Science.gov

Sample records for pomegranate seed oil

  1. Chemopreventive effects of pomegranate seed oil on skin tumor development in CD1 mice.

    PubMed

    Hora, Justin J; Maydew, Emily R; Lansky, Ephraim P; Dwivedi, Chandradhar

    2003-01-01

    Pomegranate seed oil was investigated for possible skin cancer chemopreventive efficacy in mice. In the main experiment, two groups consisting each of 30, 4-5-week-old, female CD(1) mice were used. Both groups had skin cancer initiated with an initial topical exposure of 7,12-dimethylbenzanthracene and with biweekly promotion using 12-O-tetradecanoylphorbol 13-acetate (TPA). The experimental group was pretreated with 5% pomegranate seed oil prior to each TPA application. Tumor incidence, the number of mice containing at least one tumor, was 100% and 93%, and multiplicity, the average number of tumors per mouse, was 20.8 and 16.3 per mouse after 20 weeks of promotion in the control and pomegranate seed oil-treated groups, respectively (P <.05). In a second experiment, two groups each consisting of three CD(1) mice were used to assess the effect of pomegranate seed oil on TPA-stimulated ornithine decarboxylase (ODC) activity, an important event in skin cancer promotion. Each group received a single topical application of TPA, with the experimental group receiving a topical treatment 1 h prior with 5% pomegranate seed oil. The mice were killed 5 h later, and ODC activity was assessed by radiometric method. The experimental group showed a 17% reduction in ODC activity. Pomegranate seed oil (5%) significantly decreased (P <.05) tumor incidence, multiplicity, and TPA-induced ODC activity. Overall, the results highlight the potential of pomegranate seed oil as a safe and effective chemopreventive agent against skin cancer.

  2. Effects of Pomegranate Seed Oil on Insulin Release in Rats with Type 2 Diabetes

    PubMed Central

    Nekooeian, Ali Akbar; Eftekhari, Mohammad Hassan; Adibi, Soroor; Rajaeifard, Abdloreza

    2014-01-01

    Background: Pomegranate seed oil and its main constituent, punicic acid, have been shown to decrease plasma glucose and have antioxidant activity. The objective of the present study was to examine the effects of pomegranate seed oil on rats with type 2 diabetes mellitus. Method: Six groups (n=8 each) of male Sprague-Dawley rats, comprising a control, a diabetic (induced by Streptozocin and Nicotinamide) receiving water as vehicle, a diabetic receiving pomegranate seed oil (200 mg/kg/day), a diabetic receiving pomegranate seed oil (600 mg/kg/day), a diabetic receiving soybean oil (200 mg/kg/day), and a diabetic receiving soybean oil (600 mg/kg/day), were used. After 28 days of receiving vehicle or oils, blood glucose, serum levels of insulin, malondialdehyde, glutathione peroxidase, and lipid profile were determined. Results: The diabetic rats had significantly higher levels of blood glucose, serum triglyceride, low-density lipoprotein cholesterol, total cholesterol, and malondialdehyde and lower levels of serum insulin and glutathione peroxidase. Rats treated with pomegranate seed oil had significantly higher levels of serum insulin and glutathione peroxidase activity, and there were no statistically significant differences in terms of blood glucose between them and the diabetic control group. Conclusion: The findings of the present study suggest that pomegranate seed oil improved insulin secretion without changing fasting blood glucose. PMID:24644382

  3. Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils.

    PubMed

    Siano, Francesco; Straccia, Maria C; Paolucci, Marina; Fasulo, Gabriella; Boscaino, Floriana; Volpe, Maria G

    2016-03-30

    Nut and seed oils are often considered waste products but in recent years they have been receiving growing interest due to their high concentration of hydrophilic and lipophilic bioactive components, which have important pharmacological properties on human health. The aim of this work was to compare the physico-chemical and biochemical properties of pomegranate (Punicagranatum), sweet cherry (Prunusavium) and pumpkin (Cucurbita maxima) seed oils obtained by solvent extraction. High amount of linoleic acid was found in the cherry and pumpkin seed oils, while pomegranate seed oil showed relevant content of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs) along to eicosapentaenoic acid (EPA) and nervonic acid. Pumpkin seed oil had high concentration of carotenoids, while pomegranate oil was the best absorber in the UV-A and UV-B ranges. Pomegranate, cherry and pumpkin seed oils can be an excellent source of bioactive molecules and antioxidant compounds such as polyphenols, carotenoids and unsaturated fatty acids. These seed oils can be included both as preservatives and functional ingredients in the food, pharmaceutical and cosmetic fields and can contribute to disease prevention and health promotion. Moreover, high absorbance of UV light indicates a potential use of these oils as filters from radiations in the food, pharmaceutical, and cosmetic fields. © 2015 Society of Chemical Industry.

  4. Effects of Pomegranate Seed Oil on the Fertilization Potency of Rat’s Sperm

    PubMed Central

    Nikseresht, Mohsen; Fallahzadeh, Ali Reza; Toori, Mehdi Akbartabar

    2015-01-01

    Background Pomegranate has been taken great scientific attention in recent years due to its health benefits. Pomegranate seed oil is a rich source of 9-cis, and 11-trans conjugate linolenic acid. The aim of this study was to evaluate the effect of dietary pomegranate seed oil on the fertilization potency of rat’s sperm. Materials and Methods Twenty-four male Wistar rats were divided into four groups. The first group, which served as the control group, received 1 mL of corn oil for seven weeks. Groups II, III, IV served as the experimental groups received 200, 500 and 1000 mg/kg of pomegranate seed oil, for the same period of time respectively. After seven weeks, all of the rats were sacrificed, and their epididymis sperm was collected and added to IVF medium (T6) containing metaphase II oocytes. Almost 21 oocytes had been removed from every female rat oviduct. In this medium, oocyte fertilization, cleavage rates, and embryo development into blastocysts, were evaluated by inverted microscopy. Results Levels of LD50 in the oral route in male rats were more than 5000 mg/kg body weight. Our data showed that the rates of fertilization, cleavage and embryo development into blastocysts were higher in the groups that had received 500 and 1000 mg/kg body weight of pomegranate seed oil. Conclusion This study demonstrated that pomegranate seed oil had a positive effect on the fertilization potency of male rats. These beneficial effects may be useful in assisted reproductive technology. PMID:26816914

  5. Microencapsulation of conjugated linolenic acid-rich pomegranate seed oil by an emulsion method.

    PubMed

    Sen Gupta, Surashree; Ghosh, Santinath; Maiti, Prabir; Ghosh, Mahua

    2012-12-01

    Controlled release of food ingredients and their protection from oxidation are the key functionality provided by microencapsulation. In the present study, pomegranate seed oil, rich in conjugated linolenic acid, was microencapsulated. As encapsulating agent, sodium alginate or trehalose was used. Calcium caseinate was used as the emulsifier. Performances of the two encapsulants were compared in respect of the rate of release of core material from the microcapsules and stability of microcapsules against harsh conditions. Microencapsulation was carried out by preparation of an emulsion containing calcium caseinate as the emulsion stabilizer and a water-soluble carbohydrate (either sodium alginate or trehalose) as the encapsulant. An oil-in-water emulsion was prepared with pomegranate seed oil as the inner core material. The emulsion was thereby freeze-dried and the dried product pulverized. External morphology of the microcapsules was studied under scanning electron microscope. Micrographs showed that both types of microcapsules had uneven surface morphology. Release rate of the microcapsules was studied using UV-spectrophotometer. Trehalose-based microcapsules showed higher release rate. On subjecting the microcapsules at 110 °C for specific time periods, it was observed that sodium alginate microcapsules retained their original properties. Hence, we can say that sodium alginate microcapsules are more heat resistant than trehalose microcapsules.

  6. Haematological parameters, serum lipid profile, liver function and fatty acid profile of broiler chickens fed on diets supplemented with pomegranate seed oil and linseed oil.

    PubMed

    Manterys, A; Franczyk-Zarow, M; Czyzynska-Cichon, I; Drahun, A; Kus, E; Szymczyk, B; Kostogrys, R B

    2016-12-01

    The objective of the present study was to determine effect of pomegranate seed oil (PSO) and linseed oil (LO) on haematological parameters, serum lipid profile and liver enzymes as well as fatty acids profile of adipose tissue in broilers. Broilers (n = 400) were fed on diets containing graded PSO levels (0.0%, 0.5%, 1.0%, 1.5%) with or without 2% LO. After 6 weeks of feeding, 6 male broilers from each group were slaughtered and abdominal fat, liver and blood samples were collected. Mixtures of pomegranate seed oil (0.5%, 1%) with linseed oil increased white blood cell level in broilers. Total cholesterol was elevated after LO supplementation whereas administration of PSO (1.5%) significantly decreased this parameter. PSO administration caused c9,t11 conjugated linoleic acid (CLA) concentration-dependent deposition in adipose tissue. By LO addition α-linolenic acid (ALA) content was enhanced, decreasing the n-6/n-3 ratio. PSO and ALA also affected oleic acid proportion in adipose tissue. Neither pomegranate seed oil nor linseed oil had any effect on liver parameters. Pomegranate seed oil had no negative effects on broiler health status and can be considered as a functional poultry meat component.

  7. Pomegranate

    MedlinePlus

    ... seed oil, tannin-rich peel, root, leaf, and flower. The pomegranate has been used as a dietary ... Know the Science: 9 Questions To Help You Make Sense of Health Research NCCIH Clearinghouse The NCCIH ...

  8. Oxidative Stability of Pomegranate (Punica granatum L.) Seed Oil to Simulated Gastric Conditions and Thermal Stress.

    PubMed

    Siano, Francesco; Addeo, Francesco; Volpe, Maria Grazia; Paolucci, Marina; Picariello, Gianluca

    2016-11-09

    The fatty acid composition of pomegranate (Punica granatum L.) seed oil (PSO) is dominated by punicic acid, a conjugated linolenic acid (18:3ω-5). As a free fatty acid, punicic acid is rapidly oxidized in air and extensively isomerizes upon acid-catalyzed methylation at 90 °C. In contrast, triacylglycerol-bound punicic acid in PSO was unchanged by simulated gastric conditions and was degraded by 5-7% by severe heating (up to 170 °C for 4 h), as herein assessed by gas chromatography, attenuated total reflectance-Fourier transform infrared spectroscopy, (1)H and (13)C NMR, and high-resolution electrospray ionization mass spectrometry. Total polar compounds of PSO were slightly affected by thermal stress, accounting for 5.71, 6.35, and 9.53% (w/w) in the unheated, heated at mild temperature (50 °C, 2 h), and heated at frying temperature (170 °C, 4 h) PSO, respectively. These findings support from a structural standpoint the potential use of PSO as a health-promoting edible oil.

  9. Effect of dietary pomegranate seed oil on laying hen performance and physicochemical properties of eggs.

    PubMed

    Kostogrys, Renata B; Filipiak-Florkiewicz, Agnieszka; Dereń, Katarzyna; Drahun, Anna; Czyżyńska-Cichoń, Izabela; Cieślik, Ewa; Szymczyk, Beata; Franczyk-Żarów, Magdalena

    2017-04-15

    The objective of the study was to determine the effects of pomegranate seed oil, used as a source of punicic acid (CLnA) in the diets of laying hens, on the physicochemical properties of eggs. Forty Isa Brown laying hens (26weeks old) were equally subjected to 4 dietary treatments (n=10) and fed a commercial layer diet supplying 2.5% sunflower oil (control) or three levels (0.5, 1.0 and 1.5%) of punicic acid in the diets. After 12weeks of feeding the hens, eggs collection began. Sixty eggs - randomly selected from each group - were analysed for physicochemical properties. Eggs naturally enriched with CLnA preserve their composition and conventional properties in most of the analysed parameters (including chemical composition, physical as well as organoleptic properties). Dietary CLnA had positive impact on the colour of the eggs' yolk, whereas the hardness of hard-boiled egg yolks was not affected. Additionally, increasing dietary CLnA led to an increase not only the CLnA concentrations, but also CLA in egg-yolk lipids.

  10. The influence of pomegranate fruit extract in comparison to regular pomegranate juice and seed oil on nitric oxide and arterial function in obese Zucker rats.

    PubMed

    de Nigris, Filomena; Balestrieri, Maria Luisa; Williams-Ignarro, Sharon; D'Armiento, Francesco P; Fiorito, Carmela; Ignarro, Louis J; Napoli, Claudio

    2007-08-01

    Metabolic syndrome includes most widely distributed clinical conditions such as obesity, hypertension, dislipidemia, and diabetes. Pomegranate fruit extract (PFE), rich in polyphenolic antioxidants, reduces the expression of oxidation-sensitive genes at the sites of perturbed shear-stress. The aim of this study was to evaluate the effect of PFE in comparison to regular pomegranate juice (PJ) and seed oil on the biological actions of nitric oxide (NO) and the arterial function in obese Zucker rats, a model of metabolic syndrome. Our results indicated that supplementation with PFE or PJ significantly decreased the expression of vascular inflammation markers, thrombospondin (TSP), and cytokine TGFbeta1 (P<0.05), whereas seed oil supplementation had a significant effect only on TSP-1 expression (P <0.05). Plasma nitrate and nitrite (NO(x)) levels were significantly increased by PFE and PJ (P<0.05). Furthermore, the effect of PFE in increasing endothelial NO synthase (eNOS) expression was comparable to that of PJ. These data highlight possible clinical applications of PFE in metabolic syndrome.

  11. Ketoprofen-loaded pomegranate seed oil nanoemulsion stabilized by pullulan: Selective antiglioma formulation for intravenous administration.

