Science.gov

Sample records for pomegranate seed oil

  1. INFLUENCE OF POMEGRANATE SEED OIL AND GRAPE SEED OIL ON CHOLESTEROL CONTENT AND FATTY ACIDS PROFILE IN LIVERS OF CHICKENS.

    PubMed

    Bialek, Agnieszka; Czerwonka, Malgorzata; Bialek, Malgorzata; Lepionka, Tomasz; Kaszperuk, Karol; Banaszkiewicz, Teresa; Tokarz, Andrzej

    2017-03-01

    Oils are important food ingredients, mainly as a source of unsaturated fatty acids. The offer of novel edible oils from herbs, spices and fruit seeds has grown and many of them are used as functional food and dietary supplements but also as feed additives in animal feeding. Poultry meat is recommended.in properly balanced diet and its consumption in Poland has been growing. The objective of present study was to verify if the supplementation of chickens' diet with grape seed oil or pomegranate seed oil influences cholesterol content and fatty acids (FA) profile in their livers. Ross 308 chickens (n = 24) were fed with fodder enriched with grape seed oil (G group) or pomegranate seed oil (P group). Diet of control group (C group) was based on soybean oil. FA analysis in livers as well as cholesterol content was made with gas chromatography. We observed significant increase in fat content when part of soybean oil was replaced by grape seed oil (p = 0.0002). Its highest amount was detected in G group (4.44 ± 1.53%) whereas the lowest in C group (1.73 ± 0.53%). Applied supplementation did not change total cholesterol content. Its content ranged from 233.0 ± 12.2 mg/100 g in G group to 234.6 ± 29.7 mg1100 g in C group. However, chickens' diet modification with grape seed oil and pomegranate seed oil influenced the FA profile in livers. We detected the presence of punicic acid (cis-9, trans-11, cis-13 C18:3, PA) in livers of chicken fed with pomegranate seed oil. Pomegranate seed oil is one of natural sources of conjugated linolenic acids (CLnA), which predominate in this oil (PA >70% of all FA). However, in livers PA constituted only 0.90 ± 0.10% of all fatty acids. Furthermore, we detected substantial amounts of rumenic acid (cis-9, trans-11 C18:2, RA) - the major isomer of conjugated linoleic acids (CLA). Its natural sources in diet are meat and milk of ruminants, but incorporation of pomegranate seed oil into chickens' diet caused a significant increase of its

  2. Effects of Pomegranate Seed Oil on the Fertilization Potency of Rat's Sperm.

    PubMed

    Nikseresht, Mohsen; Fallahzadeh, Ali Reza; Toori, Mehdi Akbartabar; Mahmoudi, Reza

    2015-12-01

    Pomegranate has been taken great scientific attention in recent years due to its health benefits. Pomegranate seed oil is a rich source of 9-cis, and 11-trans conjugate linolenic acid. The aim of this study was to evaluate the effect of dietary pomegranate seed oil on the fertilization potency of rat's sperm. Twenty-four male Wistar rats were divided into four groups. The first group, which served as the control group, received 1 mL of corn oil for seven weeks. Groups II, III, IV served as the experimental groups received 200, 500 and 1000 mg/kg of pomegranate seed oil, for the same period of time respectively. After seven weeks, all of the rats were sacrificed, and their epididymis sperm was collected and added to IVF medium (T6) containing metaphase II oocytes. Almost 21 oocytes had been removed from every female rat oviduct. In this medium, oocyte fertilization, cleavage rates, and embryo development into blastocysts, were evaluated by inverted microscopy. Levels of LD50 in the oral route in male rats were more than 5000 mg/kg body weight. Our data showed that the rates of fertilization, cleavage and embryo development into blastocysts were higher in the groups that had received 500 and 1000 mg/kg body weight of pomegranate seed oil. This study demonstrated that pomegranate seed oil had a positive effect on the fertilization potency of male rats. These beneficial effects may be useful in assisted reproductive technology.

  3. Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils.

    PubMed

    Siano, Francesco; Straccia, Maria C; Paolucci, Marina; Fasulo, Gabriella; Boscaino, Floriana; Volpe, Maria G

    2016-03-30

    Nut and seed oils are often considered waste products but in recent years they have been receiving growing interest due to their high concentration of hydrophilic and lipophilic bioactive components, which have important pharmacological properties on human health. The aim of this work was to compare the physico-chemical and biochemical properties of pomegranate (Punicagranatum), sweet cherry (Prunusavium) and pumpkin (Cucurbita maxima) seed oils obtained by solvent extraction. High amount of linoleic acid was found in the cherry and pumpkin seed oils, while pomegranate seed oil showed relevant content of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs) along to eicosapentaenoic acid (EPA) and nervonic acid. Pumpkin seed oil had high concentration of carotenoids, while pomegranate oil was the best absorber in the UV-A and UV-B ranges. Pomegranate, cherry and pumpkin seed oils can be an excellent source of bioactive molecules and antioxidant compounds such as polyphenols, carotenoids and unsaturated fatty acids. These seed oils can be included both as preservatives and functional ingredients in the food, pharmaceutical and cosmetic fields and can contribute to disease prevention and health promotion. Moreover, high absorbance of UV light indicates a potential use of these oils as filters from radiations in the food, pharmaceutical, and cosmetic fields. © 2015 Society of Chemical Industry.

  4. Pomegranate seed oil influences the fatty acids profile and reduces the activity of desaturases in livers of Sprague-Dawley rats.

    PubMed

    Białek, Agnieszka; Stawarska, Agnieszka; Bodecka, Joanna; Białek, Małgorzata; Tokarz, Andrzej

    2017-07-01

    The aim of our study was to compare the influence of diet supplementation with pomegranate seed oil - as conjugated linolenic acids (CLnA) source, or conjugated linoleic acids (CLA) and to examine the mechanism of their activity. The content of fatty acids, levels of biomarkers of lipids' oxidation and the activity of key enzymes catalyzing lipids metabolism were measured. Obtained results revealed that conjugated fatty acids significantly decrease the activity of Δ5-desaturase (p=0.0001) and Δ6-desaturase (p=0.0008) and pomegranate seed oil reduces their activity in the most potent way. We confirmed that diet supplementation with pomegranate seed oil - a rich source of punicic acid leads to the increase of cis-9, trans-11 CLA content in livers (p=0.0003). Lack of side effects and beneficial influence on desaturases activity and fatty acids profile claim pomegranate seed oil to become interesting alternative for CLA as functional food. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. [Comparative study of chemical composition of pomegranate peel pomegranates inside and pomegranate seeds].

    PubMed

    Zhou, Qian; Sun, Li-Li; Dai, Yan-Peng; Wang, Liang; Su, Ben-Zheng

    2013-07-01

    An HPLC fingerprint of pomegranate peel was established. Using chromatographic conditions, we compared the chemical composition of pomegranate peel, inside and seeds, and simultaneously determined the contents of gallic acid and ellagic acid. By comparison, we found that there were no significant differences between pomegranate peel and inside, but there was a big difference between pomegranate seeds and another two. The contents of gallic acid and ellagic acid of pomegranate peel respectively were 0.33%, 0.59%, while in pomegranate inside the result respectively were 0.52%, 0.38%. Content of ellagic acid from pomegranate seeds was only 0.01%. By study, we thought that when pomegranate peel was processed, pomegranate seeds should be removed, while pomegranate inside could be retained on the premise of full drying.

  6. Influence of pomegranate seed oil and bitter melon aqueous extract on polyunsaturated fatty acids and their lipoxygenase metabolites concentration in serum of rats.

    PubMed

    Białek, Agnieszka; Jelińska, Małgorzata; Tokarz, Andrzej; Pergół, Aleksandra; Pinkiewicz, Katarzyna

    2016-11-01

    Competition with polyunsaturated fatty acids (PUFA) and an impact on eicosanoid biosynthesis may be one of mechanisms of conjugated linolenic acids (CLnA) action. The aim of this study was to investigate the influence of diet supplementation with pomegranate seed oil, containing punicic acid (PA)-one of CLnA isomers, and an aqueous extract of dried bitter melon fruits, administered separately or together, on PUFA and their lipoxygenase metabolites' concentration in serum of rats. Percentage share of fatty acids was diversified in relation to applied supplementation. PA was only detected in serum of pomegranate seed oil supplemented group, where it was about 1%. Cis-9, trans-11 conjugated linoleic acid (rumenic acid, RA) level tended to increase in group supplemented simultaneously with both dietary supplements whereas its highest share in total fatty acids pool was detected in group receiving solely bitter melon dried fruits aqueous extract. This indicates that consumption of bitter melon tea significantly increased RA content in fatty acids pool in serum. However, pomegranate seed oil elevated procarcinogenic 12-hydroxyeicosatetraenoic acid concentration. Taking into account that pomegranate seed oil and bitter melon dried fruits are dietary supplements accessible worldwide and willingly consumed, the biological significance of this phenomenon should be further investigated. We presume, that there may be a need for some precautions concerning the simultaneous use of these products. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The effect of pomegranate seed oil and grapeseed oil on cis-9, trans-11 CLA (rumenic acid), n-3 and n-6 fatty acids deposition in selected tissues of chickens.

    PubMed

    Białek, A; Białek, M; Lepionka, T; Kaszperuk, K; Banaszkiewicz, T; Tokarz, A

    2018-04-23

    The aim of this study was to determine whether diet modification with different doses of grapeseed oil or pomegranate seed oil will improve the nutritive value of poultry meat in terms of n-3 and n-6 fatty acids, as well as rumenic acid (cis-9, trans-11 conjugated linoleic acid) content in tissues diversified in lipid composition and roles in lipid metabolism. To evaluate the influence of applied diet modification comprehensively, two chemometric methods were used. Results of cluster analysis demonstrated that pomegranate seed oil modifies fatty acids profile in the most potent way, mainly by an increase in rumenic acid content. Principal component analysis showed that regardless of type of tissue first principal component is strongly associated with type of deposited fatty acid, while second principal component enables identification of place of deposition-type of tissue. Pomegranate seed oil seems to be a valuable feed additive in chickens' feeding. © 2018 Blackwell Verlag GmbH.

  8. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil.

    PubMed

    Tian, Yuting; Xu, Zhenbo; Zheng, Baodong; Martin Lo, Y

    2013-01-01

    The effectiveness of ultrasonic-assisted extraction (UAE) of pomegranate seed oil (PSO) was evaluated using a variety of solvents. Petroleum ether was the most effective for oil extraction, followed by n-hexane, ethyl acetate, diethyl ether, acetone, and isopropanol. Several variables, such as ultrasonic power, extraction temperature, extraction time, and the ratio of solvent volume and seed weight (S/S ratio) were studied for optimization using response surface methodology (RSM). The highest oil yield, 25.11% (w/w), was obtained using petroleum ether under optimal conditions for ultrasonic power, extraction temperature, extraction time, and S/S ratio at 140 W, 40 °C, 36 min, and 10 ml/g, respectively. The PSO yield extracted by UAE was significantly higher than by using Soxhlet extraction (SE; 20.50%) and supercriti cal fluid extraction (SFE; 15.72%). The fatty acid compositions were significantly different among the PSO extracted by Soxhlet extraction, SFE, and UAE, with punicic acid (>65%) being the most dominant using UAE. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Pomegranate seed oil: Effect on 3-nitropropionic acid-induced neurotoxicity in PC12 cells and elucidation of unsaturated fatty acids composition.

    PubMed

    Al-Sabahi, Bushra N; Fatope, Majekodunmi O; Essa, Musthafa Mohamed; Subash, Selvaraju; Al-Busafi, Saleh N; Al-Kusaibi, Fatma S M; Manivasagam, Thamilarasan

    2017-01-01

    Seed oils are used as cosmetics or topical treatment for wounds, allergy, dandruff, and other purposes. Natural antioxidants from plants were recently reported to delay the onset or progress of various neurodegenerative conditions. Over one thousand cultivars of Punica granatum (Punicaceae) are known and some are traditionally used to treat various ailments. The effect of pomegranate oil on 3-nitropropionic acid- (3-NP) induced cytotoxicity in rat pheochromocytoma (PC12) neuronal cells was analyzed in this study. Furthermore, the analysis of unsaturated fatty acid composition of the seed oil of pomegranate by gas chromatography-electron impact mass spectrometry (GC-MS) was done. GC-MS study showed the presence of 6,9-octadecadiynoic acid (C18:2(6,9)) as a major component (60%) as 4,4-dimethyloxazoline derivative. The total extractable oil with light petroleum ether by Soxhlet from the dry seed of P. granatum was 4-6%. The oil analyzed for 48.90 ± 1.50 mg gallic acid equivalents/g of oil, and demonstrated radical-scavenging-linked antioxidant activities in various in vitro assays like the DPPH (2,2-diphenyl-l-picrylhydrazyl, % IP = 35.2 ± 0.9%), ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), % IP 2.2 ± 0.1%), and β-carotene bleaching assay (% IP = 26 ± 3%), respectively, which could be due the possible role of one methylene interrupted diynoic acid system for its radical-scavenging/antioxidant properties of oil. The oil also reduced lipid peroxidation, suppressed reactive oxygen species, extracellular nitric oxide, lactate/pyruvate ratio, and lactase dehydrogenase generated by 3-NP- (100 mM) induced neurotoxicity in PC12 cells, and enhanced the levels of enzymatic and non-enzymatic antioxidants at 40 μg of gallic acid equivalents. The protective effect of pomegranate seed oil might be due to the ability of an oil to neutralize ROS or enhance the expression of antioxidant gene and the exact mechanism of action yet to be elucidated.

  10. Optimisation of Microwave-Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil and Evaluation 
of Its Physicochemical and Bioactive Properties.

    PubMed

    Çavdar, Hasene Keskin; Yanık, Derya Koçak; Gök, Uğur; Göğüş, Fahrettin

    2017-03-01

    Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176-300 W), time (5-20 min), particle size ( d =0.125-0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d =0.125-0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction.

  11. Optimisation of Microwave-Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil and Evaluation 
of Its Physicochemical and Bioactive Properties

    PubMed Central

    Çavdar, Hasene Keskin; Gök, Uğur; Göğüş, Fahrettin

    2017-01-01

    Summary Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176–300 W), time (5–20 min), particle size (d=0.125–0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d=0.125–0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction. PMID:28559737

  12. Pomegranate Consumption and Blood Pressure: A Review.

    PubMed

    Asgary, Sedigheh; Keshvari, Mahtab; Sahebkar, Amirhossein; Sarrafzadegan, Nizal

    2017-01-01

    Pomegranate (Punica granatum L.) is a polyphenol-rich fruit with diverse medicinal properties. Several lines of experimental and clinical evidence have shown that pomegranate intake helps lowering blood pressure (BP) through different mechanisms. This study aimed to present a narrative review on the anti-hypertensive properties of different parts of pomegranate such as pomegranate juice (PJ), pomegranate peels (PP), pomegranate seed oil (PSO), pomegranate fruit extract (PFE) and the mechanisms and phytochemicals responsible for these effects. A review on the efficacy of consuming different parts of pomegranate (juice, peels, fruit extract and seed oil) in lowering BP has been performed. To find relevant studies, a search in PubMed, Science Direct and Scopus up from inception to May 4, 2015 was performed. Human, animals and in vitro studies investigating the anti-hypertensive effects of pomegranate were included in the search. Findings arising from animal and clinical studies have shown pomegranate juice can reduce BP in both short-term and long-term course. These effects are accompanied by antioxidant and anti-atherosclerotic actions that collectively improve cardiovascular health. The anti-hypertensive effects have been reported for both pomegranate juice and seed oil. Both systolic and diastolic pressures are affected. Pomegranate juice possesses antioxidant, anti-hypertensive and anti-atherosclerotic properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Enrichment of functional properties of ice cream with pomegranate by-products.

    PubMed

    Çam, Mustafa; Erdoğan, Fatma; Aslan, Duygu; Dinç, Merve

    2013-10-01

    Pomegranate peel rich in phenolics, and pomegranate seed which contain a conjugated fatty acid namely punicic acid in lipid fraction remain as by-products after processing the fruit into juice. Ice cream is poor in polyunsaturated fatty acids and phenolics, therefore, this study was conducted to improve the functional properties of ice cream by incorporating pomegranate peel phenolics and pomegranate seed oil. Incorporation of the peel phenolics into ice cream at the levels of 0.1% and 0.4% (w/w) resulted in significant changes in the pH, total acidity, and color of the samples. The most prominent outcomes of phenolic incorporation were sharp improvements in antioxidant and antidiabetic activities as well as the phenolic content of ice creams. Replacement of pomegranate seed oil by milk fat at the levels of 2.0% and 4.0% (w/w) increased the conjugated fatty acid content. However, perception of oxidized flavor increased with the additional seed oil. When one considers the functional and nutritional improvements in the enrichment of the ice cream together with overall acceptability results of the sensory analysis, then it follows from this study that ice creams enriched with pomegranate peel phenolics up to 0.4% (w/w) and pomegranate seed oil up to 2.0% (w/w) could be introduced to markets as functional ice cream. Enrichment of ice creams with pomegranate by-products might provide consumers health benefits with striking functional properties of punicalagins in pomegranate peel, and punicic acid in pomegranate seed oil. © 2013 Institute of Food Technologists®

  14. De novo transcriptome assembly and quantification reveal differentially expressed genes between soft-seed and hard-seed pomegranate (Punica granatum L.).

    PubMed

    Xue, Hui; Cao, Shangyin; Li, Haoxian; Zhang, Jie; Niu, Juan; Chen, Lina; Zhang, Fuhong; Zhao, Diguang

    2017-01-01

    Pomegranate (Punica granatum L.) belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The 'Tunisia' variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7%) were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate.

  15. De novo transcriptome assembly and quantification reveal differentially expressed genes between soft-seed and hard-seed pomegranate (Punica granatum L.)

    PubMed Central

    Xue, Hui; Cao, Shangyin; Li, Haoxian; Zhang, Jie; Niu, Juan; Chen, Lina; Zhang, Fuhong; Zhao, Diguang

    2017-01-01

    Pomegranate (Punica granatum L.) belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The ‘Tunisia’ variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7%) were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate. PMID:28594931

  16. Preventive Effect of Three Pomegranate (Punica granatum L.) Seeds Fractions on Cerulein-Induced Acute Pancreatitis in Mice

    PubMed Central

    Minaiyan, Mohsen; Zolfaghari, Behzd; Taheri, Diana; Gomarian, Mahdi

    2014-01-01

    Background: Acute pancreatitis (AP) refers to afflicted inflammation of pancreas with unfavorable adverse effects and developed multiple organ failures. Unfortunately, there is not a certain therapeutic method for this disease. Oxidative stress has a serious role in the pathogenesis of AP. Thus, decreasing of oxidative stress may prevent induction and progression of AP. Punica granatum L. has been extensively used in traditional medicine and possesses various active biological elements. Due to antioxidant and anti-inflammatory properties of pomegranate, it could be considered as a good candidate alternative medicine with beneficial effects on AP. In this study, we decided to study the protective effect of three fractions of pomegranate seeds on cerulein-induced AP. Methods: AP was induced in male Syrian mice by five intraperitoneal (i.p.) injection of cerulein (50 μg/kg) with 1 h intervals. Treatments with pomegranate freeze-dried powder (PFDP) and hydroalcoholic pomegranate seeds extract (PSE) at doses of 125, 250, 500 mg/kg (i.p.) were started 30 min before pancreatitis induction. Pomegranate seed oil fraction (PSOF) was orally administered (50, 100, 200 μL/kg) and continued for 10 days. Pancreatic tissue was evaluated for histopathological parameters and pancreatic myeloperoxidase (MPO) activity as well as lipase and amylase levels were measured in plasma. Results: The higher doses of three fractions (250 and 500 mg/kg for PFDP and PSE and doses of 100, 200 μL/kg for PSOF) significantly reduced amylase and lipase activity in serum (at least P < 0.01), pancreatic MPO activity (P < 0.001), edema, leukocyte infiltration and vacuolization in comparison to the control group (P < 0.05). Conclusions: These results propose that pomegranate seeds fractions can prevent and/or treat the AP. PMID:24829726

  17. Effect of dietary pomegranate seed oil on laying hen performance and physicochemical properties of eggs.

    PubMed

    Kostogrys, Renata B; Filipiak-Florkiewicz, Agnieszka; Dereń, Katarzyna; Drahun, Anna; Czyżyńska-Cichoń, Izabela; Cieślik, Ewa; Szymczyk, Beata; Franczyk-Żarów, Magdalena

    2017-04-15

    The objective of the study was to determine the effects of pomegranate seed oil, used as a source of punicic acid (CLnA) in the diets of laying hens, on the physicochemical properties of eggs. Forty Isa Brown laying hens (26weeks old) were equally subjected to 4 dietary treatments (n=10) and fed a commercial layer diet supplying 2.5% sunflower oil (control) or three levels (0.5, 1.0 and 1.5%) of punicic acid in the diets. After 12weeks of feeding the hens, eggs collection began. Sixty eggs - randomly selected from each group - were analysed for physicochemical properties. Eggs naturally enriched with CLnA preserve their composition and conventional properties in most of the analysed parameters (including chemical composition, physical as well as organoleptic properties). Dietary CLnA had positive impact on the colour of the eggs' yolk, whereas the hardness of hard-boiled egg yolks was not affected. Additionally, increasing dietary CLnA led to an increase not only the CLnA concentrations, but also CLA in egg-yolk lipids. Copyright © 2016. Published by Elsevier Ltd.

  18. Effect of feeding pomegranate seed oil as a source of conjugated linolenic acid on Arabian stallion semen quality in cooled and postthawed condition.

    PubMed

    Nouri, Houshang; Shojaeian, Kamal; Jalilvand, Ghasem; Kohram, Hamid

    2018-06-11

    The objective was to assess the influence of pomegranate seed oil supplementation on the quality of fresh, cooled and frozen-thawed Arabian breed stallion semen. Eight stallions (n = 4 per group) received their normal diet (control group) or normal diet top dressed with 200 ml of pomegranate seed oil (PSO group). Semen was collected every fifteen days for 90 days. Stallions were reversed across the treatments after a sixty-day interval. In cooled and stored condition (2, 12 and 24 hr), spermatozoa motion characteristics, membrane integrity, viability, morphology and lipid peroxidation were analysed. In frozen-thawed semen, sperm dynamic characteristics were analysed by CASA, acrosome status and mitochondrial activity (evaluated by Flow cytometry) determined. The effects of treatment, time, semen type and their interactions were submitted to PROCMIX (SAS ® ), and means compared by the Tukey test. Also, collected semen samples were artificially inseminated to evaluate fertility and pregnancy rate after day 60 of the experiment. The results from fresh condition showed that semen volume, sperm concentration, abnormality and live sperm were not affected by dietary treatment (p > 0.05). In cooled condition, the higher value for sperm plasma membrane integrity and viability was observed in PSO group compared to control after 24 hr cooled and stored in 5°C. In postthawed condition, the higher value for CASA total motility and acrosome status was observed in PSO group compared to control group (p < 0.05). One hundred and twenty-six mares were artificially inseminated for fertility trial using control and PSO groups' fresh semen. The average pregnancy rates were not significantly different between control and treated group (62.88% and 65.90%, respectively) (p > 0.05). We concluded that under the conditions of this study, dietary supplementation of 200 ml pomegranate seed oil seems to relatively improved Arabian horse sperm quality during storage in cooled and

  19. New lipase assay using Pomegranate oil coating in microtiter plates.

    PubMed

    Ülker, Serdar; Placidi, Camille; Point, Vanessa; Gadenne, Benoît; Serveau-Avesque, Carole; Canaan, Stéphane; Carrière, Frédéric; Cavalier, Jean-François

    2016-01-01

    Lipases play various roles in fat digestion, lipoprotein metabolism, and in the mobilization of fat stored in lipid bodies in animals, plants and microorganisms. In association with these physiological functions, there is an important field of research for discovering lipase inhibitors and developing new treatments of diseases such as obesity, atherosclerosis, diabetes and tuberculosis. In this context, the development of convenient, specific and sensitive analytical methods for the detection and assay of lipases and/or lipase inhibitors is of major importance. It is shown here that purified triacylglycerols (TAGs) from Punica granatum (Pomegranate) seed oil coated on microtiter plates can be used for the continuous assay of lipase activity by recording the variations with time of the UV absorption spectra at 275 nm. UV absorption is due the release of punicic acid (9Z,11E,13Z-octadeca-9,11,13-trienoic acid), a conjugated triene contained in Pomegranate oil. This new microtiter plate assay allows to accurately measure the activity of a wider range of lipases compared to the similar assay previously developed with Tung oil containing α-eleostearic acid (9Z,11E,13E-octadeca-9,11,13-trienoic acid), including the LipY lipase from Mycobacterium tuberculosis. Although punicic acid is a diastereoisomer of α-eleostearic acid, the Δ(13)cis double bound found in punicic acid gives a different structure to the acyl chain that probably favours the interaction of Pomegranate TAGs with the lipase active site. The microplate lipase assay using Pomegranate TAGs shows high sensitivity, reproducibility and remarkable relevance for the high-speed screening of lipases and/or lipase inhibitors directly from raw culture media without any purification step. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. Pomegranate seed oil nanoemulsions for the prevention and treatment of neurodegenerative diseases: the case of genetic CJD.

    PubMed

    Mizrahi, Michal; Friedman-Levi, Yael; Larush, Liraz; Frid, Kati; Binyamin, Orli; Dori, Dvir; Fainstein, Nina; Ovadia, Haim; Ben-Hur, Tamir; Magdassi, Shlomo; Gabizon, Ruth

    2014-08-01

    Neurodegenerative diseases generate the accumulation of specific misfolded proteins, such as PrP(Sc) prions or A-beta in Alzheimer's diseases, and share common pathological features, like neuronal death and oxidative damage. To test whether reduced oxidation alters disease manifestation, we treated TgMHu2ME199K mice, modeling for genetic prion disease, with Nano-PSO, a nanodroplet formulation of pomegranate seed oil (PSO). PSO comprises large concentrations of a unique polyunsaturated fatty acid, Punicic acid, among the strongest natural antioxidants. Nano-PSO significantly delayed disease presentation when administered to asymptomatic TgMHu2ME199K mice and postponed disease aggravation in already sick mice. Analysis of brain samples revealed that Nano-PSO treatment did not decrease PrP(Sc) accumulation, but rather reduced lipid oxidation and neuronal loss, indicating a strong neuroprotective effect. We propose that Nano-PSO and alike formulations may be both beneficial and safe enough to be administered for long years to subjects at risk or to those already affected by neurodegenerative conditions. This team of authors report that a nanoformulation of pomegranade seed oil, containing high levels of a strong antioxidant, can delay disease onset in a mouse model of genetic prion diseases, and the formulation also indicates a direct neuroprotective effect. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Effects of olive oil and olive oil-pomegranate juice sauces on chemical, oxidative and sensorial quality of marinated anchovy.

    PubMed

    Topuz, Osman Kadir; Yerlikaya, Pinar; Ucak, Ilknur; Gumus, Bahar; Büyükbenli, Hanife Aydan

    2014-07-01

    This study describes the potential use of olive oil and olive oil-pomegranate juice sauces as antioxidant, preservative and flavoring agent in fish marinades. The olive oil and sauces, produced from emulsifying of olive oil and pomegranate juice with gums, were blended with marinated anchovy (Engraulis encrasicholus) fillets. The aim of the present study was to produce a new polyphenol-rich marinade sauces by emulsifying pomegranate juice with olive oil in different proportions (25%, 35% and 50%v:v). In order to evaluate the effects of olive oil and olive oil-pomegranate juice sauces on quality of anchovy marinades, the chemical (TVB-N and TMA), oxidative (peroxides value, K230, thiobarbituric acid and K270) and sensory analyses were carried out during storage at 4°C. The present study showed that saucing of anchovy marinades with olive oil-pomegranate sauce can retard the undesirable quality changes, prolong the lipid oxidation and improve the sensory properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Small deformation viscoelastic and thermal behaviours of pomegranate seed pips CMC gels.

    PubMed

    Savadkoohi, Sobhan; Farahnaky, Asgar

    2015-07-01

    The current investigation presents an exploration in phase behaviour of carboxymethyl cellulose (CMC) produced from pomegranate seed pips compared to low and high viscosity CMCs (LMCMC and HMCMC) primarily at low solid concentrations. Cellulose was extracted with 10 % NaOH at 35 °C for 22 h from pomegranate seed pips and converted to CMC by etherification process. Thermomechanical analysis and micro-imaging were carried out using small deformation dynamic oscillation in shear, modulated differential scanning calorimetry (MDSC) and scanning electron microscopy (SEM). The results emphasize the importance of molecular interaction and the degree of substitution in produced CMC. Thermal gravimetric analysis (TGA) thermograms showed an initial weight loss in pomegranate seed pips CMC (PSCMC) sample, which we attribute to presence of amount of moisture in sample powder. MDSC analysis of PSCMC showed five different peaks at 84, 104, 173, 307 and 361 °C. Moreover, G' and G" changes were found to be dependent on both concentration and frequency. The results of frequency sweep and tan δ indicate that PSCMC solutions can be classified as weak gels.

  3. Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes

    PubMed Central

    Bihamta, Mehdi; Hosseini, Azar; Ghorbani, Ahmad; Boroushaki, Mohammad Taher

    2017-01-01

    Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes. Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay. The level of reactive oxygen species (ROS) and lipid peroxidation were measured by fluorimetric methods. Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity. Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases. PMID:28265546

  4. Effects of Pomegranate Seed Oil on Metabolic State of Patients with Type 2 Diabetes Mellitus.

    PubMed

    Faghihimani, Zahra; Mirmiran, Parvin; Sohrab, Golbon; Iraj, Bijan; Faghihimani, Elham

    2016-01-01

    Rapid increasing prevalence of diabetes mellitus is a serious health concern in the world. New data determined that the pathogenesis of diabetes mellitus is chronic low-grade inflammation, resulting insulin resistance. Pomegranate seed oil (PSO) has anti-inflammatory effects; though it may reduce insulin resistance and improve glycemia in diabetes mellitus. The present study has been designed to investigate the effects of PSO as a natural dietary component on metabolic state of patients with Type 2 diabetes mellitus. In a randomized double-blind clinical trial study, 80 patients (28 men) with Type 2 diabetes were randomly allocated to the intervention and control groups. The intervention group consumed PSO capsules, containing 1000 mg PSO twice daily (2000 mg PSO), whereas controls take placebo for 8 weeks. The participants followed their previous dietary patterns and medication use. Dietary factors and metabolic factors including lipid profile, fasting plasma sugar, and insulin and were assayed at the baseline and after 8 weeks. Participants in two intervention and control group were similar regarding anthropometric and the dietary factors at baseline and after trial ( P > 0.05). Mean level of total cholesterol, triglyceride, low-density lipoprotein-cholesterol, and high-density lipoprotein was not different significantly between groups after trial ( P > 0.05). Consumption of PSO did not significantly affect the levels of parameters such as fasting blood sugar (FBS), insulin, HbA1c, alanine transferase, and homeostasis model assessment-insulin resistance. Consumption of 2000mg PSO per day for 8 weeks had no effect on FBS, insulin resistance and lipid profile in diabetic patients.

  5. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils.

    PubMed

    Goula, Athanasia M; Ververi, Maria; Adamopoulou, Anna; Kaderides, Kyriakos

    2017-01-01

    The objective of this work was to develop a new process for pomegranate peels application in food industries based on ultrasound-assisted extraction of carotenoids using different vegetable oils as solvents. In this way, an oil enriched with antioxidants is produced. Sunflower oil and soy oil were used as alternative solvents and the effects of various parameters on extraction yield were studied. Extraction temperature, solid/oil ratio, amplitude level, and extraction time were the factors investigated with respect to extraction yield. Comparative studies between ultrasound-assisted and conventional solvent extraction were carried out in terms of processing procedure and total carotenoids content. The efficient extraction period for achieving maximum yield of pomegranate peel carotenoids was about 30min. The optimum operating conditions were found to be: extraction temperature, 51.5°C; peels/solvent ratio, 0.10; amplitude level, 58.8%; solvent, sunflower oil. A second-order kinetic model was successfully developed for describing the mechanism of ultrasound extraction under different processing parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Potential Application of Nanoemulsions for Skin Delivery of Pomegranate Peel Polyphenols.

    PubMed

    Baccarin, Thaisa; Lemos-Senna, Elenara

    2017-11-01

    Pomegranate peel and seeds have demonstrated to possess antioxidant compounds with potential application to protect the skin against the ultraviolet radiation damage. However, the photoprotection activity is dependent on the amount of these compounds that reach the viable skin layers. In this paper, we describe the in vitro skin permeation and retention of the major pomegranate peel polyphenols using Franz diffusion cells, after entrapping a ethyl acetate fraction (EAF) from Punica granatum peel extract into nanoemulsions (NEs) prepared with pomegranate seed oil (PSO) or medium chain triglyceride oil (MCT). The in vitro skin permeation of gallic acid (GA), ellagic acid (EA), and punicalagin (PC) was evaluated using a HPLC-DAD validated method. After 8 h of skin permeation, all polyphenol compounds were mostly retained in the skin and did not reach the receptor compartment. However, a 2.2-fold enhancement of the retained amount of gallic acid in the stratum corneum was verified after EAF-loaded NEs are applied, when compared with the free EAF. GA and EA were delivered to the viable epidermis and dermis only when nanoemulsions were applied onto the skin. The mean retained amounts of GA and EA in the EP and DE after applying the EAF-loaded PSO-NE were 1.78 and 1.36 μg cm -2 and 1.10 and 0.97 μg cm -2 , respectively. Similar values were obtained after applying the EAF-loaded MCT-NE. The skin permeation results were supported by the confocal microscopy images. These results evidenced the promising application of nanoemulsions to deliver the pomegranate polyphenols into the deeper skin layers.

  7. Inhibitory effect of a novel combination of Salvia hispanica (chia) seed and Punica granatum (pomegranate) fruit extracts on melanin production.

    PubMed

    Diwakar, Ganesh; Rana, Jatinder; Saito, Lisa; Vredeveld, Doug; Zemaitis, Dorothy; Scholten, Jeffrey

    2014-09-01

    In recent years, dietary fatty acids have been extensively evaluated for nutritional as well as cosmetic benefits. Among the dietary fats, the omega-3 (ω3) and omega-6 (ω6) forms of polyunsaturated fatty acids (PUFAs) have been found to exhibit many biological functions in the skin such as prevention of transepidermal water loss, maintenance of the stratum corneum epidermal barrier, and disruption of melanogenesis in epidermal melanocytes. In this study, we examined the effect of chia seed extract, high in ω3 (linolenic acid) and ω6 (linoleic acid) PUFAs, for its capacity to affect melanogenesis. Chia seed extract was shown to inhibit melanin biosynthesis in Melan-a cells; however, linoleic and α-linolenic acids alone did not effectively reduce melanin content. Further investigation demonstrated that chia seed extract in combination with pomegranate fruit extract had a synergistic effect on the inhibition of melanin biosynthesis with no corresponding effect on tyrosinase activity. Investigation of the possible mechanism of action revealed that chia seed extract downregulated expression of melanogenesis-related genes (Tyr, Tyrp1, and Mc1r), alone and in combination with pomegranate fruit extract, suggesting that the inhibition of melanin biosynthesis by a novel combination of chia seed and pomegranate fruit extracts is possibly due to the downregulation of gene expression of key melanogenic enzymes. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Antioxidant Extraction and Biogas Production from Pomegranate Marc

    USDA-ARS?s Scientific Manuscript database

    The pomegranate marc (PM), by-product from pomegranate juice processing, has not been effectively utilized. The objectives of this study were to (1) determine the yields and properties of antioxidants (total phenolics) extracted from peels and seeds of pomegranate marc in wet and dry forms, and (2)...

  9. Investigation of variety resources and quantitative analysis on Heyin pomegranate in Xingyang City

    NASA Astrophysics Data System (ADS)

    Li, Wenzeng; Wang, Zhihong

    2018-04-01

    Various factors that should be considered in variety breeding of Heyin pomegranate, the hierarchical analysis is carried out through analytic hierarchy process (AHP) and its analytic result can be used to help fruit farmers make scientific decision on the variety breeding of pomegranate. In the six main Heyin pomegranate varieties, the ranking weight value of Tunisian soft-seeded pomegranate is 0.3105, which is No.1 in all pomegranate varieties and is obviously better than other varieties in comprehensive feature. It shows that, in the cultivation of pomegranate in Xingyang, the Tunisian soft-seeded pomegranate is the preferred variety for fruit farmers.

  10. Effect of Genotype on the Sprouting of Pomegranate (Punica granatum L.) Seeds as a Source of Phenolic Compounds from Juice Industry by-Products.

    PubMed

    Falcinelli, Beatrice; Marconi, Ombretta; Maranghi, Stefano; Lutts, Stanley; Rosati, Adolfo; Famiani, Franco; Benincasa, Paolo

    2017-12-01

    Pomegranate (Punica granatum L.) fruits are used mainly by the juice industry, for which seeds are a by-product to be disposed of, though they could potentially be a source of bioactive compounds. In this work, germination (total germination percentage, G; mean germination time, MGT; time to reach 80% of germination, TG80; seedling shoot length, fresh weight and dry matter), and nutritional value (total phenolics, TP; total flavonoids, TF; total non-tannins, TNT; antioxidant activities) of pomegranate seeds and sprouts were determined on four commercial pomegranate cultivars (Akko, Dente di Cavallo, Mollar de Elche and Wonderful). Seeds were removed from ripe fruits and incubated in plastic trays containing sterile cotton wetted with distilled water. Sprout shoots were harvested when they reached the complete cotyledon expansion, i.e., the ready-to-eat stage. Akko showed the best germination performance (G = 98%; MGT = 14 days after sowing, DAS; TG80 = 16 DAS), followed by Mollar de Elche. Sprouting dramatically increased TP, TF, TNT and antioxidant activity in all genotypes, with the highest values recorded in Mollar de Elche and Dente di Cavallo. Overall, based on germination performance, Akko and Mollar de Elche would be the best cultivars for sprouting. Sprouting pomegranate seeds appears to be a suitable way of utilizing by-products of the juice industry to obtain bioactive compounds.

  11. Genetic diversity of pomegranate germplasm collection from Spain determined by fruit, seed, leaf and flower characteristics

    PubMed Central

    Melgarejo, Pablo; Legua, Pilar; Garcia-Sanchez, Francisco; Hernández, Francisca

    2016-01-01

    Background. Miguel Hernandez University (Spain) created a germplasm bank of the varieties of pomegranate from different Southeastern Spain localities in order to preserve the crop’s wide genetic diversity. Once this collection was established, the next step was to characterize the phenotype of these varieties to determine the phenotypic variability that existed among all the different pomegranate genotypes, and to understand the degree of polymorphism of the morphometric characteristics among varieties. Methods. Fifty-three pomegranate (Punica granatum L.) accessions were studied in order to determine their degree of polymorphism and to detect similarities in their genotypes. Thirty-one morphometric characteristics were measured in fruits, arils, seeds, leaves and flowers, as well as juice characteristics including content, pH, titratable acidity, total soluble solids and maturity index. ANOVA, principal component analysis, and cluster analysis showed that there was a considerable phenotypic diversity (and presumably genetic). Results. The cluster analysis produced a dendrogram with four main clusters. The dissimilarity level ranged from 1 to 25, indicating that there were varieties that were either very similar or very different from each other, with varieties from the same geographical areas being more closely related. Within each varietal group, different degrees of similarity were found, although there were no accessions that were identical. These results highlight the crop’s great genetic diversity, which can be explained not only by their different geographical origins, but also to the fact that these are native plants that have not come from genetic improvement programs. The geographic origin could be, in the cases where no exchanges of plant material took place, a key criterion for cultivar clustering. Conclusions. As a result of the present study, we can conclude that among all the parameters analyzed, those related to fruit and seed size as well as

  12. Adaptive evolution of seed oil content in angiosperms: accounting for the global patterns of seed oils.

    PubMed

    Sanyal, Anushree; Decocq, Guillaume

    2016-09-09

    Studies of the biogeographic distribution of seed oil content in plants are fundamental to understanding the mechanisms of adaptive evolution in plants as seed oil is the primary energy source needed for germination and establishment of plants. However, seed oil content as an adaptive trait in plants is poorly understood. Here, we examine the adaptive nature of seed oil content in 168 angiosperm families occurring in different biomes across the world. We also explore the role of multiple seed traits like seed oil content and composition in plant adaptation in a phylogenetic and nonphylogenetic context. It was observed that the seed oil content in tropical plants (28.4 %) was significantly higher than the temperate plants (24.6 %). A significant relationship between oil content and latitude was observed in three families Papaveraceae, Sapindaceae and Sapotaceae indicating that selective forces correlated with latitude influence seed oil content. Evaluation of the response of seed oil content and composition to latitude and the correlation between seed oil content and composition showed that multiple seed traits, seed oil content and composition contribute towards plant adaptation. Investigation of the presence or absence of phylogenetic signals across 168 angiosperm families in 62 clades revealed that members of seven clades evolved to have high or low seed oil content independently as they did not share a common evolutionary path. The study provides us an insight into the biogeographical distribution and the adaptive role of seed oil content in plants. The study indicates that multiple seed traits like seed oil content and the fatty acid composition of the seed oils determine the fitness of the plants and validate the adaptive hypothesis that seed oil quantity and quality are crucial to plant adaptation.

  13. Inhibitory effects of pomegranate seed extract on the formation of heterocyclic aromatic amines in beef and chicken meatballs after cooking by four different methods.

    PubMed

    Keşkekoğlu, Hasan; Uren, Ali

    2014-04-01

    Beef and chicken meatballs with a 0.5% (w/w) pomegranate seed extract were cooked using four different cooking methods (oven roasting, pan cooking, charcoal-barbecue, and deep-fat frying) and six heterocyclic aromatic amines; IQ, MeIQx, 4,8-DiMeIQx, PhIP, norharman, and harman were observed. In the beef meatballs, the highest inhibitory effects of pomegranate seed extract on heterocyclic aromatic amines formation were 68% for PhIP, 24% for norharman, 18% for harman, 45% for IQ, and 57% for MeIQx. Total heterocyclic aromatic amine formation was reduced by 39% and 46% in beef meatballs cooked by charcoal-barbecue and deep-fat frying, respectively. In the chicken meatballs, the highest inhibitory effects were 75% for PhIP, 57% for norharman, 28% for harman, 46% for IQ, and 49% for MeIQx. When the pomegranate seed extract was added to the chicken meatballs cooked by deep-fat frying, the total heterocyclic aromatic amine formation was inhibited by 49%, in contrast the total heterocyclic aromatic amine contents after oven roasting increased by 70%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Variability in the antioxidant activity of dietary supplements from pomegranate, milk thistle, green tea, grape seed, goji, and acai: effects of in vitro digestion.

    PubMed

    Henning, Susanne M; Zhang, Yanjun; Rontoyanni, Victoria G; Huang, Jianjun; Lee, Ru-Po; Trang, Amy; Nuernberger, Gloria; Heber, David

    2014-05-14

    The antioxidant activity (AA) of fruits and vegetables has been thoroughly investigated but less is known about the AA of dietary supplements (DS). We therefore assessed the AA of three to five DS each from pomegranate, milk thistle, green tea, grapes, goji, and acai using four widely used standard methods. The secondary objective was to determine the effects of in vitro digestion on their AA. The AA of the DS prior to digestion ranked as follows: pomegranate > resveratrol > green tea > grape seed > milk thistle and very low in goji and acai with significant group variability in AA. The AA after in vitro simulated digestion of the mouth, stomach, and small intestine compared to undigested supplement was decreased for green tea and grape seed but increased for pomegranate, resveratrol, milk thistle, goji, and acai to various extents. Although polyphenols provide the major antioxidant potency of the tested supplements, our observations indicate that digestion may alter antioxidant properties depending in part on the variations in polyphenol content.

  15. Comparison of potential preventive effects of pomegranate flower, peel and seed oil on insulin resistance and inflammation in high-fat and high-sucrose diet-induced obesity mice model.

    PubMed

    Harzallah, Arij; Hammami, Mohamed; Kępczyńska, Malgorzata A; Hislop, David C; Arch, Jonathan R S; Cawthorne, Michael A; Zaibi, Mohamed S

    2016-01-01

    The potentially beneficial effects of pomegranate peel (PPE), flower (PFE) and seed oil (PSO) extracts, in comparison with rosiglitazone, on adiposity, lipid profile, glucose homoeostasis, as well as on the underlying inflammatory mechanisms, were examined in high-fat and high-sucrose (HF/HS) diet-induced obese (DIO) mice. Body weight, body fat, energy expenditure, food and liquid intake, blood glucose, and plasma levels of insulin, lipids and cytokines were measured. After two weeks, PSO (2 ml/kg/day) and rosiglitazone (3 mg/kg/day) had not improved glucose intolerance. After 4 weeks, both treatments significantly reduced fasting blood glucose and an insulin tolerance test showed that they also improved insulin sensitivity. Treatment with PPE, PFE and PSO, reduced the plasma levels of the pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α), and PFE increased the level of the anti-inflammatory cytokine interleukin-10 (IL-10). PPE, PFE and PSO have anti-inflammatory properties. PSO also improved insulin sensitivity.

  16. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.

    PubMed

    Kanai, Masatake; Mano, Shoji; Kondo, Maki; Hayashi, Makoto; Nishimura, Mikio

    2016-05-01

    Regulation of oil biosynthesis in plant seeds has been extensively studied, and biotechnological approaches have been designed to increase seed oil content. Oil and protein synthesis is negatively correlated in seeds, but the mechanisms controlling interactions between these two pathways are unknown. Here, we identify the molecular mechanism controlling oil and protein content in seeds. We utilized transgenic Arabidopsis thaliana plants overexpressing WRINKLED1 (WRI1), a master transcription factor regulating seed oil biosynthesis, and knockout mutants of major seed storage proteins. Oil and protein biosynthesis in wild-type plants was sequentially activated during early and late seed development, respectively. The negative correlation between oil and protein contents in seeds arises from competition between the pathways. Extension of WRI1 expression during mid-phase of seed development significantly enhanced seed oil content. This study demonstrates that temporal activation of genes involved in oil or storage protein biosynthesis determines the oil/protein ratio in Arabidopsis seeds. These results provide novel insights into potential breeding strategies to generate crops with high oil contents in seeds. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Protective effects of extracts from Pomegranate peels and seeds on liver fibrosis induced by carbon tetrachloride in rats.

    PubMed

    Wei, Xiang-Lan; Fang, Ru-Tang; Yang, Yong-Hua; Bi, Xue-Yuan; Ren, Guo-Xia; Luo, A-Li; Zhao, Ming; Zang, Wei-Jin

    2015-10-27

    Liver fibrosis is a feature in the majority of chronic liver diseases and oxidative stress is considered to be its main pathogenic mechanism. Antioxidants including vitamin E, are effective in preventing liver fibrogenesis. Several plant-drived antioxidants, such as silymarin, baicalin, beicalein, quercetin, apigenin, were shown to interfere with liver fibrogenesis. The antioxidans above are polyphenols, flavonoids or structurally related compounds which are the main chemical components of Pomegranate peels and seeds, and the antioxidant activity of Pomegranate peels and seeds have been verified. Here we investigated whether the extracts of pomegranate peels (EPP) and seeds (EPS) have preventive efficacy on liver fibrosis induced by carbon tetrachloride (CCl4) in rats and explored its possible mechanisms. The animal model was established by injection with 50 % CCl4 subcutaneously in male wistar rats twice a week for four weeks. Meanwhile, EPP and EPS were administered orally every day for 4 weeks, respectively. The protective effects of EPP and EPS on biochemical metabolic parameters, liver function, oxidative markers, activities of antioxidant enzymes and liver fibrosis were determined in CCl4-induced liver toxicity in rats. Compared with the sham group, the liver function was worse in CCl4 group, manifested as increased levels of serum alanine aminotransferase, aspartate aminotransferase and total bilirubin. EPP and EPS treatment significantly ameliorated these effects of CCl4. EPP and EPS attenuated CCl4-induced increase in the levels of TGF-β1, hydroxyproline, hyaluronic acid laminin and procollagen type III. They also restored the decreased superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities and inhibited the formation of lipid peroxidized products in rats treated with CCl4. The EPP and EPS have protective effects against liver fibrosis induced by CCl4, and its mechanisms might be associated with their antioxidant activity, the ability of

  18. Potential Antitumor Effects of Pomegranates and Its Ingredients.

    PubMed

    Rahmani, Arshad H; Alsahli, Mohammed A; Almatroodi, Saleh A

    2017-01-01

    The treatment based on plant or plant derivatives is a promising strategy in the killing of cancers cells. Moreover, wide-ranging finding has established that medicinal plant and its ingredient modulate several cells signaling pathways or inhibiting the carcinogenesis process. In this vista, pomegranates fruits, seeds and peels illustrate cancer preventive role seems to be due to rich source of antioxidant and other valuable ingredients. Furthermore, anti-tumour activities of pomegranates have been evidences through the modulation of cell signaling pathways including transcription factor, apoptosis and angiogenesis. In this review article, anti-tumor activity of pomegranates and its components or its different type of extracts are described to understand the mechanism of action of pomegranates in cancer therapy.

  19. Effects of Different Levels of Pomegranate Seed Oil on Some Blood Parameters and Disease Resistance Against Yersinia ruckeri in Rainbow Trout

    PubMed Central

    Acar, Ümit; Parrino, Vincenzo; Kesbiç, Osman Sabri; Lo Paro, Giuseppe; Saoca, Concetta; Abbate, Francesco; Yılmaz, Sevdan; Fazio, Francesco

    2018-01-01

    This study is aimed to assess the effects of pomegranate seed oil (PSO) supplementation on growth performance, some hematological, biochemical and immunological parameters, and disease resistance against Yersinia ruckeri in cultured rainbow trout Oncorhynchus mykiss (Walbaum, 1792). 240 fish in total were randomly assigned into four triplicate groups (20 fish/per aquarium) corresponding to four dietary treatments: control (PSO0; no addition of PSO), 0.5% (PSO5), 1.00% (PSO10), and 2.00% (PSO20) of PSO, respectively. After the 60 day-feeding trial, fish blood samples were collected and compared. Statistical analysis (one-way ANOVA) showed a significant (P < 0.05) effect of PSO on red blood cell count, hemoglobin concentration, mean corpuscular volume, mean corpuscular hemoglobin concentration, cholesterol, aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase parameters in PSO5 and PSO10 with regard to control. Moreover, a pronounced (P < 0.05) increased in weight gain, growth and feed conversion was found in fish fed with PSO supplemented diets. After the feeding trial, fish were challenged with Y. ruckeri and survival recorded for 20 days. Cumulative survival was 45.10% in fish fed with the control diet, whereas in fish fed with PSO5, PSO10, and PSO20 supplemented diets, survival was 58.82, 56.86, and 56.86%, respectively. In conclusion, dietary administration of PSO induced a reduction in mortality of rainbow trout infected with Y. ruckeri, intercalary significant differences occurred on growth performance and some blood values among treated groups. These positive effects of PSO could be considered for new applications in aquaculture. PMID:29875694

  20. Potential Antitumor Effects of Pomegranates and Its Ingredients

    PubMed Central

    Rahmani, Arshad H.; Alsahli, Mohammed A.; Almatroodi, Saleh A.

    2017-01-01

    The treatment based on plant or plant derivatives is a promising strategy in the killing of cancers cells. Moreover, wide-ranging finding has established that medicinal plant and its ingredient modulate several cells signaling pathways or inhibiting the carcinogenesis process. In this vista, pomegranates fruits, seeds and peels illustrate cancer preventive role seems to be due to rich source of antioxidant and other valuable ingredients. Furthermore, anti-tumour activities of pomegranates have been evidences through the modulation of cell signaling pathways including transcription factor, apoptosis and angiogenesis. In this review article, anti-tumor activity of pomegranates and its components or its different type of extracts are described to understand the mechanism of action of pomegranates in cancer therapy. PMID:28989248

  1. Vasculoprotective Effects of Pomegranate (Punica granatum L.)

    PubMed Central

    Wang, Dongdong; Özen, Cigdem; Abu-Reidah, Ibrahim M.; Chigurupati, Sridevi; Patra, Jayanta Kumar; Horbanczuk, Jarosław O.; Jóźwik, Artur; Tzvetkov, Nikolay T.; Uhrin, Pavel; Atanasov, Atanas G.

    2018-01-01

    Pomegranate (Punica granatum L.), one of the oldest known edible fruits, is nowadays broadly consumed throughout the world. Its fruits and seeds as well as other anatomical compartments (e.g., flowers and leaves) are rich in numerous bioactive compounds and therefore, the scientific interest in this plant has been constantly growing in recent years. It has been shown that pomegranate and its extracts exhibit potent antioxidative, antimicrobial, and anticarcinogenic properties. The present review summarizes some recent studies on pomegranate, highlighting mainly its vasculoprotective role attributed to the presence of hydrolyzable tannins ellagitannins and ellagic acid, as well as other compounds (e.g., anthocyanins and flavonoids). These in vitro and in vivo studies showed that substances derived from pomegranate reduce oxidative stress and platelet aggregation, diminish lipid uptake by macrophages, positively influence endothelial cell function, and are involved in blood pressure regulation. Clinical studies demonstrated that daily intake of pomegranate juice lessens hypertension and attenuates atherosclerosis in humans. Altogether, the reviewed studies point out the potential benefits of a broader use of pomegranate and its constituents as dietary supplements or as adjuvants in therapy of vascular diseases, such as hypertension, coronary artery disease, and peripheral artery disease. PMID:29881352

  2. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils.

    PubMed

    Lin, Tzu-Kai; Zhong, Lily; Santiago, Juan Luis

    2017-12-27

    Plant oils have been utilized for a variety of purposes throughout history, with their integration into foods, cosmetics, and pharmaceutical products. They are now being increasingly recognized for their effects on both skin diseases and the restoration of cutaneous homeostasis. This article briefly reviews the available data on biological influences of topical skin applications of some plant oils (olive oil, olive pomace oil, sunflower seed oil, coconut oil, safflower seed oil, argan oil, soybean oil, peanut oil, sesame oil, avocado oil, borage oil, jojoba oil, oat oil, pomegranate seed oil, almond oil, bitter apricot oil, rose hip oil, German chamomile oil, and shea butter). Thus, it focuses on the therapeutic benefits of these plant oils according to their anti-inflammatory and antioxidant effects on the skin, promotion of wound healing and repair of skin barrier.

  3. Stimulation of liver IGF-1 expression promotes peak bone mass achievement in growing rats: a study with pomegranate seed oil.

    PubMed

    Bachagol, Deepa; Joseph, Gilbert Stanley; Ellur, Govindraj; Patel, Kalpana; Aruna, Pamisetty; Mittal, Monika; China, Shyamsundar Pal; Singh, Ravendra Pratap; Sharan, Kunal

    2018-02-01

    Peak bone mass (PBM) achieved at adulthood is a strong determinant of future onset of osteoporosis, and maximizing it is one of the strategies to combat the disease. Recently, pomegranate seed oil (PSO) has been shown to have bone-sparing effect in ovariectomized mice. However, its effect on growing skeleton and its molecular mechanism remain unclear. In the present study, we evaluated the effect of PSO on PBM in growing rats and associated mechanism of action. PSO was given at various doses to 21-day-old growing rats for 90 days by oral gavage. The changes in bone parameters were assessed by micro-computed tomography and histology. Enzyme-linked immunosorbent assay was performed to analyze the levels of serum insulin-like growth factor type 1 (IGF-1). Western blotting from bone and liver tissues was done. Chromatin immunoprecipitation assay was performed to study the histone acetylation levels at IGF-1 gene. The results of the study show that PSO treatment significantly increases bone length, bone formation rate, biomechanical parameters, bone mineral density and bone microarchitecture along with enhancing muscle and brown fat mass. This effect was due to the increased serum levels of IGF-1 and stimulation of its signaling in the bones. Studies focusing on acetylation of histones in the liver, the major site of IGF-1 synthesis, showed enrichment of acetylated H3K9 and H3K14 at IGF-1 gene promoter and body. Further, the increased acetylation at H3K9 and H3K14 was associated with a reduced HDAC1 protein level. Together, our data suggest that PSO promotes the PBM achievement via increased IGF-1 expression in liver and IGF-1 signaling in bone. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils

    PubMed Central

    Lin, Tzu-Kai; Zhong, Lily; Santiago, Juan Luis

    2017-01-01

    Plant oils have been utilized for a variety of purposes throughout history, with their integration into foods, cosmetics, and pharmaceutical products. They are now being increasingly recognized for their effects on both skin diseases and the restoration of cutaneous homeostasis. This article briefly reviews the available data on biological influences of topical skin applications of some plant oils (olive oil, olive pomace oil, sunflower seed oil, coconut oil, safflower seed oil, argan oil, soybean oil, peanut oil, sesame oil, avocado oil, borage oil, jojoba oil, oat oil, pomegranate seed oil, almond oil, bitter apricot oil, rose hip oil, German chamomile oil, and shea butter). Thus, it focuses on the therapeutic benefits of these plant oils according to their anti-inflammatory and antioxidant effects on the skin, promotion of wound healing and repair of skin barrier. PMID:29280987

  5. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis.

    PubMed

    Qin, Gaihua; Xu, Chunyan; Ming, Ray; Tang, Haibao; Guyot, Romain; Kramer, Elena M; Hu, Yudong; Yi, Xingkai; Qi, Yongjie; Xu, Xiangyang; Gao, Zhenghui; Pan, Haifa; Jian, Jianbo; Tian, Yinping; Yue, Zhen; Xu, Yiliu

    2017-09-01

    Pomegranate (Punica granatum L.) is a perennial fruit crop grown since ancient times that has been planted worldwide and is known for its functional metabolites, particularly punicalagins. We have sequenced and assembled the pomegranate genome with 328 Mb anchored into nine pseudo-chromosomes and annotated 29 229 gene models. A Myrtales lineage-specific whole-genome duplication event was detected that occurred in the common ancestor before the divergence of pomegranate and Eucalyptus. Repetitive sequences accounted for 46.1% of the assembled genome. We found that the integument development gene INNER NO OUTER (INO) was under positive selection and potentially contributed to the development of the fleshy outer layer of the seed coat, an edible part of pomegranate fruit. The genes encoding the enzymes for synthesis and degradation of lignin, hemicelluloses and cellulose were also differentially expressed between soft- and hard-seeded varieties, reflecting differences in their accumulation in cultivars differing in seed hardness. Candidate genes for punicalagin biosynthesis were identified and their expression patterns indicated that gallic acid synthesis in tissues could follow different biochemical pathways. The genome sequence of pomegranate provides a valuable resource for the dissection of many biological and biochemical traits and also provides important insights for the acceleration of breeding. Elucidation of the biochemical pathway(s) involved in punicalagin biosynthesis could assist breeding efforts to increase production of this bioactive compound. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  6. Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide.

    PubMed

    Kalaycıoğlu, Zeynep; Erim, F Bedia

    2017-04-15

    Numerous recent scientific publications investigating the health benefits of pomegranate juice have greatly increased consumer interest in this fruit. The primary cause of the positive health effect of pomegranate is the unique antioxidant activity of this fruit. As a result of the increased attention given to pomegranate, the number of countries producing pomegranate has increased and new cultivars are appearing. The purpose of this review is to quantitatively establish the antioxidant activities, the total phenolic contents which are highly correlated to antioxidant activities, and the other important ingredients of pomegranate juices obtained from cultivars of different regions. Pomegranate wine, vinegar, and sour sauce obtained directly from pomegranate juice are included in this review. Comparison of aril juices with peel and seed extracts is also given. This data could be useful to the pomegranate industry in identifying and developing cultivars having commercial value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The flavor of pomegranate fruit: a review.

    PubMed

    Mayuoni-Kirshinbaum, Lina; Porat, Ron

    2014-01-15

    Despite the increasing commercial importance of pomegranate, especially because of its recently discovered health-promoting benefits, relatively little is yet known regarding its sensory quality and flavor preferences, or about the biochemical constituents that determine its sensory characteristics. The perceived flavor of pomegranate fruit results from the combination of various taste, aroma and mouthfeel sensations. The taste is governed mainly by the presence of sugars (glucose and fructose) and organic acids (primarily citric and malic acids). The aroma evolves from the presence of dozens of volatiles, including alcohols, aldehydes, ketones, and terpenes, which provide a mixture of various 'green', 'woody', 'earthy', 'fruity', 'floral', 'sweet' and 'musty' notes. In addition, the sensory satisfaction during the eating of pomegranate arils is complemented by various mouthfeel sensations, including seed hardness and astringency sensations. In the present review we will describe the sensory quality and flavor preferences of pomegranate fruit, including the genetic diversity in flavor characteristics among distinct varieties. In addition, we will describe the dynamic changes that occur in fruit flavor during fruit ripening and postharvest storage. © 2013 Society of Chemical Industry.

  8. Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: Comparison with Helianthus annuus (sunflower) seed oil.

    PubMed

    Nehdi, Imededdine Arbi; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim

    2013-01-15

    The physicochemical properties, fatty acid, tocopherol, thermal properties, (1)H NMR, FTIR and profiles of non-conventional oil extracted from Citrullus colocynthis (L.) Schrad seeds were evaluated and compared with conventional sunflower seed oil. In addition, the antioxidant properties of C. colocynthis seed oil were also evaluated. The oil content of the C. colocynthis seeds was 23.16%. The main fatty acids in the oil were linoleic acid (66.73%) followed by oleic acid (14.78%), palmitic acid (9.74%), and stearic acid (7.37%). The tocopherol content was 121.85 mg/100g with γ-tocopherol as the major one (95.49%). The thermogravimetric analysis showed that the oil was thermally stable up to 286.57°C, and then began to decompose in four stages namely at 377.4°C, 408.4°C, 434.9°C and 559.2°C. The present study showed that this non-conventional C. colocynthis seed oil can be used for food and non-food applications to supplement or replace some of the conventional oils. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Pomegranate MR images analysis using ACM and FCM algorithms

    NASA Astrophysics Data System (ADS)

    Morad, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.

    2011-10-01

    Segmentation of an image plays an important role in image processing applications. In this paper segmentation of pomegranate magnetic resonance (MR) images has been explored. Pomegranate has healthy nutritional and medicinal properties for which the maturity indices and quality of internal tissues play an important role in the sorting process in which the admissible determination of features mentioned above cannot be easily achieved by human operator. Seeds and soft tissues are the main internal components of pomegranate. For research purposes, such as non-destructive investigation, in order to determine the ripening index and the percentage of seeds in growth period, segmentation of the internal structures should be performed as exactly as possible. In this paper, we present an automatic algorithm to segment the internal structure of pomegranate. Since its intensity of stem and calyx is close to the internal tissues, the stem and calyx pixels are usually labeled to the internal tissues by segmentation algorithm. To solve this problem, first, the fruit shape is extracted from its background using active contour model (ACM). Then stem and calyx are removed using morphological filters. Finally the image is segmented by fuzzy c-means (FCM). The experimental results represent an accuracy of 95.91% in the presence of stem and calyx, while the accuracy of segmentation increases to 97.53% when stem and calyx are first removed by morphological filters.

  10. Elastohydrodynamic Traction Properties of Seed Oils

    USDA-ARS?s Scientific Manuscript database

    The elastohydrodynamic traction coefficient (tc) properties of nine seed oils of varying chemical structures, PAO and hexadecane, were investigated using a ball-on disk traction apparatus. The seed oils were: castor oil, a triglyceride with hydroxyl functional group; jojoba, a monoglyceride; and s...

  11. The Promising Pharmacological Effects and Therapeutic/Medicinal applications of Punica Granatum L. (Pomegranate) as a Functional Food in Humans and Animals.

    PubMed

    Saeed, Muhammad; Naveed, Muhammad; BiBi, Jannat; Kamboh, Asghar Ali; Arain, Muhammad Asif; Shah, Qurban Ali; Alagawany, Mahmoud; Abd El-Hack, Mohamed Ezzat; Abdel-Latif, Mervat A.; Yatoo, Mohd. Iqbal; Tiwari, Ruchi; Chakraborty, Sandip; Dhama, Kuldeep

    2018-02-21

    Punica granatum L (pomegranate), is a shrub mostly available in the Mediterranean Sea region. The fruits have gained the substantial attention among researchers due to its promising biological activities including anti-inflammatory, antibacterial, antidiarrheal, immune modulatory, antitumor, wound healing and antifungal that have been attributed to various constituents of seeds, bark, juice, pericarp and leaf of this tree across the globe. The phenolic compounds of pomegranate have been documented to possess numbers of prophylactic and therapeutic utilities against various pathological infections as well as non-infectious disorders. The current review expedites the pharmacological role of Punica granatum L. in curing elements related to infectious and non-infectious disorders. Commencing a thorough review of the published literature and patents available on Punica granatum and its therapeutic role in countering infectious disorders present review is prepared by using various published resources available on PubMed, Med line, PubMed Central, Science Direct and other scientific databases. The information retrieved has been compiled and analyzed pertaining to the theme of the study. Multi-dimensional beneficial application of pomegranate plant is recorded. The pomegranate seed oil has phytoestrogenic compounds and the fruit is rich in phenolic compounds with strong antioxidant activity. The fruit and bark of pomegranate are used against intestinal parasites, dysentery, and diarrhea in different animals and human models. Since, ancient time the juice and seeds had considered the best therapy for throat and heart disorders. Ellagic acid is one of the main components of pomegranate with potent antioxidant activity. Results from different studies reported that Punica granatum L or its byproducts can be used as natural food additives in human and animal nutrition in order to boost immunity, microbial safety and provide the housing environment without affecting body weight

  12. Seed-specific overexpression of AtFAX1 increases seed oil content in Arabidopsis.

    PubMed

    Tian, Yinshuai; Lv, Xueyan; Xie, Guilan; Zhang, Jing; Xu, Ying; Chen, Fang

    2018-06-02

    Biosynthesis of plant seed oil is accomplished through the coordinate action of multiple enzymes in multiple subcellular compartments. Fatty acid (FA) has to be transported from plastid to endoplasmic reticulum (ER) for TAG synthesis. However, the role of plastid FA transportation during seed oil accumulation has not been evaluated. AtFAX1 (Arabidopsis fatty acid export1) mediated the FA export from plastid. In this study, we overexpressed AtFAX1 under the control of a seed specific promoter in Arabidopsis. The resultant overexpression lines (OEs) produced seeds which contained 21-33% more oil and 24-30% more protein per seed than those of the wild type (WT). The increased oil content was probably because of the enhanced FA and TAG synthetic activity. The seed size and weight were both increased accordingly. In addition, the seed number per silique and silique number per plant had no changes in transgenic plants. Taken together, our results demonstrated that seed specific overexpression of AtFAX1 could promote oil accumulation in Arabidopsis seeds and manipulating FA transportation is a feasible strategy for increasing the seed oil content. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Biodiesel production methods of rubber seed oil: a review

    NASA Astrophysics Data System (ADS)

    Ulfah, M.; Mulyazmi; Burmawi; Praputri, E.; Sundari, E.; Firdaus

    2018-03-01

    The utilization of rubber seed as raw material of biodiesel production is seen highly potential in Indonesia. The availability of rubber seeds in Indonesia is estimated about 5 million tons per annum, which can yield rubber seed oil about 2 million tons per year. Due to the demand of edible oils as a food source is tremendous and the edible oil feedstock costs are far expensive to be used as fuel, production of biodiesel from non-edible oils such as rubber seed is an effective way to overcome all the associated problems with edible oils. Various methods for producing biodiesel from rubber seed oil have been reported. This paper introduces an optimum condition of biodiesel production methods from rubber seed oil. This article was written to be a reference in the selection of methods and the further development of biodiesel production from rubber seed oil. Biodiesel production methods for rubber seed oils has been developed by means of homogeneous catalysts, heterogeneous catalysts, supercritical method, ultrasound, in-situ and enzymatic processes. Production of biodiesel from rubber seed oil using clinker loaded sodium methoxide as catalyst is very interesting to be studied and developed further.

