li, Dan; Shao, Yiming; Jiang, Xingyu

    2016-03-22

    One of the biggest obstacles for the development of HIV vaccines is how to sufficiently trigger crucial anti-HIV immunities via a safe manner. We herein integrated surface modification-dependent immunostimulation against HIV vaccine and shape-dependent biosafety and designed a safe noncarrier adjuvant based on silver nanorods coated by both polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG). Such silver nanorods can significantly elevate crucial immunities of HIV vaccine and overcome the toxicity, which is a big problem for other existing adjuvants. This study thus provided a principle for designing a safe and high-efficacy material for an adjuvant and allow researchers to really have a safe and effective prophylaxis against HIV. We expect this material approach to be applicable to other types of vaccines, whether they are preventative or therapeutic.

  11. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution.

  12. Evaluation of the of antibacterial efficacy of polyvinylpyrrolidone (PVP) and tri-sodium citrate (TSC) silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Dey, Arindam; Dasgupta, Abhirup; Kumar, Vijay; Tyagi, Aakriti; Verma, Anita Kamra

    2015-09-01

    We present silver nanoparticles as the new age broad spectrum antibiotic. Siver nanoparticles exhibit unique physical and chemical properties that make them suitable for understanding their biological potential as antimicrobials. In this study, we explored the antibacterial activity of silver nanoparticles (TSC-AgNPs) and silver nanoparticles doped with polyvinylpyrrolidone (PVP-AgNPs) against Gram-negative and Gram-positive bacteria, Escherichia coli (DH5α) and Staphylococcus aureus, (ATCC 13709). Nucleation and growth kinetics during the synthesis process of AgNPs were precisely controlled using citrate (TSC) and further doped with polyvinylpyrrolidone (PVP). This resulted in the formation of two different sized nanoparticles 34 and 54 nm with PDI of 0.426 and 0.643. The physical characterization was done by nanoparticle tracking analysis and scanning electron microscopy, the results of which are in unison with the digital light scattering data. We found the bactericidal effect for both TSC-AgNPs and PVP-AgNPs to be dose-dependent as determined by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against E. coli and S. aureus. Interestingly, we also observed that AgNPs showed enhanced antimicrobial activity with a MIC of 26.75 and 13.48 µg/ml for E. coli and S. aureus, respectively, while MBC for AgNPs are 53.23 and 26.75 µg/ml for E. coli and S. aureus, respectively. Moreover, AgNPs showed increased DNA degradation as observed confirming its higher efficacy as antibacterial agent than the PVP doped AgNPs.

  13. Measurement of clay surface areas by polyvinylpyrrolidone (PVP) sorption and its use for quantifying illite and smectite abundance

    USGS Publications Warehouse

    Blum, A.E.; Eberl, D.D.

    2004-01-01

    A new method has been developed for quantifying smectite abundance by sorbing polyvinylpyrrolidone (PVP) on smectite particles dispersed in aqueous solution. The sorption density of PVP-55K on a wide range of smectites, illites and kaolinites is ???0.99 mg/m2, which corresponds to ???0.72 g of PVP-55K per gram of montmorillonite. Polyvinylpyrrolidone sorption on smectites is independent of layer charge and solution pH. PVP sorption on Si02, Fe 2O3 and ZnO normalized to the BET surface area is similar to the sorption densities on smectites. ??-Al 2O3, amorphous Al(OH)3 and gibbsite have no PVP sorption over a wide range of pH, and sorption of PVP by organics is minimal. The insensitivity of PVP sorption densities to mineral layer charge, solution pH and mineral surface charge indicates that PVP sorption is not localized at charged sites, but is controlled by more broadly distributed sorption mechanisms such as Van der Waals' interactions and/or hydrogen bonding. Smectites have very large surface areas when dispersed as single unit-cell-thick particles (???725 m2/g) and usually dominate the total surface areas of natural samples in which smectites are present. In this case, smectite abundance is directly proportional to PVP sorption. In some cases, however, the accurate quantification of smectite abundance by PVP sorption may require minor corrections for PVP uptake by other phases, principally illite and kaolinite. Quantitative XRD can be combined with PVP uptake measurements to uniquely determine the smectite concentration in such sample. ?? 2004, The Clay Minerals Society.

  14. Bioactive TiO2 fiber films prepared by electrospinning method.

    PubMed

    Chen, S J; Yu, H Y; Yang, B C

    2013-01-01

    Electrospining method was used to prepare bioactive TiO(2) fibers films in this study. The acetic acid/ethanol/tetrabutyl titanate/polyvinylpyrrolidone (PVP) solvent system was used as precursor for the electrospining. The TiO(2) fiber structures (including its fiber diameter, morphology, and phase composition) could be controlled by changing feeding rate, PVP concentration and sinter temperature. The fiber films were subjected to simulated body fluid soaking experiments and MG63 cells culture experiments to study their bioactivity. According to the X-ray diffraction and MTT assay results, the fiber containing with anatase showed better apatite formation ability than that without anatase at the early stage, while cell proliferated on anatase-rutile TiO(2) fiber was better than that on other samples (p < 0.05).Some string beads in the fiber were beneficial for apatite formation, while the cell proliferated best on the fiber film without string beads (p < 0.05). The fiber with a diameter of 200 nm had the best apatite formation ability and osteoblast compatibility (p < 0.05). The results showed that the TiO(2) fiber film structure had great influence on its bioactivity. It indicated that the electronspining method is an effective way to prepare bioactive titania fiber films, and it is possible to control the structure of the films in the spinning process to optimize the bioactivity of TiO(2) fiber.

  15. Cardiovascular Effects in Adults with Metabolic Syndrome Exposed to Concentrated Ultrafine Air Pollution Particles

    EPA Science Inventory

    RATIONALE: Epidemiologic studies report associations between ambient air pollution particulate matter (PM) and various indices of cardiopulmonary morbidity and mortality. A leading hypothesis contends that smaller ultrafine (UF) particles induce a greater physiologic response bec...

  16. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    PubMed

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  17. SOURCE STRENGTHS OF ULTRAFINE AND FINE PARTICLES DUE TO COOKING WITH A GAS STOVE

    EPA Science Inventory

    Cooking, particularly frying, is an important source of particles indoors. Few studies have measured a full range of particle sizes, including ultrafine particles, produced during cooking. In this study, semicontinuous instruments with fine size discriminating ability were us...

  18. Vascular effects of ultrafine particles in persons with type 2 diabetes

    EPA Science Inventory

    BACKGROUND: Diabetes confers an increased risk for cardiovascular effects of airborne particles. OBJECTIVE: We hypothesized that inhalation of elemental carbon ultrafine particles (UFP) would activate blood platelets and vascular endothelium in people with type 2 diabetes. ...

  19. Super-stable ultrafine beta-tungsten nanocrystals with metastable phase and related magnetism.

    PubMed

    Xiao, J; Liu, P; Liang, Y; Li, H B; Yang, G W

    2013-02-07

    Ultrafine tungsten nanocrystals (average size of 3 nm) with a metastable phase (beta-tungsten with A15 structure, β-W) have been prepared by laser ablation of tungsten in liquid nitrogen. The as-prepared metastable nanocrystals exhibited super-stablity, and can keep the same metastable structure over a period of 6 months at room temperature. This super-stability is attributed to the nanosized confinement effect of ultrafine nanocrystals. The magnetism measurements showed that the β-W nanocrystals have weak ferromagnetic properties at 2 K, which may arise from surface defects and unpaired electrons on the surface of the ultrafine nanocrystals. These findings provided useful information for the application of ultrafine β-W nanocrystals in microelectronics and spintronics.

  20. UPREGULATION OF TISSUE FACTOR IN HUMAN ENDOTHELIAL CELLS FOLLOWING ULTRAFINE PARTICLE EXPOSURE

    EPA Science Inventory

    Epidemiology studies have linked the exposure to air pollutant particles with increased cardiovascular mortality and morbidity, but the mechanisms remain unknown. In our laboratory we have tested the hypothesis that the ultrafine fraction of ambient pollutant particles would cau...

  1. Flotation classification of ultrafine particles -- A novel classification approach

    SciTech Connect

    Qiu Guanzhou; Luo Lin; Hu Yuehua; Xu Jin; Wang Dianzuo

    1995-12-31

    This paper introduces a novel classification approach named the flotation classification approach which works by controlling interactions between particles. It differs considerably from the conventional classification processes operating on mechanical forces. In the present test, the micro-bubble flotation technology is grafted onto hydro-classification. Selective aggregation and dispersion of ultrafine particles are achieved through governing the interactions in the classification process. A series of laboratory classification tests for {minus}44 gm kaolin have been conducted on a classification column. As a result, about 92% recovery for minus 2 {micro}m size fraction Kaolin in the final product is obtained. In addition, two criteria for the classification are set up. Finally, a principle of classifying and controlling the interactions between particles is discussed in terms of surface thermodynamics and hydrodynamics.

  2. Forecasting ultrafine particle concentrations from satellite and in situ observations

    NASA Astrophysics Data System (ADS)

    Crippa, P.; Castruccio, S.; Pryor, S. C.

    2017-02-01

    Recent innovations in remote sensing technologies and retrievals offer the potential for predicting ultrafine particle (UFP) concentrations from space. However, the use of satellite observations to provide predictions of near-surface UFP concentrations is limited by the high frequency of incomplete predictor values (due to missing observations), the lack of models that account for the temporal dependence of UFP concentrations, and the large uncertainty in satellite retrievals. Herein we present a novel statistical approach designed to address the first two limitations. We estimate UFP concentrations by using lagged estimates of UFP and concurrent satellite-based observations of aerosol optical properties, ultraviolet solar radiation flux, and trace gas concentrations, wherein an expectation maximization algorithm is used to impute missing values in the satellite observations. The resulting model of UFP (derived by using an autoregressive moving average model with exogenous inputs) explains 51 and 28% of the day-to-day variability in concentrations at two sites in eastern North America.

  3. Clustering Dynamics of Ultra-fine Particulate Systems

    NASA Astrophysics Data System (ADS)

    Dutt, Meenakshi; Elliott, James

    2008-03-01

    Length scales of particles and their surrounding medium strongly determines the nature of their interactions with one another and their responses to external fields. We are interested in systems of ultrafine particles (0.1 - 1.0 micron) such as volcanic ash, solid aerosols, or fine powders for pharmaceutical ihalation applications. We develop a numerical model for these systems using the Derjaguin-Muller-Toporov (DMT) adhesion theory along with the van der Waals attraction between the particles and their contact mechanical interactions. We study the dynamics of these systems in the absence and presence of gravity by controlling the particle size, and thereby, the surface properties of the particles. The high surface energies of these particles causes them to agglomerate as they gravitationally settle. We explore their internal structure as a function of their particle size.

  4. Selective separation of ultra-fine particles by magnetophoresis

    SciTech Connect

    Ying, T.; Prenger, F. Coyne; Wingo, R. M.; Worl, L. A.

    2002-01-01

    The selective and-specific extraction of species of interest fiom local environmental and other sample sources are importaut fbr scientific research, industrial processes, and environmental applications. A novel process for selective separation of ultrafine particles using 'magnetophoresis' is investigated. The principle of this process is that the direction and velocity of particle movement in a magnetic field are determined by magnetic, gravitational, and drag fbrces. By controlling these fbrces, one is able to control the migration rates of different species and then magnetically fiactionate mixtures of species into discrete groups. This study demonstrated for the fist time the selective separation of various species, such as iron (111) oxide, cupric (11) oxide, samarium (In) oxide, and cerium (III) oxide, by magnetophoresis. To better understand this phenomenon, a fbrce-balance model was developed that provides a good interpretation of the experimental results.

  5. [Distribution of atmospheric ultrafine particles during haze weather in Hangzhou].

    PubMed

    Chen, Qiu-Fang; Sun, Zai; Xie, Xiao-Fang

    2014-08-01

    Atmospheric ultrafine particles (UFPs) were monitored with fast mobility particle sizer (FMPS) in continuous haze weather and the haze fading process during December 6 to 11, 2013 in Hangzhou. Particle concentration and size distribution were studied associated with meteorological factors. The results showed that number concentrations were the highest at night and began to reduce in the morning. There was a small peak at 8 o'clock in the morning and 18 o'clock in the afternoon. It showed an obvious peak traffic source, which indicated that traffic emissions played a great role in the atmospheric pollution. During haze weather, the highest number concentration of UFPs reached 8 x 10(4) cm(-3). Particle size spectrum distribution was bimodal, the peak particle sizes were 15 nm and 100 nm respectively. Majority of UFPs were Aitken mode and Accumulation mode and the size of most particles concentrated near 100 nm. Average CMD(count medium diameter) was 85.89 nm. During haze fading process, number concentration and particles with size around 100 nm began to reduce and peak size shifted to small size. Nuclear modal particles increased and were more than accumulation mode. Average CMD was 58.64 nm. Meteorological factors such as the visibility and wind were negatively correlated with the particle number concentration. Correlation coefficient R were -0.225 and - 0.229. The humidity was correlated with number concentration. Correlation coefficient R was 0.271. The atmosphere was stable in winter and the level temperature had small correlation with number concentration. Therefore, study on distribution of atmospheric ultrafine particles during haze weather had the significance on the formation mechanism and control of haze weather.

  6. Ultrafine grinding of low-rank coal: Final report

    SciTech Connect

    Bouchillon, C.W.; Steele, W.G.

    1986-08-01

    A study of ultrafine grinding of low-rank coals in a fluid-energy mill was undertaken. This report presents the results of the Phase I effort which included a review of the literature on ultrafine grinding, a review of theories of grinding, a combined grinding and drying experiment on Martin Lake Texas lignite, an evaluation of the energy requirements for the process, and an evaluation of the properties of the products from the grinding tests. A sample of Martin Lake Texas lignite was obtained and a series of tests were conducted in a fluid-energy mill at the Ergon, Inc., Micro-Energy Division development facility at Vicksburg, MS. The grinding fluids used were air at 116 F and steam at 225, 310, 350, 400, and 488 F as measured in the mill. The products of these tests were analyzed for volatile mattr, ash, total moisture, equilibrium moisture, heating value, density distribution, aerodynamic particle size classification, angle of repose, porosity, density, and particle size distribution. ASTM test procedures were followed where applicable. Ultimate and ash mineral analyses were also conducted on the samples. Results of the various tests are presented in detail in the report. In general, the fluid energy mill was used succssfully in simultaneous grinding and drying of the lignite. Particle size reduction to less than 10 microns on a population basis was achieved. The equilibrium moisture of the samples decreased with increasing grinding fluid temperatures. Density distribution studies showed that a significant fraction of the ash appeared in the >1.6 specific gravity particles. The energy required for the grinding/drying process increased with increasing mill temperatures. 29 refs., 18 figs., 13 tabs.

  7. Artificial ultra-fine aerosol tracers for highway transect studies

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas A.; Barnes, David E.; Wuest, Leann; Gribble, David; Buscho, David; Miller, Roger S.; De la Croix, Camille

    2016-07-01

    The persistent evidence of health impacts of roadway aerosols requires extensive information for urban planning to avoid putting populations at risk, especially in-fill projects. The required information must cover both highway aerosol sources as well as transport into residential areas under a variety of roadway configurations, traffic conditions, downwind vegetation, and meteorology. Such studies are difficult and expensive to do, but were easier in the past when there was a robust fine aerosol tracer uniquely tied to traffic - lead. In this report we propose and test a modern alternative, highway safety flare aerosols. Roadway safety flares on vehicles in traffic can provide very fine and ultra-fine aerosols of unique composition that can be detected quantitatively far downwind of roadways due to a lack of upwind interferences. The collection method uses inexpensive portable aerosol collection hardware and x-ray analysis protocols. The time required for each transect is typically 1 h. Side by side tests showed precision at ± 4%. We have evaluated this technique both by aerosol removal in vegetation in a wind tunnel and by tracking aerosols downwind of freeways as a function of season, highway configuration and vegetation coverage. The results show that sound walls for at-grade freeways cause freeway pollution to extend much farther downwind than standard models predict. The elevated or fill section freeway on a berm projected essentially undiluted roadway aerosols at distances well beyond 325 m, deep into residential neighborhoods. Canopy vegetation with roughly 70% cover reduced very fine and ultra-fine aerosols by up to a factor of 2 at distances up to 200 m downwind.

  8. Refinement of Ferrite Grain Size near the Ultrafine Range by Multipass, Thermomechanical Compression

    NASA Astrophysics Data System (ADS)

    Patra, S.; Neogy, S.; Kumar, Vinod; Chakrabarti, D.; Haldar, A.

    2012-11-01

    Plane-strain compression testing was carried out on a Nb-Ti-V microalloyed steel, in a GLEEBLE3500 simulator using a different amount of roughing, intermediate, and finishing deformation over the temperature range of 1373 K to 1073 K (1100 °C to 800 °C). A decrease in soaking temperature from 1473 K to 1273 K (1200 °C to 1000 °C) offered marginal refinement in the ferrite ( α) grain size from 7.8 to 6.6 μm. Heavy deformation using multiple passes between A e3 and A r3 with true strain of 0.8 to 1.2 effectively refined the α grain size (4.1 to 3.2 μm) close to the ultrafine size by dynamic-strain-induced austenite ( γ) → ferrite ( α) transformation (DSIT). The intensities of microstructural banding, pearlite fraction in the microstructure (13 pct), and fraction of the harmful "cube" texture component (5 pct) were reduced with the increase in finishing deformation. Simultaneously, the fractions of high-angle (>15 deg misorientation) boundaries (75 to 80 pct), beneficial gamma-fiber (ND//<111>) texture components, along with {332}<133> and {554}<225> components were increased. Grain refinement and the formation of small Fe3C particles (50- to 600-nm size) increased the hardness of the deformed samples (184 to 192 HV). For the same deformation temperature [1103 K (830 °C)], the difference in α-grain sizes obtained after single-pass (2.7 μm) and multipass compression (3.2 μm) can be explained in view of the static- and dynamic-strain-induced γ → α transformation, strain partitioning between γ and α, dynamic recovery and dynamic recrystallization of the deformed α, and α-grain growth during interpass intervals.

  9. Lung response to ultrafine Kevlar aramid synthetic fibrils following 2-year inhalation exposure in rats.

    PubMed

    Lee, K P; Kelly, D P; O'Neal, F O; Stadler, J C; Kennedy, G L

    1988-07-01

    Four groups of 100 male and 100 female rats were exposed to ultrafine Kevlar fibrils at concentrations of 0, 2.5, 25, and 100 fibrils/cc for 6 hr/day, 5 days/week for 2 years. One group was exposed to 400 fibrils/cc for 1 year and allowed to recover for 1 year. At 2.5 fibrils/cc, the lungs had normal alveolar architecture with a few dust-laden macrophages (dust cell response) in the alveolar airspaces. At 25 fibrils/cc, the lungs showed a dust cell response, slight Type II pneumocyte hyperplasia, alveolar bronchiolarization, and a negligible amount of collagenized fibrosis in the alveolar duct region. At 100 fibrils/cc, the same pulmonary responses were seen as at 25 fibrils/cc. In addition, cystic keratinizing squamous cell carcinoma (CKSCC) was found in 4 female rats, but not in male rats. Female rats had more prominent foamy alveolar macrophages, cholesterol granulomas, and alveolar bronchiolarization. These pulmonary lesions were related to the development of CKSCC. The lung tumors were derived from metaplastic squamous cells in areas of alveolar bronchiolarization. At 400 fibrils/cc following 1 year of recovery, the lung dust content, average fiber length, and the pulmonary lesions were markedly reduced, but slight centriacinar emphysema and minimal collagenized fibrosis were found in the alveolar duct region. One male and 6 female rats developed CKSCC. The lung tumors were a unique type of experimentally induced tumors in the rats and have not been seen as spontaneous tumors in man or animals. Therefore, the relevance of this type of lung tumor to the human situation is minimal.

  10. Emission of ultrafine particles from the incineration of municipal solid waste: A review

    NASA Astrophysics Data System (ADS)

    Jones, Alan M.; Harrison, Roy M.

    2016-09-01

    Ultrafine particles (diameter <100 nm) are of great topical interest because of concerns over possible enhanced toxicity relative to larger particles of the same composition. While combustion processes, and especially road traffic exhaust are a known major source of ultrafine particle emissions, relatively little is known of the magnitude of emissions from non-traffic sources. One such source is the incineration of municipal waste, and this article reviews studies carried out on the emissions from modern municipal waste incinerators. The effects of engineering controls upon particle emissions are considered, as well as the very limited information on the effects of changing waste composition. The results of measurements of incinerator flue gas, and of atmospheric sampling at ground level in the vicinity of incinerators, show that typical ultrafine particle concentrations in flue gas are broadly similar to those in urban air and that consequently, after the dispersion process dilutes incinerator exhaust with ambient air, ultrafine particle concentrations are typically indistinguishable from those that would occur in the absence of the incinerator. In some cases the ultrafine particle concentration in the flue gas may be below that in the local ambient air. This appears to be a consequence of the removal of semi-volatile vapours in the secondary combustion zone and abatement plant, and the high efficiency of fabric filters for ultrafine particle collection.

  11. Liquefaction of coals using ultra-fine particle, unsupported catalysts: In situ generation by rapid expansion of supercritical fluid solutions

    SciTech Connect

    Not Available

    1991-09-01

    The purpose of this program is to design and fabricate an experimental ultra-fine particle generation system; use this system to generate ultra-fine, iron compound, catalyst particles; and to access the ability of these ultra-fine catalyst particles to improve the performance of the solubilization stage of two-stage, catalytic-catalytic liquefaction processes. The effort applied to this program during this reporting period was devoted to experimental design and fabrication tasks.

  12. Fiber biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber cells arising from seed epidermis is the most important agricultural textile commodity in the world. To produce fully mature fibers, approximately two months of fiber developmental process are required. The timing of four distinctive fiber development stages consisting of initiation, ...

  13. Preparation of long alumina fibers by sol-gel method using tartaric acid

    NASA Astrophysics Data System (ADS)

    Tan, Hong-Bin

    2011-12-01

    Long alumina fibers were prepared by sol-gel method. The spinning sol was obtained by mixing aluminum nitrate, tartaric acid, and polyvinylpyrrolidone with a mass ratio of 10:3:1.5. Thermogravimetry-differential scanning calorimetry (TG-DSC), Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibers. A little of α-Al2O3 phase is observed in the alumina precursor gel fibers sintered at 1273 K. The fibers with a uniform diameter can be obtained when sintered at 1473 K, and its main phase is also indentified as α-Al2O3.

  14. Dually enriched Cu:CdS@ZnS QDs with both polyvinylpyrrolidone twisting and SiO2 loading for improved cell imaging.

    PubMed

    Li, Mei; Xu, Chaoying; Wu, Lan; Wu, Peng; Hou, Xiandeng

    2015-02-28

    Through harvesting of the increased Stokes shift of CdS QDs via Cu-doping, the concentration-quenching or aggregation-quenching of CdS QDs was largely alleviated. A dually-enriched strategy with both polyvinylpyrrolidone (PVP) twisting and SiO2 loading was developed for generating a highly luminescent doped-dots (d-dots) assembly for improved cell imaging.

  15. 24-gauge ultrafine cryoprobe with diameter of 550 μm and its cooling performance.

    PubMed

    Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao

    2014-12-01

    This paper describes the development of a novel cryoprobe with the same size as a 24-gauge injection needle and the evaluation of its cooling performance. This ultrafine cryoprobe was designed to reduce the invasiveness and extend application areas of cryosurgery. The ultrafine cryoprobe has a double-tube structure and consists of two stainless steel microtubes. The outer diameter of the cryoprobe is 550 μm, and the inner tube has a 70-μm inner diameter to depressurize the high-pressure refrigerant. By solving the bioheat transfer equation and considering freezing phenomena, the relationship between the size of the frozen region and the heat transfer coefficient of the refrigerant flow in an ultrafine cryoprobe was derived analytically. The results showed that the size of the frozen region is strongly affected by the heat transfer coefficient. A high heat transfer coefficient such as that of phase change heat transfer is required to generate a frozen region of sufficient size. In the experiment, trifluoromethane (HFC-23) was used as the refrigerant, and the cooling effects of the gas and liquid phase states at the inlet were evaluated. When the ultrafine cryoprobe was cooled using a liquid refrigerant, the surface temperature was approximately -50°C, and the temperature distribution on the surface was uniform for a thermally insulated condition. However, for the case with vaporized refrigerant, the temperature distribution was not uniform. Therefore, it was concluded that the cooling mechanism using liquid refrigerant was suitable for ultrafine cryoprobes. Furthermore, to simulate cryosurgery, a cooling experiment using hydrogel was conducted. The results showed that the surface temperature of the ultrafine cryoprobe reached -35°C and formed a frozen region with a radius of 4 mm in 4 min. These results indicate that the ultrafine cryoprobe can be applied in actual cryosurgeries for small affected areas.

  16. Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite.

    PubMed

    Holopainen, Jani; Santala, Eero; Heikkilä, Mikko; Ritala, Mikko

    2014-12-01

    Calcium carbonate (CaCO3) fibers were prepared by electrospinning followed by annealing. Solutions consisting of calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and polyvinylpyrrolidone (PVP) dissolved in ethanol or 2-methoxyethanol were used for the fiber preparation. By varying the precursor concentrations in the electrospinning solutions CaCO3 fibers with average diameters from 140 to 290 nm were obtained. After calcination the fibers were identified as calcite by X-ray diffraction (XRD). The calcination process was studied in detail with high temperature X-ray diffraction (HTXRD) and thermogravimetric analysis (TGA). The initially weak fiber-to-substrate adhesion was improved by adding a strengthening CaCO3 layer by spin or dip coating Ca(NO3)2/PVP precursor solution on the CaCO3 fibers followed by annealing of the gel formed inside the fiber layer. The CaCO3 fibers were converted to nanocrystalline hydroxyapatite (HA) fibers by treatment in a dilute phosphate solution. The resulting hydroxyapatite had a plate-like crystal structure with resemblance to bone mineral. The calcium carbonate and hydroxyapatite fibers are interesting materials for bone scaffolds and bioactive coatings.

  17. Predicting kinetic nanocrystal shapes through multi-scale theory and simulation: Polyvinylpyrrolidone-mediated growth of Ag nanocrystals

    NASA Astrophysics Data System (ADS)

    Balankura, Tonnam; Qi, Xin; Zhou, Ya; Fichthorn, Kristen A.

    2016-10-01

    In the shape-controlled synthesis of colloidal Ag nanocrystals, structure-directing agents, particularly polyvinylpyrrolidone (PVP), are known to be a key additive in making nanostructures with well-defined shapes. Although many Ag nanocrystals have been successfully synthesized using PVP, the mechanism by which PVP actuates shape control remains elusive. Here, we present a multi-scale theoretical framework for kinetic Wulff shape predictions that accounts for the chemical environment, which we used to probe the kinetic influence of the adsorbed PVP film. Within this framework, we use umbrella-sampling molecular dynamics simulations to calculate the potential of mean force and diffusion coefficient profiles of Ag atom deposition onto Ag(100) and Ag(111) in ethylene glycol solution with surface-adsorbed PVP. We use these profiles to calculate the mean-first passage times and implement extensive Brownian dynamics simulations, which allows the kinetic effects to be quantitatively evaluated. Our results show that PVP films can regulate the flux of Ag atoms to be greater towards Ag(111) than Ag(100). PVP's preferential binding towards Ag(100) over Ag(111) gives PVP its flux-regulating capabilities through the lower free-energy barrier of Ag atoms to cross the lower-density PVP film on Ag(111) and enhanced Ag trapping by the extended PVP film on Ag(111). Under kinetic control, {100}-faceted nanocrystals will be formed when the Ag flux is greater towards Ag(111). The predicted kinetic Wulff shapes are in agreement with the analogous experimental system.

  18. Laser-assisted synthesis, and structural and thermal properties of ZnS nanoparticles stabilised in polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Onwudiwe, Damian C.; Krüger, Tjaart P. J.; Jordaan, Anine; Strydom, Christien A.

    2014-12-01

    Zinc sulphide (ZnS) nanoparticles have been synthesised by a green approach involving laser irradiation of an aqueous solution of zinc acetate (Znac2) and sodium sulphide (Na2S·9H2O) or thioacetamide (TAA) in polyvinylpyrrolidone (PVP). The structural and morphological properties of the prepared samples were analysed using a transmission electron microscope, TEM, a high resolution transmission electron microscope, HRTEM, X-ray diffraction, and Raman spectroscopy. The thermal properties were studied using a simultaneous thermal analyser (SDTA). Better dispersed and larger particles were obtained by using sodium sulphide (Na2S) instead of TAA as the sulphur source. X-ray diffraction (XRD) analyses and Raman measurement show that the particles have a cubic structure, which is usually a low temperature phase of ZnS. There were phonon softening and line broadening of the peaks which are attributed to the phonon confinement effect. The average crystallite size of the ZnS nanoparticles estimated from the XRD showed a reduction in size from 13.62 to 10.42 nm for samples obtained from Na2S, and 9.13 to 8.16 nm for samples obtained from TAA, with an increase in the time of irradiation. The thermal stability of PVP was increased due to the incorporation of the ZnS nanoparticles in the matrices. The absorption spectra showed that the nanoparticles exhibit quantum confinement effects.

  19. Use of polyvinylpyrrolidone-iodine solution for sterilisation and preservation improves mechanical properties and osteogenesis of allografts

    NASA Astrophysics Data System (ADS)

    Zhao, Yantao; Hu, Xiantong; Li, Zhonghai; Wang, Fuli; Xia, Yang; Hou, Shuxun; Zhong, Hongbin; Zhang, Feimin; Gu, Ning

    2016-12-01

    Allografts eliminate the disadvantages associated with autografts and synthetic scaffolds but are associated with a disease-transmission risk. Therefore, allograft sterilisation is crucial. We aimed to determine whether polyvinylpyrrolidone-iodine (PVP-I) can be used for sterilisation and as a new wet-preservation method. PVP-I–sterilised and preserved allografts demonstrated improved mechanical property, osteogenesis, and excellent microbial inhibition. A thigh muscle pouch model of nude mice showed that PVP-I–preserved allografts demonstrated better ectopic formation than Co60-sterilised allografts (control) in vivo (P < 0.05). Furthermore, the PVP-I–preserved group showed no difference between 24 h and 12 weeks of allograft preservation (P > 0.05). PVP-I–preserved allografts showed more hydrophilic surfaces and PVP-I–sterilised tendons showed higher mechanical strength than Co60-sterilised tendons (P < 0.05). The level of residual PVP-I was higher without washing and with prolonged preservation (P < 0.05). In vitro cellular tests showed that appropriate PVP-I concentration was nontoxic to preosteoblast cells, and cellular differentiation measured by alkaline phosphatase activity and osteogenic gene markers was enhanced (P < 0.05). Therefore, the improved biological performance of implanted allografts may be attributable to better surface properties and residual PVP-I, and PVP-I immersion can be a simple, easy method for allograft sterilisation and preservation.

  20. Structural Phase Transition Effect on Resistive Switching Behavior of MoS2 -Polyvinylpyrrolidone Nanocomposites Films for Flexible Memory Devices.

    PubMed

    Zhang, Peng; Gao, Cunxu; Xu, Benhua; Qi, Lin; Jiang, Changjun; Gao, Meizhen; Xue, Desheng

    2016-04-01

    The 2H phase and 1T phase coexisting in the same molybdenum disulfide (MoS2 ) nanosheets can influence the electronic properties of the materials. The 1T phase of MoS2 is introduced into the 2H-MoS2 nanosheets by two-step hydrothermal synthetic methods. Two types of nonvolatile memory effects, namely write-once read-many times memory and rewritable memory effect, are observed in the flexible memory devices with the configuration of Al/1T@2H-MoS2 -polyvinylpyrrolidone (PVP)/indium tin oxide (ITO)/polyethylene terephthalate (PET) and Al/2H-MoS2 -PVP/ITO/PET, respectively. It is observed that structural phase transition in MoS2 nanosheets plays an important role on the resistive switching behaviors of the MoS2 -based device. It is hoped that our results can offer a general route for the preparation of various promising nanocomposites based on 2D nanosheets of layered transition metal dichalcogenides for fabricating the high performance and flexible nonvolatile memory devices through regulating the phase structure in the 2D nanosheets.

  1. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    NASA Astrophysics Data System (ADS)

    Zhang, Jinyu; Zhou, Guowei; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d100), and cell parameter (a0) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d100 and a0 continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%.

  2. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels.

    PubMed

    Wang, Zhuang; Quik, Joris T K; Song, Lan; Van Den Brandhof, Evert-Jan; Wouterse, Marja; Peijnenburg, Willie J G M

    2015-06-01

    The present study investigated how humic substances (HS) modify the aquatic toxicity of silver nanoparticles (AgNPs) as these particles agglomerate in water and interact with HS. An alga species (Raphidocelis subcapitata), a cladoceran species (Chydorus sphaericus), and a freshwater fish larva (Danio rerio), representing organisms of different trophic levels, were exposed to colloids of the polyvinylpyrrolidone-coated AgNPs in the presence and absence of HS. Results show that the presence of HS alleviated the aquatic toxicity of the AgNP colloids to all the organisms in a dose-dependent manner. The particle size distribution of the AgNPs' colloidal particles shifted to lower values due to the presence of HS, implying that the decrease in the toxicity of the AgNP colloids cannot be explained by the variation of agglomeration size. The surface charge of the AgNPs was found to be more negative in the presence of high concentrations of HS, suggesting an electrostatic barrier by which HS might limit interactions between particles and algae cells; indeed, this effect reduced the algae toxicity. Observations on silver ions (Ag(+)) release show that HS inhibit AgNP dissolution, depending on the concentrations of HS. When toxic effects were expressed as a function of each Ag-species, toxicity of the free Ag(+) was found to be much higher than that of the agglomerated particles.

  3. A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone-graphene nanosheets-nickel nanoparticles-chitosan nanocomposite.

    PubMed

    Liu, Zhiguang; Guo, Yujing; Dong, Chuan

    2015-05-01

    In this report, a new nanocomposite was successfully synthesized by chemical deposition of nickel nanoparticles (NiNPs) on polyvinylpyrrolidone (PVP) stabilized graphene nanosheets (GNs) with chitosan (CS) as the protective coating. The as obtained nanocomposite (PVP-GNs-NiNPs-CS) was characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Benefiting from the synergistic effect of GNs (large surface area and high conductivity), NiNPs (high electrocatalytic activity towards the glucose oxidation) and CS (good film-forming and antifouling ability), a nonenzymatic electrochemical glucose sensor was established. The nanocomposite displays greatly enhanced electrocatalytic activity towards the glucose oxidation in NaOH solution. The PVP-GNs-NiNPs-CS based electrochemical glucose sensor demonstrates good sensitivity, wide linear range (0.1 μM-0.5 mM), outstanding detection limit (30 nM), attractive selectivity, good reproducibility, high stability as well as prominent feasibility for the real sample analysis. The proposed experiment might open up a new possibility for widespread use of non-enzymatic sensors for monitoring blood glucose owing to its advantages of low cost, simple preparation and excellent properties for glucose detection.

  4. Predicting kinetic nanocrystal shapes through multi-scale theory and simulation: Polyvinylpyrrolidone-mediated growth of Ag nanocrystals.

    PubMed

    Balankura, Tonnam; Qi, Xin; Zhou, Ya; Fichthorn, Kristen A

    2016-10-14

    In the shape-controlled synthesis of colloidal Ag nanocrystals, structure-directing agents, particularly polyvinylpyrrolidone (PVP), are known to be a key additive in making nanostructures with well-defined shapes. Although many Ag nanocrystals have been successfully synthesized using PVP, the mechanism by which PVP actuates shape control remains elusive. Here, we present a multi-scale theoretical framework for kinetic Wulff shape predictions that accounts for the chemical environment, which we used to probe the kinetic influence of the adsorbed PVP film. Within this framework, we use umbrella-sampling molecular dynamics simulations to calculate the potential of mean force and diffusion coefficient profiles of Ag atom deposition onto Ag(100) and Ag(111) in ethylene glycol solution with surface-adsorbed PVP. We use these profiles to calculate the mean-first passage times and implement extensive Brownian dynamics simulations, which allows the kinetic effects to be quantitatively evaluated. Our results show that PVP films can regulate the flux of Ag atoms to be greater towards Ag(111) than Ag(100). PVP's preferential binding towards Ag(100) over Ag(111) gives PVP its flux-regulating capabilities through the lower free-energy barrier of Ag atoms to cross the lower-density PVP film on Ag(111) and enhanced Ag trapping by the extended PVP film on Ag(111). Under kinetic control, {100}-faceted nanocrystals will be formed when the Ag flux is greater towards Ag(111). The predicted kinetic Wulff shapes are in agreement with the analogous experimental system.

  5. Influence of polyvinylpyrrolidone quantity on the solubility, crystallinity and oral bioavailability of fenofibrate in solvent-evaporated microspheres.

    PubMed

    Yousaf, Abid Mehmood; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jong Oh; Youn, Yu Seok; Cho, Kwan Hyung; Yong, Chul Soon; Choi, Han-Gon

    2016-06-01

    The objective of this study is to explore the influence of polyvinylpyrrolidone (PVP) quantity on the solubility, crystallinity and oral bioavailability of poorly water-soluble fenofibrate in solvent-evaporated microspheres. Numerous microspheres were prepared with fenofibrate, sodium lauryl sulphate (SLS) and PVP using the spray-drying technique. Their aqueous solubility, dissolution, physicochemical properties and pharmacokinetics in rats were assessed. The drug in the solvent-evaporated microspheres composed of fenofibrate, PVP and SLS at the weight ratio of 1:0.5:0.25 was not entirely changed to the amorphous form and partially in the microcrystalline state. However, the microspheres at the weight ratio of 1:4:0.25 provided the entire conversion to the amorphous form. The latter microspheres, with an improvement of about 115 000-fold in aqueous solubility and 5.6-fold improvement in oral bioavailability compared with the drug powder, gave higher aqueous solubility and oral bioavailability compared with the former. Thus, PVP quantity played an important role in these properties of fenofibrate in the solvent-evaporated microspheres.

  6. Graphene/polyvinylpyrrolidone/polyaniline nanocomposite-modified electrode for simultaneous determination of parabens by high performance liquid chromatography.

    PubMed

    Kajornkavinkul, Suphunnee; Punrat, Eakkasit; Siangproh, Weena; Rodthongkum, Nadnudda; Praphairaksit, Narong; Chailapakul, Orawon

    2016-02-01

    A nanocomposite of graphene (G), polyvinylpyrrolidone (PVP) and polyaniline (PANI) modified onto screen-printed carbon electrode (SPCE) using an electrospraying technique was developed for simultaneous determination of five parabens in beverages and cosmetic products by high performance liquid chromatography. PVP and PANI were used as the dispersing agents of graphene, and also for the enhancement of electrochemical conductivity of the electrode. The electrochemical behavior of each paraben was investigated using the G/PVP/PANI nanocomposite-modified SPCE, compared to the unmodified SPCE. Using HPLC along with amperometric detection at a controlled potential of +1.2V vs Ag/AgCl, the chromatogram of five parabens obtained from the modified SPCE exhibits well defined peaks and higher current response than those of its unmodified counterpart. Under the optimal conditions, the calibration curves of five parabens similarly provide a linear range between 0.1 and 30 µg mL(-1) with the detection limits of 0.01 µg mL(-1) for methyl paraben (MP), ethyl paraben (EP) and propyl paraben (PP), 0.02 and 0.03 µg mL(-1) for isobutyl paraben (IBP) and butyl paraben (BP), respectively. Furthermore, this proposed method was applied for the simultaneous determination of five parabens in real samples including a soft drink and a cosmetic product with satisfactory results, yielding the recovery in the range of 90.4-105.0%.

  7. High-Temperature Cross-Linking of Carbon Nanotube Multi-Yarn Using Polyvinylpyrrolidone as a Binding Agent.

    PubMed

    Misak, H; Asmatulu, R; Whitman, J; Mall, S

    2015-03-01

    Carbon nanotube (CNT) multi-yarn was cross-linked together at elevated temperatures using a poly- mer, with the intent of improving their strength and electrical conductivity. They were functionalized using an acid treatment and immersed in a bath of different concentrations (0.5%, 0.1%, and 0.2%) of polyvinylpyrrolidone (PVP). Then they were placed in an oven at various temperatures (180 °C, 200 °C, and 220 °C) in order to cause cross-linking among the carbon nanotube yarns. The phys- ical, chemical, electrical, and mechanical properties of the cross-linked yarns were investigated. The yarns cross-linked at higher temperatures and greater concentrations of PVP had a greater increase in linear mass density, indicating that the cross-linking process had worked as expected. Yarns that were cross-linked at lower temperatures had greater tensile strength and better spe- cific electrical conductivity. Those that were treated with a greater concentration of polymer had a greater ultimate tensile strength. All these results are encouraging first step, but still need further development if CNT yarn is to replace copper wire.

  8. Sensitive Adsorptive Voltammetric Method for Determination of Bisphenol A by Gold Nanoparticle/Polyvinylpyrrolidone-Modified Pencil Graphite Electrode

    PubMed Central

    Yaman, Yesim Tugce; Abaci, Serdar

    2016-01-01

    A novel electrochemical sensor gold nanoparticle (AuNP)/polyvinylpyrrolidone (PVP) modified pencil graphite electrode (PGE) was developed for the ultrasensitive determination of Bisphenol A (BPA). The gold nanoparticles were electrodeposited by constant potential electrolysis and PVP was attached by passive adsorption onto the electrode surface. The electrode surfaces were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The parameters that affected the experimental conditions were researched and optimized. The AuNP/PVP/PGE sensor provided high sensitivity and selectivity for BPA recognition by using square wave adsorptive stripping voltammetry (SWAdSV). Under optimized conditions, the detection limit was found to be 1.0 nM. This new sensor system offered the advantages of simple fabrication which aided the expeditious replication, low cost, fast response, high sensitivity and low background current for BPA. This new sensor system was successfully tested for the detection of the amount of BPA in bottled drinking water with high reliability. PMID:27231912

  9. Use of polyvinylpyrrolidone-iodine solution for sterilisation and preservation improves mechanical properties and osteogenesis of allografts

    PubMed Central

    Zhao, Yantao; Hu, Xiantong; Li, Zhonghai; Wang, Fuli; Xia, Yang; Hou, Shuxun; Zhong, Hongbin; Zhang, Feimin; Gu, Ning

    2016-01-01

    Allografts eliminate the disadvantages associated with autografts and synthetic scaffolds but are associated with a disease-transmission risk. Therefore, allograft sterilisation is crucial. We aimed to determine whether polyvinylpyrrolidone-iodine (PVP-I) can be used for sterilisation and as a new wet-preservation method. PVP-I–sterilised and preserved allografts demonstrated improved mechanical property, osteogenesis, and excellent microbial inhibition. A thigh muscle pouch model of nude mice showed that PVP-I–preserved allografts demonstrated better ectopic formation than Co60-sterilised allografts (control) in vivo (P < 0.05). Furthermore, the PVP-I–preserved group showed no difference between 24 h and 12 weeks of allograft preservation (P > 0.05). PVP-I–preserved allografts showed more hydrophilic surfaces and PVP-I–sterilised tendons showed higher mechanical strength than Co60-sterilised tendons (P < 0.05). The level of residual PVP-I was higher without washing and with prolonged preservation (P < 0.05). In vitro cellular tests showed that appropriate PVP-I concentration was nontoxic to preosteoblast cells, and cellular differentiation measured by alkaline phosphatase activity and osteogenic gene markers was enhanced (P < 0.05). Therefore, the improved biological performance of implanted allografts may be attributable to better surface properties and residual PVP-I, and PVP-I immersion can be a simple, easy method for allograft sterilisation and preservation. PMID:27934929

  10. Cryomilling-induced solid dispersion of poor glass forming/poorly water-soluble mefenamic acid with polyvinylpyrrolidone K12.