    PubMed

    Ferreira, Luana M; Cervi, Verônica F; Gehrcke, Mailine; da Silveira, Elita F; Azambuja, Juliana H; Braganhol, Elizandra; Sari, Marcel H M; Zborowski, Vanessa A; Nogueira, Cristina W; Cruz, Letícia

    2015-06-01

    This study aimed to prepare pomegranate seed oil nanoemulsions containing ketoprofen using pullulan as a polymeric stabilizer, and to evaluate antitumor activity against in vitro glioma cells. Formulations were prepared by the spontaneous emulsification method and different concentrations of pullulan were tested. Nanoemulsions presented adequate droplet size, polydispersity index, zeta potential, pH, ketoprofen content and encapsulation efficiency. Nanoemulsions were able to delay the photodegradation profile of ketoprofen under UVC radiation, regardless of the concentration of pullulan. In vitro release study indicates that nanoemulsions were able to release approximately 95.0% of ketoprofen in 5h. Free ketoprofen and formulations were considered hemocompatible at 1 μg/mL, in a hemolysis study, for intravenous administration. In addition, a formulation containing the highest concentration of pullulan was tested against C6 cell line and demonstrated significant activity, and did not reduce fibroblasts viability. Thus, pullulan can be considered an interesting excipient to prepare nanostructured systems and nanoemulsion formulations can be considered promising alternatives for the treatment of glioma.

  12. Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes

    PubMed Central

    Bihamta, Mehdi; Hosseini, Azar; Ghorbani, Ahmad; Boroushaki, Mohammad Taher

    2017-01-01

    Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes. Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay. The level of reactive oxygen species (ROS) and lipid peroxidation were measured by fluorimetric methods. Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity. Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases. PMID:28265546

  13. Effects of Pomegranate Seed Oil on Metabolic State of Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Faghihimani, Zahra; Mirmiran, Parvin; Sohrab, Golbon; Iraj, Bijan; Faghihimani, Elham

    2016-01-01

    Background: Rapid increasing prevalence of diabetes mellitus is a serious health concern in the world. New data determined that the pathogenesis of diabetes mellitus is chronic low-grade inflammation, resulting insulin resistance. Pomegranate seed oil (PSO) has anti-inflammatory effects; though it may reduce insulin resistance and improve glycemia in diabetes mellitus. The present study has been designed to investigate the effects of PSO as a natural dietary component on metabolic state of patients with Type 2 diabetes mellitus. Methods: In a randomized double-blind clinical trial study, 80 patients (28 men) with Type 2 diabetes were randomly allocated to the intervention and control groups. The intervention group consumed PSO capsules, containing 1000 mg PSO twice daily (2000 mg PSO), whereas controls take placebo for 8 weeks. The participants followed their previous dietary patterns and medication use. Dietary factors and metabolic factors including lipid profile, fasting plasma sugar, and insulin and were assayed at the baseline and after 8 weeks. Results: Participants in two intervention and control group were similar regarding anthropometric and the dietary factors at baseline and after trial (P > 0.05). Mean level of total cholesterol, triglyceride, low-density lipoprotein-cholesterol, and high-density lipoprotein was not different significantly between groups after trial (P > 0.05). Consumption of PSO did not significantly affect the levels of parameters such as fasting blood sugar (FBS), insulin, HbA1c, alanine transferase, and homeostasis model assessment-insulin resistance. Conclusions: Consumption of 2000mg PSO per day for 8 weeks had no effect on FBS, insulin resistance and lipid profile in diabetic patients. PMID:27994825

  14. Optimisation of Microwave-Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil and Evaluation 
of Its Physicochemical and Bioactive Properties

    PubMed Central

    Çavdar, Hasene Keskin; Gök, Uğur; Göğüş, Fahrettin

    2017-01-01

    Summary Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176–300 W), time (5–20 min), particle size (d=0.125–0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d=0.125–0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction. PMID:28559737

  15. Optimisation of Microwave-Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil and Evaluation 
of Its Physicochemical and Bioactive Properties.

    PubMed

    Çavdar, Hasene Keskin; Yanık, Derya Koçak; Gök, Uğur; Göğüş, Fahrettin

    2017-03-01

    Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176-300 W), time (5-20 min), particle size (d=0.125-0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d=0.125-0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction.

  16. Pomegranate seed oil: Effect on 3-nitropropionic acid-induced neurotoxicity in PC12 cells and elucidation of unsaturated fatty acids composition.

    PubMed

    Al-Sabahi, Bushra N; Fatope, Majekodunmi O; Essa, Musthafa Mohamed; Subash, Selvaraju; Al-Busafi, Saleh N; Al-Kusaibi, Fatma S M; Manivasagam, Thamilarasan

    2017-01-01

    Seed oils are used as cosmetics or topical treatment for wounds, allergy, dandruff, and other purposes. Natural antioxidants from plants were recently reported to delay the onset or progress of various neurodegenerative conditions. Over one thousand cultivars of Punica granatum (Punicaceae) are known and some are traditionally used to treat various ailments. The effect of pomegranate oil on 3-nitropropionic acid- (3-NP) induced cytotoxicity in rat pheochromocytoma (PC12) neuronal cells was analyzed in this study. Furthermore, the analysis of unsaturated fatty acid composition of the seed oil of pomegranate by gas chromatography-electron impact mass spectrometry (GC-MS) was done. GC-MS study showed the presence of 6,9-octadecadiynoic acid (C18:2(6,9)) as a major component (60%) as 4,4-dimethyloxazoline derivative. The total extractable oil with light petroleum ether by Soxhlet from the dry seed of P. granatum was 4-6%. The oil analyzed for 48.90 ± 1.50 mg gallic acid equivalents/g of oil, and demonstrated radical-scavenging-linked antioxidant activities in various in vitro assays like the DPPH (2,2-diphenyl-l-picrylhydrazyl, % IP = 35.2 ± 0.9%), ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), % IP 2.2 ± 0.1%), and β-carotene bleaching assay (% IP = 26 ± 3%), respectively, which could be due the possible role of one methylene interrupted diynoic acid system for its radical-scavenging/antioxidant properties of oil. The oil also reduced lipid peroxidation, suppressed reactive oxygen species, extracellular nitric oxide, lactate/pyruvate ratio, and lactase dehydrogenase generated by 3-NP- (100 mM) induced neurotoxicity in PC12 cells, and enhanced the levels of enzymatic and non-enzymatic antioxidants at 40 μg of gallic acid equivalents. The protective effect of pomegranate seed oil might be due to the ability of an oil to neutralize ROS or enhance the expression of antioxidant gene and the exact mechanism of action yet to be elucidated.

  17. Pomegranate seed oil nanoemulsions with selective antiglioma activity: optimization and evaluation of cytotoxicity, genotoxicity and oxidative effects on mononuclear cells.

    PubMed

    Mota Ferreira, Luana; Gehrcke, Mailine; Ferrari Cervi, Verônica; Eliete Rodrigues Bitencourt, Paula; Ferreira da Silveira, Elita; Hofstatter Azambuja, Juliana; Prates Ramos, Andiara; Nascimento, Kátia; Beatriz Moretto, Maria; Braganhol, Elizandra; Rorato Sagrillo, Michele; Cruz, Letícia

    2016-12-01

    Glioma is a malignant brain tumor with rapid proliferation, infiltrative growth, poor prognosis and it is chemoresistent. Pomegranate seed oil (PSO) has antioxidant, anti-inflammatory and antitumor properties. This study showed the optimization of PSO nanoemulsions (NEs) as an alternative for glioma treatment. The study aimed to evaluate PSO NEs cytotoxicity on human blood cells and antiglioma effects against C6 cells. NEs were prepared by the spontaneous emulsification method, using PSO at 1.5 and 3.0%, and were evaluated regarding their physical stability and antioxidant activity. Toxicity evaluations in human blood cells were performed in terms of cell viability, genotoxicity, lipid peroxidation, protein carbonylation, catalase activity and hemolysis at 0.1, 0.25 and 0.5 mg/mL PSO, after a 72-h incubation period. In vitro antitumor effect was determined against glioma cells after 24 and 48 h, and astrocytes were used as a non-transformed cell model. Formulations presented droplet size below 250 nm, low polydispersity index, negative zeta potential and pH in the acid range. NEs and PSO had scavenging capacity around 30% and promoted a proliferative effect in mononuclear cells, increasing about 50% cell viability. No genotoxic and oxidative damage was observed in lipid peroxidation, protein carbonylation and catalase activity evaluations for NEs. Hemolysis study showed a hemolytic effect at high concentrations. Moreover, formulations reduced only tumor cell viability to 47%, approximately. Formulations are adequate and safe for intravenous administration. Besides, in vitro antitumor activity indicates that NEs are promising for glioma treatment.

  18. Pomegranate seed oil nanoemulsions improve the photostability and in vivo antinociceptive effect of a non-steroidal anti-inflammatory drug.

    PubMed

    Ferreira, Luana Mota; Sari, Marcel Henrique Marcondes; Cervi, Verônica Ferrari; Gehrcke, Mailine; Barbieri, Allanna Valentini; Zborowski, Vanessa Angonesi; Beck, Ruy Carlos Ruver; Nogueira, Cristina Wayne; Cruz, Letícia

    2016-08-01

    The combination of pomegranate seed oil and ketoprofen in nanoemulsions aiming to improve the antinociceptive effect was evaluated according to the writhing test and Complete Freud's Adjuvant induced paw inflammation in mice. The formulations showed adequate characteristics and improved ketoprofen's photostability against UVC radiation exposure. The dialysis bag technique showed that 100% of the drug was released from the nanoemulsions after 3h and the oil amount had no influence on the releasing. Furthermore, time- and dose-response curves were obtained to determine the antinociceptive effect of the formulations. In the post-test, the nanoemulsion containing ketoprofen significantly reduced abdominal constrictions in time-response curve, showing effect up to 12h while the free ketoprofen showed effect up to 3h. In addition, the blank nanoemulsion presented a reduction of abdominal constriction up to 1h of pre-treatment. Regarding the dose-response curve, the free ketoprofen presents effect at 0.5mg/Kg dose and nanoemulsion at 1.0mg/Kg dose. Time- and dose-response curves were performed to determine the antinociceptive effect in inflammatory pain. After the evaluation of mechanical allodynia testing at the Von Frey Hair, the free ketoprofen showed effect up to 6h while nanoemulsions presented effect up to 10h. Moreover, acute toxicity was performed with ALT and AST activity evaluations and urea levels. After 7 days of treatment, no toxic effects for nanoemulsions were found. In conclusion, ketoprofen-loaded pomegranate seed oil nanoemulsions presented adequate characteristics and a high antinociceptive activity in the animal models tested. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effects of berberine and pomegranate seed oil on plasma phospholipid metabolites associated with risks of type 2 diabetes mellitus by U-HPLC/Q-TOF-MS.

    PubMed

    Wu, Xia; Li, Yan; Wang, Qiu; Li, Weimin; Feng, Yifan

    2015-12-15

    A rapid and reliable ultra-performance liquid chromatography coupled with electrospray ionization/quadrupole-time-of-flight mass spectrometry (U-HPLC/Q-TOF-MS) has been firstly used to analyze the changes of plasma phospholipids, in type 2 diabetes mellitus (T2DM) mice after administration of berberine and pomegranate seed oil (PSO). The separation of plasma phospholipids was carried out on an Acquity U-HPLC BEH C18 column (2.1mm×50mm, 1.7μm, Waters) by linear gradient elution using a mobile phase consisting of 10mM ammonium formate in water and acetonitrile: isopropanol (1:1, v/v) mixed solution added by 0.25% water and 10mM ammonium formate. The method demonstrated a good precision and reproducibility. Linear regression analysis showed a good linearity. And potential biomarkers were discovered based on their mass spectra and chemometrics methods. The results demonstrated that the proposed U-HPLC/Q-TOF-MS method was successfully applied to analyze the dynamic changes of phospholipids components in plasma of T2DM mice after drug treatment and could provide a useful data base for meriting further study in humans and investigating pharmacological actions of drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. New lipase assay using Pomegranate oil coating in microtiter plates.

    PubMed

    Ülker, Serdar; Placidi, Camille; Point, Vanessa; Gadenne, Benoît; Serveau-Avesque, Carole; Canaan, Stéphane; Carrière, Frédéric; Cavalier, Jean-François

    2016-01-01

    Lipases play various roles in fat digestion, lipoprotein metabolism, and in the mobilization of fat stored in lipid bodies in animals, plants and microorganisms. In association with these physiological functions, there is an important field of research for discovering lipase inhibitors and developing new treatments of diseases such as obesity, atherosclerosis, diabetes and tuberculosis. In this context, the development of convenient, specific and sensitive analytical methods for the detection and assay of lipases and/or lipase inhibitors is of major importance. It is shown here that purified triacylglycerols (TAGs) from Punica granatum (Pomegranate) seed oil coated on microtiter plates can be used for the continuous assay of lipase activity by recording the variations with time of the UV absorption spectra at 275 nm. UV absorption is due the release of punicic acid (9Z,11E,13Z-octadeca-9,11,13-trienoic acid), a conjugated triene contained in Pomegranate oil. This new microtiter plate assay allows to accurately measure the activity of a wider range of lipases compared to the similar assay previously developed with Tung oil containing α-eleostearic acid (9Z,11E,13E-octadeca-9,11,13-trienoic acid), including the LipY lipase from Mycobacterium tuberculosis. Although punicic acid is a diastereoisomer of α-eleostearic acid, the Δ(13)cis double bound found in punicic acid gives a different structure to the acyl chain that probably favours the interaction of Pomegranate TAGs with the lipase active site. The microplate lipase assay using Pomegranate TAGs shows high sensitivity, reproducibility and remarkable relevance for the high-speed screening of lipases and/or lipase inhibitors directly from raw culture media without any purification step. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  1. Effects of olive oil and olive oil-pomegranate juice sauces on chemical, oxidative and sensorial quality of marinated anchovy.