  14. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-06-01

    Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular

  15. The effect of pomegranate fresh juice versus pomegranate seed powder on metabolic indices, lipid profile, inflammatory biomarkers, and the histopathology of pancreatic islets of Langerhans in streptozotocin-nicotinamide induced type 2 diabetic Sprague-Dawley rats.

    PubMed

    Taheri Rouhi, Seyedeh Zeinab; Sarker, Md Moklesur Rahman; Rahmat, Asmah; Alkahtani, Saad Ahmed; Othman, Fauziah

    2017-03-14

    Type 2 diabetes mellitus (T2DM) is associated with hyperglycemia, inflammatory disorders and abnormal lipid profiles. Several functional foods have therapeutic potential to treat chronic diseases including diabetes. The therapeutic potential of pomegranate has been stated by multitudinous scientists. The present study aimed to evaluate the effects of pomegranate juice and seed powder on the levels of plasma glucose and insulin, inflammatory biomarkers, lipid profiles, and health of the pancreatic islets of Langerhans in streptozotocin (STZ)-nicotinamide (NAD) induced T2DM Sprague Dawley (SD) rats. Forty healthy male SD rats were induced to diabetes with a single dose intra-peritoneal administration of STZ (60 mg/kg b.w.) - NAD (120 mg/kg b.w.). Diabetic rats were orally administered with 1 mL of pomegranate fresh juice (PJ) or 100 mg pomegranate seed powder in 1 mL distilled water (PS), or 5 mg/kg b.w. of glibenclamide every day for 21 days. Rats in all groups were sacrificed on day 22. The obtained data was analyzed by SPSS software (v: 22) using One-way analysis of variance (ANOVA). The results showed that PJ and PS treatment had slight but non-significant reduction of plasma glucose concentration, and no impact on plasma insulin compared to diabetic control (DC) group. PJ lowered the plasma total cholesterol (TC) and triglyceride (TG) significantly, and low-density lipoproteins (LDL) non-significantly compared to DC group. In contrast, PS treatment significantly raised plasma TC, LDL, and high-density lipoproteins (HDL) levels compared to the DC rats. Moreover, the administration of PJ and PS significantly reduced the levels of plasma inflammatory biomarkers, which were actively raised in diabetic rats. Only PJ treated group showed significant repairment and restoration signs in islets of Langerhans. Besides, PJ possessed preventative impact against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals almost 2.5 folds more than PS. Our findings suggest that

  16. Elastohydrodynamic (EHD) traction properties of seed oils

    USDA-ARS?s Scientific Manuscript database

    The elastohydrodynamic traction coefficient (tc) properties of nine seed oils of varying chemical structures, PAO and hexadecane, were investigated using a ball-on disk traction apparatus. The seed oils were: castor oil, a triglyceride with hydroxyl functional group; jojoba, a monoglyceride; and sev...

  17. Extraction and Analysis of Tomato Seed Oil

    USDA-ARS?s Scientific Manuscript database

    Tomato seeds represent a very large waste by-product from the processing of tomatoes into products such as tomato juice, sauce and paste. One potential use for these seeds is as a source of vegetable oil. This research investigated the oil content of tomato seeds using several extraction technique...

  18. Physicochemical properties and aroma volatile profiles in a diverse collection of California-grown pomegranate (Punica granatum L.) germplasm

    USDA-ARS?s Scientific Manuscript database

    There are thousands of pomegranate accessions and more than 500 known pomegranate cultivars with around 50 available commercially, exhibiting different growing characteristics and quality attributes; such as fruit size, color, shape, seed hardness, taste and flavor traits which are sometimes not wel...

  19. Anti-atherogenic properties of date vs. pomegranate polyphenols: the benefits of the combination.

    PubMed

    Rosenblat, Mira; Volkova, Nina; Borochov-Neori, Hamutal; Judeinstein, Sylvie; Aviram, Michael

    2015-05-01

    Hydrolysable tannin polyphenols in pomegranate and phenolic acids in date fruit and seeds are potent antioxidants and anti-atherogenic agents, and thus, in the present study we investigated the possible benefits of combining them in vivo in atherosclerotic apolipoprotein E KO (E(0)) mice, compared with the individual fruit. In vitro studies revealed that the date seed extract contains more polyphenols than Amari or Hallawi date extracts, and possesses a most impressive free radical scavenging capacity. Similarly, pomegranate juice (PJ), punicalagin, punicalain, gallic acid, and urolithins A and B are very potent antioxidants. E(0) mice consumed 0.5 μmol gallic acid equivalents (GAE) per mouse per day of PJ, Hallawi extract, date seed extract, or a combination for 3 weeks. Consumption of the combination was the most potent treatment, as it decreased serum cholesterol and triglyceride levels, and increased serum paraoxonase 1 (PON1) activity. Consumption of the combination also significantly reduced mouse peritoneal macrophage (MPM) oxidative stress, MPM cholesterol content, and MPM LDL uptake. Finally, the lipid peroxide content in the aortas of the mice significantly decreased, and the PON lactonase activity of the aortas increased after treatment with the combination. We thus conclude that consumption of pomegranate, together with date fruit and date seeds, has the most beneficial anti-atherogenic effects on E(0) mice serum, macrophages, and aortas, probably due to their unique and varied structures.

  20. [Fatty acid of Rkatsiteli grape seed oil, Phellodendron lavallei oil and Amaranthus seeds oil and its comparative byological activity].

    PubMed

    Kikalishvili, B Iu; Zurabashvili, D Z; Zurabashvili, Z A; Turabelidze, D G; Shanidze, L A

    2012-11-01

    The aim of the study is individual qualitively and quantitatively identification of fatty acids in Pkatsiteli grape seed oil, Phellodendron lavallei oil and Amaranthus seed oil and prediction of its biological activity. Using high-effective liquid chromatogramphy fatty acids were franctionated. Their relative concentrations are expressed as percentages of the total fatty acid component. Identification of the fatty acids consituents is based on comparison of their retention time with that of known standards. The predominant fatty acids in the oils were palmitic, oleic and stearic acids. The investigation demonstrated that fatty acids composition takes marked part in lipid metabolism of biological necessary components. The most interesting result of the investigation was the detection of unusual for the essentain oil begenic acid.

  1. MYB89 Transcription Factor Represses Seed Oil Accumulation1[OPEN

    PubMed Central

    Li, Dong; Jin, Changyu; Duan, Shaowei; Zhu, Yana; Qi, Shuanghui; Liu, Kaige; Gao, Chenhao; Ma, Haoli; Liao, Yuncheng

    2017-01-01

    In many higher plants, seed oil accumulation is precisely controlled by intricate multilevel regulatory networks, among which transcriptional regulation mainly influences oil biosynthesis. In Arabidopsis (Arabidopsis thaliana), the master positive transcription factors, WRINKLED1 (WRI1) and LEAFY COTYLEDON1-LIKE (L1L), are important for seed oil accumulation. We found that an R2R3-MYB transcription factor, MYB89, was expressed predominantly in developing seeds during maturation. Oil and major fatty acid biosynthesis in seeds was significantly promoted by myb89-1 mutation and MYB89 knockdown; thus, MYB89 was an important repressor during seed oil accumulation. RNA sequencing revealed remarkable up-regulation of numerous genes involved in seed oil accumulation in myb89 seeds at 12 d after pollination. Posttranslational activation of a MYB89-glucocorticoid receptor fusion protein and chromatin immunoprecipitation assays demonstrated that MYB89 inhibited seed oil accumulation by directly repressing WRI1 and five key genes and by indirectly suppressing L1L and 11 key genes involved in oil biosynthesis during seed maturation. These results help us to understand the novel function of MYB89 and provide new insights into the regulatory network of transcriptional factors controlling seed oil accumulation in Arabidopsis. PMID:27932421

  2. Seed-Specific Overexpression of the Pyruvate Transporter BASS2 Increases Oil Content in Arabidopsis Seeds

    PubMed Central

    Lee, Eun-Jung; Oh, Minwoo; Hwang, Jae-Ung; Li-Beisson, Yonghua; Nishida, Ikuo; Lee, Youngsook

    2017-01-01

    Seed oil is important not only for human and animal nutrition, but also for various industrial applications. Numerous genetic engineering strategies have been attempted to increase the oil content per seed, but few of these strategies have involved manipulating the transporters. Pyruvate is a major source of carbon for de novo fatty acid biosynthesis in plastids, and the embryo's demand for pyruvate is reported to increase during active oil accumulation. In this study, we tested our hypothesis that oil biosynthesis could be boosted by increasing pyruvate flux into plastids. We expressed the known plastid-localized pyruvate transporter BILE ACID:SODIUM SYMPORTER FAMILY PROTEIN 2 (BASS2) under the control of a seed-specific soybean (Glycine max) glycinin-1 promoter in Arabidopsis thaliana. The resultant transgenic Arabidopsis plants (OEs), which expressed high levels of BASS2, produced seeds that were larger and heavier and contained 10–37% more oil than those of the wild type (WT), but were comparable to the WT seeds in terms of protein and carbohydrate contents. The total seed number did not differ significantly between the WT and OEs. Therefore, oil yield per plant was increased by 24–43% in the OE lines compared to WT. Taken together, our results demonstrate that seed-specific overexpression of the pyruvate transporter BASS2 promotes oil production in Arabidopsis seeds. Thus, manipulating the level of specific transporters is a feasible approach for increasing the seed oil content. PMID:28265278

  3. A Review on the Anti-Inflammatory Activity of Pomegranate in the Gastrointestinal Tract

    PubMed Central

    Colombo, Elisa; Sangiovanni, Enrico; Dell'Agli, Mario

    2013-01-01

    Several biological activities of pomegranate have been widely described in the literature, but the anti-inflammatory effect in the gastrointestinal tract has not been reviewed till now. The aim of the present paper is to summarize the evidence for or against the efficacy of pomegranate for coping with inflammatory conditions of the gastro-intestinal tract. The paper has been organized in three parts: (1) the first one is devoted to the modifications of pomegranate active compounds in the gastro-intestinal tract; (2) the second one considering the literature regarding the anti-inflammatory effect of pomegranate at gastric level; (3) the third part considers the anti-inflammatory effect of pomegranate in the gut. In vivo studies performed on the whole fruit or juice, peel, and flowers demonstrate antiulcer effect in a variety of animal models. Ellagic acid was the main responsible for this effect, although other individual ellagitannins could contribute to the biological activity of the mixture. Different preparations of pomegranate, including extracts from peels, flowers, seeds, and juice, show a significant anti-inflammatory activity in the gut. No clinical studies have been found, thus suggesting that future clinical studies are necessary to clarify the beneficial effects of pomegranate in the gastrointestinal tract. PMID:23573120

  4. Preventive and Prophylactic Mechanisms of Action of Pomegranate Bioactive Constituents

    PubMed Central

    Viladomiu, Monica; Hontecillas, Raquel; Lu, Pinyi; Bassaganya-Riera, Josep

    2013-01-01

    Pomegranate fruit presents strong anti-inflammatory, antioxidant, antiobesity, and antitumoral properties, thus leading to an increased popularity as a functional food and nutraceutical source since ancient times. It can be divided into three parts: seeds, peel, and juice, all of which seem to have medicinal benefits. Several studies investigate its bioactive components as a means to associate them with a specific beneficial effect and develop future products and therapeutic applications. Many beneficial effects are related to the presence of ellagic acid, ellagitannins (including punicalagins), punicic acid and other fatty acids, flavonoids, anthocyanidins, anthocyanins, estrogenic flavonols, and flavones, which seem to be its most therapeutically beneficial components. However, the synergistic action of the pomegranate constituents appears to be superior when compared to individual constituents. Promising results have been obtained for the treatment of certain diseases including obesity, insulin resistance, intestinal inflammation, and cancer. Although moderate consumption of pomegranate does not result in adverse effects, future studies are needed to assess safety and potential interactions with drugs that may alter the bioavailability of bioactive constituents of pomegranate as well as drugs. The aim of this review is to summarize the health effects and mechanisms of action of pomegranate extracts in chronic inflammatory diseases. PMID:23737845

  5. Effects of dietary pomegranate seed pulp on oxidative stability of kid meat.

    PubMed

    Emami, A; Nasri, M H Fathi; Ganjkhanlou, M; Zali, A; Rashidi, L

    2015-06-01

    This study was conducted to evaluate the effects of dietary pomegranate seed pulp (PSP) on meat color and lipid stability of kids. Thirty-two Mahabadi male kids were randomly assigned to one of four diets with different levels of PSP: 1 - diet without PSP (Control), 2 - diet containing 5% PSP (PSP5), 3 - diet containing 10% PSP (PSP10), and 4 - diet containing 15% PSP (PSP15). The kids were slaughtered at the end of the study and m. longissimus lumborum (LL) was sampled. The TBARS values of both raw and cooked meat were decreased (P<0.0001) by increasing levels of PSP in the diet. The meat of kids fed PSP15 showed higher a* and C* values (P<0.01) and lower H* and b* values (P<0.001), than kids fed with Control diet. The results of this experiment indicated that replacing barley and corn grains with PSP in the diet may improve the color and lipid stability of kid meat. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Integrated extraction and anaerobic digestion process for recovery of nutraceuticals and biogas from pomegranate marcs

    USDA-ARS?s Scientific Manuscript database

    Pomegranate marc (PM), a by-product from pomegranate juice processing, has not been effectively utilized. The objectives of this study were to (1) determine the yields and properties of antioxidants (henceforth referring to total phenolics in terms of tannic acid equivalent) and oil extracted from v...

  7. Development and efficacy assessments of tea seed oil makeup remover.

    PubMed

    Parnsamut, N; Kanlayavattanakul, M; Lourith, N

    2017-05-01

    The efficacy of tea seed oil to clean foundation and eyeliner was evaluated. The safe and efficient tea seed oil makeup remover was developed. In vitro cleansing efficacy of makeup remover was UV-spectrophotometric validated. The stability evaluation by means of accelerated stability test was conducted. In vitro and in vivo cleansing efficacy of the removers was conducted in a comparison with benchmark majorly containing olive oil. Tea seed oil cleaned 90.64±4.56% of foundation and 87.62±8.35% of eyeliner. The stable with most appropriate textures base was incorporated with tea seed oil. Three tea seed oil removers (50, 55 and 60%) were stabled. The 60% tea seed oil remover significantly removed foundation better than others (94.48±3.37%; P<0.001) and the benchmark (92.32±1.33%), but insignificant removed eyeliner (87.50±5.15%; P=0.059). Tea seed oil remover caused none of skin irritation as examined in 20 human volunteers. A single-blind, randomized control exhibited that the tea seed oil remover gained a better preference over the benchmark (75.42±8.10 and 70.00±7.78%; P=0.974). The safe and efficient tea seed oil makeup removers had been developed. The consumers' choices towards the makeup remover containing the bio-oils are widen. In vitro cleansing efficacy during the course of makeup remover development using UV-spectrophotometric method feasible for pharmaceutic industries is encouraged. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  8. Pomegranate for Prevention and Treatment of Cancer: An Update.

    PubMed

    Sharma, Pooja; McClees, Sarah F; Afaq, Farrukh

    2017-01-24

    Cancer is the second leading cause of death in the United States, and those who survive cancer may experience lasting difficulties, including treatment side effects, as well as physical, cognitive, and psychosocial struggles. Naturally-occurring agents from dietary fruits and vegetables have received considerable attention for the prevention and treatment of cancers. These natural agents are safe and cost efficient in contrast to expensive chemotherapeutic agents, which may induce significant side effects. The pomegranate ( Punica granatum L.) fruit has been used for the prevention and treatment of a multitude of diseases and ailments for centuries in ancient cultures. Pomegranate exhibits strong antioxidant activity and is a rich source of anthocyanins, ellagitannins, and hydrolysable tannins. Studies have shown that the pomegranate fruit as well as its juice, extract, and oil exert anti-inflammatory, anti-proliferative, and anti-tumorigenic properties by modulating multiple signaling pathways, which suggest its use as a promising chemopreventive/chemotherapeutic agent. This review summarizes preclinical and clinical studies highlighting the role of pomegranate in prevention and treatment of skin, breast, prostate, lung, and colon cancers.

  9. Pomegranate for Prevention and Treatment of Cancer: An Update

    PubMed Central

    Sharma, Pooja; McClees, Sarah F.; Afaq, Farrukh

    2017-01-01

    Cancer is the second leading cause of death in the United States, and those who survive cancer may experience lasting difficulties, including treatment side effects, as well as physical, cognitive, and psychosocial struggles. Naturally-occurring agents from dietary fruits and vegetables have received considerable attention for the prevention and treatment of cancers. These natural agents are safe and cost efficient in contrast to expensive chemotherapeutic agents, which may induce significant side effects. The pomegranate (Punica granatum L.) fruit has been used for the prevention and treatment of a multitude of diseases and ailments for centuries in ancient cultures. Pomegranate exhibits strong antioxidant activity and is a rich source of anthocyanins, ellagitannins, and hydrolysable tannins. Studies have shown that the pomegranate fruit as well as its juice, extract, and oil exert anti-inflammatory, anti-proliferative, and anti-tumorigenic properties by modulating multiple signaling pathways, which suggest its use as a promising chemopreventive/chemotherapeutic agent. This review summarizes preclinical and clinical studies highlighting the role of pomegranate in prevention and treatment of skin, breast, prostate, lung, and colon cancers. PMID:28125044

  10. Evaluation of chosen fruit seeds oils as potential biofuel

    NASA Astrophysics Data System (ADS)

    Agbede, O. O.; Alade, A. O.; Adebayo, G. A.; Salam, K. K.; Bakare, T.

    2012-04-01

    Oils available in mango, tangerine and African star seeds were extracted and characterized to determine their fuel worthiness for biofuel production. Furthermore, the fuel properties of the three oils were within the range observed for some common oil seeds like rapeseed, soybean and sunflower, which are widely sourced for the production of biodiesel on an industrial scale. The low iodine values of the oil extend their applications as non-drying oil for lubrication purposes, however, the fuel properties exhibited by the oils enlist them as potential oil seeds for the production of biofuel and further research on the improvement of their properties will make them suitable biofuel of high economic values.

  11. Physicochemical characterisation and radical-scavenging activity of Cucurbitaceae seed oils.

    PubMed

    Jorge, Neuza; da Silva, Ana Carolina; Malacrida, Cassia Roberta

    2015-01-01

    Oils extracted from Cucurbitaceae seeds were characterised for their fatty acid and tocopherol compositions. In addition, some physicochemical characteristics, total phenolic contents and the radical-scavenging activities were determined. Oil content amounted to 23.9% and 27.1% in melon and watermelon seeds, respectively. Physicochemical characteristics were similar to those of other edible oils and the oils showed significant antioxidant activities. Fatty acid composition showed total unsaturated fatty acid content of 85.2-83.5%, with linoleic acid being the dominant fatty acid (62.4-72.5%), followed by oleic acid (10.8-22.7%) and palmitic acid (9.2-9.8%). The oils, especially watermelon seed oil, showed high total tocopherol and phenolic contents. The γ-tocopherol was the predominant tocopherol in both oils representing 90.9 and 95.6% of the total tocopherols in melon and watermelon seed oils, respectively. The potential utilisation of melon and watermelon seed oils as a raw material for food, chemical and pharmaceutical industries appears to be favourable.

  12. Ameliorating Effects of Exogenously Applied Proline on Seed Composition, Seed Oil Quality and Oil Antioxidant Activity of Maize (Zea mays L.) under Drought Stress

    PubMed Central

    Ali, Qasim; Anwar, Farooq; Ashraf, Muhammad; Saari, Nazamid; Perveen, Rashida

    2013-01-01

    This study was carried out to appraise whether or not the exogenous application of a potential osmoprotectant, proline, could ameliorate the adverse effects of drought stress on maize seed and seed oil composition, as well as oil antioxidant activity. Water stress reduced the kernel sugar, oil, protein and moisture contents and most of the seed macro- and micro-elements analyzed in both maize cultivars but it increased the contents of seed fiber and ash. Water stress increased the oil oleic acid content with a subsequent decrease in the amount of linoleic acid, resulting in an increased oil oleic/linoleic ratio for both maize cultivars. However, no variation was observed in oil stearic and palmitic acids content due to water stress. A considerable drought induced an increase in seed oil α-, γ-, δ- and total tocopherols and flavonoids were observed in both maize cultivars. However, oil phenolic and carotenoid content as well as 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging activity decreased. Foliar-applied proline significantly increased the content of seed sugar, oil, protein, moisture, fiber and ash in both maize cultivars under well irrigated and water deficit conditions. Furthermore, exogenous application of proline increased the oil oleic and linoleic acid contents. The concentrations of antioxidant compounds namely phenolics, carotenoids, flavonoids and tocopherols estimated in the seed oil increased due to foliar-applied proline under water deficit conditions that was positively correlated with the enhanced oil DPPH free radical scavenging activity. Moreover, the increase in the contents of these antioxidant compounds and oil antioxidant activity due to the foliar application of proline was noted to be more pronounced under water deficit conditions. PMID:23344043

  13. Life cycle inventory for the production of germinated oil palm seeds at a selected seed production unit in Malaysia

    NASA Astrophysics Data System (ADS)

    Khairuddin, Nik Sasha Khatrina; Ismail, B. S.; Muhamad, Halimah; May, Choo Yuen

    2013-11-01

    The increasing global demand for edible oil has encouraged Malaysia to increase the areas under oil palm cultivation. The total demand for germinated oil palm seeds in the years 2009, 2010, 2011 and 2012 were 86.4, 76.5, 72.6 and 75.2 million, respectively. Production of germinated oil palm seeds is the first link in the palm oil supply chain. Therefore, good management practices at seed production stage is required to ensure only high quality germinated oil palm seeds are produced before sale to customers. Life cycle assessment (LCA) has been used as a tool to assess environmental impact of the processes throughout a product's lifespan and this approach is an important tool for assessing green house gas (GHG) emission. For this study, a gate-to-gate life cycle inventory (LCI) of a single germinated oil palm seed production unit was carried out. The functional unit used for this LCI was one germinated oil palm seed. To determine the environmental impact for the production of germinated oil palm seeds, information on the inputs were obtained. The inputs for the production of germinated oil palm seeds involved materials such as polyethylene bags, electricity, water, chemicals and fungicides. For this study, the system boundary involved seed germination process and management of germinated oil palm seeds. It was found that the amount of input such as materials and energy used in the production of germinated oil palm seeds was very minimal.

  14. A pomegranate (Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development.

    PubMed

    Ben-Simhon, Zohar; Judeinstein, Sylvie; Nadler-Hassar, Talia; Trainin, Taly; Bar-Ya'akov, Irit; Borochov-Neori, Hamutal; Holland, Doron

    2011-11-01

    Anthocyanins are the major pigments responsible for the pomegranate (Punica granatum L.) fruit skin color. The high variability in fruit external color in pomegranate cultivars reflects variations in anthocyanin composition. To identify genes involved in the regulation of anthocyanin biosynthesis pathway in the pomegranate fruit skin we have isolated, expressed and characterized the pomegranate homologue of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1), encoding a WD40-repeat protein. The TTG1 protein is a regulator of anthocyanins and proanthocyanidins (PAs) biosynthesis in Arabidopsis, and acts by the formation of a transcriptional regulatory complex with two other regulatory proteins: bHLH and MYB. Our results reveal that the pomegranate gene, designated PgWD40, recovered the anthocyanin, PAs, trichome and seed coat mucilage phenotype in Arabidopsis ttg1 mutant. PgWD40 expression and anthocyanin composition in the skin were analyzed during pomegranate fruit development, in two accessions that differ in skin color intensity and timing of appearance. The results indicate high positive correlation between the total cyanidin derivatives quantity (red pigments) and the expression level of PgWD40. Furthermore, strong correlation was found between the steady state levels of PgWD40 transcripts and the transcripts of pomegranate homologues of the structural genes PgDFR and PgLDOX. PgWD40, PgDFR and PgLDOX expression also correlated with the expression of pomegranate homologues of the regulatory genes PgAn1 (bHLH) and PgAn2 (MYB). On the basis of our results we propose that PgWD40 is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development and that expression of PgWD40, PgAn1 and PgAn2 in the pomegranate fruit skin is required to regulate the expression of downstream structural genes involved in the anthocyanin biosynthesis.

  15. Inhibitory Effects of Two Varieties of Tunisian Pomegranate (Punica granatum L.) Extracts on Gastrointestinal Transit in Rat.

    PubMed

    Souli, Abdelaziz; Sebai, Hichem; Rtibi, Kais; Chehimi, Latifa; Sakly, Mohsen; Amri, Mohamed; El-Benna, Jamel; Marzouki, Lamjed

    2015-09-01

    The present study was undertaken to determine whether total and methanol juice extracts of two Tunisian Pomegranate (Punica granatum L.) varieties (Garsi and Gabsi) protect against diarrhea as well as their effects on gastrointestinal transit (GIT) in healthy rats. In this respect, male Wistar rats were used and divided into control- and pomegranate-treated groups. The antidiarrheal activity was evaluated using the castor oil-induced diarrhea method and the GIT was assessed using charcoal meal. Our results showed that total and methanol P. granatum juice extracts produced a significant dose-dependent protection against castor oil-induced diarrhea. Pomegranate extracts and juice also decreased the GIT significantly and dose dependently. Importantly, the Garsi variety appeared to be more effective than the Gabsi variety on these two parameters. These findings suggest that pomegranate extracts have a potent antidiarrheal property in rats confirming their efficiency in the Tunisian traditional medicine.

  16. Inhibitory Effects of Two Varieties of Tunisian Pomegranate (Punica granatum L.) Extracts on Gastrointestinal Transit in Rat

    PubMed Central

    Souli, Abdelaziz; Sebai, Hichem; Rtibi, Kais; Chehimi, Latifa; Sakly, Mohsen; Amri, Mohamed; El-Benna, Jamel; Marzouki, Lamjed

    2015-01-01

    Abstract The present study was undertaken to determine whether total and methanol juice extracts of two Tunisian Pomegranate (Punica granatum L.) varieties (Garsi and Gabsi) protect against diarrhea as well as their effects on gastrointestinal transit (GIT) in healthy rats. In this respect, male Wistar rats were used and divided into control- and pomegranate-treated groups. The antidiarrheal activity was evaluated using the castor oil-induced diarrhea method and the GIT was assessed using charcoal meal. Our results showed that total and methanol P. granatum juice extracts produced a significant dose-dependent protection against castor oil-induced diarrhea. Pomegranate extracts and juice also decreased the GIT significantly and dose dependently. Importantly, the Garsi variety appeared to be more effective than the Gabsi variety on these two parameters. These findings suggest that pomegranate extracts have a potent antidiarrheal property in rats confirming their efficiency in the Tunisian traditional medicine. PMID:25775227

  17. Integrated utilization of red radish seeds for the efficient production of seed oil and sulforaphene.

    PubMed

    Zhang, Jie; Zhou, Xing; Fu, Min

    2016-02-01

    Supercritical CO2 was used to obtain seed oil from red radish seeds. The influence of pressure, temperature, CO2 flow rate and time on extraction yield of oil were investigated in detail. The maximum extraction yield of oil was 92.07 ± 0.76% at the optimal extraction conditions. The physicochemical properties and fatty acid composition of oil indicated that the seed oil can be used as a dietary oil. Meanwhile, the high purity sulforaphene (96.84 ± 0.17%) was separated by solvent extraction coupled with preparative high performance liquid chromatography from red radish seed meal. The initial pH, R, extraction temperature and extraction time for each cycle had a considerable influence both on the extraction yield and purity of sulforaphene of crude product. The extraction of oil was directly responsible for an increase of 18.32% in the yield of sulforaphene. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Life Cycle Assessment for the Production of Oil Palm Seeds.

    PubMed

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.

  19. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    NASA Astrophysics Data System (ADS)

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  20. Recovery potential of cold press byproducts obtained from the edible oil industry: physicochemical, bioactive, and antimicrobial properties.

    PubMed

    Karaman, Safa; Karasu, Salih; Tornuk, Fatih; Toker, Omer Said; Geçgel, Ümit; Sagdic, Osman; Ozcan, Nihat; Gül, Osman

    2015-03-04

    Physicochemical, bioactive, and antimicrobial properties of different cold press edible oil byproducts (almond (AOB), walnut (WOB), pomegranate (POB), and grape (GOB)) were investigated. Oil, protein, and crude fiber content of the byproducts were found between 4.82 and 12.57%, between 9.38 and 49.05%, and between 5.87 and 45.83%, respectively. GOB had very high crude fiber content; therefore, it may have potential for use as a new dietary fiber source in the food industry. As GOB, POB, and WOB oils were rich in polyunsaturated fatty acids, AOB was rich in monounsaturated fatty acids. Oil byproducts were also found to be rich in dietary mineral contents, especially potassium, calcium, phosphorus, and magnesium. WOB had highest total phenolic (802 ppm), flavonoid (216 ppm), and total hydrolyzed tannin (2185 ppm) contents among the other byproducts. Volatile compounds of all the byproducts are mainly composed of terpenes in concentration of approximately 95%. Limonene was the dominant volatile compound in all of the byproducts. Almond and pomegranate byproduct extracts showed antibacterial activity depending on their concentration, whereas those of walnut and grape byproducts showed no antibacterial activity against any pathogenic bacteria tested. According to the results of the present study, walnut, almond, pomegranate, and grape seed oil byproducts possess valuable properties that can be taken into consideration for improvement of nutritional and functional properties of many food products.

  1. Extraction and the Fatty Acid Profile of Rosa acicularis Seed Oil.

    PubMed

    Du, Huanan; Zhang, Xu; Zhang, Ruchun; Zhang, Lu; Yu, Dianyu; Jiang, Lianzhou

    2017-12-01

    Rosa acicularis seed oil was extracted from Rosa acicularis seeds by the ultrasonic-assisted aqueous enzymatic method using cellulase and protease. Based on a single experiment, Plackett-Burman design was applied to ultrasonic-assisted aqueous enzymatic extraction of wild rose seed oil. The effects of enzyme amount, hydrolysis temperature and initial pH on total extraction rate of wild rose seed oil was studied by using Box-Behnken optimize methodology. Chemical characteristics of a sample of Rosa acicularis seeds and Rosa acicularis seed oil were characterized in this work. The tocopherol content was 200.6±0.3 mg/100 g oil. The Rosa acicularis seed oil was rich in linoleic acid (56.5%) and oleic acid (34.2%). The saturated fatty acids included palmitic acid (4%) and stearic acid (2.9%). The major fatty acids in the sn-2 position of triacylglycerol in Rosa acicularis oil were linoleic acid (60.6%), oleic acid (33.6%) and linolenic acid (3.2%). According to the 1,3-random-2-random hypothesis, the dominant triacylglycerols were LLL (18%), LLnL (1%), LLP (2%), LOL (10%), LLSt (1.2%), PLP (0.2%), LLnP (0.1%), LLnO (0.6%) and LOP (1.1%). This work could be useful for developing applications for Rosa acicularis seed oil.

  2. Thermal and storage characteristics of tomato seed oil

    USDA-ARS?s Scientific Manuscript database

    Thermal oxidative stability and effect of different storage conditions on quality characteristics of tomato seed oil have not been studied. The objectives of this research were to determine the changes in quality and oxidative stability of tomato seed oil, including color, antioxidant activity, per...

  3. Fatty acid profiles of some Fabaceae seed oils

    USDA-ARS?s Scientific Manuscript database

    The fatty acid profiles of six seed oils of the Fabaceae (Leguminosae) family are reported and discussed. These are the seed oils of Centrosema pubescens, Clitoria ternatea, Crotalaria mucronata, Macroptilium lathyroides, Pachyrhizus erosus, and Senna alata. The most common fatty acid in the fatty a...

  4. Supercritical carbon dioxide extraction of cuphea seed oil

    USDA-ARS?s Scientific Manuscript database

    Cuphea seed oil is being investigated as a potential domestic source of medium chain fatty acids for several industrial uses. Although the oil from cuphea seeds has been obtained using both solvent extraction and screw pressing, both methods suffer from several disadvantages. Petroleum ether extra...

  5. [Effect of compound gardenia oil and jujube seed oil on learning and memory in ovariectomized rats].

    PubMed

    Chen, Ya-Hui; Lan, Zhong-Ping; Fu, Zhao-Ying; Li, Bao-Li; Zhang, Zheng-Xiang

    2013-09-01

    To observe the effect of compound of gardenia oil and jujube seed oil learning and memory in ovariectomized rats and its mechanism. Animals were randomly divided into six groups: sham group, model group, estrogen group, low dose group, middle dose group and high dose group. The ovariectomized rat models were established by resection of the lateral ovaries. The effect of compound of gardenia oil and jujube seed oil on learning and memory in ovariectomized rats was observed by means of Morris water maze. Acetylcholinesterase (AchE) and nitric oxide synthase (NOS) activities in rat brain were determined. The compound of gardenia oil and jujube seed oil could shorten the incubation period of appearance in castration rats and increase the number passing through Yuan Ping table in ovariectomized rats. As the training time extended, the incubation period of appearance was gradually shortened. The compound of gardenia oil and jujube seed oil could increase NOS activity, and decrease AChE activity in brain of ovariectomized rats. The compound of jujube seed oil and gardenia oil could promote the learning and memory in ovariectomized rats. This effect may be related with the increase in activities of NOS, AchE in rat brain.

  6. Anti-oxidant effect of extracts of kinnow rind, pomegranate rind and seed powders in cooked goat meat patties.

    PubMed

    Devatkal, Suresh K; Narsaiah, K; Borah, A

    2010-05-01

    To overcome the disadvantages of using synthetic anti-oxidants in meat products, an investigation was carried out to evaluate the anti-oxidant effect of extracts of fruit by-products viz., kinnow rind powder (KRP), pomegranate rind powder (PRP) and pomegranate seed powder (PSP) in goat meat patties. Total phenolics content, DPPH radical scavenging activity and effect of these extracts on instrumental color, sensory attributes and TBARS values during storage (4+/-1 degrees C) of goat meat patties were evaluated. Results showed that these extracts are rich sources of phenolic compounds having free radical scavenging activity. Hunter Lab L value significantly (P<0.05) lowered in PRP followed by PSP and KRP patties. Sensory evaluation indicated no significant differences among patties. Further, a significant (P<0.5) reduction in TBARS values (lipid oxidation) during storage of goat meat patties was observed in PRP, PSP and KRP as compared to control patties. Average TBARS values (mg/kg meat) during refrigerated storage (4+/-1 degrees C) were significantly lower in PRP, followed by PSP and KRP as compared to control. The overall anti-oxidant effect was in the order of PRP>PSP>KRP. It was concluded that extracts of above fruits by-product powders have potential to be used as natural anti-oxidants in meat products. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Sensibility of male rats fertility against olive oil, Nigella sativa oil and pomegranate extract.

    PubMed

    Mansour, Sherif W; Sangi, Sibghatullah; Harsha, Sree; Khaleel, Mueen A; Ibrahim, A R N

    2013-07-01

    To clarify the modulatory effects of daily consumption of pomegranate extract (PE), olive oil (OO) and Nagilla sativa oil (NSO) on antioxidant activity, sperm quality and pituitary-testicular axis of adult male wistar rats. Thirty-two adult male Wistar rats were divided into four equal groups, eight rats each. Using rat gastric tubes, 1.0 mL distilled water, 1.0 mL PE, 0.4 mL NSO and 0.4 mL OO were orally administered daily for 6 weeks in the first, second, third and fourth groups, respectively. Reproductive organs, body weight, sperm criteria, testosterone, FSH, LH, inhibin-B, lipid peroxidation, and antioxidant enzyme activities were investigated. At the end of the study protocol, analyses occurred at the same time. Data were analysed by ANOVA test and P<0.05 was considered to be a significant value. In all studied groups, malondialdehyde level was significantly decreased accompanied with an increases in glutathione peroxidase and glutathione. Rats treated with PE showed an increase in catalase activities accompanied with an increase in sperm concentration which was also observed in NSO group. In PE treated group, sperm motility was also increased accompanied with decreased abnormal sperm rate. NSO, OO and PE treated groups shows an insignificant effect on testosterone, inhibin-B, FSH and LH in comparison with control group. These results show that administration of PE, NSO and OO could modify sperm characteristics and antioxidant activity of adult male wistar rats.

  8. Life Cycle Assessment for the Production of Oil Palm Seeds

    PubMed Central

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-01-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change. PMID:27073598

  9. Effects of specific organs on seed oil accumulation in Brassica napus L.

    PubMed

    Liu, Jing; Hua, Wei; Yang, Hongli; Guo, Tingting; Sun, Xingchao; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2014-10-01

    Seed oil content is an important agricultural characteristic in rapeseed breeding. Genetic analysis shows that the mother plant and the embryo play critical roles in regulating seed oil accumulation. However, the overwhelming majority of previous studies have focused on oil synthesis in the developing seed of rapeseed. In this study, to elucidate the roles of reproductive organs on oil accumulation, silique, ovule, and embryo from three rapeseed lines with high oil content (zy036, 6F313, and 61616) were cultured in vitro. The results suggest that zy036 silique wall, 6F313 seed coat, and 61616 embryo have positive impacts on the seed oil accumulation. In zy036, our previous studies show that high photosynthetic activity of the silique wall contributes to seed oil accumulation (Hua et al., 2012). Herein, by transcriptome sequencing and sucrose detection, we found that sugar transport in 6F313 seed coat might regulate the efficiency of oil synthesis by controlling sugar concentration in ovules. In 61616 embryos, high oil accumulation efficiency was partly induced by the elevated expression of fatty-acid biosynthesis-related genes. Our investigations show three organ-specific mechanisms regulating oil synthesis in rapeseed. This study provides new insights into the factors affecting seed oil accumulation in rapeseed and other oil crops. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Antihypertensive and cardioprotective effects of pumpkin seed oil.

    PubMed

    El-Mosallamy, Aliaa E M K; Sleem, Amany A; Abdel-Salam, Omar M E; Shaffie, Nermeen; Kenawy, Sanaa A

    2012-02-01

    Pumpkin seed oil is a natural product commonly used in folk medicine for treatment of prostatic hypertrophy. In the present study, the effects of treatment with pumpkin seed oil on hypertension induced by the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME) (50 mg /kg/day) in rats were studied and compared with those of the calcium channel blocker amlodipine. Pumpkin seed oil (40 or 100 mg/kg), amlodipine (0.9 mg/kg), or vehicle (control) was given once daily orally for 6 weeks. Arterial blood pressure (BP), heart rate, electrocardiogram (ECG) changes, levels of serum nitric oxide (NO) (the concentrations of nitrite/nitrate), plasma malondialdehyde (MDA), blood glutathione, and erythrocytic superoxide dismutase activity were measured. Histopathological examination of heart and aorta was conducted as well. L-NAME administration resulted in a significant increase in BP starting from the second week. Pumpkin seed oil or amlodipine treatment significantly reduced the elevation in BP by L-NAME and normalized the L-NAME-induced ECG changes-namely, prolongation of the RR interval, increased P wave duration, and ST elevation. Both treatments significantly decreased the elevated levels of MDA and reversed the decreased levels of NO metabolites to near normal values compared with the L-NAME-treated group. Amlodipine also significantly increased blood glutathione content compared with normal (but not L-NAME-treated) rats. Pumpkin seed oil as well as amlodipine treatment protected against pathological alterations in heart and aorta induced by L-NAME. In conclusion, this study has shown that pumpkin seed oil exhibits an antihypertensive and cardioprotective effects through a mechanism that may involve generation of NO.

  11. Alterations in Seed Development Gene Expression Affect Size and Oil Content of Arabidopsis Seeds1[C][W][OPEN

    PubMed Central

    Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

    2013-01-01

    Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds. PMID:24014578

  12. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil.

    PubMed

    Wang, Xiaoqin; Zeng, Qiumei; Del Mar Contreras, María; Wang, Lijuan

    2017-12-01

    In Asia, tea seed oils (seed oils from Camellia oleifera, C. chekiangoleosa, and C. sinensis) are used in edible, medicinal, and cosmetic applications. However, these oils differ in their fatty acid contents, and there is little known about their phenolic compounds. Here we analyzed the phenolic compounds of seed oils from three species gathered from 15 regions of China. Twenty-four phenolic compounds were characterized by HPLC-Q-TOF-MS, including benzoic acids (6), cinnamic acids (6), a hydroxyphenylacetic acid, flavanols (4), flavonols (3), flavones (2), and dihydroflavonoids (2). Some of these phenolic compounds had not previously been reported from C. sinensis (20), C. oleifera (15), and C. chekiangoleosa (24) seed oils. Quantification was done by HPLC-QqQ-MS using 24 chemical standards. The total concentrations in the studied samples ranged from 20.56 to 88.56μg/g. Phenolic acids were the most abundant class, accounting for 76.2-90.4%, with benzoic acid, found at up to 18.87μg/g. The concentration of catechins, typical of tea polyphenols, ranged between 2.1% and 9.7%, while the other flavonoids varied from 4.2% to 17.8%. Although the cultivation region affected the phenolic composition of the Camellia seed oils, in our hierarchical clustering analysis, the samples clustered according to species. The phenolic composition of the seed oils from C. oleifera and C. chekiangoelosa were similar. We found that the phenolic categories in Camellia seed oils were similar to tea polyphenols, thereby identifying a source of liposoluble tea polyphenols and potentially accounting for some of the reported activities of these oils. In addition, this work provides basic data that allows distinction of various Camellia seed oils, as well as improvements to be made in their quality standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Seed Structure Characteristics to Form Ultrahigh Oil Content in Rapeseed

    PubMed Central

    Zhang, Liang; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Hao, Wan-Jun; Wang, Han-Zhong

    2013-01-01

    Background Rapeseed (Brassica napus L.) is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding. Methodology/Principal Findings Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition. Conclusions/Significance Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding. PMID:23637973

  14. [Supercritical CO2 extraction and component analysis of Aesculus wilsonii seed oil].

    PubMed

    Chen, Guang-Yu; Shi, Zhao-Hua; Li, Hai-Chi; Ge, Fa-Huan; Zhan, Hua-Shu

    2013-03-01

    To research the optimal extraction process of supercritical CO2 extraction and analyze the component of the oil extracted from Aesculus wilsonii seed. Using the yield of Aesculus wilsonii seed oil as the index, optimized supercritical CO2 extraction parameter by orthogonal experiment methodology and analysed the compounds of Aesculus wilsonii seed oil by GC-MS. The optimal parameters of the supercritical CO2 extraction of the oil extracted from Aesculus wilsoniit seed were determined: the extraction pressure was 28 MPa and the temperature was 38 degrees C, the separation I pressure was 12 MPa and the temperature was 40 degrees C, the separation II pressure was 5 MPa and the temperature was 40 degrees C, the extraction time was 110 min. The average extraction rate of Aesculus wilsonii seed oil was 1.264%. 26 kinds of compounds were identified by GC-MS in Aesculus wilsonii seed oil extracted by supercritical CO2. The main components were fatty acids. Comparing with the petroleum ether extraction, the supercritical CO2 extraction has higher extraction rate, shorter extraction time, more clarity oil. The kinds of fatty acids with high amounts in Aesculus wilsonii seed oil is identical in general, the kinds of fatty acids with low amounts in Aesculus wilsonii seed oil have differences.

  15. Potent health effects of pomegranate

    PubMed Central

    Zarfeshany, Aida; Asgary, Sedigheh; Javanmard, Shaghayegh Haghjoo

    2014-01-01

    Accumulating data clearly claimed that Punica granatum L. (pomegranate) has several health benefits. Pomegranates can help prevent or treat various disease risk factors including high blood pressure, high cholesterol, oxidative stress, hyperglycemia, and inflammatory activities. It is demonstrated that certain components of pomegranate such as polyphenols have potential antioxidant, anti-inflammatory, and anticarcinogenic effects. The antioxidant potential of pomegranate juice is more than that of red wine and green tea, which is induced through ellagitannins and hydrosable tannins. Pomegranate juice can reduce macrophage oxidative stress, free radicals, and lipid peroxidation. Moreover, pomegranate fruit extract prevents cell growth and induces apoptosis, which can lead to its anticarcinogenic effects. In addition, promoter inhibition of some inflammatory markers and their production are blocked via ellagitannins. In this article, we highlight different studies on the therapeutic effects of pomegranate and their suggested mechanisms of actions. PMID:24800189

  16. Grape Seed Oil Compounds: Biological and Chemical Actions for Health

    PubMed Central

    Garavaglia, Juliano; Markoski, Melissa M.; Oliveira, Aline; Marcadenti, Aline

    2016-01-01

    Grape seed oil is rich in phenolic compounds, fatty acids, and vitamins, with economic importance to pharmaceutical, cosmetic, and food industry. Its use as an edible oil has also been suggested, especially due to its pleasant sensory characteristics. Grape seed oil has beneficial properties for health that are mainly detected by in vitro studies, such as anti-inflammatory, cardioprotective, antimicrobial, and anticancer properties, and may interact with cellular and molecular pathways. These effects have been related to grape seed oil constituents, mainly tocopherol, linolenic acid, resveratrol, quercetin, procyanidins, carotenoids, and phytosterols. The aim of this article was to briefly review the composition and nutritional aspects of grape seed oil, the interactions of its compounds with molecular and cellular pathways, and its possible beneficial effects on health. PMID:27559299

  17. Effects of Site and Cultivar on Consumer Acceptance of Pomegranate.

    PubMed

    Chater, John M; Merhaut, Donald J; Jia, Zhenyu; Arpaia, Mary Lu; Mauk, Peggy A; Preece, John E

    2018-05-01

    Pomegranate (Punica granatum L.) is an important fruit in many cultures. The fruit and juice have risen in popularity as it was discovered that pomegranate has relatively high antioxidant activity compared to most other fruits. In this study, six cultivars were utilized to determine consumer acceptance compared to the industry standard, 'Wonderful,' which comprises 90% to 95% of commercial production in the United States. Fruit were sourced from 2 cultivar field trials, one in inland Riverside, California, and one in coastal Ventura County, California. Cultivars selected for the study included 'Eversweet,' 'Green Globe,' 'Haku Botan,' 'Loffani,' 'Phoenicia,' 'Wonderful,' and 'cv. 857,' an heirloom cultivar from Ventura County, CA, U.S.A. Pomegranate arils were subject to sensory evaluation by 87 untrained consumer panelists in late 2016. Panelists were given pomegranate arils and asked to score the samples using a 9-point Hedonic scale for the following fruit quality traits: aril color, sweetness, tartness, seed hardness, bitterness, and overall desirability. There were significant differences among cultivars for all traits assessed by the sensory panelists. There were differences in acceptance among consumers for 'Wonderful' depending on if it was grown on the coast versus inland, and consumers preferred inland- versus coastal-grown 'Wonderful.' 'Wonderful' pomegranate was associated with cultivars that consumers scored low on desirability for bitterness. Cultivars that scored well in overall desirability compared with 'Wonderful' were 'cv. 857,' 'Eversweet,' 'Green Globe,' and 'Phoenicia.' Consumer sensory panels are important to determine scientifically which cultivars are desired by the public. These panels allowed for the determination of which pomegranate cultivars are liked or disliked by consumers and why. If the pomegranate growers know the most desirable cultivars for consumers, they are more likely to adopt and plant them, thus potentially increasing the

  18. Seed oil and fatty acid composition in Capsicum spp

    USDA-ARS?s Scientific Manuscript database

    The oil content and fatty acid composition of seed of 233 genebank accessions (total) of nine Capsicum species, and a single accession of Tubocapsicum anomalum, were determined. The physicochemical characteristics of oil extracted from seed of C. annuum and C. baccatum were also examined. Significan...

  19. Chlorophyll and carbohydrate metabolism in developing silique and seed are prerequisite to seed oil content of Brassica napus L.

    PubMed

    Hua, Shuijin; Chen, Zhong-Hua; Zhang, Yaofeng; Yu, Huasheng; Lin, Baogang; Zhang, Dongqing

    2014-12-01

    Although the seed oil content in canola is a crucial quality determining trait, the regulatory mechanisms of its formation are not fully discovered. This study compared the silique and seed physiological characteristics including fresh and dry weight, seed oil content, chlorophyll content, and carbohydrate content in a high oil content line (HOCL) and a low oil content line (LOCL) of canola derived from a recombinant inbred line in 2010, 2011, and 2012. The aim of the investigation is to uncover the physiological regulation of silique and seed developmental events on seed oil content in canola. On average, 83% and 86% of silique matter while 69% and 63% of seed matter was produced before 30 days after anthesis (DAA) in HOCL and LOCL, respectively, over three years. Furthermore, HOCL exhibited significantly higher fresh and dry matter at most developmental stages of siliques and seeds. From 20 DAA, lipids were deposited in the seed of HOCL significantly faster than that of LOCL, which was validated by transmission electron microscopy, showing that HOCL accumulates considerable more oil bodies in the seed cells. Markedly higher silique chlorophyll content was observed in HOCL consistently over the three consecutive years, implying a higher potential of photosynthetic capacity in siliques of HOCL. As a consequence, HOCL exhibited significantly higher content of fructose, glucose, sucrose, and starch mainly at 20 to 45 DAA, a key stage of seed lipid deposition. Moreover, seed sugar content was usually higher than silique indicating the importance of sugar transportation from siliques to seeds as substrate for lipid biosynthesis. The much lower silique cellulose content in HOCL was beneficial for lipid synthesis rather than consuming excessive carbohydrate for cell wall. Superior physiological characteristics of siliques in HOCL showed advantage to produce more photosynthetic assimilates, which were highly correlated to seed oil contents.

  20. Some rape/canola seed oils: fatty acid composition and tocopherols.

    PubMed

    Matthaus, Bertrand; Özcan, Mehmet Musa; Al Juhaimi, Fahad

    2016-03-01

    Seed samples of some rape and canola cultivars were analysed for oil content, fatty acid and tocopherol profiles. Gas liquid chromotography and high performance liquid chromotography were used for fatty acid and tocopherol analysis, respectively. The oil contents of rape and canola seeds varied between 30.6% and 48.3% of the dry weight (p<0.05). The oil contents of rapeseeds were found to be high compared with canola seed oils. The main fatty acids in the oils are oleic (56.80-64.92%), linoleic (17.11-20.92%) and palmitic (4.18-5.01%) acids. A few types of tocopherols were found in rape and canola oils in various amounts: α-tocopherol, γ-tocopherol, δ-tocopherol, β-tocopherol and α-tocotrienol. The major tocopherol in the seed oils of rape and canola cultivars were α-tocopherol (13.22-40.01%) and γ-tocopherol (33.64-51.53%) accompanied by α-T3 (0.0-1.34%) and δ-tocopherol (0.25-1.86%) (p<0.05). As a result, the present study shows that oil, fatty acid and tocopherol contents differ significantly among the cultivars.

  1. Biological Networks Underlying Soybean Seed Oil Composition and Content

    USDA-ARS?s Scientific Manuscript database

    Soybean is the most important oil crop in the United States. Production of soybean seed oil requires coordinated expression of many biological components and pathways, which is further regulated by seed development and phyto-hormones. A new research project is initiated in my laboratory to delineat...

  2. Continuous hydrolysis of Cuphea seed oil in subcritical water

    USDA-ARS?s Scientific Manuscript database

    Cuphea seed oil (CSO) is a source of medium chain fatty acids for use in chemical manufacturing, including detergents, shampoos and lubricants. Cuphea seed oil is high in decanoic acid and this fatty acid is especially useful in the preparation of estolide biobased lubricants, which have excellent ...

  3. Characterization of seed oils from fresh Bokbunja (Rubus coreanus Miq.) and wine processing waste.

    PubMed

    Ku, C S; Mun, S P

    2008-05-01

    The physicochemical characteristics, fatty acid (FA) profile, and triacylglyceride (TAG) composition of seed oils from fresh Bokbunja (Rubus coreanus Miq.) fruits and traditional Bokbunja wine processing waste were determined in this study. Oil contents of the fresh seeds and the seeds from wine processing waste were similar, accounting for about 18% of dry weight. The free fatty acid (FFA) content between the two seed oils was significantly different (0.50% for fresh seed oil and 73.14% for wine seed oil). Iodine, conjugated diene, saponification values, and unsaponifiable matter were very similar in the oil samples, but the specific extinction coefficients at 232 and 270 nm of wine seed oil were higher than those of fresh seed oil. Linoleic (C18:2, 50.45-53.18%, L) and linolenic (C18:3, 29.36-33.25%, Ln) acids were the dominant FAs in the two seed oils, whereas oleic (C18:1, 7.32-8.04%, O), palmitic (C16:0, 1.55-1.65%, P), and stearic (C18:0, 0.65-0.68%, S) acids were the minor FAs. LLL, OLL, LLLn, OOL, LLnLn, and OOO were the abundant TAGs, representing >90% of the oils.

  4. Proximate composition, extraction, characterization and comparative assessment of coconut (Cocos nucifera) and melon (Colocynthis citrullus) seeds and seed oils.

    PubMed

    Obasi, N A; Ukadilonu, Joy; Eze, Eberechukwu; Akubugwo, E I; Okorie, U C

    2012-01-01

    Proximate composition, extraction, characterization and comparative assessment of Cocos nucifera and Colocynthis citrullus seeds and seed oils were evaluated in this work using standard analytical techniques. The results showed the percentage (%) moisture, crude fibre, ash, crude protein, lipids and total carbohydrate contents of the seeds as 7.51 and 4.27, 7.70 and 5.51, 1.02 and 2.94, 10.57 and 11.67, 47.80 and 50.42 and 32.84 and 29.47 while the calorific values were 553.99 and 567.32 Kcal/100 g for C. nucifera and C. citrullus, respectively. The two seed oils were odourless and at room temperature (30 degrees C) liquids, with a pale yellow to yellowish colouration. Lipid indices of the seed oils indicated the Acid Values (AV) as 2.06-6.36 mg NaOH g(-1) and 2.99-6.17 mg NaOH g(-1), Free Fatty Acids (FFA) as 1.03-3.18 and 1.49-3.09%, Saponification Values (SV) as 252.44-257.59 and 196.82-201.03 mg KOH g(-1), Iodine Values (IV) as 9.73-10.99 and 110.93-111.46 mg of I2 g(-1) of oil and Peroxide Values (PV) as 0.21-0.21 and 1.53-2.72 mg O2 kg(-1) for soxhlet-mechanical extracted C. nucifera and C. citrullus seed oils, respectively. The studied characteristics of the oil extracts in most cases compared favourably with most conventional vegetable oils sold in the Nigeria markets; however, there were some observed levels of significant differences in the values at p < or = 0.05. These results suggest that the seeds examined may be nutritionally potent and also viable sources of seed oils judging by their oil yield. The data also showed that the seed oils were edible inferring from their low AV and their corresponding low FFA contents. Industrially, the results revealed the seed oils to have great potentials in soap manufacturing industries because of their high SV. They were also shown to be non-drying due to their low IV which also suggested that the oils contain few unsaturated bonds and therefore have low susceptibility to oxidative rancidity and deterioration as

  5. Isolation of genomic DNA from defatted oil seed residue of rapeseed (Brassica napus).

    PubMed

    Sadia, M; Rabbani, M A; Hameed, S; Pearce, S R; Malik, S A

    2011-02-08

    A simple protocol for obtaining pure, restrictable and amplifiable megabase genomic DNA from oil-free seed residue of Brassica napus, an important oil seed plant, has been developed. Oil from the dry seeds was completely recovered in an organic solvent and quantified gravimetrically followed by processing of the residual biomass (defatted seed residue) for genomic DNA isolation. The isolated DNA can be cut by a range of restriction enzymes. The method enables simultaneous isolation and recovery of lipids and genomic DNA from the same test sample, thus allowing two independent analyses from a single sample. Multiple micro-scale oil extraction from the commercial seeds gave approximately 39% oil, which is close to the usual oil recovery from standard oil seed. Most of the amplified fragments were scored in the range of 2.5 to 0.5 kb, best suited for scoring as molecular diagnostics.

  6. Nutritional quality and essential oil compositions of Thaumatococcus danielli (Benn.) tissue and seed.

    PubMed

    Abiodun, O A; Akinoso, R; Olosunde, O O; Adegbite, J A; Omolola, O A

    2014-10-01

    Nutritional quality and essential oil compositions of Thaumatococcus danielli (Benn.) tissue and seed were determined. Oil was extracted from the seed using standard methods while the fatty acids of the oil, chemical and anti-nutritional properties of defatted seed flour were determined. Total fat yield of the seed flour was 12.20%. Defatted seed flour had higher crude fibre (36.92%), carbohydrate (40.07%) and ash (8.17%) contents. Major mineral contents were potassium, calcium, sodium and magnesium. The tissue contain appreciable amount of vitamin C (8.10 mg/100 g). Oleic acid (42.59%) was the major fatty acid in the seed oil and the total unsaturated fatty acid was 62.38%. The seed oil had higher acid and saponification values and low iodine value. Oxalate (11.09 mg/100 g) content was the major anti-nutrient in the defatted seed flour. Defatted T. danielli seed flour serves as good source of dietary fibre and energy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Characteristics and composition of watermelon, pumpkin, and paprika seed oils and flours.

    PubMed

    El-Adawy, T A; Taha, K M

    2001-03-01

    The nutritional quality and functional properties of paprika seed flour and seed kernel flours of pumpkin and watermelon were studied, as were the characteristics and structure of their seed oils. Paprika seed and seed kernels of pumpkin and watermelon were rich in oil and protein. All flour samples contained considerable amounts of P, K, Mg, Mn, and Ca. Paprika seed flour was superior to watermelon and pumpkin seed kernel flours in content of lysine and total essential amino acids. Oil samples had high amounts of unsaturated fatty acids with linoleic and oleic acids as the major acids. All oil samples fractionated into seven classes including triglycerides as a major lipid class. Data obtained for the oils' characteristics compare well with those of other edible oils. Antinutritional compounds such as stachyose, raffinose, verbascose, trypsin inhibitor, phytic acid, and tannins were detected in all flours. Pumpkin seed kernel flour had higher values of chemical score, essential amino acid index, and in vitro protein digestibility than the other flours examined. The first limiting amino acid was lysine for both watermelon and pumpkin seed kernel flours, but it was leucine in paprika seed flour. Protein solubility index, water and fat absorption capacities, emulsification properties, and foam stability were excellent in watermelon and pumpkin seed kernel flours and fairly good in paprika seed flour. Flour samples could be potentially added to food systems such as bakery products and ground meat formulations not only as a nutrient supplement but also as a functional agent in these formulations.

  8. Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MSn.

    PubMed

    Ambigaipalan, Priyatharini; de Camargo, Adriano Costa; Shahidi, Fereidoon

    2017-04-15

    Phenolics from free and hydrolyzed fractions of pomegranate juice (PJ) and seeds (PS) were evaluated. In general, total phenolic contents and scavenging of ABTS + , DPPH and hydroxyl radicals, as well as metal chelation of the soluble fraction from PS, were higher than those for PJ. Insoluble-bound phenolics from PS accounted for up to 27% of total scavenging capacity (free+esterified+insoluble-bound). Phenolic acids (13), monomeric flavonoids (8), hydrolysable tannins (12), proanthocyanidin (1) and anthocyanins (12) were tentatively characterized using HPLC-DAD-ESI-MS n . Several compounds were identified for the first time in PJ or PS. The inhibition of DNA damage (induced by hydroxyl and peroxyl radicals), copper-induced LDL-cholesterol peroxidation, as well as alpha-glucosidase and lipase activities were demonstrated, therefore supporting the potential exploitation of PJ and PS as sources of bioactive compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of pomegranate seed oil on oxidant/antioxidant balance in heart and kidney homogenates and mitochondria of diabetic rats and high glucose-treated H9c2 cell line

    PubMed Central

    Mollazadeh, Hamid; Boroushaki, Mohammad Taher; Soukhtanloo, Mohammad; Afshari, Amir Reza; Vahedi, Mohammad Mahdi

    2017-01-01

    Objective: Oxidative stress is a major cause of diabetes complications. The present study aimed to investigate the beneficial effects of Pomegranate Seed Oil (PSO) on diabetes-induced changes in oxidant/antioxidant balance of the kidney, heart and mitochondria from rats and H9c2 cell line. Materials and Methods: In these in vivo and in vitro studies, male rats were divided into four groups (twelve each): group 1 served as control, group 2-4 received a single dose of streptozotocin (60 mg/kg, i.p), groups 3 and 4 received PSO (0.36 and 0.72 mg/kg/daily, gavage), respectively. After three weeks, six rats of each group and one week later the remaining animals were anaesthetized and the hearts and kidneys were removed and homogenized. Mitochondrial fractions were separated and enzyme activities were measured in each sample. H9c2 cells were pretreated with high levels of glucose (35 mM), and then, incubated with PSO. Finally, cell viability test, reactive oxygen species production and lipid peroxidation were evaluated. Results: Significant reduction in enzymes activity (Superoxide dismutase, Glutathione S-transferase and Paraoxonase 1), compensatory elevation in Glutathione Reductase, Glutathione Peroxidase and Catalase activity followed by reduction after one week and significant elevation in Oxidative Stress Index (OSI) were observed in diabetic group. PSO treatment resulted in a significant increase in enzymes activity and decreased OSI values compared to diabetic group in both tissue and mitochondrial fractions. PSO remarkably decreased glucose-induced toxicity, ROS level and lipid peroxidation in H9c2 cells. Conclusion: Results suggested that PSO has a protective effect against diabetes-induced alterations in oxidant/antioxidant balance in tissues, mitochondrial and H9c2 cell line. PMID:28884082

  10. Para rubber seed oil: new promising unconventional oil for cosmetics.

    PubMed

    Lourith, Nattaya; Kanlayavattanakul, Mayuree; Sucontphunt, Apirada; Ondee, Thunnicha

    2014-01-01

    Para rubber seed was macerated in petroleum ether and n-hexane, individually, for 30 min. The extraction was additionally performed by reflux and soxhlet for 6 h with the same solvent and proportion. Soxhlet extraction by petroleum ether afforded the greatest extractive yield (22.90 ± 0.92%). Although antioxidant activity by means of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay was insignificantly differed in soxhleted (8.90 ± 1.15%) and refluxed (9.02 ± 0.71%) by n-hexane, soxhlet extraction by n-hexane was significantly (p < 0.05) potent scavenged 2,2'-azino-bis(3-ethylbenzothaiazoline)-6-sulfonic acid) or ABTS radical with trolox equivalent antioxidant capacity (TEAC) of 66.54 ± 6.88 mg/100 g oil. This extract was non cytotoxic towards normal human fibroblast cells. In addition, oleic acid and palmitic acid were determined at a greater content than in the seed of para rubber cultivated in Malaysia, although linoleic and stearic acid contents were not differed. This bright yellow extract was further evaluated on other physicochemical characters. The determined specific gravity, refractive index, iodine value, peroxide value and saponification value were in the range of commercialized vegetable oils used as cosmetic raw material. Therefore, Para rubber seed oil is highlighted as the promising ecological ingredient appraisal for cosmetics. Transforming of the seed that is by-product of the important industrial crop of Thailand into cosmetics is encouraged accordingly.

  11. Oxidative stability, chemical composition and organoleptic properties of seinat (Cucumis melo var. tibish) seed oil blends with peanut oil from China.

    PubMed

    Siddeeg, Azhari; Xia, Wenshui

    2015-12-01

    Seinat seed oil was blended with peanut oil for the enhancement of stability and chemical characteristics of the blend. The physicochemical properties (relative density, refractive index, free fatty acids, saponification value, iodine value and peroxide value) of seinat seed and peanut oil blends in ratios 95:5, 85:15, 30:70 and 50:50 proportions were evaluated, as well as oxidative stability index, deferential scanning calorimetric (DSC) characteristics and tocopherols content. Results of oil blend showed that there was no negative effect by the addition of seinat seed oil to peanut oil and also had decreased percentages of all saturated fatty acids except stearic acid, conversely, increased the levels of unsaturated fatty acids. As for the sensory evaluation, the panelist results showed that seinat seed oil blends had no significant differences (p < 0.05) in all attributes except the purity. The results indicated that the blending of seinat seed oil with peanut oil had also increased the stability and tocopherols content. As Sudan is the first producer of seinat oil, blending of seinat seed oil with traditional oil like quality, and may decrease the consumption of other expensive edible oils.

  12. Antioxidant effect of poleo and oregano essential oil on roasted sunflower seeds.

    PubMed

    Quiroga, Patricia R; Grosso, Nelson R; Nepote, Valeria

    2013-12-01

    The objective was to evaluate the stability of sensory and chemical parameters in roasted sunflower seeds supplemented with oregano and poleo essential oils; and the consumer acceptability of this product. Four samples were prepared: plain roasted sunflower seeds (Control = RS-C), and sunflower seeds added with oregano (RS-O) or poleo (RS-P) essential oils or BHT (RS-BHT). Consumer acceptance was determined on fresh samples. The overall acceptance averages were 6.13 for RS-C, 5.62 for RS-P, and 5.50 for RS-O (9-point hedonic scale). The addition of BHT showed greater protection against the oxidation process in the roasted sunflower seeds. Oregano essential oil exhibited a greater antioxidant effect during storage than poleo essential oil. Both essential oils (oregano and poleo) provided protection to the product, inhibiting the formation of undesirable flavors (oxidized and cardboard). The antioxidant activity that presents essential oils of oregano and poleo could be used to preserve roasted sunflower seeds. © 2013 Institute of Food Technologists®

  13. Formulation and evaluation of carrot seed oil-based cosmetic emulsions.

    PubMed

    Singh, Shalini; Lohani, Alka; Mishra, Arun Kumar; Verma, Anurag

    2018-05-08

    The present study deals with the evaluation of antiaging potential of carrot seed oil-based cosmetic emulsions. Briefly, cosmetic emulsions composed of carrot seed oil in varying proportions (2, 4, and 6% w/v) were prepared using the hydrophile-lipophile balance (HLB) technique. Coconut oil, nonionic surfactants (Tween 80 and Span 80), and xanthan gum were used as the oil phase, emulgent, and emulsion stabilizer, respectively. The formed emulsions were evaluated for various physical, chemical, and biochemical parameters such as the zeta potential, globule size measurement, antioxidant activity, sun protection factor (SPF), skin irritation, and biochemical studies. The zeta potential values ranged from -43.2 to -48.3, indicating good stability. The polydispersity index (PDI) of various emulsion formulations ranged from 0.353 to 0.816. 1,1-Diphenyl-2-picrylhydrazyl- (DPPH) and nitric oxide-free radical scavenging activity showed the antioxidant potential of the prepared carrot seed oil emulsions. The highest SPF value (6.92) was shown by F3 having 6%w/v carrot seed oil. Histopathological data and biochemical analysis (ascorbic acid (ASC) and total protein content) suggest that these cosmetic emulsions have sufficient potential to be used as potential skin rejuvenating preparations.