    PubMed

    Kang, Naewon; Lee, Jangmi; Choi, Ji Na; Mao, Chen; Lee, Eun Hee

    2015-06-01

    The effect of mechanical impact on the polymorphic transformation of mefenamic acid (MFA) and the formation of a solid dispersion of mefenamic acid, a poor glass forming/poorly-water soluble compound, with polyvinylpyrrolidone (PVP) K12 was investigated. The implication of solid dispersion formation on solubility enhancement of MFA, prepared by cryomilling, was investigated. Solid state characterization was conducted using powder X-ray diffraction (PXRD) and Fourier-transform infrared (FTIR) spectroscopy combined with crystal structure analysis. Apparent solubility of the mixtures in pH 7.4 buffer was measured. A calculation to compare the powder patterns and FTIR spectra of solid dispersions with the corresponding physical mixtures was conducted. Solid state characterization showed that (1) MFA I transformed to MFA II when pure MFA I was cryogenically milled (CM); and (2) MFA forms a solid dispersion when MFA was cryogenically milled with PVP K12. FTIR spectral analysis showed that hydrogen bonding facilitated by mechanical impact played a major role in forming solid dispersions. The apparent solubility of MFA was significantly improved by making a solid dispersion with PVP K12 via cryomilling. This study highlights the importance of cryomilling with a good hydrogen bond forming excipient as a technique to prepare solid dispersion, especially when a compound shows a poor glass forming ability and therefore, is not easy to form amorphous forms by conventional method.

  11. Degradation of poly(ether sulfone)/polyvinylpyrrolidone membranes by sodium hypochlorite: insight from advanced electrokinetic characterizations.

    PubMed

    Hanafi, Yamina; Szymczyk, Anthony; Rabiller-Baudry, Murielle; Baddari, Kamel

    2014-11-18

    Poly(ether sulfone) (PES)/polyvinylpyrrolidone (PVP) membranes are widely used in various industrial fields such as drinking water production and in the dairy industry. However, the use of oxidants to sanitize the processing equipment is known to impair the integrity and lifespan of polymer membranes. In this work we showed how thorough electrokinetic measurements can provide essential information regarding the mechanism of degradation of PES/PVP membranes by sodium hypochlorite. Tangential streaming current measurements were performed with ultrafiltration and nanofiltration PES/PVP membranes for various aging times. The electrokinetic characterization of membranes was complemented by FTIR-ATR spectroscopy. Results confirmed that sodium hypochlorite induces the degradation of both PES and PVP. This latter is easily oxidized by sodium hypochlorite, which leads to an increase in the negative charge density of the membrane due to the formation of carboxylic acid groups. The PVP was also found to be partly released from the membrane with aging time. Thanks to the advanced electrokinetic characterization implemented in this work it was possible for the first time to demonstrate that two different mechanisms are involved in the degradation of PES. Phenol groups were first formed as a result of the oxidation of PES aromatic rings by substitution of hydrogen by hydroxyl radicals. For more severe aging conditions, this membrane degradation mechanism was followed by the formation of sulfonic acid functions, thus indicating a second degradation process through scission of PES chains.

  12. Novel polyvinylpyrrolidones to improve delivery of poorly water-soluble drugs: from design to synthesis and evaluation.

    PubMed

    Niemczyk, Anna I; Williams, Adrian C; Rawlinson-Malone, Clare F; Hayes, Wayne; Greenland, Barnaby W; Chappell, David; Khutoryanskaya, Olga; Timmins, Peter

    2012-08-06

    Polyvinylpyrrolidone is widely used in tablet formulations with the linear form acting as a wetting agent and disintegrant, whereas the cross-linked form is a superdisintegrant. We have previously reported that simply mixing the commercial cross-linked polymer with ibuprofen disrupted drug crystallinity with consequent improvements in drug dissolution behavior. In this study, we have designed and synthesized novel cross-linking agents containing a range of oligoether moieties that have then been polymerized with vinylpyrrolidone to generate a suite of novel excipients with enhanced hydrogen-bonding capabilities. The polymers have a porous surface and swell in the most common solvents and in water, properties that suggest their value as disintegrants. The polymers were evaluated in simple physical mixtures with ibuprofen as a model poorly water-soluble drug. The results show that the novel PVPs induce the drug to become "X-ray amorphous", which increased dissolution to a greater extent than that seen with commercial cross-linked PVP. The polymers stabilize the amorphous drug with no evidence for recrystallization seen after 20 weeks of storage.

  13. Evolution of structure and properties of granules containing microcrystalline cellulose and polyvinylpyrrolidone during high-shear wet granulation.

    PubMed

    Osei-Yeboah, Frederick; Feng, Yushi; Sun, Changquan Calvin

    2014-01-01

    Granulation behavior of microcrystalline cellulose (MCC) in the presence of 2.5% polyvinylpyrrolidone (PVP) was systematically studied. Complex changes in flowability and tabletability of lubricated MCC granules are correlated to changes in intragranular porosity, morphology, surface smoothness, size distribution, and specific surface area (SSA). With 2.5% PVP, the use of 45% granulation water leads to 84% reduction in tablet tensile strength and 76% improvement in powder flow factor. The changes in powder performance are explained by granule densification and surface smoothing. The granulating water level corresponding to the onset of overgranulation, 45%, is significantly lower than the 70% water required for unlubricated MCC granules without PVP. At more than 45% water levels, MCC-PVP granules flow well but cannot be compressed into intact tablets. Such changes in powder performance correspond to the rapid growth into large and dense spheres with smooth surface. Compared with MCC alone, the onset of the phase of fast granule size enlargement occurs at a lower water level when 2.5% PVP is used. Although the use of 2.5% PVP hastens granule nucleation and growth rate, the mechanisms of overgranulation are the same, that is, size enlargement, granule densification, surface smoothing, and particle rounding in both systems.

  14. Induction of apoptosis and cell cycle arrest by polyvinylpyrrolidone K-30 and protective effect of alpha-tocopherol.

    PubMed

    Wang, Yu-Bao; Lou, Yang; Luo, Zhao-Feng; Zhang, Dong-Fang; Wang, Yu-Zhen

    2003-09-05

    Polyvinylpyrrolidone is a macromolecular polymer with widespread use in industry as well as in medicine for various purposes. Its effect on cells cultured in vitro, however, has not been fully investigated. To elucidate this issue, we studied the influence of PVP K-30 on cultured HeLa cells. PVP K-30 treatment produced a dose- and time-dependent toxicity to HeLa cells. Cells exposed to PVP K-30 exhibited several morphological features of apoptosis. Gel electrophoresis of DNA from PVP K-30-treated cells showed typical apoptotic ladder. And flow cytometric analysis demonstrated that PVP K-30 induced cell cycle arrest at G2/M phase and the subsequent appearance of sub-G1 population. In addition, it was shown that procaspase-3 was activated in response to PVP K-30 treatment. We also found that alpha-tocopherol efficiently protected HeLa cells from PVP K-30 cytotoxicity. This is the first demonstration that PVP K-30 could induce apoptosis in HeLa cells and cell cycle arrest at G2/M phase, and that PVP K-30 toxicity could be attenuated by alpha-tocopherol.

  15. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles.

    PubMed

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-12-28

    The effect of nanoparticle size (30-120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T(2) relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics.

  16. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.

    PubMed

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering.

  17. Roles of grain boundaries in improving fracture toughness of ultrafine-grained metals

    NASA Astrophysics Data System (ADS)

    Shimokawa, T.; Tanaka, M.; Kinoshita, K.; Higashida, K.

    2011-06-01

    In order to improve the fracture toughness in ultrafine-grained metals, we investigate the interactions among crack tips, dislocations, and grain boundaries in aluminum bicrystal models containing a crack and <112> tilt grain boundaries using molecular dynamics simulations. The results of previous computer simulations showed that grain refinement makes materials brittle if grain boundaries behave as obstacles to dislocation movement. However, it is actually well known that grain refinement increases fracture toughness of materials. Thus, the role of grain boundaries as dislocation sources should be essential to elucidate fracture phenomena in ultrafine-grained metals. A proposed mechanism to express the improved fracture toughness in ultrafine-grained metals is the disclination shielding effect on the crack tip mechanical field. Disclination shielding can be activated when two conditions are present. First, a transition of dislocation sources from crack tips to grain boundaries must occur. Second, the transformation of grain-boundary structure into a neighboring energetically stable boundary must occur as dislocations are emitted from the grain boundary. The disclination shielding effect becomes more pronounced as antishielding dislocations are continuously emitted from the grain boundary without dislocation emissions from crack tips, and then ultrafine-grained metals can sustain large plastic deformation without fracture with the drastic increase of the mobile dislocation density. Consequently, it can be expected that the disclination shielding effect can improve the fracture toughness in ultrafine-grained metals.

  18. Preparation of Ultrafine W-Cu Composite Powder Using Ultrasonic-Assisted Electroless Plating

    NASA Astrophysics Data System (ADS)

    Huang, Limei; Luo, Laima; Ding, Xiaoyu; Zan, Xiang; Hong, Yu; Cheng, Jigui; Wu, Yucheng; Luo, Guangnan; Zhu, Liu

    2013-07-01

    W-Cu ultrafine/nanocomposite powders have high sintering activity, so ultrafine/nanotechnology of W-Cu composite powders is one of the main methods to obtain fully dense, high-performance W-Cu composite materials. Cu-coated ultrafine W composite powders were synthesized by ultrasonic-assisted electroless plating process with non-noble metal activation pretreatment at room temperature in this paper. The growth mechanism of Cu layers and surface morphologies and composition of initial ultrafine W powders, pretreated W powders and Cu-coated W powders were analyzed by field emission scanning electron microscopy (FE-SEM), and energy dispersion spectrometry (EDS). The results show that the uniformly Cu coated W composite powder is successfully synthesized without conventional sensitization and activation steps by ultrasonic-assisted electroless plating at room temperature. The Cu layers on the ultrafine W powders had cell structure with dense, uniform distribution. The growth mechanism of Cu layers appears as follows: the surfaces of pretreated W powders appear linear-like and lamellar-like surface defects which act as activated sites. The reactants in the plating solution were adsorbed on catalytic activity surfaces of powders and happened oxidation-reduction reaction. The growth and aggregation mechanisms of Cu particles after nucleation are stripy Cu-cells grew up, bend, bifurcated, and aggregated, then wounding into a cellular structure, like "wrapping wool clusters" in the life. Finally, Cu cells grow up and merge into a layer.

  19. Multiwalled carbon nanotube (MWCNT) reinforced cellulose fibers by electrospinning.

    PubMed

    Lu, Ping; Hsieh, You-Lo

    2010-08-01

    Multiwalled carbon nanotubes (MWCNTs) were successfully incorporated in ultrafine cellulose fibers by electrospinning MWCNT-loaded cellulose acetate (CA) solutions, followed by deacetylation of CA to cellulose (cell). The mean fiber diameter reduced from 321 nm of the as-spun fibers to 257 and 228 nm of those with 0.11 and 0.55 wt % MWCNTs, respectively, and became more uniform. Hydrolysis of CA to cell further reduced the mean fiber sizes by another 8-16%. The MWCNTs were observed to be well-aligned along the fiber axes. The MWCNT/cell composite fibers had increased specific surface, from 4.27 m(2)/g to 5.07 and 7.69 m(2)/g at 0.11 and 0.55 wt % MWCNTs, respectively, and much improved water wettability. The mechanical properties of the fibers were also greatly enhanced with increased MWCNT loading levels. The fact that MWCNTs were observed in only about a third of the fibers at a very low 0.55 wt % loading suggests significantly higher tensile strength may be achieved by a further increase in MWCNT loadings.

  20. Impact Toughness of Ultrafine-Grained Interstitial-Free Steel

    NASA Astrophysics Data System (ADS)

    Saray, Onur; Purcek, Gencaga; Karaman, Ibrahim; Maier, Hans J.

    2012-11-01

    Impact toughness of an ultrafine-grained (UFG) interstitial-free (IF) steel produced by equal-channel angular extrusion/pressing (ECAE/P) at room temperature was investigated using Charpy impact tests. The UFG IF steel shows an improved combination of strength and impact toughness compared with the corresponding coarse-grained (CG) one. The CG IF steel samples underwent a transition in fracture toughness values with decreasing temperature because of a sudden change in fracture mode from microvoid coalescence (ductile) to cleavage (brittle) fracture. Grain refinement down to the submicron (≈320 nm) levels increased the impact energies in the upper shelf and lower shelf regions, and it considerably decreased the ductile-to-brittle transition temperature (DBTT) from 233 K (-40 °C) for the CG steel to approximately 183 K (-90 °C) for the UFG steel. Also, the sudden drop in DBTT with a small transition range for the CG sample changed to a more gradual decrease in energy for the UFG sample. The improvement in toughness after UFG formation was attributed to the combined effects of grain refinement and delamination and/or separation in the heavily deformed microstructure. Although an obvious change from the ductile fracture by dimples to the brittle fracture by cleavage was recognized at 233 K (-40 °C) for the CG steel, no fully brittle fracture occurred even at 103 K (-170 °C) in the UFG steel.

  1. Ultrafine particle size as a tracer for aircraft turbine emissions.

    PubMed

    Riley, Erin A; Gould, Timothy; Hartin, Kris; Fruin, Scott A; Simpson, Christopher D; Yost, Michael G; Larson, Timothy

    2016-08-01

    Ultrafine particle number (UFPN) and size distributions, black carbon, and nitrogen dioxide concentrations were measured downwind of two of the busiest airports in the world, Los Angeles International Airport (LAX) and Hartsfield-Jackson International Airport (ATL - Atlanta, GA) using a mobile monitoring platform. Transects were located between 5 km and 10 km from the ATL and LAX airports. In addition, measurements were taken at 43 additional urban neighborhood locations in each city and on freeways. We found a 3-5 fold increase in UFPN concentrations in transects under the landing approach path to both airports relative to surrounding urban areas with similar ground traffic characteristics. The latter UFPN concentrations measured were distinct in size distributional properties from both freeways and across urban neighborhoods, clearly indicating different sources. Elevated concentrations of Black Carbon (BC) and NO2 were also observed on airport transects, and the corresponding pattern of elevated BC was consistent with the observed excess UFPN concentrations relative to other urban locations.

  2. Pedestrians in Traffic Environments: Ultrafine Particle Respiratory Doses

    PubMed Central

    Manigrasso, Maurizio; Natale, Claudio; Vitali, Matteo; Protano, Carmela; Avino, Pasquale

    2017-01-01

    Particulate matter has recently received more attention than other pollutants. PM10 and PM2.5 have been primarily monitored, whereas scientists are focusing their studies on finer granulometric sizes due both to their high number concentration and their high penetration efficiency into the respiratory system. The purpose of this study is to investigate the population exposure to UltraFine Particles (UFP, submicrons in general) in outdoor environments. The particle number doses deposited into the respiratory system have been compared between healthy individuals and persons affected by Chronic Obstructive Pulmonary Disease (COPD). Measurements were performed by means of Dust Track and Nanoscan analyzers. Forty minute walking trails through areas with different traffic densities in downtown Rome have been considered. Furthermore, particle respiratory doses have been estimated for persons waiting at a bus stop, near a traffic light, or along a high-traffic road, as currently occurs in a big city. Large differences have been observed between workdays and weekdays: on workdays, UFP number concentrations are much higher due to the strong contribution of vehicular exhausts. COPD-affected individuals receive greater doses than healthy individuals due to their higher respiratory rate. PMID:28282961

  3. Synthesis of Strontium Ferrite Ultrafine Particles Using Microemulsion Processing.

    PubMed

    Chen, Dong-Hwang; Chen, Yuh-Yuh

    2001-04-01

    The strontium ferrite ultrafine particles have been prepared using the microemulsion processing. The mixed hydroxide precursor was obtained via the coprecipitation of Sr(2+) and Fe(3+) in a water-in-oil microemulsion of water/CTAB/n-butanol/isooctane. According to the investigation on the thermochemical properties by TGA/DTA and the phase analysis by XRD, it was shown that the precursor could yield pure strontium ferrite after calcination at 700 degrees C for 5 h while using an appropriate molar ratio of Sr/Fe in microemulsions. From TEM measurement, the diameters of the precursor and calcined particles were 3.8+/-0.7 and 50-100 nm, respectively. The magnetic properties characterized by a SQUID magnetometer showed that the saturation magnetization, remanent magnetization, coercivity, and squareness ratio were 55 emu/g, 28 emu/g, 492 Oe, and 0.51, respectively. The magnetization was also observed to increase with the decrease of temperature at 5-400 K. Compared with those reported earlier, the quite low coercivity implies the potential application of final product in the high-density perpendicular recording media. Copyright 2001 Academic Press.

  4. Recycling concrete: An undiscovered source of ultrafine particles

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Morawska, Lidia

    2014-06-01

    While concrete recycling is practiced worldwide, there are many unanswered questions in relation to ultrafine particle (UFP; Dp < 100 nm) emissions and exposure around recycling sites. In particular: (i) Does recycling produce UFPs and in what quantities? (ii) How do they disperse around the source? (iii) What impact does recycling have on ambient particle number concentrations (PNCs) and exposure? (iv) How effective are commonly used dust respirators to limit exposure? We measured size-resolved particles in the 5-560 nm range at five distances between 0.15 and 15.15 m that were generated by an experimentally simulated concrete recycling source and found that: (i) the size distributions were multimodal, with up to ˜93% of total PNC in the UFP size range; and (ii) dilution was a key particle transformation mechanism. UFPs showed a much slower decay rate, requiring ˜62% more distance to reach 10% of their initial concentration compared with their larger counterparts in the 100-560 nm size range. Compared with typical urban exposure during car journeys, exposure decay profiles showed up to ˜5 times higher respiratory deposition within 10 m of the source. Dust respirators were found to remove half of total PNC; however the removal factor for UFPs was only ˜57% of that observed in the 100-560 nm size range. These findings highlight a need for developing an understanding of the nature of the particles as well as for better control measures to limit UFP exposure.

  5. Ultrafine particle number fluxes over and in a deciduous forest

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Barthelmie, R. J.; Larsen, S. E.; Sørensen, L. L.

    2017-01-01

    Ultrafine particles (UFP, particles with diameters (Dp) < 100 nm) play a key role in climate forcing; thus, there is interest in improved understanding of atmosphere-surface exchange of these particles. Long-term flux measurements from a deciduous forest in the Midwestern USA (taken during December 2012 to May 2014) show that although a substantial fraction of the data period indicates upward fluxes of UFP, on average, the forest is a net sink for UFP during both leaf-active and leaf-off periods. The overall mean above-canopy UFP number flux computed from this large data set is -4.90 × 106 m-2 s-1 which re-emphasizes the importance of these ecosystems to UFP removal from the atmosphere. Although there remain major challenges to accurate estimation of the UFP number flux and in drawing inferences regarding the actual surface exchange from measurements taken above the canopy, the above the canopy mean flux is shown to be downward throughout the day (except at 23.00) with largest-magnitude fluxes during the middle of the day. On average, nearly three quarters of the total UFP capture by this ecosystem occurs at the canopy. This fraction increases to 78% during the leaf-active period, but the over-storey remains dominant over the subcanopy even during the leaf-off period.

  6. Insights on wood combustion generated proinflammatory ultrafine particles (UFP).

    PubMed

    Corsini, Emanuela; Ozgen, Senem; Papale, Angela; Galbiati, Valentina; Lonati, Giovanni; Fermo, Paola; Corbella, Lorenza; Valli, Gianluigi; Bernardoni, Vera; Dell'Acqua, Manuela; Becagli, Silvia; Caruso, Donatella; Vecchi, Roberta; Galli, Corrado L; Marinovich, Marina

    2017-01-15

    This study aimed to collect, characterize ultrafine particles (UFP) generated from the combustion of wood pellets and logs (softwood and hardwood) and to evaluate their pro-inflammatory effects in THP-1 and A549 cells. Both cell lines responded to UFP producing interleukin-8 (IL-8), with wood log UFP being more active compared to pellet UFP. With the exception of higher effect observed with beech wood log UFP in THP-1, the ability of soft or hard woods to induce IL-8 release was similar. In addition, on weight mass, IL-8 release was similar or lower compared to diesel exhaust particles (DEP), arguing against higher biological activity of smaller size particles. UFP-induced IL-8 could be reduced by SB203580, indicating a role of p38MAPK activation in IL-8 production. The higher activity of beech wood log UFP in THP-1 was not due to higher uptake or endotoxin contamination. Qualitatively different protein adsorption profiles were observed, with less proteins bound to beech UFP compared to conifer UFP or DEP, which may provide higher intracellular availability of bioactive components, i.e. levoglucosan and galactosan, toward which THP-1 were more responsive compared to A549 cells. These results contribute to our understanding of particles emitted by domestic appliances and their biological effects.

  7. In vitro biocompatibility of an ultrafine grained zirconium.

    PubMed

    Saldaña, Laura; Méndez-Vilas, Antonio; Jiang, Ling; Multigner, Marta; González-Carrasco, Jose L; Pérez-Prado, María T; González-Martín, María L; Munuera, Luis; Vilaboa, Nuria

    2007-10-01

    We have investigated a novel ultrafine grained (UFG) Zr obtained by severe plastic deformation (SPD) which resulted in a refinement of the grain size by several orders of magnitude. Compared to conventional Zr, higher hardness values were measured on UFG Zr. Polished surfaces having similar topographical features from both materials were prepared, as assessed by atomic force microscopy (AFM). Surface hydrophobicity of Zr, evaluated by measuring water contact angles, was unaffected by grain size reduction. In vitro biocompatibility was addressed on conventional and UFG Zr surfaces and, for comparative purposes, a polished Ti6Al4V alloy was also investigated. Cell attachment and spreading, actin and beta-tubulin cytoskeleton reorganisation, fibronectin secretion and cellular distribution as well as cell viability were evaluated by culturing human osteoblastic Saos-2 cells on the surfaces. The osteoblastic response to conventional Zr was found to be essentially identical to Ti6Al4V and was not affected by grain size reduction. In order to evaluate the ability of the surfaces to promote osteogenic maturation and bone matrix mineralisation, human mesenchymal cells from bone marrow were switched to the osteoblastic phenotype by incubation in osteogenic induction media. Compared to undifferentiated mesenchymal cells, alkaline phosphatase activity and formation of mineralisation nodules were enhanced to the same extent on both Zr surfaces and Ti6Al4V alloy after induction of osteoblastic differentiation. In summary, improved mechanical properties together with excellent in vitro biocompatibility make UFG Zr a promising biomaterial for surgical implants.

  8. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    PubMed

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements

  9. Outdoor ultrafine particle concentrations in front of fast food restaurants.

    PubMed

    Vert, Cristina; Meliefste, Kees; Hoek, Gerard

    2016-01-01

    Ultrafine particles (UFPs) have been associated with negative effects on human health. Emissions from motor vehicles are the principal source of UFPs in urban air. A study in Vancouver suggested that UFP concentrations were related to density of fast food restaurants near the monitoring sites. A previous monitoring campaign could not separate the contribution of restaurants from road traffic. The main goal of this study has been the quantification of fast food restaurants' contribution to outdoor UFP concentrations. A portable particle number counter (DiscMini) has been used to carry out mobile monitoring in a largely pedestrianized area in the city center of Utrecht. A fixed route passing 17 fast food restaurants was followed on 8 days. UFP concentrations in front of the restaurants were 1.61 times higher than in a nearby square without any local sources used as control area and 1.22 times higher compared with all measurements conducted in between the restaurants. Adjustment for other sources such as passing mopeds, smokers or candles did not explain the increase. In conclusion, fast food restaurants result in significant increases in outdoor UFP concentrations in front of the restaurant.

  10. Ultrafine particle air pollution inside diesel-propelled passenger trains.

    PubMed

    Abramesko, Victoria; Tartakovsky, Leonid

    2017-04-05

    Locomotives with diesel engines are used worldwide and are an important source of air pollution. Pollutant emissions by locomotive engines affect the air quality inside passenger trains. This study is aimed at investigating ultrafine particle (UFP) air pollution inside passenger trains and providing a basis for assessing passenger exposure to this pollutant. The concentrations of UFPs inside the carriages of push-pull trains are dramatically higher when the train operates in pull mode. This clearly shows that locomotive engine emissions are a dominant factor in train passengers' exposure to UFPs. The highest levels of UFP air pollution are observed inside the carriages of pull trains close to the locomotive. In push mode, the UFP number concentrations were lower by factors of 2.6-43 (depending on the carriage type) compared to pull mode. The UFP concentrations are substantially lower in diesel multiple-unit trains than in trains operating in pull mode. A significant influence of the train movement regime on the UFP NC inside a carriage is observed.

  11. Ultrafine particle size as a tracer for aircraft turbine emissions

    NASA Astrophysics Data System (ADS)

    Riley, Erin A.; Gould, Timothy; Hartin, Kris; Fruin, Scott A.; Simpson, Christopher D.; Yost, Michael G.; Larson, Timothy

    2016-08-01

    Ultrafine particle number (UFPN) and size distributions, black carbon, and nitrogen dioxide concentrations were measured downwind of two of the busiest airports in the world, Los Angeles International Airport (LAX) and Hartsfield-Jackson International Airport (ATL - Atlanta, GA) using a mobile monitoring platform. Transects were located between 5 km and 10 km from the ATL and LAX airports. In addition, measurements were taken at 43 additional urban neighborhood locations in each city and on freeways. We found a 3-5 fold increase in UFPN concentrations in transects under the landing approach path to both airports relative to surrounding urban areas with similar ground traffic characteristics. The latter UFPN concentrations measured were distinct in size distributional properties from both freeways and across urban neighborhoods, clearly indicating different sources. Elevated concentrations of Black Carbon (BC) and NO2 were also observed on airport transects, and the corresponding pattern of elevated BC was consistent with the observed excess UFPN concentrations relative to other urban locations.

  12. Fiber Techniques

    ERIC Educational Resources Information Center

    Nalle, Leona

    1976-01-01

    Describes a course in fiber techniques, which covers design methods involving fibers and fabric, that students in the Art Department at Sleeping Giant Junior High School had the opportunity to learn. (Author/RK)

  13. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds.

    PubMed

    Jiang, Qiuran; Reddy, Narendra; Yang, Yiqi

    2010-10-01

    This paper reports a new method of cross-linking electrospun zein fibers using citric acid as a non-toxic cross-linker to enhance the water stability and cytocompatibility of zein fibers for tissue engineering and other medical applications. The electrospun structure has many advantages over other types of structures and protein-based biomaterials possess unique properties preferred for tissue engineering and other medical applications. However, ultrafine fiber matrices developed from proteins have poor mechanical properties and morphological stability in the aqueous environments required for medical applications. Efforts have been made to improve the water stability of electrospun protein scaffolds using cross-linking and other approaches, but the current methods have major limitations, such as cytotoxicity and low efficiency. In this research electrospun zein fibers were cross-linked with citric acid without using any toxic catalysts. The stability of the cross-linked fibers in phosphate-buffered saline and their ability to support the attachment, spreading and proliferation of mouse fibroblast cells were studied. The cross-linked electrospun fibers retained their ultrafine fibrous structure even after immersion in PBS at 37 degrees C for up to 15 days. Citric acid cross-linked electrospun zein scaffolds showed better attachment, spreading and proliferation of fibroblast cells than uncross-linked electrospun zein fibers, cross-linked zein films and electrospun polylactide fibers.

  14. Dietary Fiber

    MedlinePlus

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble ... types have important health benefits. Good sources of dietary fiber include Whole grains Nuts and seeds Fruit and ...

  15. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration

    NASA Astrophysics Data System (ADS)

    Ren, Liyun; Pandit, Vaibhav; Elkin, Joshua; Denman, Tyler; Cooper, James A.; Kotha, Shiva P.

    2013-02-01

    PLLA fibrous tissue scaffolds with controlled fiber nanoscale surface roughness are fabricated with a novel centrifugal jet spinning process. The centrifugal jet spinning technique is a highly efficient synthesis method for micron- to nano-sized fibers with a production rate up to 0.5 g min-1. During the centrifugal jet spinning process, a polymer solution jet is stretched by the centrifugal force of a rotating chamber. By engineering the rheological properties of the polymer solution, solvent evaporation rate and centrifugal force that are applied on the solution jet, polyvinylpyrrolidone (PVP) and poly(l-lactic acid) (PLLA) composite fibers with various diameters are fabricated. Viscosity measurements of polymer solutions allowed us to determine critical polymer chain entanglement limits that allow the generation of continuous fiber as opposed to beads or beaded fibers. Above a critical concentration at which polymer chains are partially or fully entangled, lower polymer concentrations and higher centrifugal forces resulted in thinner fibers. Etching of PVP from the PLLA-PVP composite fibers doped with increasing PVP concentrations yielded PLLA fibers with increasing nano-scale surface roughness and porosity, which increased the fiber hydrophilicity dramatically. Scanning electron micrographs of the etched composite fibers suggest that PVP and PLLA were co-contiguously phase separated within the composite fibers during spinning and nano-scale roughness features were created after the partial etching of PVP. To study the tissue regeneration efficacy of the engineered PLLA fiber matrix, human dermal fibroblasts are used to simulate partial skin graft. Fibers with increased PLLA surface roughness and porosity demonstrated a trend towards higher cell attachment and proliferation.PLLA fibrous tissue scaffolds with controlled fiber nanoscale surface roughness are fabricated with a novel centrifugal jet spinning process. The centrifugal jet spinning technique is a

  16. Delamination Effect on Impact Properties of Ultrafine-Grained Low-Carbon Steel Processed by Warm Caliber Rolling

    NASA Astrophysics Data System (ADS)

    Inoue, Tadanobu; Yin, Fuxing; Kimura, Yuuji; Tsuzaki, Kaneaki; Ochiai, Shojiro

    2010-02-01

    Bulk ultrafine-grained (UFG) low-carbon steel bars were produced by caliber rolling, and the impact and tensile properties were investigated. Initial samples with two different microstructures, ferrite-pearlite and martensite (or bainite), were prepared and then caliber rolling was conducted at 500 °C. The microstructures in the rolled bars consisted of an elongated UFG structure with a strong α-fiber texture. The rolled bar consisting of spheroidal cementite particles that distributed uniformly in the elongated ferrite matrix of transverse grain sizes 0.8 to 1.0 μm exhibited the best strength-ductility balance and impact properties. Although the yield strength in the rolled bar increased 2.4 times by grain refinement, the upper-shelf energy did not change, and its value was maintained from 100 °C to -40 °C. In the rolled bars, cracks during an impact test branched parallel to the longitudinal direction of the test samples as temperatures decreased. Delamination caused by such crack branching appeared, remarkably, near the ductile-to-brittle transition temperature (DBTT). The effect of delamination on the impact properties was associated with crack propagation on the basis of the microstructural features in the rolled bars. In conclusion, the strength-toughness balance is improved by refining crystal grains and controlling their shape and orientation; in addition, delamination effectively enhances the low-temperature toughness.

  17. The immobilization of proteins on biodegradable polymer fibers via click chemistry.

    PubMed

    Shi, Quan; Chen, Xuesi; Lu, Tiancheng; Jing, Xiabin

    2008-03-01

    A facile and efficient method to immobilize bioactive proteins onto polymeric substrate was established. Testis-specific protease 50 (TSP50) was immobilized on ultrafine biodegradable polymer fibers, i.e., (1) to prepare a propargyl-containing polymer P(LA90-co-MPC10) by introducing propargyl group into a cyclic carbonate monomer (5-methyl-5-propargyloxycarbonyl-1,3-dioxan-2-one, MPC) and copolymerizing it with l-lactide; (2) to electrospin the functionalized polymer into ultrafine fibers; (3) to azidize the TSP50, and (4) to perform the click reaction between the propargyl groups on the fibers and the azido groups on the protein. The TSP50-immobilized fibers can resist non-specific protein adsorptions but preserve specific recognition and combination with anti-TSP50. ELISA tests were carried out by using HRP-goat-anti-mouse-IgG(H+L) as secondary antibody and o-phenylenediamine (OPDA)/H(2)O(2) as substrate to detect the combination of immobilized TSP50 with anti-TSP50. The results showed that anti-TSP50 can be selectively adsorbed from its solution onto the TSP50-immobilized fibers in the presence of BSA of as high as 10(4) times concentration. TSP50 immobilized on the fiber and anti-TSP50 combined to the fiber were also quantitatively determined. Anti-TSP50 can be then eluted off from the fiber when pH changes. The eluted fiber can re-combine anti-TSP50 at an efficiency of 75% compared to the original TSP50-immobilized fiber. Therefore, the TSP50-immobilized fibers can be used in the detection, separation, and purification of anti-TSP50. The "click" method can lead to a universal strategy to protein immobilization.

  18. Effect of multidirectional forging and equal channel angular pressing on ultrafine grain formation in a Cu- Cr-Zr alloy

    NASA Astrophysics Data System (ADS)

    Shakhova, I.; Belyakov, A.; Kaibyshev, R.

    2014-08-01

    The microstructure evolution was investigated in a Cu-0.3%Cr-0.5%Zr alloy subjected to large plastic deformation at temperature of 400 °C. Two methods of large plastic deformation, i.e., equal channel angular pressing (ECAP) and multidirectional forging (MDF) were used. The large plastic deformations resulted in the development of new ultrafine grains. The formation of new ultrafine grains occurred as a result of continuous reaction, i.e., progressive increase in the misorientations of deformation subboundaries. The faster kinetics of microstructure evolution was observed during MDF as compared to ECAP. The MDF to a total strain of 4 resulted in the formation of uniform ultrafine grained structure, while ECAP to the same strain led to the heterogeneous microstructure consisting of new ultrafine grains and coarse remnants of original grains. Corresponding area fractions of ultrafine grains comprised 0.23 and 0.59 in the samples subjected to ECAP and MDF, respectively.

  19. One-dimensional multiferroic bismuth ferrite fibers obtained by electrospinning techniques

    NASA Astrophysics Data System (ADS)

    Baji, Avinash; Mai, Yiu-Wing; Li, Qian; Wong, Shing-Chung; Liu, Yun; Yao, Q. W.

    2011-06-01

    We report the fabrication of novel multiferroic nanostructured bismuth ferrite (BiFeO3) fibers using the sol-gel based electrospinning technique. Phase pure BiFeO3 fibers were prepared by thermally annealing the electrospun BiFeO3/polyvinylpyrrolidone composite fibers in air for 1 h at 600 °C. The x-ray diffraction pattern of the fibers (BiFeO3) obtained showed that their crystalline structures were rhombohedral perovskite structures. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images revealed that the BiFeO3 fibers were composed of fine grained microstructures. The grains were self-assembled and self-organized to yield dense and continuous fibrous structures. The magnetic hysteresis loops of these nanostructured fibers displayed the expected ferromagnetic behavior, whereby a coercivity of ~ 250 Oe and a saturation magnetization of ~ 1.34 emu g - 1 were obtained. The ferroelectricity and ferroelectric domain structures of the fibers were confirmed using piezoresponse force microscopy (PFM). The piezoelectric hysteresis loops and polar domain switching behavior of the fibers were examined. Such multiferroic fibers are significant for electroactive applications and nano-scale devices.

  20. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults

    NASA Astrophysics Data System (ADS)

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-11-01

    The criteria for designating an “Active Fault” not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault’s latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones.

  1. Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Hao, T.; Fan, Z. Q.; Zhang, T.; Luo, G. N.; Wang, X. P.; Liu, C. S.; Fang, Q. F.

    2014-12-01

    In this study, equal-channel angular pressing (ECAP) was employed to refine the grain size of tungsten at relatively low temperatures. The small punch (SP) test results show that the ultrafine-grained tungsten appears an evident improvement in both strength and ductility compared with primary coarse-grained tungsten. The analysis results from SP test data indicate that the ductile-to-brittle transition temperature (DBTT) of the ultrafine-grained tungsten decrease to 386 °C and 322 °C due to the ECAP processing at 800 °C and 950 °C, respectively. The reason of the improvement in both strength and ductility of the ultrafine-grained tungsten produced by ECAP is discussed.

  2. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults

    PubMed Central

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-01-01

    The criteria for designating an “Active Fault” not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault’s latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones. PMID:27827413

  3. Characterization of pure Ni ultrafine/nanoparticles synthesized by electromagnetic levitational gas condensation method

    SciTech Connect

    Khodaei, Azin Hasannasab, Malihe; Amousoltani, Narges; Kermanpur, Ahmad

    2016-02-15

    Highlights: • Ni ultrafine/nanoparticles were produced using the single-step ELGC method. • Ar and He–20%Ar gas mixtures were used as the condensing gas under 1 atm. • Effects of gas type and flow rate on particle size distribution were investigated. • The nanoparticles showed both high saturation magnetization and low coercivity. - Abstract: In this work, Ni ultrafine/nanoparticles were directly produced using the one-step, relatively large-scale electromagnetic levitational gas condensation method. In this process, Ni vapors ascending from the levitated droplet were condensed by Ar and He–20%Ar gas mixtures under atmospheric pressure. Effects of type and flow rate of the condensing gas on the size, size distribution and crystallinity of Ni particles were investigated. The particles were characterized by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The process parameters for the synthesis of the crystalline Ni ultrafine/nanoparticles were determined.

  4. Ultrafine particles preserved in the fault gouge of the Arima-Takatsuki Tectonic Line, Japan

    NASA Astrophysics Data System (ADS)

    Asayama, S.; Hirono, T.

    2015-12-01

    Coseismic friction causes comminution, grain-size reduction, and amorphization of minerals. These ultrafine particles are preserved in the fault: for example, particles (size of some tens of nanometers) have been reported only in the latest slip zone within the Taiwan Chelungpu fault that slipped during the 1999 Chi-Chi earthquake. On the other hand, these ultrafine particles might dissolve in the pore water and then disappear, because amorphous fine minerals have generally high water solubility. This indicates that the preserved ultrafine particles have potential as a proxy for identifying the slip zone of the most recent earthquake along a fault. However, the occurrence in the active faults has not been fully reported. Thus, we investigated the slip zone within the Arima-Takatsuki Tectonic Line considered to have slipped at the 1596 Keicho-Fushimi earthquake, and reported mineral particles within the slip zone together with the development of advanced method to quantify amorphous component.

  5. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-08-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe3O4 and γ-Fe2O3 NPs with particle sizes ranging from 20 to 50 nm, and Fe0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  6. [Toxicological evaluation of colloidal nano-sized silver stabilized polyvinylpyrrolidone. III. Enzymological, biochemical markers, state of antioxidant defense system].

    PubMed

    Gmoshinsky, I V; Shipelin, V A; Vorozhko, I V; Sentsova, T B; Soto, S Kh; Avren'eva, L I; Guseva, G V; Kravchenko, L V; Khotimchenko, S A; Tutelyan, V A

    2016-01-01

    Nanosized colloidal silver (NCS) with primary nanoparticles (NPs) size in the range of 10-80 nm in aqueous suspension was administered to rats with initial weight 80±10 gfor the first 30 day intragastrically and for lasting 62 days with the diet consumed in doses of 0.1; 1.0 and 10 mg/kg of body weight b.w) per day based on silver (Ag). The control animals received deionized water and carrier of NPs - aqueous solution of stabilizer polyvinylpyrrolidone. Activity (Vmax) was determined in liver of microsomal mixed function monooxygenase isoforms CYP 1A1, 1A2 and 2B1 against their specific substrates, the activity of liver conjugating enzymes (glutathione-S-transferase and UDP-glucuronosyltransferase) in the microsomal fraction and a cytosol, and the overall and non-sedimentable activities of lysosomal hydrolases. In blood plasma there were evaluated malonic dialdehyde, PUFA diene conjugates, in erythrocytes - the activity of antioxidant enzymes. A set of standard biochemical indicators of blood serum was also determined. The studies revealed changes in a number of molecular markers of toxic action. Among them - the increase in the activity of key enzymes I and II stages of detoxification of xenobiotics, indicating its functional overvoltage; reducing the activity of glutathione peroxidase (GP), the total arylsulfatase A and B, β-galactosidase (in the absence of changes in their non-sedimentable activity), levels of uric acid, increased alkaline phosphatase activity. These changes occurred mainly at the dose Ag of 10 mg/kg b.w., except for the GP to which the threshold dose was 1 mg/kg b.w. No significant changes in the studied markers in a dose Ag 0,1 mg/kg b.w. were identified. Possible mechanisms of the toxic action of silver NPs are discussed.

  7. Effects of poly(2-hydroxyethyl methacrylate) and poly(vinyl-pyrrolidone) hydrogel implants on myopic and normal chick sclera

    PubMed Central

    Su, James; Iomdina, Elena; Tarutta, Elena; Ward, Brian; Song, Jie; Wildsoet, Christine F.

    2008-01-01

    There has been generally little attention paid to the utilization of biomaterials as an anti-myopia treatment. The purpose of this study was to investigate whether polymeric hydrogels, either implanted or injected adjacent to the outer scleral surface, slow ocular elongation. White Leghorn (gallus gallus domesticus) chicks were used at 2 weeks of age. Chicks had either (1) strip of poly(2-hydroxyethyl methacrylate) (pHEMA) implanted monocularly against the outer sclera at the posterior pole, or (2) an in situ polymerizing gel [main ingredient: poly(vinyl-pyrrolidone) (PVP)] injected monocularly at the same location. Some of the eyes injected with the polymer were fitted with a diffuser or a −10D lens. In each experiment, ocular lengths were measured at regular intervals by high frequency A-scan ultrasonography, and chicks were sacrificed for histology at staged intervals. No in vivo signs of either orbital or ocular inflammation were observed. The pHEMA implant significantly increased scleral thickness by the third week, and the implant became encapsulated with fibrous tissue. The PVP-injected eyes left otherwise untreated, showed a significant increase in scleral thickness, due to increased chondrocyte proliferation and extracellular matrix deposition. However, there was no effect of the PVP injection on ocular elongation. In eyes wearing optical devices, there was no effect on either scleral thickness or ocular elongation. These results represent “proof of principle” that scleral growth can be manipulated without adverse inflammatory responses. However, since neither approach slowed ocular elongation, additional factors must influence scleral surface area expansion in the avian eye. PMID:19109950

  8. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    SciTech Connect

    Zhang, Jinyu; Zhou, Guowei Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  9. What does respirator certification tell us about filtration of ultrafine particles?

    PubMed

    Eninger, Robert M; Honda, Takeshi; Reponen, Tiina; McKay, Roy; Grinshpun, Sergey A

    2008-05-01

    Recent interest in exposures to ultrafine particles (less than 100 nm) in both environmental and occupational settings led the authors to question whether the protocols used to certify respirator filters provide adequate attention to ultrafine aerosols. The authors reviewed the particle size distribution of challenge aerosols and evaluated the aerosol measurement method currently employed in the National Institute for Occupational Safety and Health (NIOSH) particulate respirator certification protocol for its ability to measure the contribution of ultrafine particles to filter penetration. Also considered were the differences between mechanical and electrically charged (electret) filters in light of the most penetrating particle size. It was found that the sodium chloride (NaCl) and dioctylphthalate (DOP) aerosols currently used in respirator certification tests contain a significant fraction of particles in the ultrafine region. However, the photometric method deployed in the certification test is not capable of adequately measuring light scatter of particles below approximately 100 nm in diameter. Specifically, 68% (by count) and 8% (by mass) of the challenge NaCl aerosol particles and 10% (by count) and 0.3% (by mass) of the DOP particles below 100 nm do not significantly contribute to the filter penetration measurement. In addition, the most penetrating particle size for electret filters likely occurs at 100 nm or less under test conditions similar to those used in filter certification. The authors conclude, therefore, that the existing NIOSH certification protocol may not represent a worst-case assessment for electret filters because it has limited ability to determine the contribution of ultrafine aerosols, which include the most penetrating particle size for electret filters. Possible strategies to assess ultrafine particle penetration in the certification protocol are discussed.