    PubMed

    Topuz, Osman Kadir; Yerlikaya, Pinar; Ucak, Ilknur; Gumus, Bahar; Büyükbenli, Hanife Aydan

    2014-07-01

    This study describes the potential use of olive oil and olive oil-pomegranate juice sauces as antioxidant, preservative and flavoring agent in fish marinades. The olive oil and sauces, produced from emulsifying of olive oil and pomegranate juice with gums, were blended with marinated anchovy (Engraulis encrasicholus) fillets. The aim of the present study was to produce a new polyphenol-rich marinade sauces by emulsifying pomegranate juice with olive oil in different proportions (25%, 35% and 50%v:v). In order to evaluate the effects of olive oil and olive oil-pomegranate juice sauces on quality of anchovy marinades, the chemical (TVB-N and TMA), oxidative (peroxides value, K230, thiobarbituric acid and K270) and sensory analyses were carried out during storage at 4°C. The present study showed that saucing of anchovy marinades with olive oil-pomegranate sauce can retard the undesirable quality changes, prolong the lipid oxidation and improve the sensory properties.

  2. Genetic diversity of pomegranate germplasm collection from Spain determined by fruit, seed, leaf and flower characteristics

    PubMed Central

    Melgarejo, Pablo; Legua, Pilar; Garcia-Sanchez, Francisco; Hernández, Francisca

    2016-01-01

    Background. Miguel Hernandez University (Spain) created a germplasm bank of the varieties of pomegranate from different Southeastern Spain localities in order to preserve the crop’s wide genetic diversity. Once this collection was established, the next step was to characterize the phenotype of these varieties to determine the phenotypic variability that existed among all the different pomegranate genotypes, and to understand the degree of polymorphism of the morphometric characteristics among varieties. Methods. Fifty-three pomegranate (Punica granatum L.) accessions were studied in order to determine their degree of polymorphism and to detect similarities in their genotypes. Thirty-one morphometric characteristics were measured in fruits, arils, seeds, leaves and flowers, as well as juice characteristics including content, pH, titratable acidity, total soluble solids and maturity index. ANOVA, principal component analysis, and cluster analysis showed that there was a considerable phenotypic diversity (and presumably genetic). Results. The cluster analysis produced a dendrogram with four main clusters. The dissimilarity level ranged from 1 to 25, indicating that there were varieties that were either very similar or very different from each other, with varieties from the same geographical areas being more closely related. Within each varietal group, different degrees of similarity were found, although there were no accessions that were identical. These results highlight the crop’s great genetic diversity, which can be explained not only by their different geographical origins, but also to the fact that these are native plants that have not come from genetic improvement programs. The geographic origin could be, in the cases where no exchanges of plant material took place, a key criterion for cultivar clustering. Conclusions. As a result of the present study, we can conclude that among all the parameters analyzed, those related to fruit and seed size as well as

  3. High-capacity calcium-binding chitinase III from pomegranate seeds (Punica granatum Linn.) is located in amyloplasts.

    PubMed

    Lv, Chenyan; Masuda, Taro; Yang, Haixia; Sun, Lei; Zhao, Guanghua

    2011-12-01

    We have recently identified a new class III chitinase from pomegranate seeds (PSC). Interestingly, this new chitinase naturally binds calcium ions with high capacity and low affinity, suggesting that PSC is a Ca-storage protein. Analysis of the amino acid sequence showed that this enzyme is rich in acidic amino acid residues, especially Asp, which are responsible for calcium binding. Different from other known chitinases, PSC is located in the stroma of amyloplasts in pomegranate seeds. Transmission electron microscopy (TEM) analysis indicated that the embryonic cells of pomegranate seeds are rich in calcium ions, most of which are distributed in the stroma and the starch granule of the amyloplasts, consistent with the above idea that PSC is involved in calcium storage, a newly non-defensive function.

  4. Antioxidant and lipase inhibitory activities and essential oil composition of pomegranate peel extracts.

    PubMed

    Hadrich, Fatma; Cher, Slim; Gargouri, Youssef Talel; Adel, Sayari

    2014-01-01

    The chemical composition of essential oil, antioxidant and pancreatic lipase inhibitory activities of various solvent extracts obtained from pomegranate peelTunisian cultivar was evaluated. Gas chromatography/mass spectrometry was used to determine the composition of the PP essential oil. Nine-teen components were identified and the main compounds were the camphor (60.32%) and the benzaldehyde (20.98%). The phenolic and flavonoids content varied from 0 to 290.10 mg Gallic acid equivalent and from 5.2 to 20.43 mg catechin equivalent/g dried extract. The antioxidant activity of various solvent extracts from pomegranate peel was also investigated using various in vitro assays as the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical method, β-carotene bleaching and reducing power assays.Methanol and ethanol extracts showed the most potent antioxidant activity in all assays tested followed by water and acetone extracts. The inhibitory effect of the pomegranate peelextracts on porcine pancreatic lipase was evaluated and the results showed that ethanol and methanol extracts markedly reduced lipase activity. Generally, the highestlipase activity inhibitory (100%) was observed at a concentration of 1 mg/ml after 30 min of incubation. LC-MS analysis of ethanol extract showed the presence of four components which are cholorogenic acid, mannogalloylhexoside, gallic acid and ellagic acid. Our findings demonstrate that the ethanol extract from pomegranate peel might be a good candidate for furtherinvestigations of new bioactive substances.

  5. Enrichment of functional properties of ice cream with pomegranate by-products.

    PubMed

    Çam, Mustafa; Erdoğan, Fatma; Aslan, Duygu; Dinç, Merve

    2013-10-01

    Pomegranate peel rich in phenolics, and pomegranate seed which contain a conjugated fatty acid namely punicic acid in lipid fraction remain as by-products after processing the fruit into juice. Ice cream is poor in polyunsaturated fatty acids and phenolics, therefore, this study was conducted to improve the functional properties of ice cream by incorporating pomegranate peel phenolics and pomegranate seed oil. Incorporation of the peel phenolics into ice cream at the levels of 0.1% and 0.4% (w/w) resulted in significant changes in the pH, total acidity, and color of the samples. The most prominent outcomes of phenolic incorporation were sharp improvements in antioxidant and antidiabetic activities as well as the phenolic content of ice creams. Replacement of pomegranate seed oil by milk fat at the levels of 2.0% and 4.0% (w/w) increased the conjugated fatty acid content. However, perception of oxidized flavor increased with the additional seed oil. When one considers the functional and nutritional improvements in the enrichment of the ice cream together with overall acceptability results of the sensory analysis, then it follows from this study that ice creams enriched with pomegranate peel phenolics up to 0.4% (w/w) and pomegranate seed oil up to 2.0% (w/w) could be introduced to markets as functional ice cream. Enrichment of ice creams with pomegranate by-products might provide consumers health benefits with striking functional properties of punicalagins in pomegranate peel, and punicic acid in pomegranate seed oil.

  6. Seed storage oil mobilization.

    PubMed

    Graham, Ian A

    2008-01-01

    Storage oil mobilization starts with the onset of seed germination. Oil bodies packed with triacylglycerol (TAG) exist in close proximity with glyoxysomes, the single membrane-bound organelles that house most of the biochemical machinery required to convert fatty acids derived from TAG to 4-carbon compounds. The 4-carbon compounds in turn are converted to soluble sugars that are used to fuel seedling growth. Biochemical analysis over the last 50 years has identified the main pathways involved in this process, including beta-oxidation, the glyoxylate cycle, and gluconeogenesis. In the last few years molecular genetic dissection of the overall process in the model oilseed species Arabidopsis has provided new insight into its complexity, particularly with respect to the specific role played by individual enzymatic steps and the subcellular compartmentalization of the glyoxylate cycle. Both abscisic acid (ABA) and sugars inhibit storage oil mobilization and a substantial degree of the control appears to operate at the transcriptional level.

  7. Inhibitory effect of a novel combination of Salvia hispanica (chia) seed and Punica granatum (pomegranate) fruit extracts on melanin production.

    PubMed

    Diwakar, Ganesh; Rana, Jatinder; Saito, Lisa; Vredeveld, Doug; Zemaitis, Dorothy; Scholten, Jeffrey

    2014-09-01

    In recent years, dietary fatty acids have been extensively evaluated for nutritional as well as cosmetic benefits. Among the dietary fats, the omega-3 (ω3) and omega-6 (ω6) forms of polyunsaturated fatty acids (PUFAs) have been found to exhibit many biological functions in the skin such as prevention of transepidermal water loss, maintenance of the stratum corneum epidermal barrier, and disruption of melanogenesis in epidermal melanocytes. In this study, we examined the effect of chia seed extract, high in ω3 (linolenic acid) and ω6 (linoleic acid) PUFAs, for its capacity to affect melanogenesis. Chia seed extract was shown to inhibit melanin biosynthesis in Melan-a cells; however, linoleic and α-linolenic acids alone did not effectively reduce melanin content. Further investigation demonstrated that chia seed extract in combination with pomegranate fruit extract had a synergistic effect on the inhibition of melanin biosynthesis with no corresponding effect on tyrosinase activity. Investigation of the possible mechanism of action revealed that chia seed extract downregulated expression of melanogenesis-related genes (Tyr, Tyrp1, and Mc1r), alone and in combination with pomegranate fruit extract, suggesting that the inhibition of melanin biosynthesis by a novel combination of chia seed and pomegranate fruit extracts is possibly due to the downregulation of gene expression of key melanogenic enzymes. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    NASA Astrophysics Data System (ADS)

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  9. Sensibility of male rats fertility against olive oil, Nigella sativa oil and pomegranate extract

    PubMed Central

    Mansour, Sherif W.; Sangi, Sibghatullah; Harsha, Sree; Khaleel, Mueen A.; Ibrahim, A. R. N.

    2013-01-01

    Objective To clarify the modulatory effects of daily consumption of pomegranate extract (PE), olive oil (OO) and Nagilla sativa oil (NSO) on antioxidant activity, sperm quality and pituitary-testicular axis of adult male wistar rats. Methods Thirty-two adult male Wistar rats were divided into four equal groups, eight rats each. Using rat gastric tubes, 1.0 mL distilled water, 1.0 mL PE, 0.4 mL NSO and 0.4 mL OO were orally administered daily for 6 weeks in the first, second, third and fourth groups, respectively. Reproductive organs, body weight, sperm criteria, testosterone, FSH, LH, inhibin-B, lipid peroxidation, and antioxidant enzyme activities were investigated. At the end of the study protocol, analyses occurred at the same time. Data were analysed by ANOVA test and P<0.05 was considered to be a significant value. Results In all studied groups, malondialdehyde level was significantly decreased accompanied with an increases in glutathione peroxidase and glutathione. Rats treated with PE showed an increase in catalase activities accompanied with an increase in sperm concentration which was also observed in NSO group. In PE treated group, sperm motility was also increased accompanied with decreased abnormal sperm rate. NSO, OO and PE treated groups shows an insignificant effect on testosterone, inhibin-B, FSH and LH in comparison with control group. Conclusions These results show that administration of PE, NSO and OO could modify sperm characteristics and antioxidant activity of adult male wistar rats. PMID:23836459

  10. Effects of dietary pomegranate seed pulp on oxidative stability of kid meat.

    PubMed

    Emami, A; Nasri, M H Fathi; Ganjkhanlou, M; Zali, A; Rashidi, L

    2015-06-01

    This study was conducted to evaluate the effects of dietary pomegranate seed pulp (PSP) on meat color and lipid stability of kids. Thirty-two Mahabadi male kids were randomly assigned to one of four diets with different levels of PSP: 1 - diet without PSP (Control), 2 - diet containing 5% PSP (PSP5), 3 - diet containing 10% PSP (PSP10), and 4 - diet containing 15% PSP (PSP15). The kids were slaughtered at the end of the study and m. longissimus lumborum (LL) was sampled. The TBARS values of both raw and cooked meat were decreased (P<0.0001) by increasing levels of PSP in the diet. The meat of kids fed PSP15 showed higher a* and C* values (P<0.01) and lower H* and b* values (P<0.001), than kids fed with Control diet. The results of this experiment indicated that replacing barley and corn grains with PSP in the diet may improve the color and lipid stability of kid meat. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Modelling moisture diffusivity of pomegranate seed cultivars under fixed, semi fluidized and fluidized bed using mathematical and neural network methods.

    PubMed

    Chayjan, Reza Amiri; Salari, Kamran; Barikloo, Hossein

    2012-04-02

    Modelling moisture diffusivity of pomegranate cultivars is considered to be a major aspect of the drying process optimization. Its goal is mainly to apply the optimum drying method and conditions in which the final product meets the required standards. Temperature is the major parameter which affects the moisture diffusivity. This parameter is not equal for different cultivars of pomegranate. So modelling of moisture diffusivity is important in designing, optimizing and adjusting the dryer system. This research studied thin layer drying of three cultivars of pomegranate seeds (Alak, Siah and Malas) under fixed, semi fluidized and fluidized bed conditions. Drying process of samples was implemented at 50, 60, 70 and 80°C air temperature levels. Second law of Fick in diffusion was utilized to compute the effective moisture diffusivity (D(eff)) of the seeds. Linear and artificial neural networks (ANNs) also were used to model D(eff) of seeds. Maximum and minimum values of the D(eff) were related to Malas and Alak cultivars, respectively. Three linear models were found to fit the experimental data with average R2 = 0.9350, 0.9320 and 0.9400 for Alak, Siah and Malas cultivars, respectively. The best results for neural network were related to feed forward neural network with training algorithm of Levenberg-Marquardt was appertained to the topology of 3-4-3-1 and threshold function of LOGSIG. By the use of this structure, R2 = 0.9972 was determined. A direct relationship was found between D(eff) and thickness of fleshy section of the seeds. The Siah cultivar has the highest value of D(eff). This is due to higher volume of fleshy section of the Siah cultivar. Cultivar type and air velocity have the highest and the least effect on D(eff), respectively.