  14. A transgene design for enhancing oil content in Arabidopsis and Camelina seeds

    DOE PAGES

    Zhu, Yerong; Xie, Linan; Chen, Grace Q.; ...

    2018-02-21

    Background: Increasing the oil yield is a major objective for oilseed crop improvement. Oil biosynthesis and accumulation are influenced by multiple genes involved in embryo and seed development. The leafy cotyledon1 (LEC1) is a master regulator of embryo development that also enhances the expression of genes involved in fatty acid biosynthesis. We speculated that seed oil could be increased by targeted overexpression of a master regulating transcription factor for oil biosynthesis, using a downstream promoter for a gene in the oil biosynthesis pathway. To verify the effect of such a combination on seed oil content, we made constructs with maizemore » (Zea mays) ZmLEC1 driven by serine carboxypeptidase-like (SCPL17) and acyl carrier protein (ACP5) promoters, respectively, for expression in transgenic Arabidopsis thaliana and Camelina sativa. Results: Agrobacterium-mediated transformation successfully generated Arabidopsis and Camelina lines that overexpressed ZmLEC1 under the control of a seed-specific promoter. This overexpression does not appear to be detrimental to seed vigor under laboratory conditions and did not cause observable abnormal growth phenotypes throughout the life cycle of the plants. Overexpression of ZmLEC1 increased the oil content in mature seeds by more than 20% in Arabidopsis and 26% in Camelina. In conclusion: The findings suggested that the maize master regulator, ZmLEC1, driven by a downstream seed-specific promoter, can be used to increase oil production in Arabidopsis and Camelina and might be a promising target for increasing oil yield in oilseed crops.0« less

  15. A transgene design for enhancing oil content in Arabidopsis and Camelina seeds

    SciTech Connect

    Zhu, Yerong; Xie, Linan; Chen, Grace Q.

    Background: Increasing the oil yield is a major objective for oilseed crop improvement. Oil biosynthesis and accumulation are influenced by multiple genes involved in embryo and seed development. The leafy cotyledon1 (LEC1) is a master regulator of embryo development that also enhances the expression of genes involved in fatty acid biosynthesis. We speculated that seed oil could be increased by targeted overexpression of a master regulating transcription factor for oil biosynthesis, using a downstream promoter for a gene in the oil biosynthesis pathway. To verify the effect of such a combination on seed oil content, we made constructs with maizemore » (Zea mays) ZmLEC1 driven by serine carboxypeptidase-like (SCPL17) and acyl carrier protein (ACP5) promoters, respectively, for expression in transgenic Arabidopsis thaliana and Camelina sativa. Results: Agrobacterium-mediated transformation successfully generated Arabidopsis and Camelina lines that overexpressed ZmLEC1 under the control of a seed-specific promoter. This overexpression does not appear to be detrimental to seed vigor under laboratory conditions and did not cause observable abnormal growth phenotypes throughout the life cycle of the plants. Overexpression of ZmLEC1 increased the oil content in mature seeds by more than 20% in Arabidopsis and 26% in Camelina. In conclusion: The findings suggested that the maize master regulator, ZmLEC1, driven by a downstream seed-specific promoter, can be used to increase oil production in Arabidopsis and Camelina and might be a promising target for increasing oil yield in oilseed crops.0« less

  16. Antioxidant activity of oils extracted from orange (Citrus sinensis) seeds.

    PubMed

    Jorge, Neuza; Silva, Ana Carolina da; Aranha, Caroline P M

    2016-05-31

    Due to the increasing production of food in the world with consequent increase of the production of waste, the importance of developing researches for its use is noticed. Thus, the interest in vegetable oils with bioactive compounds, such as the ones extracted from fruit seeds, is growing. Therefore, the present study aims to characterize the oils extracted from seeds of Hamlin, Natal, Pera-rio and Valencia orange varieties (Citrus sinensis), as to the levels of total carotenoids, total phenolic compounds, tocopherols and phytosterols, as well as to determine their antioxidant activity. The orange seed oils presented important content of total carotenoids (19.01 mg/kg), total phenolic compounds (4.43 g/kg), α-tocopherol (135.65 mg/kg) and phytosterols (1304.2 mg/kg). The antioxidant activity ranged from 56.0% (Natal) to 70.2% (Pera-rio). According to the results it is possible to conclude that the orange seed oils can be used as specialty oils in diet, since they contain considerable amounts of bioactive compounds and antioxidants.

  17. Flaxseed gum in combination with lemongrass essential oil as an effective edible coating for ready-to-eat pomegranate arils.

    PubMed

    Yousuf, Basharat; Srivastava, Abhaya Kumar

    2017-11-01

    Flaxseed gum (FSG) in combination with lemongrass essential oil (LGEO) was investigated for coating of ready-to-eat pomegranate arils. FSG was used at 0.3% and 0.6% concentrations and with both concentrations LGEO was incorporated at levels of 0ppm, 200ppm, 500ppm and 800ppm. Changes in headspace gases, physicochemical, microbiological and sensory attributes of pomegranate arils stored at 5°C were studied on different days of analysis during the 12day storage period. Coatings containing LGEO were effective in reducing total plate count and yeast and mold populations. Increasing LGEO concentrations in the coatings resulted in more decline in microbial populations. Reduced weight loss occurred in coated samples as compared to uncoated (control) sample. Coated samples showed a gradual decrease in ripening index in contrast with control where a significantly higher decline was observed. Total soluble solids, pH and titratable acidity significantly varied over the storage period. Color change (ΔE) for control increased steeply over the storage time in comparison to coated samples. Furthermore, chroma decreased while as hue angle increased over time. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication.

    PubMed

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Bian, Xiao-Hua; Shen, Ming; Ma, Biao; Zhang, Wan-Ke; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Lam, Sin-Man; Shui, Guang-Hou; Chen, Shou-Yi; Zhang, Jin-Song

    2017-04-01

    Seed oil is a momentous agronomical trait of soybean ( Glycine max ) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351 , encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1 , BIOTIN CARBOXYL CARRIER PROTEIN2 , 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III , DIACYLGLYCEROL O-ACYLTRANSFERASE1 , and OLEOSIN2 in transgenic Arabidopsis ( Arabidopsis thaliana ) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean ( Glycine soja ) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Synthesis biolubricant from rubber seed oil

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Tran Dong; Tuyen, Dang Thi Hong; Viet, Tran Tan

    2017-09-01

    The objective was biolubricant preparation from rubber seed oil (RSO) using polymerization reactor with/without catalyst in batch reactor. Before become reactant in polymerization reaction, a non-edible rubber seed oil was converted into methyl ester by esterification/tranesterification reaction with methanol and acid/base catalyst. The polymerization reaction parameters investigated were reaction time, temperature and weight ratio (catalyst with feed), and their effect on the bio lubricant formation. The result show significant conversion of methyl ester to bio lubricant in the temperature reaction of 160°C, reaction time of 2h min and ratio of super acid catalyst (tetrafluoroboric acid-sHBF4) of 3 %w/w. The resulting products were confirmed by GC-MS, FTIR spectroscopy and also analyzed for the viscosity. The best viscosity value of RSOFAME polymer was 110.6 cSt when the condition polymerization reaction were 160 °C, reaction time 3h, 6 wt% mass ratio of oil:catalyst.

  20. Comparison of Moringa Oleifera seeds oil characterization produced chemically and mechanically

    NASA Astrophysics Data System (ADS)

    Eman, N. A.; Muhamad, K. N. S.

    2016-06-01

    It is established that virtually every part of the Moringa oleifera tree (leaves, stem, bark, root, flowers, seeds, and seeds oil) are beneficial in some way with great benefits to human being. The tree is rich in proteins, vitamins, minerals. All Moringa oleifera food products have a very high nutritional value. They are eaten directly as food, as supplements, and as seasonings as well as fodder for animals. The purpose of this research is to investigate the effect of seeds particle size on oil extraction using chemical method (solvent extraction). Also, to compare Moringa oleifera seeds oil properties which are produced chemically (solvent extraction) and mechanically (mechanical press). The Moringa oleifera seeds were grinded, sieved, and the oil was extracted using soxhlet extraction technique with n-Hexane using three different size of sample (2mm, 1mm, and 500μm). The average oil yield was 36.1%, 40.80%, and 41.5% for 2mm, 1mm, and 500μm particle size, respectively. The properties of Moringa oleifera seeds oil were: density of 873 kg/m3, and 880 kg/m3, kinematic viscosity of 42.2mm2/s and 9.12mm2/s for the mechanical and chemical method, respectively. pH, cloud point and pour point were same for oil produced with both methods which is 6, 18°C and 12°C, respectively. For the fatty acids, the oleic acid is present with high percentage of 75.39%, and 73.60% from chemical and mechanical method, respectively. Other fatty acids are present as well in both samples which are (Gadoleic acid, Behenic acid, Palmitic acid) which are with lower percentage of 2.54%, 5.83%, and 5.73%, respectively in chemical method oil, while they present as 2.40%, 6.73%, and 6.04%, respectively in mechanical method oil. In conclusion, the results showed that both methods can produce oil with high quality. Moringa oleifera seeds oil appear to be an acceptable good source for oil rich in oleic acid which is equal to olive oil quality, that can be consumed in Malaysia where the olive oil

  1. Solubilization of Tea Seed Oil in a Food-Grade Water-Dilutable Microemulsion

    PubMed Central

    Deng, Lingli; Que, Fei; Wei, Hewen; Xu, Guangwei; Dong, Xiaowei; Zhang, Hui

    2015-01-01

    Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40–45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line. PMID:25996147

  2. Solubilization of tea seed oil in a food-grade water-dilutable microemulsion.

    PubMed

    Deng, Lingli; Que, Fei; Wei, Hewen; Xu, Guangwei; Dong, Xiaowei; Zhang, Hui

    2015-01-01

    Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40-45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line.

  3. Swarm motility inhibitory and antioxidant activities of pomegranate peel processed under three drying conditions.

    PubMed

    John, K M Maria; Bhagwat, Arvind A; Luthria, Devanand L

    2017-11-15

    During processing of ready-to-eat fresh fruits, large amounts of peel and seeds are discarded as waste. Pomegranate (Punicagranatum) peels contain high amounts of bioactive compounds which inhibit migration of Salmonella on wet surfaces. The metabolic distribution of bioactives in pomegranate peel, inner membrane, and edible aril portion was investigated under three different drying conditions along with the anti-swarming activity against Citrobacter rodentium. Based on the multivariate analysis, 29 metabolites discriminated the pomegranate peel, inner membrane, and edible aril portion, as well as the three different drying methods. Punicalagins (∼38.6-50.3mg/g) were detected in higher quantities in all fractions as compared to ellagic acid (∼0.1-3.2mg/g) and punicalins (∼0-2.4mg/g). The bioactivity (antioxidant, anti-swarming) and phenolics content was significantly higher in peels than the edible aril portion. Natural anti-swarming agents from food waste may have promising potential for controlling food borne pathogens. Published by Elsevier Ltd.

  4. Chemical composition and functional characterisation of commercial pumpkin seed oil.

    PubMed

    Procida, Giuseppe; Stancher, Bruno; Cateni, Francesca; Zacchigna, Marina

    2013-03-30

    Pumpkin (Cucurbita pepo L.) seed oil is a common product in Slovenia, Hungary and Austria and is considered a preventive agent for various pathologies, particularly prostate diseases. These properties are related to its high content of carotenoids and liposoluble vitamins. In this study the carotenoid (lutein and zeaxanthin), vitamin E (α- and γ-tocopherol) and fatty acid contents of 12 samples of commercial pumpkin seed oil were investigated together with the composition of the volatile fraction resulting from the roasting process. The aromatic profile obtained from the commercial samples was directly related to the intensity of the roasting process of the crushed pumpkin seeds. The roasting temperature played a crucial role in the concentrations of volatile substances originating from Strecker degradation, lipid peroxidation and Maillard reaction. The findings suggest that high-temperature roasting leads to the production of an oil with intense aromatic characteristics, while mild conditions, generally employed to obtain an oil with professed therapeutic characteristics, lead to a product with minor characteristic pumpkin seed oil aroma. The nutraceutical properties of the product are confirmed by the high content of α- and γ-tocopherol and carotenoids. © 2012 Society of Chemical Industry.

  5. Characteristics and Composition of African Oil Bean Seed (Pentaclethra macrophylla Benth)

    NASA Astrophysics Data System (ADS)

    Ikhuoria, Esther U.; Aiwonegbe, Anthony E.; Okoli, Peace; Idu, Macdonald

    The African oil bean (Pentaclethra macrophylla) seed was analyzed for its proximate composition. The seed oil was also analyzed for mineral content and physicochemical characteristics. Proximate analysis revealed that the percentage crude protein, crude fibre, moisture and carbohydrate were 9.31, 21.66, 39.05 and 38.95%, respectively. The percentage oil content was 47.90% while the ash content was 3.27%. Results of minerals analysis showed that calcium had the highest concentration of all the elements analyzed and were found to be of the order: Ca > Mg > Pb > Fe > Mn > P > Cu. The low iodine value of the seed oil showed that it can be classified as non-drying oil and thus not suitable for paint and polish production. However, the low acid and free fatty acid values suggest its utilization as edible oil.

  6. Protective effect of pomegranate derived products on UVB-mediated damage in human reconstituted skin

    PubMed Central

    Afaq, Farrukh; Zaid, Mohammad Abu; Khan, Naghma; Dreher, Mark; Mukhtar, Hasan

    2010-01-01

    Solar ultraviolet (UV) radiation, particularly its UVB (290-320 nm) component, is the primary cause of many adverse biological effects including photoaging and skin cancer. UVB radiation causes DNA damage, protein oxidation and induces matrix metalloproteinases (MMPs). Photochemoprevention via the use of botanical antioxidants in affording protection to human skin against UVB damage is receiving increasing attention. Pomegranate, from the tree Punica granatum contains anthocyanins and hydrolyzable tannins and possesses strong anti-oxidant and anti-tumor promoting properties. In this study, we determined the effect of pomegranate derived products POMx juice, POMx extract and pomegranate oil (POMo) against UVB-mediated damage using reconstituted human skin (EpiDerm™ FT-200). EpiDerm was treated with POMx juice (1-2 μl/0.1 ml/well), POMx extract (5-10 μg/0.1 ml/well), and POMo (1-2 μl/0.1 ml/well) for 1 h prior to UVB (60 mJ/cm2) irradiation and was harvested 12 h post-UVB to assess protein oxidation, markers of DNA damage and photoaging by western blot analysis and immunohistochemistry. Pretreatment of Epiderm with pomegranate derived products resulted in inhibition of UVB-induced (i) cyclobutane pyrimidine dimers, (ii) 8-dihydro-2′-deoxyguanosine, (iii) protein oxidation, and (iv) PCNA protein expression. We also found that pretreatment of Epiderm with pomegranate derived products resulted in inhibition of UVB-induced (i) collagenase (MMP-1), (ii) gelatinase (MMP-2, MMP-9), (iii) stromelysin (MMP-3), (iv) marilysin (MMP-7), (v) elastase (MMP-12), and (vi) tropoelastin. Gelatin zymography revealed that pomegranate derived products inhibited UVB-induced MMP-2 and MMP-9 activities. Pomegranate derived products also caused a decrease in UVB-induced protein expression of c-Fos and phosphorylation of c-Jun. Collectively, these results suggest that all three pomegranate derived products may be useful against UVB-induced damage to human skin. PMID:19320737

  7. Decreased seed oil production in FUSCA3 Brassica napus mutant plants.

    PubMed

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2015-11-01

    Canola (Brassica napus L.) oil is extensively utilized for human consumption and industrial applications. Among the genes regulating seed development and participating in oil accumulation is FUSCA3 (FUS3), a member of the plant-specific B3-domain family of transcription factors. To evaluate the role of this gene during seed storage deposition, three BnFUSCA3 (BnFUS3) TILLING mutants were generated. Mutations occurring downstream of the B3 domain reduced silique number and repressed seed oil level resulting in increased protein content in developing seeds. BnFUS3 mutant seeds also had increased levels of linoleic acid, possibly due to the reduced expression of ω-3 FA DESATURASE (FAD3). These observed phenotypic alterations were accompanied by the decreased expression of genes encoding transcription factors stimulating fatty acid (FA) synthesis: LEAFY COTYLEDON1 and 2 (LEC1 and 2) ABSCISIC ACID-INSENSITIVE 3 (BnABI3) and WRINKLED1 (WRI1). Additionally, expression of genes encoding enzymes involved in sucrose metabolism, glycolysis, and FA modifications were down-regulated in developing seeds of the mutant plants. Collectively, these transcriptional changes support altered sucrose metabolism and reduced glycolytic activity, diminishing the carbon pool available for the synthesis of FA and ultimately seed oil production. Based on these observations, it is suggested that targeted manipulations of BnFUS3 can be used as a tool to influence oil accumulation in the economically important species B. napus. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Optimization of mechanical extraction conditions for producing grape seed oil

    USDA-ARS?s Scientific Manuscript database

    In the United States, over 150 thousand metric tons of dried grape seeds containing 13-19% of oil are produced every year, as a byproduct from processing of about 5.8 million metric tons of grapes. The health promoting properties of grape seed oil is due to the presence of many bioactive components ...

  9. Roasting pumpkin seeds and changes in the composition and oxidative stability of cold-pressed oils.

    PubMed

    Raczyk, Marianna; Siger, Aleksander; Radziejewska-Kubzdela, Elżbieta; Ratusz, Katarzyna; Rudzińska, Magdalena

    2017-01-01

    Pumpkin seed oil is valuable oil for its distinctive taste and aroma, as well as supposed health- promoting properties. The aim of this study was to investigate how roasting pumpkin seeds influences the physicochemical properties of cold-pressed oils. The fatty acid composition, content of phytosterols, carotenoids and tocopherols, oxidative stability and colour were determined in oils after cold pressing and storage for 3 months using GC-FID, GCxGC-ToFMS, HPLC, Rancimat and spectrophotometric methods. The results of this study indicate that the seed-roasting and storage process have no effect on the fatty acid composition of pumpkin seed oils, but does affect phytosterols and tocopherols. The carotenoid content decreased after storage. The colour of the roasted oil was darker and changed significantly during storage. Pumpkin oil obtained from roasted seeds shows better physicochemical properties and oxidative stability than oil from unroasted seeds.

  10. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    PubMed

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  11. Tocopherol content and Fatty Acid profile of different Iranian date seed oils.

    PubMed

    Biglar, Mahmood; Khanavi, Mahnaz; Hajimahmoodi, Mannan; Hassani, Shokufeh; Moghaddam, Ghazaleh; Sadeghi, Naficeh; Oveisi, Mohammad Reza

    2012-01-01

    Date is one of the world's oldest food-producing plants wich has always played an important role in the economy and social life. Various researchers examined chemical composition and nutritional values of edible parts of dates while limited information about chemical composition and nutritional quality of date seed is available. In this study, fatty acid composition and total tocopherol content of 14 Iranian date seed oils were studied. Statistical analysis was performed through SPSS computing package. According to the fatty acid profiles, seven fatty acids were found through nearly 50% oleic acid in seeds. Shekar cultivar by 51.40% had the maximum amount and Lasht cultivar by 33.38% had the minimum amount of oleic acid. Tocopherol content in the samples varied between 33.86 μg vit E/g oil for Shahabi2 to 10.09 μg vit E/g oil for Shekar. Tocopherol content was 1.88 and 0.61 μg respectively in one-gram seed of these two cultivars. Iranian date seed oils classified as oleic-lauric oil, had a high amount of oleic acid and could serve as a profitable source of valuable oils for industrial applications.

  12. Effect of Replacing Beef Fat with Poppy Seed Oil on Quality of Turkish Sucuk

    PubMed Central

    2015-01-01

    Sucuk is the most popular dry-fermented meat product. Sucuk has a relatively high fat. Poppy seed oil as animal fat replacer was used in Turkish sucuk and effects of its use on sucuk quality were investigated. There was a significant (p<0.5) treatment × ripening time interaction for moisture, pH (p<0.05) and 2-thiobarbituric acid reactive substances (TBARS) values (p<0.01). Increasing poppy seed oil level decreased (p<0.05) TBARS values. Addition of poppy seed oil to the sucuks had a significant effect (p<0.01) on hardness, cohesiveness, gumminess, chewiness and springiness values. Cholesterol content of sucuks decreased (p<0.05) with poppy seed oil addition. Using pre-emulsified poppy seed oil as partial fat replacer in Turkish sucuk decreased cholesterol and saturated fatty acid content, but increased polyunsaturated fatty acids. Poppy seed oil as partial animal fat replacer in Turkish sucuk may have significant health benefits. PMID:26761834

  13. Effect of Replacing Beef Fat with Poppy Seed Oil on Quality of Turkish Sucuk.

    PubMed

    Gök, Vel

    2015-01-01

    Sucuk is the most popular dry-fermented meat product. Sucuk has a relatively high fat. Poppy seed oil as animal fat replacer was used in Turkish sucuk and effects of its use on sucuk quality were investigated. There was a significant (p<0.5) treatment × ripening time interaction for moisture, pH (p<0.05) and 2-thiobarbituric acid reactive substances (TBARS) values (p<0.01). Increasing poppy seed oil level decreased (p<0.05) TBARS values. Addition of poppy seed oil to the sucuks had a significant effect (p<0.01) on hardness, cohesiveness, gumminess, chewiness and springiness values. Cholesterol content of sucuks decreased (p<0.05) with poppy seed oil addition. Using pre-emulsified poppy seed oil as partial fat replacer in Turkish sucuk decreased cholesterol and saturated fatty acid content, but increased polyunsaturated fatty acids. Poppy seed oil as partial animal fat replacer in Turkish sucuk may have significant health benefits.

  14. Pumpkin Seed Oil Extracted From Cucurbita maxima Improves Urinary Disorder in Human Overactive Bladder

    PubMed Central

    Nishimura, Mie; Ohkawara, Tatsuya; Sato, Hiroji; Takeda, Hiroshi; Nishihira, Jun

    2014-01-01

    The pumpkin seed oil obtained from Cucurbita pepo has been shown to be useful for the treatment of nocturia in patients with urinal disorders in several western countries. In this study, we evaluated the effect of the pumpkin seed oil from Cucurbita maxima on urinary dysfunction in human overactive bladder (OAB). Forty-five subjects were enrolled in this study. An extract of pumpkin seed oil from C. maxima (10 g of oil/day) was orally administrated for 12 weeks. After 6 and 12 weeks, urinary function was evaluated using Overactive Bladder Symptom Score (OABSS). Pumpkin seed oil from C. maxima significantly reduced the degree of OABSS in the subjects. The results from our study suggest that pumpkin seed oil extracts from C. maxima as well as from C. pepo are effective for urinary disorders such as OAB in humans. PMID:24872936

  15. Pumpkin Seed Oil Extracted From Cucurbita maxima Improves Urinary Disorder in Human Overactive Bladder.

    PubMed

    Nishimura, Mie; Ohkawara, Tatsuya; Sato, Hiroji; Takeda, Hiroshi; Nishihira, Jun

    2014-01-01

    The pumpkin seed oil obtained from Cucurbita pepo has been shown to be useful for the treatment of nocturia in patients with urinal disorders in several western countries. In this study, we evaluated the effect of the pumpkin seed oil from Cucurbita maxima on urinary dysfunction in human overactive bladder (OAB). Forty-five subjects were enrolled in this study. An extract of pumpkin seed oil from C. maxima (10 g of oil/day) was orally administrated for 12 weeks. After 6 and 12 weeks, urinary function was evaluated using Overactive Bladder Symptom Score (OABSS). Pumpkin seed oil from C. maxima significantly reduced the degree of OABSS in the subjects. The results from our study suggest that pumpkin seed oil extracts from C. maxima as well as from C. pepo are effective for urinary disorders such as OAB in humans.

  16. Optimization of Supercritical Carbon Dioxide Extraction of Eucommia ulmoides Seed Oil and Quality Evaluation of the Oil.

    PubMed

    Zhang, Zhen-Shan; Liu, Yu-Lan; Che, Li-Ming

    2018-03-01

    Supercritical carbon dioxide extraction (SC-CO 2 ) technology was used to extract oil from Eucommia ulmoides seed. The optimum conditions and significant parameters in SC-CO 2 were obtained using response surface methodology (RSM). The qualities of the extracted oil were evaluated by physicochemical properties, fatty acid composition, vitamin E composition. It was found that the optimum extraction parameters were at pressure of 37 MPa, temperature of 40°C, extraction time of 125 min and CO 2 flow rate of 2.6 SL/min. Pressure, temperature and time were identified as significant parameter effecting on extraction yield. The importance of evaluated parameters decreased in the order of pressure > extraction time > temperature > CO 2 flow rate. GC analysis indicated that E. ulmoides seed oil contained about 61% of linolenic acid and its fatty acid composition was similar with that of flaxseed oil and perilla oil. The content and composition of vitamin E was determined using HPLC. The E. ulmoides seed oil was rich in vitamin E (190.72 mg/100 g), the predominant vitamin E isomers were γ- tocopherol and δ- tocopherol, which accounted for 70.87% and 24.81% of the total vitamin E, respectively. The high yield and good physicochemical properties of extracted oil support the notion that SC-CO 2 technology is an effective technique for extracting oil from E. ulmoides seed.

  17. Effect of substituted gelling agents from pomegranate peel on colour, textural and sensory properties of pomegranate jam.

    PubMed

    Abid, Mouna; Yaich, Héla; Hidouri, Hayfa; Attia, Hamadi; Ayadi, M A

    2018-01-15

    A series of pomegranate jams were prepared from a Tunisian ecotype (Tounsi) with different amounts of sugar (10, 20 and 30%) and low-methoxylated pectin (0.2, 0.7 and 1.2%). The most appreciated formulation was that contaning 30% sugars and 0.2% pectin. Then, commercial pectin was substituted by other gelling agents (pomegranate peel powders dried at 50°C vs lyophilized, pectin and fibre extracted from pomegranate peel) for the preparation of pomegranate peel-based jams. The elaborated jams were evaluated for physichochemical, colour, texture and sensory characteristics. Results revealed that the jam (JPP2) elaborated with 0.2% pectin extracted from pomegranate peel exhibited similar overall acceptability to that prepared with commercial pectin. However, it was more acceptable than other pomegranate peel-based jams, which was related to a better appreciation of sweetness and colour. According to the colour and texture measurements, this sample (JPP2) was more reddish and less firm than other samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil

    PubMed Central

    Zheljazkov, Valtcho D.; Gawde, Archana; Cantrell, Charles L.; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14–0.5% concentration range), β-pinene (3.7–10.3% range), γ-cymene (5–7.3% range), γ-terpinene (1.8–7.2% range), cumin aldehyde (50–66% range), α-terpinen-7-al (3.8–16% range), and β-terpinen-7-al (12–20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5–60 min DT, and low in the oils obtained at 240–600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0–5 and at 5–7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved

  19. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil.

    PubMed

    Zheljazkov, Valtcho D; Gawde, Archana; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range), β-pinene (3.7-10.3% range), γ-cymene (5-7.3% range), γ-terpinene (1.8-7.2% range), cumin aldehyde (50-66% range), α-terpinen-7-al (3.8-16% range), and β-terpinen-7-al (12-20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant

  20. Estimation of trace amounts of benzene in solvent-extracted vegetable oils and oil seed cakes.

    PubMed

    Masohan, A; Parsad, G; Khanna, M K; Chopra, S K; Rawat, B S; Garg, M O

    2000-09-01

    A new method is presented for the qualitative and quantitative estimation of trace amounts (up to 0.15 ppm) of benzene in crude as well as refined vegetable oils obtained by extraction with food grade hexane (FGH), and in the oil seed cakes left after extraction. The method involves the selection of two solvents; cyclohexanol, for thinning of viscous vegetable oil, and heptane, for azeotroping out trace benzene as a concentrate from the resulting mixture. Benzene is then estimated in the resulting azeotrope either by UV spectroscopy or by GC-MS subject to availability and cost effectiveness of the latter. Repeatability and reproducibility of the method is within 1-3% error. This method is suitable for estimating benzene in vegetable oils and oil seed cakes.

  1. A review of pomegranate in prostate cancer.

    PubMed

    Paller, C J; Pantuck, A; Carducci, M A

    2017-09-01

    Preclinical studies showing that pomegranate juice and its components inhibit prostate cancer led to multiple clinical trials to determine whether pomegranate products could slow the growth of prostate cancer. This review summarizes the preclinical data and discusses the results of the clinical trials. Trials targeted patients on active surveillance, neoadjuvant patients, patients with biochemical recurrence (BCR) following local therapy for prostate cancer, and patients with metastatic castration-resistant prostate cancer (mCRPC). In the BCR patient population, early phase II trials of both pomegranate juice and extract showed significant lengthening of PSA doubling time (PSADT), and confirmed the safety of pomegranate products. While a placebo-controlled phase III trial determined that pomegranate extract did not significantly prolong PSADT in BCR patients, a preplanned subset analysis of patients with the manganese superoxide dismutase (MnSOD) AA genotype showed greater PSADT lengthening on the pomegranate extract arm. In the neoadjuvant population, a large trial demonstrated a significant increase in urolithin A and a non-significant reduction in 8-hydroxy-2-deoxyguanosine, a marker of oxidation in prostate cancer tissue, on the pomegranate arm vs the placebo arm. In addition, a randomized clinical trial of a polyphenol-rich multicomponent food supplement that included a 31.25% pomegranate extract found significant slowing of PSA increase in the food supplement arm vs placebo in men on active surveillance and those experiencing BCR. Pomegranate juice and extract are safe but did not significantly improve outcomes in BCR patients in a large placebo-controlled trial. However a subset of BCR patients with the MnSOD AA genotype appear to respond positively to the antioxidant effects of pomegranate treatment. Phase II trials of 100% pomegranate products in neoadjuvant patients and patients with mCRPC were negative. A multicomponent food supplement showed promising

  2. Crystal structure of class III chitinase from pomegranate provides the insight into its metal storage capacity.

    PubMed

    Masuda, Taro; Zhao, Guanghua; Mikami, Bunzo

    2015-01-01

    Chitinase hydrolyzes the β-1,4-glycosidic bond in chitin. In higher plants, this enzyme has been regarded as a pathogenesis-related protein. Recently, we identified a class III chitinase, which functions as a calcium storage protein in pomegranate (Punica granatum) seed (PSC, pomegranate seed chitinase). Here, we solved a crystal structure of PSC at 1.6 Å resolution. Although its overall structure, including the structure of catalytic site and non-proline cis-peptides, was closely similar to those of other class III chitinases, PSC had some unique structural characteristics. First, there were some metal-binding sites with coordinated water molecules on the surface of PSC. Second, many unconserved aspartate residues were present in the PSC sequence which rendered the surface of PSC negatively charged. This acidic electrostatic property is in contrast to that of hevamine, well-characterized plant class III chitinase, which has rather a positively charged surface. Thus, the crystal structure provides a clue for metal association property of PSC.

  3. Effect of processing conditions on oil point pressure of moringa oleifera seed.

    PubMed

    Aviara, N A; Musa, W B; Owolarafe, O K; Ogunsina, B S; Oluwole, F A

    2015-07-01

    Seed oil expression is an important economic venture in rural Nigeria. The traditional techniques of carrying out the operation is not only energy sapping and time consuming but also wasteful. In order to reduce the tedium involved in the expression of oil from moringa oleifera seed and develop efficient equipment for carrying out the operation, the oil point pressure of the seed was determined under different processing conditions using a laboratory press. The processing conditions employed were moisture content (4.78, 6.00, 8.00 and 10.00 % wet basis), heating temperature (50, 70, 85 and 100 °C) and heating time (15, 20, 25 and 30 min). Results showed that the oil point pressure increased with increase in seed moisture content, but decreased with increase in heating temperature and heating time within the above ranges. Highest oil point pressure value of 1.1239 MPa was obtained at the processing conditions of 10.00 % moisture content, 50 °C heating temperature and 15 min heating time. The lowest oil point pressure obtained was 0.3164 MPa and it occurred at the moisture content of 4.78 %, heating temperature of 100 °C and heating time of 30 min. Analysis of Variance (ANOVA) showed that all the processing variables and their interactions had significant effect on the oil point pressure of moringa oleifera seed at 1 % level of significance. This was further demonstrated using Response Surface Methodology (RSM). Tukey's test and Duncan's Multiple Range Analysis successfully separated the means and a multiple regression equation was used to express the relationship existing between the oil point pressure of moringa oleifera seed and its moisture content, processing temperature, heating time and their interactions. The model yielded coefficients that enabled the oil point pressure of the seed to be predicted with very high coefficient of determination.

  4. Moringa oleifera Seeds and Oil: Characteristics and Uses for Human Health.

    PubMed

    Leone, Alessandro; Spada, Alberto; Battezzati, Alberto; Schiraldi, Alberto; Aristil, Junior; Bertoli, Simona

    2016-12-20

    Moringa oleifera seeds are a promising resource for food and non-food applications, due to their content of monounsaturated fatty acids with a high monounsaturated/saturated fatty acids (MUFA/SFA) ratio, sterols and tocopherols, as well as proteins rich in sulfated amino acids. The rapid growth of Moringa trees in subtropical and tropical areas, even under conditions of prolonged drought, makes this plant a reliable resource to enhance the nutritional status of local populations and, if rationalized cultivation practices are exploited, their economy, given that a biodiesel fuel could be produced from a source not in competition with human food crops. Despite the relatively diffuse use of Moringa seeds and their oil in traditional medicine, no pharmacological activity study has been conducted on humans. Some encouraging evidence, however, justifies new efforts to obtain clear and definitive information on the benefits to human health arising from seed consumption. A critical review of literature data concerning the composition of Moringa oil has set in motion a plan for future investigations. Such investigations, using the seeds and oil, will focus on cultivation conditions to improve plant production, and will study the health effects on human consumers of Moringa seeds and their oil.

  5. Hypolipidemic effect of seed oil of noni (Morinda citrifolia).

    PubMed

    Pazos, Diana C; Jiménez, Fabiola E; Garduño, Leticia; López, V Eric; Cruz, M Carmen

    2011-07-01

    Morinda citrifolia, has been reported to posses different biological activities and almost all parts of this have been studied phytochemically. However there are few studies on the seeds of fruit. The objective of present study was investigated the effect to Noni Seed Oil (NSO) on serum lipid levels in normolipidemic and hyperlipidemic induced mice. We find that administration of noni oil causes a reduction in total cholesterol and triglycerides levels in both models. However hypolipidemic effect is higher when hyperlipidemia is presented.

  6. Characterization of Acanthosicyos horridus and Citrullus lanatus seed oils: two melon seed oils from Namibia used in food and cosmetics applications.

    PubMed

    Cheikhyoussef, Natascha; Kandawa-Schulz, Martha; Böck, Ronnie; de Koning, Charles; Cheikhyoussef, Ahmad; Hussein, Ahmed A

    2017-10-01

    The physicochemical characteristics, fatty acid, tocopherol, stigmasterol, β-sitosterol, and 1 H NMR profiles of Citrullus lanatus and Acanthosicyos horridus melon seed oils were determined and compared among different extraction methods (cold pressing, traditional, and Soxhlet). The oil content was 40.2 ± 3.45 and 37.8 ± 7.26% for C. lanatus and A. horridus , respectively. Significant differences ( p  < 0.05) were observed among the different extraction methods in the characteristics studied. Physicochemical characteristics of the melon seed oils were saponification value, 180.48-189.86 mg KOH/g oil; iodine value, 108.27-118.62 g I 2 /100 g oil; acid value, 0.643-1.63 mg KOH/g oil; peroxide value; 1.69-2.98 mequiv/kg oil; specific gravity, 0.901-0.922; and refractive indices, 1.4676-1.4726. The dominant tocopherol was γ-tocopherol with total tocopherol in the range 27.61-74.39 mg/100 g. The dominant fatty acid was linoleic acid in the range 52.57-56.96%. The favorable oil yield, physicochemical characteristics, tocopherol, and fatty acid composition have the potential to replace or improve major commercial vegetable oils and to be used for various applications in the food industry and nutritive medicines.

  7. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication1[OPEN

    PubMed Central

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Ma, Biao; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Shui, Guang-Hou; Chen, Shou-Yi

    2017-01-01

    Seed oil is a momentous agronomical trait of soybean (Glycine max) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351, encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1, BIOTIN CARBOXYL CARRIER PROTEIN2, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III, DIACYLGLYCEROL O-ACYLTRANSFERASE1, and OLEOSIN2 in transgenic Arabidopsis (Arabidopsis thaliana) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean (Glycine soja) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. PMID:28184009

  8. Design of new genome- and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar.

    PubMed

    Sun, Meiyu; Hua, Wei; Liu, Jing; Huang, Shunmou; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2012-01-01

    Rapeseed (Brassica napus L.) is one of most important oilseed crops in the world. There are now various rapeseed cultivars in nature that differ in their seed oil content because they vary in oil-content alleles and there are high-oil alleles among the high-oil rapeseed cultivars. For these experiments, we generated doubled haploid (DH) lines derived from the cross between the specially high-oil cultivar zy036 whose seed oil content is approximately 50% and the specially low-oil cultivar 51070 whose seed oil content is approximately 36%. First, to address the deficiency in polymorphic markers, we designed 5944 pairs of newly developed genome-sourced primers and 443 pairs of newly developed primers related to oil-content genes to complement the 2244 pairs of publicly available primers. Second, we constructed a new DH genetic linkage map using 527 molecular markers, consisting of 181 publicly available markers, 298 newly developed genome-sourced markers and 48 newly developed markers related to oil-content genes. The map contained 19 linkage groups, covering a total length of 2,265.54 cM with an average distance between markers of 4.30 cM. Third, we identified quantitative trait loci (QTL) for seed oil content using field data collected at three sites over 3 years, and found a total of 12 QTL. Of the 12 QTL associated with seed oil content identified, 9 were high-oil QTL which derived from the specially high-oil cultivar zy036. Two high-oil QTL on chromosomes A2 and C9 co-localized in two out of three trials. By QTL mapping for seed oil content, we found four candidate genes for seed oil content related to four gene markers: GSNP39, GSSR161, GIFLP106 and GIFLP046. This information will be useful for cloning functional genes correlated with seed oil content in the future.

  9. Ancient Seed for Modern Cure - Pomegranate Review of Therapeutic Applications in Periodontics.

    PubMed

    Thangavelu, Arthiie; Elavarasu, Sugumari; Sundaram, Rajasekar; Kumar, Tamilselvan; Rajendran, Dhivya; Prem, Fairlin

    2017-11-01

    Punica granatum (pomegranate), the member of Punicaceae family, is used in the prevention and treatment of health disorders. P. granatum contains diverse range of phytochemicals including ellagic acid, punicalagin, pedunculagin, quercetin, rutin, tannic acid, polyphenol, anthocyanins, and catechins. This review aims at providing an overview of the chemical constituents, antibacterial, anti-inflammatory, and antioxidant properties of P. granatum , and its role in the prevention and treatment of gingival and periodontal diseases.

  10. A Review of Pomegranate in Prostate Cancer

    PubMed Central

    Paller, Channing J.; Pantuck, Allan; Carducci, Michael A.

    2017-01-01

    Background Preclinical studies showing that pomegranate juice and its components inhibit prostate cancer led to multiple clinical trials to determine whether pomegranate products could slow the growth of prostate cancer. This review summarizes the preclinical data and discusses the results of the clinical trials. Methods Trials targeted patients on active surveillance, neoadjuvant patients, patients with biochemical recurrence (BCR) following local therapy for prostate cancer, and patients with metastatic castration-resistant prostate cancer (mCRPC). Results In the BCR patient population, early phase II trials of both pomegranate juice and extract showed significant lengthening of PSA doubling time (PSADT), and confirmed the safety of pomegranate products. While a placebo-controlled phase III trial determined that pomegranate extract did not significantly prolong PSADT in BCR patients, a preplanned subset analysis of patients with the manganese superoxide dismutase (MnSOD) AA genotype showed greater PSADT lengthening on the pomegranate extract arm. In the neoadjuvant population, a large trial demonstrated a significant increase in urolithin A and a non-significant reduction in 8-OHdG, a marker of oxidation in prostate cancer tissue, on the pomegranate arm vs. the placebo arm. In addition, a randomized clinical trial of a polyphenol-rich multi-component food supplement tablet, including 31.25% pomegranate extract, found significant slowing of PSA increase in the food supplement arm vs. placebo in men on active surveillance and those experiencing biochemical recurrence. Conclusions Pomegranate juice and extract are safe but did not significantly improve outcomes in BCR patients in a large placebo controlled trial. However a subset of BCR patients with the MnSOD AA genotype appear to respond positively to the antioxidant effects of pomegranate treatment. Phase II trials of 100% pomegranate products in neoadjuvant patients and patients with mCRPC were negative. A multi

  11. Effects of seed preparation and oil pressing on milkweed (Asclepias spp.) protein functional properties

    USDA-ARS?s Scientific Manuscript database

    The effects of seed cooking and oil processing conditions on functional properties of milkweed seed proteins were determined to identify potential value-added uses for the meal. Milkweed seeds were flaked and then cooked in the seed conditioner at 82°C for 30, 60 or 90 min. Oil was extracted by scre...

  12. Postharvest biology and technology of pomegranate.

    PubMed

    Pareek, Sunil; Valero, Daniel; Serrano, María

    2015-09-01

    Pomegranate is a subtropical and tropical fruit of great importance from a health point of view. Despite increasing consumer awareness of the health benefits of pomegranate, consumption of the fruit is still limited owing to poor postharvest handling, storage recommendations, short shelf life and quality deterioration during transportation, storage and marketing. The occurrence of physiological disorders such as husk scald, splitting and chilling injury is another challenge reducing marketability and consumer acceptance. Recently, notable work on postharvest biology and technology has been done. Pomegranate is highly sensitive to low-oxygen (<5 kPa) atmospheres, chilling injury and decay. One of the major problems associated with pomegranate fruit is excessive weight loss, which may result in hardening of the husk and browning of the rind and arils. To reduce chilling injury incidence and to extend storability and marketing of pomegranates, good results were obtained with polyamine, heat, salicylic acid, methyl jasmonate or methyl salicylate treatments prior to cold storage. This article reviews the maturity indices, changes during maturation and ripening, postharvest physiology and technology of pomegranate fruit as well as the various postharvest treatments for maintaining fruit quality. © 2015 Society of Chemical Industry.

  13. Moringa oleifera Seeds and Oil: Characteristics and Uses for Human Health

    PubMed Central

    Leone, Alessandro; Spada, Alberto; Battezzati, Alberto; Schiraldi, Alberto; Aristil, Junior; Bertoli, Simona

    2016-01-01

    Moringa oleifera seeds are a promising resource for food and non-food applications, due to their content of monounsaturated fatty acids with a high monounsaturated/saturated fatty acids (MUFA/SFA) ratio, sterols and tocopherols, as well as proteins rich in sulfated amino acids. The rapid growth of Moringa trees in subtropical and tropical areas, even under conditions of prolonged drought, makes this plant a reliable resource to enhance the nutritional status of local populations and, if rationalized cultivation practices are exploited, their economy, given that a biodiesel fuel could be produced from a source not in competition with human food crops. Despite the relatively diffuse use of Moringa seeds and their oil in traditional medicine, no pharmacological activity study has been conducted on humans. Some encouraging evidence, however, justifies new efforts to obtain clear and definitive information on the benefits to human health arising from seed consumption. A critical review of literature data concerning the composition of Moringa oil has set in motion a plan for future investigations. Such investigations, using the seeds and oil, will focus on cultivation conditions to improve plant production, and will study the health effects on human consumers of Moringa seeds and their oil. PMID:27999405

  14. Stereospecific analysis of triacylglycerols as a useful means to evaluate genuineness of pumpkin seed oils: lesson from virgin olive oil analyses.

    PubMed

    Butinar, Bojan; Bucar-Miklavcic, Milena; Valencic, Vasilij; Raspor, Peter

    2010-05-12

    In Slovenia two superb vegetable oils with high added nutritional value are produced: "Ekstra devisko oljcno olje Slovenske Istre (extra virgin olive oil from Slovene Istra)" and "Stajersko prekmursko bucno olje (pumpkin seed oil from Slovenia)". Their quality and genuineness must be monitored as adulteration can easily be undertaken. Olive oil genuineness determination experiences can show how analyses following an experience data-driven decision tree gathering several chemical determinations (fatty acids, (E)-isomers of fatty acids, sterol and tocopherol determinations) may be helpful in assessing the pumpkin seed oil from Slovenia genuineness. In the present work a set of HPLC triacylglycerol determinations was performed, based on the nine main triacylglycerols (LLLn, LLL, PLL, LOO, PLO, OOO, POO, SPL, and SLS) on a limited number of different pumpkin seed oils from northeastern Slovenia. The performed determinations showed that stereospecific analyses of triacylglycerols together with other chemical determinations can be useful in building a protocol for the evaluation of the genuineness of pumpkin seed oil from Slovenia.

  15. Pomegranate

    MedlinePlus

    ... as a dietary supplement for many conditions including wounds, heart conditions, intestinal problems, and as a gargle ... al. One year of pomegranate juice intake decreases oxidative stress, inflammation, and incidence of infections in hemodialysis ...

  16. Cannabinoid Poisoning by Hemp Seed Oil in a Child.

    PubMed

    Chinello, Matteo; Scommegna, Salvatore; Shardlow, Alison; Mazzoli, Francesca; De Giovanni, Nadia; Fucci, Nadia; Borgiani, Paola; Ciccacci, Cinzia; Locasciulli, Anna; Calvani, Mauro

    2017-05-01

    We report a case of mild cannabinoid poisoning in a preschool child, after 3-week ingestion of hemp seed oil prescribed by his pediatrician to strengthen his immune system. The patient presented neurological symptoms that disappeared after intravenous hydration. A possible mild withdrawal syndrome was reported after discharge. The main metabolite of Δ-tetrahydrocannabinol was detected in urine, and very low concentration of Δ-tetrahydrocannabinol was detected in the ingested product. This is, as far as we know, the first report of cannabinoid poisoning after medical prescription of hemp seed oil in a preschool child.

  17. Design of New Genome- and Gene-Sourced Primers and Identification of QTL for Seed Oil Content in a Specially High-Oil Brassica napus Cultivar

    PubMed Central

    Liu, Jing; Huang, Shunmou; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2012-01-01

    Rapeseed (Brassica napus L.) is one of most important oilseed crops in the world. There are now various rapeseed cultivars in nature that differ in their seed oil content because they vary in oil-content alleles and there are high-oil alleles among the high-oil rapeseed cultivars. For these experiments, we generated doubled haploid (DH) lines derived from the cross between the specially high-oil cultivar zy036 whose seed oil content is approximately 50% and the specially low-oil cultivar 51070 whose seed oil content is approximately 36%. First, to address the deficiency in polymorphic markers, we designed 5944 pairs of newly developed genome-sourced primers and 443 pairs of newly developed primers related to oil-content genes to complement the 2244 pairs of publicly available primers. Second, we constructed a new DH genetic linkage map using 527 molecular markers, consisting of 181 publicly available markers, 298 newly developed genome-sourced markers and 48 newly developed markers related to oil-content genes. The map contained 19 linkage groups, covering a total length of 2,265.54 cM with an average distance between markers of 4.30 cM. Third, we identified quantitative trait loci (QTL) for seed oil content using field data collected at three sites over 3 years, and found a total of 12 QTL. Of the 12 QTL associated with seed oil content identified, 9 were high-oil QTL which derived from the specially high-oil cultivar zy036. Two high-oil QTL on chromosomes A2 and C9 co-localized in two out of three trials. By QTL mapping for seed oil content, we found four candidate genes for seed oil content related to four gene markers: GSNP39, GSSR161, GIFLP106 and GIFLP046. This information will be useful for cloning functional genes correlated with seed oil content in the future. PMID:23077542

  18. Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-02-01

    Soybean seed is a major source of oil for human consumption worldwide and the main renewable feedstock for biodiesel production in North America. Increasing seed oil concentration in soybean [Glycine max (L.) Merrill] with no or minimal impact on protein concentration could be accelerated by exploiting quantitative trait loci (QTL) or gene-specific markers. Oil concentration in soybean is a polygenic trait regulated by many genes with mostly small effects and which is negatively associated with protein concentration. The objectives of this study were to discover and validate oil QTL in two recombinant inbred line (RIL) populations derived from crosses between three moderately high-oil soybean cultivars, OAC Wallace, OAC Glencoe, and RCAT Angora. The RIL populations were grown across several environments over 2 years in Ontario, Canada. In a population of 203 F(3:6) RILs from a cross of OAC Wallace and OAC Glencoe, a total of 11 genomic regions on nine different chromosomes were identified as associated with oil concentration using multiple QTL mapping and single-factor ANOVA. The percentage of the phenotypic variation accounted for by each QTL ranged from 4 to 11 %. Of the five QTL that were tested in a population of 211 F(3:5) RILs from the cross RCAT Angora × OAC Wallace, a "trait-based" bidirectional selective genotyping analysis validated four QTL (80 %). In addition, a total of seven two-way epistatic interactions were identified for oil concentration in this study. The QTL and epistatic interactions identified in this study could be used in marker-assisted introgression aimed at pyramiding high-oil alleles in soybean cultivars to increase oil concentration for biodiesel as well as edible oil applications.

  19. Comparative study of the chemical composition and mineral element content of Artocarpus heterophyllus and Treculia africana seeds and seed oils.

    PubMed

    Ajayi, Ibironke Adetolu

    2008-07-01

    A comparative study of Artocarpus heterophyllus and Treculia africana seeds, both of Moraceae family, was carried out to establish their chemical compositions and evaluate their mineral element content in order to investigate the possibility of using them for human and or animal consumption and also to examine if there is a relationship between the properties of these seeds. A. heterophyllus and T. africana are rich in protein; their protein contents are higher than those from high protein animal sources such as beef and marine fishes. Both seeds have high carbohydrate content and could act as source of energy for animals if included in their diets. The oil contents of the seeds are 11.39% and 18.54% for A. heterophyllus and T. africana, respectively. The oils are consistently liquid at room temperature. The results of the physicochemical properties of the two seeds are comparable to those of conventional oil seeds such as groundnut and palm kernel oils and could be useful for nutritional and industrial purposes. The seeds were found to be good sources of mineral elements. The result revealed potassium to be the prevalent mineral elements which are 2470.00 ppm and 1680.00 ppm for A. heterophyllus and T. africana, respectively followed by sodium, magnesium and then calcium. They also contain reasonable quantity of iron, in particular A. heterophyllus 148.50 ppm.

  20. Efficacy and Safety of Pomegranate Medicinal Products for Cancer

    PubMed Central

    Vlachojannis, Christian

    2015-01-01

    Preclinical in vitro and in vivo studies demonstrate potent effects of pomegranate preparations in cancer cell lines and animal models with chemically induced cancers. We have carried out one systematic review of the effectiveness of pomegranate products in the treatment of cancer and another on their safety. The PubMed search provided 162 references for pomegranate and cancer and 122 references for pomegranate and safety/toxicity. We identified 4 clinical studies investigating 3 pomegranate products, of which one was inappropriate because of the low polyphenol content. The evidence of clinical effectiveness was poor because the quality of the studies was poor. Although there is no concern over safety with the doses used in the clinical studies, pomegranate preparations may be harmful by inducing synthetic drug metabolism through activation of liver enzymes. We have analysed various pomegranate products for their content of anthocyanins, punicalagin, and ellagic acid in order to compare them with the benchmark doses from published data. If the amount of coactive constituents is not declared, patients risk not benefiting from the putative pomegranate effects. Moreover, pomegranate end products are affected by many determinants. Their declaration should be incorporated into the regulatory guidance and controlled before pomegranate products enter the market. PMID:25815026

  1. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.

    PubMed

    Hu, Zhaohui; Wu, Qian; Dalal, Jyoti; Vasani, Naresh; Lopez, Harry O; Sederoff, Heike W; Qu, Rongda

    2017-01-01

    With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs) consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt.) was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0) and myristate (C14:0) were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0), from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production.

  2. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa

    PubMed Central

    Dalal, Jyoti; Vasani, Naresh; Lopez, Harry O.; Sederoff, Heike W.

    2017-01-01

    With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs) consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt.) was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0) and myristate (C14:0) were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0), from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production. PMID:28212406

  3. Analysis of components and study on antioxidant and antimicrobial activities of oil in apple seeds.

    PubMed

    Tian, Hong-Lei; Zhan, Ping; Li, Kai-Xiong

    2010-06-01

    In order to improve the comprehensive utilization of major by-products in apple-juice processing, the components, antioxidant and antimicrobial activities of oil in two species apple seeds, Fuji and New Red Star, were investigated. The Soxhlet extracted oil content of apple seeds raged from 20.69 to 24.32 g/100 g. The protein, fiber and ash contents were found to be 38.85-49.55 g/100 g, 3.92-4.32 g/100 g and 4.31-5.20 g/100 g, respectively; the extracted oils exhibited an iodine value of 94.14-101.15 g I/100 g oil; refractive index (40 degrees C) was 1.465-1.466; density (25 degrees C) was 0.902-0.903 mg/ml; saponification value was 179.01-197.25 mg KOH/g oil; and the acid value was 4.036-4.323 mg KOH/g oil. The apple seed oils mainly consisted of linoleic acid (50.7-51.4 g/100 g) and oleic acid (37.49-38.55 g/100 g). Other prominent fatty acids were palmitic acid (6.51-6.60 g/100 g), stearic acid (1.75-1.96 g/100 g) and arachidic acid (1.49-1.54 g/100 g). Apple seed oil was proven to possess interesting properties, emerging from its chemical composition and from the evaluation of its in vitro biological activities. The apple seed oil was almost completely active against bacteria, mildews were less sensitive to apple seed oil than yeasts, and the minimum inhibitory concentration (MIC) of apple seed oil ranged from 0.3 to 0.6 mg/ml. The observed biological activities showed that the oil had a good potential for use in the food industry and pharmacy.

  4. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus.

    PubMed

    Liu, Sheng; Fan, Chuchuan; Li, Jiana; Cai, Guangqin; Yang, Qingyong; Wu, Jian; Yi, Xinqi; Zhang, Chunyu; Zhou, Yongming

    2016-06-01

    A set of additive loci for seed oil content were identified using association mapping and one of the novel loci on the chromosome A5 was validated by linkage mapping. Increasing seed oil content is one of the most important goals in the breeding of oilseed crops including Brassica napus, yet the genetic basis for variations in this important trait remains unclear. By genome-wide association study of seed oil content using 521 B. napus accessions genotyped with the Brassica 60K SNP array, we identified 50 loci significantly associated with seed oil content using three statistical models, the general linear model, the mixed linear model and the Anderson-Darling test. Together, the identified loci could explain approximately 80 % of the total phenotypic variance, and 29 of these loci have not been reported previously. Furthermore, a novel locus on the chromosome A5 that could increase 1.5-1.7 % of seed oil content was validated in an independent bi-parental linkage population. Haplotype analysis showed that the favorable alleles for seed oil content exhibit cumulative effects. Our results thus provide valuable information for understanding the genetic control of seed oil content in B. napus and may facilitate marker-based breeding for a higher seed oil content in this important oil crop.

  5. Effects of pumpkin seed oil and saw palmetto oil in Korean men with symptomatic benign prostatic hyperplasia.

    PubMed

    Hong, Heeok; Kim, Chun-Soo; Maeng, Sungho

    2009-01-01

    This study was to investigate the role of complementary and alternative medicine in the prevention and treatment of benign prostatic hyperplasia. For this purpose, a randomized, double-blind, placebo-controlled trial was performed over 12 months on 47 benign prostatic hyperplasia patients with average age of 53.3 years and international prostate symptom score over 8. Subjects received either sweet potato starch (group A, placebo, 320 mg/day), pumpkin seed oil (group B, 320 mg/day), saw palmetto oil (group C, 320 mg/day) or pumpkin seed oil plus saw palmetto oil (group D, each 320 mg/day). International prostate symptom score, quality of life, serum prostate specific antigen, prostate volume and maximal urinary flow rate were measured. In groups B, C and D, the international prostate symptom score were reduced by 3 months. Quality of life score was improved after 6 months in group D, while those of groups B and C were improved after 3 months, compared to the baseline value. Serum prostate specific antigen was reduced only in group D after 3 months, but no difference was observed in prostate volume in all treatment groups. Maximal urinary flow rate were gradually improved in groups B and C, with statistical significance after 6 months in group B and after 12 months in group C. None of the parameters were significantly improved by combined treatment with pumpkin seed oil and saw palmetto oil. From these results, it is suggested that administrations of pumpkin seed oil and saw palmetto oil are clinically safe and may be effective as complementary and alternative medicine treatments for benign prostatic hyperplasia.

  6. Effects of pumpkin seed oil and saw palmetto oil in Korean men with symptomatic benign prostatic hyperplasia

    PubMed Central

    Hong, Heeok; Kim, Chun-Soo

    2009-01-01

    This study was to investigate the role of complementary and alternative medicine in the prevention and treatment of benign prostatic hyperplasia. For this purpose, a randomized, double-blind, placebo-controlled trial was performed over 12 months on 47 benign prostatic hyperplasia patients with average age of 53.3 years and international prostate symptom score over 8. Subjects received either sweet potato starch (group A, placebo, 320 mg/day), pumpkin seed oil (group B, 320 mg/day), saw palmetto oil (group C, 320 mg/day) or pumpkin seed oil plus saw palmetto oil (group D, each 320 mg/day). International prostate symptom score, quality of life, serum prostate specific antigen, prostate volume and maximal urinary flow rate were measured. In groups B, C and D, the international prostate symptom score were reduced by 3 months. Quality of life score was improved after 6 months in group D, while those of groups B and C were improved after 3 months, compared to the baseline value. Serum prostate specific antigen was reduced only in group D after 3 months, but no difference was observed in prostate volume in all treatment groups. Maximal urinary flow rate were gradually improved in groups B and C, with statistical significance after 6 months in group B and after 12 months in group C. None of the parameters were significantly improved by combined treatment with pumpkin seed oil and saw palmetto oil. From these results, it is suggested that administrations of pumpkin seed oil and saw palmetto oil are clinically safe and may be effective as complementary and alternative medicine treatments for benign prostatic hyperplasia. PMID:20098586

  7. Protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury.

    PubMed

    Shi, Jing; Wang, Lan; Lu, Yan; Ji, Yue; Wang, Yaqing; Dong, Ke; Kong, Xiangqing; Sun, Wei

    2017-01-01

    Radiation-induced gastrointestinal syndrome, including nausea, diarrhea and dehydration, contributes to morbidity and mortality after medical or industrial radiation exposure. No safe and effective radiation countermeasure has been approved for clinical therapy. In this study, we aimed to investigate the potential protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury. C57/BL6 mice were orally administered seabuckthorn pulp oil, seed oil and control olive oil once per day for 7 days before exposure to total-body X-ray irradiation of 7.5 Gy. Terminal deoxynucleotidyl transferase dUTP nick end labeling, quantitative real-time polymerase chain reaction and western blotting were used for the measurement of apoptotic cells and proteins, inflammation factors and mitogen-activated protein (MAP) kinases. Seabuckthorn oil pretreatment increased the post-radiation survival rate and reduced the damage area of the small intestine villi. Both the pulp and seed oil treatment significantly decreased the apoptotic cell numbers and cleaved caspase 3 expression. Seabuckthorn oil downregulated the mRNA level of inflammatory factors, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-8. Both the pulp and seed oils elevated the level of phosphorylated extracellular-signal-regulated kinase and reduced the levels of phosphorylated c-Jun N-terminal kinase and p38. Palmitoleic acid (PLA) and alpha linolenic acid (ALA) are the predominant components of pulp oil and seed oil, respectively. Pretreatment with PLA and ALA increased the post-radiation survival time. In conclusion, seabuckthorn pulp and seed oils protect against mouse intestinal injury from high-dose radiation by reducing cell apoptosis and inflammation. ALA and PLA are promising natural radiation countermeasure candidates. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation

  8. Characterization and oxidative stability of purslane seed oil microencapsulated in yeast cells biocapsules.

    PubMed

    Kavosi, Maryam; Mohammadi, Abdorreza; Shojaee-Aliabadi, Saeedeh; Khaksar, Ramin; Hosseini, Seyede Marzieh

    2018-05-01

    Purslane seed oil, as a potential nutritious source of omega-3 fatty acid, is susceptible to oxidation. Encapsulation in yeast cells is a possible approach for overcoming this problem. In the present study, purslane seed oil was encapsulated in non-plasmolysed, plasmolysed and plasmolysed carboxy methyl cellulose (CMC)-coated Saccharomyces cerevisiae cells and measurements of oil loading capacity (LC), encapsulation efficiency (EE), oxidative stability and the fatty acid composition of oil-loaded microcapsules were made. Furthermore, investigations of morphology and thermal behavior, as well as a Fourier transform-infrared (FTIR) analyses of microcapsules, were performed. The values of EE, LC were approximately 53-65% and 187-231 g kg -1 , respectively. Studies found that the plasmolysis treatment increased EE and LC and decreased the mean peroxide value (PV) of microencapsulated oil. The presence of purslane seed oil in yeast microcapsules was confirmed by FTIR spectroscopy and differential scanning calorimetry analyses. The lowest rate of oxidation belonged to the oil-loaded plasmolysed CMC-coated microcapsules (16.73 meqvO 2 kg -1 ), whereas the highest amount of oxidation regardless of native oil referred to the oil-loaded in non-plasmolysed cells (28.15 meqvO 2 kg -1 ). The encapsulation of purslane seed oil in the yeast cells of S. cerevisiae can be considered as an efficient approach for extending the oxidative stability of this nutritious oil and facilitating its application in food products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Dehulling of cuphea seed for the production of crude oil with low chlorophyll content

    USDA-ARS?s Scientific Manuscript database

    Cuphea (PSR23) seed oil is rich in medium chain fatty acids (MCFAs). MCFAs are used in soaps, detergents, cosmetics, lubricants, and food applications. Currently, cuphea is being grown to provide oil needed for research. The oil can be extracted effectively by screw pressing flaked whole seeds. ...

  10. Osage orange (Maclura pomifera L) seed oil poly-(-a-hydroxy dibutylamine) triglycerides: Synthesis and characterization

    USDA-ARS?s Scientific Manuscript database

    In exploring alternative vegetable oils for non-food industrial applications, especially in temperate climates, tree seed oils that are not commonly seen as competitors to soybean, peanut, and corn oils can become valuable sources of new oils. Many trees produce edible fruits and seeds while others ...

  11. Therans-3-enoic acids ofAster alpinus andArctium minus seed oils.

    PubMed

    Morris, L J; Marshall, M O; Hammond, E W

    1968-01-01

    Thetrans-3-enoic acids ofAster alpinus (dwarf aster, rock aster) andArctium minus (burdock) seed oils have been isolated and characterized.Arctium seed oil containstrans-3,cis-9,cis-12-octadecatrienoic acid (9.9%), andAster oil containstrans-3-hexadecenoic (7.1%),rans-3-octadecenoic (1.9%),trans-3,cis-9-octadecadienoic (3.0%),a ndtrans-3,cis-9,cis-12-octadecatrienoic (13.7%) acids.Aster oil also has an epoxy acid as a minor constituent (ca. 2.0%), which has been identified ascis-9,10-epoxy-cis-12-octadecenoic acid.

  12. Bioactive properties of faveleira (Cnidoscolus quercifolius) seeds, oil and press cake obtained during oilseed processing.

    PubMed

    Ribeiro, Penha Patrícia Cabral; Silva, Denise Maria de Lima E; Assis, Cristiane Fernandes de; Correia, Roberta Targino Pinto; Damasceno, Karla Suzanne Florentino da Silva Chaves

    2017-01-01

    To the best of our knowledge, this is the first report in the literature concerning the bioactive properties of faveleira products. This work focuses on the physicochemical evaluation of faveleira oil, as well as it investigates the bioactive properties of faveleira seeds, faveleira oil and the press cake obtained during the oilseed processing. The seeds were cold pressed and the following tests were performed: physicochemical characteristics (acidity, peroxide values, moisture and volatile matter, density and viscosity) and fatty acid profile of faveleira oil; total phenolic and flavonoid content of faveleira seed and press cake; antibacterial activity of seed, oil and press cake; and antioxidant activity (DPPH radical scavenging activity, reducing power assay, total antioxidant capacity, superoxide radical scavenging assay and oxygen radical absorbance capacity) of seed, oil and press cake. Our work demonstrated that the faveleira seed oil has low acidity (0.78 ± 0.03% oleic acid) and peroxide value (1.13 ± 0.12 mEq/1000g), associated with the relevant concentration of linoleic acid (53.56%). It was observed that important phenolics (398.89 ± 6.34 mg EAG/100 g), especially flavonoids (29.81 ± 0.71 mg RE/g) remain in the press cake, which indicates that the by-product of the faveleira oilseed production constitutes a rich residual source of bioactive compounds. No bacterial growth inhibition was detected, but all samples including faveleira seeds, press cake, oil and its fractions have potent antioxidant activities, mainly the press cake, with oxygen radical absorbance capacity of 28.39 ± 4.36 μM TE/g. Our results also show that faveleira oil has potential to be used as edible oil and the press cake should be used to contain the most antioxidants from seed.