  10. Atmospheric pressure plasma assisted calcination of composite submicron fibers

    NASA Astrophysics Data System (ADS)

    Medvecká, Veronika; Kováčik, Dušan; Tučeková, Zlata; Zahoranová, Anna; Černák, Mirko

    2016-08-01

    The plasma assisted calcination of composite organic/inorganic submicron fibers for the preparation of inorganic fibers in submicron scale was studied. Aluminium butoxide/polyvinylpyrrolidone fibers prepared by electrospinning were treated using low-temperature plasma generated by special type of dielectric barrier discharge, so called diffuse coplanar surface barrier discharge (DCSBD) at atmospheric pressure in ambient air, synthetic air, oxygen and nitrogen. Effect of plasma treatment on base polymer removal was investigated by using Attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy. Influence of working gas on the base polymer reduction was studied by energy-dispersive X-ray spectroscopy (EDX) and CHNS elemental analysis. Changes in fibers morphology were observed by scanning electron microscopy (SEM). High efficiency of organic template removal without any degradation of fibers was observed after plasma treatment in ambient air. Due to the low-temperature approach and short exposure time, the plasma assisted calcination is a promising alternative to the conventional thermal calcination. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  11. Interfacial Control of Creep Deformation in Ultrafine Lamellar TiAl

    SciTech Connect

    Hsiung, L M

    2002-11-26

    Solute effect on the creep resistance of two-phase lamellar TiAl with an ultrafine microstructure creep-deformed in a low-stress (LS) creep regime [where a linear creep behavior was observed] has been investigated. The resulted deformation substructure and in-situ TEM experiment revealed that interface sliding by the motion of pre-existing interfacial dislocations is the predominant deformation mechanism in LS creep regime. Solute segregation at lamellar interfaces and interfacial precipitation caused by the solute segregation result in a beneficial effect on the creep resistance of ultrafine lamellar TiAl in LS creep regime.

  12. Purification of single-wall carbon nanotubes by using ultrafine gold particles

    NASA Astrophysics Data System (ADS)

    Nihey, Fumiyuki; Mizoguti, Eiji; Yudasaka, Masako; Iijima, Sumio; Ichihashi, Toshinari; Nakamura, Kazuo

    2000-03-01

    The purification of single-wall carbon nanotubes (SWNTs) is needed to enable detailed characterization and some application of this material. We report a purification method utilizing ultrafine gold particles as catalysts to selectively oxidize carbonaceous impurities in SWNT soot. The ultrafine gold particles with a diameter of 20 nm were dispersed in the soot in combination with benzalkonium chloride as surfactant. Thermogravimetric analyses and electron microscopy observations revealed that oxidation occured at about 330^circC for carbonaceous impurities and at about 410^circC for SWNTs. This selective oxidation enabled us to purify SWNTs and make the quantitative analyses of SWNTs.

  13. Grain Size Threshold for Enhanced Irradiation Resistance in Nanocrystalline and Ultrafine Tungsten

    DOE PAGES

    El Atwani, Osman; Hinks, Jonathan; Greaves, Graeme; ...

    2017-02-21

    Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Average bubble density, projected bubble area and the corresponding change in volume were measured via transmission electron microscopy and plotted as a function of grain size for two ion fluences. Nanocrystalline grains of less than 35 nm size possess ~10–20 times lower change in volume than ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficiency.

  14. Effect of surface moisture on dielectric behavior of ultrafine BaTiO3 particulates.

    NASA Technical Reports Server (NTRS)

    Mountvala, A. J.

    1971-01-01

    The effects of adsorbed H2O on the dielectric properties of ultrafine BaTiO3 particulates of varying particle size and environmental history were determined. The dielectric behavior depends strongly on surface hydration. No particle size dependence of dielectric constant was found for dehydroxylated surfaces in ultrafine particulate (unsintered) BaTiO3 materials. For equivalent particle sizes, the ac conductivity is sensitive to surface morphology. Reactions with H2O vapor appear to account for the variations in dielectric properties. Surface dehydration was effectively accomplished by washing as-received powders in isopropanol.

  15. Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite.

    PubMed

    Lee, Seoung Wan; Kim, Jeong Tae; Hong, Sung Hwan; Park, Hae Jin; Park, Jun-Young; Lee, Nae Sung; Seo, Yongho; Suh, Jin Yoo; Eckert, Jürgen; Kim, Do Hyang; Park, Jin Man; Kim, Ki Buem

    2014-09-30

    The outstading mechanical properties of bimodal ultrafine eutectic composites (BUECs) containing length scale hierarchy in eutectic structure were demonstrated by using AFM observation of surface topography with quantitative height measurements and were interpreted in light of the details of the deformation mechanisms by three different interface modes. It is possible to develop a novel strain accommodated eutectic structure for triggering three different interface-controlled deformation modes; (I) rotational boundary mode, (II) accumulated interface mode and (III) individual interface mode. A strain accommodated microstructure characterized by the surface topology gives a hint to design a novel ultrafine eutectic alloys with excellent mechanical properties.

  16. Electrospinning preparation and photoluminescence properties of erbium complex doped composite fibers

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Zhang, He Ming; Wu, Tie Feng

    2011-09-01

    In this paper, an Er(III) complex of Er(DBM) 3IPD, where DBM = 1,3-diphenyl-propane-1,3-dione and IPD = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline, is synthesized and doped into poly(vinylpyrrolidone) submicron fibers through electrospinning technique. The crystal structure and morphology are investigated in detail. The composite fibers exhibit smooth and uniform morphology on the substrate, with an average diameter of ˜1.4 μm. Photophysical data suggest that DBM ligand sensitizes Er(III) center efficiently and provides an optimal condition for radiative decay, and low temperature can enhance the emission intensity by suppressing the quenching effect. It is found that the photostability of Er(III) complex doped composite fibers is largely improved compared with that of pure complex.

  17. Electrospinning preparation and photoluminescence properties of erbium complex doped composite fibers.

    PubMed

    Cui, Xiao; Zhang, He Ming; Wu, Tie Feng

    2011-09-01

    In this paper, an Er(III) complex of Er(DBM)3IPD, where DBM=1,3-diphenyl-propane-1,3-dione and IPD=4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline, is synthesized and doped into poly(vinylpyrrolidone) submicron fibers through electrospinning technique. The crystal structure and morphology are investigated in detail. The composite fibers exhibit smooth and uniform morphology on the substrate, with an average diameter of ∼1.4 μm. Photophysical data suggest that DBM ligand sensitizes Er(III) center efficiently and provides an optimal condition for radiative decay, and low temperature can enhance the emission intensity by suppressing the quenching effect. It is found that the photostability of Er(III) complex doped composite fibers is largely improved compared with that of pure complex.

  18. Ultrafine particle removal and generation by portable air cleaners

    NASA Astrophysics Data System (ADS)

    Waring, Michael S.; Siegel, Jeffrey A.; Corsi, Richard L.

    Portable air cleaners can both remove and generate pollutants indoors. To investigate these phenomena, we conducted a two-phase investigation in a 14.75 m 3 stainless steel chamber. In the first phase, particle size-resolved (12.6-514 nm diameter) clean air delivery rates (CADR) and efficiencies were determined, as were ozone emission rates, for two high-efficiency particle arresting (HEPA) filters, one electrostatic precipitator with a fan, and two ion generators without fans. The two HEPA air cleaners had count average CADR (standard deviation) of 188 (30) and 324 (44) m 3 h -1; the electrostatic precipitator 284 (62) m 3 h -1; and the two ion generators 41 (11) and 35 (13) m 3 h -1. The electrostatic precipitator emitted ozone at a rate of 3.8±0.2 mg h -1, and the two ion generators 3.3±0.2 and 4.3±0.2 mg h -1. Ozone initiates reactions with certain unsaturated organic compounds that produce ultrafine and fine particles, carbonyls, other oxidized products, and free radicals. During the second phase, five different ion generators were operated separately in the presence of a plug-in liquid or solid air freshener, representing a strong terpene source. For air exchange rates of between 0.49 and 0.96 h -1, three ion generators acted as steady-state net particle generators in the entire measured range of 4.61-157 nm, and two generated particles in the range of approximately 10 to 39-55 nm. Terpene and aldehyde concentrations were also sampled for one ion generator, and concentrations of terpenes decreased and formaldehyde increased. Given these results, the pollutant removal benefits of ozone-generating air cleaners may be outweighed by the generation of indoor pollution.

  19. Roadside measurements of ultrafine particles at a busy urban intersection.

    PubMed

    Wang, Yungang; Zhu, Yifang; Salinas, Robert; Ramirez, David; Karnae, Saritha; John, Kuruvilla

    2008-11-01

    A field sampling campaign on ultrafine particles (UFPs, diameter <100 nm) was conducted at a busy traffic intersection from December 2006 to June 2007 in Corpus Christi, TX. This traffic intersection consisted of South Padre Island Drive (SPID, Highway 358) and Staples Street. Traffic densities on SPID were 9102/hr and 7880/hr for weekdays and weekends, respectively. Staples Street traffic densities were 2795/hr and 2572/hr, respectively. There were approximately 3.7% heavy-duty diesel vehicles (HDDVs) on both roadways. Peak traffic flows occurred early in the morning and late in the evening during weekdays and around noon on weekends. The average UFP total number concentration collected by a condensation particle counter (CPC 3785; TSI) was 66 x 10(3) cm(-3). A direct relationship between the UFP number concentration and traffic density was observed, but the HDDV traffic density was found to be a better estimator of the UFP number concentration than total traffic density. A scanning mobility particle sizer (SMPS 3936 with DMA 3081 and CPC 3785, TSI) measuring the particle size distribution from 7 to 290 nm was rotated among four corners of the intersection. The upwind and downwind size distributions were both bimodal in shape, exhibiting a nucleation mode at 10-30 nm and a secondary mode at 50-70 nm. The highest and lowest particle concentrations were observed on the downwind and upwind sides of both roadways, respectively, indicating the importance of wind direction. Wind speed also played an important role in overall particle concentrations; UFP concentrations were inversely proportional to wind speed. A negative correlation was observed between particle number concentrations and ambient temperature. The particle number concentration was 3.5 times greater when traffic was idling at a red light than moving at a green light.

  20. Infiltration of outdoor ultrafine particles into a test house.

    PubMed

    Rim, Donghyun; Wallace, Lance; Persily, Andrew

    2010-08-01

    Ultrafine particles (UFP) (<100 nm) have been related to adverse human health effects such as oxidative stress and cardiovascular mortality. However, human exposure to particles of outdoor origin is heavily dependent on their infiltration into homes. The infiltration factor (Finf) and its variation as a function of several factors becomes of enormous importance in epidemiological studies. The objective of this study is to investigate the transport of UFP into a residential building and to determine the functional dependence of infiltration on particle size and air change rate. A secondary objective was to estimate the values of the penetration coefficient P and composite deposition rate kcomp that enter into the definition of Finf. Using continuous measurements of indoor and outdoor concentrations of size-resolved particles ranging from 5 to 100 nm in a manufactured test house, particle penetration through the building, composite deposition, and the resulting value of Finf were calculated for two cases: closed windows and one window open 7.5 cm. Finf ranged from close to 0 (particles<10 nm) to 0.3 (particles>80 nm) with windows closed and from 0 to 0.6 with one window open. The penetration coefficient (closed windows) increased from about 0.2 for 10-nm particles to an asymptote near 0.6 for particles from 30-100 nm. Open window penetration coefficients were higher, ranging from 0.6 to 0.8. Closed-window composite deposition rates, which included losses to the furnace filter and to the ductwork as well as to interior surfaces, monotonically decreased from levels of about 1.5 h(-1) for 10-nm particles to 0.3 h(-1) for 100-nm particles. For the open-window case, composite deposition rates were higher for particles<20 nm, reaching values of 3.5 h(-1). Mean standard errors associated with estimates of P, kcomp, and Finf for two series of measurements ranged from 1.0% to 4.4%.

  1. Ultrafine-grained Aluminm and Boron Carbide Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Vogt, Rustin

    Cryomilling is a processing technique used to generate homogenously distributed boron carbide (B4C) particulate reinforcement within an ultrafine-grained aluminum matrix. The motivation behind characterizing a composite consisting of cryomilled aluminum B4C metal matrix composite is to design and develop a high-strength, lightweight aluminum composite for structural and high strain rate applications. Cryomilled Al 5083 and B4C powders were synthesized into bulk composite by various thermomechanical processing methods to form plate and extruded geometries. The effects of processing method on microstructure and mechanical behavior for the final consolidated composite were investigated. Cryomilling for extended periods of time in liquid nitrogen has shown to increase strength and thermal stability. The effects associated with cryomilling with stearic acid additions (as a process-control agent) on the degassing behavior of Al powders is investigated and results show that the liberation of compounds associated with stearic acid were suppressed in cryomilled Al powders. The effect of thermal expansion mismatch strain on strengthening due to geometrically necessary dislocations resulting from quenching is investigated and found not to occur in bulk cryomilled Al 5083 and B 4C composites. Previous cryomilled Al 5083 and B4C composites have exhibited ultrahigh strength associated with considerable strain-to-failure (>14 pct.) at high strain rates (>103/s) during mechanical testing, but only limited strain-to-failure (˜0.75 pct.) at quasi-static strain rates (10-3/s). The increased strain to failure at high strain rates is attributed to micro-flaw developments, including kinking, extensive axial splitting, and grain growth were observed after high strain rate deformation, and the significance of these mechanisms is considered.

  2. Separation of iron and cobalt using 59Fe and 60Co by dialysis of polyvinylpyrrolidone-metal complexes: a greener approach.

    PubMed

    Lahiri, Susanta; Sarkar, Soumi

    2007-04-01

    An environmentally benign method to separate iron and cobalt has been developed using a safe chemical, polyvinylpyrrolidone (PVP). The method involves dialysis of PVP-Fe and PVP-Co complexes against triple-distilled water. (59)Fe and (60)Co were used as radioactive tracers of iron and cobalt throughout the experiment. No other chemicals are required for clean separation of cobalt from iron. The optimum condition for separation has been obtained at pH 5 using 10% aqueous solution of PVP. The method is applicable from trace scale to macro-scale. Very high separation factors have been obtained.

  3. Immobilization of Rhodococcus erythropolis B4 on radiation crosslinked poly(vinylpyrrolidone) hydrogel: Application to the degradation of polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Djefal-Kerrar, A.; Gais, S.; Ouallouche, K.; Nacer Khodja, A.; Mahlous, M.; Hacène, H.

    2007-12-01

    A poly(vinylpyrrolidone) (PVP) hydrogel crosslinked by gamma radiation was used to immobilize, by adsorption, Rhodococcus erythropolis B4 strain. Immobilized cells were tested for their capacity to degrade naphthalene and anthracene, under aerobic conditions. The results showed that, the strain fixed is capable of growing in the presence of naphthalene or anthracene as a unique source of carbon. It was also shown that, the fixed strain can be preserved by freeze-drying for further use. The biodegradation capacity was improved during the second use.

  4. Assemblies of polyvinylpyrrolidone-capped tetrahedral and spherical Pt nanoparticles in polyelectrolytes: hydrogen underpotential deposition and electrochemical characterization.

    PubMed

    Jaber, Sarah; Nasr, Pamela; Xin, Yan; Sleem, Fatima; Halaoui, Lara I

    2013-09-28

    Polyvinylpyrrolidone (PVP)-capped Pt nanoparticles (NPs) were synthesized in mostly tetrahedral (TH-Pt, [edge] = 4.3 ± 0.7 nm) or spherical (S-Pt, [d] = 3.4 ± 0.8 nm) shapes and assembled layer-by-layer in poly(diallyldimethylammonium) chloride on electrodes driven by electrostatic and hydrophobic interactions. The nanostructured Pt electrodes were characterized using hydrogen underpotential deposition (H(upd)) in 1 M H2SO4. The H(upd) charge increased linearly with the PDDA-Pt NP adsorption cycle measured up to 10 cycles revealing a linear incorporation of Pt NPs per cycle, indicative of reproducible surface charge reversal despite the submonolayer NP coverage imaged by TEM on a PDDA layer, and showing the feasibility of charge and mass transport in the thickness of the films. H(upd) at both PVP-TH-Pt and PVP-S-Pt occurred in two states, a major weak-adsorption H(W) peak, and a minor strong-adsorption state H(S) appearing as a shoulder. H(upd) features and other electrochemical processes at assemblies of PVP-Pt NP in PDDA were compared to assemblies of 2.5 nm polyacrylate-capped Pt NPs in PDDA and to polycrystalline Pt. Results indicated that H(W) adsorption likely occurs on a PVP-modified Pt NP surface without being accompanied by PVP desorption, while H(S) occurs on free (100) sites. The PVP-Pt NPs were resistant to surface oxidation and were stable against usual surface restructuring when scanned into the Pt-oxide potential region as they remained modified with PVP. O2 evolution was also suppressed by PVP-capping compared to PAC-Pt NPs and polycryst-Pt, but the assemblies were electrocatalytic for hydrogen evolution, hydrogen oxidation, and oxygen reduction. Increasing anodic polarization increased the H(W) charge but without causing a potential shift, indicating absence of PVP decapping or Pt surface restructuring, but possibly some structural polymer rearrangement increasing the accessibility of buried sites for H-adsorption.

  5. Superstimulation of follicular growth in Thai native heifers by a single administration of follicle stimulating hormone dissolved in polyvinylpyrrolidone.

    PubMed

    Chasombat, Jakkhaphan; Sakhong, Denpong; Nagai, Takashi; Parnpai, Rangsun; Vongpralub, Thevin

    2013-01-01

    This study was undertaken to determine whether a single i.m. injection of FSH dissolved in 10 ml of 30% (wt/vol) polyvinylpyrrolidone (PVP; MW=40,000) to form FSHp would induce follicular growth in Thai native heifers and to determine its optimal dose. In Group 1, heifers (n=4) were given multiple i.m. injections of FSHp every 12 h for 3 days at decreasing doses, for a total of 100 mg (control). In Groups 2, 3 and 4, heifers (n=4 in each group) were given single i.m. injections of FSHp at 50, 100 and 150 mg. All heifers received a single injection of 750 μg PGF2α 48 h after the initiation of exogenous FSH treatment. Ovaries of treated heifers were examined by transrectal ultrasonography every day until they showed estrus. Group 3 showed significantly higher numbers of ovulation follicles, significantly higher growth rates of follicles per day and significantly larger diameters of follicles and corpora lutea than groups 1 and 2 but not Group 4 (P<0.05). Group 4 showed significantly higher numbers of large follicles (≥5 mm in diameter), unovulated follicles and ovulations, a significantly higher growth rate of follicles per day, and significantly larger diameters of follicles and corpora lutea (P<0.05) than those of the other groups. This indicates a state of overstimulation of ovaries in this group. Besides, the plasma levels of FSH in Group 4 were significantly higher (P<0.05) than in the other group and were maintained in the range of 2.2-0.7 ng/ml over a period of 6 to 66 h after the FSHp injection. Meanwhile, the plasma levels of P4 and E2 did not differ in any of the groups in the period of 0 to 96 h during the superstimulation program. In conclusion, it was demonstrated that a single i.m. injection of 100 mg FSHp was the most effective dose for superstimulation of follicular growth in Thai native heifers under the experimental conditions in this study.

  6. CARDIOVASCULAR RESPONSES IN UNRESTRAINED WKY-RATS TO INHALED ULTRAFINE CARBON PARTICLES

    EPA Science Inventory

    Abstract
    This study provides evidence for adverse cardiac effects of inhaled ultrafine particles (UFPs) in healthy WKY rats. Short term exposure (24 h) with carbon UFPs (180 ?g?m ?) induced a moderate but significant heart rate increase of 18 bpm (4.8 %) in association with a ...

  7. SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...

  8. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive.

    PubMed

    Cao, Xingyan; Ren, Jingjie; Zhou, Yihui; Wang, Qiuju; Gao, Xuliang; Bi, Mingshu

    2015-03-21

    The suppression effect of ultrafine mists on methane/air explosions with methane concentrations of 6.5%, 8%, 9.5%, 11%, and 13.5% were experimentally studied in a closed visual vessel. Ultrafine water/NaCl solution mist as well as pure water mist was adopted and the droplet sizes of mists were measured by phase doppler particle analyzer (PDPA). A high speed camera was used to record the flame evolution processes. In contrast to pure water mist, the flame propagation speed, the maximum explosion overpressure (ΔP(max)), and the maximum pressure rising rate ((dP/dt)max) decreased significantly, with the "tulip" flame disappearing and the flame getting brighter. The results show that the suppressing effect on methane explosion by ultrafine water/NaCl solution mist is influenced by the mist amount and methane concentration. With the increase of the mist amount, the pressure, and the flame speed both descended significantly. And when the mist amount reached 74.08 g/m(3) and 37.04 g/m(3), the flames of 6.5% and 13.5% methane explosions can be absolutely suppressed, respectively. All of results indicate that addition of NaCl can improve the suppression effect of ultrafine pure water mist on the methane explosions, and the suppression effect is considered due to the combination effect of physical and chemical inhibitions.

  9. TRANSLOCATION AND POTENTIAL NEUROLOGICAL EFFECTS OF FINE AND ULTRAFINE PARTICLES: A CRITICAL UPDATE

    EPA Science Inventory

    This proceedings book is a collection of seminars presented in a symposium organized by by Munich's GSF-National Research Center for Environment and Health. Research presented at this symposium indicated inhaled ultrafine particulate matter quickly exits the lungs and target...

  10. Method for producing ultrafine-grained materials using repetitive corrugation and straightening

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Jiang, Honggang; Huang, Jianyu

    2001-01-01

    A method of refining the grain structure and improving the hardness and strength properties of a metal or metal alloy workpiece is disclosed. The workpiece is subjected to forces that corrugate and then straighten the workpiece. These steps are repeated until an ultrafine-grained product having improved hardness and strength is produced.

  11. DEPOSITION DISTRIBUTION OF NANO AND ULTRAFINE PARTICLES IN HUMAN LUNGS DURING CONTROLLED MOUTH BREATHING

    EPA Science Inventory

    Nano and ultrafine particles are abundant in the atmosphere and the level of human exposure to these tiny particles is expected to increase markedly as industrial activities increase manufacturing nano-sized materials. Exposure-dose relationships and site-specific internal dose a...

  12. Ultrafine particle generation by high-velocity impact of metal projectiles

    NASA Astrophysics Data System (ADS)

    Stabile, L.; Iannitti, G.; Vigo, P.; Ruggiero, A.; Russi, A.; Buonanno, G.

    2014-05-01

    Ultrafine particle generation through mechanical processes was not carefully deepened so far, even if it could be related to the human health-based researches. In particular, the evaluation of ultrafine particles produced in battlefield scenarios can be useful to quantify the exposure of soldiers to particles carrying toxic heavy metals. In the present work ultrafine particle generation during high-velocity impact of metal projectiles was deepened performing symmetrical high velocity Taylor impacts of copper cylinder tests (Rod-on-Rod tests) by means of a gas-gun facility. Particle number distributions and total concentrations were measured through one-second-time resolution instruments in a chamber where impact events at different velocities were performed. Particle number generation per impact was also evaluated. Particle concentrations in the 106 part. cm-3 range were measured corresponding to particle generations higher than 1012 particles per impact, then comparable to those typical of combustion sources. Particle number distribution showed a unimodal distribution with a 10 nm mode. Summarizing, the performed experimental campaign revealed an extremely high generation of ultrafine particles from mechanical processes.

  13. DESIGN AND CHARACTERIZATION OF AN ULTRAFINE COAL ASH AEROSOL GENERATOR FOR DIRECT ANIMAL EXPOSURE STUDIES

    EPA Science Inventory

    Primary ultrafine particulate matter (PM) is produced during pulverized coal combustion by the nucleation and heterogeneous condensation of vapor-phase species. This differs from the mechanisms that control the formation of the supermicron fly ash that is heavily influenced by t...

  14. A mechanism for the production of ultrafine particles from concrete fracture.

    PubMed

    Jabbour, Nassib; Rohan Jayaratne, E; Johnson, Graham R; Alroe, Joel; Uhde, Erik; Salthammer, Tunga; Cravigan, Luke; Faghihi, Ehsan Majd; Kumar, Prashant; Morawska, Lidia

    2017-03-01

    While the crushing of concrete gives rise to large quantities of coarse dust, it is not widely recognized that this process also emits significant quantities of ultrafine particles. These particles impact not just the environments within construction activities but those in entire urban areas. The origin of these ultrafine particles is uncertain, as existing theories do not support their production by mechanical processes. We propose a hypothesis for this observation based on the volatilisation of materials at the concrete fracture interface. The results from this study confirm that mechanical methods can produce ultrafine particles (UFP) from concrete, and that the particles are volatile. The ultrafine mode was only observed during concrete fracture, producing particle size distributions with average count median diameters of 27, 39 and 49 nm for the three tested concrete samples. Further volatility measurements found that the particles were highly volatile, showing between 60 and 95% reduction in the volume fraction remaining by 125 °C. An analysis of the volatile fraction remaining found that different volatile material is responsible for the production of particles between the samples.

  15. The Effects of Vegetation Barriers on Near-road Ultrafine Particle Number and Carbon Monoxide Concentrations

    EPA Science Inventory

    Numerous studies have shown that people living in near-roadway communities (within 100 m of the road) are exposed to high ultrafine particle (UFP) number concentrations, which may be associated with adverse health effects. Vegetation barriers have been shown to affect pollutant t...

  16. PULMONARY AND CARDIAC GENE EXPRESSION FOLLOWING ACUTE ULTRAFINE CARBON PARTICLE INHALATION IN HYPERTENSIVE RATS

    EPA Science Inventory

    Inhalation of ultrafine carbon particles (ufCP) causes cardiac physiological changes without marked pulmonary injury or inflammation. We hypothesized that acute ufCP exposure of 13 months old Spontaneously Hypertensive (SH) rats will cause differential effects on the lung and hea...

  17. Demonstration of Shear Localization in Ultrafine Grained Tungsten Alloys via Powder Metallurgy Processing Route

    DTIC Science & Technology

    2012-09-01

    of a di-tungsten boride (W2B) phase was not detected in the nW-B sample, but the low concentration of boron may have made this phase undetectable by...Split Hopkinson Bar UFG ultrafine grained W2B di-tungsten boride XRD x-ray diffraction NO. OF NO. OF COPIES ORGANIZATION COPIES

  18. ULTRAFINE PARTICLE CONCENTRATIONS NEAR FREEWAYS AT NIGHT OR EARLY MORNING UNDER CALM WEATHER CONDITIONS

    EPA Science Inventory

    There is evidence that ultrafine (UF) particles dominate the number concentrations in close proximity to the roadway. The UF particles are also known to be more toxic than larger sizes of PM on an equal mass basis. In this work, UF particle number concentrations were measured u...

  19. Seasonal variability of ultra-fine metals downwind of a heavily traveled secondary road

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas A.; Barnes, David E.; Spada, Nicholas J.

    2014-09-01

    Since 2002, we have been studying the impact of a heavily traveled secondary road on an adjacent downwind school located at a stop light controlled intersection. The prior studies were all performed in winter conditions with typically strong inversions, but established significant PM2.5 impacts on the school roughly in accord with theoretical models and the relevant literature. In this project, we have enhanced this effort by extending the study from winter to summer, and adding compositionally-resolved ultra-fine aerosol measurements. Ultra-fine aerosols, including metals derived from both brake wear and zinc in lubricating oil, were present at high concentrations in winter downwind of the roadway but absent at a residential site 500 m upwind. Their concentrations faded to minor levels in spring and early summer, while coarse roadway resuspended dust increased in that period. A comparison of ultra-fine measurements in downtown Sacramento and other California Central Valley sites indicates that these traffic derived aerosols are widely present in urban areas impacted by heavy traffic, freeways and secondary streets, especially where heavy braking is occurring. The potential for health impacts of ultra-fine metals associated with cars braking and accelerating in inversion conditions is a serious health concern based on recent epidemiological studies.

  20. Combustion of PTFE: The effects of gravity on ultrafine particle generation

    NASA Technical Reports Server (NTRS)

    McKinnon, Thomas; Todd, Paul; Oberdorster, Gunter

    1996-01-01

    The objective of this project is to obtain an understanding of the effect of gravity on the toxicity of ultrafine particle and gas phase materials produced when fluorocarbon polymers are thermally degraded or burned. The motivation for the project is to provide a basic technical foundation on which policies for spacecraft health and safety with regard to fire and polymers can be formulated.

  1. [Elemental size distribution of airborne fine and ultrafine particulate matters in the suburb of Shanghai, China].

    PubMed

    Lin, Jun; Liu, Wei; Li, Yan; Bao, Liang-Man; Li, Yu-Lan; Xu, Zhong-Yang; Wu, Wei-Wei; Chen, Dong-Liang; He, Wei

    2009-04-15

    The elemental size distributions of airborne fine/ultrafine particulate matters in the suburb of Shanghai were studied using synchrotron X-ray fluorescence. Median mass aerodynamic diameter (MMAD), elemental correlation coefficient as well as enrichment factor (EF) of each size fraction were calculated to characterize the sources of elements in fine/ultrafine particulate matters. Ca and Ti distributed mainly in coarse particles (> 2 microm) with size independent enrichment factors between 0.1 and 3.2, and the correlation coefficient between Ca and Ti was as high as 0.933, which implied strong contribution from nature sources, such as soil dusts and resuspended dusts. However, V, Cr, Mn, Ni, Zn, Cu, Pb, Cl, S mainly distributed in 0.1-1.0 microm particulate matters with MMAD between 0.56-0.94 microm. The EF of V, Cr, Ni, Cu, Zn, Pb increased with decreasing particle size. The highest EF were found for Pb in ultrafine particulate matters (< 0.1 microm) with EF of 2,023.7-2,244.2. The evidences suggested that these elements were significantly influenced by anthropogenic sources and enriched in fine/ultrafine particles smaller than 1 microm. Fe distributed uniformly in the particles larger than 0.2 microm with MMAD of 1.3 microm. The results indicated non-negligible influences of remote transmission of anthropogenic pollutions.

  2. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    EPA Science Inventory

    This paper/presentation is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practicall...

  3. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  4. Controlled Exposure of Humans with Metabolic Syndrome to Concentrated Ultrafine Ambient Particulate Matter Causes Cardiovascular Effects

    EPA Science Inventory

    Background: Many studies have reported associations between PM2.5 and adverse cardiovascular effects. However there is increased concern that ultrafine PM (aerodynamic diameter less than 0.1 micron) may be disproportionately toxic relative to the 0.1 to 2.5 micron fraction of PM2...

  5. OXIDATIVE STRESS AND LIPID MEDIATORS INDUCED IN ALVEOLAR MACHROPHAGES BY ULTRAFINE PARTICLES

    EPA Science Inventory

    In ambient aerosols, ultrafine particles (UFP) and their agglomerates are considered to be major factors contributing to adverse health effects. Reactivity of agglomerated UFP of elemental carbon (EC), Printex 90, Printex G, and diesel exhaust particles (DEP) was evaluated by the...

  6. ENHANCED TOXICITY OF CHARGED CARBON NANOTUBES AND ULTRAFINE CARBON BLACK PARTICLES

    EPA Science Inventory

    Man-made carbonaceous nano-particles such as single and multi-walled carbon nano-tubes (CNT) and ultra-fine carbon black (UFCB) particles are finding increasing applications in industry, but their potential toxic effects is of concern. In aqueous media, these particles cluster in...

  7. UP-REGULATION OF TISSUE FACTOR IN HUMAN PULMONARY ARTERY ENDOTHELIAL CELLS AFTER ULTRAFINE PARTICLE EXPOSURE

    EPA Science Inventory

    Background: Epidemiology studies have linked exposure to pollutant particles to

    increased cardiovascular mortality and morbidity, but the mechanisms remain unknown.

    Objectives: We tested the hypothesis that the ultrafine fraction of ambient pollutant

    particle...

  8. Liquefaction of coals using ultra-fine particle, unsupported catalysts: In situ generation by rapid expansion of supercritical fluid solutions

    SciTech Connect

    Not Available

    1992-05-01

    The purpose of this program is to design and fabricate an experimental ultra-fine particle generation system; use this system to generate ultra-fine, iron compound, catalyst particles; and to access the ability of these ultra-fine catalyst particles to improve the performance of the solubilization stage of two-stage, catalytic-catalytic liquefaction processes. The effort applied to this program during this reporting period focused on assembling the supercritical particle generation/collection system. Effort was applied to constructing a shakedown testing plan also.

  9. A new approach for on-line measurements of the chemistry of individual ultrafine particles

    NASA Astrophysics Data System (ADS)

    Zauscher, M. D.; Lewis, G. S.; Hering, S. V.; Prather, K. A.

    2009-12-01

    Ultrafine aerosol particles, those with diameters less than 100nm, are abundant in the atmosphere and play a crucial role in climate through cloud formation and have a greater effect on human health than larger particles. The chemistry of ultrafine particles helps determine whether they will act as cloud condensation nuclei (CCN) as well as how they will affect human health. However, it is difficult to study the chemistry of ultrafine particles due to their low mass and small size for optical detection. Typically, long collection times are required to collect ultrafine particles onto substrates, leading to loss of temporal information and individual particle chemistry and source information. Single particle mass spectrometers that rely on optical detection of particles for subsequent chemical analysis cannot effectively analyze ultrafine particles. Growth of particles through condensation has been used in various sizing (i.e. condensation particle counter (CPC), cloud condensation nuclei counter (CCNc)), as well as chemical (i.e. particle into liquid system (PILS) and condensation growth and impaction system (C-GIS)) instruments. In order to study ultrafine particles, we couple a laminar flow, water condensation growth tube (GT) with an aerodynamic focusing lens aerosol time-of-flight mass spectrometer (ATOFMS). The GT used here is similar in principle to the water-based CPC. The particles are exposed to a region of high supersaturation where they grow in size by water vapor condensation. We have coupled this GT to a single particle mass spectrometry ATOFMS system. Using this combined approach, we are able to detect polystyrene latex spheres (PSLs) as small as 38nm compared to the lower size limit of 90 nm of the ATOFMS without the GT. A series of inorganic and organic chemical standards representative of ambient particles show that by evaporating the particles between the GT and ATOFMS, there is little change in the chemistry of the particles that have undergone

  10. Association of particulate air pollution and acute mortality: involvement of ultrafine particles?

    NASA Technical Reports Server (NTRS)

    Oberdorster, G.; Gelein, R. M.; Ferin, J.; Weiss, B.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    Recent epidemiological studies show an association between particulate air pollution and acute mortality and morbidity down to ambient particle concentrations below 100 micrograms/m3. Whether this association also implies a causality between acute health effects and particle exposure at these low levels is unclear at this time; no mechanism is known that would explain such dramatic effects of low ambient particle concentrations. Based on results of our past and most recent inhalation studies with ultrafine particles in rats, we propose that such particles, that is, particles below approximately 50 nm in diameter, may contribute to the observed increased mortality and morbidity In the past we demonstrated that inhalation of highly insoluble particles of low intrinsic toxicity, such as TiO2, results in significantly increased pulmonary inflammatory responses when their size is in the ultrafine particle range, approximately 20 nm in diameter. However, these effects were not of an acute nature and occurred only after prolonged inhalation exposure of the aggregated ultrafine particles at concentrations in the milligrams per cubic meter range. In contrast, in the course of our most recent studies with thermodegradation products of polytetrafluoroethylene (PTFE) we found that freshly generated PTFE fumes containing singlet ultrafine particles (median diameter 26 nm) were highly toxic to rats at inhaled concentrations of 0.7-1.0 x 10(6) particles/cm3, resulting in acute hemorrhagic pulmonary inflammation and death after 10-30 min of exposure. We also found that work performance of the rats in a running wheel was severely affected by PTFE fume exposure. These results confirm reports from other laboratories of the highly toxic nature of PTFE fumes, which cannot be attributed to gas-phase components of these fumes such as HF, carbonylfluoride, or perfluoroisobutylene, or to reactive radicals. The calculated mass concentration of the inhaled ultrafine PTFE particles in our

  11. Ultrafine and respirable particle exposure during vehicle fire suppression.

    PubMed

    Evans, Douglas E; Fent, Kenneth W

    2015-10-01

    Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters' potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator's shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 10(7) particles per cm(3), 170 mg m(-3) respirable particle mass, 4700 μm(2) cm(-3) active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 10(4) particles per cm(3), 0.36 mg m(-3) respirable particle mass, 92 μm(2) cm(-3) active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 10(5) particles per cm(3), 2.7 mg m(-3) respirable particle mass, 320 μm(2) cm(-3) active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The

  12. Novel ultrafine grain size processing of soft magnetic materials.

    SciTech Connect

    Michael, Joseph Richard; Robino, Charles Victor

    2009-01-01

    High performance soft magnetic alloys are used in solenoids in a wide variety of applications. These designs are currently being driven to provide more margin, reliability, and functionality through component size reductions; thereby providing greater power to drive ratio margins as well as decreases in volume and power requirements. In an effort to produce soft magnetic materials with improved properties, we have conducted an initial examination of one potential route for producing ultrafine grain sizes in the 49Fe-49Co-2V alloy. The approach was based on a known method for the production of very fine grain sizes in steels, and consisted of repeated, rapid phase transformation cycling through the ferrite to austenite transformation temperature range. The results of this initial attempt to produce highly refined grain sizes in 49Fe-49Co-2V were successful in that appreciable reductions in grain size were realized. The as-received grain size was 15 {micro}m with a standard deviation of 9.5 {micro}m. For the temperature cycling conditions examined, grain refinement appears to saturate after approximately ten cycles at a grain size of 6 {micro}m with standard deviation of 4 {micro}m. The process also reduces the range of grain sizes present in these samples as the largest grain noted in the as received and treated conditions were 64 and 26 {micro}m, respectively. The results were, however, complicated by the formation of an unexpected secondary ferritic constituent and considerable effort was directed at characterizing this phase. The analysis indicates that the phase is a V-rich ferrite, known as {alpha}{sub 2}, that forms due to an imbalance in the partitioning of vanadium during the heating and cooling portions of the thermal cycle. Considerable but unsuccessful effort was also directed at understanding the conditions under which this phase forms, since it is conceivable that this phase restricts the degree to which the grains can be refined. Due to this difficulty

  13. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles

    PubMed Central

    Oberdörster, Günter; Oberdörster, Eva; Oberdörster, Jan

    2005-01-01

    Although humans have been exposed to airborne nanosized particles (NSPs; < 100 nm) throughout their evolutionary stages, such exposure has increased dramatically over the last century due to anthropogenic sources. The rapidly developing field of nanotechnology is likely to become yet another source through inhalation, ingestion, skin uptake, and injection of engineered nanomaterials. Information about safety and potential hazards is urgently needed. Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices. Collectively, some emerging concepts of nanotoxicology can be identified from the results of these studies. When inhaled, specific sizes of NSPs are efficiently deposited by diffusional mechanisms in all regions of the respiratory tract. The small size facilitates uptake into cells and transcytosis across epithelial and endothelial cells into the blood and lymph circulation to reach potentially sensitive target sites such as bone marrow, lymph nodes, spleen, and heart. Access to the central nervous system and ganglia via translocation along axons and dendrites of neurons has also been observed. NSPs penetrating the skin distribute via uptake into lymphatic channels. Endocytosis and biokinetics are largely dependent on NSP surface chemistry (coating) and in vivo surface modifications. The greater surface area per mass compared with larger-sized particles of the same chemistry renders NSPs more active biologically. This activity includes a potential for inflammatory and pro-oxidant, but also antioxidant, activity, which can explain early findings showing mixed results in terms of toxicity of NSPs to environmentally relevant species. Evidence of mitochondrial distribution and oxidative stress response after NSP endocytosis points to a need

  14. Ultrafine and respirable particle exposure during vehicle fire suppression

    PubMed Central

    Fent, Kenneth W.

    2015-01-01

    Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters’ potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator’s shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 107 particles per cm3, 170 mg m−3 respirable particle mass, 4700 μm2 cm−3 active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 104 particles per cm3, 0.36 mg m−3 respirable particle mass, 92 μm2 cm−3 active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 105 particles per cm3, 2.7 mg m−3 respirable particle mass, 320 μm2 cm−3 active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The wind direction

  15. Relationship of pulmonary toxicity and carcinogenicity of fine and ultrafine granular dusts in a rat bioassay

    PubMed Central

    Kolling, Angelika; Ernst, Heinrich; Rittinghausen, Susanne; Heinrich, Uwe

    2011-01-01

    The current carcinogenicity study with female rats focused on the toxicity and carcinogenicity of intratracheally instilled fine and ultrafine granular dusts. The positive control, crystalline silica, elicited the greatest magnitude and progression of pulmonary inflammatory reactions, fibrosis and the highest incidence of primary lung tumors (39.6%). Addition of poly-2-vinylpyridine-N-oxide decreased inflammatory responses, fibrosis, and the incidence of pulmonary tumors induced by crystalline quartz to 21.4%. After repeated instillation of soluble, ultrafine amorphous silica (15 mg) a statistically significant tumor response (9.4%) was observed, although, the inflammatory response in the lung was not as persistently severe as in rats treated with carbon black. Instillation of ultrafine carbon black (5 mg) caused a lung tumor incidence of 15%. In contrast to a preceding study using a dose of 66 mg coal dust, lung tumors were not detected after exposure to the same coal dust at a dose of 10 mg in this study. Pulmonary inflammatory responses to coal dust were very low indicating a mechanistic threshold for the development of lung tumors connected with particle related chronic inflammation. The animals treated with ultrafine carbon black and ultrafine amorphous silica showed significantly more severe lesions in non-cancerous endpoints when compared to animals treated with fine coal dust. Furthermore, carbon black treated rats showed more severe non-cancerous lung lesions than amorphous silica treated rats. Our data show a relationship between tumor frequencies and increasing scores when using a qualitative scoring system for specific non-cancerous endpoints such as inflammation, fibrosis, epithelial hyperplasia, and squamous metaplasia. PMID:21819261

  16. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats.

    PubMed

    Takenaka, S; Karg, E; Roth, C; Schulz, H; Ziesenis, A; Heinzmann, U; Schramel, P; Heyder, J

    2001-08-01

    The cardiovascular system is currently considered a target for particulate matter, especially for ultrafine particles. In addition to autonomic or cytokine mediated effects, the direct interaction of inhaled materials with the target tissue must be examined to understand the underlying mechanisms. In the first approach, pulmonary and systemic distribution of inhaled ultrafine elemental silver (EAg) particles was investigated on the basis of morphology and inductively coupled plasma mass spectrometry (ICP-MS) analysis. Rats were exposed for 6 hr at a concentration of 133 microg EAg m(3) (3 x 10(6) cm(3), 15 nm modal diameter) and were sacrificed on days 0, 1, 4, and 7. ICP-MS analysis showed that 1.7 microg Ag was found in the lungs immediately after the end of exposure. Amounts of Ag in the lungs decreased rapidly with time, and by day 7 only 4% of the initial burden remained. In the blood, significant amounts of Ag were detected on day 0 and thereafter decreased rapidly. In the liver, kidney, spleen, brain, and heart, low concentrations of Ag were observed. Nasal cavities, especially the posterior portion, and lung-associated lymph nodes showed relatively high concentrations of Ag. For comparison, rats received by intratracheal instillation either 150 microL aqueous solution of 7 microg silver nitrate (AgNO(3) (4.4 microg Ag) or 150 microL aqueous suspension of 50 microg agglomerated ultrafine EAg particles. A portion of the agglomerates remained undissolved in the alveolar macrophages and in the septum for at least 7 days. In contrast, rapid clearance of instilled water-soluble AgNO(3) from the lung was observed. These findings show that although instilled agglomerates of ultrafine EAg particles were retained in the lung, Ag was rapidly cleared from the lung after inhalation of ultrafine EAg particles, as well as after instillation of AgNO(3), and entered systemic pathways.