  12. Anti Tumoral Properties of Punica granatum (Pomegranate) Seed Extract in Different Human Cancer Cells.

    PubMed

    Seidi, Khaled; Jahanban-Esfahlan, Rana; Abasi, Mozhgan; Abbasi, Mehran Mesgari

    2016-01-01

    Punica granatum (PG) has been demonstrated to possess antitumor effects on various types of cancer cells. In this study, we determined antiproliferative properties of a seed extract of PG (PSE) from Iran in different human cancer cells. A methanolic extract of pomegranate seeds was prepared. Total phenolic content (TPC) and total flavonoid content (TFC) were assessed by colorimetric assays. Antioxidant activity was determined with reference to DPPH radical scavenging activity. The cytotoxicity of different doses of PSE (0, 5, 20, 100, 250, 500, 1000 μg/ml) was evaluated by MTT assays with A549 (lung non small cell carcinoma), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer cells), and PC-3 (prostate adenocarcinoma) cells. Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison to negative controls at all tested doses (5-1000 μg/ml). In all studied cancer cells, PSE reduced the cell viability to values below 23%, even at the lowest doses. In all cases, IC50 was determined at doses below 5 μg/ml. In this regard, SKOV3 ovarian cancer cells were the most responsive to antiproliferative effects of PSE with a maximum mean growth inhibition of 86.8% vs. 82.8%, 81.4% and 80.0% in MCF-7, PC-3 and A549 cells, respectively. Low doses of PSE exert potent antiproliferative effects on different human cancer cells SKOV3 ovarian cancer cells as most and A549 cells ar least responsive regarding cytotoxic effects. However, the mechanisms of action need to be addressed.

  13. Physiology of Oil Seeds

    PubMed Central

    Ketring, D. L.; Morgan, P. W.

    1972-01-01

    To further elucidate the regulation of dormancy release, we followed the natural afterripening of Virginia-type peanut (Arachis hypogaea L.) seeds from about the 5th to 40th week after harvest. Seeds were kept at low temperature (3 ± 2 C) until just prior to testing for germination, ethylene production, and internal ethylene concentration. Germination tended to fluctuate but did not increase significantly during the first 30 weeks; internal ethylene concentrations and ethylene production remained comparatively low during this time. When the seeds were placed at room temperature during the 30th to 40th weeks after harvest, there was a large increase in germination, 49% and 47% for apical and basal seeds, respectively. The data confirm our previous suggestion that production rates of 2.0 to 3.0 nanoliters per gram fresh weight per hour are necessary to provide internal ethylene concentrations at activation levels which cause a substantial increase of germination. Activation levels internally must be more than 0.4 microliter per liter and 0.9 microliter per liter for some apical and basal seeds, respectively, since dormant-imbibed seeds containing these concentrations did not germinate. Abscisic acid inhibited germination and ethylene production of afterripened seeds. Kinetin reversed the effects of ABA and this was correlated with its ability to stimulate ethylene production by the seeds. Ethylene also reversed the effects of abscisic acid. Carbon dioxide did not compete with ethylene action in this system. The data indicate that ethylene and an inhibitor, possibly abscisic acid, interact to control dormant peanut seed germination. The inability of CO2 to inhibit competitively the action of ethylene on dormancy release, as it does other ethylene effects, suggests that the primary site of action of ethylene in peanut seeds is different from the site for other plant responses to ethylene. PMID:16658179

  14. Pomegranate as a functional food and nutraceutical source.

    PubMed

    Johanningsmeier, Suzanne D; Harris, G Keith

    2011-01-01

    Pomegranate, a fruit native to the Middle East, has gained widespread popularity as a functional food and nutraceutical source. The health effects of the whole fruit, as well as its juices and extracts, have been studied in relation to a variety of chronic diseases. Promising results against cardiovascular disease, diabetes, and prostate cancer have been reported from human clinical trials. The in vitro antioxidant activity of pomegranate has been attributed to its high polyphenolic content, specifically punicalagins, punicalins, gallagic acid, and ellagic acid. These compounds are metabolized during digestion to ellagic acid and urolithins, suggesting that the bioactive compounds that provide in vivo antioxidant activity may not be the same as those present in the whole food. Anthocyanins and the unique fatty acid profile of the seed oil may also play a role in pomegranate's health effects. A more complete characterization of pomegranate components and their physiological fate may provide mechanistic insight into the potential health benefits observed in clinical trials.

  15. Pomegranate seed extract attenuates chemotherapy-induced acute nephrotoxicity and hepatotoxicity in rats.

    PubMed

    Cayır, Kerim; Karadeniz, Ali; Simşek, Nejdet; Yıldırım, Serap; Karakuş, Emre; Kara, Adem; Akkoyun, Hürrem Turan; Sengül, Emin

    2011-10-01

    Cisplatin (CDDP), one of the most active cytotoxic agents against cancer, has adverse side effects, such as nephrotoxicity and hepatotoxicity. The present study was designed to investigate the potential protective effect of pomegranate seed extract (PSE) against oxidative stress caused by CDDP injury of the kidneys and liver by measuring tissue biochemical and antioxidant variables and immunohistochemically testing caspase-3-positive cells. Twenty-four Sprague-Dawley rats were divided into 4 groups: control; CDDP: injected intraperitoneally with CDDP (7 mg/kg body weight, single dose); PSE: treated for 15 consecutive days by gavage with PSE (300 mg/kg per day); and PSE+CDDP: treated by gavage with PSE 15 days after a single injection of CDDP. The degree of protection against CDDP injury afforded by PSE was evaluated by determining the levels of malondialdehyde as a measure of lipid peroxidation. The levels of glutathione and activities of glutathione peroxidase, glutathione S-transferase, and superoxide dismutase were estimated from liver and kidney homogenates; the liver and kidney were also histologically examined. PSE elicited a significant protective effect toward liver and kidney by decreasing the level of lipid peroxidation; elevating the levels of glutathione S-transferase; and increasing the activities of glutathione peroxidase, glutathione S-transferase, and superoxide dismutase. These biochemical observations were supported by immunohistochemical findings and suggested that PSE significantly attenuated nephrotoxicity and hepatotoxicity by the way of its antioxidant, radical-scavenging, and antiapoptotic effects. This PSE extract could be used as a dietary supplement in patients receiving chemotherapy medications.

  16. Anti-depressive effect of polyphenols and omega-3 fatty acid from pomegranate peel and flax seed in mice exposed to chronic mild stress.

    PubMed

    Naveen, Shivanna; Siddalingaswamy, Mahadevappa; Singsit, Dongzagin; Khanum, Farhath

    2013-11-01

    In this study polyphenols from pomegranate peel, and n-3 fatty acids with polyphenols from flax seed were evaluated for their anti depression properties in mice exposed to chronic mild stress (CMS). A total of 40 mice initially trained to consume 2% sucrose solution for 3 weeks were then divided into five groups of eight each. The first group was the normal control, the remaining four groups were exposed to CMS but were force fed with either: 10 mL water per kg bodyweight per day; imipramine (a standard antidepressant) 15 mg kg bodyweight; 30 mg per kg bodyweight polyphenol equivalent extract from pomegranate peel; or 30 mg polyphenols per kg bodyweight with omega-3 fatty acids present, for 50 days. At the end, blood and brain were analyzed for various biomarkers of depression. The flax seed and imipramine groups had significantly increased sucrose consumption, decreased cortisol (blood), decreased epinephrine and norepinephrine concentration, decreased monoamine oxidase A and B activity, and decreased superoxide dismutase activity. Lipid peroxidation was completely inhibited. In contrast, pomegranate peel extract also completely inhibited lipid peroxidation in the brain, and reduced enzyme activity and hormone concentration but to a lesser extent than flax seed. Polyphenols from flax seed with omega-3 fatty acids were able to reduce all the CMS effects tested compared to polyphenols from pomegranate peel. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.

  17. Oil Seed Brassica's

    USDA-ARS?s Scientific Manuscript database

    Oilseed Brassicas, also known by the trade name of rapeseed-mustard, comprise Brassica napus, B. juncea, B. carinata and three ecotypes of B. rapa. Their current global production exceeds 54 million tons, making them the second-most valuable source of vegetable oil in the world. Besides its pre-emin...

  18. Transesterification in situ of sunflower seed oil

    SciTech Connect

    Harrington, K.J.; D'Arch-Evans, C.

    1985-06-01

    Transesterification of sunflower seed oil in situ has produced methyl and ethyl esters in yields greater than 40% of the dry seed weight. This figure compares with a typical yield of ca. 30% when the esters were prepared in the conventional manner from preextracted seed oil. 14 references.

  19. Adaptive evolution of seed oil content in angiosperms: accounting for the global patterns of seed oils.

    PubMed

    Sanyal, Anushree; Decocq, Guillaume

    2016-09-09

    Studies of the biogeographic distribution of seed oil content in plants are fundamental to understanding the mechanisms of adaptive evolution in plants as seed oil is the primary energy source needed for germination and establishment of plants. However, seed oil content as an adaptive trait in plants is poorly understood. Here, we examine the adaptive nature of seed oil content in 168 angiosperm families occurring in different biomes across the world. We also explore the role of multiple seed traits like seed oil content and composition in plant adaptation in a phylogenetic and nonphylogenetic context. It was observed that the seed oil content in tropical plants (28.4 %) was significantly higher than the temperate plants (24.6 %). A significant relationship between oil content and latitude was observed in three families Papaveraceae, Sapindaceae and Sapotaceae indicating that selective forces correlated with latitude influence seed oil content. Evaluation of the response of seed oil content and composition to latitude and the correlation between seed oil content and composition showed that multiple seed traits, seed oil content and composition contribute towards plant adaptation. Investigation of the presence or absence of phylogenetic signals across 168 angiosperm families in 62 clades revealed that members of seven clades evolved to have high or low seed oil content independently as they did not share a common evolutionary path. The study provides us an insight into the biogeographical distribution and the adaptive role of seed oil content in plants. The study indicates that multiple seed traits like seed oil content and the fatty acid composition of the seed oils determine the fitness of the plants and validate the adaptive hypothesis that seed oil quantity and quality are crucial to plant adaptation.

  20. Elastohydrodynamic Traction Properties of Seed Oils

    USDA-ARS?s Scientific Manuscript database

    The elastohydrodynamic traction coefficient (tc) properties of nine seed oils of varying chemical structures, PAO and hexadecane, were investigated using a ball-on disk traction apparatus. The seed oils were: castor oil, a triglyceride with hydroxyl functional group; jojoba, a monoglyceride; and s...

  1. Elastohydrodynamic (EHD) traction properties of seed oils

    USDA-ARS?s Scientific Manuscript database

    The elastohydrodynamic traction coefficient (tc) properties of nine seed oils of varying chemical structures, PAO and hexadecane, were investigated using a ball-on disk traction apparatus. The seed oils were: castor oil, a triglyceride with hydroxyl functional group; jojoba, a monoglyceride; and sev...

  2. Nanoencapsulation Improves Scavenging Capacity and Decreases Cytotoxicity of Silibinin and Pomegranate Oil Association.

    PubMed

    Marchiori, Marila C L; Rigon, Cristina; Copetti, Priscila M; Sagrillo, Michele R; Cruz, Letícia

    2017-06-02

    Silibinin (SB) and pomegranate oil (PO) present therapeutic potential due to antioxidant activity, but the biological performance of both bioactives is limited by their low aqueous solubility. To overcome this issue, the aim of the present investigation was to develop nanocapsule suspensions with PO as oil core for SB encapsulation, as well as assess their toxicity in vitro and radical scavenging activity. The nanocapsule suspensions were prepared by interfacial deposition of preformed polymer method. SB-loaded PO-based nanocapsules (SBNC) showed an average diameter of 157 ± 3 nm, homogenous size distribution, zeta potential of -14.1 ± 1.7 mV, pH of 5.6 ± 0.4 and SB content close to 100%. Similar results were obtained for the unloaded formulation (PONC). The nanocapsules controlled SB release at least 10 times as compared with free SB in methanolic solution. The SBNC scavenging capacity in vitro was statistically higher than free SB (p < 0.05). Cell viability in monocytes and lymphocytes was kept around 100% in the treatments with SBNC and PONC, while the SB and the PO caused a decrease around 30% at 50 μM (SB) and 724 μg/mL (PO). Protein carbonyls and DNA damage were minimized by SB and PO nanoencapsulation. Lipid peroxidation occurred in nanocapsule treatments regardless of the SB presence, which may be attributed to PO acting as substrate in reaction. The free compounds also caused lipid peroxidation. The results show that SBNC and PONC presented adequate physicochemical characteristics and low toxicity against human blood cells. Thereby, this novel nanocarrier may be a promising formulation for therapeutic applications.

  3. Inhibitory effects of pomegranate seed extract on the formation of heterocyclic aromatic amines in beef and chicken meatballs after cooking by four different methods.

    PubMed

    Keşkekoğlu, Hasan; Uren, Ali

    2014-04-01

    Beef and chicken meatballs with a 0.5% (w/w) pomegranate seed extract were cooked using four different cooking methods (oven roasting, pan cooking, charcoal-barbecue, and deep-fat frying) and six heterocyclic aromatic amines; IQ, MeIQx, 4,8-DiMeIQx, PhIP, norharman, and harman were observed. In the beef meatballs, the highest inhibitory effects of pomegranate seed extract on heterocyclic aromatic amines formation were 68% for PhIP, 24% for norharman, 18% for harman, 45% for IQ, and 57% for MeIQx. Total heterocyclic aromatic amine formation was reduced by 39% and 46% in beef meatballs cooked by charcoal-barbecue and deep-fat frying, respectively. In the chicken meatballs, the highest inhibitory effects were 75% for PhIP, 57% for norharman, 28% for harman, 46% for IQ, and 49% for MeIQx. When the pomegranate seed extract was added to the chicken meatballs cooked by deep-fat frying, the total heterocyclic aromatic amine formation was inhibited by 49%, in contrast the total heterocyclic aromatic amine contents after oven roasting increased by 70%.

  4. Short communication: Effect of blackberry and pomegranate oils on vaccenic acid formation in a single-flow continuous culture fermentation system.