  13. Bioactive properties of faveleira (Cnidoscolus quercifolius) seeds, oil and press cake obtained during oilseed processing

    PubMed Central

    Silva, Denise Maria de Lima e; de Assis, Cristiane Fernandes; Correia, Roberta Targino Pinto; Damasceno, Karla Suzanne Florentino da Silva Chaves

    2017-01-01

    To the best of our knowledge, this is the first report in the literature concerning the bioactive properties of faveleira products. This work focuses on the physicochemical evaluation of faveleira oil, as well as it investigates the bioactive properties of faveleira seeds, faveleira oil and the press cake obtained during the oilseed processing. The seeds were cold pressed and the following tests were performed: physicochemical characteristics (acidity, peroxide values, moisture and volatile matter, density and viscosity) and fatty acid profile of faveleira oil; total phenolic and flavonoid content of faveleira seed and press cake; antibacterial activity of seed, oil and press cake; and antioxidant activity (DPPH radical scavenging activity, reducing power assay, total antioxidant capacity, superoxide radical scavenging assay and oxygen radical absorbance capacity) of seed, oil and press cake. Our work demonstrated that the faveleira seed oil has low acidity (0.78 ± 0.03% oleic acid) and peroxide value (1.13 ± 0.12 mEq/1000g), associated with the relevant concentration of linoleic acid (53.56%). It was observed that important phenolics (398.89 ± 6.34 mg EAG/100 g), especially flavonoids (29.81 ± 0.71 mg RE/g) remain in the press cake, which indicates that the by-product of the faveleira oilseed production constitutes a rich residual source of bioactive compounds. No bacterial growth inhibition was detected, but all samples including faveleira seeds, press cake, oil and its fractions have potent antioxidant activities, mainly the press cake, with oxygen radical absorbance capacity of 28.39 ± 4.36 μM TE/g. Our results also show that faveleira oil has potential to be used as edible oil and the press cake should be used to contain the most antioxidants from seed. PMID:28846740

  14. Study for the degumming pretreatment of rubber seed oil

    NASA Astrophysics Data System (ADS)

    Li, X. Y.; Chen, Y. B.; Zhang, X.; Souliyathai, D.; Yang, S. P.; Wang, Q.

    2017-11-01

    With the rapid development of the aviation industry, appearing of the aviation carbon tax and the increasingly serious environmental problems have forced the world to research the development of renewable bio-aviation fuel. Renewable biological aviation fuel contains phosphorus that could reduce the synthesis of noble metal catalysts such as Pd, Pt activity. In order to get low content of phosphorus in degummed oil of non-edible vegetable oil, in this paper, with rubber seed oil as raw material, making the experiment of single factor at the influence of temperature, stirring speed, adding amount of monoethanolamine (MEA) and water amount. The experimental results show that the added amount of MEA is 2.5% in the weight of oil, and temperature is 60°C, while the amount of added water is 2% in the weight of oil, reaction time is 40 min, and stirring speed is 200 r/min. Under these conditions, the phosphorus content of rubber seed oil can be reduced to below 3 mg/kg, degumming rate is 91.37%, and the degumming effects are obvious, which also provides some foundation for follow-up studies.

  15. Hepatoprotective and immunological functions of Nigella sativa seed oil against hypervitaminosis A in adult male rats.

    PubMed

    Al-Suhaimi, Ebtesam Abdullah

    2012-08-01

    The toxic effects of excess vitamin A (VA) intake deserve increased attention. Nigella sativa (NS) seed possesses physiological and pharmacological actions and protects against toxic agents. This work investigated the availability of NS seed oil as a protective agent against the effects of hypervitaminosis A (HVA) on liver function and immunity. Fifty adult albino rats were used and divided into five groups: (G1) control; (G2) experimental HVA rats administered extreme doses (10,000 IU/kg body weight) of VA oil orally, daily for 6 weeks; (G3) rats treated with NS seed oil (800 mg/kg) orally, daily for 6 weeks; (G4) HVA rats simultaneously treated with NS seed oil at the same doses and periods; and (G5) HVA recovery group. Liver function, immunoglobulin (IgG and IgM) levels, and lysosome activity were measured in serum. HVA rats revealed marked elevations in alanine aminotransferase and aspartate aminotransferase activities. This is the first study to demonstrate that NS seed oil possesses significant hepatoprotective activity against HVA. NS seed oil was a potent inducer of IgG and IgM in rat serum either alone or with high doses of VA. These findings may be considered the initial steps of the physiological and humoral immune responses for NS seed oil against HVA, but further studies examining longer periods are needed prior to recommending the use of NS seed oil as an alternative medicine for hepatic and immune diseases.

  16. Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes.

    PubMed

    Venkatesagowda, Balaji; Ponugupaty, Ebenezer; Barbosa, Aneli M; Dekker, Robert F H

    2012-01-01

    Commercial oil-yielding seeds (castor, coconut, neem, peanut, pongamia, rubber and sesame) were collected from different places in the state of Tamil Nadu (India) from which 1279 endophytic fungi were isolated. The oil-bearing seeds exhibited rich fungal diversity. High Shannon-Index H' was observed with pongamia seeds (2.847) while a low Index occurred for coconut kernel-associated mycoflora (1.018). Maximum Colonization Frequency (%) was observed for Lasiodiplodia theobromae (176). Dominance Index (expressed in terms of the Simpson's Index D) was high (0.581) for coconut kernel-associated fungi, and low for pongamia seed-borne fungi. Species Richness (Chao) of the fungal isolates was high (47.09) in the case of neem seeds, and low (16.6) for peanut seeds. All 1279 fungal isolates were screened for lipolytic activity employing a zymogram method using Tween-20 in agar. Forty isolates showed strong lipolytic activity, and were morphologically identified as belonging to 19 taxa (Alternaria, Aspergillus, Chalaropsis, Cladosporium, Colletotrichum, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor, Penicillium, Pestalotiopsis, Phoma, Phomopsis, Phyllosticta, Rhizopus, Sclerotinia, Stachybotrys and Trichoderma). These isolates also exhibited amylolytic, proteolytic and cellulolytic activities. Five fungal isolates (Aspergillus niger, Chalaropsis thielavioides, Colletotrichum gloeosporioides, Lasiodiplodia theobromae and Phoma glomerata) exhibited highest lipase activities, and the best producer was Lasiodiplodia theobromae (108 U/mL), which was characterized by genomic sequence analysis of the ITS region of 18S rDNA.

  17. Chemical and Nutritional Characterization of Seed Oil from Cucurbita maxima L. (var. Berrettina) Pumpkin.

    PubMed

    Montesano, Domenico; Blasi, Francesca; Simonetti, Maria Stella; Santini, Antonello; Cossignani, Lina

    2018-03-01

    Pumpkin ( Cucurbita spp.) has received considerable attention in recent years because of the nutritional and health-protective value of seed oil. The nutritional composition of pumpkin native to central Italy, locally known as "Berrettina" ( Cucurbita maxima L.), was evaluated. In particular, the lipid fraction of seed oil was characterized, and the triacylglycerol (TAG) was thoroughly studied by using a stereospecific procedure to obtain the intrapositional fatty acid composition of the three sn -positions of the glycerol backbone of TAG. Moreover, alkaline hydrolysis was carried out to study the main components of the unsaponifiable fraction, i.e., sterols and alcohols. It was observed that monounsaturated fatty acids and polyunsaturated fatty acids were the most abundant (41.7% and 37.2%, respectively) in Berrettina pumpkin seed oil, with high content of oleic and linoleic acid (41.4% and 37.0%, respectively). The main sterols of Berrettina pumpkin seed oil were Δ 7,22,25 -stigmastatrienol, Δ 7,25 -stigmastadienol, and spinasterol; with regard to the alcoholic fraction, triterpenic compounds were more abundant than aliphatic compounds (63.2% vs. 36.8%). The obtained data are useful to evaluate pumpkin seed oil from a nutritional point of view. The oil obtained from the seed could be used as a preservative and as a functional ingredient in different areas, e.g., cosmetics, foods, and nutraceuticals.

  18. Chemical and Nutritional Characterization of Seed Oil from Cucurbita maxima L. (var. Berrettina) Pumpkin

    PubMed Central

    Blasi, Francesca; Simonetti, Maria Stella; Cossignani, Lina

    2018-01-01

    Pumpkin (Cucurbita spp.) has received considerable attention in recent years because of the nutritional and health-protective value of seed oil. The nutritional composition of pumpkin native to central Italy, locally known as “Berrettina” (Cucurbita maxima L.), was evaluated. In particular, the lipid fraction of seed oil was characterized, and the triacylglycerol (TAG) was thoroughly studied by using a stereospecific procedure to obtain the intrapositional fatty acid composition of the three sn-positions of the glycerol backbone of TAG. Moreover, alkaline hydrolysis was carried out to study the main components of the unsaponifiable fraction, i.e., sterols and alcohols. It was observed that monounsaturated fatty acids and polyunsaturated fatty acids were the most abundant (41.7% and 37.2%, respectively) in Berrettina pumpkin seed oil, with high content of oleic and linoleic acid (41.4% and 37.0%, respectively). The main sterols of Berrettina pumpkin seed oil were Δ7,22,25-stigmastatrienol, Δ7,25-stigmastadienol, and spinasterol; with regard to the alcoholic fraction, triterpenic compounds were more abundant than aliphatic compounds (63.2% vs. 36.8%). The obtained data are useful to evaluate pumpkin seed oil from a nutritional point of view. The oil obtained from the seed could be used as a preservative and as a functional ingredient in different areas, e.g., cosmetics, foods, and nutraceuticals. PMID:29494522

  19. [Effects of sowing date and planting density on the seed yield and oil content of winter oilseed rape].

    PubMed

    Zhang, Shu-Jie; Li, Ling; Zhang, Chun-Lei

    2012-05-01

    A field experiment was conducted to investigate the effects of different sowing date and planting density on the seed yield and seed oil content of winter oilseed rape (Brassica napus). Sowing date mainly affected the seed yield of branch raceme, while planting density affected the seed yields of both branch raceme and main raceme. The seed oil content was less affected by sowing date. The proportion of the seed yield of main raceme to the seed yield per plant increased with increasing planting density, and the seed oil content of main raceme was about 1% higher than that of branch raceme. Consequently, the seed oil production per plot increased significantly with increasing planting density. In the experimental region, the sowing date of winter oilseed rape should be earlier than mid-October. When sowing in late October, the seed yield would be decreased significantly. A planting density of 36-48 plants x m(-2) could improve the seed yield and oil content of winter oilseed rape.

  20. Chemical characteristics and fatty acid profile of butterfly tree seed oil (Bauhinia purpurea L)

    NASA Astrophysics Data System (ADS)

    Soetjipto, H.; Riyanto, C. A.; Victoria, T.

    2018-04-01

    Butterfly tree (Kachnar) in Indonesia is only used as ornamental plants in garden, park, and roadsides. The seed of Butterfly tree was extracted with n-hexane and physicochemical properties were determined based on Standard Nasional Indonesia (SNI) 01-3555-1998 while the oil chemical composition was determined using GC-MS. The result showed that yield of the oil as 57.33±1.14 % (w/w) and the chemical characteristic of seed oil include acid value (13.7.8±0.23 mg KOH/g) saponification value (153.32±1.85 mg KOH/g), peroxide value (43.51±0.57. mg KOH/g). The butterfly tree seed oil showed that linoleic acid (28.11 %), palmitic acid (29.2%), oleic acid (19.82%) and stearic acid (10.7.4 %) were the main fatty acids in the crude seed oils. Minor amounts of neophytadiena and arachidic acid were also identified.

  1. Oil body proteins sequentially accumulate throughout seed development in Brassica napus.

    PubMed

    Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Valot, Benoît; d'Andréa, Sabine; Zivy, Michel; Nesi, Nathalie; Chardot, Thierry

    2011-11-15

    Despite the importance of seed oil bodies (OBs) as enclosed compartments for oil storage, little is known about lipid and protein accumulation in OBs during seed formation. OBs from rapeseed (Brassica napus) consist of a triacylglycerol (TAG) core surrounded by a phospholipid monolayer embedded with integral proteins which confer high stability to OBs in the mature dry seed. In the present study, we investigated lipid and protein accumulation patterns throughout seed development (from 5 to 65 days after pollination [DAP]) both in the whole seed and in purified OBs. Deposition of the major proteins (oleosins, caleosins and steroleosins) into OBs was assessed through (i) gene expression pattern, (ii) proteomics analysis, and (iii) protein immunodetection. For the first time, a sequential deposition of integral OB proteins was established. Accumulation of oleosins and caleosins was observed starting from early stages of seed development (12-17 DAP), while steroleosins accumulated later (~25 DAP) onwards. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. Studies on repellent activity of seed oils alone and in combination on mosquito, Aedes aegypti.

    PubMed

    Mukesh, Y; Savitri, P; Kaushik, R; Singh, N P

    2014-09-01

    The study was undertaken to investigate the relative repellency of Pongamia pinnata and Azadirachta indica seed oils on vector mosquito, Aedes aegypti under laboratory conditions. The repellents were formulated into 3 groups: seed oils, their mixture and combination of seed oils with three carrier oils viz. olive, mustard and coconut oil. Different formulations of each oil were tested at the concentrations of 1% and 5% on human baits. Efficiency was assessed, based on the total protection time; biting rate and percent protection provided by each formulation. Results showed that 5% formulation of the Pongamia pinnata and Azadirachta indica seed oils, mixed in 1:1 ratio exhibited highest percentage repellency of 85%, protection time of 300 min and bite rate of 6%. 5% concentration of A. indica and P. pinnata seed oil in mustard oil base offered 86.36% and 85% protection respectively with total protection time of 230 and 240 min respectively. The study confirms that Azadirachta indica and Pongamia pinnata have mosquito-repellent potential. When mixed in different ratios or with some carrier oil their efficacy increases 2-fold in some cases. These formulations are very promising for topical use (> 5 hrs complete protection) and are comparable to the protection provided by advanced Odomos mosquito repellent cream available commercially and thus are recommended for field trial.

  3. Deodorizing Substance in Black Cumin (Nigella sativa L.) Seed Oil.

    PubMed

    Nakasugi, Toru; Murakawa, Takushi; Shibuya, Koji; Morimoto, Masanori

    2017-08-01

    A deodorizing substance in black cumin (Nigella sativa L.), a spice for curry and vegetable foods in Southwest Asia, was examined. The essential oil prepared from the seeds of this plant exhibited strong deodorizing activity against methyl mercaptan, which is a main factor in oral malodor. After purification with silica gel column chromatography, the active substance in black cumin seed oil was identified as thymoquinone. This monoterpenic quinone functions as the main deodorizing substance in this oil against methyl mercaptan. Metabolite analysis suggested that the deodorizing activity may be generated by the addition of a reactive quinone molecule to methyl mercaptan. In the present study, the menthane-type quinone and phenol derivatives exhibited deodorizing activities via this mechanism.

  4. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  5. Evaluation of Clausena pentaphylla (Roxb.) DC oil as a fungitoxicant against storage mycoflora of pigeon pea seeds.

    PubMed

    Pandey, Abhay K; Palni, Uma T; Tripathi, Nijendra N

    2013-05-01

    The present study aimed to evaluate the antifungal activity of 30 essential oils against four dominant fungi Aspergillus flavus Link., A. niger van Tieghem, A. ochraceus Wilhelm and A. terreus Thom of stored pigeon pea seeds at a concentration of 0.36 µL mL(-1). Various fungitoxic properties, such as minimum inhibitory concentration, minimum fungicidal concentration and fungitoxic spectrum, of the most potent oil were determined. The efficacy of the most potent oil in preservation of pigeon pea seeds for 6 months was also carried out by storing 1 kg of seeds in the oil vapour. Clausena pentaphylla and Citrus limon oils were more effective against all the fungi tested, which exhibited 100% per cent mycelial inhibition. The minimum inhibitory concentration of C. pentaphylla oil was determined as 0.07 µL mL(-1) against all the test fungi and was found to be more toxic than Citrus limon oil. C. pentaphylla oil exhibited a broad range of fungitoxicity against 16 other storage fungi of pigeon pea seeds. C. pentaphylla oil significantly protected 1 kg seeds of pigeon pea from fungal deterioration and was superior to synthetic fumigants. The oil did not show any phytotoxicity and the protein content of the seeds was significantly retained for up to 6 months of storage. Thus, C. pentaphylla oil may be used as an effective fumigant in the ecofriendly management of storage fungi of pigeon pea seeds. © 2012 Society of Chemical Industry.

  6. Bio-electricity Generation using Jatropha Oil Seed Cake.

    PubMed

    Raheman, Hifjur; Padhee, Debasish

    2016-01-01

    The review of patents reveals that Handling of Jatropha seed cake after extraction of oil is essential as it contains toxic materials which create environmental pollution. The goal of this work is complete utilisation of Jatropha seeds. For this purpose, Jatropha oil was used for producing biodiesel and the byproduct Jatropha seed cake was gasified to obtain producer gas. Both biodiesel and producer gas were used to generate electricity. To achieve this, a system comprising gasifier, briquetting machine, diesel engine and generator was developed. Biodiesel was produced successfully using the method patented for biodiesel production and briquettes of Jatropha seed cake were made using a vertical extruding machine. Producer gas was obtained by gasifying these briquettes in a downdraft gasifier. A diesel engine was then run in dual fuel mode with biodiesel and producer gas instead of only diesel. Electricity was generated by coupling it to a generator. The cost of producing kilowatthour of electricity with biodiesel and diesel in dual fuel mode with producer gas was found to be 0.84 $ and 0.75 $, respectively as compared to 0.69 $ and 0.5 $ for the same fuels in single fuel mode resulting in up to 48 % saving of pilot fuel. Compared to singlefuel mode, there was 25-32 % reduction in system and brake thermal efficiency along with significantly lower NOx, higher CO and CO2 emissions when the bio-electricity generating system was operated in dual fuel mode. Overall, the developed system could produce electricity successfully by completely uti- lising Jatropha seeds without leaving any seed cake to cause environmental pollution.

  7. Physico-chemical characteristics of papaya (Carica papaya L.) seed oil of the Hong Kong/Sekaki variety.

    PubMed

    Yanty, Noorzianna Abdul Manaf; Marikkar, Jalaldeen Mohammed Nazrim; Nusantoro, Bangun Prajanto; Long, Kamariah; Ghazali, Hasanah Mohd

    2014-01-01

    A study was carried out to determine the physicochemical characteristics of the oil derived from papaya seeds of the Hong Kong/Sekaki variety. Proximate analysis showed that seeds of the Hong Kong/Sekaki variety contained considerable amount of oil (27.0%). The iodine value, saponification value, unsaponifiable matter and free fatty acid contents of freshly extracted papaya seed oil were 76.9 g I2/100g oil, 193.5 mg KOH/g oil, 1.52% and 0.91%, respectively. The oil had a Lovibond color index of 15.2Y + 5.2B. Papaya seed oil contained ten detectable fatty acids, of which 78.33% were unsaturated. Oleic (73.5%) acid was the dominant fatty acids followed by palmitic acid (15.8%). Based on the high performance liquid chromatography (HPLC) analysis, seven species of triacylglycerols (TAGs) were detected. The predominant TAGs of papaya seed oil were OOO (40.4%), POO (29.1%) and SOO (9.9%) where O, P, and S denote oleic, palmitic and stearic acids, respectively. Thermal analysis by differential scanning calorimetry (DSC) showed that papaya seed oil had its major melting and crystallization transitions at 12.4°C and -48.2°C, respectively. Analysis of the sample by Z-nose (electronic nose) instrument showed that the sample had a high level of volatile compounds.

  8. Hydrodistillation time affects dill seed essential oil yield, composition, and bioactivity

    USDA-ARS?s Scientific Manuscript database

    Dill (Anethum graveolens L.) essential oil is widely used by the food and pharmaceutical industries. We hypothesized that the chemical constituents of dill seed essential oil are eluted at different times during the hydrodistillation process, resulting in oils with different composition and bioactiv...

  9. Physico-chemical characteristics of oil produced from seeds of some date palm cultivars (Phoenix dactylifera L.) .

    PubMed

    Soliman, S S; Al-Obeed, R S; Ahmed, T A

    2015-03-01

    The oil content of saturated and unsaturated fatty acids with some physico-chemical properties and nutrients were investigated in oil produced from seeds of six important date palm cultivars and one seed strain present in Saudi Arabia. The results indicated that the oil extracted from six seed cultivars of date palm ranged from 6.73-10.89% w/w oil. The refractive index of date seeds oil was found to be between 1.4574 to 1.4615. The iodine values, acid values and saponification values were in the range of 74.2-86.6 g iodine 100 g(-1); 2.50-2.58 mg KOH g(-1) and 0.206-0.217 mg KOH g(-1), respectively. Lauric acid, Myristic acid, Palmitic acid C15, Palmitic acid C16 Stearic acid, Arachidic acid and Behenic acid of date seeds oil contents were found between 8.67-49.27; 7.01-15.43; 0-0.57; 4.82-18.09; 1.02-7.86; 0-0.08; and 0-0.15% w/w, in that order. Omega-6 and Omega-9 of date seeds oil were found between 7.31-17.87 and 52.12-58.78%, respectively. Khalas, Barhy cvs. and seed strain gave highest K and Ca, Na and Fe, Mg as compared with other studied cultivars.

  10. Fatty acid profile of kenaf seed oil

    USDA-ARS?s Scientific Manuscript database

    The fatty acid profile of kenaf (Hibiscus cannabinus L.) seed oil has been the subject of several previous reports in the literature. These reports vary considerably regarding the presence and amounts of specific fatty acids, notably epoxyoleic acid but also cyclic (cyclopropene and cyclopropane) fa...

  11. Acute toxicity of Opuntia ficus indica and Pistacia lentiscus seed oils in mice.

    PubMed

    Boukeloua, A; Belkhiri, A; Djerrou, Z; Bahri, L; Boulebda, N; Hamdi Pacha, Y

    2012-01-01

    Opuntia ficus indica and Pistacia lentiscus L. seeds are used in traditional medicine. The objective of this study was to investigate the toxicity of the fixed oil of Opuntia ficus indica and Pistacia lentiscus L. seeds in mice through determination of LD₅₀ values, and also the physicochemical characteristics of the fixed oil of these oils. The acute toxicity of their fixed oil were also investigated in mice using the method of Kabba and Berhens. The fixed oil of Pistacia lentiscus and Opuntia ficus indica seeds were extracted and analyzed for its chemical and physical properties such as acid value, free fatty acid percentage (% FFA), iodine index, and saponification value as well as refractive index and density. LD₅₀ values obtained by single doses, orally and intraperitoneally administered in mice, were respectively 43 ± 0,8 ;[40.7- 45.4 ] ml/kg body wt. p.o. and 2.72 ± 0,1 ;[2.52-2.92] ml/kg body wt. i.p. for Opuntia ficus indica ; and 37 ± 1 ;[34.4 - 39.8 ] ml/kg body wt. p.o. and 2.52 ± 0,2 ;[2.22 - 2.81 ] ml/kg body wt. i.p. for Pistacia lentiscus respectively. The yields of seed oil were respectively calculated as 20.25% and 10.41%. The acid and free fatty acid values indicated that the oil has a low acidity.

  12. Ancient Seed for Modern Cure – Pomegranate Review of Therapeutic Applications in Periodontics

    PubMed Central

    Thangavelu, Arthiie; Elavarasu, Sugumari; Sundaram, Rajasekar; Kumar, Tamilselvan; Rajendran, Dhivya; Prem, Fairlin

    2017-01-01

    Punica granatum (pomegranate), the member of Punicaceae family, is used in the prevention and treatment of health disorders. P. granatum contains diverse range of phytochemicals including ellagic acid, punicalagin, pedunculagin, quercetin, rutin, tannic acid, polyphenol, anthocyanins, and catechins. This review aims at providing an overview of the chemical constituents, antibacterial, anti-inflammatory, and antioxidant properties of P. granatum, and its role in the prevention and treatment of gingival and periodontal diseases. PMID:29284927

  13. Application of response surface methodology for the optimization of supercritical fluid extraction of essential oil from pomegranate (Punica granatum L.) peel.

    PubMed

    Ara, Katayoun Mahdavi; Raofie, Farhad

    2016-07-01

    Essential oils and volatile components of pomegranate ( Punica granatum L.) peel of the Malas variety from Meybod, Iran, were extracted using supercritical fluid extraction (SFE) and hydro-distillation methods. The experimental parameters of SFE that is pressure, temperature, extraction time, and modifier (methanol) volume were optimized using a central composite design after a (2 4-1 ) fractional factorial design. Detailed chemical composition of the essential oils and volatile components obtained by hydro-distillation and optimum condition of the supercritical CO 2 extraction were analyzed by GC-MS, and seventy-three and forty-six compounds were identified according to their retention indices and mass spectra, respectively. The optimum SFE conditions were 350 atm pressure, 55 °C temperature, 30 min extraction time, and 150 µL methanol. Results showed that oleic acid, palmitic acid and (-)-Borneol were major compounds in both extracts. The optimum extraction yield was 1.18 % (w/w) for SFE and 0.21 % (v/w) for hydro-distillation.

  14. Effect of essential oil of Origanum rotundifolium on some plant pathogenic bacteria, seed germination and plant growth of tomato

    NASA Astrophysics Data System (ADS)

    Dadaşoǧlu, Fatih; Kotan, Recep; Karagöz, Kenan; Dikbaş, Neslihan; Ćakmakçi, Ramazan; Ćakir, Ahmet; Kordali, Şaban; Özer, Hakan

    2016-04-01

    The aim of this study is to determine effect of Origanum rotundifolium's essential oil on some plant pathogenic bacterias, seed germination and plant growth of tomato. Xanthomonas axanopodis pv. vesicatoria strain (Xcv-761) and Clavibacter michiganensis ssp. michiganensis strain (Cmm) inoculated to tomato seed. The seeds were tested for germination in vitro and disease severity and some plant growth parameters in vivo. In vitro assay, maximum seed germination was observed at 62,5 µl/ml essential oil treatment in seeds inoculated with Xcv-761 and at 62,5 µl/ml essential oil and streptomycin treatment in seeds inoculated with Cmm. The least infected cotiledon number was observed at 500 µg/ml streptomycin treatment in seeds inoculated with Cmm. In vivo assay, maximum seed germination was observed at 250 µl/ml essential oil teratment in tomato inoculated with Cmm. Lowest disease severity, is seen in the CMM infected seeds with 250 µl/ml essential oil application these results were statistically significant when compared with pathogen infected seeds. Similarly, in application conducted with XCV-761 infected seed, the lowest disease severity was observed for seeds as a result of 250 µl/ml essential oil application. Also according to the results obtained from essential oil application of CMM infected seeds conducted with 62,5 µl/ml dose; while disease severity was found statistically insignificant compared to 250 µl/ml to essential oil application, ıt was found statistically significant compared to pathogen infected seeds. The results showed that essential oil of O. rotundifolium has a potential for some suppressed plant disease when it is used in appropriate dose.

  15. Bioactivity and biotechnological production of punicic acid.

    PubMed

    Holic, Roman; Xu, Yang; Caldo, Kristian Mark P; Singer, Stacy D; Field, Catherine J; Weselake, Randall J; Chen, Guanqun

    2018-04-01

    Punicic acid (PuA; 18: 3Δ 9cis,11trans,13cis ) is an unusual 18-carbon fatty acid bearing three conjugated double bonds. It has been shown to exhibit a myriad of beneficial bioactivities including anti-cancer, anti-diabetes, anti-obesity, antioxidant, and anti-inflammatory properties. Pomegranate (Punica granatum) seed oil contains approximately 80% PuA and is currently the major natural source of this remarkable fatty acid. While both PuA and pomegranate seed oil have been used as functional ingredients in foods and cosmetics for some time, their value in pharmaceutical/medical and industrial applications are presently under further exploration. Unfortunately, the availability of PuA is severely limited by the low yield and unstable supply of pomegranate seeds. In addition, efforts to produce PuA in transgenic crops have been limited by a relatively low content of PuA in the resulting seed oil. The production of PuA in engineered microorganisms with modern fermentation technology is therefore a promising and emerging method with the potential to resolve this predicament. In this paper, we provide a comprehensive review of this unusual fatty acid, covering topics ranging from its natural sources, biosynthesis, extraction and analysis, bioactivity, health benefits, and industrial applications, to recent efforts and future perspectives on the production of PuA in engineered plants and microorganisms.

  16. Investigations into the chemistry and insecticidal activity of euonymus europaeus seed oil and methanol extract

    USDA-ARS?s Scientific Manuscript database

    Euonymus europaeus seeds and seed oil were investigated for their volatiles using GC-MS-FID, Headspace-SPME/GC-MS-FID, and derivative GC-MS-FID for their volatiles and HPLC-DAD-CAD/MS for their non-volatile compounds. The seeds contain about 30% of fatty oil, mainly glyceryl trioleate, small amounts...

  17. Identification and expression of fructose-1,6-bisphosphate aldolase genes and their relations to oil content in developing seeds of tea oil tree (Camellia oleifera).

    PubMed

    Zeng, Yanling; Tan, Xiaofeng; Zhang, Lin; Jiang, Nan; Cao, Heping

    2014-01-01

    Tea oil tree (Camellia oleifera, Co) provides a fine edible oil source in China. Tea oil from the seeds is very beneficial to human health. Fructose-1,6-bisphosphate aldolase (FBA) hydrolyzes fructose-1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, two critical metabolites for oil biosynthesis. The objectives of this study were to identify FBA genes and investigate the relationship between FBA gene expression and oil content in developing seeds of tea oil tree. In this paper, four developmentally up-regulated CoFBA genes were identified in Camellia oleifera seeds based on the transcriptome from two seed developmental stages corresponding to the initiation and peak stages of lipid biosynthesis. The expression of CoFBA genes, along with three key oil biosynthesis genes CoACP, CoFAD2 and CoSAD were analyzed in seeds from eight developmental stages by real-time quantitative PCR. The oil content and fatty acid composition were also analyzed. The results showed that CoFBA and CoSAD mRNA levels were well-correlated with oil content whereas CoFAD2 gene expression levels were correlated with fatty acid composition in Camellia seeds. We propose that CoFBA and CoSAD are two important factors for determining tea oil yield because CoFBA gene controls the flux of key intermediates for oil biosynthesis and CoSAD gene controls the synthesis of oleic acid, which accounts for 80% of fatty acids in tea oil. These findings suggest that tea oil yield could be improved by enhanced expression of CoFBA and CoSAD genes in transgenic plants.

  18. Black seed oil ameliorates allergic airway inflammation by inhibiting T-cell proliferation in rats.

    PubMed

    Shahzad, Muhammad; Yang, Xudong; Raza Asim, M B; Sun, Qingzhu; Han, Yan; Zhang, Fujun; Cao, Yongxiao; Lu, Shemin

    2009-02-01

    The black seeds, from the Ranunculaceae family, have been traditionally used by various cultures as a natural remedy for several ailments. In this study, we examined the effect of black seed oil as an immunomodulator in a rat model of allergic airway inflammation. Rats sensitized to ovalbumin and challenged intranasally with ovalbumin to induce an allergic inflammatory response were compared to ovalbumin-sensitized, intranasally ovalbumin-exposed rats pretreated with intraperitoneally administered black seed oil and to control rats. The levels of IgE, IgG1 and ova-specific T-cell proliferation in spleen were measured by ELISA. The pro-inflammatory cytokine IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression levels were measured by reverse transcription polymerase chain reaction. The intraperitoneal administration of black seed oil inhibited the Th2 type immune response in rats by preventing inflammatory cell infiltration and pathological lesions in the lungs. It significantly decreased the nitric oxide production in BALF, total serum IgE, IgG1 and OVA-specific IgG1 along with IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression. Black seed oil treatment resulted in decreased T-cell response evident by lesser delayed type hypersensitivity and lower T-cell proliferation in spleen. In conclusion, black seed oil exhibited a significant reduction in all the markers of allergic inflammation mainly by inhibiting the delayed type hypersensitivity and T-cell proliferation. The data suggests that inhibition of T-cell response may be responsible for immunomodulatory effect of black seed oil in the rat model of allergic airway inflammation.

  19. Chemical Composition of Date Palm (Phoenix dactylifera L.) Seed Oil from Six Saudi Arabian Cultivars.

    PubMed

    Nehdi, Imeddedine Arbi; Sbihi, Hassen Mohamed; Tan, Chin Ping; Rashid, Umer; Al-Resayes, Saud Ibrahim

    2018-03-01

    This investigation aimed to evaluate the chemical composition and physicochemical properties of seed oils from 6 date palm (Phoenix. dactylifera L.) cultivars (Barhi, Khalas, Manifi, Rezeiz, Sulaj, and Sukkari) growing in Saudi Arabia and to compare them with conventional palm olein. The mean oil content of the seeds was about 7%. Oleic acid (48.67%) was the main fatty acid, followed by lauric acid (17.26%), stearic acid (10.74%), palmitic acid (9.88%), and linolenic acid (8.13%). The mean value for free fatty acids content was 0.5%. The P. dactylifera seed oil also exhibited a mean tocol content of 70.75 mg/100 g. α-Tocotrienol was the most abundant isomer (30.19%), followed by γ-tocopherol (23.61%), γ-tocotrienol (19.07%), and α-tocopherol (17.52%). The oils showed high thermal and oxidative stabilities. The findings indicate that date seed oil has the potential to be used in the food industry as an abundant alternative to palm olein. This study showed that date seed had great nutritional value due to which it can be used for food applications especially as frying or cooking oil. In addition, date oil has also potential to be used in cosmetic and pharmaceutical practices as well. The extraction of oil from Phoenix dactylifera seed on large scale can create positive socioeconomic benefits especially for rural communities and could also assist to resolve the environmental issues generated by excess date production in large scale date-producing countries such as Saudi Arabia. © 2018 Institute of Food Technologists®.

  20. The Effect of Two Methods of Pomegranate (Punica granatum L) Juice Extraction on Quality During Storage at 4°C

    PubMed Central

    Antunes, Dulce

    2004-01-01

    The effect of two extraction methods of pomegranate juice on its quality and stability was evaluated. The first method consisted of separation of the seeds from fruits and centrifugation. The second method consisted of squeezing fruit halves with an electric lemon squeezer. During a period of 72 hours of cold storage at 4°C, the juices were evaluated for the presence of sugars, organic acids, and anthocyanins. Delphinidin 3-glucoside was identified to be the major anthocyanin present at the level of 45–69 mg/L. Among the organic acids, oxalic and tartaric acids dominated. The major sugars detected in pomegranate juice were glucose and sucrose. No significant differences in the content of sugars, organic acids, or anthocyanins in juices obtained through application of the two different extraction methods were detected, with the exception of the drastic decrease of cyanidin 3,5-diglucoside level in juice obtained by seed centrifugation. The pH did not show differences between treatments. Titrable acidity and the level of sugars expressed as °Brix decreased after 32 and 15 hours after extraction, respectively, when juice was obtained by centrifuging the seeds. PMID:15577198

  1. The Effect of Two Methods of Pomegranate (Punica granatum L) Juice Extraction on Quality During Storage at $4^\\circ$ C.

    PubMed

    Miguel, Graça; Dandlen, Susana; Antunes, Dulce; Neves, Alcinda; Martins, Denise

    2004-01-01

    The effect of two extraction methods of pomegranate juice on its quality and stability was evaluated. The first method consisted of separation of the seeds from fruits and centrifugation. The second method consisted of squeezing fruit halves with an electric lemon squeezer. During a period of 72 hours of cold storage at $4^\\circ$ C, the juices were evaluated for the presence of sugars, organic acids, and anthocyanins. Delphinidin 3-glucoside was identified to be the major anthocyanin present at the level of 45-69 mg/L. Among the organic acids, oxalic and tartaric acids dominated. The major sugars detected in pomegranate juice were glucose and sucrose. No significant differences in the content of sugars, organic acids, or anthocyanins in juices obtained through application of the two different extraction methods were detected, with the exception of the drastic decrease of cyanidin $3,5$ -diglucoside level in juice obtained by seed centrifugation. The pH did not show differences between treatments. Titrable acidity and the level of sugars expressed as ${}^{\\circ}$ Brix decreased after 32 and 15 hours after extraction, respectively, when juice was obtained by centrifuging the seeds.

  2. Effect of Emulsification Method and Particle Size on the Rate of in vivo Oral Bioavailability of Kenaf (Hibiscus cannabinus L.) Seed Oil.

    PubMed

    Cheong, Ai Mun; Tan, Chin Ping; Nyam, Kar Lin

    2018-05-26

    Kenaf (Hibiscus cannabinus L.) seed oil-in-water nanoemulsions stabilized by complexation of beta-cyclodextrin with sodium caseinate and Tween 20 have been shown to have higher bioaccessibility of vitamin E and total phenolic content than nonemulsified kenaf seed oil in the previous in vitro gastrointestinal digestion study. However, its oral bioavailability was unknown. Therefore, the aim of this study was to evaluate the rate of in vivo oral bioavailability of kenaf seed oil-in-water nanoemulsions in comparison with nonemulsified kenaf seed oil and kenaf seed oil macroemulsions during the 180 min of gastrointestinal digestion. Kenaf seed oil macroemulsions were produced by using conventional method. Kenaf seed oil-in-water nanoemulsions had shown improvement in the rate of absorption. At 180 min of digestion time, the total α-tocopherol bioavailability of kenaf seed oil nanoemulsions was increased by 1.7- and 1.4-fold, compared to kenaf seed oil and macroemulsion, respectively. Kenaf seed oil-in-water nanoemulsions were stable in considerably wide range of pH (>5 and <3), suggesting that it can be fortified into beverages within this pH range PRACTICAL APPLICATION: The production of kenaf seed oil-in-water nanoemulsions had provided a delivery system to encapsulate the kenaf seed oil, as well as enhanced the bioaccessibility and bioavailability of kenaf seed oil. Therefore, kenaf seed oil-in-water nanoemulsions exhibit a great potential application in nutraceutical fields. © 2018 Institute of Food Technologists®.

  3. Multigene Engineering of Triacylglycerol Metabolism Boosts Seed Oil Content in Arabidopsis1[W][OPEN

    PubMed Central

    van Erp, Harrie; Kelly, Amélie A.; Menard, Guillaume; Eastmond, Peter J.

    2014-01-01

    Increasing the yield of oilseed crops is an important objective for biotechnologists. A number of individual genes involved in triacylglycerol metabolism have previously been reported to enhance the oil content of seeds when their expression is altered. However, it has yet to be established whether specific combinations of these genes can be used to achieve an additive effect and whether this leads to enhanced yield. Using Arabidopsis (Arabidopsis thaliana) as an experimental system, we show that seed-specific overexpression of WRINKLED1 (a transcriptional regulator of glycolysis and fatty acid synthesis) and DIACYLGLYCEROL ACYLTRANSFERASE1 (a triacylglycerol biosynthetic enzyme) combined with suppression of the triacylglycerol lipase SUGAR-DEPENDENT1 results in a higher percentage seed oil content and greater seed mass than manipulation of each gene individually. Analysis of total seed yield per plant suggests that, despite a reduction in seed number, the total yield of oil is also increased. PMID:24696520

  4. Novel Insights into the Influence of Seed Sarcotesta Photosynthesis on Accumulation of Seed Dry Matter and Oil Content in Torreya grandis cv. “Merrillii”

    PubMed Central

    Hu, Yuanyuan; Zhang, Yongling; Yu, Weiwu; Hänninen, Heikki; Song, Lili; Du, Xuhua; Zhang, Rui; Wu, Jiasheng

    2018-01-01

    Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation of Torreya grandis cv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm), the PSII quantum yield (ΦPSII), and the photosynthetic quenching coefficient (qP). The ribulose 1, 5—bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content (Chl(a+b)) and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of the Torreya seeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars. PMID:29375592

  5. Challenges and issues concerning mycotoxins contamination in oil seeds and their edible oils: Updates from last decade.

    PubMed

    Bhat, Rajeev; Reddy, Kasa Ravindra Nadha

    2017-01-15

    Safety concerns pertaining towards fungal occurrence and mycotoxins contamination in agri-food commodities has been an issue of high apprehension. With the increase in evidence based research knowledge on health effects posed by ingestion of mycotoxins-contaminated food and feed by humans and livestock, concerns have been raised towards providing more insights on screening of agri-food commodities to benefit consumers. Available reports indicate majority of edible oil-yielding seeds to be contaminated by various fungi, capable of producing mycotoxins. These mycotoxins can enter human food chain via use of edible oils or via animals fed with contaminated oil cake residues. In this review, we have decisively evaluated available data (from the past decade) pertaining towards fungal occurrence and level of mycotoxins in various oil seeds and their edible oils. This review can be of practical use to justify the prevailing gaps, especially relevant to the research on presence of mycotoxins in edible plant based oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Relative efficacy of casein or soya protein combined with palm or safflower-seed oil on hyperuricaemia in rats.

    PubMed

    Lo, Hui-Chen; Wang, Yao-Horng; Chiou, Hue-Ying; Lai, Shan-Hu; Yang, Yu

    2010-07-01

    Diets that ameliorate the adverse effects of uric acid (UA) on renal damage deserve attention. The effects of casein or soya protein combined with palm or safflower-seed oil on various serum parameters and renal histology were investigated on hyperuricaemic rats. Male Wistar rats administered with oxonic acid and UA to induce hyperuricaemia were fed with casein or soya protein plus palm- or safflower-seed oil-supplemented diets. Normal rats and hyperuricaemic rats with or without allopurinol treatment (150 mg/l in drinking water) were fed with casein plus maize oil-supplemented diets. After 8 weeks, allopurinol treatment and soya protein plus safflower-seed oil-supplemented diet significantly decreased serum UA in hyperuricaemic rats (one-way ANOVA; P < 0.05). In addition, soya protein and casein attenuated hyperuricaemia-induced decreases in serum albumin and insulin, respectively (two-way ANOVA; P < 0.05). Safflower-seed oil significantly decreased serum TAG and UA, whereas palm oil significantly increased serum cholesterol, TAG, blood urea N and creatinine. However, soya protein significantly decreased renal NO and nitrotyrosine and palm oil significantly decreased renal nitrotyrosine, TNF-alpha and interferon-gamma and increased renal transforming growth factor-beta. Casein with safflower-seed oil significantly attenuated renal tubulointerstitial nephritis, crystals and fibrosis. Comparing casein v. soya protein combined with palm or safflower-seed oil, the results support that casein with safflower-seed oil may be effective in attenuating hyperuricaemia-associated renal damage, while soya protein with safflower-seed oil may be beneficial in lowering serum UA and TAG.

  7. Distillation time as tool for improved antimalarial activity and differential oil composition of cumin seed oil

    USDA-ARS?s Scientific Manuscript database

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given...

  8. Antidepressant-like effects of Perilla frutescens seed oil during a forced swimming test.

    PubMed

    Lee, Hsiu-Chuan; Ko, Hsiang-Kai; Huang, Brian E T-G; Chu, Yan-Hwa; Huang, Shih-Yi

    2014-05-01

    Unipolar depressive disorder may become one of the major leading causes of disease burden by 2030 according to the World Health Organization (WHO). Thus, the discovery of antidepressive foods is attractive and could have considerable impacts worldwide. We investigated the antidepressant-like effects of Perilla frutescens seed oil on adult male rats subjected to a forced swimming test (FST). Forty Sprague-Dawley rats were housed and fed various diets, including soybean oil-rich, eicosapentaenoic acid (EPA)-rich, and P. frutescens seed oil-rich diets for 6 weeks. After the dietary intervention, animals were tested using an FST and were sacrificed after the test. We analyzed the fatty acid profiles of red blood cells (RBCs) and the brain prefrontal cortex (PFC). Levels of brain-derived neurotrophic factor (BDNF), serotonin, and dopamine in the PFC were also determined. After the FST, the imipramine, EPA-rich, and P. frutescens seed oil-rich groups showed significant shorter immobility time and longer struggling time than the control group (p < 0.05). Levels of BDNF in the P. frutescens seed oil-rich group and levels of serotonin in the EPA-rich group were significantly (p < 0.05) higher than those of the control group. Moreover, the BDNF concentration in the PFC was significantly positively correlated with the struggling time. However, there were no significant differences in dopamine levels between the intervention groups and the control group. In conclusion, a P. frutescens seed oil-rich diet exhibited antidepressant-like properties through modulation of fatty acid profiles and BDNF expression in the brain during an FST.

  9. Enzymatic lipophilization of epicatechin with free fatty acids and its effect on antioxidative capacity in crude camellia seed oil.

    PubMed

    Chen, Sa-Sa; Luo, Shui-Zhong; Zheng, Zhi; Zhao, Yan-Yan; Pang, Min; Jiang, Shao-Tong

    2017-02-01

    Crude camellia seed oil is rich in free fatty acids, which must be removed to produce an oil of acceptable quality. In the present study, we reduced the free fatty acid content of crude camellia seed oil by lipophilization of epicatechin with these free fatty acids in the presence of Candida antarctica lipase B (Novozym 435), and this may enhance the oxidative stability of the oil at the same time. The acid value of crude camellia seed oil reduced from 3.7 to 2.5 mgKOH g -1 after lipophilization. Gas chomatography-mass spectrometry analysis revealed that epicatechin oleate and epicatechin palmitate were synthesized in the lipophilized oil. The peroxide, p-anisidine, and total oxidation values during heating of the lipophilized oil were much lower than that of the crude oil and commercially available camellia seed oil, suggesting that lipophilized epicatechin derivatives could help enhance the oxidative stability of edible oil. The enzymatic process to lipophilize epicatechin with the free fatty acids in crude camellia seed oil described in the present study could decrease the acid value to meet the quality standards for commercial camellia seed oil and, at the same time, obtain a new edible camellia seed oil product with good oxidative stability. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. A genome-wide association study of seed protein and oil content in soybean

    PubMed Central

    2014-01-01

    Background Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. Results A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r 2 ) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. Conclusions This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome

  11. A genome-wide association study of seed protein and oil content in soybean.

    PubMed

    Hwang, Eun-Young; Song, Qijian; Jia, Gaofeng; Specht, James E; Hyten, David L; Costa, Jose; Cregan, Perry B

    2014-01-02

    Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r2) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise

  12. Study of optimal extraction conditions for achieving high yield and antioxidant activity of tomato seed oil.

    PubMed

    Shao, Dongyan; Atungulu, Griffiths G; Pan, Zhongli; Yue, Tianli; Zhang, Ang; Li, Xuan

    2012-08-01

    Value of tomato seed has not been fully recognized. The objectives of this research were to establish suitable processing conditions for extracting oil from tomato seed by using solvent, determine the impact of processing conditions on yield and antioxidant activity of extracted oil, and elucidate kinetics of the oil extraction process. Four processing parameters, including time, temperature, solvent-to-solid ratio and particle size were studied. A second order model was established to describe the oil extraction process. Based on the results, increasing temperature, solvent-to-solid ratio, and extraction time increased oil yield. In contrast, larger particle size reduced the oil yield. The recommended oil extraction conditions were 8 min of extraction time at temperature of 25 °C, solvent-to-solids ratio of 5/1 (v/w) and particle size of 0.38 mm, which gave oil yield of 20.32% with recovery rate of 78.56%. The DPPH scavenging activity of extracted oil was not significantly affected by the extraction parameters. The inhibitory concentration (IC(50) ) of tomato seed oil was 8.67 mg/mL which was notably low compared to most vegetable oils. A 2nd order model successfully described the kinetics of tomato oil extraction process and parameters of extraction kinetics including initial extraction rate (h), equilibrium concentration of oil (C(s) ), and the extraction rate constant (k) could be precisely predicted with R(2) of at least 0.957. The study revealed that tomato seed which is typically treated as a low value byproduct of tomato processing has great potential in producing oil with high antioxidant capability. The impact of processing conditions including time, temperature, solvent-to-solid ratio and particle size on yield, and antioxidant activity of extracted tomato seed oil are reported. Optimal conditions and models which describe the extraction process are recommended. The information is vital for determining the extraction processing conditions for industrial

  13. Spectroscopic and Thermooxidative Analysis of Organic Okra Oil and Seeds from Abelmoschus esculentus

    PubMed Central

    de Sousa Ferreira Soares, Geórgia; Gomes, Vinicius de Morais; dos Reis Albuquerque, Anderson; Barbosa Dantas, Manoel; Rosenhain, Raul; de Souza, Antônio Gouveia; Persunh, Darlene Camati; Gadelha, Carlos Alberto de Almeida; Costa, Maria José de Carvalho; Gadelha, Tatiane Santi

    2012-01-01

    With changes in human consumption from animal fats to vegetable oils, the search for seed types, often from unconventional vegetable sources has grown. Research on the chemical composition of both seed and oil for Brazilian Okra in South America is still incipient. In this study, flour and oil from organic Okra seeds (Abelmoschus esculentus L Moench), grown in northeastern Brazil were analyzed. Similar to Okra varieties from the Middle East and Central America, Brazilian Okra has significant amounts of protein (22.14%), lipids (14.01%), and high amounts of unsaturated lipids (66.32%), especially the oleic (20.38%) and linoleic acids (44.48%). Oil analysis through PDSC revealed an oxidation temperature of 175.2°C, which in combination with low amounts of peroxide, demonstrates its resistance to oxidation and favors its use for human consumption. PMID:22645459

  14. Chemical composition and biological activity of Abies alba and A. koreana seed and cone essential oils and characterization of their seed hydrolates.

    PubMed

    Wajs-Bonikowska, Anna; Sienkiewicz, Monika; Stobiecka, Agnieszka; Maciąg, Agnieszka; Szoka, Łukasz; Karna, Ewa

    2015-03-01

    The chemical composition, including the enantiomeric excess of the main terpenes, the antimicrobial and antiradical activities, as well as the cytotoxicity of Abies alba and A. koreana seed and cone essential oils were investigated. Additionally, their seed hydrolates were characterized. In the examined oils and hydrolates, a total of 174 compounds were identified, which comprised 95.6-99.9% of the volatiles. The essential oils were mainly composed of monoterpene hydrocarbons, whereas the composition of the hydrolates, differing from the seed oils of the corresponding fir species, consisted mainly of oxygenated derivatives of sesquiterpenes. The seed and cone essential oils of both firs exhibited DPPH-radical-scavenging properties and low antibacterial activity against the bacterial strains tested. Moreover, they evoked only low cytotoxicity towards normal fibroblasts and the two cancer cell lines MCF-7 and MDA-MBA-231. At concentrations up to 50 μg/ml, all essential oils were safe in relation to normal fibroblasts. Although they induced cytotoxicity towards the cancer cells at concentrations slightly lower than those required for the inhibition of fibroblast proliferation, their influence on cancer cells was weak, with IC50 values similar to those observed towards normal fibroblasts. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  15. Policosanol composition, antioxidant and anti-arthritic activities of milk thistle (Silybium marianum L.) oil at different seed maturity stages.

    PubMed

    Harrabi, Saoussem; Ferchichi, Azza; Bacheli, Asma; Fellah, Hayet

    2018-04-16

    Several anti-arthritic drugs and synthetic antioxidants have wide pharmaceutical uses and are often associated with various side effects on the human health. Dietary seed oils and their minor components like policosanol may offer an effective alternative treatment for arthritic and oxidative-stress related diseases. The biological effects of seed oils were affected by different parameters such as the stage of seed maturity. Hence, this study seeks to determine the policosanol content, antioxidant and anti-arthritic activities of milk thistle (Silybium marianum L.) oil extracted at various stages of seed maturation. Milk thistle oil samples were extracted from seeds collected at three maturation stages (immature, intermediate, and mature). The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assays were used to determine the antioxidant activity of the extracted oils. The anti-arthritic activity of oil samples was evaluated with bovine serum protein denaturation and egg albumin denaturation methods. Gas chromatography coupled to mass spectrometry (GC-MS) was employed to determine the policosanol profile. Policosanol profile, antioxidant and anti-arthritic activities of milk thistle oil were influenced by the seed maturity stages. The oil extracted from the immature seeds had the highest total policosanol content (987.68 mg/kg of oil) and displayed the maximum antiradical activity (96.42% and 90.35% for DPPH test and ABTS assay, respectively). Nine aliphatic alcohols were identified in the milk thistle oil. The dominant poliosanol in the mature seed oil was octacosanol (75.44%), while triacontanol was the major compound (40.25%) in the immature seed oil. Additionally, the maximum inhibition of bovine serum protein denaturation (92.53%) and egg albumin denaturation (86.36%) were observed in immature seed oil as compared to mature seed oil. A high correlation was found between the total

  16. The use of powder and essential oil of Cymbopogon citratus against mould deterioration and aflatoxin contamination of "egusi" melon seeds.

    PubMed

    Bankole, S A; Joda, A O; Ashidi, J S

    2005-01-01

    Experiments were carried out to determine the potential of using the powder and essential oil from dried ground leaves of Cymbopogon citratus (lemon grass) to control storage deterioration and aflatoxin contamination of melon seeds. Four mould species: Aspergillus flavus, A. niger, A. tamarii and Penicillium citrinum were inoculated in the form of conidia suspension (approx. 10(6) conidia per ml) unto shelled melon seeds. The powdered dry leaves and essential oil from lemon grass were mixed with the inoculated seeds at levels ranging from 1-10 g/100 g seeds and 0.1 to 1.0 ml/100 g seeds respectively. The ground leaves significantly reduced the extent of deterioration in melon seeds inoculated with different fungi compared to the untreated inoculated seeds. The essential oil at 0.1 and 0.25 ml/100 g seeds and ground leaves at 10 g/100 g seeds significantly reduced deterioration and aflatoxin production in shelled melon seeds inoculated with toxigenic A. flavus. At higher dosages (0.5 and 1.0 ml/100 g seeds), the essential oil completely prevented aflatoxin production. After 6 months in farmers' stores, unshelled melon seeds treated with 0.5 ml/ 100 g seeds of essential oil and 10 g/100 g seeds of powdered leaves of C. citratus had significantly lower proportion of visibly diseased seeds and Aspergillus spp. infestation levels and significantly higher seed germination compared to the untreated seeds. The oil content, free fatty acid and peroxide values in seeds protected with essential oil after 6 months did not significantly differ from the values in seeds before storage. The efficacy of the essential oil in preserving the quality of melon seeds in stores was statistically at par with that of fungicide (iprodione) treatment. ((c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  17. In vitro antioxidant activities of extract and oil from roselle (Hibiscus sabdariffa L.) seed against sunflower oil autoxidation.

    PubMed

    Nyam, K L; Teh, Y N; Tan, C P; Kamariah, L

    2012-08-01

    In order to overcome the stability problems of oils and fats, synthetic antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) have widespread use as food additives in many countries. Recent reports reveal that these compounds may be implicated in many health risks, including cancer and carcinogenesis. Hence, there is a move towards the use of natural antioxidants of plant origin to replace these synthetic antioxidants. In this study, roselle seed oil (RSO) and extract (RSE) were mixed with sunflower oil, respectively to monitor degradation rate and investigate antioxidant activity during accelerated storage. The antioxidant activity was found to stabilise sunflower oil of various samples and in the order of RSE>RSO>tocopherol>sunflower oil. The total percentage increased after 5 days of storage period in free fatty acid (FFA), peroxide value (PV) and anisidine value (AV). Total oxidation value (TOx) of sunflower oil supplemented with 1500 ppm RSE was 33.3%, 47.7%, 14.5%, and 45.5%, respectively. While the total percentage increased under different analysis methods, sunflower oil supplemented with 5% RSO was 17.2%, 60.4%, 36.2% and 59.0% in the order of FFA, PV, AV and TOTOX. Both RSO and RSE were found to be more effective in stabilisation of sunflower oil compared to tocopherol. Total phenolic content of RSE was 46.40 +/- 1.51 mg GAE/100g of oil while RSO was 12.51 +/- 0.15 mg GAE/ 100g of oil. The data indicates that roselle seed oil and seed extract are rich in phenolics and antioxidant activities and may be a potential source of natural antioxidants.

  18. Suitability of elemental fingerprinting for assessing the geographic origin of pumpkin (Cucurbita pepo var. styriaca) seed oil.

    PubMed

    Bandoniene, Donata; Zettl, Daniela; Meisel, Thomas; Maneiko, Marija

    2013-02-15

    An analytical method was developed and validated for the classification of the geographical origin of pumpkin seeds and oil from Austria, China and Russia. The distribution of element traces in pumpkin seed and pumpkin seed oils in relation to the geographical origin of soils of several agricultural farms in Austria was studied in detail. Samples from several geographic origins were taken from parts of the pumpkin, pumpkin flesh, seeds, the oil extracted from the seeds and the oil-extraction cake as well as the topsoil on which the plants were grown. Plants from different geographical origin show variations of the elemental patterns that are significantly large, reproducible over the years and ripeness period and show no significant influence of oil production procedure, to allow to a discrimination of geographical origin. A successful differentiation of oils from different regions in Austria, China and Russia classified with multivariate data analysis is demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Method for attaining fennel (Foeniculum vulgare Mill.) seed oil fractions with different composition and antioxidant capacity

    USDA-ARS?s Scientific Manuscript database

    Fennel (Foeniculum vulgare Mill.) is cultivated for its seeds and foliage, which contain essential oil. We hypothesized that the collection of fennel seed oil at different time points during the distillation process may result in fennel oil with distinct composition and bioactivity. We collected ess...

  20. Seed-specific RNAi in safflower generates a superhigh oleic oil with extended oxidative stability.

    PubMed

    Wood, Craig C; Okada, Shoko; Taylor, Matthew C; Menon, Amratha; Mathew, Anu; Cullerne, Darren; Stephen, Stuart J; Allen, Robert S; Zhou, Xue-Rong; Liu, Qing; Oakeshott, John G; Singh, Surinder P; Green, Allan G

    2018-03-06

    Vegetable oils extracted from oilseeds are an important component of foods, but are also used in a range of high value oleochemical applications. Despite being biodegradable, nontoxic and renewable current plant oils suffer from the presence of residual polyunsaturated fatty acids that are prone to free radical formation that limit their oxidative stability, and consequently shelf life and functionality. Many decades of plant breeding have been successful in raising the oleic content to ~90%, but have come at the expense of overall field performance, including poor yields. Here, we engineer superhigh oleic (SHO) safflower producing a seed oil with 93% oleic generated from seed produced in multisite field trials spanning five generations. SHO safflower oil is the result of seed-specific hairpin-based RNA interference of two safflower lipid biosynthetic genes, FAD2.2 and FATB, producing seed oil containing less than 1.5% polyunsaturates and only 4% saturates but with no impact on lipid profiles of leaves and roots. Transgenic SHO events were compared to non-GM safflower in multisite trial plots with a wide range of growing season conditions, which showed no evidence of impact on seed yield. The oxidative stability of the field-grown SHO oil produced from various sites was 50 h at 110°C compared to 13 h for conventional ~80% oleic safflower oils. SHO safflower produces a uniquely stable vegetable oil across different field conditions that can provide the scale of production that is required for meeting the global demands for high stability oils in food and the oleochemical industry. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Ameliorative effect of pumpkin seed oil against emamectin induced toxicity in mice.

    PubMed

    Abou-Zeid, Shimaa M; AbuBakr, Huda O; Mohamed, Mostafa A; El-Bahrawy, Amanallah

    2018-02-01

    The current study was conducted to evaluate the toxic effects of emamectin insecticide in mice and the possible protective effect of pumpkin seed oil. Treated mice received emamectin benzoate in the diet at 75-ppm for 8 weeks, while another group of animals received emamectin in addition to pumpkin seed oil at a dose of 4 ml/kg. Biochemical analysis of MDA, DNA fragmentation, GSH, CAT and SOD was performed in liver, kidney and brain as oxidant/antioxidant biomarkers. In addition, gene expression of CYP2E1 and Mgst1 and histopathological alterations in these organs were evaluated. Emamectin administration induced oxidative stress in liver and kidney evidenced by elevated levels of MDA and percentage of DNA fragmentation with suppression of GSH level and CAT and SOD activities. Brain showed increase of MDA level with inhibition of SOD activity. Relative expressions of CYP2E1 and Mgst1 genes were significantly elevated in both liver and kidney. Emamectin produced several histopathological changes in liver, kidney and brain. Co-administration of pumpkin seed oil produced considerable protection of liver and kidney and complete protection of brain. In conclusion, pumpkin seed oil has valuable value in ameliorating the toxic insult produced by emamectin in mice. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Could Pomegranate Juice Help in the Control of Inflammatory Diseases?

    PubMed Central

    2017-01-01

    Fruits rich in polyphenols, such as pomegranates, have been shown to have health benefits relating to their antioxidant and anti-inflammatory properties. Using data obtained from PubMed and Scopus, this article provides a brief overview of the therapeutic effects of pomegranate on chronic inflammatory diseases (CID) such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), metabolic and cardiovascular disorders, and other inflammatory-associated conditions, with an emphasis on fruit-derived juices. Most studies regarding the effects of pomegranate juice have focused on its ability to treat prostate cancer, diabetes, and atherosclerosis. However, pomegranate juice has shown therapeutic potential for many other illnesses. For instance, a small number of human clinical trials have highlighted the positive effects of pomegranate juice and extract consumption on cardiovascular health. The beneficial effects of pomegranate components have also been observed in animal models for respiratory diseases, RA, neurodegenerative disease, and hyperlipidaemia. Furthermore, there exists strong evidence from rodent models suggesting that pomegranate juice can be used to effectively treat IBD, and as an anti-inflammatory agent to treat CID. The effects of pomegranate intake should be further investigated by conducting larger and more well-defined human trials. PMID:28867799

  3. Could Pomegranate Juice Help in the Control of Inflammatory Diseases?

    PubMed

    Danesi, Francesca; Ferguson, Lynnette R

    2017-08-30

    Fruits rich in polyphenols, such as pomegranates, have been shown to have health benefits relating to their antioxidant and anti-inflammatory properties. Using data obtained from PubMed and Scopus, this article provides a brief overview of the therapeutic effects of pomegranate on chronic inflammatory diseases (CID) such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), metabolic and cardiovascular disorders, and other inflammatory-associated conditions, with an emphasis on fruit-derived juices. Most studies regarding the effects of pomegranate juice have focused on its ability to treat prostate cancer, diabetes, and atherosclerosis. However, pomegranate juice has shown therapeutic potential for many other illnesses. For instance, a small number of human clinical trials have highlighted the positive effects of pomegranate juice and extract consumption on cardiovascular health. The beneficial effects of pomegranate components have also been observed in animal models for respiratory diseases, RA, neurodegenerative disease, and hyperlipidaemia. Furthermore, there exists strong evidence from rodent models suggesting that pomegranate juice can be used to effectively treat IBD, and as an anti-inflammatory agent to treat CID. The effects of pomegranate intake should be further investigated by conducting larger and more well-defined human trials.

  4. Salt-induced modulation in inorganic nutrients, antioxidant enzymes, proline content and seed oil composition in safflower (Carthamus tinctorius L.).

    PubMed

    Siddiqi, Ejaz Hussain; Ashraf, Muhammad; Al-Qurainy, Fahad; Akram, Nudrat Aisha

    2011-12-01

    Safflower (Carthamus tinctorius L.) has gained considerable ground as a potential oil-seed crop. However, its yield and oil production are adversely affected under saline conditions. The present study was conducted to appraise the influence of salt (NaCl) stress on yield, accumulation of different inorganic elements, free proline and activities of some key antioxidant enzymes in plant tissues as well as seed oil components in safflower. Two safflower accessions differing in salt tolerance (Safflower-33 (salt sensitive) and Safflower-39 (salt tolerant)) were grown under saline (150 mmol L(-1) ) conditions and salt-induced changes in the earlier-mentioned physiological attributes were determined. Salt stress enhanced leaf and root Na(+) , Cl(-) and proline accumulation and activities of leaf superoxide dismutase, catalase and peroxidase, while it decreased K(+) , Ca(2+) and K(+) /Ca(2+) and Ca(2+) /Na(+) ratios and seed yield, 100-seed weight, number of seeds, as well as capitula, seed oil contents and oil palmitic acid. No significant effect of salt stress was observed on seed oil α-tocopherols, stearic acid, oleic acid or linoleic acid contents. Of the two safflower lines, salt-sensitive Safflower-33 was higher in leaf and root Na(+) and Cl(-) , while Safflower-39 was higher in leaf and root K(+) , K(+) /Ca(2+) and Ca(2+) /Na(+) and seed yield, 100-seed weight, catalase activity, seed oil contents, seed oil α-tocopherol and palmitic acid. Other attributes remained almost unaffected in both accessions. Overall, high salt tolerance of Safflower-39 could be attributed to Na(+) and Cl(-) exclusion, high accumulation of K(+) and free proline, enhanced CAT activity, seed oil α-tocopherols and palmitic acid contents. Copyright © 2011 Society of Chemical Industry.

  5. Heterologous expression of two GPATs from Jatropha curcas alters seed oil levels in transgenic Arabidopsis thaliana.

    PubMed

    Misra, Aparna; Khan, Kasim; Niranjan, Abhishek; Kumar, Vinod; Sane, Vidhu A

    2017-10-01

    Oils and fats are stored in endosperm during seed development in the form of triacylglycerols. Three acyltransferases: glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidyl acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT) are involved in the storage lipid biosynthesis and catalyze the stepwise acylation of glycerol backbone. In this study two members of GPAT gene family (JcGPAT1 and JcGPAT2) from Jatropha seeds were identified and characterized. Sequence analysis suggested that JcGPAT1 and JcGPAT2 are homologous to Arabidopsis acyltransferase-1 (ATS1) and AtGPAT9 respectively. The sub-cellular localization studies of these two GPATs showed that JcGPAT1 localizes into plastid whereas JcGPAT2 localizes in to endoplasmic reticulum. JcGPAT1 and JcGPAT2 expressed throughout the seed development with higher expression in fully matured seed compared to immature seed. The transcript levels of JcGPAT2 were higher in comparison to JcGPAT1 in different developmental stages of seed. Over-expression of JcGPAT1 and JcGPAT2 under constitutive and seed specific promoters in Arabidopsis thaliana increased total oil content. Transgenic seeds of JcGPAT2-OE lines accumulated 43-60% more oil than control seeds whereas seeds of Arabidopsis lines over-expressing plastidial GPAT lead to only 13-20% increase in oil content. Functional characterization of GPAT homologues of Jatropha in Arabidopsis suggested that these are involved in oil biosynthesis but might have specific roles in Jatropha. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Evaluation of the safety and efficacy of Lesquerella fendleri seed and oils as poultry feed additives

    USDA-ARS?s Scientific Manuscript database

    Lesquerella (Lesquerella fendleri (Gray) Wats) is an oil seed plant capable of growth over a large geographic area of the southwestern U.S. The seed oil contains hydroxyfatty acids, useful in a variety of industrial products, and can replace imported castor bean oil (Ricinus communis L.). Lesquere...

  7. Genetic variability for phenotype, seed production, oil content, and fatty acid composition among 17 Roselle (Hibiscus sabdariffa) accessions

    USDA-ARS?s Scientific Manuscript database

    Seed oil and fatty acids in plants have human health implications. Oil from roselle (Hibiscus sabdariffa L.) seeds are used in Taiwan as a diuretic, laxative, and tonic. The objectives of this study were to evaluate seeds from 17 roselle accessions for oil and fatty acid variation in a greenhouse. S...