  17. Microstructure of warm rolling and pearlitic transformation of ultrafine-grained GCr15 steel

    SciTech Connect

    Sun, Jun-Jie; Lian, Fu-Liang; Liu, Hong-Ji; Jiang, Tao; Guo, Sheng-Wu; Du, Lin-Xiu; Liu, Yong-Ning

    2014-09-15

    Pearlitic transformation mechanisms have been investigated in ultra-fine grained GCr15 steel. The ultrafine-grained steel, whose grain size was less than 1 μm, was prepared by thermo-mechanical treatment at 873 K and then annealing at 923 K for 2 h. Pearlitic transformation was conducted by reheating the ultra-fine grained samples at 1073 K and 1123 K for different periods of time and then cooling in air. Scanning electron microscope observation shows that normal lamellar pearlite, instead of granular cementite and ferrite, cannot be formed when the grain size is approximately less than 4(± 0.6) μm, which yields a critical grain size for normal lamellar pearlitic transformations in this chromium alloyed steel. The result confirms that grain size has a great influence on pearlitic transformation by increasing the diffusion rate of carbon atoms in the ultra-fine grained steel, and the addition of chromium element doesn't change this pearlitic phase transformation rule. Meanwhile, the grain growth rate is reduced by chromium alloying, which is beneficial to form fine grains during austenitizing, thus it facilitating pearlitic transformation by divorced eutectoid transformation. Moreover, chromium element can form a relatively high gradient in the frontier of the undissolved carbide, which promotes carbide formation in the frontier of the undissolved carbide, i.e., chromium promotes divorced eutectoid transformation. - Highlights: • Ultrafine-grained GCr15 steel was obtained by warm rolling and annealing technology. • Reduction of grain size makes pearlite morphology from lamellar to granular. • Adding Cr does not change normal pearlitic phase transformation rule in UFG steel. • Cr carbide resists grain growth and facilitates pearlitic transformation by DET.

  18. Processing, mechanical behavior and biocompatibility of ultrafine grained zirconium fabricated by accumulative roll bonding

    NASA Astrophysics Data System (ADS)

    Jiang, Ling

    The aim of this study is to produce large quantities of bulk zirconium with an ultrafine grained microstructure and with enhanced properties. Accumulative roll bonding (ARB), a severe plastic deformation technique based on rolling, is chosen due to its availability in industrial environment. The texture, microstructure and mechanical behavior of bulk ultrafine grained (ufg) Zr fabricated by accumulative roll bonding is investigated by electron backscatter diffraction, transmission electron microscopy and mechanical testing. A reasonably homogeneous and equiaxed ufg structure, with a large fraction of high angle boundaries (HABs, ˜70%), can be obtained in Zr after only two ARB cycles. The average grain size, counting only HABs (theta>15°), is 400 nm. (Sub)grain size is equal to 320 nm. The yield stress and ultimate tensile stress (UTS) values are nearly double those from conventionally processed Zr with only a slight loss of ductility. Optimum processing conditions include large thickness reductions per pass (˜75%), which enhance grain refinement, and a rolling temperature (T ˜ 0.3Tm) at which a sufficient number of slip modes are activated, with an absence of significant grain growth. Grain refinement takes place by geometrical thinning and grain subdivision by the formation of geometrically necessary boundaries. The formation of equiaxed grains by geometric dynamic recrystallization is facilitated by enhanced diffusion due to adabatic heating. Optical microscopy examination and shear testing suggest accepted bonding quality compared to that achieved in materials processed by diffusion bonding and that obtained in other ARB studies. Biocompatibility of ultrafine grained Zr processed by large strain rolling is studied by evaluating the behavior of human osteoblast cells. It is suggested that ultrafine grained Zr has a similar good biocompatibility as Ti6Al4V alloy and conventional Zr with a large grain size have. The improved mechanical properties together with

  19. Electrospinning of Grooved Polystyrene Fibers: Effect of Solvent Systems

    NASA Astrophysics Data System (ADS)

    Liu, Wanjun; Huang, Chen; Jin, Xiangyu

    2015-05-01

    Secondary surface texture is of great significance to morphological variety and further expands the application areas of electrospun nanofibers. This paper presents the possibility of directly electrospinning grooved polystyrene (PS) fibers using both single and binary solvent systems. Solvents were classified as low boiling point solvent (LBPS): dichloromethane (DCM), acetone (ACE), and tetrahydrofuran (THF); high boiling point solvent (HBPS): N, N-dimethylformamide (DMF) and cyclohexanone (CYCo); and non-solvent (NS): 1-butanol (BuOH). By the systematic selection and combination of these solvents at given parameters, we found that single solvent systems produced non-grooved fibers. LBPS/DMF solvent systems resulted in fibers with different grooved textures, while LBPS/CYCo led to fibers with double grooved texture. Grooved fibers can also be fabricated from LBPS/LBPS, NS/LBPS, and NS/HBPS systems under specific conditions. The results indicated that the difference of evaporation rate (DER) between the two solvents played a key role in the formation of grooved texture. The formation of this unique texture should be attributed to three separate mechanisms, namely void-based elongation, wrinkle-based elongation, and collapsed jet-based elongation. Our findings can serve as guidelines for the preparation of ultrafine fibers with grooved secondary texture.

  20. Long-term assessment of ultrafine particles on major roadways in Las Vegas, Nevada and Detroit, Michigan

    EPA Science Inventory

    This is a presentation at the National Air Monitoring conference, given at the request of OAQPS partners. The presentation will cover ultrafine particle data collected at three locations - Las Vegas, Detroit, and Research Triangle Park.

  1. Effect of ultrafine gold particles and cationic surfactant on burning as-grown single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Yudasaka, M.; Nihey, F.; Iijima, S.

    2000-10-01

    Mizoguti et al. (Chem. Phys. Lett. 321 (2000) 297) reported that amorphous carbon (a-C) contained in as-grown single-wall carbon nanotubes could be burned preferentially by using ultrafine gold particles and cationic surfactant, benzalkonium chloride (BKC). We confirmed this result and found additionally that the optimum concentration of the ultrafine gold particles and BKC were, respectively, 0.6 atom% and 7 g/l. We studied the roles of ultrafine gold particles and BKC in this phenomenon; the ultrafine gold particles catalyzed the oxidation of carbonaceous materials leading to the decrease of the burning temperatures. BKC had the function of homogenizing the a-C aggregation states, which resulted in the burning of a-C in a narrow temperature range.

  2. ULTRAFINE CARBON PARTICLES INDUCE INTERLEUKIN-8 GENE TRANSCRIPTION AND P38 MAPK ACTIVATION IN NORMAL BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies suggest that ultrafine particles contribute to particulate matter-induced adverse health effects. Interleukin (IL)-8 is an important proinflammatory cytokine in the human lung that is induced in respiratory cells exposed to a variety of environmental insul...

  3. Ultrafine particulate matter exposure in vitro impairs vasorelaxant response in superoxide dismutase 2 deficient and aged murine aortic rings

    EPA Science Inventory

    Epidemiological studies positively associate exposure to inhaled ultrafine particulate matter (UFPM) and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure....

  4. Exposure for ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats*

    EPA Science Inventory

    Rationale: Exposure to particulate matter is a risk factor for cardiopulmonary disease but the related molecular mechanisms are poorly understood. Previously we studied cardiovascular responses in healthy WKY rats following inhalation exposure to ultrafine carbon particles (UfCPs...

  5. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  6. Determinants of personal exposure to PM2.5, ultrafine particle counts, and CO in a transport microenvironment.

    PubMed

    Kaur, S; Nieuwenhuijsen, M J

    2009-07-01

    Short-term human exposure concentrations to PM2.5, ultrafine particle counts (particle range: 0.02-1 microm), and carbon monoxide (CO) were investigated at and around a street canyon intersection in Central London, UK. During a four week field campaign, groups of four volunteers collected samples at three timings (morning, lunch, and afternoon), along two different routes (a heavily trafficked route and a backstreet route) via five modes of transport (walking, cycling, bus, car, and taxi). This was followed by an investigation into the determinants of exposure using a regression technique which incorporated the site-specific traffic counts, meteorological variables (wind speed and temperature) and the mode of transport used. The analyses explained 9, 62, and 43% of the variability observed in the exposure concentrations to PM2.5, ultrafine particle counts, and CO in this study, respectively. The mode of transport was a statistically significant determinant of personal exposure to PM2.5, ultrafine particle counts, and CO, and for PM2.5 and ultrafine particle counts it was the most important determinant. Traffic count explained little of the variability in the PM2.5 concentrations, but it had a greater influence on ultrafine particle count and CO concentrations. The analyses showed that temperature had a statistically significant impact on ultrafine particle count and CO concentrations. Wind speed also had a statistically significant effect but smaller. The small proportion in variability explained in PM2.5 by the model compared to the largest proportion in ultrafine particle counts and CO may be due to the effect of long-range transboundary sources, whereas for ultrafine particle counts and CO, local traffic is the main source.

  7. Fireblocking Fibers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    PBI was originally developed for space suits. In 1980, the need for an alternative to asbestos and stricter government anti-pollution standards led to commercialization of the fire blocking fiber. PBI is used for auto racing driver suits and aircraft seat covers. The fiber does not burn in air, is durable and easily maintained. It has been specified by a number of airliners and is manufactured by Hoechst-Celanese Corporation.

  8. Dietary fiber.

    PubMed

    Madar, Z; Thorne, R

    1987-01-01

    Studies done on dietary fiber (DF) over the past five years are presented in this Review. The involvement of dietary fiber in the control of plasma glucose and lipid levels is now established. Two dietary fiber sources (soybean and fenugreek) were studied in our laboratory and are discussed herein. These sources were found to be potentially beneficial in the reduction of plasma glucose in non-insulin dependent diabetes mellitus subjects. They are shown to be acceptable by human subjects and are easy to use either in a mixture of milk products and in cooking. The mechanism by which dietary fiber alters the nutrient absorption is also discussed. The effect of DF on gastric emptying, transit time, adsorption and glucose transport may contribute to reducing plasma glucose and lipid levels. DF was found to be effective in controlling blood glucose and lipid levels of pregnant diabetic women. Dietary fiber may also be potentially beneficial in the reduction of exogenous insulin requirements in these subjects. However, increased consumption of DF may cause adverse side effects; the binding capabilities of fiber may affect nutrient availability, particularly that of minerals and prolonged and high DF dosage supplementation must be regarded cautiously. This is particularly true when recommending such a diet for pregnant or lactating women, children or subjects with nutritional disorders. Physiological effects of DF appear to depend heavily on the source and composition of fiber. Using a combination of DF from a variety of sources may reduce the actual mass of fiber required to obtain the desired metabolic effects and will result in a more palatable diet. Previously observed problems, such as excess flatus, diarrhea and mineral malabsorption would also be minimized.

  9. Nanocomposite Fibers

    DTIC Science & Technology

    2003-01-01

    attempts to prepare carbon nanotube , CNT, containing fiber material. Modulus and tenacity tests on experimentally prepared nanosilica filled PET...individual entities of nanofibers, such as carbon nanotubes and SiC whiskers, silica and clay, into polymers with the goal of producing new forms of...if carbon nanotube (CNT) particle implanted fibers are used, one would expect a great increase in the electrical conductivity of the so-reinforced

  10. Effect of polyethersulfone concentration on flat and hollow fiber membrane performance

    SciTech Connect

    Wood, H.; Wang, J. ); Sourirajan, S. )

    1993-11-01

    Flat and hollow fiber (HF) membranes are made in order to determine the effect of the polyethersulfone (PES) concentration in the precursor film-casting solution on the resultant flat and hollow fiber membrane performance. The additive polyvinylpyrrolidone (PVP) is included in the film-casting solution to ensure that membranes can be made over wide variations in the PES polymer concentration. In general, membrane permeability decreases and solute separation ability increases as the PES concentration increases. However, for both flat and HF membranes, performance is strongly dependent on whether the PES concentration is above or below the critical value. Flux greatly decreases and solute-separation ability increases when the critical PES concentration is at the critical value. 20 refs., 1 fig., 4 tabs.

  11. Assessment of exposure to airborne ultrafine particles in the urban environment of Lisbon, Portugal.

    PubMed

    Albuquerque, P C; Gomes, J F; Bordado, J C

    2012-04-01

    The aim of this study was the assessment of exposure to ultrafine in the urban environment ofLisbon, Portugal, due to automobile traffic, and consisted of the determination of deposited alveolar surface area in an avenue leading to the town center during late spring. This study revealed differentiated patterns for weekdays and weekends, which could be related with the fluxes of automobile traffic. During a typical week, ultrafine particles alveolar deposited surface area varied between 35.0 and 89.2 microm2/cm3, which is comparable with levels reported for other towns such in Germany and the United States. These measurements were also complemented by measuring the electrical mobility diameter (varying from 18.3 to 128.3 nm) and number of particles that showed higher values than those previously reported for Madrid and Brisbane. Also, electron microscopy showed that the collected particles were composed of carbonaceous agglomerates, typical of particles emitted by the exhaustion of diesel vehicles.

  12. Luminescent amorphous silicon carbide ultrafine nanoparticles fabricated by pulsed-laser ablation

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Hu, Shan; Wang, Wei; Xia, Wei-wei; Chen, Hai-tao; Chen, Xiao-bing

    2017-04-01

    Bulk quantities of amorphous silicon carbide(SiC) ultrafine nanoparticles have been prepared via pulsed-laser ablation on a polished 3C-SiC polycrystalline target immersed in de-ionized water. The diameter of the nanoparticles is 10 ± 2.0 nm. The surface of the nanoparticles binds to the -H and -OH groups in water, suggesting that the ultrafine nanoparticles are hydrophilic. A direct band gap energy of 5.3 eV and an indirect band gap energy of 2.4 eV were determined via the ultraviolet-visible absorption characterization, which implies that the nanoparticles are of SiC. As excited at 320 nm, the suspension exhibited strong and stable violet emissions centered at 430 nm.

  13. Study on ultra-fine w-EDM with on-machine measurement-assisted

    SciTech Connect

    Chen Shuntong; Yang Hongye

    2011-01-17

    The purpose of this study was to develop the on-machine measurement techniques so as to precisely fabricate micro intricate part using ultra-fine w-EDM. The measurement-assisted approach which employs an automatic optical inspection (AOI) is incorporated to ultra-fine w-EDM process to on-machine detect the machining error for next re-machining. The AOI acquires the image through a high resolution CCD device from the contour of the workpiece after roughing in order to further process and recognize the image for determining the residual. This facilitates the on-machine error detection and compensation re-machining. The micro workpiece and electrode are not repositioned during machining. A fabrication for a micro probe of 30-{mu}m diameter is rapidly machined and verified successfully. Based on the proposed technique, on-machine measurement with AOI has been realized satisfactorily.

  14. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Zhu, Rong; Yang, Wenming

    2016-01-01

    Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156

  15. Synthesis of high-strength W-Ta ultrafine-grain composites

    SciTech Connect

    Ott, R. T.; Yang, X. Y.; Guyer, D. E.; Chauhan, S.; Sordelet, D. J.

    2015-09-30

    Bulk samples of an ultrafine-grained tungsten–tantalum composite alloy have been synthesized by consolidating mechanically milled composite powders. The grain growth during densification is limited due to the submicron-scale layering of the individual metals in the composite particles and the relatively low sintering temperature (1300 °C). The ultrafine microstructure of the high-density (~99% theoretical density) samples leads to a high yield stress of ~3 GPa under quasi-static uniaxial compression. A tendency for Ta-rich solid-solution formation during densification was observed, and the high-temperature phase equilibria in the composite powders were examined further using high-energy x-ray diffraction at temperatures up to 1300 °C.

  16. Transforming anatase TiO2 nanorods into ultrafine nanoparticles for advanced electrochemical performance

    NASA Astrophysics Data System (ADS)

    Bresser, Dominic; Kim, Guk-Tae; Binetti, Enrico; Striccoli, Marinella; Comparelli, Roberto; Seidel, Stefan; Ozkaya, Dogan; Copley, Mark; Bishop, Peter; Paillard, Elie; Passerini, Stefano

    2015-10-01

    While the primary reason for nanostructuring lithium-ion active materials is commonly the realization of shorter diffusion pathways for ions and electrons, there are also other, less-expected phenomena occurring when leaving the microscale to enter the nanoscale. Herein, we will present one of these phenomena - the thermally induced fragmentation (i.e., "chopping") of oleic acid-capped anatase TiO2 nanorods perpendicular to the [001] direction. This fragmentation results in the formation of ultrafine TiO2 nanoparticles with increased (001) facets. Due to this modified surface facets ratio and the advantageous utilization of carboxymethyl cellulose as binder, these ultrafine nanoparticles present an excellent rate performance and cycling stability - even for cathodic cut-off potentials as low as 0.1 V.

  17. Ultrafine particles emitted by flame and electric arc guns for thermal spraying of metals.

    PubMed

    Bémer, Denis; Régnier, Roland; Subra, Isabelle; Sutter, Benjamin; Lecler, Marie T; Morele, Yves

    2010-08-01

    The ultrafine aerosol emitted by thermal spraying of metals using flame and electric arc processes has been characterized in terms of particle size distribution and emission rates based on both particle number and mass. Thermal spraying of Zn, Zn/Al, and Al was studied. Measurements taken using an electrical low pressure impactor and a condensation nucleus counter reveal an aerosol made up of very fine particles (80-95% of number distribution <100 nm). Ultrafine particle emission rates produced by the electric arc process are very high, the largest values being recorded during spraying of pure aluminium. This process generates high particle emissions and therefore requires careful consideration and possible rethinking of currently implemented protection measures: ventilated cabins, dust collectors, and personal protective equipment.

  18. Grain boundary distribution and texture in ultrafine-grained copper produced by severe plastic deformation

    SciTech Connect

    Mishin, O.V. |; Gertsman, V.Y. |; Valiev, R.Z.; Gottstein, G.

    1996-10-01

    Ultrafine-grained (UFG), i.e., nano- and submicrocrystalline materials have attracted great attention in recent years. This interest is caused by the unusual mechanical and physical properties of these materials. The extremely high volume fraction of grain boundaries (GBs) and triple junctions in UFG materials contribute to their unusual properties. However, other important parameters describing polycrystalline aggregate, namely, grain boundary misorientation and character distributions have not yet been studied in UFG materials, though they are conceived to influence mechanical and physical properties as well. Some studies indicated that mainly high-angle GBs were formed during severe plastic deformation; however, no direct proof of this suggestion has been obtained so far. The current paper deals with a statistical study of GB distributions and texture in UFG-materials. Pure copper was chosen for this study, since many results on microstructure and properties of the ultrafine-grained state produced in this material are available.

  19. Fabrication of a pure, uniform electroless silver film using ultrafine silver aerosol particles.

    PubMed

    Byeon, Jeong Hoon; Kim, Jang-Woo

    2010-07-20

    To obtain evenly distributed pure Ag particles with a narrow size distribution on a polymer membrane, a novel activation procedure with an environmentally friendly, cost-effective method was utilized as a pretreatment before electroless Ag deposition. The pretreatment was first performed on an untreated membrane surface by collecting ultrafine ambient spark-generated Ag aerosol particles. After annealing, the electroless Ag film was fabricated on the collected aerosol particles in the Ag electroless bath. Experimental characterizations showed that the ultrafine Ag particles were uniformly anchored onto the membrane surface through pretreatment, resulting in a pure Ag film of closely packed particles with a narrow size distribution on the membrane, and the properties were comparable to those of an Ag film on wet Sn-Ag-activated membranes.

  20. In-Situ TEM Study of Interface Sliding and Migration in an Ultrafine Lamellar Structure

    SciTech Connect

    Hsiung, L M

    2005-12-06

    The instability of interfaces in an ultrafine TiAl-({gamma})/Ti{sub 3}Al-({alpha}{sub 2}) lamellar structure by straining at room temperature has been investigated using in-situ straining techniques performed in a transmission electron microscope. The purpose of this study is to obtain experimental evidence to support the creep mechanisms based upon the interface sliding in association with a cooperative movement of interfacial dislocations previously proposed to interpret the nearly linear creep behavior observed from ultrafine lamellar TiAl alloys. The results have revealed that both the sliding and migration of lamellar interfaces can take place simultaneously as a result of the cooperative movement of interfacial dislocations.

  1. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility.

    PubMed

    Wu, Xiaolei; Yang, Muxin; Yuan, Fuping; Wu, Guilin; Wei, Yujie; Huang, Xiaoxu; Zhu, Yuntian

    2015-11-24

    Grain refinement can make conventional metals several times stronger, but this comes at dramatic loss of ductility. Here we report a heterogeneous lamella structure in Ti produced by asymmetric rolling and partial recrystallization that can produce an unprecedented property combination: as strong as ultrafine-grained metal and at the same time as ductile as conventional coarse-grained metal. It also has higher strain hardening than coarse-grained Ti, which was hitherto believed impossible. The heterogeneous lamella structure is characterized with soft micrograined lamellae embedded in hard ultrafine-grained lamella matrix. The unusual high strength is obtained with the assistance of high back stress developed from heterogeneous yielding, whereas the high ductility is attributed to back-stress hardening and dislocation hardening. The process discovered here is amenable to large-scale industrial production at low cost, and might be applicable to other metal systems.

  2. Inverse temperature dependence of toughness in an ultrafine grain-structure steel.

    PubMed

    Kimura, Yuuji; Inoue, Tadanobu; Yin, Fuxing; Tsuzaki, Kaneaki

    2008-05-23

    Materials are typically ductile at higher temperatures and become brittle at lower temperatures. In contrast to the typical ductile-to-brittle transition behavior of body-centered cubic (bcc) steels, we observed an inverse temperature dependence of toughness in an ultrahigh-strength bcc steel with an ultrafine elongated ferrite grain structure that was processed by a thermomechanical treatment without the addition of a large amount of an alloying element. The enhanced toughness is attributed to a delamination that was a result of crack branching on the aligned {100} cleavage planes in the bundles of the ultrafine elongated ferrite grains strengthened by nanometer-sized carbides. In the temperature range from 60 degrees to -60 degrees C, the yield strength was greater, leading to the enhancement of the toughness.

  3. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings

    PubMed Central

    Miller, Shelly L.; Facciola, Nick A.; Toohey, Darin; Zhai, John

    2017-01-01

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055–0.1 μm) and fine (0.1–0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design. PMID:28134841

  4. 3D Air Filtration Modeling for Nanofiber Based Filters in the Ultrafine Particle Size Range

    NASA Astrophysics Data System (ADS)

    Sambaer, Wannes; Zatloukal, Martin; Kimmer, Dusan

    2011-07-01

    In this work, novel 3D filtration model for nanofiber based filters has been proposed and tested. For the model validation purposes, filtration efficiency characteristics of two different polyurethane nanofiber based structures (prepared by the electrospinning process) were determined experimentally in the ultrafine particle size range (20-400 nm). It has been found that the proposed model is able to reasonably predict the measured filtration efficiency curves for both tested samples.

  5. Ultrafine carbon particles down-regulate CYP1B1 expression in human monocytes

    PubMed Central

    Eder, Christiane; Frankenberger, Marion; Stanzel, Franz; Seidel, Albrecht; Schramm, Karl-Werner; Ziegler-Heitbrock, Loems; Hofer, Thomas PJ

    2009-01-01

    Background Cytochrome P450 monoxygenases play an important role in the defence against inhaled toxic compounds and in metabolizing a wide range of xenobiotics and environmental contaminants. In ambient aerosol the ultrafine particle fraction which penetrates deeply into the lungs is considered to be a major factor for adverse health effects. The cells mainly affected by inhaled particles are lung epithelial cells and cells of the monocyte/macrophage lineage. Results In this study we have analyzed the effect of a mixture of fine TiO2 and ultrafine carbon black Printex 90 particles (P90) on the expression of cytochrome P450 1B1 (CYP1B1) in human monocytes, macrophages, bronchial epithelial cells and epithelial cell lines. CYP1B1 expression is strongly down-regulated by P90 in monocytes with a maximum after P90 treatment for 3 h while fine and ultrafine TiO2 had no effect. CYP1B1 was down-regulated up to 130-fold and in addition CYP1A1 mRNA was decreased 13-fold. In vitro generated monocyte-derived macrophages (MDM), epithelial cell lines, and primary bronchial epithelial cells also showed reduced CYP1B1 mRNA levels. Benzo[a]pyrene (BaP) is inducing CYB1B1 but ultrafine P90 can still down-regulate gene expression at 0.1 μM of BaP. The P90-induced reduction of CYP1B1 was also demonstrated at the protein level using Western blot analysis. Conclusion These data suggest that the P90-induced reduction of CYP gene expression may interfere with the activation and/or detoxification capabilities of inhaled toxic compounds. PMID:19835593

  6. [The study of ultra-fine diamond powder used in magnetic head polishing slurry].

    PubMed

    Jin, Hong-Yun; Hou, Shu-En; Pan, Yong; Xiao, Hong-Yan

    2008-05-01

    In the present paper, atomic absorption spectrometry(AAS), inductively-coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and laser Raman spectroscopy (RM) were employed to study the commercial ultra-fine diamond powders prepared by the static pressure-catalyst method and used in magnetic head polishing slurry. The results of AAS and ICP-MS indicated that there were silicon oxide, Fe, Ni, Al and some other metal elements in the ultra-fine powders. XRD patterns showed the peaks of SiO2 at 2theta = 35.6 degrees, 39.4 degrees and 59.7 degrees and diamond sharp peaks in agreement with the results above. Diamond sharp peaks implied perfect crystal and high-hardness beneficial to high-efficiency in polishing. The broader Raman band of graphite at 1 592 cm(-1) observed by Raman analysis proved graphite existing in the diamond powders. In the TEM images, the size of ultra-fine powders was estimated between 0.1 and 0.5 microm distributed in a wide scope, however, sharp edges of the powder particles was useful to polish. The ultra-fine diamond powders have many advantages, for example, high-hardness, well abrasion performance, high-polishing efficiency and being useful in magnetic head polishing slurry. But, the impurities influence the polishing efficiency, shortening its service life and the wide distribution reduces the polishing precision. Consequently, before use the powders must be purified and classified. The purity demands is 99.9% and trace silicon oxide under 0.01% should be reached. The classification demands that the particle distribution should be in a narrower scope, with the mean size of 100 nm and the percentage of particles lager than 200 nm not over 2%.

  7. [Research on NEDC ultrafine particle emission characters of a port fuel injection gasoline car].

    PubMed

    Hu, Zhi-Yuan; Li, Jin; Tan, Pi-Qiang; Lou, Di-Ming

    2012-12-01

    A Santana gasoline car with multi-port fuel injection (PFI) system was used as the research prototype and an engine exhaust particle sizer (EEPS) was employed to investigate the exhaust ultrafine particle number and size distribution characters of the tested vehicle in new European driving cycle (NEDC). The tested results showed that the vehicle's nuclear particle number, accumulation particle number, as well as the total particle number emission increased when the car drove in accelerated passage, and the vehicle's particle number emission was high during the first 40 seconds after test started and when the speed was over 90 km x h(-1) in extra urban driving cycle (EUDC) in NEDC. The ultrafine particle distribution of the whole NEDC showed a single peak logarithmic distribution, with diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameter was 24 nm. The ultrafine particle distribution of the urban driving cycle named by the economic commission for Europe (ECE) e. g. ECE I, ECE II - IV, the extra urban driving cycle e. g. EUDC, and the idling, constant speed, acceleration, deceleration operation conditions of NEDC all showed a single peak logarithmic distribution, also with particle diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameters of different driving cycle and different driving mode were from 14 nm to 42 nm. Therefore, the ultrafine particle emissions of the tested PFI gasoline car were mainly consisted of nuclear mode particles with a diameter of less than 50 nm.

  8. Sintering behavior of ultrafine silicon carbide powders obtained by vapor phase reaction

    NASA Technical Reports Server (NTRS)

    Okabe, Y.; Miyachi, K.; Hojo, J.; Kato, A.

    1984-01-01

    The sintering behavior of ultrafine SiC powder with average particle size of about 0.01-0.06 microns produced by a vapor phase reaction of the Me4Si-H2 system was studied at the temperature range of 1400-2050 deg. It was found that the homogeneous dispersion of C on SiC particles is important to remove the surface oxide layer effectively. B and C and inhibitive effect on SiC grain growth.

  9. Preparation and investigation of ultrafine-grained tungsten carbide with high hardness and fracture toughness

    NASA Astrophysics Data System (ADS)

    Chuvil'deev, V. N.; Blagoveshchenskii, Yu. V.; Sakharov, N. V.; Boldin, M. S.; Nokhrin, A. V.; Isaeva, N. V.; Shotin, S. V.; Lopatin, Yu. G.; Smirnova, E. S.

    2015-07-01

    High-density samples of ultrafine-grained tungsten carbide with high hardness (up to 31-34 GPa) and increased fracture toughness (up to 5.2-6.4 MPa m1/2) are obtained using the technology of electropulse plasma sintering. The influence of the initial size of nanoparticles of α-WC prepared by plasmachemical synthesis on the density, structural parameters, and mechanical properties of tungsten carbide is investigated.

  10. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.

    PubMed

    Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John

    2017-01-28

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.

  11. A practice of ultra-fine tailings disposal as filling material in a gold mine.

    PubMed

    Deng, D Q; Liu, L; Yao, Z L; Song, K I-I L; Lao, D Z

    2017-03-08

    A practice of cemented backfill technology with ultra-fine tailings in a gold mine was comprehensively presented, and a series of tests were conducted in accordance with the peculiar properties of ultra-fine tailings and the mining technology conditions. The test results show that, the tailings from Shuiyindong Gold Mine have a great grinding fineness, with the average particle diameter 22.03 μm, in which the ultra-fine particles with the diameter below 20 μm occupying 66.13%. The analysis results of chemical components of tailings indicate that the content of SiO2 is relatively low, i.e., 33.08%, but the total content of CaO, MgO and Al2O3 is relatively high i.e., 36.5%. After the settlement of 4-6 h, the tailing slurry with the initial concentration of 40% has the maximum settling concentration of 54.692%, and the corresponding maximum settling unit weight is 1.497 g/cm(3). During the field application, the ultra-fine tailings and PC32.5 cement were mixed with the cement-tailings ratios of 1:3-1:8, and the slurry concentration of 50 wt% was prepared. Using the slurry pump, the prepared cemented backfill slurries flowed into the goaf, and then the strength of the cemented backfill body met the mining technique requirements in Shuiyindong Gold Mine, where the ore body has a smooth occurrence, with the average thickness of approximately 2 m and the inclination angle ranging from 5 to 10°.

  12. Effect of flow characteristics on ultrafine particle emissions from range hoods.

    PubMed

    Tseng, Li-Ching; Chen, Chih-Chieh

    2013-08-01

    In order to understand the physical mechanisms of the production of nanometer-sized particulate generated from cooking oils, the ventilation of kitchen hoods was studied by determining the particle concentration, particle size distribution, particle dimensions, and hood's flow characteristics under several cooking scenarios. This research varied the temperature of the frying operation on one cooking operation, with three kinds of commercial cooking oils including soybean oil, olive oil, and sunflower oil. The variations of particle concentration and size distributions with the elevated cooking oil temperatures were presented. The particle concentration increases as a function of temperature. For oil temperatures ranging between 180°C and 210°C, a 5°C increase in temperature increased the number concentration of ultrafine particles by 20-50%. The maximum concentration of ultrafine particles was found to be approximately 6 × 10(6) particles per cm(3) at 260°C. Flow visualization techniques and particle distribution measurement were performed for two types of hood designs, a wall-mounted range hood and an island hood, at a suction flow rate of 15 m(3) min(-1). The flow visualization results showed that different configurations of kitchen hoods induce different aerodynamic characteristics. By comparing the results of flow visualizations and nanoparticle measurements, it was found that the areas with large-scale turbulent vortices are more prone to dispersion of ultrafine particle leakage because of the complex interaction between the shear layers and the suction movement that results from turbulent dispersion. We conclude that the evolution of ultrafine particle concentration fluctuations is strongly affected by the location of the hood, which can alter the aerodynamic features. We suggest that there is a correlation between flow characteristics and amount of contaminant leakage. This provides a comprehensive strategy to evaluate the effectiveness of kitchen hoods

  13. Analysis of ultrafine TATB by ultrasonic-assisted equilibrium headspace analysis

    SciTech Connect

    Chambers, D M

    2000-09-12

    The purpose of this work was to screen different lots of ultrafine 1,3,5-triamine 2,4,6-trinitrobenzene (TATB) for chemical differences, which may include synthesis and formulation byproducts, decomposition products, and contaminants. The approach used here permits analysis of trapped species as volatile and semivolatile chemicals within a solid. This procedure involves preconcentration of species from the TATB matrix into a surrounding headspace followed by a preconcentration and collection step using solid phase microextraction (SPME) collection. The sample is prepared by sealing it in a glass ampule with a few milliliters of water, ultrasonicating the solution, and then sampling the headspace using SPME collection. Water couples in the ultrasonic energy to fracture the TATB, which permits the release of nonpolar species into the gas phase. However, polar species will favor the aqueous phase and require a separate analysis procedure, which is not included here. Following SPME collection, the sample is transferred to a gas chromatography/mass spectrometer (GCMS) for analysis. In this work, we analyzed and interpreted outgas signatures from four different lots (1169-135MPS-001, 4271-135M-002, 91190-135M-003, and 98170-135M-001) of ultrafine TATB. Lot 98170-135M-001 is a reprocessing of Lot 4271-135M-002, which was washed to remove the water-soluble polysaccharides. The pedigree for these materials are found in a memo from Tom Stallings and Gordon Osborn of Mason & Hanger Co., Pantex Plant in the Appendix section. Nominally, ultrafine TATB is synthesized via the emulsion-amination method in which an emulsifier is included during the amination of the 1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB) precursor. The ultrafine TATB formulation also includes 0.2% by weight guar gum, a galactomannan polysaccharide, to enhance flow properties. Historically, this polysaccharide was added to PETN to reduce its sublimation temperature, but it was also found to enhance flow

  14. Facile solvothermal synthesis of abnormal growth of one-dimensional ZnO nanostructures by ring-opening reaction of polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Xu, G.; Wang, X. L.; Liu, G. Z.

    2015-02-01

    Abnormal growth of one-dimensional (1-D) ZnO nanostructures (NSs) have been accomplished with the assistance of polyvinylpyrrolidone (PVP) under a super high alkaline alcoholic solvothermal condition. The products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The effect of synthetic conditions, such as reaction temperature and the addition of PVP, on the morphologies of ZnO products were investigated. The results show that PVP molecules had the significant role in the transformation of morphologies of ZnO NSs ranging from nanorods, nanoparticles to pyramids, as well as flower-like assembly features. The possible growth mechanism of ZnO pyramids was proposed based on ring-opening reaction of PVP.

  15. Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene-polyvinylpyrrolidone composite film.

    PubMed

    Deng, Peihong; Xu, Zhifeng; Zeng, Rongying; Ding, Chunxia

    2015-08-01

    The graphene-polyvinylpyrrolidone composite film modified acetylene black paste electrode (GR-PVP/ABPE) was fabricated and used to determine vanillin. In 0.1M H3PO4 solution, the oxidation peak current of vanillin increased significantly at GR-PVP/ABPE compared with bare ABPE, PVP/ABPE and GR/ABPE. The oxidation mechanism was discussed. The experimental conditions that exert influence on the voltammetric determination of vanillin, such as supporting electrolytes, pH values, accumulation potential and accumulation time, were optimized. Besides, the interference, repeatability, reproducibility and stability measurements were also evaluated. Under the optimal experimental conditions, the oxidation peak current was proportional to vanillin concentration in the range of 0.02-2.0 μM, 2.0-40 μM and 40-100 μM. The detection limit was 10nM. This sensor was used successfully for vanillin determination in various food samples.

  16. Polyvinylpyrrolidone-sodium dodecylsulfate complex is a family of pseudo-polyanions with different charge densities: Evidence from capillary electrophoresis, capillary viscosimetry and conductometry.

    PubMed

    Wu, Yefan; Chen, Jie; Fang, Yun; Zhu, Meng

    2016-10-01

    Accordance with the previously supposed polyelectrolyte-like behaviour of neutral polymer-anionic surfactant complexes, direct evidence for the formation of the pseudo-polyanions in polyvinylpyrrolidone (PVP)-sodium dodecylsulfate (SDS) solution is put forward in this paper by capillary electrophoresis (CE) experiments in assistance with capillary viscosimetry and conductometry. The contradictory phenomena of the absolute value of relative electrophoretic mobility (re) increasing while the ionization degree (α) decreasing with the increasing specific clusterization [Г] in aqueous PVP-SDS solution are explained by the finding that the PVP-SDS complex is eventually a family of PVP-SDS pseudo-polyanions with different charge densities. And it is found countercations playing an important role in the formation of the PVP-SDS pseudo-polyanions in virtue of bridge effect.

  17. Subcutaneous administration of collagen-polyvinylpyrrolidone down regulates IL-1beta, TNF-alpha, TGF-beta1, ELAM-1 and VCAM-1 expression in scleroderma skin lesions.

    PubMed

    Furuzawa-Carballeda, J; Krötzsch, E; Barile-Fabris, L; Alcalá, M; Espinosa-Morales, R

    2005-01-01

    In this study the effect of collagen-polyvinylpyrrolidone (collagen-PVP) vs. triamcinolone acetonide (Triam) in scleroderma (SSc) skin lesions was evaluated. Ten SSc patients were treated weekly with subcutaneous injections of 0.2 mL Triam (8 mg/mL) or 0.2 mL collagen-PVP (1.66 mg collagen). Skin biopsies were obtained from lesions before and after treatment. Tissue sections were evaluated by histology and immunohistochemistry (ELAM-1, VCAM-1, IL-1beta, TNF-alpha, TGF-beta1 and PDGF). The corticoid-treated group showed abnormal tissue architecture while the biodrug-treatment restored cutaneous appendages and type I/III collagen proportion. Cytokine and adhesion molecule expression was almost inhibited with Triam, while collagen-PVP down-regulated it. Collagen-PVP improved the tissue architecture of SSc lesions and down-regulated some proinflammatory parameters, without the side effects induced by corticoids.

  18. Carbon nanotube fibers and ribbons produced by a novel wet-spinning process

    NASA Astrophysics Data System (ADS)

    Capps, Ryan Cody

    Carbon nanotubes have exciting potential to provide high performance materials of the future. One of the main challenges is assembling the billions of miles of individual nanotubes in each pound of product nanotube fiber or sheet in such a way that the properties of the individual nanotubes are most effectively utilized. In this study a novel wet fiber spinning method was developed in which carbon nanotubes dispersed in a surfactant are injected into a rotating acid bath which coagulates the dispersion to form a macroscopic fiber. This flocculation method produces highly conducting carbon nanotube fibers and sheets without the need for a polymer binder. The mechanical strength is sufficient for several applications and can be improved by either heat treatment or by incorporation of a polymer in the yarn, and subsequent draw. Poly(Vinyl Alcohol) (PVA)-treated fibers yield outstanding mechanical properties and a toughness that is comparable to spider silk. Other polymers, such as polyvinylpyrrolidone (PVP) also enhance mechanical properties. Inorganic additives, such as platinum, can be incorporated into the fiber matrix to provide multifunctionality.

  19. Antimicrobial activity of electrospun poly(butylenes succinate) fiber mats containing PVP-capped silver nanoparticles.

    PubMed

    Tian, Ligang; Wang, Pingli; Zhao, Zhiguo; Ji, Junhui

    2013-12-01

    In this study, biodegradable poly(butylenes succinate) (PBS) fiber mats containing silver nanoparticles (AgNPs) were prepared by the electrospinning process. Small AgNPs (<10 nm) were simply synthesized using polyvinylpyrrolidone as the capping agent as well as the reductant. The morphology of the PBS-AgNPs fiber mats and the distribution of the AgNPs were well characterized by TEM and SEM. The release of Ag from the PBS fiber mats was quantitively determined by ICP. The PBS fiber mats with 0.29 % AgNPs content showed strong antimicrobial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli with the efficacy as high as 99 %. The effective bactericidal activity on E. coli was demonstrated for a short contacting time with the PBS-AgNPs fiber mats. In addition, the long-term release performance of Ag from the fiber mats can keep inhibiting the bacterial growth in the mats over a long period of time.

  20. Preparation of ultrafine silica from potash feldspar using sodium carbonate roasting technology

    NASA Astrophysics Data System (ADS)

    Liu, Jia-nan; Shen, Xiao-yi; Wu, Yan; Zhang, Jun; Zhai, Yu-chun

    2016-08-01

    A novel process was developed for the preparation of ultrafine silica from potash feldspar. In the first step, potash feldspar was roasted with Na2CO3 and was followed by leaching using NaOH solution to increase the levels of potassium, sodium, and aluminum in the solid residue. The leaching solution was then carbonated to yield ultrafine silica. The optimized reaction conditions in the roasting process were as follows: an Na2CO3-to-potash feldspar molar ratio of 1.1, a reaction temperature of 875°C, and a reaction time of 1.5 h. Under these conditions, the extraction rate of SiO2 was 98.13%. The optimized carbonation conditions included a final solution pH value of 9.0, a temperature of 40°C, a CO2 flow rate of 6 mL/min, a stirring intensity of 600 r/min, and an ethanol-to-water volume ratio of 1:9. The precipitation rate and granularity of the SiO2 particles were 99.63% and 200 nm, respectively. We confirmed the quality of the obtained ultrafine silica by comparing the recorded indexes with those specified in Chinese National Standard GB 25576―2010.

  1. An innovative antisolvent precipitation process as a promising technique to prepare ultrafine rifampicin particles

    NASA Astrophysics Data System (ADS)

    Viçosa, Alessandra; Letourneau, Jean-Jacques; Espitalier, Fabienne; Inês Ré, Maria

    2012-03-01

    Many existing and new drugs fail to be fully utilized because of their limited bioavailability due to poor solubility in aqueous media (BCS drug classes II and IV). In this work, for accelerating dissolution of this kind of poorly water-soluble drugs, an antisolvent precipitation method that does not require the use of conventional volatile organic solvents is proposed. To demonstrate this technique, ultrafine particles of rifampicin were prepared using a room temperature ionic liquid (1-ethyl 3- methyl imidazolium methyl-phosphonate) as an alternative solvent and a phosphate buffer as an antisolvent. Rifampicin solubility was measured in various solvents (1-ethyl 3-methyl imidazolium methylphosphonate, water and phosphate buffer), showing the RTIL good solvency for the model drug: rifampicin solubility was found to be higher than 90 mg/g in RTIL at 30 °C and lower than 1 mg/g in water at 25 °C. Additionally, it was demonstrated that introduction of rifampicin solution in 1-ethyl 3- methyl imidazolium methyl-phosphonate into the aqueous solution antisolvent can produce particles in the submicron range with or without hydroxypropyl methylcellulose as the stabilizer. The ultrafine particles (280-360 nm) are amorphous with enhanced solubility and faster dissolution rate. To our knowledge, this is the first published work examining the suitability of using RTILs for ultrafine drug nanoparticles preparation by an antisolvent precipitation process.