    PubMed

    Ishlak, A; AbuGhazaleh, A A; Günal, M

    2014-02-01

    A single-flow continuous culture fermenter system was used to study the effect of blackberry and pomegranate oils on vaccenic acid (trans-11 C18:1; VA) formation. Four continuous culture fermenters were used in a 4 × 4 Latin square design with 4 periods of 10d each. Diets were (1) control (CON), (2) control plus soybean oil (SBO), (3) control plus blackberry oil (BBO), and (4) control plus pomegranate oil (PMO). Oil supplements were added at 30 g/kg of diet dry matter. Effluents were collected from each fermenter during the last 3d of each period and analyzed for nutrient and fatty acid composition. The concentration of VA in effluents increased with oil supplements and was greatest with the BBO diet. The concentration of stearic acid (C18:0) increased with the addition of soybean oil but decreased with the addition of pomegranate oil compared with the CON diet. The concentration of cis-9,trans-11 conjugated linoleic acid increased with oil supplements and was greatest with the PMO diet. In conclusion, all 3 oil sources were effective in increasing the production of VA. The effect of PMO and BBO on VA may have resulted in part from inhibition of the final step in the biohydrogenation of VA to stearic acid. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Determination of oil in sunflower seeds

    SciTech Connect

    Kochlar, S.P.; Rossell, J.B.

    1987-06-01

    Oil content measurement in sunflower seeds on an ''as is'' basis by current official methods is often associated with poor reproducibility. This study shows that the main factor contributing to this poor agreement is the particle size to which seeds are ground. This invariably influences the homogeneity of the bulk ground sample from which subsequent subsamples are taken. It is therefore suggested that oil content determinations on sunflower seeds should be carried out on seed samples that have been evenly and finely ground, to a particle size not greater than 2.0 mm, in a mechanical mill such as the Ultra-Centrifugal mill. Other factors investigated were seed composition (free husk, empty husk, crude fiber and seed meats) and structural differences in the seeds by light microscopy. (Refs. 16).

  6. Variability in the antioxidant activity of dietary supplements from pomegranate, milk thistle, green tea, grape seed, goji, and acai: effects of in vitro digestion.

    PubMed

    Henning, Susanne M; Zhang, Yanjun; Rontoyanni, Victoria G; Huang, Jianjun; Lee, Ru-Po; Trang, Amy; Nuernberger, Gloria; Heber, David

    2014-05-14

    The antioxidant activity (AA) of fruits and vegetables has been thoroughly investigated but less is known about the AA of dietary supplements (DS). We therefore assessed the AA of three to five DS each from pomegranate, milk thistle, green tea, grapes, goji, and acai using four widely used standard methods. The secondary objective was to determine the effects of in vitro digestion on their AA. The AA of the DS prior to digestion ranked as follows: pomegranate > resveratrol > green tea > grape seed > milk thistle and very low in goji and acai with significant group variability in AA. The AA after in vitro simulated digestion of the mouth, stomach, and small intestine compared to undigested supplement was decreased for green tea and grape seed but increased for pomegranate, resveratrol, milk thistle, goji, and acai to various extents. Although polyphenols provide the major antioxidant potency of the tested supplements, our observations indicate that digestion may alter antioxidant properties depending in part on the variations in polyphenol content.

  7. Compression ignition performance using sunflower seed oil

    SciTech Connect

    Yarbrough, C.M.; LePori, W.A.; Engler, C.R.

    1981-01-01

    Sunflower seed oil subjected to various levels of processing and blends with diesel fuel were evaluated in a single cylinder diesel engine. Results from short duration performance tests and longer duration load tests are reported. 8 refs.

  8. Antioxidant Extraction and Biogas Production from Pomegranate Marc

    USDA-ARS?s Scientific Manuscript database

    The pomegranate marc (PM), by-product from pomegranate juice processing, has not been effectively utilized. The objectives of this study were to (1) determine the yields and properties of antioxidants (total phenolics) extracted from peels and seeds of pomegranate marc in wet and dry forms, and (2)...

  9. Frying stability of Moringa stenopetala seed oil.

    PubMed

    Lalas, Stavros; Gortzi, Olga; Tsaknis, John

    2006-06-01

    The frying performance of Moringa stenopetala seed oil (extracted with cold press or n-hexane) was studied especially as regards repeated frying operations. The oils were used for intermittent frying of potato slices and cod filets at a temperature of 175 degrees C for 5 consecutive days (5 fryings per day). The chemical changes occurring in oils were evaluated. Free fatty acid content, polar compounds, colour and viscosity of the oils all increased, whereas the iodine value, smoke point, polyunsaturated fatty acid content, induction period and tocopherol content decreased. The effect of the oil on the organoleptic quality of these fried foods and the theoretical number of frying operations possible before having to discard the oil was also determined. The analytical and sensory data showed that the lowest deterioration occurred in cold press produced oil.

  10. Hydrogel containing silibinin-loaded pomegranate oil based nanocapsules exhibits anti-inflammatory effects on skin damage UVB radiation-induced in mice.

    PubMed

    Marchiori, Marila Crivellaro Lay; Rigon, Cristina; Camponogara, Camila; Oliveira, Sara Marchesan; Cruz, Letícia

    2017-05-01

    The present study shows the development of a topical formulation (hydrogel) containing silibinin-loaded pomegranate oil based nanocapsules suspension and its evaluation as an alternative for the treatment of cutaneous UVB radiation-induced damages. For this, an animal model of skin injury induced by UVB radiation was employed. Gellan gum was used as gel forming agent by its direct addition to nanocapsules suspension. The hydrogels showed adequate pH values (5.6-5.9) and a silibinin content close to the theoretical value (1mg/g). Through vertical Franz diffusion cells it was demonstrated that nanocapsules decreased the silibinin retention in the semisolid formulation. All formulations were effective in reducing mice ear edema and leukocyte infiltration induced by UVB radiation 24h after the treatments. After 48h, only the hydrogels containing nanocapsules or silibinin associated with pomegranate oil demonstrated anti-edematogenic effect, as well as the positive control (hydrogel containing silver sulfadiazine 1%). After 72h, the hydrogel containing unloaded pomegranate oil based nanocapsules still presented a small activity. In conclusion, the results of this investigation demonstrated the feasibility to prepare a semisolid formulation presenting performance comparable to the traditional therapeutic option for skin burns (silver sulfadiazine) and with prolonged in vivo anti-inflammatory activity compared to the non-nanoencapsulated compounds. Copyright © 2017. Published by Elsevier B.V.

  11. Fatty acid profile of kenaf seed oil

    USDA-ARS?s Scientific Manuscript database

    The fatty acid profile of kenaf (Hibiscus cannabinus L.) seed oil has been the subject of several previous reports in the literature. These reports vary considerably regarding the presence and amounts of specific fatty acids, notably epoxyoleic acid but also cyclic (cyclopropene and cyclopropane) fa...

  12. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.

    PubMed

    Kanai, Masatake; Mano, Shoji; Kondo, Maki; Hayashi, Makoto; Nishimura, Mikio

    2016-05-01

    Regulation of oil biosynthesis in plant seeds has been extensively studied, and biotechnological approaches have been designed to increase seed oil content. Oil and protein synthesis is negatively correlated in seeds, but the mechanisms controlling interactions between these two pathways are unknown. Here, we identify the molecular mechanism controlling oil and protein content in seeds. We utilized transgenic Arabidopsis thaliana plants overexpressing WRINKLED1 (WRI1), a master transcription factor regulating seed oil biosynthesis, and knockout mutants of major seed storage proteins. Oil and protein biosynthesis in wild-type plants was sequentially activated during early and late seed development, respectively. The negative correlation between oil and protein contents in seeds arises from competition between the pathways. Extension of WRI1 expression during mid-phase of seed development significantly enhanced seed oil content. This study demonstrates that temporal activation of genes involved in oil or storage protein biosynthesis determines the oil/protein ratio in Arabidopsis seeds. These results provide novel insights into potential breeding strategies to generate crops with high oil contents in seeds. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Antioxidant capacities of phenolic compounds and tocopherols from Tunisian pomegranate (Punica granatum) fruits.

    PubMed

    Elfalleh, Walid; Tlili, Nizar; Nasri, Nizar; Yahia, Yassine; Hannachi, Hédia; Chaira, Nizar; Ying, Ma; Ferchichi, Ali

    2011-01-01

    This article aims to determine the phenolic, tocopherol contents, and antioxidant capacities from fruits (juices, peels, and seed oils) of 6 Tunisian pomegranate ecotypes. Total anthocyanins were determined by a differential pH method. Hydrolyzable tannins were determined with potassium iodate. The tocopherol (α-tocopherol, γ-tocopherol, and δ-tocopherol) contents were, respectively, 165.77, 107.38, and 27.29 mg/100 g from dry seed. Four phenolic compounds were identified and quantified in pomegranate peel and pulp using the high-performance liquid chromatography/ultraviolet method: 2 hydroxybenzoic acids (gallic and ellagic acids) and 2 hydroxycinnamic acids (caffeic and p-coumaric acids). Juice, peel, and seed oil antioxidants were confirmed by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) methods. The highest values were recorded in peels with 25.63 mmol trolox equivalent/100 g and 22.08 mmol TE/100 g for FRAP and ORAC assay, respectively. Results showed that the antioxidant potency of pomegranate extracts was correlated with their phenolic compound content. In particular, the highest correlation was reported in peels. High correlations were also found between peel hydroxybenzoic acids and FRAP ORAC antioxidant capacities. Identified tocopherols seem to contribute in major part to the antioxidant activity of seed oil. The results implied that bioactive compounds from the peel might be potential resources for the development of antioxidant function dietary food.

  14. Evaluation of chosen fruit seeds oils as potential biofuel

    NASA Astrophysics Data System (ADS)

    Agbede, O. O.; Alade, A. O.; Adebayo, G. A.; Salam, K. K.; Bakare, T.

    2012-04-01

    Oils available in mango, tangerine and African star seeds were extracted and characterized to determine their fuel worthiness for biofuel production. Furthermore, the fuel properties of the three oils were within the range observed for some common oil seeds like rapeseed, soybean and sunflower, which are widely sourced for the production of biodiesel on an industrial scale. The low iodine values of the oil extend their applications as non-drying oil for lubrication purposes, however, the fuel properties exhibited by the oils enlist them as potential oil seeds for the production of biofuel and further research on the improvement of their properties will make them suitable biofuel of high economic values.

  15. Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer.

    PubMed

    Kim, Nam Deuk; Mehta, Rajendra; Yu, Weiping; Neeman, Ishak; Livney, Talia; Amichay, Akiva; Poirier, Donald; Nicholls, Paul; Kirby, Andrew; Jiang, Wenguo; Mansel, Robert; Ramachandran, Cheppail; Rabi, Thangaiyan; Kaplan, Boris; Lansky, Ephraim

    2002-02-01

    Fresh organically grown pomegranates (Punica granatum L.) of the Wonderful cultivar were processed into three components: fermented juice, aqueous pericarp extract and cold-pressed or supercritical CO2-extracted seed oil. Exposure to additional solvents yielded polyphenol-rich fractions ('polyphenols') from each of the three components. Their actions, and of the crude whole oil and crude fermented and unfermented juice concentrate, were assessed in vitro for possible chemopreventive or adjuvant therapeutic potential in human breast cancer. The ability to effect a blockade of endogenous active estrogen biosynthesis was shown by polyphenols from fermented juice, pericarp, and oil, which inhibited aromatase activity by 60-80%. Fermented juice and pericarp polyphenols, and whole seed oil, inhibited 17-beta-hydroxysteroid dehydrogenase Type 1 from 34 to 79%, at concentrations ranging from 100 to 1,000 microg/ml according to seed oil > fermented juice polyphenols > pericarp polyphenols. In a yeast estrogen screen (YES) lyophilized fresh pomegranate juice effected a 55% inhibition of the estrogenic activity of 17-beta-estradiol; whereas the lyophilized juice by itself displayed only minimal estrogenic action. Inhibition of cell lines by fermented juice and pericarp polyphenols was according to estrogen-dependent (MCF-7) > estrogen-independent (MB-MDA-231) > normal human breast epithelial cells (MCF-10A). In both MCF-7 and MB-MDA-231 cells, fermented pomegranate juice polyphenols consistently showed about twice the anti-proliferative effect as fresh pomegranate juice polyphenols. Pomegranate seed oil effected 90% inhibition of proliferation of MCF-7 at 100 microg/ml medium, 75% inhibition of invasion of MCF-7 across a Matrigel membrane at 10 microg/ml, and 54% apoptosis in MDA-MB-435 estrogen receptor negative metastatic human breast cancer cells at 50 microg/ml. In a murine mammary gland organ culture, fermented juice polyphenols effected 47% inhibition of cancerous

  16. Para rubber seed oil: new promising unconventional oil for cosmetics.

    PubMed

    Lourith, Nattaya; Kanlayavattanakul, Mayuree; Sucontphunt, Apirada; Ondee, Thunnicha

    2014-01-01

    Para rubber seed was macerated in petroleum ether and n-hexane, individually, for 30 min. The extraction was additionally performed by reflux and soxhlet for 6 h with the same solvent and proportion. Soxhlet extraction by petroleum ether afforded the greatest extractive yield (22.90 ± 0.92%). Although antioxidant activity by means of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay was insignificantly differed in soxhleted (8.90 ± 1.15%) and refluxed (9.02 ± 0.71%) by n-hexane, soxhlet extraction by n-hexane was significantly (p < 0.05) potent scavenged 2,2'-azino-bis(3-ethylbenzothaiazoline)-6-sulfonic acid) or ABTS radical with trolox equivalent antioxidant capacity (TEAC) of 66.54 ± 6.88 mg/100 g oil. This extract was non cytotoxic towards normal human fibroblast cells. In addition, oleic acid and palmitic acid were determined at a greater content than in the seed of para rubber cultivated in Malaysia, although linoleic and stearic acid contents were not differed. This bright yellow extract was further evaluated on other physicochemical characters. The determined specific gravity, refractive index, iodine value, peroxide value and saponification value were in the range of commercialized vegetable oils used as cosmetic raw material. Therefore, Para rubber seed oil is highlighted as the promising ecological ingredient appraisal for cosmetics. Transforming of the seed that is by-product of the important industrial crop of Thailand into cosmetics is encouraged accordingly.