  8. Antioxidant (Tocopherol and Canolol) Content in Rapeseed Oil Obtained from Roasted Yellow-Seeded Brassica napus.

    PubMed

    Siger, Aleksander; Gawrysiak-Witulska, Marzena; Bartkowiak-Broda, Iwona

    2017-01-01

    In this study, the effect of temperature (140, 160, 180 °C) and roasting time (5, 10, 15 min) on the bioactive compound content (canolol, tocopherol and plastochromanol-8) of cold-pressed oil from yellow-seeded rapeseed lines of different colors was investigated. Roasting increased the peroxide value in the seed oils compared to the oils from the control samples. However, roasting did not affect the acid values of the oils, which were 1.15-1.47 and 1.30-1.40 mg KOH/g, for line PN1 03/1i/14 (yellow seeds) and line PN1 563/1i/14 (brown seeds), respectively. In this study, the seeds of line PN1 03/1i/14 were characterized by different changes in canolol content during roasting than the seeds of PN1 563/1i/14. There was a 90-fold increase in canolol for the line PN1 03/1i/14 (768.26 µg/g) and a 46-fold increase for the line PN1 563/1i/14 (576.43 µg/g). Changes in tocopherol and PC-8 contents were also observed. There was an increase in the contents of γ-T and PC-8 in the oils obtained from the seeds roasted at 180 °C for 10 and 15 min. γ-T content increased by 17-18% after 15 min of roasting, whereas the PC-8 content increased twofold.

  9. Oil and fatty acid contents in seed of Citrullus lanatus Schrad.

    PubMed

    Jarret, Robert L; Levy, Irvin J

    2012-05-23

    Intact seed of 475 genebank accessions of Citrullus ( C. lanatus var. lanatus and C. lanatus var. citroides) were analyzed for percent oil content using TD-NMR. Extracts from whole seed of 96 accessions of C. lanatus (30 var. citroides, 33 var. lanatus, and 33 egusi), C. colocynthis (n = 3), C. ecirrhosus (n = 1), C. rehmii (n = 1), and Benincasa fistulosa (n = 3) were also analyzed for their fatty acids content. Among the materials analyzed, seed oil content varied from 14.8 to 43.5%. Mean seed oil content in egusi types of C. lanatus was significantly higher (mean = 35.6%) than that of either var. lanatus (mean = 23.2%) or var. citroides (mean = 22.6%). Egusi types of C. lanatus had a significantly lower hull/kernel ratio when compared to other C. lanatus var. lanatus or C. lanatus var. citroides. The principal fatty acid in all C. lanatus materials examined was linoleic acid (43.6-73%). High levels of linoleic acid were also present in the materials of C. colocynthis (71%), C. ecirrhosus (62.7%), C. rehmii (75.8%), and B. fistulosa (73.2%), which were included for comparative purposes. Most all samples contained traces (<0.5%) of arachidonic acid. The data presented provide novel information on the range in oil content and variability in the concentrations of individual fatty acids present in a diverse array of C. lanatus, and its related species, germplasm.

  10. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation.

    PubMed

    Chen, Liang; Zheng, Yuhong; Dong, Zhimin; Meng, Fanfan; Sun, Xingmiao; Fan, Xuhong; Zhang, Yunfeng; Wang, Mingliang; Wang, Shuming

    2018-04-01

    Soybean is the world's most important leguminous crop producing high-quality protein and oil. Elevating oil accumulation in soybean seed is always many researchers' goal. WRINKLED1 (WRI1) encodes a transcription factor of the APETALA2/ethylene responsive element-binding protein (AP2/EREBP) family that plays important roles during plant seed oil accumulation. In this study, we isolated and characterized three distinct orthologues of WRI1 in soybean (Glycine max) that display different organ-specific expression patterns, among which GmWRI1a was highly expressed in maturing soybean seed. Electrophoretic mobility shift assays and yeast one-hybrid experiments demonstrated that the GmWRI1a protein was capable of binding to AW-box, a conserved sequence in the proximal upstream regions of many genes involved in various steps of oil biosynthesis. Transgenic soybean seeds overexpressing GmWRI1a under the control of the seed-specific napin promoter showed the increased total oil and fatty acid content and the changed fatty acid composition. Furthermore, basing on the activated expressions in transgenic soybean seeds and existence of AW-box element in the promoter regions, direct downstream genes of GmWRI1a were identified, and their products were responsible for fatty acid production, elongation, desaturation and export from plastid. We conclude that GmWRI1a transcription factor can positively regulate oil accumulation in soybean seed by a complex gene expression network related to fatty acid biosynthesis.

  11. Composition of vegetable oil from seeds of native halophytes

    Treesearch

    D. J. Weber; B. Gul; A. Khan; T. Williams; N. Williams; P. Wayman; S. Warner

    2001-01-01

    Of the world’s land area, about 7 percent is salt affected. Irrigated land is more susceptible to salinity and it is estimated that over 1/3 of the irrigated soils are becoming saline. Certain plants (halophytes) grow well on high saline soils. One approach would be to grow halophytes on high saline soils and harvest their seeds. The oil in the seeds would be extracted...

  12. Fatty acid composition, physicochemical properties, antioxidant and cytotoxic activity of apple seed oil obtained from apple pomace.

    PubMed

    Walia, Mayanka; Rawat, Kiran; Bhushan, Shashi; Padwad, Yogendra S; Singh, Bikram

    2014-03-30

    Apple pomace is generated in huge quantities in juice-processing industries the world over and continuous efforts are being made for its inclusive utilization. In this study, apple seeds separated from industrial pomace were used for extraction of oil. The fatty acid composition, physicochemical and antioxidant as well as in vitro anticancer properties of extracted oil were studied to assess its suitability in food and therapeutic applications. The fatty acid composition of seed oil revealed the dominance of oleic (46.50%) and linoleic acid (43.81%). It had high iodine (121.8 g I 100 g⁻¹) and saponification value (184.91 mg KOH g⁻¹ oil). The acid value, refractive index and relative density were 4.28 mg KOH g⁻¹, 1.47 and 0.97 mg mL⁻¹, respectively. The antioxidant potential (IC₅₀) of apple seed oil was 40.06 µg mL⁻¹. Cytotoxicity of apple seed oil against CHOK1, SiHa and A549 cancer cell lines ranged between 0.5 ± 0.06% and 88.6 ± 0.3%. The physicochemical properties of apple seed oil were comparable with edible food oil, indicating its better stability and broad application in the food and pharmaceutical industries. Apple seed oil could be a good source of natural antioxidants. Also, the in vitro cytotoxic activity against specific cell lines exhibited its potential as an anticancer agent. © 2013 Society of Chemical Industry.

  13. Study of optimal extraction conditions for achieving high yield and antioxidant activity of tomato seed oil

    USDA-ARS?s Scientific Manuscript database

    Tomato seeds resulting from tomato processing by-product have not been effectively utilized as value-added products. This study investigated the kinetics of oil extraction from tomato seeds and sought to optimize the oil extraction conditions. The oil was extracted by using hexane as solvent for 0 t...

  14. Refining of crude rubber seed oil as a feedstock for biofuel production.

    PubMed

    Gurdeep Singh, Haswin Kaur; Yusup, Suzana; Abdullah, Bawadi; Cheah, Kin Wai; Azmee, Fathin Nabilah; Lam, Hon Loong

    2017-12-01

    Crude rubber seed oil is a potential source for biofuel production. However it contains undesirable impurities such as peroxides and high oxidative components that not only affect the oil stability, colour and shelf-life but promote insoluble gums formation with time that could cause deposition in the combustion engines. Therefore to overcome these problems the crude rubber seed oil is refined by undergoing degumming and bleaching process. The effect of bleaching earth dosage (15-40 wt %), phosphoric acid dosage (0.5-1.0 wt %) and reaction time (20-40 min) were studied over the reduction of the peroxide value in a refined crude rubber seed oil. The analysis of variance shows that bleaching earth dosage was the most influencing factor followed by reaction time and phosphoric acid dosage. A minimum peroxide value of 0.1 milliequivalents/gram was achieved under optimized conditions of 40 wt % of bleaching earth dosage, 1.0 wt % of phosphoric acid dosage and 20 min of reaction time using Response Surface Methodology design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Composition and Biological Activity of Picea pungens and Picea orientalis Seed and Cone Essential Oils.

    PubMed

    Wajs-Bonikowska, Anna; Szoka, Łukasz; Karna, Ewa; Wiktorowska-Owczarek, Anna; Sienkiewicz, Monika

    2017-03-01

    The increasing consumption of natural products lead us to discover and study new plant materials, such as conifer seeds and cones, which could be easily available from the forest industry as a waste material, for their potential uses. The chemical composition of the essential oils of Picea pungens and Picea orientalis was fully characterized by GC and GC/MS methods. Seed and cone oils of both tree species were composed mainly of monoterpene hydrocarbons, among which limonene, α- and β-pinene were the major, but in different proportions in the examined conifer essential oils. The levorotary form of chiral monoterpene molecules was predominant over the dextrorotary form. The composition of oils from P. pungens seeds and cones was similar, while the hydrodistilled oils of P. orientalis seeds and cones differed from each other, mainly by a higher amount of oxygenated derivatives of monoterpenes and by other higher molar mass terpenes in seed oil. The essential oils showed mild antimicrobial action, however P. orientalis cone oil exhibited stronger antimicrobial properties against tested bacterial species than those of P. pungens. Effects of the tested cone essential oils on human skin fibroblasts and microvascular endothelial cells (HMEC-1) were similar: in a concentration of 0 - 0.075 μl/ml the oils were rather safe for human skin fibroblasts and 0 - 0.005 μl/ml for HMEC-1 cells. IC 50 value of Picea pungens oils was 0.115 μl/ml, while that of Picea orientalis was 0.105 μl/ml. The value of IC 50 of both oils were 0.035 μl/ml for HMEC-1 cells. The strongest effect on cell viability had the oil from Picea orientalis cones, while on DNA synthesis the oil from Picea pungens cones. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  16. The effect of organic solvent, temperature and mixing time on the production of oil from Moringa oleifera seeds

    NASA Astrophysics Data System (ADS)

    Ghazali, Q.; Yasin, N. H. M.

    2016-06-01

    The effect of three different organic solvent, temperature and mixing time on the production of oil from M.oleifera seeds were studied to evaluate the effectiveness in obtaining the high oil yield based on the percentage of oil production. The modified version of Soxhlet extraction method was carried out to extract the oil from M.oleifera seeds by using hexane, heptane and ethanol as the organic solvent. Among the three solvents, it is found that heptane yield higher oil from M.oleifera seeds with maximum oil yield of 36.37% was obtained followed by hexane and ethanol with 33.89% and 18.46%, respectively. By using heptane as a solvent, the temperature (60oC, 70oC, 80oC) and mixing time (6 h, 7 h, and 8 h) were investigated to ensure the high oil yield over the experimental ranges employed and high oil yield was obtained at 600C for 6 h with percentage oil yield of 36.37%. The fatty acid compositions of M.oleifera seeds oil were analyzed using Gas Chromatography/Mass Spectrometry (GC-MS). The main components of fatty acid contained in the oil extracted from M.oleifera seeds was oleic acid, followed by palmitic acid and arachidic acid, and small amount of behenic acid and margaric acid.

  17. The antioxidant effects of pumpkin seed oil on subacute aflatoxin poisoning in mice.

    PubMed

    Eraslan, Gökhan; Kanbur, Murat; Aslan, Öznur; Karabacak, Mürsel

    2013-12-01

    This study was aimed at the investigation of the antioxidant effect of pumpkin seed oil against the oxidative stress-inducing potential of aflatoxin. For this purpose, 48 male BALB/c mice were used. Four groups, each comprising 12 mice, were established. Group 1 was maintained as the control group. Group 2 was administered with pumpkin seed oil alone at a dose of 1.5 mL/kg.bw/day (∼1375mg/kg.bw/day). Group 3 received aflatoxin (82.45% AFB1 , 10.65% AFB2 , 4.13% AFG1, and 2.77% AFG2 ) alone at a dose of 625 μg/kg.bw/day. Finally, group 4 was given both 1.5 mL/kg.bw/day pumpkin seed oil and 625 μg/kg.bw/day aflatoxin. All administrations were oral, performed with the aid of a gastric tube and continued for a period of 21 days. At the end of day 21, the liver, lungs, kidneys, brain, heart, and spleen of the animals were excised, and the extirpated tissues were homogenized appropriately. Malondialdehyde (MDA) levels and catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities were determined in tissue homogenates. In conclusion, it was determined that aflatoxin exhibited adverse effects on most of the oxidative stress markers. The administration of pumpkin seed oil diminished aflatoxin-induced adverse effects. In other words, the values of the group, which was administered with both aflatoxin and pumpkin seed oil, were observed to have drawn closer to the values of the control group. Copyright © 2011 Wiley Periodicals, Inc.

  18. Antimicrobial activity of pomegranate peel extracts as affected by cultivar.

    PubMed

    Rosas-Burgos, Ema C; Burgos-Hernández, Armando; Noguera-Artiaga, Luis; Kačániová, Miroslava; Hernández-García, Francisca; Cárdenas-López, José L; Carbonell-Barrachina, Ángel A

    2017-02-01

    Some studies have reported that different parts of the pomegranate fruit, especially the peel, may act as potential antimicrobial agents and thus might be proposed as a safe natural alternative to synthetic antimicrobial agents. The high tannin content, especially punicalagin, found in pomegranate extracts, has been reported as the main compound responsible for such antimicrobial activity. Because the pomegranate peel chemical composition may vary with the type of cultivar (sweet, sour-sweet and sour), pomegranates may also differ with respect to their antimicrobial capacity. The extract from PTO8 pomegranate cultivar peel had the highest antimicrobial activity, as well as the highest punicalagins (α and β) and ellagic acid concentrations. In the results obtained from both antibacterial and antifungal activity studies, the sour-sweet pomegranate cultivar PTO8 showed the best antimicrobial activity, and the highest ellagic acid concentrations. The results of the present study suggest that ellagic acid content has a significant influence on the antimicrobial activity of the pomegranate extracts investigated. The pomegranate peel of the PTO8 cultivar is a good source of antifungal and antibacterial compounds, and may represent an alternative to antimicrobial agents of synthetic origin. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Punica granatum (Pomegranate) activity in health promotion and cancer prevention

    PubMed Central

    2018-01-01

    Cancer has become one of the most fatal diseases in most countries. In spite of the medical care developing, cancer still remains a significant problem. The majority of the cancers are resistant to treatment. Thus, the research for novel, more efficient and less side effect treatment methods continues. Pomegranate contains strong antioxidant activity, with potential health interests. Research concern in pomegranate is increasing because of their anticancer potential due to possess rich in polyphenols. We highlight the pomegranate potential health benefits and mechanism of cancer progression inhibition. Pomegranate has indicated antiproliferative, anti-metastatic and anti-invasive effects on different cancer cell line in vitro, in vivo and clinical trial. The aim of this review is to evaluate functional properties and the medical benifits of pomegranate against various cancer diseases. In addition, pomegranate properties in in vitro and in vivo experimental human and animal clinical trials and its future use are explored. The available data suggest that Punica granatum (pomegranate) might be used in the control and potential therapeutic for some disease conditions and benefits human health status. This review summarizes in vitro, in vivo and clinical trial studies highlighting the pomegranate role in prevent and treatment of breast, prostate, lung, colon, skin and hepatocellular cell cancers. PMID:29441150

  20. Pomegranate extract exhibits in vitro activity against Clostridium difficile.

    PubMed

    Finegold, Sydney M; Summanen, Paula H; Corbett, Karen; Downes, Julia; Henning, Susanne M; Li, Zhaoping

    2014-10-01

    To determine the possible utility of pomegranate extract in the management or prevention of Clostridium difficile infections or colonization. The activity of pomegranate was tested against 29 clinical C. difficile isolates using the Clinical and Laboratory Standards Institute-approved agar dilution technique. Total phenolics content of the pomegranate extract was determined by Folin-Ciocalteau colorimetric method and final concentrations of 6.25 to 400 μg/mL gallic acid equivalent were achieved in the agar. All strains had MICs at 12.5 to 25 mg/mL gallic acid equivalent range. Our results suggest antimicrobial in vitro activity for pomegranate extract against toxigenic C. difficile. Pomegranate extract may be a useful contributor to the management and prevention of C. difficile disease or colonization. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Composition, physical properties and drying characteristics of seed oil of Citrullus lanatus

    NASA Astrophysics Data System (ADS)

    Idris, S. A.; Rashidi, A. R.; Muhammad, A.; Abdullah, M.; Elham, O. S. J.; Mamat, M. S.

    2017-09-01

    A study to investigate the effect of different drying methods for the pre-treatment process on the quality and quantity of oil extracted from Citrulllus lanatus seeds was conducted. The red type Citrulllus lanatus seeds from local supermarket in Shah Alam is used in this experiment. The amount of seed was divided into two portions; one portion was subjected to sun drying while the other portion was subjected to oven drying (at a temperature of 70°C). After the drying process, the seeds were ground in a laboratory grinder to turn them into powder. The ground seeds then will be fed to Supercritical Carbon Dioxide unit (SC-CO2) for extraction. Once the extracted oil is obtained, it will be analysed by using Gas Chromatography and Mass Spectrometer (GC-MS). Results indicated that the amount of the moisture content from the sun-dried was lower compared to oven-dried. The results also indicated that, there were no significant difference in the quantity of oil obtained from both samples of oven-dried and sun-dried. However, the acid value and other component content in the sample were higher in the sun-dried sample relative to the oven-dried sample. Linoleic acid is the only compound that was found in the oven-dried sample, whereas linoleic acid and oleic acid were found in the sun-dried sample. Based on the results, it shows that the drying effect were important when the quality of oil was to be considered. The other compounds like Naphtalenol, 9-17-Octadecadeinal, 2-Chloroethyl linoleate, and Carboxin also are found in the sun-dried sample. Other that that, drying method does not give any effect to the physical appearance of the extracted oil, as similar color and other physical appearance was produced by the both sample.

  2. Effect of date (Phoenix dactylifera L.) seed extract on stability of olive oil.

    PubMed

    Özcan, Mehmet Musa; Al Juhaimi, Fahad

    2015-02-01

    In this study, the antioxidant effect of date (Phoenix dactylifera L., Arecaceae) seed extracts at different concentrations (0.5 %, 1.0 % and 1.5 %) on the oxidative stability of olive oil at 60 °C was determined. Butylated hydroxyanisole (BHA) was used as positive control in the experiment. All extracts exhibited antioxidant activity compared to BHA up to 21 days. When antioxidant effect of extract concentrations were compared with BHA, the effect of 0.5 % extract concentration was more remarkable for olive oil up to 21 days. After 14 days of assay, all of seed extracts was effective at 60 °C in comparison with control. On the other hand, an important increase was observed in both the peroxide and free fatty acidity values during the experiment period. It concluded that date seed extract could be used as a oxidative inhibitor agent in oil and oil products.

  3. Modifications of hepatic drug metabolizing enzyme activities in rats fed baobab seed oil containing cyclopropenoid fatty acids.

    PubMed

    Andrianaivo-Rafehivola, A A; Siess, M H; Gaydou, E M

    1995-05-01

    The effects on drug metabolizing enzymes of cyclopropenoid fatty acids present in baobab seed oil were evaluated in rats fed either a diet with baobab seed oil (1.27% cyclopropenoid fatty acids in the diet) or a diet with heated baobab seed oil (0.046% cyclopropenoid fatty acids in the diet). Comparison was made with rats fed a mixture of oils that contained no cyclopropenoid fatty acid. Rats fed baobab oil showed retarded growth. In comparison with the other groups, the relative liver weights were markedly increased whereas cytochrome P-450 content and NADPH cytochrome c reductase and NADH cytochrome c reductase activities were decreased. In rats fed the heated baobab oil the relative liver weight was decreased and the cytochrome P-450 level and reductase activities were increased relative to levels in rats fed the unheated oil. Ethoxycoumarin deethylase, ethoxyresorufin deethylase and pentoxyresorufin depentylase activities, expressed on the basis of cytochrome P-450, were greater in the group fed unheated baobab seed oil. Cytosolic glutathione transferase activity was markedly decreased in rats fed fresh baobab seed oil and heating the oil, which reduced the content of cyclopropenoid fatty acids, led to a considerable increase of this activity. UDP-glucuronyl transferase activities were not modified by the type of oil included in the diet. It is possible that the mechanisms of action of cyclopropenoid fatty acids are related to alterations of membrane lipid composition or microsomal proteins.

  4. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds.

    PubMed

    Chougui, Nadia; Tamendjari, Abderezak; Hamidj, Wahiba; Hallal, Salima; Barras, Alexandre; Richard, Tristan; Larbat, Romain

    2013-08-15

    The seed composition of four varieties of Opuntia ficus-indica growing in Algeria was investigated. Seeds ground into a fine powder were first, subjected to oil extraction and fatty acids analysis. The phenolic compounds were then extracted from the defatted powder of seeds in order to be quantified and characterised by liquid chromatography coupled to mass spectrometry (LC-MS(n)) and to nuclear magnetic resonance (LC-NMR) approaches. In addition, an evaluation of the antioxidant activity of the phenolic extracts was investigated. Gas chromatography analysis of the seed oil showed high percentages of linoleic acid in the four varieties ranging from 58% to 63%. The phenolic profile of the Opuntia ficus-indica seeds displayed a high complexity, with more than 20 compounds detected at 330 nm after the LC separation. Among them, three isomers of feruloyl-sucrose were firmly identified and another was strongly supposed to be a sinapoyl-diglycoside. High correlations were found between phenolic content in the defatted seed extracts and their antioxidant activity. The data indicate that the defatted cactus seed wastes still contain various components that constitute a source for natural foods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content

    PubMed Central

    Weselake, Randall J.; Shah, Saleh; Tang, Mingguo; Quant, Patti A.; Snyder, Crystal L.; Furukawa-Stoffer, Tara L.; Zhu, Weiming; Taylor, David C.; Zou, Jitao; Kumar, Arvind; Hall, Linda; Laroche, Andre; Rakow, Gerhard; Raney, Phillip; Moloney, Maurice M.; Harwood, John L.

    2008-01-01

    Top–down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content. PMID:18703491

  6. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content.

    PubMed

    Weselake, Randall J; Shah, Saleh; Tang, Mingguo; Quant, Patti A; Snyder, Crystal L; Furukawa-Stoffer, Tara L; Zhu, Weiming; Taylor, David C; Zou, Jitao; Kumar, Arvind; Hall, Linda; Laroche, Andre; Rakow, Gerhard; Raney, Phillip; Moloney, Maurice M; Harwood, John L

    2008-01-01

    Top-down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content.

  7. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines.

    PubMed

    Wong, Yu Hua; Tan, Wai Yan; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-05-01

    To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines. The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope. The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected. KSE and KSO could be potential sources of natural anti-cancer agents. Further investigations on using kenaf seeds for anti-proliferative properties are warranted.

  8. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines

    PubMed Central

    Wong, Yu Hua; Tan, Wai Yan; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-01-01

    Objective To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines. Methods The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope. Results The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected. Conclusions KSE and KSO could be potential sources of natural anti-cancer agents. Further investigations on using kenaf seeds for anti-proliferative properties are warranted. PMID:25183141

  9. Effect of chemical structure on film-forming properties of seed oils

    USDA-ARS?s Scientific Manuscript database

    The film thickness of seven seed oils and two petroleum-based oils of varying chemical structures, was investigated by the method of optical interferometry under pure rolling conditions, and various combinations of entrainment speed (u), load, and temperature. The measured film thickness (h measured...

  10. Study on small molecular organic compounds pyrolysed from rubber seed oil and its sodium soap.

    PubMed

    Fernando, T L D; Prashantha, M A B; Amarasinghe, A D U S

    2016-01-01

    Rubber seed oil (RSO) and its sodium soap were pyrolysed in a batch reactor to obtain low molar mass organic substances. The pyrolitic oil of RSO was redistilled and the distillates were characterized by GC-MS and FTIR. Density, acid value, saponification value and ester values were also measured according to the ASTM standard methods. A similar analysis was done for samples taken out at different time intervals from the reaction mixture. Industrially important low molar mass alkanes, alkenes, aromatics, cyclic compounds and carboxylic acids were identified in the pyrolysis process of rubber seed oil. However, pyrolysis of the sodium soap of rubber seed oil gave a mixture of hydrocarbons in the range of C14-C17 and hence it has more applications as a fuel.

  11. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis.

    PubMed

    Hua, Wei; Li, Rong-Jun; Zhan, Gao-Miao; Liu, Jing; Li, Jun; Wang, Xin-Fa; Liu, Gui-Hua; Wang, Han-Zhong

    2012-02-01

    Seed oil content is an important agronomic trait in rapeseed. However, our understanding of the regulatory processes controlling oil accumulation is still limited. Using two rapeseed lines (zy036 and 51070) with contrasting oil content, we found that maternal genotype greatly affects seed oil content. Genetic and physiological evidence indicated that difference in the local and tissue-specific photosynthetic activity in the silique wall (a maternal tissue) was responsible for the different seed oil contents. This effect was mimicked by in planta manipulation of silique wall photosynthesis. Furthermore, the starch content and expression of the important lipid synthesis regulatory gene WRINKLED1 in developing seeds were linked with silique wall photosynthetic activity. 454 pyrosequencing was performed to explore the possible molecular mechanism for the difference in silique wall photosynthesis between zy036 and 51070. Interestingly, the results suggested that photosynthesis-related genes were over-represented in both total silique wall expressed genes and genes that were differentially expressed between genotypes. A potential regulatory mechanism for elevated photosynthesis in the zy036 silique wall is proposed on the basis of knowledge from Arabidopsis. Differentially expressed ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-related genes were used for further investigations. Oil content correlated closely with BnRBCS1A expression levels and Rubisco activities in the silique wall, but not in the leaf. Taken together, our results highlight an important role of silique wall photosynthesis in the regulation of seed oil content in terms of maternal effects. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  12. Methyl esters (biodiesel) from Pachyrhizus erosus seed oil

    USDA-ARS?s Scientific Manuscript database

    The search for additional or alternative feedstocks is one of the major areas of interest regarding biodiesel. In this paper, the fuel properties of Pachyrhizus erosus (commonly known as yam bean or Mexican potato or jicama) seed oil methyl esters were investigated by methods prescribed in biodiesel...

  13. Improvement in HDL cholesterol in postmenopausal women supplemented with pumpkin seed oil: pilot study.

    PubMed

    Gossell-Williams, M; Hyde, C; Hunter, T; Simms-Stewart, D; Fletcher, H; McGrowder, D; Walters, C A

    2011-10-01

    Pumpkin seed oil is rich in phytoestrogens and animal studies suggest that there is some benefit to supplementation in low estrogen conditions. This study is the first to evaluate the benefit of pumpkin seed oil in postmenopausal women. This pilot study was randomized, double-blinded and placebo-controlled. Study participants included 35 women who had undergone natural menopause or had iatrogenically entered the climacteric due to surgery for benign pathology. Wheat germ oil (placebo; n = 14) and pumpkin seed oil (n = 21) were administered to eligible participants over a 12-week period at a dose of 2 g per day. Serum lipids, fasting plasma glucose and blood pressure were measured and an 18-point questionnaire regarding menopausal symptoms was administered; the atherogenic index was also calculated. Differences between groups, as well as before and after the period of supplementation, were evaluated with Student's t-test, Wilcoxon matched-pair signed-ranked test and Mann-Whitney test, as appropriate (Stata version 10.1). Women receiving pumpkin seed oil showed a significant increase in high density lipoprotein cholesterol concentrations (0.92 ± 0.23 mmol/l vs. 1.07 ± 0.27 mmol/l; p = 0.029) and decrease in diastolic blood pressure (81.1 ± 7.94 mmHg vs. 75.67 ± 11.93 mmHg; p < 0.046). There was also a significant improvement in the menopausal symptom scores (18.1 ± 9.0 vs. 13.2 ± 6.7; p < 0.030), with a decrease in severity of hot flushes, less headaches and less joint pains being the main contributors. Women in the group receiving wheat germ oil reported being more depressed and having more unloved feeling. This pilot study showed pumpkin seed oil had some benefits for postmenopausal women and provided strong evidence to support further studies.

  14. Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil: yield, fatty acid composition and triacylglycerol profile.

    PubMed

    Samaram, Shadi; Mirhosseini, Hamed; Tan, Chin Ping; Ghazali, Hasanah Mohd

    2013-10-10

    The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.

  15. Roselle (Hibiscus sabdariffa) seed oil is a rich source of gamma-tocopherol.

    PubMed

    Mohamed, R; Fernández, J; Pineda, M; Aguilar, M

    2007-04-01

    The antioxidant potential of roselle (Hibiscus sabdariffa L.) extracts was studied. Different plant organs, including seeds, stems, leaves, and sepals, were analyzed with respect to their water-soluble antioxidant capacity, lipid-soluble antioxidant capacity, and tocopherol content, revealing that roselle seeds are a good source of lipid-soluble antioxidants, particularly gamma-tocopherol. Roselle seed oil was extracted and characterized, and its physicochemical parameters are summarized: acidity, 2.24%; peroxide index, 8.63 meq/kg; extinction coefficients at 232 (k(232)) and 270 nm (k(270)), 3.19 and 1.46, respectively; oxidative stability, 15.53 h; refractive index, 1.477; density, 0.92 kg/L; and viscosity, 15.9 cP. Roselle seed oil belongs to the linoleic/oleic category, its most abundant fatty acids being C18:2 (40.1%), C18:1 (28%), C16:0 (20%), C18:0 (5.3%), and C19:1 (1.7%). Sterols include beta-sitosterol (71.9%), campesterol (13.6%), Delta-5-avenasterol (5.9%), cholesterol (1.35%), and clerosterol (0.6%). Total tocopherols were detected at an average concentration of 2000 mg/kg, including alpha-tocopherol (25%), gamma-tocopherol (74.5%), and delta-tocopherol (0.5%). The global characteristics of roselle seed oil suggest that it could have important industrial applications, adding to the traditional use of roselle sepals in the elaboration of karkade tea.

  16. Analysis of volatile compounds and triglycerides of seed oils extracted from different poppy varieties (Papaver somniferum L.).

    PubMed

    Krist, Sabine; Stuebiger, Gerald; Unterweger, Heidrun; Bandion, Franz; Buchbauer, Gerhard

    2005-10-19

    Poppy seed oil (Oleum Papaveris Seminis) is used for culinary and pharmaceutical purposes, as well as for making soaps, paints, and varnishes. Astonishingly, hardly anything was yet known about the volatile compounds of this promising comestible. Likewise, there are no current published data about the triglyceride (TAG) composition of poppy seed oils available. In this investigation solid-phase microextraction (SPME) with DVB/Carboxen/PDMS Stable-Flex fiber was applied to the study of volatile compounds of several seed oil samples from Papaver somniferum L. (Papaveraceae). 1-Pentanol (3.3-4.9%), 1-hexanal (10.9-30.9%), 1-hexanol (5.3-33.7%), 2-pentylfuran (7.2-10.0%), and caproic acid (2.9-11.5%) could be identified as the main volatile compounds in all examined poppy seed oil samples. Furthermore, the TAG composition of these oils was analyzed by MALDI-ReTOF- and ESI-IT-MS/MS. The predominant TAG components were found to be composed of linoleic, oleic, and palmitic acid, comprising approximately 70% of the oils. TAG patterns of the different poppy varieties were found to be very homogeneous, showing also no significant differences in terms of the applied pressing method of the plant seeds.

  17. Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention.

    PubMed

    Shirode, Amit B; Bharali, Dhruba J; Nallanthighal, Sameera; Coon, Justin K; Mousa, Shaker A; Reliene, Ramune

    2015-01-01

    Pomegranate polyphenols are potent antioxidants and chemopreventive agents but have low bioavailability and a short half-life. For example, punicalagin (PU), the major polyphenol in pomegranates, is not absorbed in its intact form but is hydrolyzed to ellagic acid (EA) moieties and rapidly metabolized into short-lived metabolites of EA. We hypothesized that encapsulation of pomegranate polyphenols into biodegradable sustained release nanoparticles (NPs) may circumvent these limitations. We describe here the development, characterization, and bioactivity assessment of novel formulations of poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) NPs loaded with pomegranate extract (PE) or individual polyphenols such as PU or EA. Monodispersed, spherical 150-200 nm average diameter NPs were prepared by the double emulsion-solvent evaporation method. Uptake of Alexa Fluor-488-labeled NPs was evaluated in MCF-7 breast cancer cells over a 24-hour time course. Confocal fluorescent microscopy revealed that PLGA-PEG NPs were efficiently taken up, and the uptake reached the maximum at 24 hours. In addition, we examined the antiproliferative effects of PE-, PU-, and/or EA-loaded NPs in MCF-7 and Hs578T breast cancer cells. We found that PE, PU, and EA nanoprototypes had a 2- to 12-fold enhanced effect on cell growth inhibition compared to their free counterparts, while void NPs did not affect cell growth. PU-NPs were the most potent nanoprototype of pomegranates. Thus, PU may be the polyphenol of choice for further chemoprevention studies with pomegranate nanoprototypes. These data demonstrate that nanotechnology-enabled delivery of pomegranate polyphenols enhances their anticancer effects in breast cancer cells. Thus, pomegranate polyphenols are promising agents for nanochemoprevention of breast cancer.

  18. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds.

    PubMed

    Liu, Wen Xian; Liu, Hua Liang; Qu, Le Qing

    2013-09-01

    Oleosin is the most abundant protein in the oil bodies of plant seeds, playing an important role in regulating oil body formation and lipid accumulation. To investigate whether lipid accumulation in transgenic rice seeds depends on the expression level of oleosin, we introduced two soybean oleosin genes encoding 24 kDa proteins into rice under the control of an embryo-specific rice promoter REG-2. Overexpression of soybean oleosin in transgenic rice leads to an increase of seed lipid content up to 36.93 and 46.06 % higher than that of the non-transgenic control, respectively, while the overall fatty acid profiles of triacylglycerols remained unchanged. The overexpression of soybean oleosin in transgenic rice seeds resulted in more numerous and smaller oil bodies compared with wild type, suggesting that an inverse relationship exists between oil body size and the total oleosin level. The increase in lipid content is accompanied by a reduction in the accumulation of total seed protein. Our results suggest that it is possible to increase rice seed oil content for food use and for use as a low-cost feedstock for biodiesel by overexpressing oleosin in rice seeds.

  19. Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds.

    PubMed

    Li, Runzhi; Yu, Keshun; Wu, Yongmei; Tateno, Mizuki; Hatanaka, Tomoko; Hildebrand, David F

    2012-01-01

    Plant oils can be useful chemical feedstocks such as a source of epoxy fatty acids. High seed-specific expression of a Stokesia laevis epoxygenase (SlEPX) in soybeans only results in 3-7% epoxide levels. SlEPX-transgenic soybean seeds also exhibited other phenotypic alterations, such as altered seed fatty acid profiles, reduced oil accumulation, and variable protein levels. SlEPX-transgenic seeds showed a 2-5% reduction in total oil content and protein levels of 30.9-51.4%. To address these pleiotrophic effects of SlEPX expression on other traits, transgenic soybeans were developed to co-express SlEPX and DGAT (diacylglycerol acyltransferase) genes (VgDGAT1 & 2) isolated from Vernonia galamensis, a high accumulator of epoxy fatty acids. These side effects of SlEPX expression were largely overcome in the DGAT co-expressing soybeans. Total oil and protein contents were restored to the levels in non-transgenic soybeans, indicating that both VgDGAT1 and VgDGAT2 could complement the disrupted phenotypes caused by over-expression of an epoxygenase in soybean seeds. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Abies Concolor Seeds and Cones as New Source of Essential Oils-Composition and Biological Activity.

    PubMed

    Wajs-Bonikowska, Anna; Szoka, Łukasz; Karna, Ewa; Wiktorowska-Owczarek, Anna; Sienkiewicz, Monika

    2017-11-02

    The chemical composition, including the enantiomeric excess of the main terpenes, of essential oils from seeds and cones of Abies concolor was studied by chromatographic (GC) and spectroscopic methods (mass spectrometry, nuclear magnetic resonance), leading to the determination of 98 compounds. Essential oils were mainly composed of monoterpene hydrocarbons. The dominant volatiles of seed essential oil were: limonene (47 g/100 g, almost pure levorotary form) and α-pinene (40 g/100 g), while α-pinene (58 g/100 g), sabinene (11 g/100 g), and β-pinene (4.5 g/100 g) were the predominant components of the cone oil. The seed and cone essential oils exhibited mild antibacterial activity, and the MIC ranged from 26 to 30 μL/mL against all of the tested bacterial standard strains: Staphylococcus aureus , Enterococcus faecalis , Enterococcus faecium , Escherichia coli , and Klebsiella pneumoniae . The cytotoxic studies have demonstrated that tested essential oils were cytotoxic to human skin fibroblasts and human microvascular endothelial cells at concentrations much lower than the MIC. The essential oils from A. concolor seeds and cones had no toxic effect on human skin fibroblasts and human microvascular endothelial cells, when added to the cells at a low concentration (0-0.075 μL/mL) and (0-1.0 μL/mL), respectively, and cultured for 24 h.

  1. FT-IR spectrum of grape seed oil and quantum models of fatty acids triglycerides

    NASA Astrophysics Data System (ADS)

    Berezin, K. V.; Antonova, E. M.; Shagautdinova, I. T.; Chernavina, M. L.; Dvoretskiy, K. N.; Grechukhina, O. N.; Vasilyeva, L. M.; Rybakov, A. V.; Likhter, A. M.

    2018-04-01

    FT-IR spectra of grape seed oil and glycerol were registered in the 650-4000 cm-1 range. Molecular models of glycerol and some fatty acids that compose the oil under study - linoleic, oleic, palmitic and stearic acids - as well as their triglycerides were developed within B3LYP/6-31G(d) density functional model. A vibrating FT-IR spectrum of grape seed oil was modeled on the basis of calculated values of vibrating wave numbers and IR intensities of the fatty acids triglycerides and with regard to their percentage. Triglyceride spectral bands that were formed by glycerol linkage vibrations were revealed. It was identified that triglycerol linkage has a small impact on the structure of fatty acids and, consequently, on vibrating wave numbers. The conducted molecular modeling became a basis for theoretical interpretation on 10 experimentally observed absorption bands in FT-IR spectrum of grape seed oil.

  2. Chemical composition of seeds and oil of Xylopia aethiopica grown in Nigeria.

    PubMed

    Barminas, J T; James, M K; Abubakar, U M

    1999-01-01

    The chemical composition and mineral constituents of Xylopia aethiopica, which is valued as a spice in Nigeria, were determined along with the physicochemical characteristics of the seed oil. The seeds had the following chemical compositions moisture (8.43 g/100 g), ash (5.89 g/100 g), crude lipid (9.58 g/100 g), crude protein (12.45 g/100 g) crude fiber (8.66 g/100 g) and carbohydrate (63.65 g/100 g). Calcium and potassium were the major minerals in the seed. The extracted lipid was examined for fatty acid composition. Linoleic (45.1 g/100 g) and oleic (26.5 g/100 g) acids were the predominant unsaturated fatty acids, while palmitic acid (18.0 g/100 g) was the major saturated acid. The iodine value of 97 g/100 g indicates that the seed oil is a non-drying type.

  3. Protection and viability of fruit seeds oils by nanostructured lipid carrier (NLC) nanosuspensions.

    PubMed

    Krasodomska, Olga; Paolicelli, Patrizia; Cesa, Stefania; Casadei, Maria Antonietta; Jungnickel, Christian

    2016-10-01

    In this paper, we focused on the development of nanostructured lipid carriers (NLCs) for dermal application. The NLC matrix was designed as a protective reservoir of biological active compounds that naturally occur in domestic fruit seed oils. Over the years, emulsions, as a popular physicochemical form of personal care products, were refined in order to obtain the best possible penetration into the skin of any bioactive compound introduced in the formulation, such as polyunsaturated fatty acids (PUFAs). In fact, the bioactive components are useful only if they are able to penetrate the skin unchanged. Therefore, an alternate way to deliver naturally occurring PUFAs is needed. NLCs present a novel delivery and protection system for the PUFAs. The cold pressed fruit seed oils obtained from waste material were used in this paper: blackcurrant, blackberry, raspberry, strawberry and plum. Thermodynamic (DSC) and structural techniques ((1)H NMR) were applied in order to characterize the obtained systems in terms of seed oil incorporation into the NLC, and oxidative stability tests were used to confirm the protective quality of the systems. During the formulation optimization process the most stable nanosuspension with the best seed oil incorporation was a mixture of 4% nonionic emulsifiers, 88% water and 6% lipids with a ratio of 6:2, wax:oil. The oxidative stability tests showed that the NLC was an effective method of protection of the PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The fatty acid and tocopherol constituents of the seed oil extracted from 21 grape varieties (Vitis spp.).

    PubMed

    Sabir, Ali; Unver, Ahmet; Kara, Zeki

    2012-07-01

    Fatty acids and tocopherols in appropriate quantities are invaluable attributes that are desirable in seeds of agricultural products. Studies have generally focused on the evaluation of the oil and tocopherol components of oil crops. Recently, investigations revealed that the grape seed has robust potential in the production of healthy fatty acids as well as tocopherols. This study was thus conducted to determine the oil and tocopherol components of grape seeds, obtained from various grape cultivars of different species, including two rootstock varieties. The grape seed oil concentration of the studied varieties ranged from 7.3 to 22.4%. The determined fatty acid profiles of the genotypes conformed to the pattern described in the literature for grapes. Linoleic acid is the major component comprising 53.6-69.6% of the total, followed by oleic (16.2-31.2%), palmitic (6.9-12.9%) and stearic (1.44-4.69%). The oils of all the seeds analysed showed a preponderance of α-tocopherol (ranging from 260.5 to 153.1 mg kg⁻¹ oil extract). β-Tocopherol, γ-tocopherol and δ-tocopherol were also detected with the general means of 0.98, 22.2 and 0.92 mg kg⁻¹, respectively. Linoleic acid showed a significantly negative correlation with all the fatty acids analysed. The strongest negative correlation existed between linoleic and oleic acids (r = -0.834, P < 0.01). Present investigations indicated that oil content, fatty acid composition and tocopherol constituents of grape seed show great variation among the genotypes. Markedly higher proportions of linoleic acid with considerable amounts of tocopherols found in the oil samples suggest that grape seed is a good source for culinary, pharmaceutical and cosmetic uses. Copyright © 2012 Society of Chemical Industry.

  5. Wetting of silicone oil onto a cell-seeded substrate

    NASA Astrophysics Data System (ADS)

    Lu, Yongjie; Chan, Yau Kei; Chao, Youchuang; Shum, Ho Cheung

    2017-11-01

    Wetting behavior of solid substrates in three-phase systems containing two immiscible liquids are widely studied. There exist many three-phase systems in biological environments, such as droplet-based microfluidics or tamponade of silicone oil for eye surgery. However, few studies focus on wetting behavior of biological surfaces with cells. Here we investigate wetting of silicone oil onto cell-seeded PMMA sheet immersed in water. Using a simple parallel-plate cell, we show the effect of cell density, viscosity of silicone oil, morphology of silicone oil drops and interfacial tension on the wetting phenomenon. The dynamics of wetting is also observed by squeezing silicone oil drop using two parallel plates. Experimental results are explained based on disjoining pressure which is dependent on the interaction of biological surfaces and liquid used. These findings are useful for explaining emulsification of silicone oil in ophthalmological applications.

  6. Investigation of radiation-induced free radicals and luminescence properties in fresh pomegranate fruits.

    PubMed

    Shahbaz, Hafiz M; Akram, Kashif; Ahn, Jae-Jun; Kwon, Joong-Ho

    2013-05-01

    Radiation-induced free radicals and luminescence properties were investigated in γ-irradiated (0-3 kGy) pomegranate ( Punica granatum L.) fruits. Photostimulated luminescence (PSL) analysis showed limited applicability, and only 3 kGy-irradiated pomegranates showed positive PSL values (>5000 PCs). Thermoluminescence (TL) glow curve features, such as intensity and the presence of maximum glow peak in radiation-specific temperature range (150-250 °C), provided definite proof of irradiation, and the TL ratios (TL1/TL2) also confirmed the reliability of TL results. Scanning electron microscopy energy dispersive X-ray (SEM-EDX) analysis of the separated minerals showed that feldspar and quartz minerals were responsible for the luminescence properties. Radiation-induced cellulose radicals were detected in the seeds and rinds by ESR analysis. The ESR results were better in freeze-dried samples than in alcohol-extracted ones. A positive correlation was found between the ESR and TL signal intensities and irradiation doses; however, the most promising detection of the irradiation status was possible through TL analysis.

  7. Chamaerops humilis L. var. argentea André date palm seed oil: a potential dietetic plant product.

    PubMed

    Nehdi, Imededdine Arbi; Mokbli, Sadok; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim

    2014-04-01

    Chamaerops humilis L. var. argentea André (C. humilis) date palm seeds are an underutilized source of vegetable oil, and no studies describing their physicochemical characteristics to indicate the potential uses of this seed or seed oil have been reported. The oil content of the seeds is about 10%, mainly composed of oleic acid (38.71%), lauric acid (21.27%), linoleic acid (15.15%), palmitic acid (9.96%), and stearic acid (7.17%). The tocol (tocopherols and tocotrienols) content is 74 mg/100 g, with δ-tocotrienol as the major contributor (31.91%), followed by α-tocotrienol (29.37%), γ-tocopherol (20.16%), and γ-tocotrienol (11.86%). Furthermore, this oil shows high thermal stability. The differential scanning calorimetery curves revealed that the melting and crystallization points are 9.33 °C and -15.23 °C, respectively. © 2014 Institute of Food Technologists®

  8. Potential Effects of Pomegranate Polyphenols in Cancer Prevention and Therapy

    PubMed Central

    Turrini, Eleonora; Ferruzzi, Lorenzo

    2015-01-01

    Cancer is the second leading cause of death and is becoming the leading one in old age. Vegetable and fruit consumption is inversely associated with cancer incidence and mortality. Currently, interest in a number of fruits high in polyphenols has been raised due to their reported chemopreventive and/or chemotherapeutic potential. Pomegranate has been shown to exert anticancer activity, which is generally attributed to its high content of polyphenols. This review provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of pomegranate polyphenols as future anticancer agents. Pomegranate evokes antiproliferative, anti-invasive, and antimetastatic effects, induces apoptosis through the modulation of Bcl-2 proteins, upregulates p21 and p27, and downregulates cyclin-cdk network. Furthermore, pomegranate blocks the activation of inflammatory pathways including, but not limited to, the NF-κB pathway. The strongest evidence for its anticancer activity comes from studies on prostate cancer. Accordingly, some exploratory clinical studies investigating pomegranate found a trend of efficacy in increasing prostate-specific antigen doubling time in patients with prostate cancer. However, the genotoxicity reported for pomegranate raised certain concerns over its safety and an accurate assessment of the risk/benefit should be performed before suggesting the use of pomegranate or its polyphenols for cancer-related therapeutic purposes. PMID:26180600

  9. Potential Effects of Pomegranate Polyphenols in Cancer Prevention and Therapy.

    PubMed

    Turrini, Eleonora; Ferruzzi, Lorenzo; Fimognari, Carmela

    2015-01-01

    Cancer is the second leading cause of death and is becoming the leading one in old age. Vegetable and fruit consumption is inversely associated with cancer incidence and mortality. Currently, interest in a number of fruits high in polyphenols has been raised due to their reported chemopreventive and/or chemotherapeutic potential. Pomegranate has been shown to exert anticancer activity, which is generally attributed to its high content of polyphenols. This review provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of pomegranate polyphenols as future anticancer agents. Pomegranate evokes antiproliferative, anti-invasive, and antimetastatic effects, induces apoptosis through the modulation of Bcl-2 proteins, upregulates p21 and p27, and downregulates cyclin-cdk network. Furthermore, pomegranate blocks the activation of inflammatory pathways including, but not limited to, the NF-κB pathway. The strongest evidence for its anticancer activity comes from studies on prostate cancer. Accordingly, some exploratory clinical studies investigating pomegranate found a trend of efficacy in increasing prostate-specific antigen doubling time in patients with prostate cancer. However, the genotoxicity reported for pomegranate raised certain concerns over its safety and an accurate assessment of the risk/benefit should be performed before suggesting the use of pomegranate or its polyphenols for cancer-related therapeutic purposes.

  10. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus.

    PubMed

    Huang, Ke-Lin; Zhang, Mei-Li; Ma, Guang-Jing; Wu, Huan; Wu, Xiao-Ming; Ren, Feng; Li, Xue-Bao

    2017-01-01

    Seed oil content is an important agronomic trait in oilseed rape. However, the molecular mechanism of oil accumulation in rapeseeds is unclear so far. In this report, RNA sequencing technique (RNA-Seq) was performed to explore differentially expressed genes in siliques of two Brassica napus lines (HFA and LFA which contain high and low oil contents in seeds, respectively) at 15 and 25 days after pollination (DAP). The RNA-Seq results showed that 65746 and 66033 genes were detected in siliques of low oil content line at 15 and 25 DAP, and 65236 and 65211 genes were detected in siliques of high oil content line at 15 and 25 DAP, respectively. By comparative analysis, the differentially expressed genes (DEGs) were identified in siliques of these lines. The DEGs were involved in multiple pathways, including metabolic pathways, biosynthesis of secondary metabolic, photosynthesis, pyruvate metabolism, fatty metabolism, glycophospholipid metabolism, and DNA binding. Also, DEGs were related to photosynthesis, starch and sugar metabolism, pyruvate metabolism, and lipid metabolism at different developmental stage, resulting in the differential oil accumulation in seeds. Furthermore, RNA-Seq and qRT-PCR data revealed that some transcription factors positively regulate seed oil content. Thus, our data provide the valuable information for further exploring the molecular mechanism of lipid biosynthesis and oil accumulation in B. nupus.

  11. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus

    PubMed Central

    Huang, Ke-Lin; Zhang, Mei-Li; Ma, Guang-Jing; Wu, Huan; Wu, Xiao-Ming; Ren, Feng

    2017-01-01

    Seed oil content is an important agronomic trait in oilseed rape. However, the molecular mechanism of oil accumulation in rapeseeds is unclear so far. In this report, RNA sequencing technique (RNA-Seq) was performed to explore differentially expressed genes in siliques of two Brassica napus lines (HFA and LFA which contain high and low oil contents in seeds, respectively) at 15 and 25 days after pollination (DAP). The RNA-Seq results showed that 65746 and 66033 genes were detected in siliques of low oil content line at 15 and 25 DAP, and 65236 and 65211 genes were detected in siliques of high oil content line at 15 and 25 DAP, respectively. By comparative analysis, the differentially expressed genes (DEGs) were identified in siliques of these lines. The DEGs were involved in multiple pathways, including metabolic pathways, biosynthesis of secondary metabolic, photosynthesis, pyruvate metabolism, fatty metabolism, glycophospholipid metabolism, and DNA binding. Also, DEGs were related to photosynthesis, starch and sugar metabolism, pyruvate metabolism, and lipid metabolism at different developmental stage, resulting in the differential oil accumulation in seeds. Furthermore, RNA-Seq and qRT-PCR data revealed that some transcription factors positively regulate seed oil content. Thus, our data provide the valuable information for further exploring the molecular mechanism of lipid biosynthesis and oil accumulation in B. nupus. PMID:28594951

  12. Dietary flax seed oil and/or Vitamin E improve sperm parameters of cloned goats following freezing-thawing.

    PubMed

    Kargar, Rohollah; Forouzanfar, Mohsen; Ghalamkari, Gholamreza; Nasr Esfahani, Mohammad Hossein

    2017-02-01

    Semen cryopreservation is affected by individual differences and use of clones animal from the same source is the main tool to eliminate genetic variation. Among many nutrients that are necessary for fertility, essential fatty acids and antioxidants are vital for production of healthy sperm by improving sperm membrane integrity and protecting sperm from oxidative stress. The goal of the current study was to investigate whether a flax seed oil or/and Vitamin E dietary supplementation could improve semen quality of cloned bucks following semen cryopreservation. Accordingly, eight adult cloned Bakhtiari bucks were divided randomly into four groups. Bucks were offered a base diet of hay and concentrate. The concentrate was enriched with flax seed oil, 30 gr/kg body weight/day (OIL), Vitamin E (VIT), 3 gr/kg body weight/day, or combined flax seed oil and the vitamin E (OIL-VIT). The concentrate with no supplements was considered as control group (CONT). Both flax seed oil and Vitamin E supplements were added to the total diet. The bucks were fed with their corresponding diets for a total of 9 weeks while sperm collection was carried out within 10-14 weeks. Ejaculates were diluted with Andromed ® and were frozen in liquid nitrogen. Sperm parameters and reactive oxygen species (ROS) contents were evaluated following freezing/thawing. According to the results of our study, dietary supplementation with flax seed oil, or/and Vitamin E can improve sperm motility, vitality and number of sperm with intact plasma membrane following freezing-thawing. But the degree of improvement in these parameters was significantly higher when Flax seed oil and vitamin E were co-supplemented. Copyright © 2016. Published by Elsevier Inc.

  13. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds.

    PubMed

    Tan, Helin; Yang, Xiaohui; Zhang, Fengxia; Zheng, Xiu; Qu, Cunmin; Mu, Jinye; Fu, Fuyou; Li, Jiana; Guan, Rongzhan; Zhang, Hongsheng; Wang, Guodong; Zuo, Jianru

    2011-07-01

    The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production.

  14. Antibacterial activity of essential oil components and their potential use in seed disinfection.

    PubMed

    Lo Cantore, Pietro; Shanmugaiah, Vellasamy; Iacobellis, Nicola Sante

    2009-10-28

    Among the main (> or = 0.7%) components of some essential oils, considerable antibacterial activity was shown by terpenoid and phenylpropanoid derivatives containing phenol and alcohol functionalities. A reduced or no activity was shown by those derivatives containing ketones, aldehydes, ethers, and ester functionalities as well as the remaining terpenoids. Eugenol emulsion treatments (1-8 mg/mL) of bean seeds bearing about 2.6 x 10(6) cfu/seed of strain ICMP239 of Xanthomonas campestris pv. phaseoli var. fuscans determined a highly significant reduction of the bacteria on seeds. In particular, eugenol at 4 mg/mL disinfect seeds bearing about 7.0 x 10(2) cfu/seed and lower densities. However, after 72 h, incubation treatments with 2, 4, and 8 mg/mL of eugenol caused germination reduction of 3%, 7%, and 16%, respectively, which was significantly different from the controls. No effect on germination was observed with 1 mg/mL eugenol emulsion treatment. These data indicate eugenol as potentially useful for bean seed disinfection from X. campestris pv. phaseoli var. fuscans. Further studies on the effects on seed vitality and on formulation of essential oils are needed.

  15. Synthesis of Polyurethanes Membranes from Rubber Seed Oil and Methylene Diphenyl Diisocyanates (MDI)

    NASA Astrophysics Data System (ADS)

    Marlina; Nurman, S.; Saleha, S.; Fitriani; Thanthawi, I.

    2017-03-01

    Rubber seed oil and methylene diphenyl diisocyanates (MDI) based polyurethane membrane has been prepared in this study. The main objective of this research is manufacture of polyurethane membranes from avocado seed oil, as a filter of this membrane use as a filter of metals from water such as mercury (Hg). In this study, the polyurethane membrane had been synthesized by varying compositions of rubber seed oil and MDI, with ratios of 10:0.2; 10:0.4; 10:0.6; 10:0.8; 10:1.0; 10:1.2; 10:1.4; 10:1.6; 10:1.8 and 10:2.0 (v/w) at 80°C and 170°C as polymerization and curing temperatures, respectively. Optimum polyurethane membrane was obtained at rubber seed oil: MDI 10: 0.8 v/w, it was dry, non-sticky, smooth and blackish brown. The membrane flux was 5,8307 L / m2.h.bar and rejection factor was 35,3015 %. The results of characterization indicated the formation of urethane bonds (NH at 3480 cm-1, C=O at 1620 cm-1, CN at 1374 cm-1, -OC-NH- at 1096 cm-1 and no -NCO at 2270 cm-1), the value of Tg was 55°C. The polyurethane membrane which treated at the optimum treatment conditions were used to the filter of metals from water such as mercury (Hg).

  16. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars.

    PubMed

    Nawirska-Olszańska, Agnieszka; Kita, Agnieszka; Biesiada, Anita; Sokół-Łętowska, Anna; Kucharska, Alicja Z

    2013-08-15

    The objective of this study was to determine the antioxidant properties, and provide characteristics, of the oil obtained from the seeds of 12 pumpkin varieties belonging to the species Cucurbita maxima Duch. and Cucurbita pepo L. Another objective was to establish which of the two extracting agents, ethanol or methanol, is more effective. The seeds of the pumpkin varieties examined differ in chemical composition and antioxidant activity. The seeds of the cultivars belonging to the species C. maxima are characterised by a higher content of fatty acids than are the cultivars of the species C. pepo. In the seed oil, unsaturated acids are dominant (oleic and linoleic), and their proportion depends on the pumpkin variety. The highest content of unsaturated acids has been measured in the oil extracted from the seeds of the cultivar, Jet F1 (C. pepo). Antioxidant activity analysis has produced the following findings. The seeds of the pumpkin varieties that belong to the species C. pepo exhibit better antioxidant properties, regardless of the extraction solvent used. 50% ethanol is more efficient than 80% methanol when used as an extracting agent. The antioxidant activity values obtained with 50% ethanol are higher than those achieved with 80% methanol. Owing to the considerable differences in composition among the fatty acids examined, it is possible to choose the desired pumpkin variety for the intended use. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Swedish tests on rape-seed oil as an alternative to diesel fuel

    SciTech Connect

    Johansson, E.; Nordstroem, O.

    1982-01-01

    The cheapest version of Swedish rape-seed oil was chosen. First the rape-seed oil was mixed in different proportions with regular diesel fuel. A mixture of 1/3 rape-seed oil and 2/3 regular diesel fuel (R 33) was then selected for a long-term test. A Perkins 4.248 diesel engine was used for laboratory tests. Four regular farm tractors, owned and operated by farmers, and two tractors belonging to the Institute have been running on R 33. Each tractor was calibrated on a dynamometer according to Swedish and ISO-standards before they were operated on R 33. Since then the tractors have been regularlymore » recalibrated. The test tractors have been operated on R 33 for more than 3400 h. An additional 1200 h have been covered by the laboratory test engine. None of the test tractors have hitherto required repairs due to the use of R 33, but some fuel filters have been replaced. Some fuel injectors have been cleaned due to deposits on the nozzles. 4 figures, 1 table.« less

  18. Effect of long-term optional ingestion of canola oil, grape seed oil, corn oil and yogurt butter on serum, muscle and liver cholesterol status in rats.

    PubMed

    Asadi, Farzad; Shahriari, Ali; Chahardah-Cheric, Marjan

    2010-01-01

    The aim of the present study was to determine the effect of long-term optional intake of vegetable oils (canola, grape seed, corn) and yogurt butter on the serum, liver and muscle cholesterol status. Twenty-five male Wistar rats were randomly categorized into five groups (n=5) as follows: control, canola oil, grape seed oil, corn oil and manually prepared yogurt butter. In each group, 24h two bottle choice (oil and water) tests were performed for 10 weeks. Serum cholesterol values showed a trend to decrease in grape seed oil, corn oil and yogurt butter groups compared to the control. Optional intake of yogurt butter made a significant increase in HDL-C values (42.34+/-9.98 mg/dL) yet decrease in LDL-C values (11.68+/-2.06 mg/dL) compared to the corresponding control (19.07+/-3.51; 30.96+/-6.38 mg/dL, respectively). Furthermore, such findings were concomitant with a significant decrease in the liver TC levels (1.75+/-0.31 mg/g liver) and an increase in the muscle TC levels (1.85+/-0.32 mg/g liver) compared to the corresponding control (2.43+/-0.31; 0.94+/-0.14 mg/g liver, respectively). Optional intake of manually prepared yogurt butter has more beneficial effects on serum lipoprotein cholesterol values with some alterations in the liver and muscle cholesterol states than the vegetable oils. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans

    PubMed Central

    Wei, Chia-Cheng; Yen, Pei-Ling; Chang, Shang-Tzen; Cheng, Pei-Ling; Lo, Yi-Chen; Liao, Vivian Hsiu-Chuan

    2016-01-01

    Background Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans. Principal Findings The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%). Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans. Conclusions This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods. PMID:27275864

  20. Study on preparation method of Zanthoxylum bungeanum seeds kernel oil with zero trans-fatty acids.

    PubMed

    Liu, Tong; Yao, Shi-Yong; Yin, Zhong-Yi; Zheng, Xu-Xu; Shen, Yu

    2016-04-01

    The seed of Zanthoxylum bungeanum (Z. bungeanum) is a by-product of pepper production and rich in unsaturated fatty acid, cellulose, and protein. The seed oil obtained from traditional producing process by squeezing or extracting would be bad quality and could not be used as edible oil. In this paper, a new preparation method of Z. bungeanum seed kernel oil (ZSKO) was developed by comparing the advantages and disadvantages of alkali saponification-cold squeezing, alkali saponification-solvent extraction, and alkali saponification-supercritical fluid extraction with carbon dioxide (SFE-CO2). The results showed that the alkali saponification-cold squeezing could be the optimal preparation method of ZSKO, which contained the following steps: Z. bungeanum seed was pretreated by alkali saponification under the conditions of adding 10 %NaOH (w/w), solution temperature was 80 °C, and saponification reaction time was 45 min, and pretreated seed was separated by filtering, water washing, and overnight drying at 50 °C, then repeated squeezing was taken until no oil generated at 60 °C with 15 % moisture content, and ZSKO was attained finally using centrifuge. The produced ZSKO contained more than 90 % unsaturated fatty acids and no trans-fatty acids and be testified as a good edible oil with low-value level of acid and peroxide. It was demonstrated that the alkali saponification-cold squeezing process could be scaled up and applied to industrialized production of ZSKO.

  1. The Ectopic Expression of the Wheat Puroindoline Genes Increase Germ Size and Seed Oil Content in Transgenic Corn

    PubMed Central

    Zhang, Jinrui; Martin, John M.; Beecher, Brian; Lu, Chaofu; Hannah, L. Curtis; Wall, Michael L.; Altosaar, Illimar; Giroux, Michael J.

    2014-01-01

    Plant oil content and composition improvement is a major goal of plant breeding and biotechnology. The Puroindoline a and b (PINA and PINB) proteins together control whether wheat seeds are soft or hard textured and share a similar structure to that of plant non-specific lipid-transfer proteins. Here we transformed corn (Zea mays L.) with the wheat (Triticum aestivum L.) puroindoline genes (Pina and Pinb) to assess their effects upon seed oil content and quality. Pina and Pinb coding sequences were introduced into corn under the control of a corn Ubiquitin promoter. Three Pina/Pinb expression positive transgenic events were evaluated over two growing seasons. The results showed that Pin expression increased germ size significantly without negatively impacting seed size. Germ yield increased 33.8% while total seed oil content was increased by 25.23%. Seed oil content increases were primarily the result of increased germ size. This work indicates that higher oil content corn hybrids having increased food or feed value could be produced via puroindoline expression. PMID:20725765

  2. Changes in Acylglycerols composition, quality characteristics and in vivo effects of dietary pumpkin seed oil upon thermal oxidation

    NASA Astrophysics Data System (ADS)

    Zeb, Alam; Ahmad, Sultan

    2017-07-01

    This study was aimed to determine the acylglycerols composition, quality characteristics and protective role of dietary pumpkin seed oil in rabbits. Pumpkin seed oil was thermally oxidized and analyzed for quality characteristics and acylglycerols composition using reversed phase high performance liquid chromatography with diode array detection (HPLC-DAD). Oxidized and un-oxidized oil samples were fed to the rabbits in different doses for two weeks. The changes in the serum biochemistry, hematology, and liver histology were studied. The levels of quality parameters such peroxide value (PV), anisidine value (AV), total phenolic contents (TPC), thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and conjugated trienes (CT) significantly increased with thermal treatment. HPLC analyses revealed ten individual triacylglycerols (TAGs), total di-acylglycerols (DAGs), mono-acylglycerols (MAGs), and total oxidized TAGs. Trilinolein (LLL), 1-oleoyl-2,3-dilinolinoyl glycerol (OLL), triolein (OOO) and 1,2-distearoyl-3-palmitoyl glycerol (SSP) were present in higher amounts and decreased with thermal treatment. Animal's studies showed that oxidized oils decreased the whole body weight, which was ameliorated by the co-administration of un-oxidized oils. The levels of serum biochemical parameters were improved by co-administration of pumpkin seed oils. There were no significant effects of both oxidized and un-oxidized pumpkin seed oil on the hematological and histological parameters of rabbits. In conclusion, nutritionally important triacylglycerols were present in pumpkin seed oil with protective role against the toxicity of its corresponding oxidized oils.

  3. Genome-Wide Association Study in Arabidopsis thaliana of Natural Variation in Seed Oil Melting Point: A Widespread Adaptive Trait in Plants.

    PubMed

    Branham, Sandra E; Wright, Sara J; Reba, Aaron; Morrison, Ginnie D; Linder, C Randal

    2016-05-01

    Seed oil melting point is an adaptive, quantitative trait determined by the relative proportions of the fatty acids that compose the oil. Micro- and macro-evolutionary evidence suggests selection has changed the melting point of seed oils to covary with germination temperatures because of a trade-off between total energy stores and the rate of energy acquisition during germination under competition. The seed oil compositions of 391 natural accessions of Arabidopsis thaliana, grown under common-garden conditions, were used to assess whether seed oil melting point within a species varied with germination temperature. In support of the adaptive explanation, long-term monthly spring and fall field temperatures of the accession collection sites significantly predicted their seed oil melting points. In addition, a genome-wide association study (GWAS) was performed to determine which genes were most likely responsible for the natural variation in seed oil melting point. The GWAS found a single highly significant association within the coding region of FAD2, which encodes a fatty acid desaturase central to the oil biosynthesis pathway. In a separate analysis of 15 a priori oil synthesis candidate genes, 2 (FAD2 and FATB) were located near significant SNPs associated with seed oil melting point. These results comport with others' molecular work showing that lines with alterations in these genes affect seed oil melting point as expected. Our results suggest natural selection has acted on a small number of loci to alter a quantitative trait in response to local environmental conditions. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Tunisian Milk Thistle: An Investigation of the Chemical Composition and the Characterization of Its Cold-Pressed Seed Oils.

    PubMed

    Meddeb, Wiem; Rezig, Leila; Abderrabba, Manef; Lizard, Gérard; Mejri, Mondher

    2017-12-02

    In this study, milk thistle seeds growing in different areas in Tunisia were cold pressed and the extracted oils were examined for their chemical and antioxidant properties. The major fatty acids were linoleic acid (C18:2) (57.0%, 60.0%, and 60.3% for the milk thistle seed oils native to Bizerte, Zaghouan and Sousse, respectively) and oleic acid (C18:1) (15.5%, 21.5%, and 22.4% for the milk thistle seed oils originating from Bizerte, Zaghouan and Sousse, respectively). High performance liquid chromatography (HPLC) analysis showed the richness of the milk thistle seed oils (MTSO) in α-tocopherol. The highest content was recorded for that of the region of Zaghouan (286.22 mg/kg). The total phenolic contents (TPC) of Zaghouan, Bizerte, and Sousse were 1.59, 8.12, and 4.73 Gallic Acid Equivalent (GAE) mg/g, respectively. Three phenolic acids were also identified (vanillic, p -coumaric, and silybine), with a predominance of the vanillic acid. The highest value was recorded for the Zaghouan milk thistle seed oil (83 mg/100 g). Differences in outcomes between regions may be due to climatic differences in areas. Zaghouan's cold-pressed milk thistle seed oil had a better quality than those of Bizerte and Sousse, and can be considered as a valuable source for new multi-purpose products or by-products for industrial, cosmetic, and pharmaceutical utilization.