  2. Thermal Stability Study of Ultrafine Grained 304L Stainless Steel Produced by Martensitic Process

    NASA Astrophysics Data System (ADS)

    Sabooni, S.; Karimzadeh, F.; Enayati, M. H.

    2014-05-01

    An ultrafine grain 304L stainless steel with average grain size of about 650 nm was produced by martensitic process. 10 mm as-received sheets were 80% cold rolled in the temperature of -15 °C and then annealed at 700 °C for 300 min to obtain ultrafine grained microstructure. The results showed that the ultrafine grained 304L steel has yield strength of 720 MPa, tensile strength of about 920 MPa, and total elongation of 47% which is about twice that of coarse grain structure. The effect of annealing temperature (750-900 °C) on the grain growth kinetics was modeled by isothermal kinetics equation which resulted in the grain growth exponent ( n) and activation energy for grain growth of 4.8 and 455 KJ/mol, respectively. This activation energy was also compared with those for other austenitic steels to better understanding of the nature of grain growth and atoms mobility during annealing. It was found that activation energy for grain growth is about twice higher than self-diffusion activation energy of austenite that is related to the Zener pinning effects of the second phase particles.

  3. Electrochemically Formed Ultrafine Metal Oxide Nanocatalysts for High-Performance Lithium-Oxygen Batteries.

    PubMed

    Liu, Bin; Yan, Pengfei; Xu, Wu; Zheng, Jianming; He, Yang; Luo, Langli; Bowden, Mark E; Wang, Chong-Min; Zhang, Ji-Guang

    2016-08-10

    Lithium-oxygen (Li-O2) batteries have an extremely high theoretical specific energy density when compared with conventional energy-storage systems. However, practical application of the Li-O2 battery system still faces significant challenges. In this work, we report a new approach for synthesis of ultrafine metal oxide nanocatalysts through an electrochemical prelithiation process. This process reduces the size of NiCo2O4 (NCO) particles from 20-30 nm to a uniformly distributed domain of ∼2 nm and significantly improves their catalytic activity. Structurally, the prelithiated NCO nanowires feature ultrafine NiO/CoO nanoparticles that are highly stable during prolonged cycles in terms of morphology and particle size, thus maintaining an excellent catalytic effect to oxygen reduction and evolution reactions. A Li-O2 battery using this catalyst demonstrated an initial capacity of 29 280 mAh g(-1) and retained a capacity of >1000 mAh g(-1) after 100 cycles based on the weight of the NCO active material. Direct in situ transmission electron microscopy observations conclusively revealed the lithiation/delithiation process of as-prepared NCO nanowires and provided in-depth understanding for both catalyst and battery chemistries of transition-metal oxides. This unique electrochemical approach could also be used to form ultrafine nanoparticles of a broad range of materials for catalyst and other applications.

  4. Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement.

    PubMed

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Tan, Piqiang; Yao, Di; Hu, Wei; Li, Peng; Ren, Jin; Chen, Changhong

    2012-01-01

    This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) x 10(8) cm(-3). The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 x 10(6) cm(-3) and 2.7 x 10(7) cm(-3) under decelerating and idling operations and as high as 5.0 x 10(8) cm(-3) under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.

  5. Ultrafine particle emission of waste incinerators and comparison to the exposure of urban citizens.

    PubMed

    Buonanno, Giorgio; Morawska, Lidia

    2015-03-01

    On the basis of the growing interest on the impact of airborne particles on human exposure as well as the strong debate in Western countries on the emissions of waste incinerators, this work reviewed existing literature to: (i) show the emission factors of ultrafine particles (particles with a diameter less than 100 nm) of waste incinerators; and (ii) assess the contribution of waste incinerators in terms of ultrafine particles to exposure and dose of people living in the surrounding areas of the plants in order to estimate eventual risks. The review identified only a limited number of studies measuring ultrafine particle emissions, and in general they report low particle number concentrations at the stack (the median value was equal to 5.5×10(3) part cm(-3)), in most cases higher than the outdoor background value. The lowest emissions were achieved by utilization of the bag-house filter which has an overall number-based filtration efficiency higher than 99%. Referring to reference case, the corresponding emission factor is equal to 9.1×10(12) part min(-1), that is lower than one single high-duty vehicle. Since the higher particle number concentrations found in the most contributing microenvironments to the exposure (indoor home, transportation, urban outdoor), the contribution of the waste incinerators to the daily dose can be considered as negligible.

  6. Ultrafine coal single stage dewatering and briquetting process. Technical report, September 1--November 30, 1994

    SciTech Connect

    Wilson, J.W.; Honaker, R.Q.

    1994-12-31

    It is well known that a large portion of the pyrite particles in the coal seams of the Illinois Basin, are finely disseminated within the coal matrix. In order to liberate these micron size pyrite particles, one must use a fine grinding operation. The ultrafine coal particles that are produced are difficult to dewater and they create problems in coal transportation as well as in its storage and handling at utility plants. The objective of this research project is to combine ultrafine coal dewatering and briquetting processes into a single stage operation. This will be accomplished by the use of bitumen based emulsions for dewatering and a compaction device for briquetting. During this reporting period, two types of coal samples have been tested for use in the dewatering and briquetting processes. These tests were carried out in conjunction with a selected hydrophobic binder as the dewatering reagent and an uniaxial hydraulic press. The influence of compaction pressure and binder concentration (2 to 5%) on the performance of coal pellets have been evaluated in terms of their water and wear resistance. A laboratory scale ultrafine coal dewatering and briquetting extruder that can be operated continuously for coal pellets fabrication, has been designed and built, and will be available for testing in the next quarter.

  7. The influence of reagent type on the kinetics of ultrafine coal flotation

    USGS Publications Warehouse

    Read, R.B.; Camp, L.R.; Summers, M.S.; Rapp, D.M.

    1989-01-01

    A kinetic study has been conducted to determine the influence of reagent type on flotation rates of ultrafine coal. Two ultrafine coal samples, the Illinois No. 5 (Springfield) and Pittsburgh No. 8, have been evaluated with various reagent types in order to derive the rate constants for coal (kc), ash (ka), and pyrite (kc). The reagents used in the study include anionic surfactants, anionic surfactant-alcohol mixtures, and frothing alcohols. In general, the surfactant-alcohol mixtures tend to float ultrafine coal at a rate three to four times faster than either pure alcohols or pure anionic surfactants. Pine oil, a mixture of terpene alcohols and hydrocarbons, was an exception to this finding; it exhibited higher rate constants than the pure aliphatic alcohols or other pure anionic surfactants studied; this may be explained by the fact that the sample of pine oil used (70% alpha-terpineol) acted as a frother/collector system similar to alcohol/kerosene. The separation efficiencies of ash and pyrite from coal, as evidenced by the ratios of kc/ka or kc/kp, tend to indicate, however, that commercially available surfactant-alcohol mixtures are not as selective as pure alcohols such as 2-ethyl-1-hexanol or methylisobutylcarbinol. Some distinct differences in various rate constants, or their ratios, were noted between the two coals studied, and are possibly attributable to surface chemistry effects. ?? 1989.

  8. Existence of ultrafine crevices and functional groups along the edge surfaces of graphitized thermal carbon black.

    PubMed

    Zeng, Yonghong; Do, D D; Nicholson, D

    2015-04-14

    Adsorption of different gases on graphitized thermal carbon black (GTCB) has been studied with a new molecular model to examine the consequences of micropore crevices and functional groups at the junctions between adjacent basal planes. Adsorption was simulated in the Grand Canonical Monte Carlo ensemble and the theoretical Henry constants were calculated by Monte Carlo volume integration over the Boltzmann factor of the solid-fluid potential. The simulation results are in good agreement with high-resolution experimental isotherms for argon on mineralogical graphite measured by Lopez-Gonzalez et al.1 From detailed inspection of the argon isotherms at extremely low coverages, we find two distinct Henry law regions, separated by a plateau (suggesting saturation of the stronger sites) that spans over a few decades of pressure. The first Henry law region is attributed to adsorption in the ultrafine crevices at the junctions between two adjacent basal planes, and the second region corresponds to adsorption on the basal plane, as confirmed by the theoretical Henry constant. The simulated isosteric heat and snapshots of molecular configurations show that argon adsorbs preferentially in the ultrafine crevices where there is a deep potential well due to overlap from the opposite pore walls. Similar behavior was found for other nonassociating fluids (Ar, N2, and CO2); however, for associating fluids (NH3 and H2O), the strong sites for adsorption and nucleation come from the combined effects of functional groups and ultrafine crevices, since the latter cannot alone account for the observed adsorption.

  9. Exposure to ambient ultrafine particulate matter alters the expression of genes in primary human neurons.

    PubMed

    Solaimani, Parrisa; Saffari, Arian; Sioutas, Constantinos; Bondy, Stephen C; Campbell, Arezoo

    2017-01-01

    Exposure to ambient particulate matter (PM) has been associated with the onset of neurodevelopmental and neurodegenerative disorders, but the mechanism of toxicity remains unclear. To gain insight into this neurotoxicity, this study sought to examine global gene expression changes caused by exposure to ambient ultrafine PM. Microarray analysis was performed on primary human neurons derived from fetal brain tissue after a 24h exposure to 20μg/mL of ambient ultrafine particles. We found a majority of the changes in noncoding RNAs, which are involved in epigenetic regulation of gene expression, and thereby could impact the expression of several other protein coding gene targets. Although neurons from biologically different lot numbers were used, we found a significant increase in the expression of metallothionein 1A and 1F in all samples after exposure to particulate matter as confirmed by quantitative PCR. These metallothionein 1 proteins are responsible for neuroprotection after exposure to environmental insult but prolonged induction can be toxic. Epidemiological studies have reported that in utero exposure to ultrafine PM not only leads to neurodevelopmental and behavioral abnormalities, but may also predispose the progeny to neurodegenerative disease later in life by genetic imprinting. Our results pinpoint some of the PM-induced genetic changes that may underlie these findings.

  10. Automatic detection and extraction of ultra-fine bright structure observed with new vacuum solar telescope

    NASA Astrophysics Data System (ADS)

    Deng, Linhua

    2017-02-01

    Solar magnetic structures exhibit a wealth of different spatial and temporal scales. Presently, solar magnetic element is believed to be the ultra-fine magnetic structure in the lower solar atmospheric layer, and the diffraction limit of the largest-aperture solar telescope (New Vacuum Solar Telescope; NVST) of China is close to the spatial scale of magnetic element. This implies that modern solar observations have entered the era of high resolution better than 0.2 arc-second. Since the year of 2011, the NVST have successfully established and obtained huge observational data. Moreover, the ultra-fine magnetic structure rooted in the dark inter-graunlar lanes can be easily resolved. Studies on the observational characteristics and physical mechanism of magnetic bright points is one of the most important aspects in the field of solar physics, so it is very important to determine the statistical and physical parameters of magnetic bright points with the feature extraction techniques and numerical analysis approaches. For identifying such ultra-fine magnetic structure, an automatically and effectively detection algorithm, employed the Laplacian transform and the morphological dilation technique, is proposed and examined. Then, the statistical parameters such as the typical diameter, the area distribution, the eccentricity, and the intensity contrast are obtained. And finally, the scientific meaning for investigating the physical parameters of magnetic bright points are discussed, especially for understanding the physical processes of solar magnetic energy transferred from the photosphere to the corona.

  11. The processing of ultrafine-grained Mg tubes for biodegradable stents.

    PubMed

    Ge, Qiang; Dellasega, David; Demir, Ali Gökhan; Vedani, Maurizio

    2013-11-01

    An investigation was carried out on equal-channel angular pressing (ECAP) and extrusion processing of a ZM21 Mg alloy to obtain an improved candidate material for the manufacturing of biodegradable Mg stents. Ultrafine-grain size billets of the ZM21 alloy were obtained by two-stage ECAP aimed at achieving an initial refining of the structure at 200°C and then reaching the submicrometer grain size range by lowering the processing temperature down to 150°C. The investigation revealed a significant improvement in the properties of the ECAP-treated samples compared with the starting coarse-grained ZM21 alloy. The 0.2% yield strength rose from 180 to 340 MPa after 150°C ECAP processing, while maintaining a fairly high tensile ductility. The ultrafine ZM21 alloy billets were then used for the extrusion of stent precursors having the form of small-size tubes. The grain size after extrusion remained in the submicrometer range while the hardness was revealed to be significantly higher than that of the coarse-grained ZM21 Mg alloy. It was demonstrated that processing of biodegradable Mg stent having an ultrafine-grained microstructure by ECAP and low-temperature extrusion is feasible and that the obtained products feature promising properties.

  12. Aggregates of ultrafine particles impair phagocytosis of microorganisms by human alveolar macrophages.

    PubMed

    Lundborg, Margot; Dahlén, Sven-Erik; Johard, Urban; Gerde, Per; Jarstrand, Connie; Camner, Per; Låstbom, Lena

    2006-02-01

    We investigated whether exposure of alveolar macrophages to aggregates of ultrafine carbon particles affected subsequent phagocytosis of microorganisms. Human alveolar macrophages were obtained by bronchoalveolar lavage and exposed to aggregates of ultrafine carbon particles or diesel exhaust particles (DEP) for 20 h before measurements of phagocytosis. The particle loads were estimated to be comparable to those of air pollution exposure with established health effects in humans. Phagocytotic activity was measured as attachment and ingestion of four different test particles (amorphous silica particles, yeast cells from Candida albicans, and Cryptococcus neoformans opsonized with specific IgG or fresh serum) that bind to scavenger, mannose, Fc, and complement receptors, respectively. Carbon preloading significantly impaired the attachment and ingestion process (P<0.01) for all particles, except for yeast cells from C. neoformans opsonized with specific IgG. On the average, the accumulated attachment decreased by 30% and the ingested fraction decreased by 10%. Loading of alveolar macrophages with either aggregates of ultrafine DEP or carbon particles impaired the phagocytosis of silica test particles in a similar way. Exposure of human alveolar macrophages to aggregates of carbon or DEP, in concentrations relevant to human environmental exposures, caused significant impairment of phagocytosis of silica particles and microorganisms. The inhibitory effect on particle phagocytosis mediated by four different receptors suggests that air pollution particles cause a general inhibition of macrophage phagocytosis. Such an effect may contribute to increased susceptibility to infections and, for example, result in more exacerbations of asthma and chronic obstructive pulmonary disease.

  13. Fabrication and Evaluation of Nanostructured Herbal Oil/Hydroxypropyl-β-Cyclodextrin/Polyvinylpyrrolidone Mats for Denture Stomatitis Prevention and Treatment.

    PubMed

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2016-12-01

    This work aims to develop the herbal oil-incorporated nanostructure mats with antifungal activity for the prevention and treatment of Candida-associated denture stomatitis. The nanofiber mats loaded with betel oil or clove oil were fabricated via electrospinning process. The morphologies and physicochemical properties of the herbal oil loaded nanofiber mats were examined using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and mechanical testing. The release characteristic, antifungal activity, and cytotoxicity were also investigated. The SEM images confirmed the homogeneous and smooth nanoscale fibers. The addition of the herbal oil into the nanofiber mats reduced the fiber diameters. The DSC and FT-IR results confirmed the presence of the oil in the nanofiber mats. The herbal oils can be released from the mats in a very fast manner and inhibit the growth of candida cells within only few minutes after contact. These nanofiber mats may be beneficial for the prevention and treatment of denture stomatitis.

  14. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children

    PubMed Central

    Evans, Kristin A.; Halterman, Jill S.; Hopke, Philip K.; Fagnano, Maria; Rich, David Q.

    2014-01-01

    Objectives Increased air pollutant concentrations have been linked to several asthma-related outcomes in children, including respiratory symptoms, medication use, and hospital visits. However, few studies have examined effects of ultrafine particles in a pediatric population. Our primary objective was to examine the effects of ambient concentrations of ultrafine particles on asthma exacerbation among urban children and determine whether consistent treatment with inhaled corticosteroids could attenuate these effects. We also explored the relationship between asthma exacerbation and ambient concentrations of accumulation mode particles, fine particles (≤ 2.5 micrograms [μm]; PM2.5), carbon monoxide, sulfur dioxide, and ozone. We hypothesized that increased 1 to 7 day concentrations of ultrafine particles and other pollutants would be associated with increases in the relative odds of an asthma exacerbation, but that this increase in risk would be attenuated among children receiving school-based corticosteroid therapy. Methods We conducted a pilot study using data from 3–10 year-old children participating in the School-Based Asthma Therapy trial. Using a time-stratified case-crossover design and conditional logistic regression, we estimated the relative odds of a pediatric asthma visit treated with prednisone (n=96 visits among 74 children) associated with increased pollutant concentrations in the previous 7 days. We re-ran these analyses separately for children receiving medications through the school-based intervention and children in a usual care control group. Results Interquartile range increases in ultrafine particles and carbon monoxide concentrations in the previous 7 days were associated with increases in the relative odds of a pediatric asthma visit, with the largest increases observed for 4-day mean ultrafine particles (interquartile range=2088 p/cm3; OR=1.27; 95% CI=0.90–1.79) and 7-day mean carbon monoxide (interquartile range=0.17 ppm; OR=1.63; 95

  15. Photovoltaic fibers

    NASA Astrophysics Data System (ADS)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  16. Van der Waal Interactions in Ultrafine Nanocellulose Aerogels

    NASA Astrophysics Data System (ADS)

    Fritch, Byron; Bradley, Derek; Kidd, Tim

    Nanocellulose aerogels have shown an ability to be used in many different applications ranging from oil sponges to conductive materials to possibly a low calorie food substitute. Not much is known about the structural and physical property changes that occur when the composition of the aerogel changes. We studied what properties change when the aerogel amounts change, as well as how sticky the aerogels are and how strong they are. The higher concentrations appeared to have more plate-like structures while the lower concentrations had a more fibrous material. These fibers in the low concentrations had a smaller diameter than a human hair. Only the low concentration aerogels were able to stick to a glass surface in the adhesion test, but were able to support a mass much larger than their own. These low concentrations also would stick to your finger when lightly touched. Preliminary tests show that a concentration that is not too low, but not too high, is best for tensile strength. All concentrations were able to hold many times their own mass. Cellulose should be studied more because it is a renewable material and is easily accessed. Nanocellulose is also not environmentally dangerous allowing it to be used in applications involving humans and the environment like noted above. National Science Foundation Grant DMR-1410496.

  17. Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent.

    PubMed

    Hu, Sixiao; Hsieh, You-Lo

    2015-10-20

    Lignin has proven to be highly effective "green" multi-functional binding, complexing and reducing agents for silver cations as well as capping agents for the synthesis of silver nanoparticles on ultra-fine cellulose fibrous membranes. Silver nanoparticles could be synthesized in 10min to be densely distributed and stably bound on the cellulose fiber surfaces at up to 2.9% in mass. Silver nanoparticle increased in sizes from 5 to 100nm and became more polydispersed in size distribution on larger fibers and with longer synthesis time. These cellulose fiber bound silver nanoparticles did not agglomerate under elevated temperatures and showed improved thermal stability. The presence of alkali lignin conferred moderate UV absorbing ability in both UV-B and UV-C regions whereas the bound silver nanoparticles exhibited excellent antibacterial activities toward Escherichia coli.

  18. Encapsulated particles attached on electrospun fibers by in situ combination of electrospinning and coaxial electrospraying.

    PubMed

    Bae, Harim; Lee, Jonghwi

    2014-10-01

    Electrohydrodynamic jetting has been widely used as a promising strategy for the development of functionalized scaffolds to mimic natural extracellular matrix. The current electrospun scaffolds achieve functionality through additional mechanical or chemical treatments, and their life-time depends on fiber degradation. An innovative in situ approach used to attach core-shell poly(D,L-lactide-co-glycolide) (PLGA) particles on fibrous mats is described here. This particle/fiber composite was prepared by electrohydrodynamic jetting of countercharged nozzles (EJC) based on neutralization between electrospun nanofibers and coaxial electrosprayed droplets. The PLGA particles were successfully attached onto both water-soluble polyvinylpyrrolidone and hydrophobic poly(L-lactide-co-D,L-lactide). The resulting release rates of encapsulated model compounds were independently controlled by fiber degradation. Encapsulation efficiency and the dimensions of particles and fibers were easily engineered by changing solvents. The particle/fiber composite prepared by EJC could be a superior material for developing future biomaterials with architectured biological and mechanical properties.

  19. Perspectives of Using Ultra-Fine Metals as Universal Safe BioStimulators to Get Cattle Breeding Quality Products

    NASA Astrophysics Data System (ADS)

    Polishchuk, S.

    2015-11-01

    We have conducted investigations of ultra-fine metals biological activity with lab non-pedigree white rats, rabbits breed “Soviet chinchilla” and cattle young stock of the black and white breed as the most widely spread in the central part of Russia. One can see the possibility of using microelements of ultra-fine iron, cobalt and copper as cheap, non-toxic and highly effective biological catalyst of biochemical processes in the organism that improve physiological state, morphological and biochemical blood parameters increasing activity of the experimental animals’ ferment systems and their productivity and meat biological value. We have proved the ultra-fine powders safety when adding them to the animals’ diet.

  20. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Liu, R.; Zheng, L. M.; Ren, Y. P.; Hu, Z. Z.; He, H.

    2015-10-01

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2-6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphous carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.

  1. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    SciTech Connect

    Khodabakhshi, F.; Kazeminezhad, M. Kokabi, A.H.

    2012-07-15

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to these subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.

  2. Recovery of Ductility in Ultrafine-Grained Low-Carbon Steel Processed Through Equal-Channel Angular Pressing Followed by Cold Rolling and Flash Annealing

    NASA Astrophysics Data System (ADS)

    Singh, Raj Bahadur; Mukhopadhyay, N. K.; Sastry, G. V. S.; Manna, R.

    2017-03-01

    The low-carbon steel workpieces are deformed by equal-channel angular pressing at 293 K (20 °C) up to an equivalent strain of 12 using route B c, which results in the bulk ultrafine-grained (UFG) structure with high dislocation density and partial dissolution of cementite. The yield strength (YS) is enhanced from 208 (as-received) to 872 MPa and the tensile strength is increased from 362 to 996 MPa, but the material loses total elongation (TE) from 36.2 to 2.9 pct. Cold rolling of equal-channel angular pressed steel produces the refined structure of grain size 0.11 μm. The YS increases further to 924 MPa with a marginal gain in ductility due to the reappearance of the γ fiber component. Flash annealing the samples, which were equal-channel angular pressed followed by cold rolling, at 873 K (600 °C) results in 27 pct of micron-sized (9 µm) ferrite grains in submicron-sized (<1 µm) matrix with a reduced defect density and small amount of precipitation of cementite. TE increases from 2.9 to 23.3 pct. The material retains a YS of 484 MPa and tensile strength of 517 MPa, which are higher than those of the as-received material. The UFG grains are failed by cleavage, but the micron-sized grains display ductile fracture. The ductility of the flash-annealed material is recovered significantly due to bimodal grain size distribution in ferrite and the development of a good amount of γ fiber texture components. The major contribution toward recovery of ductility comes from the bimodal grain size distribution in ferrite rather the precipitation of cementite.

  3. Recovery of Ductility in Ultrafine-Grained Low-Carbon Steel Processed Through Equal-Channel Angular Pressing Followed by Cold Rolling and Flash Annealing

    NASA Astrophysics Data System (ADS)

    Singh, Raj Bahadur; Mukhopadhyay, N. K.; Sastry, G. V. S.; Manna, R.

    2017-01-01

    The low-carbon steel workpieces are deformed by equal-channel angular pressing at 293 K (20 °C) up to an equivalent strain of 12 using route B c, which results in the bulk ultrafine-grained (UFG) structure with high dislocation density and partial dissolution of cementite. The yield strength (YS) is enhanced from 208 (as-received) to 872 MPa and the tensile strength is increased from 362 to 996 MPa, but the material loses total elongation (TE) from 36.2 to 2.9 pct. Cold rolling of equal-channel angular pressed steel produces the refined structure of grain size 0.11 μm. The YS increases further to 924 MPa with a marginal gain in ductility due to the reappearance of the γ fiber component. Flash annealing the samples, which were equal-channel angular pressed followed by cold rolling, at 873 K (600 °C) results in 27 pct of micron-sized (9 µm) ferrite grains in submicron-sized (<1 µm) matrix with a reduced defect density and small amount of precipitation of cementite. TE increases from 2.9 to 23.3 pct. The material retains a YS of 484 MPa and tensile strength of 517 MPa, which are higher than those of the as-received material. The UFG grains are failed by cleavage, but the micron-sized grains display ductile fracture. The ductility of the flash-annealed material is recovered significantly due to bimodal grain size distribution in ferrite and the development of a good amount of γ fiber texture components. The major contribution toward recovery of ductility comes from the bimodal grain size distribution in ferrite rather the precipitation of cementite.

  4. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    SciTech Connect

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Burtron H. Davis

    2005-09-30

    In this reporting period, a study of ultra-fine iron catalyst filtration was initiated to study the behavior of ultra-fine particles during the separation of Fischer-Tropsch Synthesis (FTS) liquids filtration. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. The change of particle size during the slurry-phase FTS has monitored by withdrawing catalyst sample at different TOS. The measurement of dimension of the HRTEM images of samples showed a tremendous growth of the particles. Carbon rims of thickness 3-6 nm around the particles were observed. This growth in particle size was not due to carbon deposition on the catalyst. A conceptual design and operating philosophy was developed for an integrated wax filtration system for a 4 liter slurry bubble column reactor to be used in Phase II of this research program. The system will utilize a primary inertial hydroclone followed by a Pall Accusep cross-flow membrane. Provisions for cleaned permeate back-pulsing will be included to as a flux maintenance measure.

  5. Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells.

    PubMed

    Penn, Arthur; Murphy, Gleeson; Barker, Steven; Henk, William; Penn, Lynn

    2005-08-01

    Epidemiologic evidence supports associations between inhalation of fine and ultrafine ambient particulate matter [aerodynamic diameter < or = 2.5 microm (PM2.5)] and increases in cardiovascular/respiratory morbidity and mortality. Less attention has been paid to how the physical and chemical characteristics of these particles may influence their interactions with target cells. Butadiene soot (BDS), produced during combustion of the high-volume petrochemical 1,3-butadiene, is rich in polynuclear aromatic hydrocarbons (PAHs), including known carcinogens. We conducted experiments to characterize BDS with respect to particle size distribution, assembly, PAH composition, elemental content, and interaction with respiratory epithelial cells. Freshly generated, intact BDS is primarily (> 90%) PAH-rich, metals-poor (nickel, chromium, and vanadium concentrations all < 1 ppm) PM2.5, composed of uniformly sized, solid spheres (30-50 nm) in aggregated form. Cells of a human bronchial epithelial cell line (BEAS-2B) exhibit sequential fluorescent responses--a relatively rapid (approximately 30 min), bright but diffuse fluorescence followed by the slower (2-4 hr) appearance of punctate cytoplasmic fluorescence--after BDS is added to medium overlying the cells. The fluorescence is associated with PAH localization in the cells. The ultrafine BDS particles move down through the medium to the cell membrane. Fluorescent PAHs are transferred from the particle surface to the cell membrane, cross the membrane into the cytosol, and appear to accumulate in lipid vesicles. There is no evidence that BDS particles pass into the cells. The results demonstrate that uptake of airborne ultrafine particles by target cells is not necessary for transfer of toxicants from the particles to the cells.

  6. Distribution pattern of inhaled ultrafine gold particles in the rat lung.

    PubMed

    Takenaka, S; Karg, E; Kreyling, W G; Lentner, B; Möller, W; Behnke-Semmler, M; Jennen, L; Walch, A; Michalke, B; Schramel, P; Heyder, J; Schulz, H

    2006-09-01

    The role of alveolar macrophages in the fate of ultrafine particles in the lung was investigated. Male Wistar-Kyoto rats were exposed to ultrafine gold particles, generated by a spark generator, for 6 h at a concentration of 88 microg/m3 (4 x 10(6)/cm3, 16 nm modal mobility diameter). Up to 7 days, the animals were serially sacrificed, and lavaged cells and lung tissues were examined by transmission electron microscopy. The gold concentration/content in the lung, lavage fluid, and blood was estimated by inductively coupled plasma-mass spectrometry. Gold particles used were spherical and electron dense with diameters of 5-8 nm. The particles were individual or slightly agglomerated. By inductively coupled plasma-mass spectrometry analysis of the lung, 1945 +/- 57 ng (mean +/- SD) and 1512 +/- 184 ng of gold were detected on day 0 and on day 7, respectively, indicating that a large portion of the deposited gold particles was retained in the lung tissue. In the lavage fluid, 573 +/- 67 ng and 96 +/- 29 ng were found on day 0 and day 7, respectively, which means that 29% and 6% of the retained gold particles were lavageable on these days. A low but significant increase of gold (0.03 to 0.06% of lung concentration) was found in the blood. Small vesicles containing gold particles were found in the cytoplasm of alveolar macrophages. In the alveolar septum, the gold particles were enclosed in vesicles observed in the cytoplasm of alveolar type I epithelial cells. These results indicate that inhaled ultrafine gold particles in alveolar macrophages and type I epithelial cells are processed by endocytotic pathways, though the uptake of the gold particles by alveolar macrophages is limited. To a low degree, systemic particle translocation took place.

  7. Children exposure to indoor ultrafine particles in urban and rural school environments.

    PubMed

    Cavaleiro Rufo, João; Madureira, Joana; Paciência, Inês; Slezakova, Klara; Pereira, Maria do Carmo; Aguiar, Lívia; Teixeira, João Paulo; Moreira, André; Oliveira Fernandes, Eduardo

    2016-07-01

    Extended exposure to ultrafine particles (UFPs) may lead to consequences in children due to their increased susceptibility when compared to older individuals. Since children spend in average 8 h/day in primary schools, assessing the number concentrations of UFPs in these institutions is important in order to evaluate the health risk for children in primary schools caused by indoor air pollution. Thus, the purpose of this study was to assess and determine the sources of indoor UFP number concentrations in urban and rural Portuguese primary schools. Indoor and outdoor ultrafine particle (UFP) number concentrations were measured in six urban schools (US) and two rural schools (RS) located in the north of Portugal, during the heating season. The mean number concentrations of indoor UFPs were significantly higher in urban schools than in rural ones (10.4 × 10(3) and 5.7 × 10(3) pt/cm(3), respectively). Higher UFP levels were associated with higher squared meters per student, floor levels closer to the ground, chalk boards, furniture or floor covering materials made of wood and windows with double-glazing. Indoor number concentrations of ultrafine-particles were inversely correlated with indoor CO2 levels. In the present work, indoor and outdoor concentrations of UFPs in public primary schools located in urban and rural areas were assessed, and the main sources were identified for each environment. The results not only showed that UFP pollution is present in augmented concentrations in US when compared to RS but also revealed some classroom/school characteristics that influence the concentrations of UFPs in primary schools.

  8. Fabrication of ultra-fine grained aluminium tubes by RTES technique

    SciTech Connect

    Jafarzadeh, H. Abrinia, K.

    2015-04-15

    Recently, repetitive tube expansion and shrinking have been exploited as a means for producing ultra-fine grained and nano-crystalline microstructures for magnesium alloy tubes. This method includes two different half-cycles and was based on pressing a tubular part through an angular channel die with two shear zones. Since the aluminium alloys are the most widely used materials in industries, in this study, repetitive tube expansion and shrinking as a new severe plastic deformation technique was applied to commercially pure aluminium for fabricating ultra-fine grained aluminium tubes for the first time and the ability of this process in significant grain refinement is determined even after single cycle. Transmission electron microscopy and X-ray diffraction were used to evaluate the microstructure of the repetitive tube expansion and shrinking processed materials and the examinations showed ultra-fine grains with the average grain size of 320 nm after one cycle of repetitive tube expansion and shrinking. The yield strength, ultimate tensile strength increased notably by the factor of 2.17 and 1.27 respectively, after one cycle of repetitive tube expansion and shrinking, whereas the elongation to failure as well as the uniform elongation decreased. Furthermore, micro-hardness distribution through the part's section proposed the hardness increasing to ~ 55 HV from the initial value of ~ 28 HV after one cycle of repetitive tube expansion and shrinking. - Highlights: • RTES was introduced for fabricating the UFGed AA1050 tubes for the first time. • Nano-grained AA1050 tube was obtained by RTES process. • Grain size of ~ 320 nm was obtained after two half-cycles of RTES process. • Yield and ultimate strength increased by the factor of 2.17 and 1.27 respectively. • The microhardness increased to ~ 55 HV from the initial value of ~ 28 HV.

  9. Combustion-Derived Ultrafine Particles Transport Organic Toxicants to Target Respiratory Cells

    PubMed Central

    Penn, Arthur; Murphy, Gleeson; Barker, Steven; Henk, William; Penn, Lynn

    2005-01-01

    Epidemiologic evidence supports associations between inhalation of fine and ultrafine ambient particulate matter [aerodynamic diameter ≤ 2.5 μm (PM2.5)] and increases in cardiovascular/respiratory morbidity and mortality. Less attention has been paid to how the physical and chemical characteristics of these particles may influence their interactions with target cells. Butadiene soot (BDS), produced during combustion of the high-volume petrochemical 1,3-butadiene, is rich in polynuclear aromatic hydrocarbons (PAHs), including known carcinogens. We conducted experiments to characterize BDS with respect to particle size distribution, assembly, PAH composition, elemental content, and interaction with respiratory epithelial cells. Freshly generated, intact BDS is primarily (> 90%) PAH-rich, metals-poor (nickel, chromium, and vanadium concentrations all < 1 ppm) PM2.5, composed of uniformly sized, solid spheres (30–50 nm) in aggregated form. Cells of a human bronchial epithelial cell line (BEAS-2B) exhibit sequential fluorescent responses—a relatively rapid (~ 30 min), bright but diffuse fluorescence followed by the slower (2–4 hr) appearance of punctate cytoplasmic fluorescence—after BDS is added to medium overlying the cells. The fluorescence is associated with PAH localization in the cells. The ultrafine BDS particles move down through the medium to the cell membrane. Fluorescent PAHs are transferred from the particle surface to the cell membrane, cross the membrane into the cytosol, and appear to accumulate in lipid vesicles. There is no evidence that BDS particles pass into the cells. The results demonstrate that uptake of airborne ultrafine particles by target cells is not necessary for transfer of toxicants from the particles to the cells. PMID:16079063

  10. Polyimide Fibers

    NASA Technical Reports Server (NTRS)

    St.Clair, Terry L. (Inventor); Fay, Catharine C. (Inventor); Working, Dennis C. (Inventor)

    1997-01-01

    A polyimide fiber having textile physical property characteristics and the process of melt extruding same from a polyimide powder. Polyimide powder formed as the reaction product of the monomers 3.4'-ODA and ODPA, and endcapped with phthalic anhydride to control the molecular weight thereof, is melt extruded in the temperature range of 340? C. to 360? C. and at heights of 100.5 inches, 209 inches and 364.5 inches. The fibers obtained have a diameter in the range of 0.0068 inch to 0.0147 inch; a mean tensile strength in the range of 15.6 to 23.1 ksi; a mean modulus of 406 to 465 ksi; and a mean elongation in the range of 14 to 103%.

  11. Polyimide Fibers

    NASA Technical Reports Server (NTRS)

    St.Clair, Terry L. (Inventor); Fay, Catharine C. (Inventor); Working, Dennis C. (Inventor)

    1998-01-01

    A polyimide fiber having textile physical property characteristics and the process of melt extruding same from a polyimide powder. Polyimide powder formed as the reaction product of the monomers 3.4'-ODA and ODPA, and end- capped with phthalic anhydride to control the molecular weight thereof, is melt extruded in the temperature range of 340 C. to 360 C. and at heights of 100.5 inches. 209 inches and 364.5 inches. The fibers obtained have a diameter in the range of 0.0068 inch to 0.0147 inch; a mean tensile strength in the range of 15.6 to 23.1 ksi; a mean modulus of 406 to 465 ksi, and a mean elongation in the range of 14 to 103%.

  12. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    NASA Astrophysics Data System (ADS)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-01

    An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  13. Highly Porous Regenerated Cellulose Fiber Mats via the Co-Forcespinning of Cellulose Acetate for Separator Applications

    NASA Astrophysics Data System (ADS)

    Castillo, Alejandro; Mao, Yuanbing

    2015-03-01

    Improvements in battery technology are necessary for the transition away from a fossil fuel based economy. An important bottle-neck in battery efficiency is the quality of the separator, which separates the cathode and anode to prevent a short-circuit while still allowing the ions in solution to flow as close to unabated as possible. In this work solutions of cellulose acetate, polyvinyldiflourine (pvdf), and polyvinylpyrrolidone (pvp) dissolved in a 2:1 v/v acetone/dimethylacetamide solvent mixture were Forcespun to create nonwoven fiber mats of nanoscale diameter. These mats were then soaked in a NaOH solution so as to both strip the pvp from the fiber as well as regenerate cellulose from its acetate derivative for the purpose of creating high surface area, nanoporous, hydrophilic, and ioniclly conductive cellulose/pvdf nonwoven mats for the purposes of testing their suitability as battery separators

  14. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    PubMed

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  15. Method for the removal of ultrafine particulates from an aqueous suspension

    DOEpatents

    Chaiko, David J.; Kopasz, John P.; Ellison, Adam J. G.

    2000-01-01

    A method of separating ultra-fine particulates from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel containing the particulates, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.

  16. Synthesis of zinc ultrafine powders via the Guen–Miller flow-levitation method

    SciTech Connect

    Jigatch, A. N. Leipunskii, I. O.; Kuskov, M. L.; Afanasenkova, E. S.; Berezkina, N. G.; Gorbatov, S. A.

    2015-12-15

    Zinc ultrafine powders (UFPs) with the average particle size of 0.175 to 1.24 μm are synthesized via the flow-levitation method. The peculiarities of the formation of zinc UFPs are considered with respect to the carrier gas properties (heat capacity, thermal conductivity, and diffusion coefficient), as well as the gas flow parameters (pressure and flow rate). The obtained zinc particles are studied via scanning electron microscopy and X-ray diffraction. The factors determining the crystal structure of zinc particles and their size distribution are discussed as well. The data on oxidation of zinc stored in unsealed containers under normal conditions are also presented.

  17. Fate and toxic effects of inhaled ultrafine cadmium oxide particles in the rat lung.

    PubMed

    Takenaka, S; Karg, E; Kreyling, W G; Lentner, B; Schulz, H; Ziesenis, A; Schramel, P; Heyder, J

    2004-01-01

    Female Fischer 344 rats were exposed to ultrafine cadmium oxide particles, generated by spark discharging, for 6 h at a concentration of 70 microg Cd/m(3) (1 x 10(6)/cm(3)) (40 nm modal diameter). Lung morphology and quantification of Cd content/concentration by inductively coupled plasma (ICP)-mass spectrometry were performed on days 0, 1, 4, and 7 after exposure. Cd content in the lung on day 0 was 0.53 +/- 0.12 microg/lung, corresponding to 19% of the estimated total inhaled cumulative dose, and the amount remained constant throughout the study. In the liver no significant increase of Cd content was found up to 4 days. A slight but statistically significant increase was observed in the liver on day 7. We found neither exposure-related morphological changes of lungs nor inflammatory responses in lavaged cells. Another group of rats were exposed to a higher concentration of ultrafine CdO particles (550 microg Cd/m(3) for 6 h, 51 nm modal diameter). The rats were sacrificed immediately and 1 day after exposure. The lavage study performed on day 0 showed an increase in the percentage of neutrophils. Multifocal alveolar inflammation was seen histologically on day 0 and day 1. Although the Cd content in the lung was comparable between day 0 and day 1 (3.9 microg/lung), significant elevation of Cd levels in the liver and kidneys was observed on both days. Two of 4 rats examined on day 0 showed elevation of blood cadmium, indicating systemic translocation of a fraction of deposited Cd from the lung in this group. These results and comparison with reported data using fine CdO particles indicate that inhalation of ultrafine CdO particles results in efficient deposition in the rat lung. With regard to the deposition dose, adverse health effects of ultrafine CdO and fine CdO appear to be comparable. Apparent systemic translocation of Cd took place only in animals exposed to a high concentration that induced lung injury.

  18. Ultrafine-grained structure formation in Ti-6Al-4V alloy via warm swaging

    NASA Astrophysics Data System (ADS)

    Klimova, M.; Boeva, M.; Zherebtsov, S.; Salishchev, G.

    2014-08-01

    The influence of warm swaging on the structure and properties of Ti-6Al-4V alloy was studied. Warm swaging of the alloy in the interval 680-500°C with the total strain of ɛ=2.66 was found to be resulted in the formation of a homogeneous globular microstructure with a grain size of 0.4 μm in both longitudinal and transversal sections. Room temperature tensile strength and tensile elongation of the swaged alloy was 1315MPa and 10.5%, respectively. Ultrafine-grained Ti-6Al-4V alloy produced by swaging exhibited good workability at 600-700 °C.

  19. Experimental and modelling study of the plasma vapour-phase synthesis of ultrafine aluminum nitride powders

    NASA Astrophysics Data System (ADS)

    da Cruz, Antonio-Carlos

    An experimental and theoretical study of the fundamentals of the vapour phase synthesis of ultrafine aluminum nitride (AIN) particles using thermal plasma was carried out. The study used the concept of a transferred-arc reactor which produces AlN ultrafine powders in two stages: evaporation of aluminum (Al) metal by the transferred-arc in non nitriding conditions; and the reaction between Al vapour and ammonia (NH3) in a separate tubular reactor. A new version of this reactor concept was built in which the transferred-arc chamber and tubular reactor were vertically aligned. This reactor design allowed the study of both radial and axial mixing of ammonia with the plasma chamber off-gas. Ultrafine powders with a specific surface area (SSA) in the range of 38--270 m2/g were produced in two plasma chamber off-gas temperature levels (1800 and 2000 K), with different quenching intensities, and two different plasma gas compositions (pure Ar and Ar/H2 mixture). The dependence of the particle size and composition on the reactor operating conditions was investigated. Depending on the plasma gas composition, two different trends were observed for the SSA as a function of quenching intensity, with the radial injection of NH3. A two-dimensional numerical model was developed for the nucleation and growth of ultrafine particles in this system, using the method of moments. A new equation for the nucleation rate for the AlN system was developed. This equation considers the effect of reaction on the surface of clusters of the new phase. This new modelling approach could explain the trends observed experimentally. The importance of the mechanisms for the gas-to-condensed phase transition in the AlN system were examined. The sinterability of the powder produced was examined. Sintering to full density was achieved at 1550°C. Because of the high oxygen content of the powder, a second phase identified as aluminum oxynitride (ALON) was observed to form.

  20. Initial study of dry ultrafine coal beneficiation utilizing triboelectric charging with subsequent electrostatic separation

    SciTech Connect

    Link, T.A.; Killmeyer, R.P.; Elstrodt, R.H.; Haden, N.H.

    1990-10-01

    A novel, dry process using electrostatics to beneficiate ultrafine coal is being developed by the Coal Preparation Division at the Pittsburgh Energy Technology Center. The historical concept of triboelectricity and its eventual use as a means of charging coal for electrostatic separation will be discussed. Test data from a first-generation and a second-generation Tribo-Electrostatic separator are presented showing the effects of feed particle size, separator voltage, solids concentration in air, and particle velocity on separation performance. 10 refs., 10 figs., 9 tabs.