  17. MYB89 Transcription Factor Represses Seed Oil Accumulation1[OPEN

    PubMed Central

    Li, Dong; Jin, Changyu; Duan, Shaowei; Zhu, Yana; Qi, Shuanghui; Liu, Kaige; Gao, Chenhao; Ma, Haoli; Liao, Yuncheng

    2017-01-01

    In many higher plants, seed oil accumulation is precisely controlled by intricate multilevel regulatory networks, among which transcriptional regulation mainly influences oil biosynthesis. In Arabidopsis (Arabidopsis thaliana), the master positive transcription factors, WRINKLED1 (WRI1) and LEAFY COTYLEDON1-LIKE (L1L), are important for seed oil accumulation. We found that an R2R3-MYB transcription factor, MYB89, was expressed predominantly in developing seeds during maturation. Oil and major fatty acid biosynthesis in seeds was significantly promoted by myb89-1 mutation and MYB89 knockdown; thus, MYB89 was an important repressor during seed oil accumulation. RNA sequencing revealed remarkable up-regulation of numerous genes involved in seed oil accumulation in myb89 seeds at 12 d after pollination. Posttranslational activation of a MYB89-glucocorticoid receptor fusion protein and chromatin immunoprecipitation assays demonstrated that MYB89 inhibited seed oil accumulation by directly repressing WRI1 and five key genes and by indirectly suppressing L1L and 11 key genes involved in oil biosynthesis during seed maturation. These results help us to understand the novel function of MYB89 and provide new insights into the regulatory network of transcriptional factors controlling seed oil accumulation in Arabidopsis. PMID:27932421

  18. Synthesis biolubricant from rubber seed oil

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Tran Dong; Tuyen, Dang Thi Hong; Viet, Tran Tan

    2017-09-01

    The objective was biolubricant preparation from rubber seed oil (RSO) using polymerization reactor with/without catalyst in batch reactor. Before become reactant in polymerization reaction, a non-edible rubber seed oil was converted into methyl ester by esterification/tranesterification reaction with methanol and acid/base catalyst. The polymerization reaction parameters investigated were reaction time, temperature and weight ratio (catalyst with feed), and their effect on the bio lubricant formation. The result show significant conversion of methyl ester to bio lubricant in the temperature reaction of 160°C, reaction time of 2h min and ratio of super acid catalyst (tetrafluoroboric acid-sHBF4) of 3 %w/w. The resulting products were confirmed by GC-MS, FTIR spectroscopy and also analyzed for the viscosity. The best viscosity value of RSOFAME polymer was 110.6 cSt when the condition polymerization reaction were 160 °C, reaction time 3h, 6 wt% mass ratio of oil:catalyst.

  19. Seed structure characteristics to form ultrahigh oil content in rapeseed.

    PubMed

    Hu, Zhi-Yong; Hua, Wei; Zhang, Liang; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Hao, Wan-Jun; Wang, Han-Zhong

    2013-01-01

    Rapeseed (Brassica napus L.) is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding. Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition. Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding.

  20. Seed Structure Characteristics to Form Ultrahigh Oil Content in Rapeseed

    PubMed Central

    Zhang, Liang; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Hao, Wan-Jun; Wang, Han-Zhong

    2013-01-01

    Background Rapeseed (Brassica napus L.) is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding. Methodology/Principal Findings Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition. Conclusions/Significance Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding. PMID:23637973

  1. Alterations in seed development gene expression affect size and oil content of Arabidopsis seeds.

    PubMed

    Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

    2013-10-01

    Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds.

  2. [Fatty acid of Rkatsiteli grape seed oil, Phellodendron lavallei oil and Amaranthus seeds oil and its comparative byological activity].

    PubMed

    Kikalishvili, B Iu; Zurabashvili, D Z; Zurabashvili, Z A; Turabelidze, D G; Shanidze, L A

    2012-11-01

    The aim of the study is individual qualitively and quantitatively identification of fatty acids in Pkatsiteli grape seed oil, Phellodendron lavallei oil and Amaranthus seed oil and prediction of its biological activity. Using high-effective liquid chromatogramphy fatty acids were franctionated. Their relative concentrations are expressed as percentages of the total fatty acid component. Identification of the fatty acids consituents is based on comparison of their retention time with that of known standards. The predominant fatty acids in the oils were palmitic, oleic and stearic acids. The investigation demonstrated that fatty acids composition takes marked part in lipid metabolism of biological necessary components. The most interesting result of the investigation was the detection of unusual for the essentain oil begenic acid.

  3. Biodiesel from Milo (Thespesia populnea L.) seed oil

    USDA-ARS?s Scientific Manuscript database

    There is a need to seek non-conventional seed oil sources for biodiesel production due to issues such as supply and availability, as well as food versus fuel. In this context, Milo (Thespesia populnea L.) seed oil was investigated for the first time as a potential non-conventional feedstock for the ...

  4. Continuous hydrolysis of Cuphea seed oil in subcritical water

    USDA-ARS?s Scientific Manuscript database

    Cuphea seed oil (CSO) is a source of medium chain fatty acids for use in chemical manufacturing, including detergents, shampoos and lubricants. Cuphea seed oil is high in decanoic acid and this fatty acid is especially useful in the preparation of estolide biobased lubricants, which have excellent ...

  5. Fatty acid profiles of some Fabaceae seed oils

    USDA-ARS?s Scientific Manuscript database

    The fatty acid profiles of six seed oils of the Fabaceae (Leguminosae) family are reported and discussed. These are the seed oils of Centrosema pubescens, Clitoria ternatea, Crotalaria mucronata, Macroptilium lathyroides, Pachyrhizus erosus, and Senna alata. The most common fatty acid in the fatty a...

  6. Biological Networks Underlying Soybean Seed Oil Composition and Content

    USDA-ARS?s Scientific Manuscript database

    Soybean is the most important oil crop in the United States. Production of soybean seed oil requires coordinated expression of many biological components and pathways, which is further regulated by seed development and phyto-hormones. A new research project is initiated in my laboratory to delineat...

  7. Optimization of mechanical extraction conditions for producing grape seed oil

    USDA-ARS?s Scientific Manuscript database

    In the United States, over 150 thousand metric tons of dried grape seeds containing 13-19% of oil are produced every year, as a byproduct from processing of about 5.8 million metric tons of grapes. The health promoting properties of grape seed oil is due to the presence of many bioactive components ...

  8. Thermal and storage characteristics of tomato seed oil

    USDA-ARS?s Scientific Manuscript database

    Thermal oxidative stability and effect of different storage conditions on quality characteristics of tomato seed oil have not been studied. The objectives of this research were to determine the changes in quality and oxidative stability of tomato seed oil, including color, antioxidant activity, per...

  9. Supercritical carbon dioxide extraction of cuphea seed oil

    USDA-ARS?s Scientific Manuscript database

    Cuphea seed oil is being investigated as a potential domestic source of medium chain fatty acids for several industrial uses. Although the oil from cuphea seeds has been obtained using both solvent extraction and screw pressing, both methods suffer from several disadvantages. Petroleum ether extra...

  10. Seed oil and fatty acid composition in Capsicum spp

    USDA-ARS?s Scientific Manuscript database

    The oil content and fatty acid composition of seed of 233 genebank accessions (total) of nine Capsicum species, and a single accession of Tubocapsicum anomalum, were determined. The physicochemical characteristics of oil extracted from seed of C. annuum and C. baccatum were also examined. Significan...

  11. Seed-Specific Overexpression of the Pyruvate Transporter BASS2 Increases Oil Content in Arabidopsis Seeds

    PubMed Central

    Lee, Eun-Jung; Oh, Minwoo; Hwang, Jae-Ung; Li-Beisson, Yonghua; Nishida, Ikuo; Lee, Youngsook

    2017-01-01

    Seed oil is important not only for human and animal nutrition, but also for various industrial applications. Numerous genetic engineering strategies have been attempted to increase the oil content per seed, but few of these strategies have involved manipulating the transporters. Pyruvate is a major source of carbon for de novo fatty acid biosynthesis in plastids, and the embryo's demand for pyruvate is reported to increase during active oil accumulation. In this study, we tested our hypothesis that oil biosynthesis could be boosted by increasing pyruvate flux into plastids. We expressed the known plastid-localized pyruvate transporter BILE ACID:SODIUM SYMPORTER FAMILY PROTEIN 2 (BASS2) under the control of a seed-specific soybean (Glycine max) glycinin-1 promoter in Arabidopsis thaliana. The resultant transgenic Arabidopsis plants (OEs), which expressed high levels of BASS2, produced seeds that were larger and heavier and contained 10–37% more oil than those of the wild type (WT), but were comparable to the WT seeds in terms of protein and carbohydrate contents. The total seed number did not differ significantly between the WT and OEs. Therefore, oil yield per plant was increased by 24–43% in the OE lines compared to WT. Taken together, our results demonstrate that seed-specific overexpression of the pyruvate transporter BASS2 promotes oil production in Arabidopsis seeds. Thus, manipulating the level of specific transporters is a feasible approach for increasing the seed oil content. PMID:28265278

  12. Seed-Specific Overexpression of the Pyruvate Transporter BASS2 Increases Oil Content in Arabidopsis Seeds.

    PubMed

    Lee, Eun-Jung; Oh, Minwoo; Hwang, Jae-Ung; Li-Beisson, Yonghua; Nishida, Ikuo; Lee, Youngsook

    2017-01-01

    Seed oil is important not only for human and animal nutrition, but also for various industrial applications. Numerous genetic engineering strategies have been attempted to increase the oil content per seed, but few of these strategies have involved manipulating the transporters. Pyruvate is a major source of carbon for de novo fatty acid biosynthesis in plastids, and the embryo's demand for pyruvate is reported to increase during active oil accumulation. In this study, we tested our hypothesis that oil biosynthesis could be boosted by increasing pyruvate flux into plastids. We expressed the known plastid-localized pyruvate transporter BILE ACID:SODIUM SYMPORTER FAMILY PROTEIN 2 (BASS2) under the control of a seed-specific soybean (Glycine max) glycinin-1 promoter in Arabidopsis thaliana. The resultant transgenic Arabidopsis plants (OEs), which expressed high levels of BASS2, produced seeds that were larger and heavier and contained 10-37% more oil than those of the wild type (WT), but were comparable to the WT seeds in terms of protein and carbohydrate contents. The total seed number did not differ significantly between the WT and OEs. Therefore, oil yield per plant was increased by 24-43% in the OE lines compared to WT. Taken together, our results demonstrate that seed-specific overexpression of the pyruvate transporter BASS2 promotes oil production in Arabidopsis seeds. Thus, manipulating the level of specific transporters is a feasible approach for increasing the seed oil content.

  13. Fatty acid composition of Tilia spp. seed oils

    USDA-ARS?s Scientific Manuscript database

    As part of a study of the seed oil fatty acid composition of Malvaceae plants, seeds of seven Tilia species (limes or linden trees) were evaluated for their fatty acid profiles. Seeds were obtained from the Germplasm Research Information Network and from various commercial sources. After extractio...

  14. Life Cycle Assessment for the Production of Oil Palm Seeds

    PubMed Central

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-01-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change. PMID:27073598

  15. Life Cycle Assessment for the Production of Oil Palm Seeds.

    PubMed

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.

  16. Integrated utilization of red radish seeds for the efficient production of seed oil and sulforaphene.

    PubMed

    Zhang, Jie; Zhou, Xing; Fu, Min

    2016-02-01

    Supercritical CO2 was used to obtain seed oil from red radish seeds. The influence of pressure, temperature, CO2 flow rate and time on extraction yield of oil were investigated in detail. The maximum extraction yield of oil was 92.07 ± 0.76% at the optimal extraction conditions. The physicochemical properties and fatty acid composition of oil indicated that the seed oil can be used as a dietary oil. Meanwhile, the high purity sulforaphene (96.84 ± 0.17%) was separated by solvent extraction coupled with preparative high performance liquid chromatography from red radish seed meal. The initial pH, R, extraction temperature and extraction time for each cycle had a considerable influence both on the extraction yield and purity of sulforaphene of crude product. The extraction of oil was directly responsible for an increase of 18.32% in the yield of sulforaphene. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Development and efficacy assessments of tea seed oil makeup remover.

    PubMed

    Parnsamut, N; Kanlayavattanakul, M; Lourith, N

    2017-05-01

    The efficacy of tea seed oil to clean foundation and eyeliner was evaluated. The safe and efficient tea seed oil makeup remover was developed. In vitro cleansing efficacy of makeup remover was UV-spectrophotometric validated. The stability evaluation by means of accelerated stability test was conducted. In vitro and in vivo cleansing efficacy of the removers was conducted in a comparison with benchmark majorly containing olive oil. Tea seed oil cleaned 90.64±4.56% of foundation and 87.62±8.35% of eyeliner. The stable with most appropriate textures base was incorporated with tea seed oil. Three tea seed oil removers (50, 55 and 60%) were stabled. The 60% tea seed oil remover significantly removed foundation better than others (94.48±3.37%; P<0.001) and the benchmark (92.32±1.33%), but insignificant removed eyeliner (87.50±5.15%; P=0.059). Tea seed oil remover caused none of skin irritation as examined in 20 human volunteers. A single-blind, randomized control exhibited that the tea seed oil remover gained a better preference over the benchmark (75.42±8.10 and 70.00±7.78%; P=0.974). The safe and efficient tea seed oil makeup removers had been developed. The consumers' choices towards the makeup remover containing the bio-oils are widen. In vitro cleansing efficacy during the course of makeup remover development using UV-spectrophotometric method feasible for pharmaceutic industries is encouraged. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  18. Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils.