  5. Fatty acid profiles of Garuga floribunda, Ipomoea pes-caprae, Melanolepis multiglandulosa and Premna odorata seed oils

    USDA-ARS?s Scientific Manuscript database

    The fatty acid profiles of the seed oils of four species from four plant families for which no or only sparse information on the fatty acid profiles is available are reported. The five seed oils are Garuga floribunda of the Burseraceae family, Ipomoea pes-caprae of the Convolvulaceae family, Melanol...

  6. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies

    PubMed Central

    Izquierdo, Esther; Campo, Sonia; Badosa, Esther; Rossignol, Michel; Montesinos, Emilio; San Segundo, Blanca; Coca, María

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation. PMID:26760761

  7. Effect of salt, kinnow and pomegranate fruit by-product powders on color and oxidative stability of raw ground goat meat during refrigerated storage.

    PubMed

    Devatkal, Suresh K; Naveena, B M

    2010-06-01

    Effects of salt, kinnow and pomegranate fruit by-product powders on color and oxidative stability of raw ground goat meat stored at 4+/-1 degrees C was evaluated. Five treatments evaluated include: control (only meat), MS (meat+2% salt), KRP (meat+2% salt+2% kinnow rind powder), PRP (meat+2% salt+2% pomegranate rind powder) and PSP (meat+2% salt+2% pomegranate seed powder). Addition of salt resulted in reduction of redness scores. Lightness increased in control and unchanged in others during storage. Redness scores declined and yellowness showed inconsistent changes during storage. Thiobarbituric acid reactive substances (TBARS) values were higher (P<0.05) in MS followed by control and KRP samples compared to PRP and PSP samples throughout storage. The PSP treated samples showed lowest TBARS values than others. Percent reduction of TBARS values was highest in PSP (443%) followed by PRP (227%) and KRP (123%). Salt accelerated the TBARS formation and by-products of kinnow and pomegranate fruits counteracted this effect. The overall antioxidant effect was in the order of PSP>PRP>KRP>control>MS. Therefore, these powders have potential to be used as natural antioxidants to minimize the auto-oxidation and salt induced lipid oxidation in raw ground goat meat. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  8. Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions.

    PubMed

    Li, Dongmei; Zhao, Xue; Han, Yingpeng; Li, Wenbin; Xie, Futi

    2018-01-08

    Soybean is globally cultivated primarily for its protein and oil. The protein and oil contents of the seeds are quantitatively inherited traits determined by the interaction of numerous genes. In order to gain a better understanding of the molecular foundation of soybean protein and oil content for the marker-assisted selection (MAS) of high quality traits, a population of 185 soybean germplasms was evaluated to identify the quantitative trait loci (QTLs) associated with the seed protein and oil contents. Using specific length amplified fragment sequencing (SLAF-seq) technology, a total of 12,072 single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) ≥ 0.05 were detected across the 20 chromosomes (Chr), with a marker density of 78.7 kbp. A total of 31 SNPs located on 12 of the 20 soybean chromosomes were correlated with seed protein and oil content. Of the 31 SNPs that were associated with the two target traits, 31 beneficial alleles were identified. Two SNP markers, namely rs15774585 and rs15783346 on Chr 07, were determined to be related to seed oil content both in 2015 and 2016. Three SNP markers, rs53140888 on Chr 01, rs19485676 on Chr 13, and rs24787338 on Chr 20 were correlated with seed protein content both in 2015 and 2016. These beneficial alleles may potentially contribute towards the MAS of favorable soybean protein and oil characteristics. Copyright © 2018. Published by Elsevier Inc.

  9. Effect of olive and sunflower seed oil on the adult skin barrier: implications for neonatal skin care.

    PubMed

    Danby, Simon G; AlEnezi, Tareq; Sultan, Amani; Lavender, Tina; Chittock, John; Brown, Kirsty; Cork, Michael J

    2013-01-01

    Natural oils are advocated and used throughout the world as part of neonatal skin care, but there is an absence of evidence to support this practice. The goal of the current study was to ascertain the effect of olive oil and sunflower seed oil on the biophysical properties of the skin. Nineteen adult volunteers with and without a history of atopic dermatitis were recruited into two randomized forearm-controlled mechanistic studies. The first cohort applied six drops of olive oil to one forearm twice daily for 5 weeks. The second cohort applied six drops of olive oil to one forearm and six drops of sunflower seed oil to the other twice daily for 4 weeks. The effect of the treatments was evaluated by determining stratum corneum integrity and cohesion, intercorneocyte cohesion, moisturization, skin-surface pH, and erythema. Topical application of olive oil for 4 weeks caused a significant reduction in stratum corneum integrity and induced mild erythema in volunteers with and without a history of atopic dermatitis. Sunflower seed oil preserved stratum corneum integrity, did not cause erythema, and improved hydration in the same volunteers. In contrast to sunflower seed oil, topical treatment with olive oil significantly damages the skin barrier, and therefore has the potential to promote the development of, and exacerbate existing, atopic dermatitis. The use of olive oil for the treatment of dry skin and infant massage should therefore be discouraged. These findings challenge the unfounded belief that all natural oils are beneficial for the skin and highlight the need for further research. © 2012 Wiley Periodicals, Inc.

  10. Pomegranate juice adulteration by addition of grape or peach juices.

    PubMed

    Nuncio-Jáuregui, Nallely; Calín-Sánchez, Ángel; Hernández, Francisca; Carbonell-Barrachina, Ángel A

    2014-03-15

    Pomegranate juice has gained a high reputation for its health properties and consequently is now a highly demanded product. However, owing to the limited production and high price of fresh pomegranates, adulteration of pomegranate juice seems to be happening. Hence it is imperative to establish criteria for detecting adulteration. Addition of grape juice significantly increased the contents of Ca, Mg and Fe and especially tartaric acid and proline and simultaneously decreased the content of K. Addition of peach juice up to 10% (v/v) only resulted in a significant increase in sucrose content. Regarding the volatile composition, adulteration of pomegranate juice with grape juice resulted in significant increases in acetic acid, isoamyl butyrate and especially 1-hexanol and linalool, while adulteration with peach juice resulted in significant increases in butyl acetate, isobutyl butyrate, benzyl acetate and especially isoamyl butyrate. The control protocols used in this study can serve as a basis for identification of pomegranate juice adulteration. It is important to highlight that it is necessary to simultaneously analyze and have results from several parameters to conclude that a particular pomegranate juice has been adulterated by mixing with another fruit juice. © 2013 Society of Chemical Industry.

  11. [Analysis of essential oil extracted from Lactuca sativa seeds growing in Xinjiang by GC-MS].

    PubMed

    Xu, Fang; Wang, Qiang; Haji, Akber Aisa

    2011-12-01

    To analyze the components of essential oil from Lactuca sativa seeds growing in Xinjiang. The components of essential oil from Lactuca sativa seeds were analyzed by gas chromatography-mass spectrometry (GC-MS). 62 components were identified from 71 separated peaks,amounting to total mass fraction 95.07%. The dominant compounds were n-Hexanol (36.31%), n-Hexanal (13.71%), trans-2-Octen-l-ol (8.09%) and 2-n-Pentylfuran (4.41%). The research provides a theoretical basis for the exploitation and use of Lactuca sativa seeds resource.

  12. Fatty acid composition of seed oil from Fremontodendron californicum

    USDA-ARS?s Scientific Manuscript database

    The fatty acid composition of the low water-use shrub Fremontodendron californicum was examined by high temperature capillary gas chromatography. The ground seeds were extracted by supercritical fluid extraction (SFE) to obtain the oil (25.6% w/w) and for subsequent determination of the fatty acid c...

  13. Brassica GLABRA2 genes: analysis of function related to seed oil content and development of functional markers.

    PubMed

    Chai, Guohua; Bai, Zetao; Wei, Fang; King, Graham J; Wang, Chenggang; Shi, Lei; Dong, Caihua; Chen, Hong; Liu, Shengyi

    2010-05-01

    Regulation of seed oil accumulation in oilseed rape (Brassica napus) has important economic significance. However, few genes have been characterized that affect final seed oil content. Through a mutant identification, the class IV homeodomain-ZIP transcription factor GLABRA2 (GL2) has been found to regulate seed oil accumulation in Arabidopsis, in addition to its role in trichome development. In this study, we isolated four distinct orthologues of GL2 from B. napus (AC-genome), B. rapa (A) and B. oleracea (C), using an overlapping-PCR strategy. The four GL2 orthologues were very similar, with 96.10-99.69% identity in exon regions, 75.45-93.84% in intron regions, 97.34-99.87% in amino acid sequences. Alignments of the four genes revealed that the A-genome sequences of BnaA.GL2.a from B. napus and BraA.GL2.a from B. rapa are more similar than the others, and likewise the C-genome sequences of BnaC.GL2.b from B. napus and BolC.GL2.a from B. oleracea are more similar. BnaA.GL2.a and BraA.GL2.a from the A-genome are highly expressed in roots, whilst BnaC.GL2.b and BolC.GL2.a from the C-genome are preferentially expressed in seeds. Transgenic ectopic overexpression and suppression of BnaC.GL2.b in Arabidopsis allowed further investigation of the effect on seed oil content. Overexpression generated two phenotypes: the wild-type-like and the gl2-mutant-like (an Arabidopsis glabrous mutant of gl2-2), with increases in seed oil content of 3.5-5.0% in the gl2-mutant-like transgenic plants. Suppression resulted in increases of 2.5-6.1% in seed oil content, and reduced trichome number at the leaf margins. These results suggest that BnaC.GL2.b can negatively regulate oil accumulation in Arabidopsis seeds. As a result of comparing the four GL2 genes, three A/C-genome-specific primer sets were developed and a C-genome-specific EcoRV cleavage site was identified, which can be used as functional markers to distinguish these orthologues within Brassica species. The genes identified

  14. Metabolic Changes during Storage of Brassica napus Seeds under Moist Conditions and the Consequences for the Sensory Quality of the Resulting Virgin Oil.

    PubMed

    Bonte, Anja; Schweiger, Rabea; Pons, Caroline; Wagner, Claudia; Brühl, Ludger; Matthäus, Bertrand; Müller, Caroline

    2017-12-20

    Virgin rapeseed (Brassica napus) oil is a valuable niche product, if delivered with a high quality. In this study, the effects of moist storage of B. napus seeds for 1 to 4 days on the seed metabolome and the chemo-sensory properties of the produced oils were determined. The concentrations of several primary metabolites, including monosaccharides and amino acids, rapidly increased in the seeds, probably indicating the breakdown of storage compounds to support seed germination. Seed concentrations of indole glucosinolates increased with a slight time offset suggesting that amino acids may be used to modify secondary metabolism. The volatile profiles of the oils were pronouncedly influenced by moist seed storage, with the sensory quality of the oils decreasing. This study provides a direct time-resolved link between seed metabolism under moist conditions and the quality of the resulting oils, thereby emphasizing the crucial role of dry seed storage in ensuring high oil quality.

  15. A transgene design for enhancing oil content in Arabidopsis and Camelina seeds

    USDA-ARS?s Scientific Manuscript database

    Increasing the oil yield is a major objective for oilseed crop improvement. Oil biosynthesis and accumulation are influenced by multiple genes involved in embryo and seed development. The LEAFY COTYLEDON1 (LEC1) is a master regulator of embryo development that also enhances the expression of genes i...

  16. Methyl esters (biodiesel) from Melanolepis multiglandulosa (alim) seed oil and their properties

    USDA-ARS?s Scientific Manuscript database

    Sufficient supply of feedstock oils is a major issue facing biodiesel in order to increase the still limited amounts available. In this work, the fatty acid methyl esters, also known as biodiesel, of the seed oil of Melanolepsi multiglandulosa, a member of the Euphorbiaceae family, were prepared and...

  17. Complementary blending of meadowfoam seed oil methyl esters with biodiesel prepared from soybean and waste cooking oils to enhance fuel properties

    USDA-ARS?s Scientific Manuscript database

    The complementary blending of meadowfoam seed oil methyl esters (MFME) with soybean and waste cooking oil methyl esters (SME and WCME) was investigated. MFME prepared from cold-pressed meadowfoam oil exhibited an exceptionally high induction period (IP) of 66.2 h whereas SME and WCME yielded conside...

  18. Pyrolysis of sunflower seed hulls for obtaining bio-oils.

    PubMed

    Casoni, Andrés I; Bidegain, Maximiliano; Cubitto, María A; Curvetto, Nestor; Volpe, María A

    2015-02-01

    Bio-oils from pyrolysis of as received sunflower seed hulls (SSH), hulls previously washed with acid (SSHA) and hulls submitted to a mushroom enzymatic attack (BSSH) were analyzed. The concentration of lignin, hemicellulose and cellulose varied with the pre-treatment. The liquid corresponding to SSH presented a relatively high concentration of acetic acid and a high instability to storage. The bio-oil from SSHA showed a high concentration of furfural and an appreciable amount of levoglucosenone. Lignin was degraded upon enzymatic activity, for this reason BSSH led to the highest yield of bio-oil, with relative high concentration of acetic acid and stability to storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Oil content in seeds of the NPGS jojoba (Simmondsia chinensis) germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Jojoba, Simmondsia chinensis, (Link) Schneider is a shrub native to warm and arid land regions of North and Latin America. Its seeds contain vegetable oil composed of long (C20-22), straight-chain liquid wax of non-glyceride esters. Minute amounts of triglycerides in its composition make the oil a l...

  20. Tunisian Milk Thistle: An Investigation of the Chemical Composition and the Characterization of Its Cold-Pressed Seed Oils

    PubMed Central

    Meddeb, Wiem; Rezig, Leila; Abderrabba, Manef

    2017-01-01

    In this study, milk thistle seeds growing in different areas in Tunisia were cold pressed and the extracted oils were examined for their chemical and antioxidant properties. The major fatty acids were linoleic acid (C18:2) (57.0%, 60.0%, and 60.3% for the milk thistle seed oils native to Bizerte, Zaghouan and Sousse, respectively) and oleic acid (C18:1) (15.5%, 21.5%, and 22.4% for the milk thistle seed oils originating from Bizerte, Zaghouan and Sousse, respectively). High performance liquid chromatography (HPLC) analysis showed the richness of the milk thistle seed oils (MTSO) in α-tocopherol. The highest content was recorded for that of the region of Zaghouan (286.22 mg/kg). The total phenolic contents (TPC) of Zaghouan, Bizerte, and Sousse were 1.59, 8.12, and 4.73 Gallic Acid Equivalent (GAE) mg/g, respectively. Three phenolic acids were also identified (vanillic, p-coumaric, and silybine), with a predominance of the vanillic acid. The highest value was recorded for the Zaghouan milk thistle seed oil (83 mg/100 g). Differences in outcomes between regions may be due to climatic differences in areas. Zaghouan’s cold-pressed milk thistle seed oil had a better quality than those of Bizerte and Sousse, and can be considered as a valuable source for new multi-purpose products or by-products for industrial, cosmetic, and pharmaceutical utilization. PMID:29207484

  1. Analysis of seed oils containing cyclopentenyl fatty acids by combined chromatographic procedures.

    PubMed

    Christie, W W; Brechany, E Y; Shukla, V K

    1989-02-01

    The fatty acids of seed oils of the Flacourtiaceae, Hydnocarpus anthelmintica, Caloncoba echinata and Taraktogenus kurzii, have been examined by a combination of capillary gas chromatography, silver ion high performance liquid chromatography and gas chromatography-mass spectrometry. In addition to the common range of cyclopentenyl fatty acids found in such oils, 13-cyclopent-2-enyltridec-4-enoic acid was a major component of H. anthelmintica and was identified by mass spectrometry as its picolinyl ester and dimethyldisulphide adduct. It has not previously been found in nature. In the other seed oils, the isolated double bond in the corresponding fatty acid was in position 6, as expected. Similarly, cis-4-hexadecenoic acid and C16 and C18 cyclopentyl fatty acids were identified for the first time in H. anthelmintica. Iso- and anteiso-methylbranched fatty acids were present in trace amounts.

  2. Pomegranate extracts and cancer prevention: molecular and cellular activities.

    PubMed

    Syed, Deeba N; Chamcheu, Jean-Christopher; Adhami, Vaqar M; Mukhtar, Hasan

    2013-10-01

    There is increased appreciation by the scientific community that dietary phytochemicals can be potential weapons in the fight against cancer. Emerging data has provided new insights into the molecular and cellular framework needed to establish novel mechanism-based strategies for cancer prevention by selective bioactive food components. The unique chemical composition of the pomegranate fruit, rich in antioxidant tannins and flavonoids has drawn the attention of many investigators. Polyphenol rich fractions derived from the pomegranate fruit have been studied for their potential chemopreventive and/or cancer therapeutic effects in several animal models. Although data from in vitro and in vivo studies look convincing, well designed clinical trials in humans are needed to ascertain whether pomegranate can become part of our armamentarium against cancer. This review summarizes the available literature on the effects of pomegranate against various cancers.

  3. Pomegranate Extracts and Cancer Prevention: Molecular and Cellular Activities

    PubMed Central

    Syed, Deeba N.; Chamcheu, Jean-Christopher; Adhami, Vaqar M.; Mukhtar, Hasan

    2014-01-01

    There is increased appreciation by the scientific community that dietary phytochemicals can be potential weapons in the fight against cancer. Emerging data has provided new insights into the molecular and cellular framework needed to establish novel mechanism-based strategies for cancer prevention by selective bioactive food components. The unique chemical composition of the pomegranate fruit, rich in antioxidant tannins and flavonoids has drawn the attention of many investigators. Polyphenol rich fractions derived from the pomegranate fruit have been studied for their potential chemopreventive and/or cancer therapeutic effects in several animal models. Although data from in vitro and in vivo studies look convincing, well designed clinical trials in humans are needed to ascertain whether pomegranate can become part of our armamentarium against cancer. This review summarizes the available literature on the effects of pomegranate against various cancers. PMID:23094914

  4. Characterisation of Pomegranate-Husk Polyphenols and Semi-Preparative Fractionation of Punicalagin.

    PubMed

    Aguilar-Zárate, Pedro; Wong-Paz, Jorge E; Michel, Mariela; Buenrostro-Figueroa, Juan; Díaz, Hugo R; Ascacio, Juan A; Contreras-Esquivel, Juan C; Gutiérrez-Sánchez, Gerardo; Aguilar, Cristóbal N

    2017-09-01

    Pomegranate-husk is the main by-product generated from the pomegranate industry. It is a potential source of compounds highly appreciated by different costumers. Punicalagin is the main compound present in pomegranate-husk. To characterise the pomegranate-husk total polyphenols by HPLC-ESI-MS and to establish a method for the recovery of punicalagin using a medium pressure liquid chromatography (MPLC) system. The characterisation of total pomegranate-husk polyphenols was carried out using liquid chromatography coupled to mass spectrometry. Thus, 200 mg of pomegranate-husk polyphenols were fractionated by MPLC. The isolated punicalagin was characterised by HPLC-MS and was tested as standard reagent for the measurement of its scavenging capacity reducing DPPH and ABTS radicals. Twenty peaks were identified by analytical HPLC-MS analysis from the pomegranate-husk polyphenols. The main compounds were the punicalagin anomers, punicalin and ellagic acid. The MPLC method allowed three fractions to be obtained. In fraction three 39.40 ± 8.06 mg of punicalagin anomers (purity > 97.9%) were recovered. The scavenging capacity of punicalagin showed an IC 50 of 109.53 and 151.50 μg/mL for DPPH and ABTS radicals, respectively. The MPLC system was an excellent tool for the separation of the main ellagitannins from pomegranate husk and for the isolation of punicalagin anomers. Fraction three was rich in high purity punicalagin anomers. The IC 50 was obtained for DPPH and ABTS radicals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Comparative effects of sandalwood seed oil on fatty acid profiles and inflammatory factors in rats.

    PubMed

    Li, Guipu; Singh, Anish; Liu, Yandi; Sunderland, Bruce; Li, Duo

    2013-02-01

    The aim of the present study was to investigate the effect of sandalwood seed oil on fatty acid (FA) profiles and inflammatory factors in rats. Fifty male Sprague-Dawley rats were randomly divided into five different dietary groups: 10 % soybean oil (SO), 10 % olive oil (OO), 10 % safflower oil (SFO), 10 % linseed oil (LSO) and 8 % sandalwood seed oil blended with 2 % SO (SWSO) for 8 weeks. The SWSO group had a higher total n-3 polyunsaturated fatty acids (PUFA) levels but lower n-6:n-3 PUFA ratios in both adipose tissue and liver than those in the SO, OO and SFO groups (p < 0.05). Although the SWSO group had a much lower 18:3n-3 level (4.51 %) in their dietary lipids than the LSO group (58.88 %), the levels of docosahexaenoic acid (DHA: 22:6n-3) in liver lipids and phospholipids of the SWSO group (7.52 and 11.77 %) were comparable to those of the LSO group (7.07 and 13.16 %). Ximenynic acid, a predominant acetylenic FA in sandalwood seed oil, was found to be highly incorporated into adipose tissue (13.73 %), but relatively lower in liver (0.51 %) in the SWSO group. The levels of prostaglandin F(2α), prostaglandin E₂, thromboxane B₂, leukotriene B₄, tumor necrosis factor-α and interleukin-1β in both liver and plasma were positively correlated with the n-6:n-3 ratios, suggesting that increased n-6 PUFA appear to increase the formation of pro-inflammatory cytokines, whereas n-3 PUFA exhibit anti-inflammatory activity. The present results suggest that sandalwood seed oil could increase tissue levels of n-3 PUFA, DHA and reduce the n-6:n-3 ratio, and may increase the anti-inflammatory activity in rats.

  6. Determination of the major phenolic compounds in pomegranate juices by HPLC−DAD−ESI-MS.

    PubMed

    Gómez-Caravaca, Ana María; Verardo, Vito; Toselli, Moreno; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Caboni, Maria Fiorenza

    2013-06-05

    Traditionally, pomegranate (Punica granatum L.) has been consumed as fresh fruit or as pomegranate juice. In this study, the main phenolic compounds of 12 pomegranate varieties and 5 pomegranate clones were determined by HPLC−DAD−ESI-MS. Two chromatographic methods with a fused-core C18 column and a classical HPLC system were developed. Thirteen anthocyanins and fourteen other phenolic compounds were determined in the pomegranate juices. As far as we are concerned, a new flavonol-glycoside, phellatin or its isomer amurensin, has been tentatively identified for the first time in pomegranate juices. Total phenolic content ranged from 580.8 to 2551.3 mg/L of pomegranate juice. Anthocyanins varied between 20 to 82% of total phenolic content. Flavonoids were 1.6-23.6% of total phenolic compounds, while phenolic acids and ellagitannins were in the range 16.4-65.8%. The five clones reported a phenolic content comparable with that of the other pomegranate samples.

  7. Biodiesel from Citrus reticulata (Mandarin orange) seed oil, a potential non-food feedstock

    USDA-ARS?s Scientific Manuscript database

    Oil extracted from Citrus reticulata (Mandarin orange) seeds was investigated as a potential feedstock for the production of biodiesel. The biodiesel fuel was prepared by sodium methoxide-catalyzed transesterification of the oil with methanol. Fuel properties that were determined include cetane numb...

  8. Effects of pomegranate and pomegranate-apple blend juices on the growth characteristics of Alicyclobacillus acidoterrestris DSM 3922 type strain vegetative cells and spores.

    PubMed

    Molva, Celenk; Baysal, Ayse Handan

    2015-05-04

    The present study examined the growth characteristics of Alicyclobacillus acidoterrestris DSM 3922 vegetative cells and spores after inoculation into apple, pomegranate and pomegranate-apple blend juices (10, 20, 40 and 80%, v/v). Also, the effect of sporulation medium was tested using mineral [Bacillus acidoterrestris agar (BATA) and Bacillus acidocaldarius agar (BAA)] and non-mineral containing media [potato dextrose agar (PDA) and malt extract agar (MEA)]. The juice samples were inoculated separately with approximately 10(5)CFU/mL cells or spores from different sporulation media and then incubated at 37°C for 336 h. The number of cells decreased significantly with increasing pomegranate juice concentration in the blend juices and storage time (p<0.001). Based on the results, 3.17, 3.53, and 3.72 log cell reductions were observed in 40%, 80% blend and pomegranate juices, respectively while the cell counts attained approximately 7.17 log CFU/mL in apple juice after 336 h. On the other hand, the cell growth was inhibited for a certain time, and then the numbers started to increase after 72 and 144 h in 10% and 20% blend juices, respectively. After 336 h, total population among spores produced on PDA, BATA, BAA and MEA indicated 1.49, 1.65, 1.67, and 1.28 log reductions in pomegranate juice; and 1.51, 1.38, 1.40 and 1.16 log reductions in 80% blend juice, respectively. The inhibitory effects of 10%, 20% and 40% blend juices varied depending on the sporulation media used. The results obtained in this study suggested that pomegranate and pomegranate-apple blend juices could inhibit the growth of A. acidoterrestris DSM 3922 vegetative cells and spores. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of mechanical extraction parameters on the yield and quality of tobacco (Nicotiana tabacum L.) seed oil.

    PubMed

    Sannino, M; Del Piano, L; Abet, Massimo; Baiano, S; Crimaldi, M; Modestia, F; Raimo, F; Ricciardiello, G; Faugno, S

    2017-11-01

    The aim of this study was to investigate how the combination of extraction parameters, such as extraction temperature seeds preheating and screw rotation speed, influenced the yield and chemical quality of tobacco seed oil (TSO). For its peculiar properties, TSO can be used for several purposes, as raw material in the manufacturing of soap, paints, resins, lubricants, biofuels and also as edible oil. TSO was obtained using a mechanical screw press and the quality of the oil was evaluated by monitoring the free fatty acids (FFA), the peroxide value (PV), the spectroscopic indices K 232 , K 270 and ΔK and the fatty acid composition. The maximum extraction yield, expressed as percent of oil mechanically extracted respect to the oil content in the seeds, determined by solvent extraction, was obtained with the combination of the highest extraction temperature, the slowest screw rotation speed and seeds preheating. Under these conditions yield was 80.28 ± 0.33% (w/w), 25% higher than the lowest yield obtained among investigated conditions. The extraction temperature and seed preheating showed a significant effect on FFA, on spectroscopic indices K 232 , K 270 and ΔK values. The average values of these parameters slightly increased rising the temperature and in presence of preheating, the screw rotation speed did not affect the chemical characteristic tested. In the extraction conditions investigated no significant changes in PV and fatty acids composition of oil were observed.

  10. Identification and characterization of large DNA deletions affecting oil quality traits in soybean seeds through transcriptome sequencing analysis

    USDA-ARS?s Scientific Manuscript database

    Understanding the molecular and genetic mechanisms underlying variation in seed composition and contents among different genotypes is important for soybean oil quality improvement. We designed a bioinformatics approach to compare seed transcriptomes of 9 soybean genotypes varying in oil composition ...

  11. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds.

    PubMed

    Ekman, Asa; Hayden, Daniel M; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development.

  12. Fatty acid composition and antioxidant activity of tea (Camellia sinensis L.) seed oil extracted by optimized supercritical carbon dioxide.

    PubMed

    Wang, Yuefei; Sun, Da; Chen, Hao; Qian, Lisheng; Xu, Ping

    2011-01-01

    Seeds are another product in addition to leaves (raw materials for teas) of tea (Camellia sinensis L.) plant. The great increase of tea consumption in recent years raises the challenge of finding commercial applications for tea seeds. In the present study, supercritical carbon dioxide (SC-CO(2)) extraction edible oil from tea seed was carried out, response surface methodology (RSM) was used to optimize processing parameters including time (20-90 min), temperature (35-45 °C) and pressure (50-90 MPa). The fatty acid composition and antioxidant activity of the extracted oil was also investigated. The highest yield of oil (29.2 ± 0.6%) was obtained under optimal SC-CO(2) extraction conditions (45 °C, 89.7 min and 32 MPa, respectively), which was significantly higher (p < 0.05) than that (25.3 ± 1.0%) given by Soxhlet extraction. Meanwhile, tea seed oil extracted by SC-CO(2) contained approximately 80% unsaturated fatty acids and showed a much stronger scavenging ability on the DPPH radical than that extracted by Soxhlet. SC-CO(2) is a promising alternative for efficient extraction of edible oil from tea seed. Moreover, tea seed oil extracted by SC-CO(2) is highly edible and has good antioxidant activity, and therefore may play a potential role as a health-promoting food resource in human diets.

  13. Fatty Acid Composition and Antioxidant Activity of Tea (Camellia sinensis L.) Seed Oil Extracted by Optimized Supercritical Carbon Dioxide

    PubMed Central

    Wang, Yuefei; Sun, Da; Chen, Hao; Qian, Lisheng; Xu, Ping

    2011-01-01

    Seeds are another product in addition to leaves (raw materials for teas) of tea (Camellia sinensis L.) plant. The great increase of tea consumption in recent years raises the challenge of finding commercial applications for tea seeds. In the present study, supercritical carbon dioxide (SC-CO2) extraction edible oil from tea seed was carried out, response surface methodology (RSM) was used to optimize processing parameters including time (20–90 min), temperature (35–45 °C) and pressure (50–90 MPa). The fatty acid composition and antioxidant activity of the extracted oil was also investigated. The highest yield of oil (29.2 ± 0.6%) was obtained under optimal SC-CO2 extraction conditions (45 °C, 89.7 min and 32 MPa, respectively), which was significantly higher (p < 0.05) than that (25.3 ± 1.0%) given by Soxhlet extraction. Meanwhile, tea seed oil extracted by SC-CO2 contained approximately 80% unsaturated fatty acids and showed a much stronger scavenging ability on the DPPH radical than that extracted by Soxhlet. SC-CO2 is a promising alternative for efficient extraction of edible oil from tea seed. Moreover, tea seed oil extracted by SC-CO2 is highly edible and has good antioxidant activity, and therefore may play a potential role as a health-promoting food resource in human diets. PMID:22174626

  14. Development of a hull-less pumpkin (Cucurbita pepo L.) seed oil press-cake spread.

    PubMed

    Radočaj, Olga; Dimić, Etelka; Vujasinović, Vesna

    2012-09-01

    A stable, oil-based spread rich in the omega-3 (ω-3) and omega-6 (ω-6) fatty acids was developed using a hull-less pumpkin seed (Cucurbita pepo L.) oil press-cake, a by-product of the pumpkin oil pressing process, along with cold-pressed hemp oil. Response surface methodology (RSM) was applied to investigate the effects of two factors, as the formulation's compositional variables: a commercial stabilizer (X(1) ) and cold-pressed hemp oil (X(2) ) added to the pumpkin seed oil press-cake in the spread formulations. A central composite, 2-factorial experimental design on 5 levels was used to optimize the spreads where model responses were ω-3 fatty acids content, spreadability (hardness), oil separation, and sensory evaluation. The selected responses were significantly affected by both variables (P < 0.05). The spreads resembled commercial peanut butter, both in appearance, texture and spreadability; were a source of ω-3 fatty acids and with no visual oil separation after 1 mo of storage. An optimum spread was produced using 1.25% (w/w) of stabilizer and 80% of hemp oil (w/w, of the total added oil) which had 0.97 g of ω-3 fatty acids per serving size; penetration depth of 68.4 mm; oil separation of 9.2% after 3 mo of storage; and a sensory score of 17.5. A use of by-products generated from different food processing technologies, where the edible waste is successfully incorporated as a value-added ingredient, has become a very important area of research to support global sustainability efforts. This study contributes to the knowledge of a product design process for oil-based spread development, where oil press-cake, a by-product of the oil pressing process of the naked pumpkin seeds, was used and where results have demonstrated that a new product can be successfully developed and potentially manufactured as a functional food. © 2012 Institute of Food Technologists®

  15. Essential oils in the ranunculaceae family: chemical composition of hydrodistilled oils from Consolida regalis, Delphinium elatum, Nigella hispanica, and N. nigellastrum seeds.

    PubMed

    Kokoska, Ladislav; Urbanova, Klara; Kloucek, Pavel; Nedorostova, Lenka; Polesna, Lucie; Malik, Jan; Jiros, Pavel; Havlik, Jaroslav; Vadlejch, Jaroslav; Valterova, Irena

    2012-01-01

    In this study, we analyzed the chemical composition of volatile oils hydrodistilled from seeds of Consolida regalis, Delphinium elatum, Nigella hispanica, and N. nigellastrum using GC and GC/MS. In C. regalis, octadecenoic (77.79%) and hexadecanoic acid (8.34%) were the main constituents. Similarly, the oils from D. elatum and N. hispanica seeds consisted chiefly of octadecadienoic (42.83 and 35.58%, resp.), hexadecanoic (23.87 and 28.59%, resp.), and octadecenoic acid (21.67 and 19.76%, resp.). Contrastingly, the monoterpene hydrocarbons α-pinene (34.67%) and β-pinene (36.42%) were the main components of N. nigellastrum essential oil. Our results confirm the presence of essential oils in the family Ranunculaceae and suggest chemotaxonomical relationships within the representatives of the genera Consolida, Delphinium, and Nigella. In addition, the presence of various bioactive constituents such as linoleic acid, (-)-β-pinene, squalene, or carotol in seeds of D. elatum, N. hispanica, and N. nigellastrum indicates a possible industrial use of these plants. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  16. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil.

    PubMed

    Salimon, Jumat; Abdullah, Bashar Mudhaffar; Salih, Nadia

    2011-11-01

    Fatty acids (FAs) are important as raw materials for the biotechnology industry. Existing methods of FAs production are based on chemical methods. In this study potassium hydroxide (KOH)-catalyzed reactions were utilized to hydrolysis Jatropha curcas seed oil. The parameters effect of ethanolic KOH concentration, reaction temperature, and reaction time to free fatty acid (FFA%) were investigated using D-Optimal Design. Characterization of the product has been studied using Fourier transforms infrared spectroscopy (FTIR), gas chromatography (GC) and high performance liquid chromatography (HPLC). The optimum conditions for maximum FFA% were achieved at 1.75M of ethanolic KOH concentration, 65°C of reaction temperature and 2.0 h of reaction time. This study showed that ethanolic KOH concentration was significant variable for J. curcas seed oil hydrolysis. In a 18-point experimental design, FFA% of hydrolyzed J. curcas seed oil can be raised from 1.89% to 102.2%, which proved by FTIR and HPLC.

  17. Optimization of extraction conditions of total phenolics, antioxidant activities, and anthocyanin of oregano, thyme, terebinth, and pomegranate.

    PubMed

    Rababah, Taha M; Banat, Fawzi; Rababah, Anfal; Ereifej, Khalil; Yang, Wade

    2010-09-01

    The purpose of this study was to evaluate the total phenolic extracts and antioxidant activity and anthocyanins of varieties of the investigated plants. These plants include oregano, thyme, terebinth, and pomegranate. The optimum extraction conditions including temperature and solvent of the extraction process itself were investigated. Total phenolic and anthocyanin extracts were examined according to Folin-Ciocalteu assay and Rabino and Mancinelli method, respectively. The effect of different extracting solvents and temperatures on extracts of phenolic compounds and anthocyanins were studied. Plant samples were evaluated for their antioxidant chemical activity by 2, 2-diphenyl-1-picrylhydrazl assay, to determine their potential as a source of natural antioxidant. Results showed that all tested plants exhibited appreciable amounts of phenolic compounds. The methanolic extract (60 °C) of sour pomegranate peel contained the highest phenolic extract (4952.4 mg/100 g of dry weight). Terebinth green seed had the lowest phenolic extract (599.4 mg/100 g of dry weight). Anthocyanins ranged between 3.5 (terebinth red seed) and 0.2 mg/100 g of dry material (thyme). Significant effect of different extracting solvents and temperatures on total phenolics and anthocyanin extracts were found. The methanol and 60 °C of extraction conditions found to be the best for extracting phenolic compounds. The distilled water and 60 °C extraction conditions found to be the best for extracting anthocyanin.

  18. Storage stability of sterilized liquid extracts from pomegranate peel

    USDA-ARS?s Scientific Manuscript database

    Pomegranate marc, a byproduct of commercial juice production, has shown promise as a starting material for the recovery of health promoting phenolic compounds. The stability of aqueous extracts prepared from pomegranate marc was evaluated in preparation to directly using these extracts as nutraceuti...

  19. Optimization of Bleaching Parameters in Refining Process of Kenaf Seed Oil with a Central Composite Design Model.

    PubMed

    Chew, Sook Chin; Tan, Chin Ping; Nyam, Kar Lin

    2017-07-01

    Kenaf seed oil has been suggested to be used as nutritious edible oil due to its unique fatty acid composition and nutritional value. The objective of this study was to optimize the bleaching parameters of the chemical refining process for kenaf seed oil, namely concentration of bleaching earth (0.5 to 2.5% w/w), temperature (30 to 110 °C) and time (5 to 65 min) based on the responses of total oxidation value (TOTOX) and color reduction using response surface methodology. The results indicated that the corresponding response surface models were highly statistical significant (P < 0.0001) and sufficient to describe and predict TOTOX value and color reduction with R 2 of 0.9713 and 0.9388, respectively. The optimal parameters in the bleaching stage of kenaf seed oil were: 1.5% w/w of the concentration of bleaching earth, temperature of 70 °C, and time of 40 min. These optimum parameters produced bleached kenaf seed oil with TOTOX value of 8.09 and color reduction of 32.95%. There were no significant differences (P > 0.05) between experimental and predicted values, indicating the adequacy of the fitted models. © 2017 Institute of Food Technologists®.

  20. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.

    PubMed

    Iven, Tim; Hornung, Ellen; Heilmann, Mareike; Feussner, Ivo

    2016-01-01

    Seed oil composed of wax esters with long-chain monoenoic acyl moieties represents a high-value commodity for industry. Such plant-derived sperm oil-like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low-input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol-forming acyl-CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl-CoA substrates. To produce plant-derived sperm oil-like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1∆c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1∆c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Protein composition of oil bodies from mature Brassica napus seeds.

    PubMed

    Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Larré, Colette; Barre, Marion; Rogniaux, Hélène; d'Andréa, Sabine; Chardot, Thierry; Nesi, Nathalie

    2009-06-01

    Seed oil bodies (OBs) are intracellular particles storing lipids as food or biofuel reserves in oleaginous plants. Since Brassica napus OBs could be easily contaminated with protein bodies and/or myrosin cells, they must be purified step by step using floatation technique in order to remove non-specifically trapped proteins. An exhaustive description of the protein composition of rapeseed OBs from two double-zero varieties was achieved by a combination of proteomic and genomic tools. Genomic analysis led to the identification of sequences coding for major seed oil body proteins, including 19 oleosins, 5 steroleosins and 9 caleosins. Most of these proteins were also identified through proteomic analysis and displayed a high level of sequence conservation with their Arabidopsis thaliana counterparts. Two rapeseed oleosin orthologs appeared acetylated on their N-terminal alanine residue and both caleosins and steroleosins displayed a low level of phosphorylation.

  2. [Mass Transfer Kinetics Model of Ultrasonic Extraction of Pomegranate Peel Polyphenols].

    PubMed

    Wang, Zhan-yi; Zhang, Li-hua; Wang, Yu-hai; Zhang, Yuan-hu; Ma, Li; Zheng, Dan-dan

    2015-05-01

    The dynamic mathematical model of ultrasonic extraction of polyphenols from pomegranate peel was constructed with the Fick's second law as the theoretical basis. The spherical model was selected, with mass concentrations of pomegranate peel polyphenols as the index, 50% ethanol as the extraction solvent and ultrasonic extraction as the extraction method. In different test conditions including the liquid ratio, extraction temperature and extraction time, a series of kinetic parameters were solved, such as the extraction process (k), relative raffinate rate, surface diffusion coefficient(D(S)), half life (t½) and the apparent activation energy (E(a)). With the extraction temperature increasing, k and D(S) were gradually increased with t½ decreasing,which indicated that the elevated temperature was favorable to the extraction of pomegranate peel polyphenols. The exponential equation of relative raffinate rate showed that the established numerical dynamics model fitted the extraction of pomegranate peel polyphenols, and the relationship between the reaction conditions and pomegranate peel polyphenols concentration was well reflected by the model. Based on the experimental results, a feasible and reliable kinetic model for ultrasonic extraction of polyphenols from pomegranate peel is established, which can be used for the optimization control of engineering magnifying production.

  3. Thermal stability of liquid antioxidative extracts from pomegranate peel

    USDA-ARS?s Scientific Manuscript database

    This research was carried out to assess the potential of using the natural antioxidants in pomegranate peel extracts as replacement for synthetic antioxidants. As a result the thermal stability of pomegranate peel extract products during sterilization and storage, and its effect on industrial, color...

  4. The protective effect of pomegranate juice in paracetamol-induced acute hepatotoxicity in rats

    PubMed Central

    Çalışkan, Duygu; Koca, Tuğba; Doğuç, Duygu Kumbul; Özgöçmen, Meltem; Akçam, Mustafa

    2016-01-01

    Aim: Being the most commonly used antipyretic and analgesic, paracetamol is one of the most common causes of childhood poisoning in the world and maintains its importance also in our country. Paracetamol poisoning is one of the most common causes of liver failure. This study aimed to investigate if pomegranate juice had protective effect in acute liver toxicity related with paracetamol. Material and Methods: A total of 36 Wistar-Albino rats were divided into four groups as the paracetamol group (3 000 mg/kg paracetamol), the pomegranate juice + paracetamol group (1.5 mL pomegranate juice plus 3 000 mg/kg paracetamol), the pomegranate juice group (1.5 mL pomegranate juice) and the control group (1.5 mL distilled water). Pomegranate juice and distilled water were administered for eight days. Paracetamol was administered on day 8. The level of thiobarbituric acid reactive substances, as an oxidative marker, was measured in the blood and liver tissue on day 9. In addition, liver tissues were evaluated histologically (in terms of increased connective tissue, granular degeneration, mononuclear cell infiltration, necrotic cells and vascular congestion). Results: The liver tissue and blood thiobarbituric acid reactive substances levels were found to be significantly lower in the pomegranate juice + paracetamol group compared to the paracetamol group (p<0.05). Histologically, structural changes related with damage were observed in both the paracetamol group and pomegranate juice + paracetamol group. The extent of damage was statistically significantly lower in the pomegranate juice + paracetamol group (p<0.001). Conclusions: Our results related with oxidative and histologic evaluation showed that pomegranate juice might have a preventive effect in paracetamol-induced acute liver damage. PMID:27489463

  5. The protective effect of pomegranate juice in paracetamol-induced acute hepatotoxicity in rats.

    PubMed

    Çalışkan, Duygu; Koca, Tuğba; Doğuç, Duygu Kumbul; Özgöçmen, Meltem; Akçam, Mustafa

    2016-06-01

    Being the most commonly used antipyretic and analgesic, paracetamol is one of the most common causes of childhood poisoning in the world and maintains its importance also in our country. Paracetamol poisoning is one of the most common causes of liver failure. This study aimed to investigate if pomegranate juice had protective effect in acute liver toxicity related with paracetamol. A total of 36 Wistar-Albino rats were divided into four groups as the paracetamol group (3 000 mg/kg paracetamol), the pomegranate juice + paracetamol group (1.5 mL pomegranate juice plus 3 000 mg/kg paracetamol), the pomegranate juice group (1.5 mL pomegranate juice) and the control group (1.5 mL distilled water). Pomegranate juice and distilled water were administered for eight days. Paracetamol was administered on day 8. The level of thiobarbituric acid reactive substances, as an oxidative marker, was measured in the blood and liver tissue on day 9. In addition, liver tissues were evaluated histologically (in terms of increased connective tissue, granular degeneration, mononuclear cell infiltration, necrotic cells and vascular congestion). The liver tissue and blood thiobarbituric acid reactive substances levels were found to be significantly lower in the pomegranate juice + paracetamol group compared to the paracetamol group (p<0.05). Histologically, structural changes related with damage were observed in both the paracetamol group and pomegranate juice + paracetamol group. The extent of damage was statistically significantly lower in the pomegranate juice + paracetamol group (p<0.001). Our results related with oxidative and histologic evaluation showed that pomegranate juice might have a preventive effect in paracetamol-induced acute liver damage.

  6. Antioxidant Activity of Essential Oil Extracted by SC-CO₂ from Seeds of Trachyspermum ammi.

    PubMed

    Singh, Aarti; Ahmad, Anees

    2017-07-11

    Bcakground: Extracts obtained from natural sources such as plants are of immense importance for humans. Methods: Therefore this study was conducted to obtain essential oil from the seeds of T. ammi by conventional and non-conventional methods. Hydrodistillation (HD), Solvent Extraction (SE), Ultrasonication (US), and Supercritical Carbon-dioxide (SC-CO₂) extraction techniques were used to extract essential oil from the powdered seeds of T. ammi . A quality control method for each extracted oil was developed using HPTLC, FTIR, and GC-MS. The optimization process was carried out using fractional factorial design (FFD) under which three parameters were considered: pressure (150, 175, and 300 bar), temperature (25, 30, and 40 °C), and CO₂ flow rate (5, 10, 15 g/min). Results: The yield of essential oil obtained from the HD, SE, US, and SC-CO₂ methods were 1.20%, 1.82%, 2.30%, and 2.64% v/w , respectively. Antioxidant activity was determined by the DPPH and superoxide scavenging methods and the IC 50 (Inhibition Concentration) values of the T. ammi oil sample were found to be 36.41 and 20.55 µg mL -1 , respectively. Conclusion: The present paper reported that different extraction methods lead to different yields of essential oils and the choice of a suitable method is extremely important to obtain more preferred compounds. The yield was higher in the SC-CO₂ method and it is a sustainable and green extraction technique. Many important constituents were detected in analytical techniques. Antioxidant activities carried out showed that essential oil extracted from T. ammi seeds possess significant antioxidant activity.

  7. Pomegranate juice and prostate cancer: importance of the characterisation of the active principle.

    PubMed

    Chrubasik-Hausmann, Sigrun; Vlachojannis, Christian; Zimmermann, Benno

    2014-11-01

    Two exploratory clinical studies investigating proprietary pomegranate products showed a trend of effectiveness in increasing prostate-specific antigen doubling time in patients with prostate cancer. A recent clinical study did not support these results. We therefore analysed a lot of the marketed pomegranate blend for co-active pomegranate compounds. The high-performance liquid chromatography method was used to detect punicalagin, ellagic acid and anthocyanins. Total polyphenoles were determined by the Folin-Ciocalteu method using gallic acid as reference. The results show that the co-active compounds in the daily dose of the pomegranate blend were far below those previously tested and that the photometric assessment is not reliable for the standardisation of study medications. Not pomegranate but the low amount of co-active compounds in the proprietary pomegranate blend was responsible for its clinical ineffectiveness. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Optimization of transesterification of rubber seed oil using heterogeneous catalyst calcium oxide

    NASA Astrophysics Data System (ADS)

    Inggrid, Maria; Kristanto, Aldi; Santoso, Herry

    2015-12-01

    Biodiesel is an alternative fuel manufactured with the help of alkali hydroxide catalyst through transesterification reaction of vegetable oil. This study aims to examine methods and the most suitable conditions for transesterification reaction producing biodiesel from crude rubber seed oil by varying process parameters such as the molar ratio of alcohol, CaO amount as the alkaline catalyst, and reaction time. The rubber seed oil has a high level of free fatty acid content, which means the use of homogenous alkaline catalyst gives some technological problems such as soap formation which leaded in difficulty in the separation and purification of the product. Calcium oxide (CaO) is one of the most favorable heterogeneous base catalysts because it's reusable, noncorrosive, and low cost. Pre-treatment was performed by acid esterification with H2SO4 as the catalyst to decrease the content of free fatty acid in the rubber seed oil, in this pretreatment process the 12% FFA of crude oil could be reduced to below 3% FFA. The product after esterification process was then transesterified by alkaline transesterification by varying process parameters to convert triglyceride into biodiesel. The study found that maximum curvature for biodiesel yield occurred at 9:1 molar ratio of alcohol, 5%w catalyst loading, and 3 hours reaction time. Design expert software is used to determine the optimum point from experimental data. The result showed that the optimum yield of methyl ester from transesterification was 73.5 % by mass with 0.69 degree of desirability. The yielded methyl ester was tested for its density, viscosity, acid number, and solubility to meet SNI requirement standards.

  9. Residue level and dissipation of carbendazim in/on pomegranate fruits and soil.

    PubMed

    Mohapatra, Soudamini; S, Lekha

    2016-07-01

    Carbendazim is widely used on pomegranate for control of a large number of fungal diseases. Its residue levels in/on pomegranate fruits and soil were evaluated under field conditions. The quick, easy, cheap, effective, rugged, and safe (QuEChERS) method in conjunction with liquid-chromatography mass spectrometry was used for analysis of carbendazim. Recovery of carbendazim was within 78.92-96.28 % and relative standard deviation within 3.8-10.9 % (n = 6). Carbendazim residues on pomegranate fruits dissipated at the half lives of 17.3 and 22.8 days from treatments at 500 and 1000 g active ingredient (a.i.) ha(-1), respectively. Its residues in pomegranate aril were highest on the tenth day and reduced thereafter. The residue level of carbendazim on pomegranate whole fruits from standard dose treatment was less than the EU maximum residue limit (MRL) of 0.1 mg kg(-1) at harvest. The carbendazim residues were pomegranate were 65.4 and 103.4 days. The results of this study can be used to determine the judicious use of carbendazim for plant protection of pomegranate crop.

  10. IR and Raman studies of oil and seedcake extracts from natural and genetically modified flax seeds

    NASA Astrophysics Data System (ADS)

    Żuk, M.; Dymińska, L.; Kulma, A.; Boba, A.; Prescha, A.; Szopa, J.; Mączka, M.; Zając, A.; Szołtysek, K.; Hanuza, J.

    2011-03-01

    Flax plant of the third generation (F3) overexpressing key genes of flavonoid pathway cultivated in field in 2008 season was used as the plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts from natural and transgenic flax plants were compared. Overproduction of flavonoids (kaempferol), phenolic acids (coumaric, ferulic/synapic) and lignan-secoisolariciresinol diglucoside (SDG) in oil and extracts from transgenic seeds has been revealed providing a valuable source of these compounds for biotechnological application. The changes in fatty acids composition and increase in their stability against oxidation along three plant generations were also detected. The analysis of oil and seedcake extracts was performed using Raman and IR spectroscopy. The wavenumbers and integral intensities of Raman and IR bands were used to identify the components of phenylpropanoid pathway in oil and seedcake extracts from control and transgenic flax seeds. The spectroscopic data were compared to those obtained from biochemical analysis.

  11. Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification.

    PubMed

    Davidov-Pardo, Gabriel; McClements, David Julian

    2015-01-15

    The aim of this work was to fabricate nanoemulsions-based delivery systems to encapsulate resveratrol. Nanoemulsions were formed using spontaneous emulsification method: 10% oil phase (grape seed oil plus orange oil) and 10% surfactant (Tween 80) were titrated into 80% aqueous phase. An optimum orange oil-to-grape seed oil ratio of 1:1(w/w) formed small droplets (d ≈ 100 nm) with good stability to droplet growth. The maximum amount of resveratrol that could be dissolved in the oil phase was 120 ± 10 μg/ml. The effect of droplet size on the chemical stability of encapsulated resveratrol was examined by preparing systems with different mean droplet diameters of 220 ± 2; 99 ± 3; and 45 ± 0.4 nm. Encapsulation of resveratrol improved its chemical stability after exposure to UV-light: 88% retention in nanoemulsions compared to 50% in dimethylsulphoxide (DMSO). This study showed that resveratrol could be encapsulated within low-energy nanoemulsion-based delivery systems and protected against degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria.

    PubMed

    Adewuyi, Adewale; Oderinde, Rotimi Ayodele

    2014-01-01

    The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72 ± 0.2%), Albizia lebbeck  (6.40 ± 0.60%), and Caesalpinia pulcherrima  (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food.

  13. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria

    PubMed Central

    Oderinde, Rotimi Ayodele

    2014-01-01

    The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72 ± 0.2%), Albizia lebbeck  (6.40 ± 0.60%), and Caesalpinia pulcherrima  (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food. PMID:26904625

  14. Oil and Protein Accumulation in Developing Seeds Is Influenced by the Expression of a Cytosolic Pyrophosphatase in Arabidopsis[C][W][OA

    PubMed Central

    Meyer, Knut; Stecca, Kevin L.; Ewell-Hicks, Kim; Allen, Stephen M.; Everard, John D.

    2012-01-01

    This study describes a dominant low-seed-oil mutant (lo15571) of Arabidopsis (Arabidopsis thaliana) generated by enhancer tagging. Compositional analysis of developing siliques and mature seeds indicated reduced conversion of photoassimilates to oil. Immunoblot analysis revealed increased levels of At1g01050 protein in developing siliques of lo15571. At1g01050 encodes a soluble, cytosolic pyrophosphatase and is one of five closely related genes that share predicted cytosolic localization and at least 70% amino acid sequence identity. Expression of At1g01050 using a seed-preferred promoter recreated most features of the lo15571 seed phenotype, including low seed oil content and increased levels of transient starch and soluble sugars in developing siliques. Seed-preferred RNA interference-mediated silencing of At1g01050 and At3g53620, a second cytosolic pyrophosphatase gene that shows expression during seed filling, led to a heritable oil increase of 1% to 4%, mostly at the expense of seed storage protein. These results are consistent with a scenario in which the rate of mobilization of sucrose, for precursor supply of seed storage lipid biosynthesis by cytosolic glycolysis, is strongly influenced by the expression of endogenous pyrophosphatase enzymes. This emphasizes the central role of pyrophosphate-dependent reactions supporting cytosolic glycolysis during seed maturation when ATP supply is low, presumably due to hypoxic conditions. This route is the major route providing precursors for seed oil biosynthesis. ATP-dependent reactions at the entry point of glycolysis in the cytosol or plastid cannot fully compensate for the loss of oil content observed in transgenic events with increased expression of cytosolic pyrophosphatase enzyme in the cytosol. These findings shed new light on the dynamic properties of cytosolic pyrophosphate pools in developing seed and their influence on carbon partitioning during seed filling. Finally, our work uniquely demonstrates that

  15. Plasma and hepatic cholesterol-lowering in hamsters by tomato pomace, tomato seed oil and defatted tomato seed supplemented in high fat diets

    USDA-ARS?s Scientific Manuscript database

    We determined the cholesterol-lowering effects of tomato pomace (TP), a byproduct of tomato processing, and its components such as tomato seed oil (TSO) and defatted tomato seed (DTS) in hamsters, a widely used animal model for cholesterol metabolism. Male Syrian Golden hamsters were fed high-fat di...

  16. Flavoromics approach in monitoring changes in volatile compounds of virgin rapeseed oil caused by seed roasting.

    PubMed

    Gracka, Anna; Jeleń, Henryk H; Majcher, Małgorzata; Siger, Aleksander; Kaczmarek, Anna

    2016-01-08

    Two varieties of rapeseed (one high oleic - containing 76% of oleic acid, and the other - containing 62% of oleic acid) were used to produce virgin (pressed) oil. The rapeseeds were roasted at different temperature/time combinations (at 140-180°C, and for 5-15min); subsequently, oil was pressed from the roasted seeds. The roasting improved the flavour and contributed to a substantial increase in the amount of a potent antioxidant-canolol. The changes in volatile compounds related to roasting conditions were monitored using comprehensive gas chromatography-mass spectrometry (GC×GC-ToFMS), and the key odorants for the non-roasted and roasted seeds oils were determined by gas chromatography-olfactometry (GC-O). The most important compounds determining the flavour of oils obtained from the roasted seeds were dimethyl sulphide, dimethyltrisulfide, 2,3-diethyl-5-methylpyrazine, 2,3-butenedione, octanal, 3-isopropyl-2-methoxypyrazine and phenylacetaldehyde. For the oils obtained from the non-roasted seeds, the dominant compounds were dimethylsulfide, hexanal and octanal. Based on GC×GC-ToFMS and principal component analysis (PCA) of the data, several compounds were identified that were associated with roasting at the highest temperatures regardless of the rapeseed variety: these were, among others, methyl ketones (2-hexanone, 2-heptanone and 2-octanone). Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Inhibition of Nonenzymatic Protein Glycation by Pomegranate and Other Fruit Juices

    PubMed Central

    Dorsey, Pamela Garner; Greenspan, Phillip

    2014-01-01

    Abstract The nonenzymatic glycation of proteins and the formation of advanced glycation endproducts in diabetes leads to the crosslinking of proteins and disease complications. Our study sought to demonstrate the effect of commonly consumed juices (pomegranate, cranberry, black cherry, pineapple, apple, and Concord grape) on the fructose-mediated glycation of albumin. Albumin glycation decreased by 98% in the presence of 10 μL of pomegranate juice/mL; other juices inhibited glycation by only 20%. Pomegranate juice produced the greatest inhibition on protein glycation when incubated at both the same phenolic concentration and the same antioxidant potential. Both punicalagin and ellagic acid significantly inhibited the glycation of albumin by ∼90% at 5 μg/mL. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis revealed that pomegranate, but not apple juice, protected albumin from modification. These results demonstrate that pomegranate juice and two of its major constituents are potent inhibitors of fructose-mediated protein glycation. PMID:24433074

  18. Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.).

    PubMed

    Kelly, Amélie A; Shaw, Eve; Powers, Stephen J; Kurup, Smita; Eastmond, Peter J

    2013-04-01

    Increasing the productivity of oilseed crops is an important challenge for plant breeders and biotechnologists. To date, attempts to increase oil production in seeds via metabolic pathway engineering have focused on boosting synthetic capacity. However, in the tissues of many organisms, it is well established that oil levels are determined by both anabolism and catabolism. Indeed, the oil content of rapeseed (Brassica napus L.) has been reported to decline by approximately 10% in the final stage of development, as the seeds desiccate. Here, we show that RNAi suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase gene family during seed development results in up to an 8% gain in oil yield on either a seed, plant or unit area basis in the greenhouse, with very little adverse impact on seed vigour. Suppression of lipolysis could therefore constitute a new method for enhancing oil yield in oilseed crops. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  19. Dehulling of Cuphea PSR23 Seeds to Reduce Color of the Extracted Oil

    USDA-ARS?s Scientific Manuscript database

    Oil extracted from the seeds Cuphea PSR23, a semi-domesticated, high-capric acid hybrid from C. viscosissima x C. lanceolata, by screw-pressing contained 200-360 ppm of chlorophyll. A high amount of bleaching clay was needed during refining to remove the chlorophyll in the oil. In this paper, dehu...

  20. Changes in oxidative patterns during dormancy break by warm and cold stratification in seeds of an edible fruit tree

    PubMed Central

    Shalimu, Dilinuer; Sun, Jia; Baskin, Carol C.; Baskin, Jerry M.; Sun, Liwei; Liu, Yujun

    2016-01-01

    The transition from seed dormancy to germination is triggered by environmental factors, and in pomegranate (Punica granatum) seeds higher germination percentages are achieved by warm + cold stratification rather than by cold stratification alone. Our objective was to define the pattern of internal oxidative changes in pomegranate seeds as dormancy was being broken by warm + cold stratification and by cold stratification alone. Embryos isolated from seeds after 1–42 days of warm stratification, after 56 days of warm stratification + 7, 28 or 56 days of cold stratification, and after 1–84 days of cold stratification alone, were used in biochemical tests. Hydrogen peroxide (H2O2), nitric oxide (NO), proline, lipid peroxidation, protein carbonylation, and activities of the scavenging enzymes superoxide dismutase (SOD), hydrogen peroxide enzyme and peroxidase in the embryos were assessed by colorimetric methods. Our results indicated that warm + cold stratification had a stronger dormancy-breaking effect than cold stratification (85% versus 50% germination), which may be attributed to a higher yield of H2O2, NO, lipid peroxidation and protein carbonylation in warm + cold stratification. Furthermore, warm + cold stratification-induced H2O2 change led to greater changes (elevation followed by attenuation) in activities of the scavenging enzymes than that induced by cold stratification alone. These results indicated that restriction of the level of reactive oxygen species change within a positive and safe range by such enzymes promoted seed germination. In addition, a relatively strong elevation of proline during warm + cold stratification also contributed to dormancy breakage and subsequent germination. In conclusion, the strong dormancy alleviating effect of warm + cold stratification on pomegranate seeds may be attributed to the corresponding active oxidative change via H2O2, NO, proline, malondialdehyde, protein carbonylation and

  1. In vitro antifungal activity of different components of Centratherum anthelminticum and Ocimum sanctum seed oils and their synergism against oral pathogenic fungi

    PubMed Central

    H Gopalkrishna, Aparna; M, Seshagiri; Muddaiah, Sunil; R, Shashidara

    2016-01-01

    Background. Opportunistic fungal infections like candidiasis are common in the oral cavity. In recent years Candida species have shown resistance against a number of synthetic drugs. This study assessed the antifungal activity of Centratherum anthelminticum and Ocimum sanctum seed oils against six common pathogenic Candida strains. Synergistic activity of the major oil components was also studied. Methods. Antifungal activity of Centratherum anthelminticum and Ocimum sanctum seed oils were tested against six oral fungal pathogens, Candida albicans ATCC 90028, Candida krusei 6258, Candida tropicalis 13803, Candida parapsilosis22019, Candida glabrata 90030 and Candida dubliniensis MYA 646, by disc diffusion and broth microdilution methods to determine the diameter of inhibition zone (DIZ) and minimum inhibitory concentration (MIC), respectively. The oil was extracted using Soxhlet apparatus from seeds subjected to columnchromatography (CC) and thin layer chromatography (TLC) and major components were separated and quantified. Results. All the six Candida strains showed growth inhibition to a variable degree when tested with both seed oils. Both seed oils showed antifungal activity. For Centratherum anthelminticum seed oil maximum DIZ at 7 μL was recorded at 75.7 mm for Candida albicans ATCC 90028, and the least DIZ was 45.7 mm for Candida dubliniensis MYA 646. For Ocimum sanctum seed oil maximum DIZ at 7 μL was 61.0 mm for Candida krusei ATCC 6258 and the least DIZ was 46.7 mm for Candida tropicalis ATCC 13803. The mixtures of phospholipids and unsaponifiable matter exhibitedMIC values at 1.25 μL for both oils, whereas neutral lipids fraction and unsaponifiable matter exhibited similar MIC at 2.5 μL against Candida albicans and Candida krusei. Conclusion.Centratherum anthelminticum and Ocimum sanctumseed oils exhibited strong antifungal activity against six different species of Candida and this may be attributed to various active components in the oil and their

  2. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1.

    PubMed

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2016-03-01

    Over the last few decades, research focusing on canola (Brassica napus L.) seed oil content and composition has expanded. Oil production and accumulation are influenced by genes participating in embryo and seed development. The Arabidopsis LEAFY COTYLEDON1 (LEC1) is a well characterized regulator of embryo development that also enhances the expression of genes involved in fatty acid (FA) synthesis. B. napus lines over-expressing or down-regulating BnLEC1 were successfully generated by Agrobacterium-mediated transformation. The constitutive expression of BnLEC1 in B. napus var. Polo, increased seed oil content by 7-16%, while the down-regulation of BnLEC1 in B. napus var. Topas reduced oil content by 9-12%. Experimental manipulation of BnLEC1 caused transcriptional changes in enzymes participating in sucrose metabolism, glycolysis, and FA biosynthesis, suggesting an enhanced carbon flux towards FA biosynthesis in tissues over-expressing BnLEC1. The increase in oil content induced by BnLEC1 was not accompanied by alterations in FA composition, oil nutritional value or glucosinolate (GLS) levels. Suppression of BnLEC1 reduced seed oil accumulation and elevated the level of GLS possibly through the transcriptional regulation of BnST5a (Sulphotransferase5a), the last GLS biosynthetic enzyme. Collectively, these findings demonstrate that experimental alterations of BnLEC1 expression can be used to influence oil production and quality in B. napus. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Optimization of replacing pork back fat with grape seed oil and rice bran fiber for reduced-fat meat emulsion systems.

    PubMed

    Choi, Yun-Sang; Choi, Ji-Hun; Han, Doo-Jeong; Kim, Hack-Youn; Lee, Mi-Ai; Kim, Hyun-Wook; Lee, Ju-Woon; Chung, Hai-Jung; Kim, Cheon-Jei

    2010-01-01

    The effects of reducing pork fat levels from 30% to 20% and partially substituting the pork fat with a mix of grape seed oil (0%, 5%, 10% and 15%) and 2% rice bran fiber were investigated based on chemical composition, cooking characteristics, physicochemical and textural properties, and viscosity of reduced-fat meat batters. For reduced-fat meat batters containing grape seed oil and rice bran fiber the moisture and ash contents, uncooked and cooked pH values, yellowness, cohesiveness, gumminess, chewiness, and sarcoplasmic protein solubility were higher than in the control samples. The reduced-fat samples with increasing grape seed oil concentrations had lower cooking loss, emulsion stability, and apparent viscosity. The incorporation of grape seed oil and rice bran fiber successfully reduced the animal fat content in the final products while improving other characteristics.

  4. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds.

    PubMed

    Da Porto, Carla; Porretto, Erica; Decorti, Deborha

    2013-07-01

    Ultrasound-assisted extraction (US) carried out at 20 KHz, 150 W for 30 min gave grape seed oil yield (14% w/w) similar to Soxhlet extraction (S) for 6 h. No significant differences for the major fatty acids was observed in oils extracted by S and US at 150 W. Instead, K232 and K268 of US- oils resulted lower than S-oil. From grape seeds differently defatted (S and US), polyphenols and their fractions were extracted by maceration for 12 h and by ultrasound-assisted extraction for 15 min. Sonication time was optimized after kinetics study on polyphenols extraction. Grape seed extracts obtained from seeds defatted by ultrasound (US) and then extracted by maceration resulted the highest in polyphenol concentration (105.20mg GAE/g flour) and antioxidant activity (109 Eq αToc/g flour). Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Extraction of oil from Euphorbia Lagascae seeds by screw pressing

    USDA-ARS?s Scientific Manuscript database

    Euphorbia lagascae (Spreng.) is a drought tolerant plant native to Spain. Euphorbia seeds contain 45-50% oil with 60-65% of its fatty acids as vernolic (12S,13R-epoxy-cis-9-octadecenoic) acid. Vernolic acid has wide applications in paints and coatings, plasticizers, adhesives, polymers, and lubrican...

  6. Effects of Accelerated Storage on the Quality of Kenaf Seed Oil in Chitosan-Coated High Methoxyl Pectin-Alginate Microcapsules.