  1. Pseudophasic extraction method for the separation of ultra-fine minerals

    DOEpatents

    Chaiko, David J.

    2002-01-01

    An improved aqueous-based extraction method for the separation and recovery of ultra-fine mineral particles. The process operates within the pseudophase region of the conventional aqueous biphasic extraction system where a low-molecular-weight, water soluble polymer alone is used in combination with a salt and operates within the pseudo-biphase regime of the conventional aqueous biphasic extraction system. A combination of low molecular weight, mutually immiscible polymers are used with or without a salt. This method is especially suited for the purification of clays that are useful as rheological control agents and for the preparation of nanocomposites.

  2. Electrochemical and cellular behavior of ultrafine-grained titanium in vitro.

    PubMed

    Maleki-Ghaleh, H; Hajizadeh, K; Hadjizadeh, A; Shakeri, M S; Ghobadi Alamdari, S; Masoudfar, S; Aghaie, E; Javidi, M; Zdunek, J; Kurzydlowski, K J

    2014-06-01

    The electrochemical and cellular behavior of commercially pure titanium (CP-Ti) with both ultrafine-grained (UFG) and coarse-grained (CG) microstructure was evaluated in this study. Equal channel angular pressing was used to produce the UFG structure titanium. Polarization and electrochemical impedance tests were carried out in a simulated body fluid (SBF) at 37°C. Cellular behaviors of samples were assessed using fibroblast cells. Results of the investigations illustrate the improvement of both corrosion and biological behavior of UFG CP-Ti in comparison with the CG counterpart.

  3. Orientation influence on grain size-effects in ultrafine-grained magnesium

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, A.; ...

    2014-11-08

    The mechanical behavior of ultrafine-grained magnesium was studied by discrete dislocation dynamics (DDD) simulations. Our results show basal slip yields a strong size effect, while prismatic and pyramidal slips produce a weak one. We developed a new size-strength model that considers dislocation transmission across grain boundaries. Good agreement between this model, current DDD simulations and previous experiments is observed. These results reveal that the grain size effect depends on 3 factors: Peierls stress, dislocation source strength and grain boundary strength.

  4. Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel

    SciTech Connect

    Ahmad Alsabbagh; Apu Sarkar; Brandon Miller; Jatuporn Burns; Leah Squires; Douglas Porter; James I. Cole; K. L. Murty

    2014-10-01

    Neutron irradiation effects on ultra-fine grain (UFG) low carbon steel prepared by equal channel angular pressing (ECAP) has been examined. Counterpart samples with conventional grain (CG) sizes have been irradiated alongside with the UFG ones for comparison. Samples were irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to 1.24 dpa. Atom probe tomography revealed manganese, silicon-enriched clusters in both ECAP and CG steel after neutron irradiation. X-ray quantitative analysis showed that dislocation density in CG increased after irradiation. However, no significant change was observed in UFG steel revealing better radiation tolerance.

  5. Microstructural characteristics of an ultrafine grain metal processed with equal-channel angular pressing

    SciTech Connect

    Furukawa, Minoru; Horita, Zenji; Nemoto, Minoru; Valiev, R.Z.; Langdon, T.G.

    1996-11-01

    Equal-channel angular pressing is a procedure for producing a fully dense material with an ultrafine grain size, typically in the submicrometer or nanometer range, by subjecting the material to a very high plastic strain. This paper describes the principle of equal-channel angular pressing and illustrates the capability of the technique by reference to a series of detailed experiments conducted on an Al-3%Mg solid solution alloy in which the grain size was successfully reduced by equal-channel angular pressing from an initial size of {approximately}500{micro}m in the hot-rolled condition to a final size of {approximately}0.2{micro}m.

  6. On the structure and strength of ultrafine-grained copper produced by severe plastic deformation

    SciTech Connect

    Gertsman, V.Y. |; Birringer, R.; Gleiter, H.; Valiev, R.Z.

    1994-01-15

    In the last few years materials with ultrafine-grained (UFG) structures having grain size in the range of nanometers or submicrometers have attracted considerable attention of researchers in various areas. However, there are still many open questions concerning the structure of UFG materials, because direct structural studies are difficult in the case of very fine grains. The behavior of submicrometer-grained materials is similar in many aspects to that of nanostructured materials. Due to the coarser grains they are more suitable for structural investigation. This paper deals with the annealing temperature dependence of the structure and room-temperature yield stress of submicrometer-grained copper.

  7. Method for the Removal of Ultrafine Particulates from an Aqueous Suspension

    SciTech Connect

    Chaiko, David J.; Kopasz, John P.; Ellison, Adam J.G.

    1999-03-05

    A method of separating ultra-fine particulate from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel-containing the particulate, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.

  8. An investigation of the adsorption of hydroxypropylmethyl cellulose 2910 5 mPa s and polyvinylpyrrolidone K90 around Naproxen nanocrystals.

    PubMed

    Kayaert, Pieterjan; Van den Mooter, Guy

    2012-10-01

    The selection of the appropriate stabilizer for a nanosuspension is still based on trial-and-error and the amount of stabilizer is mostly determined as the lowest amount that results in a stable nanosuspension. Although nanosuspensions are often dried, it is currently not known if the stabilizer remains associated with the surface after drying. Hence, the purpose of this study was to investigate the association of two common pharmaceutical stabilizers [hydroxypropylmethyl cellulose (HPMC) 2910 5 mPa s and polyvinylpyrrolidone (PVP) K90] with the surface of Naproxen crystals. The association between drug and polymer after drying was investigated by evaluating the mixing glass transition temperature using modulated differential scanning calorimetry. Dynamic laser scattering was used to study the Naproxen-polymer association in suspension state. Association with the Naproxen surface was proven after drying for both polymers. A difference in behavior between HPMC and PVP was observed at the liquid-particle interface. In suspension state, the HPMC layer continuously increases in thickness when adding more polymer, whereas in contrast for PVP, the surface can become saturated. The conclusion is that the behavior in suspension determines the behavior of the stabilizer after drying and it is governed by the physicochemical properties of the polymers.

  9. Fabrication and energy-storage performance of (Pb,La)(Zr,Ti)O3 antiferroelectric thick films derived from polyvinylpyrrolidone-modified chemical solution

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Hao, Xihong; Yang, Jichun; Xu, Jinbao; Zhao, Diyi

    2012-08-01

    In this work, Pb0.97La0.02(Zr0.98Ti0.02)O3 (PLZT 2/98/2) antiferroelectric (AFE) thick films were successfully deposited on LaNiO3/Si(100) substrates by polyvinylpyrrolidone (PVP)-modified chemical solution. Each wet layer was first dried at 300 °C and then pyrolyzed at higher temperature B of 600, 650, or 700 °C, respectively. The effects of the pyrolyzed temperature B on the microstructure and the energy-storage performance of the AFE films were investigated in detail. As the increasing of the pyrolyzed temperature, the crystallized PLZT 2/98/2 films displayed a more uniform and dense surface microstructure. As a result, the dielectric properties, AFE characterization, and energy-storage performance were remarkably improved for the AFE thick films pyrolyzed at higher temperature. The maximum energy-storage density of 58.1 J/cm3 and the corresponding energy-storage efficiency of 37.3% were obtained in the PLZT 2/98/2 films pyrolyzed at 700 °C for every layer.

  10. Small-angle neutron scattering from aqueous dispersions of single-walled carbon nanotubes with pluronic F127 and poly(vinylpyrrolidone).

    PubMed

    Granite, Meirav; Radulescu, Aurel; Cohen, Yachin

    2012-07-31

    Amphiphilic block copolymers are excellent dispersants for single-walled carbon nanotubes (SWCNT) in aqueous environments, where their noncovalent attachments do not affect the π chemical bonding. In this small-angle neutron scattering (SANS) study, we investigate whether the coverage of Pluronic F127 polymers around the CNTs depends on the solution concentration in the range of 1-6% (w/w). The observations indicate that at these concentrations the SWCNT surface is fully saturated at about 14 chains per unit length of 100 Å. Furthermore, we seek to verify whether the unusual effect observed in a previous study by contrast variation, interpreted as being due to a dense hydration layer around the polymer chains, also appears using a homopolymer (polyvinylpyrrolidone - PVP) that does not contain poly(ethylene oxide) (PEO) units. The SANS patterns showed again a minimal intensity value at much higher solvent composition (75% D(2)O) than the expected value of 29% D(2)O. The minimum scattering curve exhibited a nearly q(-1) power law at small angles, an indication of rodlike entities. A model of a CNT thin bundle with loosely adsorbed polymer chains around it (core-chains) was reasonably well fitted to the data. The polymer chains are assumed to be surrounded by a water layer with a slightly higher density than bulk water, having partial selectivity for D(2)O.

  11. Molecular mobility of lyophilized poly(vinylpyrrolidone) and methylcellulose as determined by the laboratory and rotating frame spin-lattice relaxation times of 1H and 13C.

    PubMed

    Yoshioka, Sumie; Aso, Yukio; Kojima, Shigeo

    2003-11-01

    Laboratory- and rotating- frame spin-lattice relaxation times (T(1) and T(1rho)) of (1)H and (13)C in lyophilized poly(vinylpyrrolidone) (PVP) and methylcellulose (MC) are determined to examine feasibility of using T(1) and T(1rho) as a measure of molecular motions on large time scales related to the storage stability of lyophilized formulations. The T(1rho) of proton and carbon was found to reflect the mobility of PVP and MC backbones, indicating that it is useful as a measure of large-time-scale molecular motions. In contrast to the T(1rho), the T(1) of proton measured in the same temperature range reflected the mobility of PVP and MC side chains. The T(1) of proton may be useful as a measure of local molecular motions on a smaller-time-scale, although the measurement is interfered by moisture under some conditions. The temperature dependence of T(1) and T(1rho) indicated that methylene in the MC molecule had much higher mobility than that in the dextran molecule, also indicated that methylene in the PVP side chain had a higher mobility than that in the MC side chain.

  12. Dendritic silver nanostructures obtained via one-step electrosynthesis: effect of nonanesulfonic acid and polyvinylpyrrolidone as additives on the analytical performance for hydrogen peroxide sensing

    NASA Astrophysics Data System (ADS)

    Guadagnini, Lorella; Ballarin, Barbara; Tonelli, Domenica

    2013-10-01

    The electrochemical deposition of silver nanodendrites (AgNDs) on pure graphite sheet (PGS) electrodes, both in the absence of surfactant/templates and in the presence of 1-nonanesulfonic acid (NS) or polyvinylpyrrolidone (PVP) additives, is reported. The synthesis carried out without additives and with NS produced a bigger amount of large size AgNDs (dimension of 1-5 μm), with scarce influence played by NS, while the deposition with PVP favoured the formation of smaller spherical particles (with average diameter below 150 nm). The performances of the electrodes towards the electroreduction of H2O2 were investigated by chronoamperometry at -0.4 V and at more cathodic applied potentials (-0.6 and -0.8 V). The electrodes fabricated without additives and in the presence of NS displayed similar performances, while those fabricated with PVP exhibited significantly lower sensitivity. This suggests that AgNDs present enhanced electrocatalytic activity in respect to the spherical aggregates, since the Ag amount deposited on PGS was practically the same. The best amperometric responses among those recorded at -0.4 V in PBS (pH 6.7) exhibited a linear range extending from 0.1 to 3.5 mM, a detection limit of about 20 μM and a sensitivity close to 200 mA M-1 cm-2. The proposed electrodes display sensitivities which are markedly better than those reported in the literature for similar Ag-based sensors.

  13. Biodistribution and photodynamic effects of polyvinylpyrrolidone-hypericin using multicellular spheroids composed of normal human urothelial and T24 transitional cell carcinoma cells

    NASA Astrophysics Data System (ADS)

    Vandepitte, Joachim; Roelants, Mieke; Cleynenbreugel, Ben Van; Hettinger, Klaudia; Lerut, Evelyne; van Poppel, Hendrik; de Witte, Peter A. M.

    2011-01-01

    Polyvinylpyrrolidone (PVP)-hypericin is a potent photosensitizer that is used in the urological clinic to photodiagnose with high-sensitivity nonmuscle invasive bladder cancer (NMIBC). We examined the differential accumulation and therapeutic effects of PVP-hypericin using spheroids composed of a human urothelial cell carcinoma cell line (T24) and normal human urothelial (NHU) cells. The in vitro biodistribution was assessed using fluorescence image analysis of 5-μm cryostat sections of spheroids that were incubated with PVP-hypericin. The results show that PVP-hypericin accumulated to a much higher extent in T24 spheroids as compared to NHU spheroids, thereby reproducing the clinical situation. Subsequently, spheroids were exposed to different PDT regimes with a light dose ranging from 0.3 to 18J/cm2. When using low fluence rates, only minor differences in cell survival were seen between normal and malignant spheroids. High light fluence rates induced a substantial difference in cell survival between the two spheroid types, killing ~80% of the cells present in the T24 spheroids. It was concluded that further in vivo experiments are required to fully evaluate the potential of PVP-hypericin as a phototherapeutic for NMIBC, focusing on the combination of the compound with methods that enhance the oxygenation of the urothelium.

  14. Protective effects of polyvinylpyrrolidone-wrapped fullerene against intermittent ultraviolet-A irradiation-induced cell injury in HaCaT cells.

    PubMed

    Saitoh, Yasukazu; Ohta, Hiroaki; Hyodo, Sayuri

    2016-10-01

    To identify compounds that suppress UV irradiation-induced oxidative stress in the skin, various types of antioxidants have been studied. Polyvinylpyrrolidone-entrapped fullerene (C60/PVP) is known as a powerful antioxidant that exerts a cytoprotective effect against UV irradiation-induced cell injury in human skin cells and skin models. However, the effects of the alternate attractive C60/PVP feature, persistent antioxidant ability, on cytoprotection have rarely been ascertained. In this study we therefore investigated the efficacies of C60/PVP using an intermittently repeated UVA irradiation model wherein human keratinocytes were repeatedly exposed to UVA five times every 1h and compared the cytoprotective effects with those provided by ascorbic acid-2-O-phosphate-disodium salt (APS) and α-tocopherol (α-Toc). Our results demonstrated that C60/PVP yielded prominent cytoprotective effects against intermittently repeated UVA irradiation-induced injuries in a dose-dependent manner and suppressed intracellular superoxide anion radical (O2(-)) generation both during and after the repeated UVA irradiation. Additionally, C60/PVP also repressed the intermittent UVA irradiation-induced apoptosis via suppression of chromatin condensation and caspase-3/7 activation. Furthermore, the observed cytoprotective effects were superior to the effects of the typical antioxidants APS and α-Toc. These data suggest that C60/PVP might function as a potent cosmetic antioxidant against the effects of repeated and prolonged UVA irradiation through its persistent antioxidative property.

  15. The solution behavior of poly(vinylpyrrolidone): its clouding in salt solution, solvation by water and isopropanol, and interaction with sodium dodecyl sulfate.

    PubMed

    Dan, Abhijit; Ghosh, Soumen; Moulik, Satya P

    2008-03-27

    This article deals with the solution properties of poly(vinylpyrrolidone) (PVP) in salt and surfactant environment. The cloud point (CP) of PVP has been found to be induced by the salts NaCl, KCl, KBr, Na2SO4, MgSO4, and Na3PO4. On the basis of CP values for a salt at different [PVP], the energetics of the clouding process have been estimated. The effect of the surfactant, sodium dodecyl sulfate (SDS), on the salt-induced CP has also been studied, and reduction in CP at low [SDS] and increase in CP at high [SDS] have been observed. The water vapor adsorption of PVP has been determined by isopiestic method. The results display a BET Type III isotherm whose analysis has helped to obtain the monolayer capacity of PVP and formation of multilayer on it. The solvation of PVP in a solution of water and a water-isopropanol mixture has been determined by conductometry from which contribution of the individual components were estimated. The interaction of PVP with SDS in solution led to formation of a complex entity, which has been studied also by conductometry adopting a binding-equilibrium scheme. SDS has been found to undergo two types of binding as monomers in the pre- critical aggregation concentration (CAC) range and as small clusters in the post CAC region. The stoichiometries of binding and binding constant were evaluated.

  16. Improvement of blood compatibility on polysulfone-polyvinylpyrrolidone blend films as a model membrane of dialyzer by physical adsorption of recombinant soluble human thrombomodulin (ART-123).

    PubMed

    Omichi, Masaaki; Matsusaki, Michiya; Maruyama, Ikuro; Akashi, Mitsuru

    2012-01-01

    ART-123 is a recombinant soluble human thrombomodulin (hTM) with potent anticoagulant activity, and is available for developing antithrombogenic surfaces by immobilization. We focused on improving blood compatibility on the dialyzer surface by the physical adsorption of ART-123 as a safe yet simple method without using chemical reagents. The physical adsorption mechanism and anticoagulant activities of adsorbed hTM on the surface of a polysulfone (PSF) membrane containing polyvinylpyrrolidone (PVP) as a model dialyzer were investigated in detail. The PVP content of the PSF-PVP films was saturated at 20 wt% after immersion in Tris-HCl buffer, even with the addition of over 20 wt% PVP. The surface morphology of the PSF-PVP films was strongly influenced by the PVP content, because PVP covered the outermost surface of the PSF-PVP films. The adsorption speed of hTM slowed dramatically with increasing PVP content up to 10 wt%, but the maximum adsorption amount of hTM onto the PSF-PVP film surface was almost the same, regardless of the PVP content. The PSF-PVP film with the physically adsorbed hTM showed higher protein C activity as compared to the PSF film, it showed excellent blood compatibility due to the protein C activity and the inhibition properties of platelet adhesion. The physical adsorption of hTM can be useful as a safe yet simple method to improve the blood compatibility of a dialyzer surface.

  17. Phase constituents and magnetic properties of the CoFe2O4 nanoparticles prepared by polyvinylpyrrolidone (PVP)-assisted hydrothermal route

    NASA Astrophysics Data System (ADS)

    Jalalian, M.; Mirkazemi, S. M.; Alamolhoda, S.

    2016-09-01

    In this research, nanoparticles of cobalt ferrite were synthesized by a simple hydrothermal process at 190 °C using different treatment durations with the assistance of polyvinylpyrrolidone (PVP) surfactant. The synthesized powders were characterized using X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscope and vibration sample magnetometer techniques. The quantitative values of phase constituents and also inversion parameter of cobalt ferrite spinel structure were calculated by Rietveld method using XRD results. XRD results show formation of cobalt ferrite as the main phase in all samples and also the presence of small amounts of Co3O4 lateral phase in some cases. Raman spectroscopies also confirm the presence of this lateral phase. Microstructural studies represent formation of nanoparticles with a narrow particle size distribution. Magnetic measurements represent that maximum magnetization ( M max) values are in the range of 25-57 emu/g with changes in the hydrothermal treatment duration. Intrinsic coercivity force values ( i H c ) change from 0 to 487 Oe in different samples. The highest M max value of 57 emu/g was obtained in the sample after 3 h of hydrothermal treatment with PVP addition. The i H c value of this sample was 35 Oe, while without PVP addition, the high M max value of 60 emu/g is observed in a sample that has i H c value equal to 320 Oe.

  18. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-09-01

    Vanadium redox flow batteries (VRFBs) with their high flexibility in configuration and operation, as well as long cycle life are competent for the requirement of future energy storage systems. Nevertheless, due to the application of perfluorinated membranes, VRFBs are plagued by not only the severe migration issue of vanadium ions, but also their high cost. Herein, we fabricate semi-interpenetrating polymer networks (SIPNs), consisting of cross-linked polyvinylpyrrolidone (PVP) and polysulfone (PSF), as alternative membranes for VRFBs. It is demonstrated that the PVP-based SIPNs exhibit extremely low vanadium permeabilities, which contribute to the well-established hydrophilic/hydrophobic microstructures and the Donnan exclusion effect. As a result, the coulombic efficiencies of VRFBs with PVP-based SIPNs reach almost 100% at 40 mA cm-2 to 100 mA cm-2; the energy efficiencies are more than 3% higher than those of VRFBs with Nafion 212. More importantly, the PVP-based SIPNs exhibit a superior chemical stability, as demonstrated both by an ex situ immersion test and continuously cycling test. Hence, all the characterizations and performance tests reported here suggest that PVP-based SIPNs are a promising alternative membrane for redox flow batteries to achieve superior cell performance and excellent cycling stability at the fraction of the cost of perfluorinated membranes.

  19. Hybridization of polyvinylpyrrolidone to a binary composite of curcumin/α-glucosyl stevia improves both oral absorption and photochemical stability of curcumin.

    PubMed

    Kadota, Kazunori; Okamoto, Daiki; Sato, Hideyuki; Onoue, Satomi; Otsu, Shigeyuki; Tozuka, Yuichi

    2016-12-15

    The tri-component system curcumin/α-glucosyl stevia (Stevia-G)/polyvinylpyrrolidone (PVP) was developed to improve the oral bioavailability and physicochemical properties of curcumin (CUR). The tri-component CUR formulation with Stevia-G and PVP was prepared with freeze-drying. The tri-component CUR system exhibited 13,000-fold higher solubility of CUR than the equilibrium solubility of CUR for 24h, indicating a stable tri-composite structure involving CUR. CUR could be converted into an amorphous form in the presence of Stevia-G and PVP by freeze-drying. The photo-degradation of CUR in the tri-component system was negligible even under an amorphous state of CUR. After oral administration in rats, the oral absorption of the tri-component CUR formulation (20mgCUR/kg) was 6.7-fold higher than that of crystalline CUR. The tri-component CUR formulation would therefore be a promising option to improve physicochemical properties and oral absorption of CUR.

  20. Online Coupling of Lab-on-Valve Format to Amperometry Based on Polyvinylpyrrolidone-Doped Carbon Paste Electrode and Its Application to the Analysis of Morin

    PubMed Central

    Wang, Yang; Yao, Guojun; Tang, Jie; Yang, Chun; Xu, Qin; Hu, Xiaoya

    2012-01-01

    The potential capabilities and analytical performance of lab-on-valve (LOV) manifold as a front end to amperometry have been explored for the on-line determination of morin. Meanwhile, the electrochemical behaviors of morin were investigated based on polyvinylpyrrolidone- (PVP-) doped carbon paste electrode (CPE), which found that PVP can significantly improve its oxidation peak current. The excellent amperometric current response was achieved when the potential difference (ΔE) of 0.6 V was implemented in pH 6.5 phosphate buffer solution (PBS) that served as the supporting electrolyte. A well-defined oxidation peak has been obtained in studies using PVP as a modifier of CPE based on the oxidation of morin. The present work introduces the LOV technique as a useful tool for amperometric measurement, documents advantages of using programmable flow, and outlines means for miniaturization of assays on the basis of PVP modified CPE. The proposed method was applied successfully to the determination of morin in real samples, and the spiked recoveries were satisfactory. PMID:22567551

  1. Effect of water-soluble polymers, polyethylene glycol and poly(vinylpyrrolidone), on the gelation of aqueous micellar solutions of Pluronic copolymer F127.

    PubMed

    Ricardo, Nágila M P S; Ricardo, Nadja M P S; Costa, Flávia de M L L; Bezerra, Francisco W A; Chaibundit, Chiraphon; Hermida-Merino, Daniel; Greenland, Barnaby W; Burattini, Stefano; Hamley, Ian W; Keith Nixon, S; Yeates, Stephen G

    2012-02-15

    The micellization of F127 (E(98)P(67)E(98)) in dilute aqueous solutions of polyethylene glycol (PEG6000 and PEG35000) and poly(vinylpyrrolidone) (PVP K30 and PVP K90) is studied. The average hydrodynamic radius (r(h,app)) obtained from the dynamic light scattering technique increased with increase in PEG concentration but decreased on addition of PVP, results which are consistent with interaction of the micelles with PEG and the formation of micelles clusters, but no such interaction occurs with PVP. Tube inversion was used to determine the onset of gelation. The critical concentration of F127 for gelation increased on addition of PEG and of PVP K30 but decreased on addition of PVP K90. Small-angle X-ray scattering (SAXS) was used to show that the 30 wt% F127 gel structure (fcc) was independent of polymer type and concentration, as was the d-spacing and so the micelle hard-sphere radius. The maximum elastic modulus (G(max)(')) of 30 wt% F127 decreased from its value for water alone as PEG was added, but was little changed by adding PVP. These results are consistent with the packed-micelles in the 30 wt% F127 gel being effectively isolated from the polymer solution on the microscale while, especially for the PEG, being mixed on the macroscale.

  2. Solid dispersion tablets of breviscapine with polyvinylpyrrolidone K30 for improved dissolution and bioavailability to commercial breviscapine tablets in beagle dogs.

    PubMed

    Cong, Wenjuan; Shen, Lan; Xu, Desheng; Zhao, Lijie; Ruan, Kefeng; Feng, Yi

    2014-09-01

    Breviscapine, one of cardiovascular drugs extracted from a Chinese herb Erigeron breviscapinus, has been frequently used to treat cardiovascular diseases such as hypertension, angina pectoris, coronary heart disease and stroke. However, its poor water solubility and low bioavailability in vivo severely restrict the clinical application. To overcome these drawbacks, breviscapine solid dispersion tablets consisting of breviscapine, polyvinylpyrrolidone K30 (PVP K30), microcrystalline cellulose and crospovidone were appropriately prepared. In vitro dissolution profiles showed that breviscapine released percentage of solid dispersion tablets reached 90 %, whereas it was only 40 % for commercial breviscapine tablets. Comparative pharmacokinetic study between solid dispersion tablets and commercial products was investigated on the normal beagle dogs after oral administration. Results showed that the bioavailability of breviscapine was greatly increased by 3.45-fold for solid dispersion tablets. The greatly improved dissolution rate and bioavailability might be attributed to intermolecular hydrogen bonding reactions between PVP K30 and scutellarin. These findings suggest that our solid dispersion tablets can greatly improve the bioavailability as well as the dissolution rate of breviscapine.

  3. High Performance Dye-Sensitized Solar Cells with Enhanced Light-Harvesting Efficiency Based on Polyvinylpyrrolidone-Coated Au-TiO2 Microspheres.

    PubMed

    Ding, Yong; Sheng, Jiang; Yang, Zhenhai; Jiang, Ling; Mo, Li'e; Hu, Linhua; Que, Yaping; Dai, Songyuan

    2016-04-07

    Surface plasmon resonance using noble metal nanoparticles is regarded as an attractive and viable strategy to improve the optical absorption and/or photocurrent in dye-sensitized solar cells (DSSCs). However, no significant improvement in device performance has been observed. The bottleneck is the stability of the noble-metal nanoparticles caused by chemical corrosion. Here, we propose a simple method to synthesize high-performance DSSCs based on polyvinylpyrrolidone-coated Au-TiO2 microspheres that utilize the merits of TiO2 microspheres and promote the coupling of surface plasmons with visible light. When 0.4 wt % Au nanoparticles were embedded into the TiO2 microspheres, the device achieved a power conversion efficiency (PCE) as high as 10.49%, a 7.9% increase compared with pure TiO2 microsphere-based devices. Simulation results theoretically confirmed that the improvement of the PCE is caused by the enhancement of the absorption cross-section of dye molecules and photocurrent.

  4. Mechanism for the photoreduction of poly(vinylpyrrolidone) to HAuCl4 and the dominating saturable absorption of Au colloids.

    PubMed

    Fan, Guanghua; Han, Yanhua; Luo, Suilian; Li, Yutong; Qu, Shiliang; Wang, Qiang; Gao, Renxi; Chen, Minrui; Han, Min

    2016-04-07

    Both fabrication of Au nano-objects and the nonlinear optical properties of Au nano-objects are the focus of research. In the present work, Au nanoparticles with different mean sizes (18, 32, 42, and 70 nm) are controllably fabricated in ethanol by changing the concentration of poly(vinylpyrrolidone) (PVP) and HAuCl4, as well as the power of continuous wave UV light at 365 nm. PVP acts as both reducing and protective agent. The mechanism of photoreduction of PVP to HAuCl4 is proposed. PVP undergoes a series of chemical reactions which include the attack of the hydrogen atom on the tertiary carbon atom at the α-position of the nitrogen atom, production of a hydroxyl radical, and chain scission. The hydroxyl radical combines with the hydrogen atom produced through the dissociation of HAuCl4, which facilitates the decomposition of HAuCl4. The fabrication mechanism of Au nanoparticles is discussed. The nonlinear absorption of these Au nanoparticles is investigated; all of them exhibit saturable absorption, and the saturable absorption dominates the nonlinear absorption with the increase of laser energy. The dominance of saturable absorption in the nonlinear absorption is due to the stronger single-photon absorbed intraband absorption from the ground state to the first excited state in the conduction band, the weaker excited state absorption in the conduction band, and the weaker two-photon absorption from the d band to the conduction band.

  5. Macrophage function as studied by the clearance of /sup 125/I-labeled polyvinylpyrrolidone in iron-deficient and iron-replete mice

    SciTech Connect

    Kuvibidila, S.; Wade, S.

    1987-01-01

    This study evaluated the effects of iron deficiency and iron repletion on in vivo macrophage function determined by the clearance of /sup 125/I-labeled polyvinylpyrrolidone (PVP). Two experiments were done. There were four groups of C57BL/6 female mice in experiment 1: the iron-deficient (ID), pair-fed (PF), control (C) and the high iron (HI) groups. In experiment 2, there were three ID groups (severe to moderate anemia), three PF, one C and four ID groups that were fed adequate iron for 14 (R-14), 7 (R-7), 3 (R-3) days before or on the day of PVP injection (R-0). The overall rate of PVP clearance from blood was lower in ID than in C or PF groups. This clearance is expressed by a constant, K, calculated from natural log (ln) of the cpm and the time postadministration of PVP that blood was drawn. The theoretical individual macrophages function (alpha PVP), derived from K and the weights of body, spleen and liver, was also lower in ID than in C or PF groups. The impairment was most severe with the most severe iron deficiency. Repletion for 7 to 15 d before PVP administration resulted in a partial correction of the clearance. Moderate undernutrition in the PF group had no effect.

  6. Dynamic cross-linking effect of Mg2+ to enhance sieving properties of low-viscosity poly(vinylpyrrolidone) solutions for microchip electrophoresis of proteins.

    PubMed

    Mohamadi, Mohamad Reza; Kaji, Noritada; Tokeshi, Manabu; Baba, Yoshinobu

    2008-01-01

    We report a dynamic cross-linking effect of Mg2+ that enhances the sieving properties of low-viscosity poly(vinylpyrrolidone) (PVP) solutions. A low-viscosity PVP solution was applied to nondenaturing microchip electrophoresis of protein samples using microchips made of poly(methyl methacrylate). The separation resolution of nondenatured protein markers in 1.8% PVP solution was improved by adding 1-20 mM MgCl2. We studied the effect of the ratio of cross-linking agent on mobility of protein samples and showed that protein retardation (ln micro/micro0) is correlated with the ratio of cross-linking agent to PVP ([cMg2+/cPVP]) as ln micro/micro0=A'[cMg2+/cPVP]b'. A' was related to the protein radius (R), and b' was found to be 0.72 for proteins with R=2.4 nm and 0.82 for proteins with R=1.85 nm. A structural study of PVP in semidilute solutions using dynamic light scattering showed that incremental increases of Mg2+ ion concentration from 5 to 20 mM in 1.8% PVP solution increased the hydrodynamic radius of PVP polymers by 20%.

  7. Online Coupling of Lab-on-Valve Format to Amperometry Based on Polyvinylpyrrolidone-Doped Carbon Paste Electrode and Its Application to the Analysis of Morin.

    PubMed

    Wang, Yang; Yao, Guojun; Tang, Jie; Yang, Chun; Xu, Qin; Hu, Xiaoya

    2012-01-01

    The potential capabilities and analytical performance of lab-on-valve (LOV) manifold as a front end to amperometry have been explored for the on-line determination of morin. Meanwhile, the electrochemical behaviors of morin were investigated based on polyvinylpyrrolidone- (PVP-) doped carbon paste electrode (CPE), which found that PVP can significantly improve its oxidation peak current. The excellent amperometric current response was achieved when the potential difference (ΔE) of 0.6 V was implemented in pH 6.5 phosphate buffer solution (PBS) that served as the supporting electrolyte. A well-defined oxidation peak has been obtained in studies using PVP as a modifier of CPE based on the oxidation of morin. The present work introduces the LOV technique as a useful tool for amperometric measurement, documents advantages of using programmable flow, and outlines means for miniaturization of assays on the basis of PVP modified CPE. The proposed method was applied successfully to the determination of morin in real samples, and the spiked recoveries were satisfactory.

  8. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves

    NASA Astrophysics Data System (ADS)

    Hwang, Hee-Jae; Yook, Se-Jin; Ahn, Kang-Ho

    2011-12-01

    Soot particles emitted from vehicles are one of the major sources of air pollution in urban areas. In this study, five kinds of trees were selected as Pinus densiflora, Taxus cuspidata, Platanus occidentalis, Zelkova serrata, and Ginkgo biloba, and the removal of submicron (<1 μm) and ultrafine (<0.1 μm) soot particles by tree leaves was quantitatively compared in terms of deposition velocity. Soot particles were produced by a diffusion flame burner using acetylene as the fuel. The sizes of monodisperse soot particles classified with the Differential Mobility Analyzers (DMA) were 30, 55, 90, 150, 250, 400, and 600 nm. A deposition chamber was designed to simulate the omni-directional flow condition around the tree leaves. Deposition velocities onto the needle-leaf trees were higher than those onto the broadleaf trees. P. densiflora showed the greatest deposition velocity, followed by T. cuspidata, Platanus occidentalis, Zelkova serrata, and Ginkgo biloba. In addition, from the comparison of deposition velocity between two groups of Platanus occidentalis leaves, i.e. one group of leaves with front sides only and the other with back sides only, it was supposed in case of the broadleaf trees that the removal of airborne soot particles of submicron and ultrafine sizes could be affected by the surface roughness of tree leaves, i.e. the veins and other structures on the leaves.

  9. Ultrafine particle removal and ozone generation by in-duct electrostatic precipitators.

    PubMed

    Poppendieck, Dustin G; Rim, Donghyun; Persily, Andrew K

    2014-01-01

    Human exposure to airborne ultrafine particles (UFP, < 100 nm) has been shown to have adverse health effects and can be elevated in buildings. In-duct electrostatic precipitator filters (ESP) have been shown to be an effective particulate control device for reducing UFP concentrations (20-100 nm) in buildings, although they have the potential to increase indoor ozone concentrations. This study investigated residential ESP filters to reduce ultrafine particles between 4 to 15 nm and quantified the resulting ozone generation. In-duct ESPs were operated in the central air handling unit of a test house. Results for the two tested ESP brands indicate that removal efficiency of 8 to 14 nm particles was near zero and always less than 10% (± 15%), possibly due to particle generation or low charging efficiency. Adding a media filter downstream of the ESP increased the decay rate for particles in the same size range. Continuous operation of one brand of ESP raised indoor ozone concentrations to 77 ppbv and 20 ppbv for a second brand. Using commercial filters containing activated carbon downstream of the installed ESP reduced the indoor steady-state ozone concentrations between 6% and 39%.

  10. Influence of Nb on microstructure and mechanical properties of Ti-Sn ultrafine eutectic alloy

    NASA Astrophysics Data System (ADS)

    Kim, Young Seok; Park, Hae Jin; Kim, Jeong Tae; Hong, Sung Hwan; Park, Gyu Hyeon; Park, Jin Man; Suh, Jin Yoo; Kim, Ki Buem

    2017-01-01

    In this study, A series of the high strength (T82Sn18)100-xNbx (x=0, 1, 3, 5, and 9 at%) ultrafine eutectic alloys with large plasticity are developed by suction casting method. The Ti82Sn18 binary eutectic alloy consists of a mixture of a hcp Ti3Sn and a α-Ti phases having the plate-like lamellar type duplex structure with micro scaled eutectic colony. From the (T82Sn18)97Nb3, the alloy display structural heterogeneous distribution of ultrafine-scaled phases composed of β-Ti(Nb) solid solution surrounded by alternating plate-like shaped Ti3Sn and α-Ti phases. With increasing Nb content, the volume fraction of β-Ti is continuously increased, which induced improving mechanical properties both strength and plasticity. Especially, (Ti82Sn18)91Nb9 alloy has the outstanding combination of the high strength ( σ y ≈1.1 GPa) and large plasticity ( ɛ p ≈36%) at room temperature.

  11. Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel

    PubMed Central

    Inoue, Tadanobu; Kimura, Yuuji; Ochiai, Shojiro

    2012-01-01

    A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength–toughness balance of the developed steels was markedly better than that of conventionally quenched and tempered steel with a martensitic structure. In particular, the static fracture toughness of the UFEG steel, having a yield strength of 1.86 GPa at ambient temperature, was improved by more than 40 times compared with conventional steel having a yield strength of 1.51 GPa. Furthermore, even at 77 K, the fracture toughness of the UFEG steel was about eight times higher than that of the conventional and UFG steels, despite the high strength of the UFEG steel (2.26 GPa). The UFG steel exhibited brittle fracture behavior at 77 K, as did the conventional steel, and no dimple structure was observed on the fracture surface. Therefore, it is difficult to improve the low-temperature toughness of the UFG steel by grain refinement only. The shape of crystal grains plays an important role in delamination toughening, as do their refinement and orientation. PMID:27877493

  12. [Experimental study on the size spectra and emission factor of ultrafine particle from coal combustion].

    PubMed

    Sun, Zai; Yang, Wen-jun; Xie, Xiao-fang; Chen, Qiu-fang; Cai, Zhi-liang

    2014-12-01

    The emission characteristics of ultrafine particles released from pulverized coal combustion were studied, the size spectra of ultrafine particles (5.6-560 nm) were measured with FMPS (fast mobility particle sizer) on a self-built aerosol experiment platform. Meanwhile, a particle dynamic evolution model was established to obtain the particle deposition rate and the emission rate through the optimized algorithm. Finally, the emission factor was calculated. The results showed that at the beginning of particle generation, the size spectra were polydisperse and complex, the initial size spectra was mainly composed of three modes including 10 nm, 30-40 nm and 100-200 nm. Among them, the number concentration of mode around 10 nm was higher than those of other modes, the size spectrum of around 100-200 nm was lognormal distributed, with a CMD (count median diameter) of around 16 nm. Then, as time went on, the total number concentration was decayed by exponential law, the CMD first increased and then tended to be stable gradually. The calculation results showed that the emission factor of particles from coal combustion under laboratory condition was (5.54 x 10(12) ± 2.18 x 10(12)) unit x g(-1).

  13. Surface damage in ultrafine and multimodal grained tungsten materials induced by low energy helium irradiation

    NASA Astrophysics Data System (ADS)

    El-Atwani, Osman; Efe, Mert; Heim, Bryan; Allain, Jean Paul

    2013-03-01

    Although tungsten is considered the best candidate as a plasma facing component (PFC) in the divertor region in the International Thermonuclear Experimental Reactor (ITER), severe morphology changes such as cavities, blisters, bubbles and nanostructure formation are expected. Increasing defect sinks in the tungsten microstructure is one of the possible solutions to mitigate the irradiation damage. In this work, helium irradiation at low energy (50 and 200 eV) and temperatures of 600 (threshold of vacancy migration) and 950 °C were performed on multimodal and ultrafine grained tungsten prepared by spark plasma sintering and severe plastic deformation (SPD), respectively. The multimodal samples consisted of small grains (300-700 nm size) juxtaposed to larger grains (1-3 μm size). Detachment of the small grains was observed in the multimodal grained tungsten irradiated at 600 °C and a fluence of 1 × 1022 m-2 due to grain boundary grooving. On the same sample but at 950 °C, detachment and nanostructuring of the small grains were observed together with recrystallization of the large grains. Irradiation of the SPD samples at 200 eV and 950 °C to a fluence of about 2 × 1022 m-2, resulted in nanostructuring of the ultrafine grained shear bands in the microstructure.

  14. Ambient Ultrafine Particle Ingestion Alters Gut Microbiota in Association with Increased Atherogenic Lipid Metabolites

    PubMed Central

    Li, Rongsong; Yang, Jieping; Saffari, Arian; Jacobs, Jonathan; Baek, Kyung In; Hough, Greg; Larauche, Muriel H.; Ma, Jianguo; Jen, Nelson; Moussaoui, Nabila; Zhou, Bill; Kang, Hanul; Reddy, Srinivasa; Henning, Susanne M.; Campen, Matthew J.; Pisegna, Joseph; Li, Zhaoping; Fogelman, Alan M.; Sioutas, Constantinos; Navab, Mohamad; Hsiai, Tzung K.

    2017-01-01

    Ambient particulate matter (PM) exposure is associated with atherosclerosis and inflammatory bowel disease. Ultrafine particles (UFP, dp < 0.1–0.2 μm) are redox active components of PM. We hypothesized that orally ingested UFP promoted atherogenic lipid metabolites in both the intestine and plasma via altered gut microbiota composition. Low density lipoprotein receptor-null (Ldlr−/−) mice on a high-fat diet were orally administered with vehicle control or UFP (40 μg/mouse/day) for 3 days a week. After 10 weeks, UFP ingested mice developed macrophage and neutrophil infiltration in the intestinal villi, accompanied by elevated cholesterol but reduced coprostanol levels in the cecum, as well as elevated atherogenic lysophosphatidylcholine (LPC 18:1) and lysophosphatidic acids (LPAs) in the intestine and plasma. At the phylum level, Principle Component Analysis revealed significant segregation of microbiota compositions which was validated by Beta diversity analysis. UFP-exposed mice developed increased abundance in Verrocomicrobia but decreased Actinobacteria, Cyanobacteria, and Firmicutes as well as a reduced diversity in microbiome. Spearman’s analysis negatively correlated Actinobacteria with cecal cholesterol, intestinal and plasma LPC18:1, and Firmicutes and Cyanobacteria with plasma LPC 18:1. Thus, ultrafine particles ingestion alters gut microbiota composition, accompanied by increased atherogenic lipid metabolites. These findings implicate the gut-vascular axis in a atherosclerosis model. PMID:28211537

  15. Microstructure and mechanical properties of an ultrafine Ti–Si–Nb alloy

    SciTech Connect

    Cao, G. H.; Jian, G. Y.; Liu, N.; Zhang, W. H.; Russell, A. M.; Gerthsen, D.

    2015-08-19

    Nb-modified ultrafine Ti–Si eutectic alloy was made by cold crucible levitation melting, tested in compression at room temperature, and characterized by electron microscopy. Compression tests of (Ti86.5Si13.5)97Nb3 specimens measured an ultimate compressive strength of 1180 MPa and a compressive plastic strain of 12%, both of which are higher than in eutectic Ti86.5Si13.5 alloy. Electron microscopy showed that the Ti–Si–Nb alloy had a bimodal microstructure with micrometer-scale primary α-Ti dendrites distributed in an ultrafine eutectic (α-Ti + Ti5Si3) matrix. The enhanced ductility is attributed to the morphology of the phase constituents and to the larger lattice mismatches between α-Ti and Ti5Si3 phases caused by the Nb addition. Furthermore, the crystallographic orientation relationship of Ti5Si3 with α-Ti is ($1\\bar{1}00$ [$\\overline{11}$26]Ti5Si3∥($01\\bar{1}1$)[5$\\overline{143}$] α–Τi.