    PubMed

    Bozan, Berrin; Temelli, Feral

    2008-09-01

    Three seeds of Turkish origin, flax, poppy and safflower were analyzed for their proximate, fatty acids, tocols (tocopherols and tocotrienols) and total phenolic composition, and oxidative stability of their oil. The major fatty acid in the flax oil was alpha-linolenic acid, comprising 58.3% of total fatty acids, whereas poppy and safflower oils were rich in linoleic acid at 74.5% and 70.5% level, respectively. The amount of total tocols was 14.6 mg/100g flax, 11.0mg/100g poppy and 12.1mg/100g safflower seed. Flax and poppy oil were rich in gamma-tocopherol as 79.4 mg/100g oil and 30.9 mg/100g oil, respectively, while alpha-tocopherol (44.1g/100g oil) was dominant in safflower oil. Only alpha- and gamma-tocotrienol were found in the oils. Oxidative stability of oils was measured at 110 degrees C at the rate of 20 L/h air flow rate, and poppy oil (5.56 h) was most stabile oil followed by safflower oil (2.87 h) and flax oil (1.57). There were no correlation between oxidative stability and unsaturation degree of fatty acids and tocol levels of the oils. All of the seeds investigated provide a healthy oil profile and may have potential as a source of specialty oils on a commercial scale.

  19. Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel.

    PubMed

    Saydut, Abdurrahman; Duz, M Zahir; Kaya, Canan; Kafadar, Aylin Beycar; Hamamci, Candan

    2008-09-01

    The sesame (Sesamum indicum L.) oil was extracted from the seeds of the sesame that grows in Diyarbakir, SE Anatolia of Turkey. Sesame seed oil was obtained in 58wt/wt%, by traditional solvent extraction. The methylester of sesame (Sesamum indicum L.) seed oil was prepared by transesterification of the crude oil. Transesterification shows improvement in fuel properties of sesame seed oil. This study supports the production of biodiesel from sesame seed oil as a viable alternative to the diesel fuel.

  20. Increasing the flow of carbon into seed oil.

    PubMed

    Weselake, Randall J; Taylor, David C; Rahman, M Habibur; Shah, Saleh; Laroche, André; McVetty, Peter B E; Harwood, John L

    2009-01-01

    The demand for vegetable oils for food, fuel (bio-diesel) and bio-product applications is increasing rapidly. In Canada alone, it is estimated that a 50 to 75% increase in canola oil production will be required to meet the demand for seed oil in the next 7-10years. Plant breeding and genetics have demonstrated that seed oil content is a quantitative trait based on a number of contributing factors including embryo genetic effects, cytoplasmic effects, maternal genetic effects, and genotype-environment interactions. Despite the involvement of numerous quantitative trait loci in determining seed oil content, genetic engineering to over-express/repress specific genes encoding enzymes and other proteins involved in the flow of carbon into seed oil has led to the development of transgenic lines with significant increases in seed oil content. Proteins encoded by these genes include enzymes catalyzing the production of building blocks for oil assembly, enzymes involved in oil assembly, enzymes regulating metabolic carbon partitioning between oil, carbohydrate and secondary metabolite fractions, and transcription factors which orchestrate metabolism at a more general level.

  1. Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates.

    PubMed

    Timilsena, Yakindra Prasad; Adhikari, Raju; Barrow, Colin J; Adhikari, Benu

    2016-10-01

    Chia seed oil (CSO) microcapsules were produced by using chia seed protein isolate (CPI)-chia seed gum (CSG) complex coacervates aiming to enhance the oxidative stability of CSO. The effect of wall material composition, core-to-wall ratio and method of drying on the microencapsulation efficiency (MEE) and oxidative stability (OS) was studied The microcapsules produced using CPI-CSG complex coacervates as wall material had higher MEE at equivalent payload, lower surface oil and higher OS compared to the microcapsules produced by using CSG and CPI individually. CSO microcapsules produced by using CSG as wall material had lowest MEE (67.3%) and oxidative stability index (OSI=6.6h), whereas CPI-CSG complex coacervate microcapsules had the highest MEE (93.9%) and OSI (12.3h). The MEE and OSI of microcapsules produced by using CPI as wall materials were in between those produced by using CSG and CPI-CSG complex coacervates as wall materials. The CSO microcapsules produced by using CPI-CSG complex coacervate as shell matrix at core-to-wall ratio of 1:2 had 6 times longer storage life compared to that of unencapsulated CSO. The peroxide value of CSO microcapsule produced using CPI-CSG complex coacervate as wall material was <10meq O2/kg oil during 30 days of storage. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Quantification of seed oil from species with varying oil content using supercritical fluid extraction.

    PubMed

    Seal, Charlotte E; Kranner, Ilse; Pritchard, Hugh W

    2008-01-01

    The quantity and composition of seed oil affects seed viability and storability and hence the value of a species as a resource for nutrition and plant conservation. Supercritical fluid extraction with carbon dioxide (SFE-CO2) offers a rapid, environmentally friendly alternative to traditional solvent extraction. To develop a method using SFE-CO2 to quantify the seed oil content in a broad range of species with high to low oil contents. Seed oil was extracted using SFE-CO2 from four crop species representing high, medium and low oil content: Helianthus annuus, Asteraceae, with ca. 55% oil; Brassica napus, Brassicaceae, with ca. 50% oil; Glycine max, Fabaceae, with ca. 20% oil; and Pisum sativum, Fabaceae, with ca. 2% oil. Extraction pressures of 5000, 6000 and 7500 psi and temperatures of 40, 60 and 80 degrees C were examined and a second step using 15% ethanol as a modifier included. Oil yields were compared with that achieved from Smalley Butt extraction. The optimised SFE-CO2 method was validated on six species from taxonomically distant families and with varying oil contents: Swietenia humilis (Meliaceae), Stenocereus thurberi (Cactaceae), Sinapis alba (Brassicaceae), Robinia pseudoacacia (Fabaceae), Poa pratensis (Poaceae) and Trachycarpus fortunei (Arecaceae). The two-step extraction at 6000 psi and 80 degrees C produced oil yields equivalent to or higher than Smalley Butt extraction for all species, including challenging species from the Brassicaceae family. SFE-CO2 enables the rapid analysis of seed oils across a broad range of seed oil contents.

  3. Grape Seed Oil Compounds: Biological and Chemical Actions for Health

    PubMed Central

    Garavaglia, Juliano; Markoski, Melissa M.; Oliveira, Aline; Marcadenti, Aline

    2016-01-01

    Grape seed oil is rich in phenolic compounds, fatty acids, and vitamins, with economic importance to pharmaceutical, cosmetic, and food industry. Its use as an edible oil has also been suggested, especially due to its pleasant sensory characteristics. Grape seed oil has beneficial properties for health that are mainly detected by in vitro studies, such as anti-inflammatory, cardioprotective, antimicrobial, and anticancer properties, and may interact with cellular and molecular pathways. These effects have been related to grape seed oil constituents, mainly tocopherol, linolenic acid, resveratrol, quercetin, procyanidins, carotenoids, and phytosterols. The aim of this article was to briefly review the composition and nutritional aspects of grape seed oil, the interactions of its compounds with molecular and cellular pathways, and its possible beneficial effects on health. PMID:27559299

  4. Chemical Composition and Antioxidant Capacity of Brazilian Passiflora Seed Oils.

    PubMed

    de Santana, Fernanda Carvalho; Shinagawa, Fernanda Branco; Araujo, Elias da Silva; Costa, Ana Maria; Mancini-Filho, Jorge

    2015-12-01

    The seed oils of different varieties of 4 Passiflora species cultivated in Brazil were analyzed and compared regarding their physicochemical parameters, fatty acid composition and the presence of minor components, such as phytosterols, tocopherols, total carotenoids, and phenolic compounds. The antioxidant capacities of the oil extracts were determined using the 2,2'azinobis [3-ethylbenzothiazoline-6-sulfonic acid] and oxygen radical absorbance capacity methods. The results revealed that all studied Passiflora seed oils possessed similar physicochemical characteristics, except for color, and predominantly contained polyunsaturated fatty acids with a high percentage of linolenic acid (68.75% to 71.54%). Other than the total phytosterol content, the extracted oil from Passiflora setacea BRS Pérola do Cerrado seeds had higher quantities (% times higher than the average of all samples), of carotenoids (44%), phenolic compounds (282%) and vitamin E (215%, 56%, 398%, and 100% for the α-tocopherol, β-tocopherol, γ-tocopherol, and δ-tocopherol isomers, respectively). The methanolic extracts from Passiflora setacea BRS Pérola do Cerrado seed oil also showed higher antioxidant activity, which was positively correlated with the total phenolic, δ-tocopherol, and vitamin E contents. For the first time, these results indicate that Passiflora species have strong potential regarding the use of their seeds for oil extraction. Due to their interesting composition, the seed oils may be used as a raw material in manufacturing industries in addition to other widely used vegetable oils.

  5. Distillation time as tool for improved antimalarial activity and differential oil composition of cumin seed oil

    USDA-ARS?s Scientific Manuscript database

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given...

  6. Nutrient composition of rose (Rosa canina L.) seed and oils.

    PubMed

    Ozcan, Musa

    2002-01-01

    Rose seeds were evaluated for weight of 100 seeds, moisture, crude protein, ash, crude oil, energy, and mineral content. Also, fatty acid composition was determined in the seed oils. The weight of 100 seeds, moisture, crude oil, energy, and iron (Fe) content of Ermenek rose seeds were found to be higher than those of other regions. The major fatty acids identified by gas chromatography of rose seed oils growing wild in the Hadim, Taskent, and Ermenek regions in Turkey were, respectively, as follows: palmitic (3.17%, 1.71%, and 2.14%), stearic (2.47%, 2.14%, and 1.69%), oleic (16.73%, 18.42%, and 14.71%), linoleic (54.41%, 51.71%, and 48,64%), linolenic (17.14%, 16.42%, and 18.41%), and arachidic (2.11%, 1.87%, and 2.61%). The seeds were rich in oil and minerals. The oil may be valuable for food and other uses because of its high unsaturated content.

  7. Nondestructive NMR determination of oil composition in transformed canola seeds.

    PubMed

    Hutton, W C; Garbow, J R; Hayes, T R

    1999-12-01

    Magic-angle spinning (MAS) 13C nuclear magnetic resonance (NMR) spectroscopy is a convenient method for nondestructive, quantitative characterization of seed oil composition. We describe results for intact hybrid and transformed canola seeds. The MAS 13C NMR technique complements and agrees with gas chromatography results. The spectral resolution approaches that of neat, liquid oils. MAS 13C NMR data allow quantitative analysis of major oil components, including saturates and oleic, linoleic, and linolenic acyl chains. 13C NMR directly and quantitatively elucidates, triglyceride regiochemistry and acyl chain cis-trans isomers that cannot be quickly detected by other methods. MAS 13C NMR can serve as the primary method for development of near-infrared seed oil calibrations. These NMR methods are nondestructive and attractive for plant-breeding programs or other studies (e.g., functional genomics) where loss of seed viability is inconvenient.

  8. Antitumor activity of Annona squamosa seed oil.

    PubMed

    Chen, Yong; Chen, Yayun; Shi, Yeye; Ma, Chengyao; Wang, Xunan; Li, Yue; Miao, Yunjie; Chen, Jianwei; Li, Xiang

    2016-12-04

    Custard apple (Annona squamosa Linn.) is an edible tropical fruit, and its seeds have been used to treat "malignant sore" (cancer) and other usage as insecticide. A comparison of extraction processes, chemical composition analysis and antitumor activity of A. squamosa seed oil (ASO) were investigated. The optimal extraction parameters of ASO were established by comparing percolation, soxhlet, ultrasonic and SFE-CO2 extraction methods. The chemical composition of fatty acid and content of total annonaceous acetogenins (ACGs) of ASO was investigated by GC-MS and colorimetric assay, and anti-tumor activity of ASO was tested using H22 xenografts bearing mice. The optimal extraction parameters of ASO were obtained as follows: using soxhlet extraction method with extraction solvent of petroleum ether, temperature of 80°C, and extraction time of 90min. Under these conditions, the yield of ASO was 22.65%. GC-MS analysis results showed that the main chemical compositions of fatty acid of ASO were palmitic acid (9.92%), linoleic acid (20.49%), oleic acid (56.50%) and stearic acid (9.14%). The total ACGs content in ASO was 41.00mg/g. ASO inhibited the growth of H22 tumor cells in mice with a maximum inhibitory rate of 53.54% by oral administration. Furthermore, it was found that ASO exerted an antitumor effect via decreasing interleukin-6 (IL-6), janus kinase (Jak) and phosphorylated signal transducers and activators of transcription (p-Stat3) expression. The results demonstrated that ASO suppressed the H22 solid tumor development may due to its main chemical constituents unsaturated fatty acid and ACGs via IL-6/Jak/Stat3 pathway. ASO may be a potential candidate for the treatment of cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Hypolipidemic effect of seed oil of noni (Morinda citrifolia).

    PubMed

    Pazos, Diana C; Jiménez, Fabiola E; Garduño, Leticia; López, V Eric; Cruz, M Carmen

    2011-07-01

    Morinda citrifolia, has been reported to posses different biological activities and almost all parts of this have been studied phytochemically. However there are few studies on the seeds of fruit. The objective of present study was investigated the effect to Noni Seed Oil (NSO) on serum lipid levels in normolipidemic and hyperlipidemic induced mice. We find that administration of noni oil causes a reduction in total cholesterol and triglycerides levels in both models. However hypolipidemic effect is higher when hyperlipidemia is presented.

  10. Oil content and seed yield improvements of Lesquerella fendleri (Brassicaceae)

    USDA-ARS?s Scientific Manuscript database

    Improvement in seed oil content and seed yield of Lesquerella fendleri (Gray) Wats. (Brassicaceae) could have a large impact on attracting new markets for commercialization of this new oilseed crop. There have been several previous germplasm releases for public use with improvements of these traits....