    PubMed

    Leong, Mei-Huan; Tan, Chin-Ping; Nyam, Kar-Lin

    2016-10-01

    The objective of this research was to study the oxidative stability and antioxidant properties of microencapsulated kenaf (Hibiscus cannabinus L.) seed oil (MKSO) produced by co-extrusion technology upon accelerated storage. The combination of sodium alginate, high methoxyl pectin, and chitosan were used as shell materials. The oxidative stability of the kenaf seed oil was determined by iodine value, peroxide value, p-Anisidine value, total oxidation (TOTOX), thiobarbituric acid reactive substances assay, and free fatty acid content. Total phenolic content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) cation radical-scavenging assay and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay were used to examine the antioxidant properties of oils. Oxidative stability tests showed that bulk kenaf seed oil (BKSO) was oxidized significantly higher (P < 0.05) than MKSO. The total increment of TOTOX value of BKSO was 165.93% significantly higher (P < 0.05) than MKSO. Co-extrusion technology has shown to be able to protect kenaf seed oil against lipid oxidation and delay the degradation of natural antioxidants that present in oil during storage. © 2016 Institute of Food Technologists®.

  7. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing.

    PubMed

    Gil, M I; Tomás-Barberán, F A; Hess-Pierce, B; Holcroft, D M; Kader, A A

    2000-10-01

    The antioxidant activity of pomegranate juices was evaluated by four different methods (ABTS, DPPH, DMPD, and FRAP) and compared to those of red wine and a green tea infusion. Commercial pomegranate juices showed an antioxidant activity (18-20 TEAC) three times higher than those of red wine and green tea (6-8 TEAC). The activity was higher in commercial juices extracted from whole pomegranates than in experimental juices obtained from the arils only (12-14 TEAC). HPLC-DAD and HPLC-MS analyses of the juices revealed that commercial juices contained the pomegranate tannin punicalagin (1500-1900 mg/L) while only traces of this compound were detected in the experimental juice obtained from arils in the laboratory. This shows that pomegranate industrial processing extracts some of the hydrolyzable tannins present in the fruit rind. This could account for the higher antioxidant activity of commercial juices compared to the experimental ones. In addition, anthocyanins, ellagic acid derivatives, and hydrolyzable tannins were detected and quantified in the pomegranate juices.

  8. Chemical Profile and Antioxidant Activity of the Oil from Peony Seeds (Paeonia suffruticosa Andr.)

    PubMed Central

    Yang, Xin; Song, Li-min; Xu, Qian; Li, Hong

    2017-01-01

    Peony seed oil (PSO) is a novel vegetable oil developed from the seeds of Paeonia suffruticosa Andr. The present study aimed to make an overall investigation on the chemical profile and antioxidant activities of PSO for reasonable development and utilization of this new resource food. Chemical analysis revealed that PSO was characterized by an uncommon high portion of α-linolenic acid (>38%), fairly low ratio of n-6 to n-3 polyunsaturated fatty acids (0.69), and much higher content of γ-tocopherol than various conventional seed oils. In vitro assay indicated that PSO is a more potent scavenger of free radicals than extra virgin olive oil. Moderate intake of PSO exhibited obvious protection against various oxidative damages such as tetrachloromethane-induced acute liver injury in mice and diet-induced hyperlipidemia in rats. The changes in the key indicators of oxidative injury and fatty acid composition in the liver caused by PSO administration were measured, and the results demonstrated that antioxidant properties of PSO are closely related to their characteristic chemical composition. Consequently, the present study provided new evidence for the health implications of PSO, which deserves further development for medical and nutritional use against oxidative damages that are associated with various diseases. PMID:29081895

  9. Agricultural practices altered soybean seed protein, oil, fatty acids, sugars, and minerals in the Midsouth USA.

    PubMed

    Bellaloui, Nacer; Bruns, H Arnold; Abbas, Hamed K; Mengistu, Alemu; Fisher, Daniel K; Reddy, Krishna N

    2015-01-01

    Information on the effects of management practices on soybean seed composition is scarce. Therefore, the objective of this research was to investigate the effects of planting date (PD) and seeding rate (SR) on seed composition (protein, oil, fatty acids, and sugars) and seed minerals (B, P, and Fe) in soybean grown in two row-types (RTs) on the Mississippi Delta region of the Midsouth USA. Two field experiments were conducted in 2009 and 2010 on Sharkey clay and Beulah fine sandy loam soil at Stoneville, MS, USA, under irrigated conditions. Soybean were grown in 102 cm single-rows and 25 cm twin-rows in 102 cm centers at SRs of 20, 30, 40, and 50 seeds m(-2). The results showed that in May and June planting, protein, glucose, P, and B concentrations increased with increased SR, but at the highest SRs (40 and 50 seeds m(-2)), the concentrations remained constant or declined. Palmitic, stearic, and linoleic acid concentrations were the least responsive to SR increases. Early planting resulted in higher oil, oleic acid, sucrose, B, and P on both single and twin-rows. Late planting resulted in higher protein and linolenic acid, but lower oleic acid and oil concentrations. The changes in seed constituents could be due to changes in environmental factors (drought and temperature), and nutrient accumulation in seeds and leaves. The increase of stachyose sugar in 2010 may be due to a drier year and high temperature in 2010 compared to 2009; suggesting the possible role of stachyose as an environmental stress compound. Our research demonstrated that PD, SR, and RT altered some seed constituents, but the level of alteration in each year dependent on environmental factors such as drought and temperature. This information benefits growers and breeders for considering agronomic practices to select for soybean seed nutritional qualities under drought and high heat conditions.

  10. Analysis of fatty acid methyl esters and oxidative stability of seed purpose watermelon (Citrullus lanatus) genotypes for edible oil.

    PubMed

    Mahla, H R; Rathore, S S; Venkatesan, K; Sharma, R

    2018-04-01

    World's vegetable oil demand is increasing day by day and oil seed supply is limited to a dozen oil seed crops on commercial scale. Efforts were made to explore the potential of water melon a traditionally grown native crop of Indian arid zone having oil content over 30% and seed yield potential of 500-600 kg per hectare under rainfed conditions. An analysis was carried out to explore the suitability of watermelon [ Citrullus lanatus (Thunb.)] oil for human consumption on the basis of fatty acid (FA) composition in selected genotypes. Total oil content ranged between 10.0 and 31.0%. Eleven FA were identified in seed oil. Linoleic, stearic, palmitic and oleic acid were found as major FA while myristic, heptadecanoic, arachidic, 9-hexadecenoic and 14-eicosenoic acid was present in traces. Linoleic acid single polyunsaturated FA contributor found in the range of 43.95% (WM-44) to 55.29% (WM-18). Saturated FA content ranged between 32.24 and 37.61%. Significant genetic variation was observed for mono-unsaturated FA. Metabolic capacity to inter-conversion of FA and nutritive value of watermelon oil was described on the basis of ratio of FA group. Total phenolics, antioxidant activity, peroxide value and oxidizability were also estimated along with oxidative stability of oil. Multivariate analysis showed that, oil content has positive correlation with linoleic acid. The Euclidean based UPGMA clustering revealed that genotypes WM-18 is most suitable for trait specific breeding program for high linoleic acid ( n -6), desaturation ratio and oleic desaturation ratio with higher oil content and lowest palmitic acid.

  11. Meta-Analyses of QTLs Associated with Protein and Oil Contents and Compositions in Soybean [Glycine max (L.) Merr.] Seed.

    PubMed

    Van, Kyujung; McHale, Leah K

    2017-06-01

    Soybean [ Glycine max (L.) Merr.] is a valuable and nutritious crop in part due to the high protein meal and vegetable oil produced from its seed. Soybean producers desire cultivars with both elevated seed protein and oil concentrations as well as specific amino acid and fatty acid profiles. Numerous studies have identified quantitative trait loci (QTLs) associated with seed composition traits, but validation of these QTLs has rarely been carried out. In this study, we have collected information, including genetic location and additive effects, on each QTL for seed contents of protein and oil, as well as amino acid and fatty acid compositions from over 80 studies. Using BioMercator V. 4.2, a meta-QTL analysis was performed with genetic information comprised of 175 QTLs for protein, 205 QTLs for oil, 156 QTLs for amino acids, and 113 QTLs for fatty acids. A total of 55 meta-QTL for seed composition were detected on 6 out of 20 chromosomes. Meta-QTL possessed narrower confidence intervals than the original QTL and candidate genes were identified within each meta-QTL. These candidate genes elucidate potential natural genetic variation in genes contributing to protein and oil biosynthesis and accumulation, providing meaningful information to further soybean breeding programs.

  12. Meta-Analyses of QTLs Associated with Protein and Oil Contents and Compositions in Soybean [Glycine max (L.) Merr.] Seed

    PubMed Central

    Van, Kyujung; McHale, Leah K.

    2017-01-01

    Soybean [Glycine max (L.) Merr.] is a valuable and nutritious crop in part due to the high protein meal and vegetable oil produced from its seed. Soybean producers desire cultivars with both elevated seed protein and oil concentrations as well as specific amino acid and fatty acid profiles. Numerous studies have identified quantitative trait loci (QTLs) associated with seed composition traits, but validation of these QTLs has rarely been carried out. In this study, we have collected information, including genetic location and additive effects, on each QTL for seed contents of protein and oil, as well as amino acid and fatty acid compositions from over 80 studies. Using BioMercator V. 4.2, a meta-QTL analysis was performed with genetic information comprised of 175 QTLs for protein, 205 QTLs for oil, 156 QTLs for amino acids, and 113 QTLs for fatty acids. A total of 55 meta-QTL for seed composition were detected on 6 out of 20 chromosomes. Meta-QTL possessed narrower confidence intervals than the original QTL and candidate genes were identified within each meta-QTL. These candidate genes elucidate potential natural genetic variation in genes contributing to protein and oil biosynthesis and accumulation, providing meaningful information to further soybean breeding programs. PMID:28587169

  13. Pomegranate juice does not affect the disposition of simvastatin in healthy subjects.

    PubMed

    Park, Soo-Jin; Yeo, Chang-Woo; Shim, Eon-Jeong; Kim, Hyunmi; Liu, Kwang-Hyeon; Shin, Jae-Gook; Shon, Ji-Hong

    2016-08-01

    Previous in vitro and in vivo investigations reported controversial results for the inhibitory potential of pomegranate on Cytochrome P450 (CYP) 3A activity. This study evaluated the effect of pomegranate juice on the disposition of simvastatin, a CYP3A4 substrate, and simvastatin acid, its active metabolite, compared with grapefruit juice in healthy subjects. A single oral pharmacokinetic study of 40 mg simvastatin was conducted as a three-way crossover (control, pomegranate, and grapefruit juices) in 12 healthy male subjects. The subjects took pomegranate or grapefruit juice three times per day for 3 days (900 mL/day) and on the third day, the pharmacokinetic study was executed. Blood samples were collected to 24 h post-dose and the pharmacokinetic parameters of simvastatin and simvastatin acid were compared among the study periods. In the period of grapefruit juice, the mean C max and AUCinf of simvastatin [the geometric mean ratio (90 % CI) 15.6 (11.6-21.0) and 9.1 (6.0-13.7)] were increased significantly when compared with the control period, whereas they were not significantly different in the period of pomegranate juice [C max and AUCinf 1.20 (0.89-1.62) and 1.29 (0.85-1.94)]. The mean C max and AUCinf of simvastatin acid were increased significantly after intake of grapefruit juice, but not pomegranate juice. These results suggest that pomegranate juice affects little on the disposition of simvastatin in humans. Pomegranate juice does not seem to have a clinically relevant inhibitory potential on CYP3A4 activity.

  14. Inhibitory effect of sour pomegranate sauces on some green vegetables and kisir.

    PubMed

    Karabiyikli, Seniz; Kisla, Duygu

    2012-04-16

    In this study, the antimicrobial effects of both traditional and commercial pomegranate sour sauce samples on some green vegetables and also on "kısır" which is a popular and traditional appetizer in Turkey were investigated. The inhibitory effect of the pomegranate products on the naturally existing bacterial microflora of lettuce, spring onion, parsley and kısır were analyzed. Also, all these food samples were inoculated with Staphylococcus aureus (ATCC-25923) and Escherichia coli O157:H7 (ATCC-43895) and antimicrobial effect of the pomegranate products on the inoculated microflora was detected. All the food samples were treated with pomegranate products for different time periods and the effect of treatment time was investigated. pH and titratable acidity values of the traditional and commercial pomegranate sour sauce samples were detected. The results showed that although the pomegranate products had an antimicrobial effect on the natural bacterial microflora of the food samples, the effect on inoculated food samples was more prominent and additionally the application time was found to be a crucial parameter for both cases. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Susceptibility of unprotected seeds and seeds of local bambara groundnut cultivars protected with insecticidal essential oils to infestation by Callosobruchus maculatus (F.) (Coleoptera: Bruchidae).

    PubMed

    Ajayi; Lale

    2000-01-15

    Ten local cultivars of bambara groundnut, Vigna subterranea (L.) Verdcourt obtained directly from farmers in Potiskum, Nigeria and from the Institute for Agricultural Research, Samaru, Nigeria were compared with three improved varieties developed at the International Institute of Tropical Agriculture, Ibadan, Nigeria for their susceptibility to infestation by Callosobruchus maculatus (F.). Three cultivars (Maifarinhaneh, Angale and Bunmonu) with a susceptibility index (SI) of 3.06-3.71 were identified as slightly susceptible to C. maculatus; four cultivars (Bagantere, Bakingangala, Ole and Bakiyawa 1) and one improved variety (TVSU 1061) with an SI of 4.39-4.93 as moderately susceptible; and three cultivars (Bidi, Uzu and Dadinkowa 1) and two improved varieties (TVSU 702 and TVSU 751) with an SI of 5.00-5.34 as susceptible. Five of the cultivars were used to examine the ability of beetle populations to overcome varietal resistance over six successive generations. Development time was significantly longer but percentage of adults that emerged and susceptibility of bambara groundnuts were significantly lower in F(4), F(5) or F(6) generations than in the F(1) or F(2) generation. The efficacy of combining insecticidal essential oils obtained from clove, Syzgium aromaticum, West African black pepper (WABP), Piper guineense, and ginger, Zingiber officinale applied at the rate of 2 mg/20 g seed and six of the local bambara groundnut cultivars (Angale, Maifarinhaneh, Bakingangala, Bagantere, Bunmonu and Bidi) with differing susceptibilities to C. maculatus (F.) was also assessed during a 3-month storage period. The three essential oils significantly reduced the percentage of C. maculatus adults that emerged from the bambara groundnut cultivars in the F(1) generation and the number of adult offspring that developed in the cultivars during the 3-month storage period. The mean number of progeny that developed in untreated seeds and seeds treated with clove, WABP and ginger

  16. Effect of Extraction Method on the Oxidative Stability of Camelina Seed Oil Studied by Differential Scanning Calorimetry.

    PubMed

    Belayneh, Henok D; Wehling, Randy L; Cahoon, Edgar B; Ciftci, Ozan N

    2017-03-01

    Camelina seed is a new alternative omega-3 source attracting growing interest. However, it is susceptible to oxidation due to its high omega-3 content. The objective of this study was to improve the oxidative stability of the camelina seed oil at the extraction stage in order to eliminate or minimize the use of additive antioxidants. Camelina seed oil extracts were enriched in terms of natural antioxidants using ethanol-modified supercritical carbon dioxide (SC-CO 2 ) extraction. Oxidative stability of the camelina seed oils extracted by ethanol modified SC-CO 2 was studied by differential scanning calorimeter (DSC), and compared with cold press, hexane, and SC-CO 2 methods. Nonisothermal oxidation kinetics of the oils obtained by different extraction methods were studied by DSC at varying heating rates (2.5, 5, 10, and 15 °C/min). Increasing ethanol level in the ethanol-modified SC-CO 2 increased the oxidative stability. Based on oxidation onset temperatures (T on ), SC-CO 2 containing 10% ethanol yielded the most stable oil. Oxidative stability depended on the type and content of the polar fractions, namely, phenolic compounds and phospholipids. Phenolic compounds acted as natural antioxidants, whereas increased phospholipid contents decreased the stability. Study has shown that the oxidative stability of the oils can be improved at the extraction stage and this may eliminate the need for additive antioxidants. © 2017 Institute of Food Technologists®.

  17. Occurrence ofCis-6-hexadecenoic acid as the major component ofThunbergia alata seed oil.

    PubMed

    Spencer, G F; Kleiman, R; Miller, R W; Earle, F R

    1971-10-01

    An unusual series of monoenoic fatty acids constitutes about 85% of the total acids in seed oil fromThunbergia alata. The major component in the oil,cis-6-hexadecenoic acid (82%), is accompanied by the homologous 4-tetradecenoic (ca. 0.2%) and 8-octadecenoic (1.8%) acids. Another homologous series is represented by 5-tetradecenoic (ca. 0.2%), 7-hexadecenoic (1.8%) and the familiar 9-octadecenoic (4.4%) acids. Traces (<0.1%) of three other acids, 6-tetradecenoic and 10- and 11-octadecenoic, are also present along with palmitic (5.8%), stearic (0.6%) and linoleic (2.2%) acids. Some of the monoenoic acids have not previously been known to occur in seed oils.

  18. Isomers of hexadecenoic and hexadecadienoic acids in Androsace septentrionalis (Primulaceae) seed oil.

    PubMed

    Tsevegsuren, N; Aitzetmuller, K; Vosmann, K

    2003-11-01

    Seeds of Androsace septentrionalis of the genus Androsace (tribus Primuleae) from the plant family Primulaceae were studied for their oil content and FA composition. The seed oil of A. septentrionalis was found to contain two unusual FA rarely occurring in plants: 11-cis-hexadecenoic acid (16:1delta11c or 16:1n-5) and 9-cis,12-cis-hexadecadienoic acid (16:2delta9c,12c or 16:2n-4). It also contained an unusually high amount (21.4%) of 9-cis-hexadecenoic acid (palmitoleic acid; 16:1delta9c or 16:1n-7), i.e., at a level higher than that of oleic acid, in addition to common FA. Compared with most plant seed oils, at 3.8% the level of 18:1delta11c (or 18:1n-7) also was elevated. The nonidentity of the Androsace 16:2-acid with the 16:2-acid, which is very typical for Ranunculus spp., as well as its identity with the 16:2-acid typically found in Asclepiadaceae was established by co-chromatography. The structure and composition of the constituent FA of A. septentrionalis were also determined by various chromatographic methods (TLC, Ag+-TLC, capillary GLC) and spectroscopic methods (IR, GC-MS). The significant deviation of the Androsace FA pattern from that of other Primuleae, indicating a separate phylogenetic position of Androsace, is discussed.

  19. The influence of pulsed electric fields and microwave pretreatments on some selected physicochemical properties of oil extracted from black cumin seed.

    PubMed

    Bakhshabadi, Hamid; Mirzaei, HabibOllah; Ghodsvali, Alireza; Jafari, Seid Mahdi; Ziaiifar, Aman Mohammad

    2018-01-01

    Application of novel technologies such as microwave and pulsed electric fields (PEF) might increase the speed and efficiency of oil extraction. In the present research, PEF (3.25 kV/cm electric field intensity and 30 pulse number) and microwave (540 W for 180 s) pretreatments were used to study the process of oil extraction from black cumin ( Nigella sativa ) seeds. After applying the selected pretreatments, the oil of seeds was extracted with the use of a screw press and the extraction efficiency, refractive index, oil density, color index, oxidative stability, and chemical components of oil and protein of meal were evaluated. The achieved results expressed that PEF and microwave pretreatments increased the oil extraction efficiency and its oxidative stability. Different pretreatments didn't have any significant influence on the refractive index of black cumin seed oil ( p >.05). When microwave and PEF were used, the oil density showed an enhancement as the following: 1.51% and 0.96%, respectively in comparison with the samples with no pretreatments. Evaluation of the extracted oils, using GC/MS analysis indicated that thymoquinone was the dominant phenolic component in the black cumin oil. Finally, the SEM analysis revealed that microwave and PEF can be useful in the extraction of oil from black cumin seeds since these treatments damaged cell walls and facilitated the oil extraction process.

  20. Identification of Major Quantitative Trait Loci for Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping.

    PubMed

    Cao, Yongce; Li, Shuguang; Wang, Zili; Chang, Fangguo; Kong, Jiejie; Gai, Junyi; Zhao, Tuanjie

    2017-01-01

    Soybean oil is the most widely produced vegetable oil in the world and its content in soybean seed is an important quality trait in breeding programs. More than 100 quantitative trait loci (QTLs) for soybean oil content have been identified. However, most of them are genotype specific and/or environment sensitive. Here, we used both a linkage and association mapping methodology to dissect the genetic basis of seed oil content of Chinese soybean cultivars in various environments in the Jiang-Huai River Valley. One recombinant inbred line (RIL) population (NJMN-RIL), with 104 lines developed from a cross between M8108 and NN1138-2 , was planted in five environments to investigate phenotypic data, and a new genetic map with 2,062 specific-locus amplified fragment markers was constructed to map oil content QTLs. A derived F 2 population between MN-5 (a line of NJMN-RIL) and NN1138-2 was also developed to confirm one major QTL. A soybean breeding germplasm population (279 lines) was established to perform a genome-wide association study (GWAS) using 59,845 high-quality single nucleotide polymorphism markers. In the NJMN-RIL population, 8 QTLs were found that explained a range of phenotypic variance from 6.3 to 26.3% in certain planting environments. Among them, qOil-5-1, qOil-10-1 , and qOil-14-1 were detected in different environments, and qOil-5-1 was further confirmed using the secondary F 2 population. Three loci located on chromosomes 5 and 20 were detected in a 2-year long GWAS, and one locus that overlapped with qOil-5-1 was found repeatedly and treated as the same locus. qOil-5-1 was further localized to a linkage disequilibrium block region of approximately 440 kb. These results will not only increase our understanding of the genetic control of seed oil content in soybean, but will also be helpful in marker-assisted selection for breeding high seed oil content soybean and gene cloning to elucidate the mechanisms of seed oil content.

  1. Anticancer Activity of Punica granatum (Pomegranate): A Review.

    PubMed

    Panth, Nisha; Manandhar, Bikash; Paudel, Keshav Raj

    2017-04-01

    Cancer is a pathological condition where excessive and abnormal cell growth leads to widespread invasion within the body to affect various organ functions. It is known that chemotherapeutic agents are themselves possible candidate of cancer generation as they can kill normal cells. So, therapeutic approach for cancer treatment and prevention is weighed in terms of benefit to risk ratio. Nowadays, there is an immense interest for the search herbal formulation with cancer preventive effect because of the problems, generated with existing chemotherapeutic regimens. Research interest in fruits rich in polyphenols is increasing because of their anticancer potential. In this review, we highlight the potential health benefits of pomegranate (Punica granatum) fruit and the underlying mechanism of its inhibition of cancer progression. Pomegranate has demonstrated anti-proliferative, anti-metastatic and anti-invasive effects on various cancer cell line in vitro as well as in vivo animal model or human clinical trial. Although several clinical trials are in progress for identifying the pomegranate as a candidate for various cancer treatment. It is necessary to replicate and validate its therapeutic efficacy by multiple clinical studies in order to formulate pomegranate products as an integral part of the dietary and pharmacological intervention in anticancer therapy. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Discarded seeds from red pepper (Capsicum annum) processing industry as a sustainable source of high added-value compounds and edible oil.

    PubMed

    Azabou, Samia; Taheur, Fadia Ben; Jridi, Mourad; Bouaziz, Mohamed; Nasri, Moncef

    2017-10-01

    The chemical composition and the antioxidant properties of Capsicum annum discarded seeds from processing industry with their corresponding extracted oil were investigated. C. annum seeds had high levels of crude proteins (18.30%), crude oil (11.04%), and dietary fibers (60.96%). The lipophilic fraction of C. annum seeds showed higher radical scavenging activity compared to their hydrophilic fraction, while this latter exhibited the highest reducing power. The results of fatty acid composition showed that fatty acids present in C. annum seed oil were mainly polyunsaturated (84.23%), with linoleic acid being the major polyunsaturated fatty acid (70.93%). The major monounsaturated fatty acid was oleic acid (12.18%), while the main saturated fatty acid was palmitic acid (11.90%). C. annum seed oil showed high absorbance in the UV-B, UV-A, and visible ranges. Owing to their composition, C. annum seeds discarded from pepper processing industry as by-product could be potentially used as high added-value ingredients in some food or nutraceutical formulations because they are well endowed with essential nutriments required for human health.

  3. Effect of pomegranate extracts on brain antioxidant markers and cholinesterase activity in high fat-high fructose diet induced obesity in rat model.

    PubMed

    Amri, Zahra; Ghorbel, Asma; Turki, Mouna; Akrout, Férièle Messadi; Ayadi, Fatma; Elfeki, Abdelfateh; Hammami, Mohamed

    2017-06-27

    To investigate beneficial effects of Pomegranate seeds oil (PSO), leaves (PL), juice (PJ) and (PP) on brain cholinesterase activity, brain oxidative stress and lipid profile in high-fat-high fructose diet (HFD) induced-obese rat. In vitro and in vivo cholinesterase activity, brain oxidative status, body and brain weight and plasma lipid profile were measured in control rats, HFD-fed rats and HFD-fed rats treated by PSO, PL, PJ and PP. In vitro study showed that PSO, PL, PP, PJ inhibited cholinesterase activity in dose dependant manner. PL extract displayed the highest inhibitory activity by IC50 of 151.85 mg/ml. For in vivo study, HFD regime induced a significant increase of cholinesterase activity in brain by 17.4% as compared to normal rats. However, the administration of PSO, PL, PJ and PP to HDF-rats decreased cholinesterase activity in brain respectively by 15.48%, 6.4%, 20% and 18.7% as compared to untreated HFD-rats. Moreover, HFD regime caused significant increase in brain stress, brain and body weight, and lipid profile disorders in blood. Furthermore, PSO, PL, PJ and PP modulated lipid profile in blood and prevented accumulation of lipid in brain and body evidenced by the decrease of their weights as compared to untreated HFD-rats. In addition administration of these extract protected brain from stress oxidant, evidenced by the decrease of malondialdehyde (MDA) and Protein carbonylation (PC) levels and the increase in superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels. These findings highlight the neuroprotective effects of pomegranate extracts and one of mechanisms is the inhibition of cholinesterase and the stimulation of antioxidant capacity.

  4. Extraction of kiwi seed oil: Soxhlet versus four different non-conventional techniques.

    PubMed

    Cravotto, Giancarlo; Bicchi, Carlo; Mantegna, Stefano; Binello, Arianna; Tomao, Valerie; Chemat, Farid

    2011-06-01

    Kiwi seed oil has a nutritionally interesting fatty acid profile, but a rather low oxidative stability, which requires careful extraction procedures and adequate packaging and storage. For these reasons and with the aim to achieve process intensification with shorter extraction time, lower energy consumption and higher yields, four different non-conventional techniques were experimented. Kiwi seeds were extracted in hexane using classic Soxhlet as well as under power ultrasound (US), microwaves (MWs; closed vessel) and MW-integrated Soxhlet. Supercritical CO₂ was also employed and compared to the other techniques in term of yield, extraction time, fatty acid profiles and organoleptic properties. All these non-conventional techniques are fast, effective and safe. A sensory evaluation test showed the presence of off-flavours in oil samples extracted by Soxhlet and US, an indicator of partial degradation.

  5. Diverse Phytochemicals and Bioactivities in the Ancient Fruit and Modern Functional Food Pomegranate (Punica granatum).

    PubMed

    Wu, Sheng; Tian, Li

    2017-09-25

    Having served as a symbolic fruit since ancient times, pomegranate ( Punica granatum ) has also gained considerable recognition as a functional food in the modern era. A large body of literature has linked pomegranate polyphenols, particularly anthocyanins (ATs) and hydrolyzable tannins (HTs), to the health-promoting activities of pomegranate juice and fruit extracts. However, it remains unclear as to how, and to what extent, the numerous phytochemicals in pomegranate may interact and exert cooperative activities in humans. In this review, we examine the structural and analytical information of the diverse phytochemicals that have been identified in different pomegranate tissues, to establish a knowledge base for characterization of metabolite profiles, discovery of novel phytochemicals, and investigation of phytochemical interactions in pomegranate. We also assess recent findings on the function and molecular mechanism of ATs as well as urolithins, the intestinal microbial derivatives of pomegranate HTs, on human nutrition and health. A better understanding of the structural diversity of pomegranate phytochemicals as well as their bioconversions and bioactivities in humans will facilitate the interrogation of their synergistic/antagonistic interactions and accelerate their applications in dietary-based cancer chemoprevention and treatment in the future.

  6. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression.

    PubMed

    Chhikara, Sudesh; Abdullah, Hesham M; Akbari, Parisa; Schnell, Danny; Dhankher, Om Parkash

    2018-05-01

    Plant seed oil-based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum-derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproduct applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co-expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol-3-phosphate dehydrogenase (GPD1) genes under the control of seed-specific promoters. Plants co-expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild-type plants. Further, DGAT1- and GDP1-co-expressing lines showed significantly higher seed and oil yields on a dry weight basis than the wild-type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1- and GPD1-co-expressing lines was almost twofold higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Effect of growing location on seed oil composition in the cultivated peanut germplasm collection

    USDA-ARS?s Scientific Manuscript database

    A particularly important component of seed oils is the content of oleic acid as this fatty acid has several health benefits and contributes to increased oil stability, i.e. longer shelf life. We measured 8846 available accessions of the USDA peanut germplasm collection to gauge the range of variatio...

  8. Chemical composition, oxidative stability and antioxidant capacity of oil extracted from roasted seeds of Sacha-inchi (Plukenetia volubilis L.).

    PubMed

    Cisneros, Fausto H; Paredes, Daniel; Arana, Adrian; Cisneros-Zevallos, Luis

    2014-06-04

    The effect of roasting of Sacha-inchi (Plukenetia volubilis L.) seeds on the oxidative stability and composition of its oil was investigated. The seeds were subjected to light, medium and high roasting intensities. Oil samples were subjected to high-temperature storage at 60 °C for 30 days and evaluated for oxidation (peroxide value and p-anisidine), antioxidant activity (total phenols and DPPH assay), and composition (tocopherol content and fatty acid profile). Results showed that roasting partially increased oil oxidation and its antioxidant capacity, slightly decreased tocopherol content, and did not affect the fatty acid profile. During storage, oxidation increased for all oil samples, but at a slower rate for oils from roasted seeds, likely due to its higher antioxidant capacity. Also, tocopherol content decreased significantly, and a slight modification of the fatty acid profile suggested that α-linolenic acid oxidized more readily than other fatty acids present.

  9. Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas

    PubMed Central

    2014-01-01

    Background Triacylglycerols (TAGs) are the most abundant form of storage oil in plants. They consist of three fatty acid chains (usually C16 or C18) covalently linked to glycerol. SDP1 is a specific lipase for the first step of TAG catabolism in Arabidopsis seeds. Arabidopsis mutants deficient in SDP1 accumulate high levels of oils, probably due to blockage in TAG degradation. We applied this knowledge from the model plant, Arabidopsis thaliana, to engineer increased seed oil content in the biodiesel plant Jatropha curcas using RNA interference (RNAi) technology. Results As Jatropha is a biodiesel crop, any significant increase in its seed oil content would be an important agronomic trait. Using A. thaliana as a model plant, we found that a deficiency of SDP1 led to higher TAG accumulation and a larger number of oil bodies in seeds compared with wild type (Columbia-0; Col-0). We cloned Jatropha JcSDP1, and verified its function by complementation of the Arabidopsis sdp1-5 mutant. Taking advantage of the observation with Arabidopsis, we used RNAi technology to generate JcSDP1 deficiency in transgenic Jatropha. We found that Jatropha JcSDP1-RNAi plants accumulated 13 to 30% higher total seed storage lipid, along with a 7% compensatory decrease in protein content, compared with control (CK; 35S:GFP) plants. Free fatty acid (FFA) content in seeds was reduced from 27% in control plants to 8.5% in JcSDP1-RNAi plants. Conclusion Here, we showed that SDP1 deficiency enhances seed oil accumulation in Arabidopsis. Based on this result, we generated SDP1-deficient transgenic Jatropha plants using by RNAi technology with a native JcSDP1 promoter to silence endogenous JcSDP1 expression. Seeds of Jatropha JcSDP1-RNAi plants accumulated up to 30% higher total lipid and had reduced FFA content compared with control (CK; 35S:GFP) plants. Our strategy of improving an important agronomic trait of Jatropha can be extended to other oil crops to yield higher seed oil. PMID:24606605

  10. Experimental studies on natural aspirated diesel engine fuelled with corn seed oil methyl ester as a bio-diesel.

    NASA Astrophysics Data System (ADS)

    Rama Krishna Reddy, E.; Dhana Raju, V.

    2018-03-01

    This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.

  11. Phenolic profile and effect of growing area on Pistacia lentiscus seed oil.

    PubMed

    Mezni, Faten; Slama, Awatef; Ksouri, Riadh; Hamdaoui, Ghaith; Khouja, Mohamed Larbi; Khaldi, Abdelhamid

    2018-08-15

    In this investigation, we aimed to study, for the first time, the phenolic composition of Pistacia lentiscus seed oils from different growing areas. Extraction of the phenolic fraction from oils was done by methanol/water. Phenolic profiles were determined using chromatographic analysis by High Performance Liquid Chromatography (HPLC-DAD/MSD) and its quantification was done using an internal standard which is unidentified in the studied oil (syringic acid). Forty phenolic compounds were quantified and only eighteen of them were identified. The eight studied oils showed different phenolic profiles. The total phenols amount varied from 538.03 mg/kg oil in Jbel Masour oils to 4260.57 mg/kg oil in oils from Kef Erraai. The highest amount of secoiridoids was reached by Bouchoucha oil containing 366.71 mg/kg oil of Oleuropein aglycon. Oils from Kef Erraai locality contained the highest concentrations in flavonols (377.44 mg/kg oil) and in phenolic acids (2762.67 mg/kg oil). Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Fatty acid profile of Albizia lebbeck and Albizia saman seed oils: Presence of coronaric acid

    USDA-ARS?s Scientific Manuscript database

    In this work, the fatty acid profiles of the seed oils of Albizia lebbeck and Albizia saman (Samanea saman) are reported. The oils were analyzed by GC, GC-MS, and NMR. The most prominent fatty acid in both oils is linoleic acid (30-40%), followed by palmitic acid and oleic acid for A. lebbeck and ol...

  13. Creating Conventional Soybeans with the High Oleic Acid Seed Oil Trait

    USDA-ARS?s Scientific Manuscript database

    Commodity soybeans are poised to undergo a revolutionary change. Major shifts in market expectations for the nutritional quality of the oil, brought about in part through food labeling requirements and the suitability for biodiesel, are driving the commodity soybean to embrace new seed compositiona...

  14. Characterisation of Blighia sapida (Sapindaceae) seed oil and defatted cake from Benin.

    PubMed

    Djenontin, Sebastien Tindo; Wotto, Valentin D; Lozano, Paul; Pioch, Daniel; Sohounhloue, Dominique K C

    2009-01-01

    A sample of Blighia sapida seeds collected in Benin has been analysed and the results are compared to the scarcely available literature data. The chemical analysis of seed oil shows a saponification value of 145 and an iodine value of 66, consistent with the high mono-unsaturated fatty acids (FAs) content (63.8 wt%). The most interesting feature is the prominent concentration of eicosenoic acid (48.4 wt%). Arachidic acid being the main component within the saturated group, the C20 FAs fraction accounts for 68.4 wt%, thus making the peculiar composition of this oil. Among the unsaponifiable fraction (2.4 wt%), the major sterol is stigmasterol (54.6 wt%), surprisingly over passing beta-sitosterol. Tocols (338 ppm) contains mainly alpha- and gamma-tocopherol. Regarding the defatted cake, results show the prominent position of starch and a noticeable amount of proteins and fibers (44.2, 22.4, 15.6 wt%, respectively). Seventeen amino acids were identified together with valuable minerals (total ashes 3.5 wt%). Possible uses of oil and defatted cake are discussed.

  15. Integrated and comparative proteomics of high-oil and high-protein soybean seeds.

    PubMed

    Xu, Xiu Ping; Liu, Hui; Tian, Lihong; Dong, Xiang Bai; Shen, Shi Hua; Qu, Le Qing

    2015-04-01

    We analysed the global protein expression in seeds of a high-oil soybean cultivar (Jiyu 73, JY73) by proteomics. More than 700 protein spots were detected and 363 protein spots were successfully identified. Comparison of the protein profile of JY73 with that of a high-protein cultivar (Zhonghuang 13, ZH13) revealed 40 differentially expressed proteins, including oil synthesis, redox/stress, hydrolysis and storage-related proteins. All redox/stress proteins were less or not expressed in JY73, whereas the expression of the major storage proteins, nitrogen and carbon metabolism-related proteins was higher in ZH13. Biochemical analysis of JY73 revealed that it was in a low oxidation state, with a high content of polyunsaturated fatty acids and vitamin E. Vitamin E was more active than antioxidant enzymes and protected the soybean seed in a lower oxidation state. The characteristics of high oil and high protein in soybean, we revealed, might provide a reference for soybean nutrition and soybean breeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Bioactive properties of commercialised pomegranate (Punica granatum) juice: antioxidant, antiproliferative and enzyme inhibiting activities.

    PubMed

    Les, Francisco; Prieto, Jose M; Arbonés-Mainar, Jose Miguel; Valero, Marta Sofía; López, Víctor

    2015-06-01

    Pomegranate juice and related products have long been used either in traditional medicine or as nutritional supplements claiming beneficial effects. Although there are several studies on this food plant, only a few studies have been performed with pomegranate juice or marketed products. The aim of this work is to evaluate the antioxidant effects of pomegranate juice on cellular models using hydrogen peroxide as an oxidizing agent or DPPH and superoxide radicals in cell free systems. The antiproliferative effects of the juice were measured on HeLa and PC-3 cells by the MTT assay and pharmacologically relevant enzymes (cyclooxygenases, xanthine oxidase, acetylcholinesterase and monoamine oxidase A) were selected for enzymatic inhibition assays. Pomegranate juice showed significant protective effects against hydrogen peroxide induced toxicity in the Artemia salina and HepG2 models; these effects may be attributed to radical scavenging properties of pomegranate as the juice was able to reduce DPPH and superoxide radicals. Moderate antiproliferative activities in HeLa and PC-3 cancer cells were observed. However, pomegranate juice was also able to inhibit COX-2 and MAO-A enzymes. This study reveals some mechanisms by which pomegranate juice may have interesting and beneficial effects in human health.

  17. Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil.

    PubMed

    Dehesh, K; Edwards, P; Hayes, T; Cranmer, A M; Fillatti, J

    1996-01-01

    The seed oil of Cuphea palustris has an unusual fatty-acyl composition, whereby the principal fatty-acyl groups, myristate (64%) and caprylate (20%), differ by more than two methylenes. We have isolated two thioesterase (TE) cDNAs from C. palustris, encoding proteins designated Cp FatB1 and Cp FatB2, which, when expressed in Escherichia coli, have TE activities specific for 8:0/10:0- and 14:0/16:0-acyl carrier protein substrates, respectively. The specific activities of the recombinant affinity-purified enzymes indicate that Cp FatB2 is kinetically superior to Cp FatB1. This result is consistent with the predominance of 14:0 in the seed oil, despite apparently equal mRNA abundance of the two transcripts in the seed. In C. palustris the expression of both sequences is confined to the seed tissues. Based on these findings we propose that these two enzymes are major factors determining the bimodal chain-length composition of C. palustris oil. Analysis of the immature and mature seed oil by reverse-phase high-performance liquid chromatography confirmed that the principal triglycerides contain both 8:0 and 14:0. This result indicates that both fatty acids are synthesized at the same time and in the same cells at all developmental stages during oil deposition, suggesting that the two TEs act together in the same fatty acid synthesis system.

  18. Effects of site and cultivar on consumer acceptance of pomegranate

    USDA-ARS?s Scientific Manuscript database

    Pomegranate (Punica granatum L.) is an important fruit in many cultures. The fruit and 17 juice have risen in popularity as it was recently discovered that pomegranate has relatively high 18 antioxidant activity compared to most other fruits. In this study, six cultivars were utilized to 19 determin...

  19. Fatty acids characterization, oxidative perspectives and consumer acceptability of oil extracted from pre-treated chia (Salvia hispanica L.) seeds.

    PubMed

    Imran, Muhammad; Nadeem, Muhammad; Manzoor, Muhammad Faisal; Javed, Amna; Ali, Zafar; Akhtar, Muhammad Nadeem; Ali, Muhammad; Hussain, Yasir

    2016-09-20

    Chia (Salvia hispanica L.) seeds have been described as a good source of lipids, protein, dietary fiber, polyphenolic compounds and omega-3 polyunsaturated fatty acids. The consumption of chia seed oil helps to improve biological markers related to metabolic syndrome diseases. The oil yield and fatty acids composition of chia oil is affected by several factors such as pre-treatment method and size reduction practices. Therefore, the main mandate of present investigate was to study the effect of different seed pre-treatments on yield, fatty acids composition and sensory acceptability of chia oil at different storage intervals and conditions. Raw chia seeds were characterized for proximate composition. Raw chia seeds after milling were passed through sieves to obtain different particle size fractions (coarse, seed particle size ≥ 10 mm; medium, seed particle size ≥ 5 mm; fine, seed particle size ≤ 5 mm). Heat pre-treatment of chia seeds included the water boiling (100 C°, 5 min), microwave roasting (900 W, 2450 MHz, 2.5 min), oven drying (105 ± 5 °C, 1 h) and autoclaving (121 °C, 15 lbs, 15 min) process. Extracted oil from pre-treated chia seeds were stored in Tin cans at 25 ± 2 °C and 4 ± 1 °C for 60-days and examined for physical (color, melting point, refractive index), oxidative (iodine value, peroxide value, free fatty acids), fatty acids (palmitic, stearic, oleic, linoleic, α-linolenic) composition and sensory (appearance, flavor, overall acceptability) parameters, respectively. The proximal composition of chia seeds consisted of 6.16 ± 0.24 % moisture, 34.84 ± 0.62 % oil, 18.21 ± 0.45 % protein, 4.16 ± 0.37 % ash, 23.12 ± 0.29 % fiber, and 14.18 ± 0.23 % nitrogen contents. The oil yield as a result of seed pre-treatments was found in the range of 3.43 ± 0.22 % (water boiled samples) to 32.18 ± 0.34 % (autoclaved samples). The oil samples at day 0 indicated the

  20. Anti-oxidant effects of pomegranate juice on Saccharomyces cerevisiae cell growth.

    PubMed

    Aslan, Abdullah; Can, Muhammed İsmail; Boydak, Didem

    2014-01-01

    Pomegranate juice has a number of positive effects on both human and animal subjects. Four groups were used in this study. i: Control group, ii: H2O2 group, iii: Pomegranate juice (PJ) group and iv: PJ + H2O2 group. Following the sterilization method for pomegranate juice (10%) and H2O2 (6% v/v), Saccharomyces cerevisiae cultures were added and the cultivation incubated at 35°C for 72 hours. Fatty acids and vitamin concentrations were measured using HPLC and GC and the total protein bands profile were determined by SDS-PAGE. According to our results statistically significant differences have been determined among the study groups in terms of fatty acids and vitamin (p<0,05). Fatty acid synthesis, vitamin control and cell density increased in groups to which PJ was given in comparison with the control group (p<0,05). Pomegranate juice increased vitamins, fatty acids and total protein expression in Saccharomyces cerevisiae in comparison with the control. Pomegranate juice has a positive effect on fatty acid, vitamin and protein synthesis by Saccharomyces cerevisiae. Accordingly, we believe that it has significantly decreased oxidative damage thereby making a positive impact on yeast development.

  1. Green tea seed oil reduces weight gain in C57BL/6J mice and influences adipocyte differentiation by suppressing peroxisome proliferator-activated receptor-gamma.

    PubMed

    Kim, Na-Hyung; Choi, Sun-Kyung; Kim, Su-Jin; Moon, Phil-Dong; Lim, Hun-Sun; Choi, In-Young; Na, Ho-Jeong; An, Hyo-Jin; Myung, Noh-Yil; Jeong, Hyun-Ja; Um, Jae-Young; Hong, Seung-Heon; Kim, Hyung-Min

    2008-11-01

    Given that tea contains a number of chemical constituents possessing medicinal and pharmacological properties, green tea seed is also believed to contain many biologically active compounds such as saponin, flavonoids, vitamins, and oil materials. However, little is known about the physiologic functions of green tea seed oil. The aim of this study is to investigate the anti-obesity effects of green tea seed oil in C57BL/6J mice and in preadipocyte 3T3L-1 cell lines. In vivo, three groups of mice were fed with a standard diet, a high-fat diet containing 30% shortening, or 30% of green tea seed oil based on a standard diet for 85 days. The levels of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglyceride, glucose, and alanine aminotransferase in blood were analyzed at the end of the study. The mice given green tea seed oil gained less weight compared to mice given the shortening diet (p < 0.01). The plasma level of total cholesterol was decreased by a significant level of 32.4% in mice given the green tea seed oil compared to the mice given the shortening diet (p < 0.01). In addition, 3T3-L1 cells were treated for 2 days to evaluate effects of green tea seed oil on adipocyte differentiation. Green tea seed oil inhibited expression of peroxisome proliferator-activated receptor-gamma(2) and CCAAT/enhancer binding protein-alpha in adipocytes and adipose tissue from the experimental animals. These results indicate that the anti-obesity effects of green tea seed oil might be, in part, through suppression of transcription factors related to adipocyte differentiation.

  2. Antioxidant Activity of Essential Oil Extracted by SC-CO2 from Seeds of Trachyspermum ammi

    PubMed Central

    Singh, Aarti; Ahmad, Anees

    2017-01-01

    Bcakground: Extracts obtained from natural sources such as plants are of immense importance for humans. Methods: Therefore this study was conducted to obtain essential oil from the seeds of T. ammi by conventional and non-conventional methods. Hydrodistillation (HD), Solvent Extraction (SE), Ultrasonication (US), and Supercritical Carbon-dioxide (SC-CO2) extraction techniques were used to extract essential oil from the powdered seeds of T. ammi. A quality control method for each extracted oil was developed using HPTLC, FTIR, and GC-MS. The optimization process was carried out using fractional factorial design (FFD) under which three parameters were considered: pressure (150, 175, and 300 bar), temperature (25, 30, and 40 °C), and CO2 flow rate (5, 10, 15 g/min). Results: The yield of essential oil obtained from the HD, SE, US, and SC-CO2 methods were 1.20%, 1.82%, 2.30%, and 2.64% v/w, respectively. Antioxidant activity was determined by the DPPH and superoxide scavenging methods and the IC50 (Inhibition Concentration) values of the T. ammi oil sample were found to be 36.41 and 20.55 µg mL−1, respectively. Conclusion: The present paper reported that different extraction methods lead to different yields of essential oils and the choice of a suitable method is extremely important to obtain more preferred compounds. The yield was higher in the SC-CO2 method and it is a sustainable and green extraction technique. Many important constituents were detected in analytical techniques. Antioxidant activities carried out showed that essential oil extracted from T. ammi seeds possess significant antioxidant activity. PMID:28930268

  3. Water and nitrogen management of young and maturing pomegranate trees

    USDA-ARS?s Scientific Manuscript database

    Commercial production of pomegranate in California has increased drastically in recent years and the planted area reached 12,148 ha in 2011. A majority of the pomegranate trees are grown in the southern San Joaquin Valley which has a Mediterranean climate with hot dry summers and no rainfall, and ir...

  4. Viscosity of Common Seed and Vegetable Oils

    NASA Astrophysics Data System (ADS)

    Wes Fountain, C.; Jennings, Jeanne; McKie, Cheryl K.; Oakman, Patrice; Fetterolf, Monty L.

    1997-02-01

    Viscosity experiments using Ostwald-type gravity flow viscometers are not new to the physical chemistry laboratory. Several physical chemistry laboratory texts (1 - 3) contain at least one experiment studying polymer solutions or other well-defined systems. Several recently published articles (4 - 8) indicated the continued interest in using viscosity measurements in the teaching lab to illustrate molecular interpretation of bulk phenomena. Most of these discussions and teaching experiments are designed around an extensive theory of viscous flow and models of molecular shape that allow a full data interpretation to be attempted. This approach to viscosity experiments may not be appropriate for all teaching situations (e.g., high schools, general chemistry labs, and nonmajor physical chemistry labs). A viscosity experiment is presented here that is designed around common seed and vegetable oils. With the importance of viscosity to foodstuffs (9) and the importance of fatty acids to nutrition (10), an experiment using these common, recognizable oils has broad appeal.

  5. A Specialized Diacylglycerol Acyltransferase Contributes to the Extreme Medium-Chain Fatty Acid Content of Cuphea Seed Oil.

    PubMed

    Iskandarov, Umidjon; Silva, Jillian E; Kim, Hae Jin; Andersson, Mariette; Cahoon, Rebecca E; Mockaitis, Keithanne; Cahoon, Edgar B

    2017-05-01

    Seed oils of many Cuphea sp. contain >90% of medium-chain fatty acids, such as decanoic acid (10:0). These seed oils, which are among the most compositionally variant in the plant kingdom, arise from specialized fatty acid biosynthetic enzymes and specialized acyltransferases. These include lysophosphatidic acid acyltransferases (LPAT) and diacylglycerol acyltransferases (DGAT) that are required for successive acylation of medium-chain fatty acids in the sn -2 and sn -3 positions of seed triacylglycerols (TAGs). Here we report the identification of a cDNA for a DGAT1-type enzyme, designated CpuDGAT1, from the transcriptome of C. avigera var pulcherrima developing seeds. Microsomes of camelina ( Camelina sativa ) seeds engineered for CpuDGAT1 expression displayed DGAT activity with 10:0-CoA and the diacylglycerol didecanoyl, that was approximately 4-fold higher than that in camelina seed microsomes lacking CpuDGAT1. In addition, coexpression in camelina seeds of CpuDGAT1 with a C. viscosissima FatB thioesterase (CvFatB1) that generates 10:0 resulted in TAGs with nearly 15 mol % of 10:0. More strikingly, expression of CpuDGAT1 and CvFatB1 with the previously described CvLPAT2, a 10:0-CoA-specific Cuphea LPAT, increased 10:0 amounts to 25 mol % in camelina seed TAG. These TAGs contained up to 40 mol % 10:0 in the sn -2 position, nearly double the amounts obtained from coexpression of CvFatB1 and CvLPAT2 alone. Although enriched in diacylglycerol, 10:0 was not detected in phosphatidylcholine in these seeds. These findings are consistent with channeling of 10:0 into TAG through the combined activities of specialized LPAT and DGAT activities and demonstrate the biotechnological use of these enzymes to generate 10:0-rich seed oils. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Investigation on the antidepressant effect of sea buckthorn seed oil through the GC-MS-based metabolomics approach coupled with multivariate analysis.

    PubMed

    Tian, Jun-sheng; Liu, Cai-chun; Xiang, Huan; Zheng, Xiao-fen; Peng, Guo-jiang; Zhang, Xiang; Du, Guan-hua; Qin, Xue-mei

    2015-11-01

    Depression is one of the prevalent and serious mental disorders and the number of depressed patients has been on the rise globally during the recent decades. Sea buckthorn seed oil from traditional Chinese medicine (TCM) is edible and has been widely used for treatment of different diseases for a long time. However, there are few published reports on the antidepressant effect of sea buckthorn seed oil. With the objective of finding potential biomarkers of the therapeutic response of sea buckthorn seed oil in chronic unpredictable mild stress (CUMS) rats, urine metabolomics based on gas chromatography-mass spectrometry (GC-MS) coupled with multivariate analysis was applied. In this study, we discovered a higher level of pimelic acid as well as palmitic acid and a lower level of suberic acid, citrate, phthalic acid, cinnamic acid and Sumiki's acid in urine of rats exposed to CUMS procedures after sea buckthorn seed oil was administered. These changes of metabolites are involved in energy metabolism, fatty acid metabolism and other metabolic pathways as well as in the synthesis of neurotransmitters and it is helpful to facilitate the efficacy evaluation and mechanism elucidating the effect of sea buckthorn seed oil for depression management.

  7. Larvicidal, Repellent, and Irritant Potential of the Seed-Derived Essential oil of Apium graveolens Against Dengue Vector, Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Kumar, Sarita; Mishra, Monika; Wahab, Naim; Warikoo, Radhika

    2014-01-01

    Aedes aegypti L. is one of the primary disease vectors spreading various dreadful diseases throughout the world, specifically over tropics and subtropics. Keeping in view the adverse effects of chemical insecticides-based intervention measures, the eco-friendly and bio-degradable essential oil extracted from the seeds of celery, Apium graveolens were investigated for its efficacy against Ae. aegypti. Larvicidal bioassay carried out with the seed oil against early fourth instars of Ae. aegypti caused an LC50 and LC90 values of 16.10 and 29.08 ppm, respectively, after an exposure to 24 h. The cidal effect of the celery seed oil augmented by 1.2-fold; after an exposure to 48 h; revealing an LC50 value of 13.22 ppm. Interestingly, the seed oil did not cause immediate larval mortality, suggesting a delayed toxicity against the larval stage. Present investigations also revealed remarkable effective repellency of the oil leading to 100% protection till 165 min as compared to control that did not result in any repellency against adult Ae. aegypti. Interestingly, only one bite was recorded in the 165th-min after which only two bites were scored until 180 min of exposure of the adult mosquitoes to the oil. An exciting observation was that the knocked-down effect in adults exposed to 10% oil-impregnated papers. The contact irritancy assays with paper impregnated with 1% celery seed oil caused first flight only after 4 s resulting in an average of 63.66 flights during 15 min of exposure revealing the relative irritability of 26.97. The qualitative phytochemical analysis of the seed oil showed the presence of flavonoids, lactones, and terpenoids as the major constituents suggesting their probable role in the toxicity. Our results confirmed that celery seed essential oil can be used as an efficient larvicide and repellent against Ae. aegypti. The identification of the bioactive components, their mode of action, and studying effects on non-target organisms and the

  8. Larvicidal, Repellent, and Irritant Potential of the Seed-Derived Essential oil of Apium graveolens Against Dengue Vector, Aedes aegypti L. (Diptera: Culicidae)

    PubMed Central

    Kumar, Sarita; Mishra, Monika; Wahab, Naim; Warikoo, Radhika

    2014-01-01

    Aedes aegypti L. is one of the primary disease vectors spreading various dreadful diseases throughout the world, specifically over tropics and subtropics. Keeping in view the adverse effects of chemical insecticides-based intervention measures, the eco-friendly and bio-degradable essential oil extracted from the seeds of celery, Apium graveolens were investigated for its efficacy against Ae. aegypti. Larvicidal bioassay carried out with the seed oil against early fourth instars of Ae. aegypti caused an LC50 and LC90 values of 16.10 and 29.08 ppm, respectively, after an exposure to 24 h. The cidal effect of the celery seed oil augmented by 1.2-fold; after an exposure to 48 h; revealing an LC50 value of 13.22 ppm. Interestingly, the seed oil did not cause immediate larval mortality, suggesting a delayed toxicity against the larval stage. Present investigations also revealed remarkable effective repellency of the oil leading to 100% protection till 165 min as compared to control that did not result in any repellency against adult Ae. aegypti. Interestingly, only one bite was recorded in the 165th-min after which only two bites were scored until 180 min of exposure of the adult mosquitoes to the oil. An exciting observation was that the knocked-down effect in adults exposed to 10% oil-impregnated papers. The contact irritancy assays with paper impregnated with 1% celery seed oil caused first flight only after 4 s resulting in an average of 63.66 flights during 15 min of exposure revealing the relative irritability of 26.97. The qualitative phytochemical analysis of the seed oil showed the presence of flavonoids, lactones, and terpenoids as the major constituents suggesting their probable role in the toxicity. Our results confirmed that celery seed essential oil can be used as an efficient larvicide and repellent against Ae. aegypti. The identification of the bioactive components, their mode of action, and studying effects on non-target organisms and the

  9. Crude oil as a microbial seed bank with unexpected functional potentials

    PubMed Central

    Cai, Man; Nie, Yong; Chi, Chang-Qiao; Tang, Yue-Qin; Li, Yan; Wang, Xing-Biao; Liu, Ze-Shen; Yang, Yunfeng; Zhou, Jizhong; Wu, Xiao-Lei

    2015-01-01

    It was widely believed that oil is a harsh habitat for microbes because of its high toxicity and hydrophobicity. However, accumulating evidence has revealed the presence of live microbes in crude oil. Therefore, it’s of value to conduct an in-depth investigation on microbial communities in crude oil. To this end, microorganisms in oil and water phases were collected from four oil-well production mixtures in Qinghai Oilfield, China, and analyzed for their taxonomic and functional compositions via pyrosequencing and GeoChip, respectively. Hierarchical clustering of 16S rRNA gene sequences and functional genes clearly separated crude oil and water phases, suggestive of distinct taxonomic and functional gene compositions between crude oil and water phases. Unexpectedly, Pseudomonas dominated oil phase where diverse functional gene groups were identified, which significantly differed from those in the corresponding water phases. Meanwhile, most functional genes were significantly more abundant in oil phase, which was consistent with their important roles in facilitating survival of their host organisms in crude oil. These findings provide strong evidence that crude oil could be a “seed bank” of functional microorganisms with rich functional potentials. This offers novel insights for industrial applications of microbial-enhanced oil recovery and bioremediation of petroleum-polluted environments. PMID:26525361

  10. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene.

    PubMed

    Elhiti, Mohamed; Yang, Cunchun; Chan, Ainsley; Durnin, Douglas C; Belmonte, Mark F; Ayele, Belay T; Tahir, Muhammad; Stasolla, Claudio

    2012-07-01

    SHOOTMERISTEMLESS (STM) is a homeobox gene conserved among plant species which is required for the formation and maintenance of the shoot meristem by suppressing differentiation and maintaining an undetermined cell fate within the apical pole. To assess further the role of this gene during seed storage accumulation, transgenic Brassica napus (Bn) plants overexpressing or down-regulating BnSTM under the control of the 35S promoter were generated. Overexpression of BnSTM increased seed oil content without affecting the protein and sucrose level. These changes were accompanied by the induction of genes encoding several transcription factors promoting fatty acid (FA) synthesis: LEAFY COTYLEDON1 (BnLEC1), BnLEC2, and WRINKLE1 (BnWRI1). In addition, expression of key representative enzymes involved in sucrose metabolism, glycolysis, and FA biosynthesis was up-regulated in developing seeds ectopically expressing BnSTM. These distinctive expression patterns support the view of an increased carbon flux to the FA biosynthetic pathway in developing transformed seeds. The overexpression of BnSTM also resulted in a desirable reduction of seed glucosinolate (GLS) levels ascribed to a transcriptional repression of key enzymes participating in the GLS biosynthetic pathway, and possibly to the differential utilization of common precursors for GLS and indole-3-acetic acid synthesis. No changes in oil and GLS levels were observed in lines down-regulating BnSTM. Taken together, these findings provide evidence for a novel function for BnSTM in promoting desirable changes in seed oil and GLS levels when overexpressed in B. napus plants, and demonstrate that this gene can be used as a target for genetic improvement of oilseed species.

  11. Effect of dietary grape seed extract and Cistus ladanifer L. in combination with vegetable oil supplementation on lamb meat quality.

    PubMed

    Jerónimo, Eliana; Alfaia, Cristina M M; Alves, Susana P; Dentinho, Maria T P; Prates, José A M; Vasta, Valentina; Santos-Silva, José; Bessa, Rui J B

    2012-12-01

    Thirty-six Merino Branco lambs were assigned to six dietary treatments: control diet (C) consisting of 90% dehydrated lucerne and 10% wheat bran; C with 6% of oil blend (CO); C with 2.5% of grape seed extract (GS); GS with 6% of oil blend (GSO); C with 25% of Cistus ladanifer (CL), and CL with 6% of oil blend (CLO). Meat lipid and colour stability was then evaluated during 7 days of storage. The effect of inclusion of grape seed extract and C. ladanifer in diets on meat sensory properties was also evaluated. Meat antioxidant potential, determined after oxidation induction by a ferrous/hydrogen peroxide system, decreased with oil supplementation (P<0.001), but inclusion of grape seed extract and C. ladanifer in diets protected the meat against lipid oxidation (P=0.036). Meat colour was not affected by diets. Inclusion of grape seed extract and C. ladanifer in diets did not change the sensory properties of meat. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA).

    PubMed

    Citti, Cinzia; Pacchetti, Barbara; Vandelli, Maria Angela; Forni, Flavio; Cannazza, Giuseppe

    2018-02-05

    Hemp seed oil from Cannabis sativa L. is a very rich natural source of important nutrients, not only polyunsaturated fatty acids and proteins, but also terpenes and cannabinoids, which contribute to the overall beneficial effects of the oil. Hence, it is important to have an analytical method for the determination of these components in commercial samples. At the same time, it is also important to assess the safety of the product in terms of amount of any psychoactive cannabinoid present therein. This work presents the development and validation of a highly sensitive, selective and rapid HPLC-UV method for the qualitative and quantitative determination of the main cannabinoids, namely cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), cannabigerol (CBG) and cannabidivarin (CBDV), present in 13 commercial hemp seed oils. Moreover, since decomposition of cannabinoid acids generally occurs with light, air and heat, decarboxylation studies of the most abundant acid (CBDA) were carried out in both open and closed reactor and the kinetics parameters were evaluated at different temperatures in order to evaluate the stability of hemp seed oil in different storage conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Identification and expression of fructose-1,6-bisphosphate aldolase genes and their relations to oil content in developing seeds of tea oil tree (Camellia oleifera)

    USDA-ARS?s Scientific Manuscript database

    Tea oil tree (Camellia oleifera, Co) provides a fine edible oil source in China. Tea oil from the seeds is very beneficial to human health. Fructose-1,6-bisphosphate aldolase (FBA) hydrolyzes fructose-1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, two critical metab...

  14. Identification of Major Quantitative Trait Loci for Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping

    PubMed Central

    Cao, Yongce; Li, Shuguang; Wang, Zili; Chang, Fangguo; Kong, Jiejie; Gai, Junyi; Zhao, Tuanjie

    2017-01-01

    Soybean oil is the most widely produced vegetable oil in the world and its content in soybean seed is an important quality trait in breeding programs. More than 100 quantitative trait loci (QTLs) for soybean oil content have been identified. However, most of them are genotype specific and/or environment sensitive. Here, we used both a linkage and association mapping methodology to dissect the genetic basis of seed oil content of Chinese soybean cultivars in various environments in the Jiang-Huai River Valley. One recombinant inbred line (RIL) population (NJMN-RIL), with 104 lines developed from a cross between M8108 and NN1138-2, was planted in five environments to investigate phenotypic data, and a new genetic map with 2,062 specific-locus amplified fragment markers was constructed to map oil content QTLs. A derived F2 population between MN-5 (a line of NJMN-RIL) and NN1138-2 was also developed to confirm one major QTL. A soybean breeding germplasm population (279 lines) was established to perform a genome-wide association study (GWAS) using 59,845 high-quality single nucleotide polymorphism markers. In the NJMN-RIL population, 8 QTLs were found that explained a range of phenotypic variance from 6.3 to 26.3% in certain planting environments. Among them, qOil-5-1, qOil-10-1, and qOil-14-1 were detected in different environments, and qOil-5-1 was further confirmed using the secondary F2 population. Three loci located on chromosomes 5 and 20 were detected in a 2-year long GWAS, and one locus that overlapped with qOil-5-1 was found repeatedly and treated as the same locus. qOil-5-1 was further localized to a linkage disequilibrium block region of approximately 440 kb. These results will not only increase our understanding of the genetic control of seed oil content in soybean, but will also be helpful in marker-assisted selection for breeding high seed oil content soybean and gene cloning to elucidate the mechanisms of seed oil content. PMID:28747922

  15. Supercritical carbon dioxide (SC-CO2) extraction of essential oil from Swietenia mahagoni seeds

    NASA Astrophysics Data System (ADS)

    Norodin, N. S. M.; Salleh, L. M.; Hartati; Mustafa, N. M.

    2016-11-01

    Swietenia mahagoni (Mahogany) is a traditional plant that is rich with bioactive compounds. In this study, process parameters such as particle size, extraction time, solvent flowrate, temperature and pressure were studied on the extraction of essential oil from Swietenia mahagoni seeds by using supercritical carbon dioxide (SC-CO2) extraction. Swietenia mahagoni seeds was extracted at a pressure of 20-30 MPa and a temperature of 40-60°C. The effect of particle size on overall extraction of essential oil was done at 30 MPa and 50°C while the extraction time of essential oil at various temperatures and at a constant pressure of 30 MPa was studied. Meanwhile, the effect of flowrate CO2 was determined at the flowrate of 2, 3 and 4 ml/min. From the experimental data, the extraction time of 120 minutes, particle size of 0.5 mm, the flowrate of CO2 of 4 ml/min, at a pressure of 30 MPa and the temperature of 60°C were the best conditions to obtain the highest yield of essential oil.

  16. Antinociceptive and anti-inflammatory activities of a pomegranate (Punica granatum L.) extract rich in ellagitannins.

    PubMed

    González-Trujano, María Eva; Pellicer, Francisco; Mena, Pedro; Moreno, Diego A; García-Viguera, Cristina

    2015-01-01

    Pomegranate (Punica granatum L.) has been used for centuries for the treatment of inflammatory diseases. However, there is a lack of comprehensive information focused on the properties of a certain pomegranate (poly)phenolic profile to cure pain and gastric injury induced by anti-inflammatory drugs. This study investigated the systemic effects of different doses of a HPLC-characterized pomegranate extract on the formalin-induced nociceptive behavior in mice. The effect of the extract against gastric injury caused by non-steroidal anti-inflammatory drugs and ethanol was also assessed. Pomegranate reduced nociception in both phases of the formalin test, suggesting central and peripheral activities to inhibit nociception. Indomethacin-induced gastric injury was not produced in the presence of pomegranate, which also protected against ethanol-induced gastric lesions. The present results reinforce the benefits of pomegranate (poly)phenolics in the treatment of pain as well as their anti-inflammatory properties.