  16. Investigation on the potential generation of ultrafine particles from the tire-road interface

    NASA Astrophysics Data System (ADS)

    Mathissen, Marcel; Scheer, Volker; Vogt, Rainer; Benter, Thorsten

    2011-11-01

    There has been some discussion in the literature on the generation of ultrafine particles from tire abrasion of studded and non-studded tires tested in the laboratory environment. In the present study, the potential generation of ultrafine particles from the tire road interface was investigated during real driving. An instrumented Sport Utility Vehicle equipped with summer tires was used to measure particle concentrations with high temporal resolution inside the wheel housing while driving on a regular asphalt road. Different driving conditions, i.e., straight driving, acceleration, braking, and cornering were applied. For normal driving conditions no enhanced particle number concentration in the size range 6-562 nm was found. Unusual maneuvers associated with significant tire slip resulted in measurable particle concentrations. The maximum of the size distribution was between 30 and 60 nm. An exponential increase of the particle concentration with velocity was measured directly at the disc brakes for full stop brakings. A tracer gas experiment was carried out to estimate the upper limit of the emission factor during normal straight driving.

  17. Consecutively Preparing D-Xylose, Organosolv Lignin, and Amorphous Ultrafine Silica from Rice Husk

    PubMed Central

    Zhang, Hongxi; Ding, Xuefeng; Wang, Zichen; Zhao, Xu

    2014-01-01

    Rice husk is an abundant agricultural by-product reaching the output of 80 million tons annually in the world. The most common treatment method of rice husk is burning or burying, which caused serious air pollution and resource waste. In order to solve this problem, a new method is proposed to comprehensively utilize the rice husk in this paper. Firstly, the D-xylose was prepared from the semicellulose via dilute acid hydrolysis. Secondly, the lignin was separated via organic solvent pulping from the residue. Finally, the amorphous ultrafine silica was prepared via pyrolysis of the residue produced in the second process. In this way, the three main contents of rice husk (semicellulose, lignin, and silica) are consecutively converted to three fine chemicals, without solid waste produced. The yields of D-xylose and organosolv lignin reach 58.2% and 58.5%, respectively. The purity and specific surface of amorphous ultrafine silica reach 99.92% and 225.20 m2/g. PMID:25140120

  18. Microstructure and mechanical properties of an ultrafine Ti–Si–Nb alloy

    DOE PAGES

    Cao, G. H.; Jian, G. Y.; Liu, N.; ...

    2015-08-19

    Nb-modified ultrafine Ti–Si eutectic alloy was made by cold crucible levitation melting, tested in compression at room temperature, and characterized by electron microscopy. Compression tests of (Ti86.5Si13.5)97Nb3 specimens measured an ultimate compressive strength of 1180 MPa and a compressive plastic strain of 12%, both of which are higher than in eutectic Ti86.5Si13.5 alloy. Electron microscopy showed that the Ti–Si–Nb alloy had a bimodal microstructure with micrometer-scale primary α-Ti dendrites distributed in an ultrafine eutectic (α-Ti + Ti5Si3) matrix. The enhanced ductility is attributed to the morphology of the phase constituents and to the larger lattice mismatches between α-Ti and Ti5Si3 phases caused by the Nb addition. Furthermore, the crystallographic orientation relationship of Ti5Si3 with α-Ti is (more » $$1\\bar{1}00$$ [$$\\overline{11}$$26]Ti5Si3∥($$01\\bar{1}1$$)[5$$\\overline{143}$$] α–Τi.« less

  19. Ultrahigh-vacuum furnace for sintering studies of ultrafine ceramic particles

    SciTech Connect

    Bonevich, J.E.; Teng, M.; Johnson, D.L.; Marks, L.D. )

    1991-12-01

    An ultrahigh-vacuum (UHV) furnace has been designed and constructed for the purpose of investigating the sintering behavior of ultrafine ceramic particles. The UHV furnace has three main chambers for particle production, sintering, and collection with additional facilities for an UHV transfer system. The furnace system achieves a base pressure of 4 {times} 10{sup {minus}7} Pa through the use of turbomolecular and ion pumps. The ultrafine particles of aluminum oxide are produced by the arc discharge method resulting in the formation of highly faceted particles in the size range of 20--50 nm. The particles are then carried into the tube furnace by a flowing gas stream where they sinter at elevated temperatures. The sintered samples are collected onto a specimen cartridge which is then transported under vacuum conditions to an UHV high-resolution electron microscope for structural characterization. The unique feature of this UHV furnace system is that one is able to perform sintering studies in a clean environment thereby minimizing the influence of contaminating species on the sintering behavior.

  20. Ultrahigh-vacuum furnace for sintering studies of ultrafine ceramic particles

    NASA Astrophysics Data System (ADS)

    Bonevich, John E.; Teng, Mao-Hua; Johnson, D. Lynn; Marks, Laurence D.

    1991-12-01

    An ultrahigh-vacuum (UHV) furnace has been designed and constructed for the purpose of investigating the sintering behavior of ultrafine ceramic particles. The UHV furnace has three main chambers for particle production, sintering, and collection with additional facilities for an UHV transfer system. The furnace system achieves a base pressure of 4 × 10-7 Pa through the use of turbomolecular and ion pumps. The ultrafine particles of aluminum oxide are produced by the arc discharge method resulting in the formation of highly faceted particles in the size range of 20-50 nm. The particles are then carried into the tube furnace by a flowing gas stream where they sinter at elevated temperatures. The sintered samples are collected onto a specimen cartridge which is then transported under vacuum conditions to an UHV high-resolution electron microscope for structural characterization. The unique feature of this UHV furnace system is that one is able to perform sintering studies in a clean environment thereby minimizing the influence of contaminating species on the sintering behavior.

  1. Axial flow cyclone for segregation and collection of ultrafine particles: theoretical and experimental study.

    PubMed

    Hsu, Yu-Du; Chein, Hung Min; Chen, Tzu Ming; Tsai, Chuen-Jinn

    2005-03-01

    In this study, an axial flow cyclone was designed, fabricated, and evaluated at different conditions of air flow rates (Q0) and low-pressure environments (P), especially for the segregation and collection of ultrafine particles. An evaporation/condensation type of aerosol generation system consisting of tube furnace and mixing chamber was employed to produce test aerosols. The test aerosol was then classified by a differential mobility analyzer (DMA) and number concentration was measured by a condensation nuclei counter (CNC) and an electrometer upstream and downstream of the cyclone, respectively. The s-shaped curve of the collection efficiency in submicron particle size range was obtained to be similar to the traditional cyclone found in the literatures when the particles were largerthan 40 nm at Q0 = 1.07, 0.455 L(STP)/min, and P = 4.8-500 Torr. The curve was found to be fitted very well by a semiempirical equation described in this paper. For particles smaller than 40 nm, however, the collection efficiency was unusually increased as the particle diameter was decreased due to the fact that the diffusion deposition becomes the dominant collection mechanism in the low-pressure conditions. A model composed of centrifugal force and diffusion deposition is presented and used to fit the experimental data. The cyclone was demonstrated to separate and collect ultrafine particles effectively in the tested vacuum conditions.

  2. Microstructure and mechanical properties of an ultrafine Ti–Si–Nb alloy

    DOE PAGES

    Cao, G. H.; Jian, G. Y.; Liu, N.; ...

    2015-08-19

    In this study, Nb-modified ultrafine Ti–Si eutectic alloy was made by cold crucible levitation melting, tested in compression at room temperature, and characterized by electron microscopy. Compression tests of (Ti86.5Si13.5)97Nb3 specimens measured an ultimate compressive strength of 1180 MPa and a compressive plastic strain of 12%, both of which are higher than in eutectic Ti86.5Si13.5 alloy. Electron microscopy showed that the Ti–Si–Nb alloy had a bimodal microstructure with micrometer-scale primary α-Ti dendrites distributed in an ultrafine eutectic (α-Ti + Ti5Si3) matrix. The enhanced ductility is attributed to the morphology of the phase constituents and to the larger lattice mismatches between α-Ti and Ti5Si3 phases caused by the Nb addition. The crystallographic orientation relationship of Ti5Si3 with α-Ti is (more » $$1\\bar{1}00$$)[$$\\overline{11}$$26]Ti5Si3∥($$01\\bar{1}1$$)[5$$\\overline{143}$$] α–Τi.« less

  3. Grain Boundary Sliding in Ultra-fine Grained 5083 Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    Sung, Ming-Je

    Quantitative measurement and analysis of grain boundary sliding in Ultra-fine grained 5083 Aluminium by AFM was conducted at 623K. The grain size of as received cryomilled Ultra-fine Grained Aluminium was characterized by AFM and TEM, and the average was founded to be about 300nm. Ion beam polishing / etching technology was used to reveal grain boundaries for AFM characterization. The vertical offset of grain boundary sliding was measured by comparing pre-defoemation and post-deformation AFM images. By analyzing these measurements, the contribution of grain boundary sliding to the total strain was estimated as 22% - 52% at a strain rate of 10 -4 /sec -5x10-2/sec. It was demonstrated that the relatively low value of the contribution of grain boundary sliding to the total strain is most likely the result of testing under experimental condition that favor the dominance of region I ( low stress) of the sigmoidal behavior characterizing high strain rate superplasticity, which was previously reported.

  4. Numerical Model for Ultra-fine Particles in the Absence and Presence of Gravity

    NASA Astrophysics Data System (ADS)

    Dutt, Meenakshi; Elliott, James A.

    2009-06-01

    Length scales of particles and their surrounding medium strongly determines the nature of their interactions with one another and their responses to external fields. We are interested in systems of ultra-fine particles (0.1-1.0 micron) such as volcanic ash, soot from forest fires, solid aerosols, or fine powders for pharmaceutical inhalation applications. We have a developed a numerical model which captures the dominant physical interactions which control the behavior of these systems. The adhesive interactions between the particles use the Derjaguin-Muller-Toporov (DMT) adhesion theory along with the van der Waals attraction. The elastic restoring forces are modeled by the Hertz's contact model, and require details of material properties such as the Young's modulus and Poisson ratio. Commencing with a three dimensional gas of ultra-fine particles, the absence of gravity does not produce any noticeable clustering. The presence of gravity initially generates a large population of clusters with small number of particles, as the particles settle. The initial population of small clusters or single particles which have settled decrease with time as more particles, or clusters, agglomerate with one another. Our final results show clusters containing 10 to 100 particles, with a larger population of small clusters. We present details of the model, and some preliminary results which demonstrate the influence of the particle surface properties on the clustering dynamics of these systems, in the absence and presence of gravity (M. Dutt, J. A. Elliott, et al. in press).

  5. Ultrafine coal single stage dewatering and briquetting process. Technical report, December 1, 1994--February 28, 1995

    SciTech Connect

    Wilson, J.W.

    1996-03-01

    It is well known that a large portion of the pyrite particles in the coal seams of the Illinois Basin, are finely disseminated within the coal matrix. In order to liberate these micron size pyrite particles, one must use a fine grinding operation. The ultrafine coal particles that are produced are difficult to dewater and they create problems in coal transportation as well as in its storage and handling at utility plants. The objective of this research project is to combine ultrafine coal dewatering and briquetting processes into a single stage operation. This will be accomplished by the use of bitumen based emulsions for dewatering and a compaction device for briquetting. During this reporting period, two types of coal samples have been tested for use in the dewatering and briquetting processes. These tests were carried out using Orimulsion as the dewatering reagent. A ram extruder that can be operated continuously is used to fabricate dewatered pellets. The influence of compaction pressure, curing time, binder concentration (2% to 5%), particle size, and compacting time on the performance of coal pellets have been evaluated in terms of their water resistance and wear vulnerability.

  6. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.

    PubMed

    Stephens, B; Siegel, J A

    2013-12-01

    This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size.

  7. The Effect of Ventilation, Age, and Asthmatic Condition on Ultrafine Particle Deposition in Children

    PubMed Central

    Olvera, Hector A.; Perez, Daniel; Clague, Juan W.; Cheng, Yung-Sung; Li, Wen-Whai; Amaya, Maria A.; Burchiel, Scott W.; Berwick, Marianne; Pingitore, Nicholas E.

    2012-01-01

    Ultrafine particles (UFPs) contribute to health risks associated with air pollution, especially respiratory disease in children. Nonetheless, experimental data on UFP deposition in asthmatic children has been minimal. In this study, the effect of ventilation, developing respiratory physiology, and asthmatic condition on the deposition efficiency of ultrafine particles in children was explored. Deposited fractions of UFP (10–200 nm) were determined in 9 asthmatic children, 8 nonasthmatic children, and 5 nonasthmatic adults. Deposition efficiencies in adults served as reference of fully developed respiratory physiologies. A validated deposition model was employed as an auxiliary tool to assess the independent effect of varying ventilation on deposition. Asthmatic conditions were confirmed via pre-and post-bronchodilator spirometry. Subjects were exposed to a hygroscopic aerosol with number geometric mean diameter of 27–31 nm, geometric standard deviation of 1.8–2.0, and concentration of 1.2 × 106 particles cm−3. Exposure was through a silicone mouthpiece. Total deposited fraction (TDF) and normalized deposition rate were 50% and 32% higher in children than in adults. Accounting for tidal volume and age variation, TDF was 21% higher in asthmatic than in non-asthmatic children. The higher health risks of air pollution exposure observed in children and asthmatics might be augmented by their susceptibility to higher dosages of UFP. PMID:22848818

  8. Electrochemically Formed Ultrafine Metal Oxide Nanocatalysts for High-Performance Lithium–Oxygen Batteries

    SciTech Connect

    Liu, Bin; Yan, Pengfei; Xu, Wu; Zheng, Jianming; He, Yang; Luo, Langli; Bowden, Mark E.; Wang, Chong-Min; Zhang, Ji-Guang

    2016-08-10

    Lithium-oxygen (Li-O2) battery has an extremely high theoretical specific energy density as compared with conventional energy storage systems. However, practical application of Li-O2 battery system still faces significant challenges, especially its poor cyclability. In this work, we report a new approach to synthesis ultrafine metal oxide nanocatalysts through an electrochemical pre-lithiation process. This process reduces the size of NiCo2O4 (NCO) particles from 20~30 nm to a uniformly distributed domain of ~ 2 nm and largely improved their catalytic activity. Structurally, the pre-lithiated NCO NWs are featured by ultrafine NiO/CoO nanoparticles, which show high stability during prolonged cycles in terms of morphology and the particle size, therefore maintaining an excellent catalytic effect to oxygen reduction and evolution reactions. Li-O2 battery using this catalyst has demonstrated an initial capacity of 29,280 mAh g-1 and has retained a stable capacity of over 1,000 mAh g-1 after 100 cycles based on the weight of NCO active material. Direct in-situ TEM observation conclusively reveals the lithiation/delithiation process of as-prepared NCO NWs, clarifying the NCO/Li electrochemical reaction mechanism that can be extended to other transition-metal oxides and providing the in depth understandings on the catalysts and battery chemistries of other ternary transition-metal oxides.

  9. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    SciTech Connect

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Adam Crawford; Burtron H. Davis

    2006-09-30

    In the previous reporting period, modifications were completed for integrating a continuous wax filtration system for a 4 liter slurry bubble column reactor. During the current reporting period, a shakedown of the system was completed. Several problems were encountered with the progressive cavity pump used to circulate the wax/catalyst slurry though the cross-flow filter element and reactor. During the activation of the catalyst with elevated temperature (> 270 C) the elastomer pump stator released sulfur thereby totally deactivating the iron-based catalyst. Difficulties in maintaining an acceptable leak rate from the pump seal and stator housing were also encountered. Consequently, the system leak rate exceeded the expected production rate of wax; therefore, no online filtration could be accomplished. Work continued regarding the characterization of ultra-fine catalyst structures. The effect of carbidation on the morphology of iron hydroxide oxide particles was the focus of the study during this reporting period. Oxidation of Fe (II) sulfate results in predominantly {gamma}-FeOOH particles which have a rod-shaped (nano-needles) crystalline structure. Carbidation of the prepared {gamma}-FeOOH with CO at atmospheric pressure produced iron carbides with spherical layered structure. HRTEM and EDS analysis revealed that carbidation of {gamma}-FeOOH particles changes the initial nano-needles morphology and generates ultrafine carbide particles with irregular spherical shape.

  10. Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions

    DOE PAGES

    El-atwani, O.; Hattar, Khalid Mikhiel; Hinks, J. A.; ...

    2014-12-25

    We investigated the effects of helium ion irradiation energy and sample temperature on the performance of grain boundaries as helium sinks in ultrafine grained and nanocrystalline tungsten. Irradiations were performed at displacement and non-displacement energies and at temperatures above and below that required for vacancy migration. Microstructural investigations were performed using Transmission Electron Microscopy (TEM) combined with either in-situ or ex-situ ion irradiation. Under helium irradiation at an energy which does not cause atomic displacements in tungsten (70 eV), regardless of temperature and thus vacancy migration conditions, bubbles were uniformly distributed with no preferential bubble formation on grain boundaries. Moreover,more » at energies that can cause displacements, bubbles were observed to be preferentially formed on the grain boundaries only at high temperatures where vacancy migration occurs. Under these conditions, the decoration of grain boundaries with large facetted bubbles occurred on nanocrystalline grains with dimensions less than 60 nm. Finally, we discuss the importance of vacancy supply and the formation and migration of radiation-induced defects on the performance of grain boundaries as helium sinks and the resulting irradiation tolerance of ultrafine grained and nanocrystalline tungsten to bubble formation.« less

  11. Number size distribution of fine and ultrafine fume particles from various welding processes.

    PubMed

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  12. Ultrafine-grained mineralogy and matrix chemistry of olivine-rich chondritic interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.

    1989-01-01

    Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.

  13. Mineralogical characterization of ambient fine/ultrafine particles emitted from Xuanwei C1 coal combustion

    NASA Astrophysics Data System (ADS)

    Lu, Senlin; Hao, Xiaojie; Liu, Dingyu; Wang, Qiangxiang; Zhang, Wenchao; Liu, Pinwei; Zhang, Rongci; Yu, Shang; Pan, Ruiqi; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2016-03-01

    Nano-quartz in Xuanwei coal, the uppermost Permian (C1) coal deposited in the northwest of Yuanan, China, has been regarded as one of factors which caused high lung cancer incidence in the local residents. However, mineralogical characterization of the fine/ultrafine particles emitted from Xuanwei coal combustion has not previously been studied. In this study, PM1 and ultrafine particles emitted from Xuanwei coal combustion were sampled. Chemical elements in the ambient particles were analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and mineralogical characterization of these ambient particles was investigated using scanning electronic microscopy (SEM/EDX) and transmission electronic microscopy, coupled with energy-dispersive spectroscopy (TEM/EDX). Our results showed that the size distribution of mineral particles from the coal combustion emissions ranged from 20 to 200 nm. Si-containing particles and Fe-containing particles accounted for 50.7% of the 150 individual particles measured, suggesting that these two types of particles were major minerals in the ambient particles generally. The nano-mineral particles were identified as quartz (SiO2) and gypsum (CaSO4) based on their crystal parameters and chemical elements. Additionally, there also existed unidentified nano-minerals. Armed with these data, toxicity assessments of the nano-minerals will be carried out in a future study.

  14. Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions

    SciTech Connect

    El-atwani, O.; Hattar, Khalid Mikhiel; Hinks, J. A.; Greaves, G.; Harilal, S. S.; Hassanein, A.

    2014-12-25

    We investigated the effects of helium ion irradiation energy and sample temperature on the performance of grain boundaries as helium sinks in ultrafine grained and nanocrystalline tungsten. Irradiations were performed at displacement and non-displacement energies and at temperatures above and below that required for vacancy migration. Microstructural investigations were performed using Transmission Electron Microscopy (TEM) combined with either in-situ or ex-situ ion irradiation. Under helium irradiation at an energy which does not cause atomic displacements in tungsten (70 eV), regardless of temperature and thus vacancy migration conditions, bubbles were uniformly distributed with no preferential bubble formation on grain boundaries. Moreover, at energies that can cause displacements, bubbles were observed to be preferentially formed on the grain boundaries only at high temperatures where vacancy migration occurs. Under these conditions, the decoration of grain boundaries with large facetted bubbles occurred on nanocrystalline grains with dimensions less than 60 nm. Finally, we discuss the importance of vacancy supply and the formation and migration of radiation-induced defects on the performance of grain boundaries as helium sinks and the resulting irradiation tolerance of ultrafine grained and nanocrystalline tungsten to bubble formation.

  15. Hydrothermal synthesis of ultrafine barium hexaferrite nanoparticles and the preparation of their stable suspensions.

    PubMed

    Primc, D; Makovec, D; Lisjak, D; Drofenik, M

    2009-08-05

    The hydrothermal treatment of an appropriate suspension of Ba and Fe hydroxides in the presence of a large excess of OH(-) results in the formation of Ba hexaferrite at temperatures as low as 150 degrees C. This low formation temperature enables the synthesis of uniform, ultrafine Ba hexaferrite nanoparticles. These nanoparticles have a disc-like shape, approximately 10 nm wide, but only approximately 3 nm thick. When the temperature of the hydrothermal treatment is increased, large platelet Ba hexaferrite crystals appear as a consequence of secondary re-crystallization (Ostwald ripening). In this work, this undesired process of secondary re-crystallization has been evaluated. We show that the secondary re-crystallization can be totally suppressed with the use of an oleic acid surfactant. The addition of oleic acid enabled the synthesis of uniform, ultrafine nanoparticles at temperatures up to 240 degrees C. The nanoparticles were hydrophobic and could be suspended in nonpolar liquids to form relatively concentrated ferrofluids. Such stable suspensions of hexaferrite nanoparticles will be technologically important, especially as precursors for the preparation of new nanostructured materials, for example nanocomposites or nanostructured ceramic films.

  16. Microstructure and mechanical properties of an ultrafine Ti–Si–Nb alloy

    SciTech Connect

    Cao, G. H.; Jian, G. Y.; Liu, N.; Zhang, W. H.; Russell, A. M.; Gerthsen, D.

    2015-08-19

    In this study, Nb-modified ultrafine Ti–Si eutectic alloy was made by cold crucible levitation melting, tested in compression at room temperature, and characterized by electron microscopy. Compression tests of (Ti86.5Si13.5)97Nb3 specimens measured an ultimate compressive strength of 1180 MPa and a compressive plastic strain of 12%, both of which are higher than in eutectic Ti86.5Si13.5 alloy. Electron microscopy showed that the Ti–Si–Nb alloy had a bimodal microstructure with micrometer-scale primary α-Ti dendrites distributed in an ultrafine eutectic (α-Ti + Ti5Si3) matrix. The enhanced ductility is attributed to the morphology of the phase constituents and to the larger lattice mismatches between α-Ti and Ti5Si3 phases caused by the Nb addition. The crystallographic orientation relationship of Ti5Si3 with α-Ti is ($1\\bar{1}00$)[$\\overline{11}$26]Ti5Si3∥($01\\bar{1}1$)[5$\\overline{143}$] α–Τi.

  17. Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel.

    PubMed

    Inoue, Tadanobu; Kimura, Yuuji; Ochiai, Shojiro

    2012-06-01

    A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength-toughness balance of the developed steels was markedly better than that of conventionally quenched and tempered steel with a martensitic structure. In particular, the static fracture toughness of the UFEG steel, having a yield strength of 1.86 GPa at ambient temperature, was improved by more than 40 times compared with conventional steel having a yield strength of 1.51 GPa. Furthermore, even at 77 K, the fracture toughness of the UFEG steel was about eight times higher than that of the conventional and UFG steels, despite the high strength of the UFEG steel (2.26 GPa). The UFG steel exhibited brittle fracture behavior at 77 K, as did the conventional steel, and no dimple structure was observed on the fracture surface. Therefore, it is difficult to improve the low-temperature toughness of the UFG steel by grain refinement only. The shape of crystal grains plays an important role in delamination toughening, as do their refinement and orientation.

  18. CONTINUOUS MONITORING OF ULTRAFINE, FINE, AND COARSE PARTICLES IN A RESIDENCE FOR 18 MONTHS IN 1999-2000

    EPA Science Inventory

    Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in...

  19. Mast cells contribute to alterations in vascular reactivity and exacerbation of ischemia reperfusion injury following ultrafine PM exposure

    EPA Science Inventory

    Increased ambient fine particulate matter (FPM) concentrations are associated with increased risk for short-term and long-term adverse cardiovascular events. Ultrafine PM (UFPM) due to its size and increased surface area might be particularly toxic. Mast cells are well recognized...

  20. Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) in Brisbane, Queensland (Australia): Study Design and Implementation

    PubMed Central

    Ezz, Wafaa Nabil; Mazaheri, Mandana; Robinson, Paul; Johnson, Graham R.; Clifford, Samuel; He, Congrong; Morawska, Lidia; Marks, Guy B.

    2015-01-01

    Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study. PMID:25648226

  1. FORMATION OF FINE PARTICLES FROM RESIDUAL OIL COMBUSTION: REDUCING ULTRAFINE NUCLEI THROUGH THE ADDITION OF INORGANIC SORBENT

    EPA Science Inventory

    The paper gives results of an investigation, using an 82-kW-rated laboratory-scale refractory-lined combustor, of the characteristics of particulate matter emitted from residual oil combustion and the reduction of ultrafine nuclei by postflame sorbent injection. Without sorbent a...

  2. Ultrafine particles near a major roadway in Raleigh, North Carolina: downwind attenuation and correlation with traffic-related pollutants

    EPA Science Inventory

    Ultrafine particles (UFPs, diameter <100 run) emitted by traffic are a potential direct health threat to nearby populations and may additionally act as a tracer for co-emitted pollutants. During summertime in Raleigh, North Carolina, UFPs were simultaneously measured upwind and d...

  3. Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method

    SciTech Connect

    Joseph Berkmans, A.; Jagannatham, M.; Priyanka, S.; Haridoss, Prathap

    2014-11-15

    Highlights: • Polymer wastes are converted into ultrafine and nano carbon tubes and spheres. • Simple process with a minimal processing time. • It is a catalyst free and solvent free approach. • This process forms branched ultrafine carbon tubules with nano channels. - Abstract: Upcycling polymer wastes into useful, and valuable carbon based materials, is a challenging process. We report a novel catalyst-free and solvent-free technique for the formation of nano channeled ultrafine carbon tubes (NCUFCTs) and multiwalled carbon nanotubes (MWCNTs) from polyethylene terephthalate (PET) wastes, using rotating cathode arc discharge technique. The soot obtain from the anode contains ultrafine and nano-sized solid carbon spheres (SCS) with a mean diameter of 221 nm and 100 nm, respectively, formed at the lower temperature region of the anode where the temperature is approximately 1700 °C. The carbon spheres are converted into long “Y” type branched and non-branched NCUFCTs and MWCNTs at higher temperature regions where the temperature is approximately 2600 °C, with mean diameters of 364 nm and 95 nm, respectively. Soot deposited on the cathode is composed of MWCNTs with a mean diameter of 20 nm and other nanoparticles. The tubular structures present in the anode are longer, bent and often coiled with lesser graphitization compared to the nanotubes in the soot on the cathode.

  4. STUDY OF ULTRAFINE PARTICLES NEAR A MAJOR HIGHWAY WITH HEAVY-DUTY DIESEL TRAFFIC. (R827352C011)

    EPA Science Inventory

    Motor vehicle emissions usually constitute the most significant source of ultrafine particles (diameter <0.1 small mu, Greekm) in an urban environment. Zhu et al. (J. Air Waste Manage. As...

  5. Effect of Mitochondrial Oxidative Stress and Age on the Signaling Pathway of Ultrafine Particulate Matter Exposure in Murine Aorta

    EPA Science Inventory

    Epidemiological studies have linked ultrafine particulate matter (PM) exposure and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure. Advanced age is one ...

  6. Preparation of native cellulose-AgCl fiber with antimicrobial activity through one-step electrospinning.

    PubMed

    Wang, Shaojun; Zhang, Xiaomin; Luo, Ting; Zhu, Jin; Su, Shengpei

    2017-02-01

    The native Cellulose-AgCl fiber have been firstly fabricated by one-step electrospinning of cellulose solution with poly(vinyl pyrrolidone) (PVP) and AgNO3. X-ray diffraction, Scanning electron microscopy (SEM), Energy dispersive spectrometer, Thermo-gravimetric analysis and Fourier transform infrared are used to characterize the crystal structure, morphology and composition of cellulose-AgCl nanocomposites. The results of SEM indicate that the size of AgCl in cellulose fiber matrix is able to be adjusted by the addition of Polyvinylpyrrolidone (PVP). The antimicrobial activity of the nanocomposites fiber is also tested against the model microbes E. coli (Gram-negative) and S. aureus (Gram-positive). The results indicate that cellulose-AgCl nanocomposites have a good antimicrobial activity, which is improving with the decrease of AgCl size in fiber matrix. This work provides a novel and simple way to adjust the AgCl size in electrospinning cellulose matrix which can be applied as functional biomaterials.

  7. Fabrication of micro-hollow fiber by electrospinning process in near-critical carbon dioxide

    SciTech Connect

    Okamoto, Koichi; Wahyudiono,; Kanda, Hideki; Goto, Motonobu; Machmudah, Siti; Okubayashi, Satoko; Fukuzato, Ryuichi

    2014-02-24

    Electrospinning is a simple technique that has gained much attention because of its capability and feasibility in the fabrication of large quantities of fibers from polymer with diameters ranging in nano-microscale. These fibers provided high surface area to volume ratios, and it was of considerable interest for many applications, such as nanoparticle carriers in controlled release, scaffolds in tissue engineering, wound dressings, military wear with chemical and biological toxin-resistance, nanofibrous membranes or filters, and electronic sensors. Recently there has been a great deal of progress in the potential applications of hollow fibers in microfluids, photonics, and energy storage. In this work, electrospinning was conducted under high-pressure carbon dioxide (CO{sub 2}) to reduce the viscosity of polymer solution. The experiments were conducted at 313 K and ∼8.0 MPa. Polymer solution containing 5 wt% polymers which prepared in dichloromethane (DCM) with polyvinylpyrrolidone (PVP) to poly-L-lactic acid (PLLA) ratio 80:20 was used as a feed solution. The applied voltage was 15 kV and the distance of nozzle and collector was 8 cm. The morphology and structure of the fibers produced were observed using scanning electron microscopy (SEM). Under pressurized CO{sub 2}, PVP electrospun was produced without bead formation with diameter ranges of 608.50 - 7943.19 nm. These behaviors hold the potential to considerably improve devolatilization electrospinning processes.

  8. TiO2 Fibers: Tunable Polymorphic Phase Transformation and Electrochemical Properties.

    PubMed

    Garcia, Edna; Li, Qiang; Sun, Xing; Lozano, Karen; Mao, Yuanbing

    2015-05-01

    A series of one-dimensional (1 D) nanoparticle-assembled TiO2 fibers with tunable polymorphs were prepared via a novel and large scale ForceSpinning process of titanium tetraisopropoxide (TTIP)/polyvinylpyrrolidone (PVP) precursor fibers followed with a thermal treatment at various calcination temperatures. The thermal and structural transformations were characterized by thermogravimetric analysis/differential scanning calorimetry, scanning electron microscopy, and X-ray diffraction. The influence of polymorphic phase of the TiO2 fibers on the electrochemical performance in neutral aqueous 1 M Na2SO4 electrolyte was investigated. The polymorphic amorphous/anatase/rutile TiO2 fibers prepared at 450 degrees C achieved a highest capacitance of 21.2 F g(-1) (6.61 mF cm(-2)) at a current density of 200 mA g(-1), for which the improved electronic conductivity and activated pseudocapacitance mechanism may be responsible. This work helps bridge the gap between nanoscience and manufacturing. It also makes polymorphism control of functional materials a potential strategy for further improving supercapacitive output of metal oxides.

  9. The performance of primary human renal cells in hollow fiber bioreactors for bioartificial kidneys.

    PubMed

    Oo, Zay Yar; Deng, Rensheng; Hu, Min; Ni, Ming; Kandasamy, Karthikeyan; bin Ibrahim, Mohammed Shahrudin; Ying, Jackie Y; Zink, Daniele

    2011-12-01

    Bioartificial kidneys (BAKs) containing human primary renal proximal tubule cells (HPTCs) have been applied in clinical trials. The results were encouraging, but also showed that more research is required. Animal cells or cell lines are not suitable for clinical applications, but have been mainly used in studies on BAK development as large numbers of such cells could be easily obtained. It is difficult to predict HPTC performance based on data obtained with other cell types. To enable more extensive studies on HPTCs, we have developed a bioreactor containing single hollow fiber membranes that requires relatively small amounts of cells. Special hollow fiber membranes with the skin layer on the outer surface and consisting of polyethersulfone/polyvinylpyrrolidone were developed. The results suggested that such hollow fiber membranes were more suitable for the bioreactor unit of BAKs than membranes with an inner skin layer. An HPTC-compatible double coating was applied to the insides of the hollow fiber membranes, which sustained the formation of functional epithelia under bioreactor conditions. Nevertheless, the state of differentiation of the primary human cells remained a critical issue and should be further addressed. The bioreactor system described here will facilitate further studies on the relevant human cell type.

  10. Effect of doping swelling polymer cladding with phthalocyanine dye in plastic optical fiber humidity sensors

    NASA Astrophysics Data System (ADS)

    Morisawa, Masayuki; Yokomori, Haruyuki

    2011-05-01

    We have developed and tested plastic optical fiber (POF)-type humidity sensors, which consist of a dye-doped swelling polymer cladding. POF-type humidity sensors consist of a hydroxyethyl cellulose or polyvinylpyrrolidone (PVP) cladding layer that surrounds a poly(methyl methacrylate) core. The operation of these sensors is based on the change in refractive index caused by swelling of the cladding layer. To improve the sensitivity of the humidity sensor, we have investigated the effect of doping the cladding polymer with phthalocyanine dye. The results indicate that the POF-type humidity sensor using PVP is three times more sensitive for relative humidities above 80% when the dyedoped swelling-polymer cladding is used.

  11. Carbon-fiber technology

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.; Parker, J. A.

    1980-01-01

    The state of the art of PAN based carbon fiber manufacture and the science of fiber behavior is surveyed. A review is given of the stabilization by oxidation and the subsequent carbonization of fibers, of the apparent structure of fibers deduced from scanning electron microscopy, from X-ray scattering, and from similarities with soft carbons, and of the known relations between fiber properties and heat treatment temperature. A simplified model is invoked to explain the electrical properties of fibers and recent quantum chemical calculations on atomic clusters are used to elucidate some aspects of fiber conductivity. Some effects of intercalation and oxidative modification of finished fibers are summarized.

  12. Ultrafine Angelica gigas powder normalizes ovarian hormone levels and has antiosteoporosis properties in ovariectomized rats: particle size effect.

    PubMed

    Choi, Kyeong-Ok; Lee, Inae; Paik, Sae-Yeol-Rim; Kim, Dong Eun; Lim, Jung Dae; Kang, Wie-Soo; Ko, Sanghoon

    2012-10-01

    The root of Angelica gigas (Korean angelica) is traditionally used to treat women's ailments that are caused by an impairment of menstrual blood flow and cycle irregularities. This study evaluated the effect particle size of Korean angelica powder on its efficacy for treating estrogen-related symptoms of menopause. Initially, Korean angelica roots were pulverized into ultrafine powder, and orally administered to the rats at a concentration of 500 mg/kg body weight for 8 weeks. The effects of Korean angelica powder particle size on extraction yield, contents of bioactive compounds (decursin and decursinol angelate), levels of serum ovarian hormones (estradiol and progesterone), reproductive hormones (luteinizing hormone and follicle-stimulating hormone), and experimental osteoporosis parameters (mineral density, strength, and histological features) were determined. A significant increase (fivefold) in the contents of decursin and decursinol angelate in the extract of the ultrafine Korean angelica powder was observed compared to coarse Korean angelica powder. Rats were divided into sham-operated or ovariectomized (OVX) groups that were fed coarse (CRS) or ultrafine (UF) ground Korean angelica root. The serum levels of estradiol in the OVX_UF group were 19.2% and 54.1% higher than that of OVX_CRS group. Serum bone-alkaline phosphatase/total-alkaline phosphatase index in the OVX_UF group was half that of the OVX_CRS group. In addition, less trabecular bone loss and thick cortical areas were observed in rats administered ultrafine powder. Therefore, ultrafine grinding may enhance the bioactivity of herbal medicines and be especially useful when their extracted forms lose bioactivity during processing, storage, and oral intake.

  13. Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes.

    PubMed

    Wang, Lei; Gao, Biao; Peng, Changjian; Peng, Xiang; Fu, Jijiang; Chu, Paul K; Huo, Kaifu

    2015-09-07

    Silicon-based nanomaterials are promising anode materials in lithium-ion batteries (LIBs) due to their high theoretical capacity of 4200 mA h g(-1), more than 10 times that of commercial graphite. Si nanoparticles (NPs) with a diameter of or below 10 nm generally exhibit enhanced lithium storage properties due to their small size and large surface area. However, it is challenging to generate such ultrafine Si NPs by a facile and scalable method. This paper reports a scalable method to fabricate ultrafine Si NPs 5-8 nm in size from dead bamboo leaves (BLs) by thermally decomposing the organic matter, followed by magnesiothermic reduction in the presence of NaCl as a heat scavenger. The ultrafine Si NPs show a high capacity of 1800 mA h g(-1) at a 0.2 C (1 C = 4200 mA g(-1)) rate and are thus promising anode materials in lithium-ion batteries. To achieve better rate capability, the BLs-derived ultrafine Si NPs are coated with a thin amorphous carbon layer (Si@C) and then dispersed and embedded in a reduced graphene oxide (RGO) network to produce Si@C/RGO nanocomposites by a layer-by-layer assembly method. The double protection rendered by the carbon shell and RGO network synergistically yield structural stability, high electrical conductivity and a stable solid electrolyte interface during Li insertion/extraction. The Si@C/RGO nanocomposites show excellent battery properties with a high capacity of 1400 mA h g(-1) at a high current density of 2 C and remarkable rate performance with a capacity retention of 60% when the current density is increased 20 times from 0.2 to 4 C. This work provides a simple, low cost, and scalable approach enabling the use of BL waste as a sustainable source for the production of ultrafine Si NPs towards high-performance LIBs.

  14. The effects on bronchial epithelial mucociliary cultures of coarse, fine, and ultrafine particulate matter from an underground railway station.

    PubMed

    Loxham, Matthew; Morgan-Walsh, Rebecca J; Cooper, Matthew J; Blume, Cornelia; Swindle, Emily J; Dennison, Patrick W; Howarth, Peter H; Cassee, Flemming R; Teagle, Damon A H; Palmer, Martin R; Davies, Donna E

    2015-05-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10-2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether the metal-rich nature of such particles exerts toxic effects in mucus-covered airway epithelial cell cultures or whether there is an increased risk posed by the ultrafine fraction. Monolayer and mucociliary air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were exposed to size-fractionated underground railway PM (1.1-11.1 µg/cm(2)) and release of lactate dehydrogenase and IL-8 was assayed. ROS generation was measured, and the mechanism of generation studied using desferrioxamine (DFX) and N-acetylcysteine (NAC). Expression of heme oxygenase-1 (HO-1) was determined by RT-qPCR. Particle uptake was studied by transmission electron microscopy. Underground PM increased IL-8 release from PBECs, but this was diminished in mucus-secreting ALI cultures. Fine and ultrafine PM generated a greater level of ROS than coarse PM. ROS generation by ultrafine PM was ameliorated by DFX and NAC, suggesting an iron-dependent mechanism. Despite the presence of mucus, ALI cultures displayed increased HO-1 expression. Intracellular PM was observed within vesicles, mitochondria, and free in the cytosol. The results indicate that, although the mucous layer appears to confer some protection against underground PM, ALI PBECs nonetheless detect PM and mount an antioxidant response. The combination of increased ROS-generating ability of the metal-rich ultrafine fraction and ability of PM to penetrate the mucous layer merits further research.

  15. Ultrafine Angelica gigas Powder Normalizes Ovarian Hormone Levels and Has Antiosteoporosis Properties in Ovariectomized Rats: Particle Size Effect

    PubMed Central

    Choi, Kyeong-Ok; Lee, Inae; Paik, Sae-Yeol-Rim; Kim, Dong Eun; Lim, Jung Dae; Kang, Wie-Soo; Ko, Sanghoon

    2012-01-01

    Abstract The root of Angelica gigas (Korean angelica) is traditionally used to treat women's ailments that are caused by an impairment of menstrual blood flow and cycle irregularities. This study evaluated the effect particle size of Korean angelica powder on its efficacy for treating estrogen-related symptoms of menopause. Initially, Korean angelica roots were pulverized into ultrafine powder, and orally administered to the rats at a concentration of 500 mg/kg body weight for 8 weeks. The effects of Korean angelica powder particle size on extraction yield, contents of bioactive compounds (decursin and decursinol angelate), levels of serum ovarian hormones (estradiol and progesterone), reproductive hormones (luteinizing hormone and follicle-stimulating hormone), and experimental osteoporosis parameters (mineral density, strength, and histological features) were determined. A significant increase (fivefold) in the contents of decursin and decursinol angelate in the extract of the ultrafine Korean angelica powder was observed compared to coarse Korean angelica powder. Rats were divided into sham-operated or ovariectomized (OVX) groups that were fed coarse (CRS) or ultrafine (UF) ground Korean angelica root. The serum levels of estradiol in the OVX_UF group were 19.2% and 54.1% higher than that of OVX_CRS group. Serum bone-alkaline phosphatase/total-alkaline phosphatase index in the OVX_UF group was half that of the OVX_CRS group. In addition, less trabecular bone loss and thick cortical areas were observed in rats administered ultrafine powder. Therefore, ultrafine grinding may enhance the bioactivity of herbal medicines and be especially useful when their extracted forms lose bioactivity during processing, storage, and oral intake. PMID:23039111

  16. Hollow fiber-supported designer ionic liquid sponges for post-combustion CO2 scrubbing

    SciTech Connect

    Lee, JS; Hillesheim, PC; Huang, DK; Lively, RP; Oh, KH; Dai, S; Koros, WJ

    2012-11-30

    A proof of concept study for a new type of carbon capture system is considered for post-combustion CO2 capture based on porous hollow fiber sorbents with ionic liquids sorbed in the cell walls of the fiber. This study proves that delicate morphological features in the open-celled porous wall can be maintained during the infusion process. Mixtures of task specific ionic liquid (i.e. [BMIM][Tf2N]) and superbase (i.e. DBU) were loaded into polyamide-imide (PAI) fibers by a so-called two-step non-solvent infusion protocol. In the protocol, methanol carries ionic liquids into the pore cell walls of hollow fibers and then hexane carries superbase to create an efficient CO2 sorbent. Our ionic liquid/superbase impregnation technique overcomes a serious increase in mass transfer resistance upon reaction with CO2, thereby allowing its large scale utilization for post-combustion CO2 capture. The investigation on the effect of different pore former additives (different molecular weights of polyvinylpyrrolidone, lithium nitrate, and their mixtures) suggested that a large molecular weight of PVP (M-w; 1300k) including dope composition produces highly interconnected open cell pore structures of PAI hollow fibers. Lastly, a lumen side barrier layer was successfully formed on the bore side of neat PAI fibers by using a mixture of Neoprene (R) with crosslinking agents (TSR-633) via a post-treatment process. The lumen layer will enable heat removal from the fiber sorbents during their application in rapid thermal swing cycling processes. (C) 2012 Elsevier Ltd. All rights reserved.

  17. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  18. Conformation-mediated Förster resonance energy transfer (FRET) in blue-emitting polyvinylpyrrolidone (PVP)-passivated zinc oxide (ZnO) nanoparticles.