  17. Protective effects of pomegranate (Punica granatum) juice on testes against carbon tetrachloride intoxication in rats

    PubMed Central

    2014-01-01

    Background Pomegranate fruit has been extensively used as a natural medicine in many cultures. The present study was aimed at evaluating the protective effects of pomegranate (Punica granatum) juice against carbon tetrachloride (CCl4)-induced oxidative stress and testes injury in adult Wistar rats. Methods Twenty eight Wistar albino male rats were divided equally into 4 groups for the assessment of protective potential of pomegranate juice. Rats of group I (control) received only vehicles and had free access to food and water. Rats of groups II and IV were treated with CCl4 (2 ml/kg bwt) via the intraperitoneal route once a week for ten weeks. The pomegranate juice was supplemented via drinking water 2 weeks before and concurrent with CCl4 treatment to group IV. Group III was supplemented with pomegranate juice for twelve weeks. The protective effects of pomegranate on serum sex hormones, oxidative markers, activities of antioxidant enzymes and histopathology of testes were determined in CCl4-induced reproductive toxicity in rats. Results Pomegranate juice showed significant elevation in testosterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH) those depleted by the injection of CCl4. Activity levels of endogenous testesticular antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) and glutathione (GSH) contents were increased while lipid peroxidation (LPO) and nitric oxide (NO) were decreased with pomegranate juice. Moreover, degeneration of germ and Leydig cells along with deformities in spermatogenesis induced after CCl4 injections were restored with the treatment of pomegranate juice. Conclusion The results clearly demonstrated that pomegranate juice augments the antioxidant defense mechanism against carbon tetrachloride-induced reproductive toxicity and provides evidence that it may have a therapeutic role in free radical mediated

  18. Protective effects of pomegranate (Punica granatum) juice on testes against carbon tetrachloride intoxication in rats.

    PubMed

    Al-Olayan, Ebtesam M; El-Khadragy, Manal F; Metwally, Dina M; Abdel Moneim, Ahmed E

    2014-05-22

    Pomegranate fruit has been extensively used as a natural medicine in many cultures. The present study was aimed at evaluating the protective effects of pomegranate (Punica granatum) juice against carbon tetrachloride (CCl4)-induced oxidative stress and testes injury in adult Wistar rats. Twenty eight Wistar albino male rats were divided equally into 4 groups for the assessment of protective potential of pomegranate juice. Rats of group I (control) received only vehicles and had free access to food and water. Rats of groups II and IV were treated with CCl4 (2 ml/kg bwt) via the intraperitoneal route once a week for ten weeks. The pomegranate juice was supplemented via drinking water 2 weeks before and concurrent with CCl4 treatment to group IV. Group III was supplemented with pomegranate juice for twelve weeks. The protective effects of pomegranate on serum sex hormones, oxidative markers, activities of antioxidant enzymes and histopathology of testes were determined in CCl4-induced reproductive toxicity in rats. Pomegranate juice showed significant elevation in testosterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH) those depleted by the injection of CCl4. Activity levels of endogenous testesticular antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) and glutathione (GSH) contents were increased while lipid peroxidation (LPO) and nitric oxide (NO) were decreased with pomegranate juice. Moreover, degeneration of germ and Leydig cells along with deformities in spermatogenesis induced after CCl4 injections were restored with the treatment of pomegranate juice. The results clearly demonstrated that pomegranate juice augments the antioxidant defense mechanism against carbon tetrachloride-induced reproductive toxicity and provides evidence that it may have a therapeutic role in free radical mediated diseases.

  19. Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil.

    PubMed Central

    Dehesh, K; Edwards, P; Hayes, T; Cranmer, A M; Fillatti, J

    1996-01-01

    The seed oil of Cuphea palustris has an unusual fatty-acyl composition, whereby the principal fatty-acyl groups, myristate (64%) and caprylate (20%), differ by more than two methylenes. We have isolated two thioesterase (TE) cDNAs from C. palustris, encoding proteins designated Cp FatB1 and Cp FatB2, which, when expressed in Escherichia coli, have TE activities specific for 8:0/10:0- and 14:0/16:0-acyl carrier protein substrates, respectively. The specific activities of the recombinant affinity-purified enzymes indicate that Cp FatB2 is kinetically superior to Cp FatB1. This result is consistent with the predominance of 14:0 in the seed oil, despite apparently equal mRNA abundance of the two transcripts in the seed. In C. palustris the expression of both sequences is confined to the seed tissues. Based on these findings we propose that these two enzymes are major factors determining the bimodal chain-length composition of C. palustris oil. Analysis of the immature and mature seed oil by reverse-phase high-performance liquid chromatography confirmed that the principal triglycerides contain both 8:0 and 14:0. This result indicates that both fatty acids are synthesized at the same time and in the same cells at all developmental stages during oil deposition, suggesting that the two TEs act together in the same fatty acid synthesis system. PMID:8587983

  20. Genetic Analysis of Seed Isoflavones, Protein, and Oil Contents in Soybean [Glycine max (L.) Merr.

    DTIC Science & Technology

    2014-09-13

    high contents of protein , oil, isoflavones, and other bioactive compounds. However, it is susceptible to many biotic stresses such fungal, bacterial...for protein , oil, and isoflavones contents in three recombinant inbred line (RIL) populations of soybean. We have achieved 100% of the goals. We have...Jun-2011 31-May-2014 Approved for Public Release; Distribution Unlimited Final Report: Genetic Analysis of Seed Isoflavones, Protein , and Oil

  1. Multi-population selective genotyping to identify soybean (Glycine max (L.) Merr.) seed protein and oil QTLs

    USDA-ARS?s Scientific Manuscript database

    Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which in soybean [Glycine max (L.) Merr.] is seed protein and oil. Identification of genetic loci governing those two traits would facilitate that effort, and though genome-wide asso...

  2. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H; Shanklin, John

    2014-03-18

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  3. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H.; Shanklin, John

    2010-02-02

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  4. Enrichment of erucic acid from pennycress (Thlaspi arvense L.) seed oil

    USDA-ARS?s Scientific Manuscript database

    Pennycress (Thlaspi arvense) is a winter annual that has a wide geographic distribution and a growth habitat that makes it suitable for an off-season rotation between corn and soybeans in much of the Midwestern United States. Pennycress seed contains 36% oil with 36.6% erucic acid content. There are...

  5. Effects of pH on protein components of extracted oil bodies from diverse plant seeds and endogenous protease-induced oleosin hydrolysis.

    PubMed

    Zhao, Luping; Chen, Yeming; Chen, Yajing; Kong, Xiangzhen; Hua, Yufei

    2016-06-01

    Plant seeds are used to extract oil bodies for diverse applications, but oil bodies extracted at different pH values exhibit different properties. Jicama, sunflower, peanut, castor bean, rapeseed, and sesame were selected to examine the effects of pH (6.5-11.0) on the protein components of oil bodies and the oleosin hydrolysis in pH 6.5-extracted oil bodies. In addition to oleosins, many extrinsic proteins (globulins, 2S albumin, and enzymes) were present in pH 6.5-extracted oil bodies. Globulins were mostly removed at pH 8.0, whereas 2S albumins were removed at pH 11.0. At pH 11.0, highly purified oil bodies were obtained from jicama, sunflower, peanut, and sesame, whereas lipase remained in the castor bean oil bodies and many enzymes in the rapeseed oil bodies. Endogenous protease-induced hydrolysis of oleosins occurred in all selected plant seeds. Oleosins with larger sizes were hydrolysed more quickly than oleosins with smaller sizes in each plant seed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Two Acyltransferases Contribute Differently to Linolenic Acid Levels in Seed Oil1[OPEN

    PubMed Central

    Stymne, Sten

    2017-01-01

    Acyltransferases are key contributors to triacylglycerol (TAG) synthesis and, thus, are of great importance for seed oil quality. The effects of increased or decreased expression of ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) or PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) on seed lipid composition were assessed in several Camelina sativa lines. Furthermore, in vitro assays of acyltransferases in microsomal fractions prepared from developing seeds of some of these lines were performed. Decreased expression of DGAT1 led to an increased percentage of 18:3n-3 without any change in total lipid content of the seed. The tri-18:3 TAG increase occurred predominantly in the cotyledon, as determined with matrix-assisted laser desorption/ionization-mass spectrometry, whereas species with two 18:3n-3 acyl groups were elevated in both cotyledon and embryonal axis. PDAT overexpression led to a relative increase of 18:2n-6 at the expense of 18:3n-3, also without affecting the total lipid content. Differential distributions of TAG species also were observed in different parts of the seed. The microsomal assays revealed that C. sativa seeds have very high activity of diacylglycerol-phosphatidylcholine interconversion. The combination of analytical and biochemical data suggests that the higher 18:2n-6 content in the seed oil of the PDAT overexpressors is due to the channeling of fatty acids from phosphatidylcholine into TAG before being desaturated to 18:3n-3, caused by the high activity of PDAT in general and by PDAT specificity for 18:2n-6. The higher levels of 18:3n-3 in DGAT1-silencing lines are likely due to the compensatory activity of a TAG-synthesizing enzyme with specificity for this acyl group and more desaturation of acyl groups occurring on phosphatidylcholine. PMID:28235891

  7. Changes in oxidative patterns during dormancy break by warm and cold stratification in seeds of an edible fruit tree.

    PubMed

    Shalimu, Dilinuer; Sun, Jia; Baskin, Carol C; Baskin, Jerry M; Sun, Liwei; Liu, Yujun

    2016-01-01

    The transition from seed dormancy to germination is triggered by environmental factors, and in pomegranate (Punica granatum) seeds higher germination percentages are achieved by warm + cold stratification rather than by cold stratification alone. Our objective was to define the pattern of internal oxidative changes in pomegranate seeds as dormancy was being broken by warm + cold stratification and by cold stratification alone. Embryos isolated from seeds after 1-42 days of warm stratification, after 56 days of warm stratification + 7, 28 or 56 days of cold stratification, and after 1-84 days of cold stratification alone, were used in biochemical tests. Hydrogen peroxide (H2O2), nitric oxide (NO), proline, lipid peroxidation, protein carbonylation, and activities of the scavenging enzymes superoxide dismutase (SOD), hydrogen peroxide enzyme and peroxidase in the embryos were assessed by colorimetric methods. Our results indicated that warm + cold stratification had a stronger dormancy-breaking effect than cold stratification (85% versus 50% germination), which may be attributed to a higher yield of H2O2, NO, lipid peroxidation and protein carbonylation in warm + cold stratification. Furthermore, warm + cold stratification-induced H2O2 change led to greater changes (elevation followed by attenuation) in activities of the scavenging enzymes than that induced by cold stratification alone. These results indicated that restriction of the level of reactive oxygen species change within a positive and safe range by such enzymes promoted seed germination. In addition, a relatively strong elevation of proline during warm + cold stratification also contributed to dormancy breakage and subsequent germination. In conclusion, the strong dormancy alleviating effect of warm + cold stratification on pomegranate seeds may be attributed to the corresponding active oxidative change via H2O2, NO, proline, malondialdehyde, protein carbonylation and

  8. Chemical composition and antimicrobial activity of the essential oil of apricot seed.

    PubMed

    Lee, Hyun-Hee; Ahn, Jeong-Hyun; Kwon, Ae-Ran; Lee, Eun Sook; Kwak, Jin-Hwan; Min, Yu-Hong

    2014-12-01

    In traditional oriental medicine, apricot (Prunus armeniaca L.) seed has been used to treat skin diseases such as furuncle, acne vulgaris and dandruff, as well as coughing, asthma and constipation. This study describes the phytochemical profile and antimicrobial potential of the essential oil obtained from apricot seeds (Armeniacae Semen). The essential oil isolated by hydrodistillation was analysed by gas chromatography-mass spectroscopy. Benzaldehyde (90.6%), mandelonitrile (5.2%) and benzoic acid (4.1%) were identified. Disc diffusion, agar dilution and gaseous contact methods were performed to determine the antimicrobial activity against 16 bacteria and two yeast species. The minimum inhibitory concentrations ranged from 250 to 4000, 500 to 2000 and 250 to 1000 µg/mL for Gram-positive bacteria, Gram-negative bacteria and yeast strains, respectively. The minimum inhibitory doses by gaseous contact ranged from 12.5 to 50, 12.5 to 50 and 3.13 to 12.5 mg/L air for Gram-positive bacteria, Gram-negative bacteria and yeast strains, respectively. The essential oil exhibited a variable degree of antimicrobial activity against a range of bacteria and yeasts tested. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Pomegranate supplementation improves cognitive and functional recovery following ischemic stroke: A randomized trial.

    PubMed

    Bellone, John A; Murray, Jeffrey R; Jorge, Paolo; Fogel, Travis G; Kim, Mary; Wallace, Desiree R; Hartman, Richard E

    2018-02-13

    We tested whether supplementing with pomegranate polyphenols can enhance cognitive/functional recovery after stroke. In this parallel, block-randomized clinical trial, we administered commercially-available pomegranate polyphenol or placebo pills twice per day for one week to adult inpatients in a comprehensive rehabilitation setting starting approximately 2 weeks after stroke. Pills contained 1 g of polyphenols derived from whole pomegranate, equivalent to levels in approximately 8 oz of juice. Placebo pills were similar to the pomegranate pills except that they contained only lactose. Of the 163 patients that were screened, 22 were eligible and 16 were randomized (8 per group). We excluded one subject per group from the neuropsychological analyses since they were lost to follow-up, but we included all subjects in the analysis of functional data since outcome data were available. Clinicians and subjects were blinded to group assignment. Neuropsychological testing (primary outcome: Repeatable Battery for the Assessment of Neuropsychological Status) and functional independence scores were used to determine changes in cognitive and functional ability. Pomegranate-treated subjects demonstrated more neuropsychological and functional improvement and spent less time in the hospital than placebo controls. Pomegranate polyphenols enhanced cognitive and functional recovery after stroke, justifying pursuing larger clinical trials.

  10. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    PubMed

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Increasing the stearate content in seed oil of Brassica juncea by heterologous expression of MlFatB affects lipid content and germination frequency of transgenic seeds.

    PubMed

    Bhattacharya, Surajit; Sinha, Saheli; Das, Natasha; Maiti, Mrinal K

    2015-11-01

    Fatty acids from dietary lipids can impart both beneficial and harmful health effects. The compositional balance between saturated and unsaturated fatty acids plays a decisive role in maintaining the physiological harmony, proper growth and development in the human system. In case of Brassica juncea seed oil, the level of saturated fatty acid, especially desirable stearate is very much lower than the recommended value, along with a high content of nutritionally undesirable erucic acid. Therefore, in order to shift the carbon flux towards the production of stearate at the expense of erucate, the MlFatB gene encoding a FatB thioesterase from Madhuca longifolia (latifolia) was expressed heterologously in seed tissues of B. juncea. The functional MlFatB competed with the highly active endogenous BjFatA thioesterase, and the transgenic B. juncea lines showed noteworthy changes in their seed fatty acid profiles. The proportion of stearate increased up to 16-fold, constituting almost 31% of the total fatty acids along with the production of arachidic acid in significant amount (up to ∼11%). Moreover, the content of erucate was reduced up to 71% in the seed oils of transgenic lines. Although a nutritionally desirable fatty acid profile was achieved, the transgenic seeds exhibit reduction or abolition of seed germination in addition to a decrease in seed lipid content. The findings of the present study revealing the stearoyl-ACP thioesterase-mediated enhancement of the stearate content that is associated with reduced germination frequency of transgenic B. juncea seeds, may explain why no natural or induced stearate-rich Brassica has been found or developed. Furthermore, this study also suggests that the newly characterized MlFatB is a potential candidate gene for refined metabolic engineering strategy in B. juncea or other plant species for increasing stearate content in seed oil. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. No positive influence of ingesting chia seed oil on human running performance.

    PubMed

    Nieman, David C; Gillitt, Nicholas D; Meaney, Mary Pat; Dew, Dustin A

    2015-05-15

    Runners (n = 24) reported to the laboratory in an overnight fasted state at 8:00 am on two occasions separated by at least two weeks. After providing a blood sample at 8:00 am, subjects ingested 0.5 liters flavored water alone or 0.5 liters water with 7 kcal kg-1 chia seed oil (random order), provided another blood sample at 8:30 am, and then started running to exhaustion (~70% VO2max). Additional blood samples were collected immediately post- and 1-h post-exercise. Despite elevations in plasma alpha-linolenic acid (ALA) during the chia seed oil (337%) versus water trial (35%) (70.8 ± 8.6, 20.3 ± 1.8 μg mL(-1), respectively, p < 0.001), run time to exhaustion did not differ between trials (1.86 ± 0.10, 1.91 ± 0.13 h, p = 0.577, respectively). No trial differences were found for respiratory exchange ratio (RER) (0.92 ± 0.01), oxygen consumption, ventilation, ratings of perceived exertion (RPE), and plasma glucose and blood lactate. Significant post-run increases were measured for total leukocyte counts, plasma cortisol, and plasma cytokines (Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-10 (IL-10), and Tumor necrosis factors-α (TNF-α)), with no trial differences. Chia seed oil supplementation compared to water alone in overnight fasted runners before and during prolonged, intensive running caused an elevation in plasma ALA, but did not enhance run time to exhaustion, alter RER, or counter elevations in cortisol and inflammatory outcome measures.

  13. Oxidative stability and alpha-tocopherol retention in soybean oil with lemon seed extract (Citrus limon) under thermoxidation.

    PubMed

    Luzia, Débora Maria Moreno; Jorge, Neuza

    2009-11-01

    The synergistic effect of lemon seed extract with tert-butylhydroquinone (TBHQ) in soybean oil subjected to thermoxidation by Rancimat was investigated, and the influence of these antioxidants on a-tocopherol degradation in thermoxidized soybean oil. Control, LSE (2400 mg/kg Lemon Seed Extract), TBHQ (50 mg/kg), Mixture 1 (LSE + 50 mg/kg TBHQ) and Mixture 2 (LSE + 25 mg/kg TBHQ) were subjected to 180 degrees C for 20 h. Samples were taken at time 0, 5, 10, 15 and 20 h intervals and analysed for oxidative stability and alpha-tocopherol content. LSE and Mixtures 1 and 2 showed the capacity of retarding lipid oxidation when added to soya oil and also contributed to alpha-tocopherol retention in oil heated at high temperatures. However, Mixtures 1 and 2 added to the oil presented a greater antioxidant power, consequently proving the antioxidants synergistic effect.

  14. Interference and Mechanism of Dill Seed Essential Oil and Contribution of Carvone and Limonene in Preventing Sclerotinia Rot of Rapeseed.

    PubMed

    Ma, Bingxin; Ban, Xiaoquan; Huang, Bo; He, Jingsheng; Tian, Jun; Zeng, Hong; Chen, Yuxin; Wang, Youwei

    2015-01-01

    This study aimed to evaluate the inhibitory effects of dill (Anethum graveolens L.) seed essential oil against Sclerotinia sclerotiorum and its mechanism of action. The antifungal activities of the two main constituents, namely carvone and limonene, were also measured. Mycelial growth and sclerotial germination were thoroughly inhibited by dill seed essential oil at the 1.00 μL/mL under contact condition and 0.125μL/mL air under vapor condition. Carvone also contributed more than limonene in inhibiting the growth of S. sclerotiorum. Carvone and limonene synergistically inhibited the growth of the fungus. In vivo experiments, the essential oil remarkably suppressed S. sclerotiorum, and considerable morphological alterations were observed in the hyphae and sclerotia. Inhibition of ergosterol synthesis, malate dehydrogenase, succinate dehydrogenase activities, and external medium acidification were investigated to elucidate the antifungal mechanism of the essential oil. The seed essential oil of A. graveolens can be extensively used in agriculture for preventing the oilseed crops fungal disease.

  15. Interference and Mechanism of Dill Seed Essential Oil and Contribution of Carvone and Limonene in Preventing Sclerotinia Rot of Rapeseed

    PubMed Central

    Huang, Bo; He, Jingsheng; Tian, Jun; Zeng, Hong; Chen, Yuxin; Wang, Youwei

    2015-01-01

    This study aimed to evaluate the inhibitory effects of dill (Anethum graveolens L.) seed essential oil against Sclerotinia sclerotiorum and its mechanism of action. The antifungal activities of the two main constituents, namely carvone and limonene, were also measured. Mycelial growth and sclerotial germination were thoroughly inhibited by dill seed essential oil at the 1.00 μL/mL under contact condition and 0.125μL/mL air under vapor condition. Carvone also contributed more than limonene in inhibiting the growth of S. sclerotiorum. Carvone and limonene synergistically inhibited the growth of the fungus. In vivo experiments, the essential oil remarkably suppressed S. sclerotiorum, and considerable morphological alterations were observed in the hyphae and sclerotia. Inhibition of ergosterol synthesis, malate dehydrogenase, succinate dehydrogenase activities, and external medium acidification were investigated to elucidate the antifungal mechanism of the essential oil. The seed essential oil of A. graveolens can be extensively used in agriculture for preventing the oilseed crops fungal disease. PMID:26133771

  16. Dietary omega-3 PUFA and health: stearidonic acid-containing seed oils as effective and sustainable alternatives to traditional marine oils.

    PubMed

    Surette, Marc E

    2013-05-01

    The daily consumption of dietary omega-3 PUFA is recommended by governmental agencies in several countries and by a number of health organizations. The molecular mechanisms by which these dietary PUFA affect health involve the enrichment of cellular membranes with long-chain 20- and 22-carbon omega-3 PUFA that impacts tissues by altering membrane protein functions, cell signaling, and gene expression profiles. These changes are recognized to have health benefits in humans, especially relating to cardiovascular outcomes. Cellular membrane enrichment and health benefits are associated with the consumption of long-chain omega-3 PUFA found in marine oils, but are not generally linked with the consumption of alpha-linolenic acid, the 18-carbon omega-3 PUFA found in plant seed oils. However, the supply of omega-3 PUFA from marine sources is limited and may not be sustainable. New plant-derived sources of omega-3 PUFA like stearidonic acid-soy oil from genetically modified soybeans and Ahiflower oil from Buglossoides arvensis seeds that are enriched in the 18-carbon omega-3 PUFA stearidonic acid are being developed and show promise to become effective as well as sustainable sources of omega-3 PUFA. An example of changes in tissue lipid profiles associated with the consumption of Ahiflower oil is presented in a mouse feeding study. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dietary sandalwood seed oil modifies fatty acid composition of mouse adipose tissue, brain, and liver.

    PubMed

    Liu, Y; Longmore, R B

    1997-09-01

    Sandalwood (Santalum spicatum) seed oil, which occurs to about 50% of the weight of the seed kernels, contains 30-35% of total fatty acids (FA) as ximenynic acid (XMYA). This study was designed to obtain basic information on changes in tissue FA composition and on the metabolic fate of XMYA in mice fed a sandalwood seed oil (SWSO)-enriched diet. Female mice were randomly divided into three groups, each receiving different semisynthetic diets containing 5.2% (w/w) fat (standard laboratory diet), 15% canola oil, or 15% SWSO for 8 wk. The effects of SWSO as a dietary fat on the FA composition of adipose tissue, brain, and liver lipids were determined by analyses of FA methyl ester derivatives of extracted total lipid. The FA compositions of the liver and adipose tissue were markedly altered by the dietary fats, and mice fed on a SWSO-enriched diet were found to contain XMYA but only in low concentration (0.3-3%) in these tissues; XMYA was not detected in brain. Oleic acid was suggested to be a principal XMYA biotransformation product. The results were interpreted to suggest that the metabolism of XMYA may involve both biohydrogenation and oxidation reactions.

  18. A positive cannabinoids workplace drug test following the ingestion of commercially available hemp seed oil.

    PubMed

    Struempler, R E; Nelson, G; Urry, F M

    1997-01-01

    A commercially available health food product of cold-pressed hemp seed oil ingested by one volunteer twice a day for 4 1/2 days (135 mL total). Urine specimens collected from the volunteer were subjected to standard workplace urine drug testing procedures, and the following concentrations of 11-nor-delta9- tetrahydrocannabinol carboxylic acid (9-THCA) were detected: 41 ng/mL 9-THCA at 45 h, 49 ng/mL at 69 h, and 55 ng/mL at 93 h. Ingestion was discontinued after 93 h, and the following concentrations were detected: 68 ng/mL at 108 h, 57 ng/mL at 117 h, 31 ng/mL at 126 h, and 20 ng/mL at 142 h. The first specimen that tested negative (50 ng/mL initial immunoassay test, 15 ng/mL confirmatory gas chromatographic-mass spectrometric test) was at 146 h, which was 53 h after the last hemp seed oil ingestion. Four subsequent specimens taken to 177 h were also negative. This study indicates that a workplace urine drug test positive for cannabinoids may arise from the consumption of commercially available cold-pressed hemp seed oil.

  19. The protective effect of pomegranate extract against cisplatin toxicity in rat liver and kidney tissue.

    PubMed

    Bakır, Salih; Yazgan, Ümit Can; İbiloğlu, İbrahim; Elbey, Bilal; Kızıl, Murat; Kelle, Mustafa

    2015-01-01

    The purpose of this study was to perform a histopathological investigation, at the light microscopy level, of the protective effects of pomegranate extract in cisplatin-induced liver and kidney damage in rats. Twenty-eight adult male Wistar albino rats were randomly divided into four groups of seven animals: Group 1: Control; Group 2: Treated for 10 consecutive days by gavage with pomegranate juice (2 ml/kg/day); Group 3: Injected intraperitoneally with cisplatin (8 mg/kg body weight, single dose) onset of the day 5, and Group 4: Treated by gavage with pomegranate juice 10 days before and after a single injection of cisplatin onset of the day 5. After 10 days, the animals were sacrificed and their kidneys and liver tissue samples were removed from each animal after experimental procedures. Cisplatin-induced renal and hepatic toxicity and the effect of pomegranate juice were evaluated by histopatological examinations. In the kidney tissue, pomegranate juice significantly ameliorated cisplatin-induced structural alterations when compared with the cisplatin alone group. But in the liver tissue, although pomegranate juice attenuated the cisplatin-induced toxicity only in two rats, significant improvement was not observed. In conclusion, these results demonstrate that the anti-oxidant pomegranate juice might have a protective effect against cisplatin-induced toxicity in rat kidney, but not in liver. Pomegranate juice could be beneficial as a dietary supplement in patients receiving chemotherapy medications.

  20. Temporal association of Ca(2+)-dependent protein kinase with oil bodies during seed development in Santalum album L.: its biochemical characterization and significance.

    PubMed

    Anil, Veena S; Harmon, Alice C; Rao, K Sankara

    2003-04-01

    Calcium-dependent protein kinase (CDPK) is expressed in sandalwood (Santalum album L.) seeds under developmental regulation, and it is localized with spherical storage organelles in the endosperm [Anil et al. (2000) Plant Physiol. 122: 1035]. This study identifies these storage organelles as oil bodies. A 55 kDa protein associated with isolated oil bodies, showed Ca(2+)-dependent autophosphorylation and also cross-reacted with anti-soybean CDPK. The CDPK activity detected in the oil body-protein fraction was calmodulin-independent and sensitive to W7 (N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide) inhibition. Differences in Michaelis Menton kinetics, rate of histone phosphorylation and sensitivity to W7 inhibition between a soluble CDPK from embryos and the oil body-associated CDPK of endosperm suggest that these are tissue-specific isozymes. The association of CDPK with oil bodies of endosperm was found to show a temporal pattern during seed development. CDPK protein and activity, and the in vivo phosphorylation of Ser and Thr residues were detected strongly in the oil bodies of endosperm from maturing seed. Since oil body formation occurs during seed maturation, the observations indicate that CDPK and Ca(2+) may have a regulatory role during oil accumulation/oil body biogenesis. The detection of CDPK-protein and activity in oil bodies of groundnut, sesame, cotton, sunflower, soybean and safflower suggests the ubiquity of the association of CDPKs with oil bodies.

  1. Seed oil extraction from red prickly pear using hexane and supercritical CO2 : assessment of phenolic compound composition, antioxidant and antibacterial activities.

    PubMed

    Koubaa, Mohamed; Mhemdi, Houcine; Barba, Francisco J; Angelotti, Armel; Bouaziz, Fatma; Chaabouni, Semia Ellouz; Vorobiev, Eugène

    2017-01-01

    Investigating Opuntia species for their seed oil content is of much importance owing to their potential use for food and in cosmetic applications. These oils have an important content in unsaturated fatty acids as well as antioxidant compounds (e.g. polyphenols, vitamin E), which have been associated with the prevention of some chronic diseases. Moreover, Opuntia stricta oils possess important antimicrobial activities. For instance, the main focus of this study was to compare the effectiveness of conventional (hexane extraction) and novel (supercritical (SC)-CO 2 ) extraction methods for the recovery of oil and phenolic compounds from O. stricta seeds. The oil yield of both extracts was then compared and the polyphenol content and composition of both extracts were determined by liquid chromatography-high-resolution mass spectrometry. Additionally, antioxidant (DPPH assay) and antimicrobial activities (disc diffusion method) of O. stricta seed oils were determined. The oil yield (based on Soxhlet's method) of O. stricta seeds was determined using SC-CO 2 (49.9 ± 2.2%), and hexane (49.0 ± 1.5%). Although obtaining similar oil extraction yields using the two methods, the extracted oil using SC-CO 2 was more enriched in polyphenols (172.2 ± 11.9 µg gallic acid equivalents (GAE) g -1 oil) than that extracted using hexane (76.0 ± 6.9 µg GAE g -1 of oil). Polyphenol profiles showed that the SC-CO 2 process led to the yield of more compounds (45) than that using hexane extraction (11). Moreover, the antioxidant and antimicrobial activities of SC-CO 2 extract showed a high percentage of inhibition. SC-CO 2 extraction of O. stricta seed oil led to extraction of oil with a similar yield to that with hexane extraction, but with higher polyphenol content. The extract containing polyphenols exhibited high antioxidant and antibacterial properties, demonstrating their great potential as feedstock for high-oil quality. © 2016 Society of Chemical Industry. © 2016 Society of

  2. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean.

    PubMed

    Wang, Xianzhi; Jiang, Guo-Liang; Green, Marci; Scott, Roy A; Song, Qijian; Hyten, David L; Cregan, Perry B

    2014-10-01

    Soybean seeds contain high levels of oil and protein, and are the important sources of vegetable oil and plant protein for human consumption and livestock feed. Increased seed yield, oil and protein contents are the main objectives of soybean breeding. The objectives of this study were to identify and validate quantitative trait loci (QTLs) associated with seed yield, oil and protein contents in two recombinant inbred line populations, and to evaluate the consistency of QTLs across different environments, studies and genetic backgrounds. Both the mapping population (SD02-4-59 × A02-381100) and validation population (SD02-911 × SD00-1501) were phenotyped for the three traits in multiple environments. Genetic analysis indicated that oil and protein contents showed high heritabilities while yield exhibited a lower heritability in both populations. Based on a linkage map constructed previously with the mapping population and using composite interval mapping and/or interval mapping analysis, 12 QTLs for seed yield, 16 QTLs for oil content and 11 QTLs for protein content were consistently detected in multiple environments and/or the average data over all environments. Of the QTLs detected in the mapping population, five QTLs for seed yield, eight QTLs for oil content and five QTLs for protein content were confirmed in the validation population by single marker analysis in at least one environment and the average data and by ANOVA over all environments. Eight of these validated QTLs were newly identified. Compared with the other studies, seven QTLs for seed yield, eight QTLs for oil content and nine QTLs for protein content further verified the previously reported QTLs. These QTLs will be useful for breeding higher yield and better quality cultivars, and help effectively and efficiently improve yield potential and nutritional quality in soybean.

  3. Effect of heating on oxidation stability and fatty acid composition of microwave roasted groundnut seed oil.

    PubMed

    Abbas Ali, M; Anowarul Islam, M; Othman, Noor Hidayu; Noor, Ahmadilfitri Md

    2017-12-01

    The oxidative stability and fatty acid composition of groundnut seed oil (GSO) exposed to microwaves were evaluated during heating at 170 °C. During heating, the oxidative indices such as free fatty acid, peroxide value, p -anisidine value, TOTOX, thiobarbituric acid value, specific extinctions, and color value were increased. The increments were found to be higher in unroasted seed oils compared to roasted ones indicating lower release of lipid oxidation products in roasted GSO. After 9 h heating, the relative content of polyunsaturated fatty acid (PUFA) decreased to 89.53% and that of saturated fatty acid (SFA) increased to 117.46% in unroasted sample. The relative content of PUFA decreased to 92.05% and that of SFA increased to 105.76% in 7.5 min roasted sample after 9 h of heating. However, the roasting process slowed down the oxidative deterioration of PUFA. With increased heating times, an appreciable loss was more apparent in the triacylglycerol species OLL and OOL in unroasted samples compared to roasted ones. In FTIR, the peak intensities in unroasted samples were markedly changed in comparison with roasted samples during heating. The roasting of groundnut seed prior to the oil extraction reduced the oxidative degradation of oil samples; thereby increasing heat stability.

  4. Corn kernel oil and corn fiber oil

    USDA-ARS?s Scientific Manuscript database

    Unlike most edible plant oils that are obtained directly from oil-rich seeds by either pressing or solvent extraction, corn seeds (kernels) have low levels of oil (4%) and commercial corn oil is obtained from the corn germ (embryo) which is an oil-rich portion of the kernel. Commercial corn oil cou...

  5. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content.

    PubMed

    Liu, Hui; Wang, Cuiping; Chen, Fan; Shen, Shihua

    2015-01-15

    To reveal the difference among three mature Jatropha curcas seeds (JcVH, variant with high lipid content; JcW, wild type and JcVL, variant with low lipid content) with different lipid content, comparative proteomics was employed to profile the changes of oil body (OB) associated protein species by using gels-based proteomic technique. Eighty-three protein species were successfully identified through LTQ-ES-MS/MS from mature JcW seeds purified OBs. Two-dimensional electrophoresis analysis of J. curcas OB associated protein species revealed they had essential interactions with other organelles and demonstrated that oleosin and caleosin were the most abundant OB structural protein species. Twenty-eight OB associated protein species showed significant difference among JcVH, JcW and JcVL according to statistical analysis. Complementary transient expression analysis revealed that calcium ion binding protein (CalBP) and glycine-rich RNA binding protein (GRP) were well targeted in OBs apart from the oleosins. This study demonstrated that ratio of lipid content to caleosins abundance was involved in the regulation of OB size, and the mutant induced by ethylmethylsulfone treatment might be related to the caleosin like protein species. These findings are important for biotechnological improvement with the aim to alter the lipid content in J. curcas seeds. The economic value of Jatropha curcas largely depends on the lipid content in seeds which are mainly stored in the special organelle called oil bodies (OBs). In consideration of the biological importance and applications of J. curcas OB in seeds, it is necessary to further explore the components and functions of J. curcas OBs. Although a previous study concerning the J. curcas OB proteome revealed oleosins were the major OB protein component and additional protein species were similar to those in other oil seed plants, these identified OB associated protein species were corresponding to the protein bands instead of protein

  6. Volatile composition and sensory quality of Spanish pomegranates (Punica granatum L.).

    PubMed

    Calín-Sánchez, Angel; Martínez, Juan J; Vázquez-Araújo, Laura; Burló, Francisco; Melgarejo, Pablo; Carbonell-Barrachina, Angel A

    2011-02-01

    Pomegranate is highly valued for its health-promoting effects. Fruits of nine pomegranate cultivars were analysed for volatile compounds, antioxidant activity and quality parameters, including maturity index and CIEL*a*b* colour. Volatile compounds were isolated from fresh juices using hydrodistillation; extracts were analysed using gas chromatography/mass spectrometry. Fruit colour was influenced by cultivar and grouping of cultivars according to their taste (sweet, sour-sweet or sour), with sweet fruits having more intense red colour and higher lightness values. A total of 18 compounds were found in pomegranate aroma profiles, including monoterpenes, aldehydes, alcohols, monoterpenoids and linear hydrocarbons. The most abundant compound were trans-2-hexenal, 3-carene, α-terpinene and α-terpineol. The total concentration of volatiles ranged from 1.7 to 10.9 g kg(-1) . Overall consumer liking of pomegranate juices was associated with the presence of monoterpenes such as α-pinene, β-pinene, β-myrcene, limonene and γ-terpinene. The presence of aldehydes such as hexanol, hexanal and cis-3-hexenol was correlated with poor overall consumer liking. Fruits from the cultivar Mollar de Elche 2 were those most suited for juice processing because they had the highest total concentration of volatiles, which was related to high overall consumer liking, intense and acceptable fresh pomegranate odour and flavour (high scores of satisfaction degree), medium intensity of red colour and low sourness. 2010 Society of Chemical Industry.

  7. Toxicity of Neem Seed Oil against the Larvae of Boophilus decoloratus, A One-Host Tick In Cattle

    PubMed Central

    Choudhury, M. K.

    2009-01-01

    The in vitro toxicity of neem seed oil (Azadirachta indica A. Juss, family: Meliaceae, Dogon yaro in Hausa language in Nigeria) was tested against the larvae of a one-host tick, Boophilus decoloratus (family: Ixodidae or hard tick, commonly known as blue tick) parasitic mainly to cattle generally found in savannas of tropical equatorial Africa. The 20, 40, 60, 80 and 100% concentrations of neem seed oil were found to kill all (100% mortality) the larvae after 27, 27, 27, 27 and 24 h respectively. PMID:20502579

  8. Toxicity of Neem Seed Oil against the Larvae of Boophilus decoloratus, A One-Host Tick In Cattle.

    PubMed

    Choudhury, M K

    2009-09-01

    The in vitro toxicity of neem seed oil (Azadirachta indica A. Juss, family: Meliaceae, Dogon yaro in Hausa language in Nigeria) was tested against the larvae of a one-host tick, Boophilus decoloratus (family: Ixodidae or hard tick, commonly known as blue tick) parasitic mainly to cattle generally found in savannas of tropical equatorial Africa. The 20, 40, 60, 80 and 100% concentrations of neem seed oil were found to kill all (100% mortality) the larvae after 27, 27, 27, 27 and 24 h respectively.

  9. Comparative Transcriptomic Analysis of Two Brassica napus Near-Isogenic Lines Reveals a Network of Genes That Influences Seed Oil Accumulation.

    PubMed

    Wang, Jingxue; Singh, Sanjay K; Du, Chunfang; Li, Chen; Fan, Jianchun; Pattanaik, Sitakanta; Yuan, Ling

    2016-01-01

    Rapeseed ( Brassica napus ) is an important oil seed crop, providing more than 13% of the world's supply of edible oils. An in-depth knowledge of the gene network involved in biosynthesis and accumulation of seed oil is critical for the improvement of B. napus . Using available genomic and transcriptomic resources, we identified 1,750 acyl-lipid metabolism (ALM) genes that are distributed over 19 chromosomes in the B . napus genome. B. rapa and B. oleracea , two diploid progenitors of B. napus , contributed almost equally to the ALM genes. Genome collinearity analysis demonstrated that the majority of the ALM genes have arisen due to genome duplication or segmental duplication events. In addition, we profiled the expression patterns of the ALM genes in four different developmental stages. Furthermore, we developed two B. napus near isogenic lines (NILs). The high oil NIL, YC13-559, accumulates significantly higher (∼10%) seed oil compared to the other, YC13-554. Comparative gene expression analysis revealed upregulation of lipid biosynthesis-related regulatory genes in YC13-559, including SHOOTMERISTEMLESS, LEAFY COTYLEDON 1 (LEC1), LEC2, FUSCA3, ABSCISIC ACID INSENSITIVE 3 (ABI3), ABI4, ABI5 , and WRINKLED1 , as well as structural genes, such as ACETYL-CoA CARBOXYLASE, ACYL-CoA DIACYLGLYCEROL ACYLTRANSFERASE , and LONG - CHAIN ACYL-CoA SYNTHETASES . We observed that several genes related to the phytohormones, gibberellins, jasmonate, and indole acetic acid, were differentially expressed in the NILs. Our findings provide a broad account of the numbers, distribution, and expression profiles of acyl-lipid metabolism genes, as well as gene networks that potentially control oil accumulation in B . napus seeds. The upregulation of key regulatory and structural genes related to lipid biosynthesis likely plays a major role for the increased seed oil in YC13-559.

  10. Cold-pressed and hot-pressed rapeseed oil: The effects of roasting and seed moisture on the antioxi- dant activity, canolol, and tocopherol level.

    PubMed

    Siger, Aleksander; Józefiak, Marta; Górnaś, Paweł

    2017-01-01

    The paper looks at the levels of canolol, tocopherols and antioxidant activity in cold-pressed and hot-pressed rapeseed oils produced from seeds of various moisture levels (5%, 7.5%, and 10%). The paper also considers the effects of seed roasting on the levels of these compounds. The material used for the tests was rapeseed cv. Adrianna. The quality of the oils obtained is determined using peroxide and acid values. The levels of canolol and tocopherols are analyzed using HPLC. The DPPH radical-scavenging activity method for oil samples and phenolic extract from oils was used. It has been demonstrated that the oils produced from rapeseeds with a 5% moisture content, and   in particular from cold-pressed oils, were characterized by the lowest peroxide values. Cold-pressed oils produced from rapeseeds with a 5% moisture content were characterized by higher levels of tocopherols and plastochromanol-8. In the case of hot-pressed oils, the highest levels of tocopherols were found in oils pro- duced from seeds with a 7.5% moisture content, and the greatest amount of PC-8 (more than 4 mg/100 g) was found in oils produced from seeds with a 10% moisture content. Hot-pressed oils have been shown to have higher levels of these compounds than cold-pressed oils. Both roasting and hot pressing led to an increase in the amount of canolol in the oils investigated. When analysing the antioxidant activity of the oils and phenolic extracts it was shown that phenolic compounds are responsible for approx. 10% of total antioxidant activity. Various levels of biologically active compounds were shown to be present in the rapeseed oil obtained from raw materials of a varying moisture content. The type of pressing process (cold-pressing or hot-pressing) and whether the seeds have undergone roasting has also been shown to affect the resulting oil and the level of native antioxidants it contains.

  11. The protective role of pomegranate juice against carbon tetrachloride-induced oxidative stress in rats.

    PubMed

    Pirinççioğlu, Mihdiye; Kızıl, Göksel; Kızıl, Murat; Kanay, Zeki; Ketani, Aydın

    2014-11-01

    Most pomegranate (Punica granatum Linn., Punicaceae) fruit parts are known to possess enormous antioxidant activity. The present study was carried out to determine the phenolic and flavonoid contents of Derik pomegranate juice and determine its effect against carbon tetrachloride (CCl4)-induced toxicity in rats. Animals were divided into four groups (n = 6): group I: control, group II: CCl4 (1 ml/kg), group III: CCl4 + pomegranate juice and group IV: CCl4 + ursodeoxycholic acid (UDCA). Treatment duration was 4 weeks, and the dose of CCl4 was administered once a week to groups II, III and IV during the experimental period. CCl4-treated rats caused a significant increase in serum enzyme levels, such as aspartate aminotransferase, alanine aminotransferase and total bilirubin, and decrease in albumin, when compared with control. Administration of CCl4 along with pomegranate juice or UDCA significantly reduces these changes. Analysis of lipid peroxide (LPO) levels by thiobarbutiric acid reaction showed a significant increase in liver, kidney and brain tissues of CCl4-treated rats. However, both pomegranate juice and UDCA prevented the increase in LPO level. Histopathological reports also revealed that there is a regenerative activity in the liver and kidney cells. Derik pomegranate juice showed to be hepatoprotective against CCl4-induced hepatic injury. In conclusion, present study reveals a biological evidence that supports the use of pomegranate juice in the treatment of chemical-induced hepatotoxicity. © The Author(s) 2012.

  12. Genetic, Biochemical, Nutritional and Antimicrobial Characteristics of Pomegranate (Punica granatum L.)
Grown in Istria

    PubMed Central

    2017-01-01

    Summary This study characterises the genetic variability of local pomegranate (Punica granatum L.) germplasm from the Slovenian and Croatian areas of Istria. The bioactive components and antioxidant and antimicrobial properties of ethanol and water extracts of different parts of pomegranate fruit were also determined, along with their preliminary nutritional characterisation. Twenty-six different genotypes identified with microsatellite analysis indicate the great diversity of pomegranate in Istria. The pomegranate fruit ethanol extracts represent rich sources of phenolic compounds (mean value of the mass fraction in exocarp and mesocarp expressed as gallic acid is 23 and 16 mg/g, respectively). The ethanol extracts of pomegranate exocarp and mesocarp showed the greatest antimicrobial activity against Candida albicans, Candida parapsilosis, Rhodotorula mucilaginosa, Exophiala dermatitidis and Staphylococcus aureus, and the same water extracts against S. aureus and Escherichia coli. To the best of our knowledge, this study represents the first report of the characterisation of pomegranate genetic resources from Istria at different levels, including the molecular, chemical, antimicrobial and nutritional properties. PMID:28867945

  13. Process optimization and characterization of fragrant oil from red pepper (Capsicum annuum L.) seed extracted by subcritical butane extraction.

    PubMed

    Gu, Ling-Biao; Pang, Hui-Li; Lu, Ke-Ke; Liu, Hua-Min; Wang, Xue-De; Qin, Guang-Yong

    2017-04-01

    Red pepper seeds account for 450-500 g kg -1 of the total pepper weight and are often discarded as waste. In this study, process optimization and characterization of fragrant oil from roasted red pepper seed extracted by subcritical butane extraction were carried out. The optimal conditions of extraction were a temperature of 74.61 °C, a time of 68.65 min and a liquid/solid ratio of 30.24:1. The oil had a refractive index (25 °C) of 1.471, a relative density of 0.900, an acid value of 1.421 mg g -1 oil, an iodine value of 127.035 g per 100 g, a saponification value of 184.060 mg KOH g -1 , an unsaponifiable matter content of 12.400 g kg -1 , a peroxide value of 2.465 meq. O 2 kg -1 and a viscosity of 52.094 cP. The main fatty acids in the oil were linoleic acid (72.95%) followed by palmitic acid (11.43%) and oleic acid (10.00%). The oil showed desirable thermal and oxidative stability. A total of 19 volatile compounds, mostly aldehydes and alkenes, were identified from the oil. The results indicated that the method is appropriate for the preparation of fragrant red pepper seed oil, and the oil is suitable for used as edible oil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Determination and comparison of seed oil triacylglycerol composition of various soybeans (Glycine max (L.)) using ¹H-NMR spectroscopy.

    PubMed

    Kim, Won Woo; Rho, Ho Sik; Hong, Yong Deog; Yeom, Myung Hun; Shin, Song Seok; Yi, Jun Gon; Lee, Min-Seuk; Park, Hye Yoon; Cho, Dong Ha

    2013-11-21

    Seed oil triacylglycerol (TAG) composition of 32 soybean varieties were determined and compared using ¹H-NMR. The contents of linolenic (Ln), linoleic (L), and oleic (O) ranged from 10.7% to 19.3%, 37.4%-50.1%, and 15.7%-34.1%, respectively. As is evident, linoleic acid was the major fatty acid of soybean oil. Compositional differences among the varieties were observed. Natural oils containing unsaturated groups have been regarded as important nutrient and cosmetic ingredients because of their various biological activities. The TAG profiles of the soy bean oils could be useful for distinguishing the origin of seeds and controlling the quality of soybean oils. To the best of our knowledge, this is the first study in which the TAG composition of various soybean oils has been analyzed using the ¹H-NMR method.

  15. Inhibition of melanin production by a combination of Siberian larch and pomegranate fruit extracts.

    PubMed

    Diwakar, Ganesh; Rana, Jatinder; Scholten, Jeffrey D

    2012-09-01

    In an effort to find botanicals containing polyphenolic compounds with the capacity to inhibit melanin biosynthesis, we identified a novel combination of Siberian larch (Larix sibirica) extract, standardized to 80% taxifolin, and pomegranate fruit (Punica granatum) extract, containing 20% punicalagins, that demonstrates a synergistic reduction of melanin biosynthesis in Melan-a cells. The combination of Siberian larch and pomegranate extracts (1:1) produced a 2-fold reduction in melanin content compared to Siberian larch or pomegranate extracts alone with no corresponding effect on cell viability. Siberian larch and pomegranate fruit extracts inhibited expression of melanocyte specific genes, tyrosinase (Tyr), microphthalmia transcription factor (Mitf), and melanosome structural proteins (Pmel17 and Mart1) but did not inhibit tyrosinase enzyme activity. These results suggest that the mechanism of inhibition of melanin biosynthesis by Siberian larch and pomegranate extracts, alone and in combination, is through downregulation of melanocyte specific genes and not due to inhibition of tyrosinase enzyme activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Repellent activity of some essential oils against two stored product beetles Callosobruchus chinensis L. and C. maculatus F. (Coleoptera: Bruchidae) with reference to Chenopodium ambrosioides L. oil for the safety of pigeon pea seeds.

    PubMed

    Pandey, Abhay K; Palni, Uma T; Tripathi, N N

    2014-12-01

    Essential oils from 35 aromatic and medicinal plant species of Gorakhpur Division (U. P., India) were evaluated for their repellent activity against pulse bruchids Callosobruchus chinensis L. and C. maculatus F. of stored pigeon pea seeds. The oil concentration was at 0.36 μl/ml. Out of 35 essential oils, Adhatoda vasica Ness and Chenopodium ambrosioides L. oils showed absolute (100 %) insect repellency. Chenopodium oil exhibited 100 % mortality for both the test insects at 10 μl concentration (LD50 = 2.8 μl for C. chinensis & 2.5 μl for C. maculatus) and more toxic than Adhatoda oil (LD50 = 6.8 μl for C. chinensis & 8.4 μl for C. maculatus). During in vivo evaluation, 0.29 and 0.58 μl/ml of Chenopodium oil significantly enhanced feeding deterrence in insects and reduced the seed damage as well as weight loss of fumigated pigeon pea seeds up to 6 months of storage as compared to control set. Thus, Chenopodium oil can be used as an effective option of commercial fumigants for the storage of pigeon pea seeds against pulse bruchids.

  17. Mass transfer kinetics during osmotic dehydration of pomegranate arils.

    PubMed

    Mundada, Manoj; Hathan, Bahadur Singh; Maske, Swati

    2011-01-01

    The mass transfer kinetics during osmotic dehydration of pomegranate arils in osmotic solution of sucrose was studied to increase palatability and shelf life of arils. The freezing of the whole pomegranate at -18 °C was carried out prior to osmotic dehydration to increase the permeability of the outer cellular layer of the arils. The osmotic solution concentrations used were 40, 50, 60°Bx, osmotic solution temperatures were 35, 45, 55 °C. The fruit to solution ratio was kept 1:4 (w/w) during all the experiments and the process duration varied from 0 to 240 min. Azuara model and Peleg model were the best fitted as compared to other models for water loss and solute gain of pomegranate arils, respectively. Generalized Exponential Model had an excellent fit for water loss ratio and solute gain ratio of pomegranate arils. Effective moisture diffusivity of water as well as solute was estimated using the analytical solution of Fick's law of diffusion. For above conditions of osmotic dehydration, average effective diffusivity of water loss and solute gain varied from 2.718 × 10(-10) to 5.124 × 10(-10) m(2)/s and 1.471 × 10(-10) to 5.147 × 10(-10) m(2)/s, respectively. The final product was successfully utilized in some nutritional formulations such as ice cream and bakery products.

  18. Hepatoprotective effects of raspberry (Rubus coreanus Miq.) seed oil and its major constituents.

    PubMed

    Teng, Hui; Lin, Qiyang; Li, Kang; Yuan, Benyao; Song, Hongbo; Peng, Hongquan; Yi, Lunzhao; Wei, Ming-Chi; Yang, Yu-Chiao; Battino, Maurizio; Cespedes Acuña, Carlos L; Chen, Lei; Xiao, Jianbo

    2017-12-01

    Raspberry seed is a massive byproduct of raspberry juice and wine but usually discarded. The present study employed a microwave-assisted method for extraction of raspberry seed oil (RSO). The results revealed that omega-6 fatty acids (linoleic acid and γ-linolenic acid) were the major constituents in RSO. Cellular antioxidant enzyme activity such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were investigated in HepG2 cells treated with RSO. Induction of the synthesis of several antioxidants in H 2 O 2 -exposed HepG2 cells was found. RSO increased the enzyme activity of SOD, CAT, and GPx in H 2 O 2 -exposed HepG2. Furthermore, RSO inhibited the phosphorylation of upstream mitogen-activated protein kinases (MAPK) such as c-Jun N-terminal kinase (c-JNK) and extracellular signal-regulated kinase (ERK). Taken together, the possible mechanisms to increase antioxidant enzyme activities in HepG2 may through the suppression of ERK and JNK phosphorylation. Raspberry seed oil exhibited good effects on the activities of the intracellular antioxidant enzymes and seems to protect the liver from oxidative stress through the inhibition of MAPKs. Copyright © 2017. Published by Elsevier Ltd.

  19. Classification of pumpkin seed oils according to their species and genetic variety by attenuated total reflection Fourier-transform infrared spectroscopy.

    PubMed

    Saucedo-Hernández, Yanelis; Lerma-García, María Jesús; Herrero-Martínez, José Manuel; Ramis-Ramos, Guillermo; Jorge-Rodríguez, Elisa; Simí-Alfonso, Ernesto F

    2011-04-27

    Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), followed by multivariate treatment of the spectral data, was used to classify seed oils of the genus Cucurbita (pumpkins) according to their species as C. maxima, C. pepo, and C. moschata. Also, C. moschata seed oils were classified according to their genetic variety as RG, Inivit C-88, and Inivit C-2000. Up to 23 wavelength regions were selected on the spectra, each region corresponding to a peak or shoulder. The normalized absorbance peak areas within these regions were used as predictors. Using linear discriminant analysis (LDA), an excellent resolution among all categories concerning both Cucurbita species and C. moschata varieties was achieved. The proposed method was straightforward and quick and can be easily implemented. Quality control of pumpkin seed oils is important because Cucurbita species and genetic variety are both related to the pharmaceutical properties of the oils.

  20. Proceedings of the third international symposium on pomegranate and minor Mediterranean fruits

    USDA-ARS?s Scientific Manuscript database

    Pomegranate production has a long tradition in the middle eastern and far eastern countries. Because of the antioxidant and other beneficial properties to human health and subsequent increased consumer demand, production of pomegranate in other continents such as North America also gained more popul...

  1. Characterization of pectins extracted from pomegranate peel and their gelling properties.

    PubMed

    Abid, Mouna; Cheikhrouhou, S; Renard, Catherine M G C; Bureau, Sylvie; Cuvelier, Gérard; Attia, Hamadi; Ayadi, M A

    2017-01-15

    The composition of pomegranate peel, the main by-product during pomegranate processing, and some of the characteristics of the water-soluble pectins were investigated. Four tunisian pomegranate peels were subjected to hot aqueous extractions (86°C, 80min, 20mM nitric acid). Pomegranate peels yielded between 6.8% and 10.1% pectins. The extracted pectins were low methylated and were characterized by the predominance of homogalacturonan regions. Principal component analysis applied on FT-IR spectral data in the region between 4000 and 650cm(-1) differentiated the samples according to their degree of methylation. At pH 3, in the presence of 0.7% pectin, all solutions showed a rapid gel formation with G'>G″. With decreasing temperature from 90°C to 10°C, G' increased to reach a plateau at 10°C. The variation in the pectin gel formation between varieties was attributed to difference in pectin characteristics particularly the hydrodynamic volume and the neutral sugar content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Emulsifying conditions and processing parameters optimisation of kenaf seed oil-in-water nanoemulsions stabilised by ternary emulsifier mixtures.

    PubMed

    Cheong, Ai M; Tan, Chin P; Nyam, Kar L

    2018-01-01

    Kenaf ( Hibiscus cannabinus L.) seed oil has been proven for its multi-pharmacological benefits; however, its poor water solubility and stability have limited its industrial applications. This study was aimed to further improve the stability of pre-developed kenaf seed oil-in-water nanoemulsions by using food-grade ternary emulsifiers. The effects of emulsifier concentration (1, 5, 10, 15% w/w), homogenisation pressure (16,000, 22,000, 28,000 psi), and homogenisation cycles (three, four, five cycles) were studied to produce high stability of kenaf seed oil-in-water nanoemulsions using high pressure homogeniser. Generally, results showed that the emulsifier concentration and homogenisation conditions had great effect ( p < 0.05) on the particle sizes, polydispersity index and hence the physical stability of nanoemulsions. Homogenisation parameters at 28,000 psi for three cycles produced the most stable homogeneous nanoemulsions that were below 130 nm, below 0.16, and above -40 mV of particle size, polydispersity index, and zeta potential, respectively. Field emission scanning electron microscopy micrograph showed that the optimised nanoemulsions had a good distribution within nano-range. The optimised nanoemulsions were proved to be physically stable for up to six weeks of storage at room temperature. The results from this study also provided valuable information in producing stable kenaf seed oil nanoemulsions for the future application in food and nutraceutical industries.

  3. Hydroprocessing of rubber seed oil to renewable fuels

    NASA Astrophysics Data System (ADS)

    Tran, Tan Viet; Phung, Minh Tri

    2017-09-01

    Hydroprocessing of rubber seed oil (RSO) with various types of alumina-silica support catalyst was conducted at 400°C and a hydrogen partial pressure of 3.0 MPa in 3 hours. The effects of the alumina-silica and metal doping on alumina-silica on the conversion, and distribution of oil fraction products (initial boiling point (IBP) to 80°C, from 80-200°C, from 200-360°C and higher than 360°C boiling point) were investigated. Compared to the results obtained when using Mo@Al2O3-SiO2, hydroprocessing of RSO resulted in a higher conversion and much higher yield of the light fraction (BP <230°C). Both alumina-silica catalysts led to an improved conversion as well as a higher light fraction yield. Results show that hydroprocessing of RSO with metal doping on alumina-silica support was more efficient than that only Al2O3-SiO2.

  4. Chemical Composition and Insecticidal Activity of Essential Oil from Coriandrum sativum Seeds against Tribolium confusum and Callosobruchus maculatus

    PubMed Central

    Khani, Abbas; Rahdari, Tahere

    2012-01-01

    The biological activity of essential oil extracted from coriander, Coriandrum sativum L. (Apiaceae), seeds against adults of Tribolium confusum Duval (Coleoptera: Tenebrionidae) and Callosobruchus maculatus F. (Coleoptera: Bruchidae) was investigated in a series of laboratory experiments. Fumigant toxicity was assessed at 27 ± 1°C and 65 ± 5% R.H., in dark condition. Dry seeds of the plant were subject to hydrodistillation using a Clevenger-type apparatus. The composition of essential oil was analyzed by gas chromatography mass spectrometry. The predominant components in the oil were linalool (57.57%) and geranyl acetate (15.09%). The mortality of 1–7-day-old adults of the insect pests increased with concentration from 43 to 357 μL/L air and with exposure time from 3 to 24 h. In the probit analysis, LC50 values (lethal concentration for 50% mortality) showed that C. maculatus (LC50 = 1.34 μL/L air) was more susceptible than T. confusum (LC50 = 318.02 μL/L air) to seed essential oil of this plant. The essential oil of C. sativum can play an important role in stored grain protection and reduce the risks associated with the use of synthetic insecticides. PMID:23227365

  5. Chemical Composition and Insecticidal Activity of Essential Oil from Coriandrum sativum Seeds against Tribolium confusum and Callosobruchus maculatus.

    PubMed

    Khani, Abbas; Rahdari, Tahere

    2012-01-01

    The biological activity of essential oil extracted from coriander, Coriandrum sativum L. (Apiaceae), seeds against adults of Tribolium confusum Duval (Coleoptera: Tenebrionidae) and Callosobruchus maculatus F. (Coleoptera: Bruchidae) was investigated in a series of laboratory experiments. Fumigant toxicity was assessed at 27 ± 1°C and 65 ± 5% R.H., in dark condition. Dry seeds of the plant were subject to hydrodistillation using a Clevenger-type apparatus. The composition of essential oil was analyzed by gas chromatography mass spectrometry. The predominant components in the oil were linalool (57.57%) and geranyl acetate (15.09%). The mortality of 1-7-day-old adults of the insect pests increased with concentration from 43 to 357 μL/L air and with exposure time from 3 to 24 h. In the probit analysis, LC(50) values (lethal concentration for 50% mortality) showed that C. maculatus (LC(50) = 1.34 μL/L air) was more susceptible than T. confusum (LC(50) = 318.02 μL/L air) to seed essential oil of this plant. The essential oil of C. sativum can play an important role in stored grain protection and reduce the risks associated with the use of synthetic insecticides.

  6. Characterization of the aroma signature of styrian pumpkin seed oil ( Cucurbita pepo subsp. pepo var. Styriaca) by molecular sensory science.

    PubMed

    Poehlmann, Susan; Schieberle, Peter

    2013-03-27

    Application of the aroma extract dilution analysis on a distillate prepared from an authentic Styrian pumpkin seed oil followed by identification experiments led to the characterization of 47 odor-active compounds in the flavor dilution (FD) factor range of 8-8192 among which 2-acetyl-1-pyrroline (roasty, popcorn-like), 2-propionyl-1-pyrroline (roasty, popcorn-like), 2-methoxy-4-vinylphenol (clove-like), and phenylacetaldehyde (honey-like) showed the highest FD factors. Among the set of key odorants, 2-propionyl-1-pyrroline and another 20 odorants were identified for the first time as constituents of pumpkin seed oil. To evaluate the aroma contribution in more detail, 31 aroma compounds showing the highest FD factors were quantitated by means of stable isotope dilution assays. On the basis of the quantitative data and odor thresholds determined in sunflower oil, odor activity values (OAV; ratio of concentration to odor threshold) were calculated, and 26 aroma compounds were found to have an OAV above 1. Among them, methanethiol (sulfury), 2-methylbutanal (malty), 3-methylbutanal (malty), and 2,3-diethyl-5-methylpyrazine (roasted potato) reached the highest OAVs. Sensory evaluation of an aroma recombinate prepared by mixing the 31 key odorants in the concentrations as determined in the oil revealed that the aroma of Styrian pumpkin seed oil could be closely mimicked. Quantitation of 11 key odorants in three commercial pumpkin seed oil revealed clear differences in the concentrations of distinct odorants, which were correlated with the overall aroma profile of the oils.

  7. Yield and composition of grape seed oils extracted by supercritical carbon dioxide and petroleum ether: varietal effects.

    PubMed

    Beveridge, Thomas H J; Girard, Benoit; Kopp, Thomas; Drover, John C G

    2005-03-09

    Grape seed has a well-known potential for production of oil as a byproduct of winemaking and is currently produced as a specialty oil byproduct of wine manufacture. Seed oils from eight varieties of grapes crushed for wine production in British Columbia were extracted by supercritical carbon dioxide (SCE) and petroleum ether (PE). Oil yields by SCE ranged from 5.85 +/- 0.33 to 13.6 +/- 0.46% (w/w), whereas PE yields ranged from 6.64 +/- 0.16 to 11.17 +/- 0.05% (+/- is standard deviation). The oils contained alpha-, beta-, and gamma-tocopherols and alpha- and gamma-tocotrienols, with gamma-tocotrienol being most important quantitatively. In both SCE- and PE-extracted oils, phytosterols were a prominent feature of the unsaponifiable fraction, with beta-sitosterol quantitatively most important with both extractants. Total phytosterol extraction was higher with SCE than with PE in seven of eight variety extractions. Fatty acid composition of oils from all varieties tested, and from both extraction methods, indicated linoleic acid as the major component ranging from 67.56 to 73.23% of the fatty acids present, in agreement with literature reports.

  8. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis

    PubMed Central

    Liu, Jing; Hua, Wei; Yang, Hong-Li; Zhan, Gao-Miao; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Wang, Han-Zhong

    2012-01-01

    Seed yield and oil content are two important agricultural characteristics in oil crop breeding, and a lot of functional gene research is being concentrated on increasing these factors. In this study, by differential gene expression analyses between rapeseed lines (zy036 and 51070) which exhibit different levels of seed oil production, BnGRF2 (Brassica napus growth-regulating factor 2-like gene) was identified in the high oil-producing line zy036. To elucidate the possible roles of BnGRF2 in seed oil production, the cDNA sequences of the rapeseed GRF2 gene were isolated. The Blastn result showed that rapeseed contained BnGRF2a/2b which were located in the A genome (A1 and A3) and C genome (C1 and C6), respectively, and the dominantly expressed gene BnGRF2a was chosen for transgenic research. Analysis of 35S-BnGRF2a transgenic Arabidopsis showed that overexpressed BnGRF2a resulted in an increase in seed oil production of >50%. Moreover, BnGRF2a also induced a >20% enlargement in extended leaves and >40% improvement in photosynthetic efficiency because of an increase in the chlorophyll content. Furthermore, transcriptome analyses indicated that some genes associated with cell proliferation, photosynthesis, and oil synthesis were up-regulated, which revealed that cell number and plant photosynthesis contributed to the increased seed weight and oil content. Because of less efficient self-fertilization induced by the longer pistil in the 35S-BnGRF2a transgenic line, Napin-BnGRF2a transgenic lines were further used to identify the function of BnGRF2, and the results showed that seed oil production also could increase >40% compared with the wild-type control. The results suggest that improvement to economically important characteristics in oil crops may be achieved by manipulation of the GRF2 expression level. PMID:22442419

  9. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis.

    PubMed

    Liu, Jing; Hua, Wei; Yang, Hong-Li; Zhan, Gao-Miao; Li, Rong-Jun; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Wang, Han-Zhong

    2012-06-01

    Seed yield and oil content are two important agricultural characteristics in oil crop breeding, and a lot of functional gene research is being concentrated on increasing these factors. In this study, by differential gene expression analyses between rapeseed lines (zy036 and 51070) which exhibit different levels of seed oil production, BnGRF2 (Brassica napus growth-regulating factor 2-like gene) was identified in the high oil-producing line zy036. To elucidate the possible roles of BnGRF2 in seed oil production, the cDNA sequences of the rapeseed GRF2 gene were isolated. The Blastn result showed that rapeseed contained BnGRF2a/2b which were located in the A genome (A1 and A3) and C genome (C1 and C6), respectively, and the dominantly expressed gene BnGRF2a was chosen for transgenic research. Analysis of 35S-BnGRF2a transgenic Arabidopsis showed that overexpressed BnGRF2a resulted in an increase in seed oil production of >50%. Moreover, BnGRF2a also induced a >20% enlargement in extended leaves and >40% improvement in photosynthetic efficiency because of an increase in the chlorophyll content. Furthermore, transcriptome analyses indicated that some genes associated with cell proliferation, photosynthesis, and oil synthesis were up-regulated, which revealed that cell number and plant photosynthesis contributed to the increased seed weight and oil content. Because of less efficient self-fertilization induced by the longer pistil in the 35S-BnGRF2a transgenic line, Napin-BnGRF2a transgenic lines were further used to identify the function of BnGRF2, and the results showed that seed oil production also could increase >40% compared with the wild-type control. The results suggest that improvement to economically important characteristics in oil crops may be achieved by manipulation of the GRF2 expression level.

  10. ocsESTdb: a database of oil crop seed EST sequences for comparative analysis and investigation of a global metabolic network and oil accumulation metabolism.

    PubMed

    Ke, Tao; Yu, Jingyin; Dong, Caihua; Mao, Han; Hua, Wei; Liu, Shengyi

    2015-01-21

    Oil crop seeds are important sources of fatty acids (FAs) for human and animal nutrition. Despite their importance, there is a lack of an essential bioinformatics resource on gene transcription of oil crops from a comparative perspective. In this study, we developed ocsESTdb, the first database of expressed sequence tag (EST) information on seeds of four large-scale oil crops with an emphasis on global metabolic networks and oil accumulation metabolism that target the involved unigenes. A total of 248,522 ESTs and 106,835 unigenes were collected from the cD