    PubMed

    Kurt, Hasan; Alpaslan, Ece; Yildiz, Burçin; Taralp, Alpay; Ow-Yang, Cleva W

    2017-02-15

    Homopolymers, such as polyvinylpyrrolidone (PVP), are commonly used to passivate the surface of blue-light emitting ZnO nanoparticles during colloid nucleation and growth. However, although PVP is known to auto-fluoresce at 400nm, which is near the absorption edge of ZnO, the impact of PVP adsorption characteristics on the surface of ZnO and the surface-related photophysics of PVP-capped ZnO nanoparticles is not well understood. To investigate, we have synthesized ZnO nanoparticles in solvents containing PVP of 3 concentrations-0.5, 0.7, and 0.11gmL(-1). Using time-domain NMR, we show that the adsorbed polymer conformation differs with polymer concentration-head-to-tail under low concentration (e.g., 0.05gmL(-1)) and looping, then train-like, with increasing concentration (e.g., 0.07gmL(-1) and 0.11gmL(-1), respectively). When the surface-adsorbed PVP is entrained, the surface states of ZnO are passivated and radiative emission from surface trap states is suppressed, allowing emission to be dominated by exciton transitions in the UV (ca. 310nm). Moreover, the reduced proximity between the PVP molecule and the ZnO gives rise to increased efficiency of energy transfer between the exciton emission of ZnO and the HOMO-LUMO absorption of PVP (ca. 400nm). As a result, light emission in the blue is enhanced in the PVP-capped ZnO nanoparticles. We thus show that the emission properties of ZnO can be tuned by controlling the adsorbed PVP conformation on the ZnO surface via the PVP concentration in the ZnO precipitation medium.

  19. Dual-Enzyme Characteristics of Polyvinylpyrrolidone-Capped Iridium Nanoparticles and Their Cellular Protective Effect against H2O2-Induced Oxidative Damage.

    PubMed

    Su, Hua; Liu, Dan-Dan; Zhao, Meng; Hu, Wei-Liang; Xue, Shan-Shan; Cao, Qian; Le, Xue-Yi; Ji, Liang-Nian; Mao, Zong-Wan

    2015-04-22

    Polyvinylpyrrolidone-stabilized iridium nanoparticles (PVP-IrNPs), synthesized by the facile alcoholic reduction method using abundantly available PVP as protecting agents, were first reported as enzyme mimics showing intrinsic catalase- and peroxidase-like activities. The preparation procedure was much easier and more importantly, kinetic studies found that the catalytic activity of PVP-IrNPs was comparable to previously reported platinum nanoparticles. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) characterization indicated that PVP-IrNPs had the average size of approximately 1.5 nm and mainly consisted of Ir(0) chemical state. The mechanism of PVP-IrNPs' dual-enzyme activities was investigated using XPS, Electron spin resonance (ESR) and cytochrome C-based electron transfer methods. The catalase-like activity was related to the formation of oxidized species Ir(0)@IrO2 upon reaction with H2O2. The peroxidase-like activity originated from their ability acting as electron transfer mediators during the catalysis cycle, without the production of hydroxyl radicals. Interestingly, the protective effect of PVP-IrNPs against H2O2-induced cellular oxidative damage was investigated in an A549 lung cancer cell model and PVP-IrNPs displayed excellent biocompatibility and antioxidant activity. Upon pretreatment of cells with PVP-IrNPs, the intracellular reactive oxygen species (ROS) level in response to H2O2 was decreased and the cell viability increased. This work will facilitate studies on the mechanism and biomedical application of nanomaterials-based enzyme mimic.

  20. Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly.

    PubMed

    Wang, Haitao; Zhang, Wenfeng; Xu, Chenhui; Bi, Xianghong; Chen, Boxue; Yang, Shangfeng

    2013-01-01

    A non-conjugated polymer poly(vinylpyrrolidone) (PVP) was applied as a new cathode buffer layer in P3HT:PCBM bulk heterojunction polymer solar cells (BHJ-PSCs), by means of either spin coating or self-assembly, resulting in significant efficiency enhancement. For the case of incorporation of PVP by spin coating, power conversion efficiency (PCE) of the ITO/PEDOT:PSS/P3HT:PCBM/PVP/Al BHJ-PSC device (3.90%) is enhanced by 29% under the optimum PVP spin-coating speed of 3000 rpm, which leads to the optimum thickness of PVP layer of ~3 nm. Such an efficiency enhancement is found to be primarily due to the increase of the short-circuit current (J(sc)) (31% enhancement), suggesting that the charge collection increases upon the incorporation of a PVP cathode buffer layer, which originates from the conjunct effects of the formation of a dipole layer between P3HT:PCBM active layer and Al electrodes, the chemical reactions of PVP molecules with Al atoms, and the increase of the roughness of the top Al film. Incorporation of PVP layer by doping PVP directly into the P3HT:PCBM active layer leads to an enhancement of PCE by 13% under the optimum PVP doping ratio of 3%, and this is interpreted by the migration of PVP molecules to the surface of the active layer via self-assembly, resulting in the formation of the PVP cathode buffer layer. While the formation of the PVP cathode buffer layer is fulfilled by both fabrication methods (spin coating and self-assembly), the dependence of the enhancement of the device performance on the thickness of the PVP cathode buffer layer formed by self-assembly or spin coating is different, because of the different aggregation microstructures of the PVP interlayer.

  1. Investigation and Evaluation of an in Situ Interpolymer Complex of Carbopol with Polyvinylpyrrolidone as a Matrix for Gastroretentive Tablets of Ranitidine Hydrochloride.

    PubMed

    Yusif, Rehab Mohammad; Abu Hashim, Irhan Ibrahim; Mohamed, Elham Abdelmonem; El Rakhawy, Mohamed Magdy

    2016-01-01

    Carbopol (CP) is a biocompatible bioadhesive polymer used as a matrix for gastroretentive (GR) tablets, however, its rapid hydration shortens its bioadhesion and floating when incorporated in effervescent formulae. The interpolymer complexation of CP with polyvinylpyrrolidone (PVP) significantly reduced the excessive hydration of CP, prolonging floating and maintaining the mucoadhesiveness. In early attempts, a lengthy process was followed to prepare such an interpolymer complex. In this study, an in situ interpolymer complexation between CP and two grades of PVP (K25 and K90) in 0.1 N HCl was investigated and characterized by Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). Hence, directly compressed GR tablets of different combinations of PVP and CP with sodium bicarbonate (SB) as an effervescent agent were examined for prolonged gastroretention and sustained release of ranitidine hydrochloride (RHCl) as a model drug. Tablets were evaluated for in vitro buoyancy, bioadhesiveness, swelling, and drug release in 0.1 N HCl. All GR tablets containing PVP-CP combinations achieved more prolonged floating (>24 h) than CP tablets (5.2 h). Their bioadhesiveness, swelling, and drug release were dependent on the PVP molecular weight and its ratio to CP. Drug release profiles of all formulae followed non-Fickian diffusion. Formula containing the PVP K90-CP combination at a respective ratio of 1 : 3 (P90C13) was a promising system, exhibiting good floating and bioadhesive properties as well as sustained drug release. Abdominal X-ray imaging of P90C13 formula, loaded with barium sulfate, in six healthy volunteers showed a mean gastric retention period of 6.8±0.3 h.

  2. Detection of viability of transplanted beta cells labeled with a novel contrast agent - polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles by magnetic resonance imaging.

    PubMed

    Zhang, Bo; Jiang, Biao; Chen, Ying; Huang, Hai; Xie, Qiuping; Kang, Muxing; Zhang, Hui; Zhai, Chuanxin; Wu, Yulian

    2012-01-01

    Islets can be visualized on MRI by labeling with superparamagnetic contrast agent during the transplantation procedure. However, whether the signal intensity reflects the cell number and cellular viability has not been determined. We used a self-synthesized novel superparamagnetic contrast agent -polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles (PVP-SPIO) - to label β-TC-6 cells (a mouse insulinoma cell line) or primary islets with commercial Feridex as a control. The labeling efficiency of two agents was compared by Prussian blue staining, intracellular iron content determination and MR scanning. Cells were exposed to hypoxia, high-glucose or exogenous H₂O₂ stimulation before/after PVP-SPIO labeling. Normal and injured cells were also transplanted into renal subcapsule. A clinically used 3.0 T MR scan was performed in vitro and 24 h post-transplantation to investigate the correlation between cellular viability and signal. Our PVP-SPIO displayed superior biocompatibility and magnetic properties. All of the cells could be labeled at 100 µg/ml iron concentration after 24 h incubation. At 100 µg/ml iron concentration, 1 × 10⁵ β cells labeled with PVP-SPIO could already be visualized in vitro by MRI, less than the detection threshold of Feridex. There existed a linear correlation between the number of labeled cells and R₂ value on the T₂ -weighted images. The signal intensity and the intracellular iron content declined along with the decreased viability of labeled cells. There was also a significant difference in signal intensity between injured and normal labeled cells after transplantation. From these results, we concluded that PVP-SPIO possessed superior cell labeling efficiency, and β cells could be labeled without compromising viability and function. The signal intensity on MRI might be a useful predictor to evaluate the number and the viability of PVP-SPIO-labeled cells.

  3. An investigation into the influence of drug-polymer interactions on the miscibility, processability and structure of polyvinylpyrrolidone-based hot melt extrusion formulations.

    PubMed

    Chan, Siok-Yee; Qi, Sheng; Craig, Duncan Q M

    2015-12-30

    While hot melt extrusion is now established within the pharmaceutical industry, the prediction of miscibility, processability and structural stability remains a pertinent issue, including the issue of whether molecular interaction is necessary for suitable performance. Here we integrate the use of theoretical and experimental drug-polymer interaction assessment with determination of processability and structure of dispersions in two polyvinylpyrrolidone-based polymers (PVP and PVP vinyl acetate, PVPVA). Caffeine and paracetamol were chosen as model drugs on the basis of their differing hydrogen bonding potential with PVP. Solubility parameter and interaction parameter calculations predicted a greater miscibility for paracetamol, while ATR-FTIR confirmed the hydrogen bonding propensity of the paracetamol with both polymers, with little interaction detected for caffeine. PVP was found to exhibit greater interaction and miscibility with paracetamol than did PVPVA. It was noted that lower processing temperatures (circa 40°C below the Tg of the polymer alone and Tm of the crystalline drug) and higher drug loadings with associated molecular dispersion up to 50% w/w were possible for the paracetamol dispersions, although molecular dispersion with the non-interactive caffeine was noted at loadings up to 20% w./w. A lower processing temperature was also noted for caffeine-loaded systems despite the absence of detectable interactions. The study has therefore indicated that theoretical and experimental detection of miscibility and drug-polymer interactions may lead to insights into product processing and extrudate structure, with direct molecular interaction representing a helpful but not essential aspect of drug-polymer combination prediction.

  4. Chlorin e6 – polyvinylpyrrolidone mediated photosensitization is effective against human non-small cell lung carcinoma compared to small cell lung carcinoma xenografts

    PubMed Central

    Chin, William WL; Heng, Paul WS; Olivo, Malini

    2007-01-01

    Background Photodynamic therapy (PDT) is an effective local cancer treatment that involves light activation of a photosensitizer, resulting in oxygen-dependent, free radical-mediated cell death. Little is known about the comparative efficacy of PDT in treating non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC), despite ongoing clinical trials treating lung cancers. The present study evaluated the potential use of chlorin e6 – polyvinylpyrrolidone (Ce6-PVP) as a multimodality photosensitizer for fluorescence detection and photodynamic therapy (PDT) on NSCLC and SCLC xenografts. Results Human NSCLC (NCI-H460) and SCLC (NCI-H526) tumor cell lines were used to establish tumor xenografts in the chick chorioallantoic membrane (CAM) model as well as in the Balb/c nude mice. In the CAM model, Ce6-PVP was applied topically (1.0 mg/kg) and fluorescence intensity was charted at various time points. Tumor-bearing mice were given intravenous administration of Ce6-PVP (2.0 mg/kg) and laser irradiation at 665 nm (fluence of 150 J/cm2 and fluence rate of 125 mW/cm2). Tumor response was evaluated at 48 h post PDT. Studies of temporal fluorescence pharmacokinetics in CAM tumor xenografts showed that Ce6-PVP has a selective localization and a good accuracy in demarcating NSCLC compared to SCLC from normal surrounding CAM after 3 h post drug administration. Irradiation at 3 h drug-light interval showed greater tumor necrosis against human NSCLC xenografts in nude mice. SCLC xenografts were observed to express resistance to photosensitization with Ce6-PVP. Conclusion The formulation of Ce6-PVP is distinctly advantageous as a diagnostic and therapeutic agent for fluorescence diagnosis and PDT of NSCLC. PMID:18053148

  5. GENE PROFILING AND THE ROLE OF COAGULATION FACTORS IN INFLAMMATION SIGNALING IN HUMAN PULMONARY ARTERY ENDOTHELIAL CELLS FOLLOWING ULTRAFINE PARTICLES EXPOUSRE

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate air pollution and increased cardiovascular mortality and morbidity, however, the mechanisms are not clear. Ultrafine particles within air pollution represent a particular area of concern because the small size fraction o...

  6. Composite Fiber Hazards

    DTIC Science & Technology

    1990-12-01

    34L boton Ion a tungsten boride core, and appear more like fine wires ,tin fibers. The fibers are combined with an epoxy matrix to form a prepreg j i...a 8-hour TWA Recommended Exposure Limit (REL) for fibrous glass of 3 fibers/cm3 for fibers with length >10 Jim and diameter ɛ.5 pm, and total

  7. Fiber optic connector

    DOEpatents

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  8. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  9. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  10. Fiber optic connector

    DOEpatents

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  11. Coatings for graphite fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.

  12. The importance of fracture toughness in ultrafine and nanocrystalline bulk materials

    PubMed Central

    Pippan, R.; Hohenwarter, A.

    2016-01-01

    ABSTRACT The suitability of high-strength ultrafine and nanocrystalline materials processed by severe plastic deformation methods and aimed to be used for structural applications will strongly depend on their resistance against crack growth. In this contribution some general available findings on the damage tolerance of this material class will be summarized. Particularly, the occurrence of a pronounced fracture anisotropy will be in the center of discussion. In addition, the great potential of this generated anisotropy to obtain high-strength materials with exceptionally high fracture toughness in specific loading and crack growth directions will be enlightened. IMPACT STATEMENT Severely plastically deformed materials are reviewed in light of their damage tolerance. The frequently observed toughness anisotropy allows unprecedented fracture toughness – strength combinations. PMID:27570712

  13. Effects of Flow Velocity and Particle Size on Transport of Ultrafine Bubbles in Porous Media

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Nihei, N.; Ueda, Y.; Nishimura, T.

    2015-12-01

    Potential applications of ultrafine bubbles (UFBs) have drawn more attention, especially in environmental engineering fields such as soil/groundwater remediation. Understanding a transport mechanism of UFBs in soils is essential to optimize remediation techniques using UFBs. In this study, column transport experiments using glass beads with different size fraction were conducted, where UFBs created by either air or oxygen were injected to the column with different flow conditions. Effects of particle size and flow velocities on transport characteristics of UFBs were investigated based on the column experiments. The results showed that attachments of UFBs were enhanced under lower water velocity condition, exhibiting more than 50% of UFBs injected were attached inside the column. The mobility of O2-UFBs which have lower zeta potential was higher than that of Air-UFBs. A convection-dispersion model including bubble attachment and detachment terms was applied to the obtained breakthrough curves for each experiment, showing good fitness against the measured data.

  14. Fabrication of large-scale ultra-fine Cd-doped ZnO nanowires

    SciTech Connect

    Zhou Shaomin . E-mail: shaominzhou@yahoo.com; Zhang Xiaohong; Meng Xiangmin; Wu Shikang; Lee Shuittong

    2006-02-02

    We demonstrate bulk synthesis of highly crystal Cd-doped ZnO nanowires by using (Cd + Zn) powders at 600 deg. C. These mass ultra-fine ZnO nanowires with about 0%, 1%, 4% and 8% Cd so obtained have been characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED) and high-resolution TEM (HRTEM). They have the uniform diameter of about 20 nm and several hundred microns in length. The growth of the as-synthesized nanowires is suggested for self-catalyzed vapor-liquid-solid.

  15. [Study on number concentration distribution of atmospheric ultrafine particles in Hangzhou].

    PubMed

    Xie, Xiao-Fang; Sun, Zai; Fu, Zhi-Min; Yang, Wen-Jun; Lin, Jian-Zhong

    2013-02-01

    Atmospheric ultrafine particles (UFPs) were measured with fast mobility particle sizer(FMPS) in Hangzhou, during March 2011 to February 2012. The number concentration and size distribution of UFPs associated with meteorology were studied. The results showed that the number concentration of UFPs was logarithmic bi-modal distribution, and the seasonal levels presented winter > summer > spring> autumn. The highest monthly average concentration was 3.56 x 10(4) cm-3 in December and the lowest was 2.51 x 10(4) cm-3 in October. The seasonal values of count medium diameter(CMD) were spring > winter > autumn > summer. The highest monthly average CMD was 53. 51 nm in April and the lowest was 16.68 nm in June. Meteorological factors had effects on concentration of UFPs.

  16. Characterization of ultrafine grained Cu-Ni-Si alloys by electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Altenberger, I.; Kuhn, H. A.; Gholami, M.; Mhaede, M.; Wagner, L.

    2014-08-01

    A combination of rotary swaging and optimized precipitation hardening was applied to generate ultra fine grained (UFG) microstructures in low alloyed high performance Cu-based alloy CuNi3Si1Mg. As a result, ultrafine grained (UFG) microstructures with nanoscopically small Ni2Si-precipitates exhibiting high strength, ductility and electrical conductivity can be obtained. Grain boundary pinning by nano-precipitates enhances the thermal stability. Electron channeling contrast imaging (ECCI) and especially electron backscattering diffraction (EBSD) are predestined to characterize the evolving microstructures due to excellent resolution and vast crystallographic information. The following study summarizes the microstructure after different processing steps and points out the consequences for the most important mechanical and physical properties such as strength, ductility and conductivity.

  17. Occupational Exposures and Chronic Kidney Disease: Possible associations with endotoxin and ultrafine particles

    PubMed Central

    Sponholtz, Todd R.; Sandler, Dale P.; Parks, Christine G.; Applebaum, Katie M.

    2015-01-01

    Background Chronic kidney disease (CKD) carries a high public health burden yet there is limited research on occupational factors, which are examined in this retrospective case-control study. Methods Newly diagnosed cases of CKD (n=547) and controls (n=508) from North Carolina provided detailed work histories in telephone interviews. Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Results There was heterogeneity in the association of CKD and agricultural work, with crop production associated with increased risk and work with livestock associated with decreased risk. Work with cutting/cooling/lubricating oils was associated with a reduced risk. CKD risk was increased for working in dusty conditions. Conclusions CKD risk was reduced in subjects with occupational exposures previously reported to involve endotoxin exposure. Further, exposure to dusty conditions was consistently associated with increased risk of glomerulonephritis across industry, suggesting that research on CKD and ultrafine particulates is needed. PMID:26572099

  18. Measurements of Ultra-fine and Fine Aerosol Particles over Siberia: Large-scale Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail; Paris, Jean-Daniel; Stohl, Andreas; Belan, Boris; Ciais, Philippe; Nédélec, Philippe

    2010-05-01

    In this paper we discuss the results of in-situ measurements of ultra-fine and fine aerosol particles carried out in the troposphere from 500 to 7000 m in the framework of several International and Russian State Projects. Number concentrations of ultra-fine and fine aerosol particles measured during intensive airborne campaigns are presented. Measurements carried over a great part of Siberia were focused on particles with diameters from 3 to 21 nm to study new particle formation in the free/upper troposphere over middle and high latitudes of Asia, which is the most unexplored region of the Northern Hemisphere. Joint International airborne surveys were performed along the following routes: Novosibirsk-Salekhard-Khatanga-Chokurdakh-Pevek-Yakutsk-Mirny-Novosibirsk (YAK-AEROSIB/PLARCAT2008 Project) and Novosibirsk-Mirny-Yakutsk-Lensk-Bratsk-Novosibirsk (YAK-AEROSIB Project). The flights over Lake Baikal was conducted under Russian State contract. Concentrations of ultra-fine and fine particles were measured with automated diffusion battery (ADB, designed by ICKC SB RAS, Novosibirsk, Russia) modified for airborne applications. The airborne ADB coupled with CPC has an additional aspiration unit to compensate ambient pressure and changing flow rate. It enabled to classify nanoparticles in three size ranges: 3-6 nm, 6-21 nm, and 21-200 nm. To identify new particle formation events we used similar specific criteria as Young et al. (2007): (1) N3-6nm >10 cm-3, (2) R1=N3-6/N621 >1 and R2=N321/N21200 >0.5. So when one of the ratios R1 or R2 tends to decrease to the above limits the new particle formation is weakened. It is very important to notice that space scale where new particle formation was observed is rather large. All the events revealed in the FT occurred under clean air conditions (low CO mixing ratios). Measurements carried out in the atmospheric boundary layer over Baikal Lake did not reveal any event of new particle formation. Concentrations of ultra-fine

  19. The Effects of Atmosphere on the Sintering of Ultrafine-Grained Tungsten with Ti

    NASA Astrophysics Data System (ADS)

    Ren, Chai; Koopman, Mark; Fang, Z. Zak; Zhang, Huan

    2016-11-01

    Tungsten (W) is a brittle material at room temperature making it very difficult to fabricate. Although the lack of ductility remains a difficult challenge, nano-sized and ultrafine-grained (UFG) structures offer the potential to overcome tungsten's room-temperature brittleness. One way to manufacture UFG W is to compact and sinter nano-sized W powder. It is challenging, however, to control grain growth during sintering. As one method to inhibit grain growth, the effect of Ti-based additives on the densification and grain growth of nano-W powders was investigated in this study. Addition of 1% Ti into tungsten led to more than a 63% decrease in average grain size of sintered samples at comparable density levels. It was found that sintering in Ar yielded a finer grain size than sintering in H2 at similar densities. The active diffusion mechanisms during sintering were different for W-1% Ti nano powders sintered in Ar and H2.

  20. Preliminary attempt at sintering an ultrafine alumina powder using microwaves. Master's thesis

    SciTech Connect

    Alhambra, E.M.

    1994-09-01

    A commercially available microwave oven was used to sinter ultrafine alumina powders (0.02 - 0.05 micrometers particle size) with and without CaO sintering aid. The oven was modified by inserting a thermocouple probe through the bottom housing, and thoroughly insulating the interior with insulating material. The oven was placed in a glove box and filled with argon to prevent degradation of the thermocouple, and oxidation of the powdered graphite susceptor. Heating rates of 50-75 Deg C/sec with a maximum temperature of 1575 Deg C were obtained. Limited success in sintering of the the powder compacts was achieved in this preliminary effort. The microstructures of the sintered products were examined by scanning electron microscopy. It was concluded that further work is necessary to develop this technique into one which can be used for the routine sintering of fine powdered ceramic material. A review of the literature on microwave sintering of ceramic powders is also reported.

  1. Comparison of rapid methods for chemical analysis of milligram samples of ultrafine clays.

    USGS Publications Warehouse

    Rettig, S.L.; Marinenko, J.W.; Khoury, H.N.; Jones, B.F.

    1983-01-01

    Two rapid methods for the decomposition and chemical analysis of clays were adapted for use with 20-40mg size samples, typical amounts of ultrafine products (< 0.5 micrometer diameter) obtained from modern separation methods for clay minrals. The results of these methods were compared with those of 'classical' rock analyses. The two methods consisted of mixed lithium metaborate fusion and heated decomposition with HF in a closed vessel. The latter technique was modified to include subsequent evaporation with concentrated H2SO4 and re-solution in HCl, which reduced the interference of the fluoride ion in the determination of Al, Fe, Ca, Mg, Na, and K.-from Authors

  2. Possible Gems and Ultra-Fine Grained Polyphase Units in Comet Wild 2.

    NASA Technical Reports Server (NTRS)

    Gainsforth, Z.; Butterworth, A. L.; Jilly-Rehak, C. E.; Westphal, A. J.; Brownlee, D. E.; Joswiak, D.; Ogliore, R. C.; Zolensky, M. E.; Bechtel, H. A.; Ebel, D. S.; Huss, G. R.; Sandford, S. A.; White, A. J.

    2016-01-01

    GEMS and ultrafine grained polyphase units (UFG-PU) in anhydrous IDPs are probably some of the most primitive materials in the solar system. UFG-PUs contain nanocrystalline silicates, oxides, metals and sulfides. GEMS are rounded approximately 100 nm across amorphous silicates containing embedded iron-nickel metal grains and sulfides. GEMS are one of the most abundant constituents in some anhydrous CPIDPs, often accounting for half the material or more. When NASA's Stardust mission returned with samples from comet Wild 2 in 2006, it was thought that UFG-PUs and GEMS would be among the most abundant materials found. However, possibly because of heating during the capture process in aerogel, neither GEMS nor UFG-PUs have been clearly found.

  3. Aerosol Measurements of the Fine and Ultrafine Particle Content of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Chen, Da-Ren; Smith, Sally A.

    2007-01-01

    We report the first quantitative measurements of the ultrafine (20 to 100 nm) and fine (100 nm to 20 m) particulate components of Lunar surface regolith. The measurements were performed by gas-phase dispersal of the samples, and analysis using aerosol diagnostic techniques. This approach makes no a priori assumptions about the particle size distribution function as required by ensemble optical scattering methods, and is independent of refractive index and density. The method provides direct evaluation of effective transport diameters, in contrast to indirect scattering techniques or size information derived from two-dimensional projections of high magnification-images. The results demonstrate considerable populations in these size regimes. In light of the numerous difficulties attributed to dust exposure during the Apollo program, this outcome is of significant importance to the design of mitigation technologies for future Lunar exploration.

  4. The Behavior of Ultrafine Particles in the Absence and Presence of External Fields

    NASA Astrophysics Data System (ADS)

    Dutt, Meenakshi; Hancock, Bruno; Bentham, Craig; Elliott, James

    2007-03-01

    Length scales of particles and their surrounding medium strongly determines the nature of their interactions with one another and their responses to external fields. We are interested in systems of ultrafine particles (0.1 - 1.0 micron) such as volcanic ash, solid aerosols, or fine powders for pharmaceutical ihalation applications. We develop a numerical model for these systems using the Derjaguin-Muller-Toporov (DMT) adhesion theory along with the van der Waals attraction between the particles and their contact mechanical interactions. We study the dynamics of these systems in the absence and presence of gravity by controlling the particle size, and thereby, the surface properties of the particles. Finally, we explore the response of these systems to external fields by studying the evolution of the internal microstructure under contant load and shear strain.

  5. A comprehensive study on the damage tolerance of ultrafine-grained copper

    PubMed Central

    Hohenwarter, A.; Pippan, R.

    2012-01-01

    In this study the fracture behavior of ultrafine-grained copper was assessed by means of elasto-plastic fracture mechanics. For the synthesis of the material high pressure torsion was used. The fracture toughness was quantitatively measured by JIC as a global measure by recording the crack growth resistance curve. Additionally, the initiation toughness in terms of the crack opening displacement (CODi) was evaluated as a local fracture parameter. The results presented here exhibit a low fracture initiation toughness but simultaneously a remarkably high fracture toughness in terms of JIC. The origin of the large difference between these two parameters, peculiarities of the fracture surface and the fracture mechanical performance compared to coarse grained copper will be discussed. PMID:23471016

  6. Preparation of ultrafine catalyst powders using a flow-through hydrothermal process

    SciTech Connect

    Matson, D.W.; Linehan, J.C.; Darab, J.G.

    1993-03-01

    The rapid thermal decomposition of solutes (RTDS) process was used to produce ultrafine iron-bearing oxide and hydroxide powders for use as coal liquefaction catalysts. The RTDS process subjects aqueous solutions containing dissolved metal salts to elevated temperatures and pressures in a flow-through apparatus. Particle formation is initiated during brief exposure of the solution to a heated region, then is quenched by abruptly cooling and depressurizing the suspension. Powders having individual crystallites on the nanometer to tens-of-nanometer size scale are readily produced by the RTDS method. Variations in RTDS processing parameters (e.g., solute concentration, flow rate, processing temperature) affect the crystallinity, morphology, and size of particles produced. Powders generated using the RTDS process were characterized using XRD, EXAFS, electron microscopy, Mossbauer spectroscopy, and BET surface area analysis.

  7. Fabrication of ultrafine tungsten-based alloy powders by novel soda reduction process

    SciTech Connect

    Lee, Dong-Won; Turaev, Farkhod; Kim, Ju-Hyeong; Yang, Mingchuan

    2010-03-15

    A novel reduction method has been developed to fabricate ultrafine tungsten heavy alloy powders, with ammonium metatungstate (AMT), iron(II) chloride tetrahydrate (FeCl{sub 2}.4H{sub 2}O), nickel(II) chloride hexahydrate (NiCl{sub 2}.6H{sub 2}O) as source materials and sodium tungstate dihydrate (Na{sub 2}WO{sub 4}.2H{sub 2}O) as a reductant. In the preparation of mixtures the amounts of the source components were chosen so as to obtain alloy of 93W-5Ni-2Fe composition (wt.%). The obtained powders were characterized by X-ray diffraction, XPS, field-emission scanning microscope (FESEM), and chemical composition was analyzed by EDX.

  8. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    SciTech Connect

    Amitava Sarkar; James K. Neathery; Burtron H. Davis

    2006-12-31

    A fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of operation since the reaction is highly exothermic. Consequently, heavy wax products in one approach may be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase iron-based FTS and is a key factor for optimizing operating costs. The separation problem is further compounded by attrition of iron catalyst particles and the formation of ultra-fine particles.

  9. Development of the electroacoustic dewatering (EAD) process for fine/ultrafine coal

    SciTech Connect

    Chauhan, S.P.; Kim, B.C.; Menton, R.; Senapati, N.; Criner, C.L.; Jirjis, B.; Muralidhara, H.S.; Chou, Y.L.; Wu, H.; Hsieh, P. ); Johnson, H.R.; Eason, R. ); Chiang, S.M.; Cheng, Y.S. ); Kehoe, D. )

    1991-10-31

    Battelle (Columbus, Ohio) undertook development of its electro-acoustic (EAD) process to demonstrate its commercial potential for continuous dewatering of fine and ultrafine coals. The pilot plant and laboratory results, provided in this report, show that a commercial-size EAD machine is expected to economically achieve the dewatering targets for {minus}100 mesh and {minus}325 mesh coals. The EAD process utilizes a synergistic combination of electric and acoustic (e.g., ultrasonic) fields in conjunction with conventional mechanical processes, such as belt presses, screw presses, plate and frame filter presses, and vacuum filters. The application of EAD is typically most beneficial after a filter cake is formed utilizing conventional mechanical filtration. (VC)

  10. Development of the electroacoustic dewatering (EAD) process for fine/ultrafine coal. Final report

    SciTech Connect

    Chauhan, S.P.; Kim, B.C.; Menton, R.; Senapati, N.; Criner, C.L.; Jirjis, B.; Muralidhara, H.S.; Chou, Y.L.; Wu, H.; Hsieh, P.; Johnson, H.R.; Eason, R.; Chiang, S.M.; Cheng, Y.S.; Kehoe, D.

    1991-10-31

    Battelle (Columbus, Ohio) undertook development of its electro-acoustic (EAD) process to demonstrate its commercial potential for continuous dewatering of fine and ultrafine coals. The pilot plant and laboratory results, provided in this report, show that a commercial-size EAD machine is expected to economically achieve the dewatering targets for {minus}100 mesh and {minus}325 mesh coals. The EAD process utilizes a synergistic combination of electric and acoustic (e.g., ultrasonic) fields in conjunction with conventional mechanical processes, such as belt presses, screw presses, plate and frame filter presses, and vacuum filters. The application of EAD is typically most beneficial after a filter cake is formed utilizing conventional mechanical filtration. (VC)

  11. A new insight into ductile fracture of ultrafine-grained Al-Mg alloys

    PubMed Central

    Yu, Hailiang; Tieu, A. Kiet; Lu, Cheng; Liu, Xiong; Liu, Mao; Godbole, Ajit; Kong, Charlie; Qin, Qinghua

    2015-01-01

    It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation. PMID:25851228

  12. Application of Transmitted Kikuchi Diffraction in Studying Nano-oxide and Ultrafine Metallic Grains.

    PubMed

    Abbasi, Majid; Kim, Dong-Ik; Guim, Hwan-Uk; Hosseini, Morteza; Danesh-Manesh, Habib; Abbasi, Mehrdad

    2015-11-24

    Transmitted Kikuchi diffraction (TKD) is an emerging SEM-based technique that enables investigation of highly refined grain structures. It offers higher spatial resolution by utilizing conventional electron backscattered diffraction equipment on electron-transparent samples. A successful attempt has been made to reveal nano-oxide grain structures as well as ultrafine severely deformed metallic grains. The effect of electron beam current was studied. Higher beam currents enhance pattern contrast and intensity. Lower detector exposure times could be employed to accelerate the acquisition time and minimize drift and carbon contamination. However, higher beam currents increase the electron interaction volume and compromise the spatial resolution. Lastly, TKD results were compared to orientation mapping results in TEM (ASTAR). Results indicate that a combination of TKD and EDS is a capable tool to characterize nano-oxide grains such as Al2O3 and Cr2O3 with similar crystal structures.

  13. Controllable fabrication of ultrafine oblique organic nanowire arrays and their application in energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Cheng, Li; Bai, Suo; Su, Chen; Chen, Xiaobo; Qin, Yong

    2015-01-01

    Ultrafine organic nanowire arrays (ONWAs) with a controlled direction were successfully fabricated by a novel one-step Faraday cage assisted plasma etching method. The mechanism of formation of nanowire arrays is proposed; the obliquity and aspect ratio can be accurately controlled from approximately 0° to 90° via adjusting the angle of the sample and the etching time, respectively. In addition, the ONWAs were further utilized to improve the output of the triboelectric nanogenerator (TENG). Compared with the output of TENG composed of vertical ONWAs, the open-circuit voltage, short-circuit current and inductive charges were improved by 73%, 150% and 98%, respectively. This research provides a convenient and practical method to fabricate ONWAs with various obliquities on different materials, which can be used for energy harvesting.

  14. Controllable fabrication of ultrafine oblique organic nanowire arrays and their application in energy harvesting.

    PubMed

    Zhang, Lu; Cheng, Li; Bai, Suo; Su, Chen; Chen, Xiaobo; Qin, Yong

    2015-01-28

    Ultrafine organic nanowire arrays (ONWAs) with a controlled direction were successfully fabricated by a novel one-step Faraday cage assisted plasma etching method. The mechanism of formation of nanowire arrays is proposed; the obliquity and aspect ratio can be accurately controlled from approximately 0° to 90° via adjusting the angle of the sample and the etching time, respectively. In addition, the ONWAs were further utilized to improve the output of the triboelectric nanogenerator (TENG). Compared with the output of TENG composed of vertical ONWAs, the open-circuit voltage, short-circuit current and inductive charges were improved by 73%, 150% and 98%, respectively. This research provides a convenient and practical method to fabricate ONWAs with various obliquities on different materials, which can be used for energy harvesting.

  15. The importance of fracture toughness in ultrafine and nanocrystalline bulk materials.

    PubMed

    Pippan, R; Hohenwarter, A

    2016-07-02

    The suitability of high-strength ultrafine and nanocrystalline materials processed by severe plastic deformation methods and aimed to be used for structural applications will strongly depend on their resistance against crack growth. In this contribution some general available findings on the damage tolerance of this material class will be summarized. Particularly, the occurrence of a pronounced fracture anisotropy will be in the center of discussion. In addition, the great potential of this generated anisotropy to obtain high-strength materials with exceptionally high fracture toughness in specific loading and crack growth directions will be enlightened. IMPACT STATEMENT Severely plastically deformed materials are reviewed in light of their damage tolerance. The frequently observed toughness anisotropy allows unprecedented fracture toughness - strength combinations.

  16. Cyclic Creep of Ultrafine-Grained Pure Cu Under Cyclic Tension Deformation

    NASA Astrophysics Data System (ADS)

    Wu, Yanjun; Yang, Jingwen; Shen, Xu; Zhu, Rong

    2017-02-01

    The uniaxial ratcheting behavior of ultrafine-grained pure Cu processed by equal-channel angular pressing (ECAP) was investigated through uniaxial asymmetric cyclic stress-controlled experiments at room temperature. The effects of the mean stress and stress amplitude on the uniaxial ratcheting response and ratcheting life of the ECAP Cu were analyzed. With increasing mean stress or stress amplitude, the ratcheting strain and its rate increased, but the ratcheting life decreased. An approach based on Basquin's method was used to describe the fatigue lifetime of the ECAP pure Cu. Additionally, a power law relationship was adopted to describe the cyclic steady creep rate. Finally, the microscopic and macroscopic fracture features were examined. It was found that at high peak stresses, cyclic creep governs the overall failure process; otherwise, cyclic creep-fatigue interaction is the dominant failure mode.

  17. 3D visualization of ultra-fine ICON climate simulation data

    NASA Astrophysics Data System (ADS)

    Röber, Niklas; Spickermann, Dela; Böttinger, Michael

    2016-04-01

    Advances in high performance computing and model development allow the simulation of finer and more detailed climate experiments. The new ICON model is based on an unstructured triangular grid and can be used for a wide range of applications, ranging from global coupled climate simulations down to very detailed and high resolution regional experiments. It consists of an atmospheric and an oceanic component and scales very well for high numbers of cores. This allows us to conduct very detailed climate experiments with ultra-fine resolutions. ICON is jointly developed in partnership with DKRZ by the Max Planck Institute for Meteorology and the German Weather Service. This presentation discusses our current workflow for analyzing and visualizing this high resolution data. The ICON model has been used for eddy resolving (<10km) ocean simulations, as well as for ultra-fine cloud resolving (120m) atmospheric simulations. This results in very large 3D time dependent multi-variate data that need to be displayed and analyzed. We have developed specific plugins for the free available visualization software ParaView and Vapor, which allows us to read and handle that much data. Within ParaView, we can additionally compare prognostic variables with performance data side by side to investigate the performance and scalability of the model. With the simulation running in parallel on several hundred nodes, an equal load balance is imperative. In our presentation we show visualizations of high-resolution ICON oceanographic and HDCP2 atmospheric simulations that were created using ParaView and Vapor. Furthermore we discuss our current efforts to improve our visualization capabilities, thereby exploring the potential of regular in-situ visualization, as well as of in-situ compression / post visualization.

  18. From Ultrafine Thiolate-Capped Copper Nanoclusters toward Copper Sulfide Nanodiscs: A Thermally Activated Evolution Route

    SciTech Connect

    Mott, Derrick; Yin, Jun; Engelhard, Mark H.; Loukrakpam, Rameshwori; Chang, Paul; Miller, George; Bae, In-Tae; Das, N. C.; Wang, Chong M.; Luo, Jin; Zhong, Chuan-Jian

    2010-01-12

    In this report we show that the size, shape, and composition of pre-synthesized metal nanoparticles can be engineered through exploiting concurrent interparticle coalescence and interfacial copper-thiolate cleavage under a thermally-activated evolution process. This concept is demonstrated by thermally-activated processing of ultrafine (~0.5 nm) copper nanoparticles encapsulated with thiolate monolayer (Cun(SR)m) toward copper sulfide nanodiscs with controllable sizes and shapes. It involved a thermally-activated coalescence of Cun(SR)m nanoclusters accompanied by interfacial Cu-S cleavage towards the formation of Cu2S nanocrystals with well-defined nanodisc shapes with an average diameter and thickness ranging from 10.7 ±1.4 nm and 5.5 ±0.5 nm (aspect ratio ~2) to 31.2 ±4.3 nm and 3.9 ±0.4 nm (aspect ratio ~7) depending on the thermal processing parameters. These nanodiscs are stable and display remarkable ordering upon self-assembly. The abilities to create the ultrafine copper nanoclusters and to enable them to undergo a thermally-activated coalescence and a concurrent Cu-S bond cleavage toward the formation of Cu2S nanodiscs is entirely new. The viability of fine tuning the size and shape of the Cu2S nanocrystals by controlling the relative binding strength of thiolates, the C-S cleavage reactivity, and the interparticle coalescence activity, and their potential applications in electronic, sensing and photochemical devices are also discussed.

  19. The Effect of Ultrafine Process on the Dissolution, Antibacterial Activity, and Cytotoxicity of Coptidis rhizoma

    PubMed Central

    Jiang, Zhen-Yu; Deng, Hai-Ying; Yu, Zhi-Jun; Ni, Jun-Yan; Kang, Si-He

    2016-01-01

    Background: The dosage of herb ultrafine particle (UFP) depended on the increased level of its dissolution, toxicity, and efficacy. Objective: The dissolution, antibacterial activity, and cytotoxicity of Coptidis rhizoma (CR) UFP were compared with those of traditional decoction (TD). Materials and Methods: The dissolution of berberine (BBR) of CR TD and UFP was determined by high-performance liquid chromatography. The antibacterial activity of CR extract was assayed by plate-hole diffusion and broth dilution method; the inhibitory effect of rat serums against bacteria growth was evaluated after orally given CR UFP or TD extract. The cytotoxicity of CR extract was evaluated by 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide assay. Results: The dissolution amount of BBR from CR UFP increased 6–8-folds in comparison to TD at 2 min, the accumulative amount of BBR in both UFP and TD group increased in a time-dependent manner. The minimal inhibitory concentrations and minimal bactericidal concentrations of CR UFP extract decreased to 1/2~1/4 of those of TD extract. The inhibitory effect of rat serums against bacteria growth decreased time-dependently, and no statistical difference was observed between two groups at each time point. The 50% cytotoxic concentrations of UFP extract increased 1.66~1.97 fold than those of TD. Conclusions: The antibacterial activity and cytotoxicity of CR UFP increased in a dissolution-effect manner in vitro, the increased level of cytotoxicity was lower than that of antibacterial activity, and the inhibitory effect of rat serums containing drugs of UFP group did not improve. SUMMARY Ultrafine grinding process caused a rapid increase of BBR dissolution from CR.The antibacterial activity and cytotoxicity of UFP extract in vitro increased in a dissolution-effect manner, but the cytotoxicity increased lower than the antibacterial activity.The antibacterial activity of rat serums of UFP group did not improve in comparison to that

  20. Characteristics of airborne ultrafine and coarse particles during the Australian dust storm of 23 September 2009

    NASA Astrophysics Data System (ADS)

    Jayaratne, E. R.; Johnson, G. R.; McGarry, P.; Cheung, H. C.; Morawska, L.

    2011-08-01

    Particle number concentrations and size distributions, visibility and particulate mass concentrations and weather parameters were monitored in Brisbane, Australia, on 23 September 2009, during the passage of a dust storm that originated 1400 km away in the dry continental interior. The dust concentration peaked at about mid-day when the hourly average PM 2.5 and PM 10 values reached 814 and 6460 μg m -3, respectively, with a sharp drop in atmospheric visibility. A linear regression analysis showed a good correlation between the coefficient of light scattering by particles (Bsp) and both PM 10 and PM 2.5. The particle number in the size range 0.5-20 μm exhibited a lognormal size distribution with modal and geometrical mean diameters of 1.6 and 1.9 μm, respectively. The modal mass was around 10 μm with less than 10% of the mass carried by particles smaller than 2.5 μm. The PM 10 fraction accounted for about 68% of the total mass. By mid-day, as the dust began to increase sharply, the ultrafine particle number concentration fell from about 6 × 10 3 cm -3 to 3 × 10 3 cm -3 and then continued to decrease to less than 1 × 10 3 cm -3 by 14 h, showing a power-law decrease with Bsp with an R2 value of 0.77 ( p < 0.01). Ultrafine particle size distributions also showed a significant decrease in number during the dust storm. This is the first scientific study of particle size distributions in an Australian dust storm.