  11. Physical and chemical analysis of Passiflora seeds and seed oil from China.

    PubMed

    Liu, Shucheng; Yang, Feng; Li, Jiali; Zhang, Chaohua; Ji, Hongwu; Hong, Pengzhi

    2008-01-01

    The physical and chemical properties of seeds and seed oil from 'Tainung No. 1' passion fruit in China have been analyzed in order to evaluate their nutritional value. Proximate analysis shows that the seeds have a high amount of protein (10.8 +/- 0.60%) and are rich in oil (23.40 +/- 2.50%). The seeds are found to be a good source of minerals. They contain considerable amounts of sodium (2.980 +/- 0.002 mg/g), magnesium (1.540 +/- 0.001 mg/g), potassium (0.850 +/- 0.001 mg/g), and calcium (0.540 +/- 0.002 mg/g). The passion fruit seeds contain the 17 amino acids that are found naturally in plant protein (tryptophan is not analyzed). The essential amino acids account for 34% of the 17 amino acids. The amino acid score of passion fruit seeds protein is 74 and the first limiting amino acid is methionine and cystine. The oil extracted by solvent and supercritical dioxide carbon is liquid at room temperature and the color is golden-orange. The specific gravity of the oil is about 0.917. Comparing the chemical properties of the oil extracted by solvent with that by supercritical dioxide carbon, the latter may be suitable as edible oil directly, while the former will be edible after it must be refined to improve on clarity. Fatty acid composition of the seed oil indicates that the oil contains two essential fatty acids (linoleic acid and linolenic acid), but the content of linoleic acid (72.69 +/- 0.32%) is by far greater than that of linolenic acid (0.26 +/- 0.00%). The present analytical results show the passion fruit seed to be a potentially valuable non-conventional source for high-quality oil.

  12. Method for Attaining Caraway Seed Oil Fractions with Different Composition.

    PubMed

    Shiwakoti, Santosh; Poudyal, Shital; Saleh, Osama; Astatkie, Tess; Zheljazkov, Valtcho D

    2016-06-01

    Caraway (Carum carvi L.) is a medicinal and aromatic plant; its seeds (fruits) are used as spice and they contain essential oils. We hypothesized that by collecting caraway oil at different time points during the extraction process, we could obtain oil fractions with distinct chemical composition. A hydrodistillation time (HDT) study was conducted to test the hypothesis. The caraway seed oil fractions were collected at eight different HDT (at 0 - 2, 2 - 7, 7 - 15, 15 - 30, 30 - 45, 45 - 75, 75 - 105, and 105 - 135 min). Additionally, a non-stop HD for 135 min was conducted as a control. Most of the oil was eluted early in the HD process. The non-stop HDT treatment yielded 2.76% oil by weight. Of the 24 essential oil constituents, limonene (77 - 19% of the total oil) and carvone (20 - 79%) were the major ones. Other constituents included myrcene (0.72 - 0.16%), trans-carveol (0.07 - 0.39%), and β-caryophyllene (0.07 - 0.24%). Caraway seed oil with higher concentration of limonene can be obtained by sampling oil fractions early in HD process; conversely, oil with high concentration of carvone can be obtained by excluding the fractions eluted early in the HD process. We demonstrated a method of obtaining caraway seed oil fractions with various and unique composition. These novel oil fractions with unique composition are not commercially available and could have much wider potential uses, and also target different markets compared to the typical caraway essential oil.

  13. Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: Comparison with Helianthus annuus (sunflower) seed oil.

    PubMed

    Nehdi, Imededdine Arbi; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim

    2013-01-15

    The physicochemical properties, fatty acid, tocopherol, thermal properties, (1)H NMR, FTIR and profiles of non-conventional oil extracted from Citrullus colocynthis (L.) Schrad seeds were evaluated and compared with conventional sunflower seed oil. In addition, the antioxidant properties of C. colocynthis seed oil were also evaluated. The oil content of the C. colocynthis seeds was 23.16%. The main fatty acids in the oil were linoleic acid (66.73%) followed by oleic acid (14.78%), palmitic acid (9.74%), and stearic acid (7.37%). The tocopherol content was 121.85 mg/100g with γ-tocopherol as the major one (95.49%). The thermogravimetric analysis showed that the oil was thermally stable up to 286.57°C, and then began to decompose in four stages namely at 377.4°C, 408.4°C, 434.9°C and 559.2°C. The present study showed that this non-conventional C. colocynthis seed oil can be used for food and non-food applications to supplement or replace some of the conventional oils. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Life cycle inventory for the production of germinated oil palm seeds at a selected seed production unit in Malaysia

    NASA Astrophysics Data System (ADS)

    Khairuddin, Nik Sasha Khatrina; Ismail, B. S.; Muhamad, Halimah; May, Choo Yuen

    2013-11-01

    The increasing global demand for edible oil has encouraged Malaysia to increase the areas under oil palm cultivation. The total demand for germinated oil palm seeds in the years 2009, 2010, 2011 and 2012 were 86.4, 76.5, 72.6 and 75.2 million, respectively. Production of germinated oil palm seeds is the first link in the palm oil supply chain. Therefore, good management practices at seed production stage is required to ensure only high quality germinated oil palm seeds are produced before sale to customers. Life cycle assessment (LCA) has been used as a tool to assess environmental impact of the processes throughout a product's lifespan and this approach is an important tool for assessing green house gas (GHG) emission. For this study, a gate-to-gate life cycle inventory (LCI) of a single germinated oil palm seed production unit was carried out. The functional unit used for this LCI was one germinated oil palm seed. To determine the environmental impact for the production of germinated oil palm seeds, information on the inputs were obtained. The inputs for the production of germinated oil palm seeds involved materials such as polyethylene bags, electricity, water, chemicals and fungicides. For this study, the system boundary involved seed germination process and management of germinated oil palm seeds. It was found that the amount of input such as materials and energy used in the production of germinated oil palm seeds was very minimal.

  15. Oil body biogenesis and biotechnology in legume seeds.

    PubMed

    Song, Youhong; Wang, Xin-Ding; Rose, Ray J

    2017-09-02

    The seeds of many legume species including soybean, Pongamia pinnata and the model legume Medicago truncatula store considerable oil, apart from protein, in their cotyledons. However, as a group, legume storage strategies are quite variable and provide opportunities for better understanding of carbon partitioning into different storage products. Legumes with their ability to fix nitrogen can also increase the sustainability of agricultural systems. This review integrates the cell biology, biochemistry and molecular biology of oil body biogenesis before considering biotechnology strategies to enhance oil body biosynthesis. Cellular aspects of packaging triacylglycerol (TAG) into oil bodies are emphasized. Enhancing seed oil content has successfully focused on the up-regulation of the TAG biosynthesis pathways using overexpression of enzymes such as diacylglycerol acyltransferase1 and transcription factors such as WRINKLE1 and LEAFY COTYLEDON1. While these strategies are central, decreasing carbon flow into other storage products and maximizing the packaging of oil bodies into the cytoplasm are other strategies that need further examination. Overall there is much potential for integrating carbon partitioning, up-regulation of fatty acid and TAG synthesis and oil body packaging, for enhancing oil levels. In addition to the potential for integrated strategies to improving oil yields, the capacity to modify fatty acid composition and use of oil bodies as platforms for the production of recombinant proteins in seed of transgenic legumes provide other opportunities for legume biotechnology.

  16. Liquid-Liquid Phase Separation of Oil Bodies from Seeds.

    PubMed

    Nykiforuk, Cory L

    2016-01-01

    Fundamentally, oil bodies are discrete storage organelles found in oilseeds, comprising a hydrophobic triacylglycerol core surrounded by a half-unit phospholipid membrane and an outer shell of specialized proteins known as oleosins. Oil bodies possess a number of attributes that were exploited by SemBioSys Genetics to isolate highly enriched fractions of oil bodies through liquid-liquid phase separation for a number of commercial applications. The current chapter provides a general guide for the isolation of oil bodies from Arabidopsis and/or safflower seed, from which protocols can be refined for different oilseed sources. For SemBioSys Genetic's recombinant technology, therapeutic proteins were covalently attached to oleosins or fused in-frame with ligands which bound oil bodies, facilitating their recovery to high levels of purity during "upstream processing" of transformed seed. Core to this technology was oil body isolation consisting of simple manipulation including homogenization of seeds to free the oil bodies, followed by the removal of insoluble fractions, and phase separation to recover the oil bodies. During oil body enrichment (an increase in oil body content concomitant with removal of impurities), a number of options and tips are provided to aid researchers in the manipulation and monitoring of these robust organelles.

  17. Characterization and viscosity parameters of seed oils from wild plants.

    PubMed

    Eromosele, C O; Paschal, N H

    2003-01-01

    The physico-chemical properties of Spondias mombin seed oil and the viscosity-temperature profiles of six seed oils from other plants which grow in the wild: Balanites aegytiaca, Lophira lanceolata, Sterculia setigera, Khaya senegalensis, Ximenia americana and Sclereocarya birrea, were investigated. The oil content of S. mombin seed was significant at 31.5% (w/w). The oil appeared stable as deduced from its low peroxide and acid values of 6.0 mEq kg(-1) and 1.68 mg KOH, respectively. The X. americana oil was denser than the other ones, with a value of 0.9625 g cm(-3) at 30 degrees C. The kinematic viscosities of the oils and their temperature dependence in the range 30-70 degrees C suggested a potential industrial application of the oils as lubricating base stock. Specifically, the kinematic viscosities of the oils were in the range 59.8-938.2 cst at 30 degrees C with X. americana having the highest value. At 70 degrees C, the reduction in viscosities of the oils was marked: reduction by over 70% of their values at 30 degrees C for S. setigera, K. senegalensis, X. americana and S. birrea oils.

  18. Lubricity characteristics of seed oils modified by acylation

    USDA-ARS?s Scientific Manuscript database

    Chemically modified seed oils via acylation of epoxidized and polyhydroxylated derivatives were investigated for their potential as candidates for lubrication. The native oil was preliminarily epoxidized and ring-opened in a one-pot reaction using formic acid-H2O2 followed by aqueous HCl treatment t...

  19. Characteristics of grape seed and oil from nine Turkish cultivars.

    PubMed

    Ozcan, Mehmet Musa; Unver, Ahmet; Gümüş, Tuncay; Akın, Aydın

    2012-11-01

    Percentages of crude oil, protein, fibre and ash of grape seeds obtained from Turkish cultivars were of the ranges 5.40-10.79, 5.24-7.54, 17.6-27.1, and 1.2-2.6, respectively. The highest crude oil, crude protein and crude fibre were determined in Siyah pekmezlik, Karadimrit and Antep grape seeds. The energy values of seeds were established to be between 102.28 and 148.07 kcal g(-1). Potassium and calcium contents of seed samples were found to be at high levels compared to sodium. The seeds contained 686-967 ppm of Na, 2468-3618 ppm of K and 2373-4127 ppm of Ca. The refractive index, relative density, acidity, saponification value, unsaponifiable matter and iodine value of seed oils were determined to be in the ranges 1.474-1.477 [Formula: see text], 0.909-0.934 25/25°C, 0.74-1.24%, 181-197, 0.91-1.66%, and 126-135, respectively. The main fatty acids were of the ranges 60.7-68.5% linoleic, 16.1-23.4% oleic and 8.0-10.2% palmitic. The highest percentages of linoleic acid (68.5%) was determined in Siyah pekmezlik seed oil.

  20. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    PubMed

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  1. Amended safety assessment of Sesamum indicum (sesame) seed oil, hydrogenated sesame seed oil, Sesamum indicum (sesame) oil unsaponifiables, and sodium sesameseedate.

    PubMed

    Johnson, Wilbur; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2011-05-01

    Sesamum indicum (sesame) seed oil and related cosmetic ingredients are derived from Sesamum indicum. Sesamum indicum (sesame) seed oil, sesamum indicum (sesame) oil unsaponifiables, and hydrogenated sesame seed oil function as conditioning agents. Sodium sesameseedate functions as a cleansing agent, emulsifying agent, and a nonaqueous viscosity increasing agent. These ingredients are neither skin irritants, sensitizers, teratogens, nor carcinogens at exposures that would result from cosmetic use. Both animal and human data relevant to the cosmetic use of these ingredients were reviewed. The CIR Expert Panel concluded that these ingredients are safe in the present practices of use and concentration as described in this safety assessment.

  2. Physico-chemical composition and characterisation of the seed and seed oil of Sclerocarya birrea.

    PubMed

    Ogbobe, O

    1992-07-01

    The physicochemical composition of Sclerocarya birrea was assessed by standard methods and was found to contain 11.0% Crude oil, 17.2% Carbohydrate, 36.70% Crude protein 3.4% fibre and 0.9% crude saponins. The fatty acid distribution in the seed oil was obtained by fractionating the volatised fatty acid by GC-MS. The oil is made up of nine fatty acids of which palmitic, stearic and arachidonic acids are the most dominant.

  3. Characterization of Moringa oleifera variety Mbololo seed oil of Kenya.

    PubMed

    Tsaknis, J; Lalas, S; Gergis, V; Dourtoglou, V; Spiliotis, V

    1999-11-01

    The oil from Moringa oleifera variety Mbololo seeds from Kenya was extracted using three different procedures including cold press (CP), extraction with n-hexane (H), and extraction with a mixture of chloroform/methanol (50:50) (CM). The oil concentration ranged from 25.8% (CP) to 31.2% (CM). The density, refractive index, color, smoke point, viscosity, acidity, saponification value, iodine value, fatty acid methyl esters, sterols, tocopherols (by HPLC), peroxide value, and at 232 and 270 nm and the susceptibility to oxidation measured with the Rancimat method were determined. The oil was found to contain high levels of unsaturated fatty acids, especially oleic (up to 75.39%). The dominant saturated acids were behenic (up to 6. 73%) and palmitic (up to 6.04%). The oil was also found to contain high levels of beta-sitosterol (up to 50.07%), stigmasterol (up to 17.27%), and campesterol (up to 15.13%). alpha-, gamma-, and delta-tocopherols were detected up to levels of 105.0, 39.54, and 77. 60 mg/kg of oil, respectively. The induction period (at 120 degrees C) of M. oleifera seed oil was reduced from 44.6 to 64.3% after degumming. The M. oleifera seed oil showed high stability to oxidative rancidity. The results of all the above determinations were compared with those of a commercial virgin olive oil.

  4. Analysis of Peanut Seed Oil by NIR

    USDA-ARS?s Scientific Manuscript database

    Near infrared reflectance spectra (NIRS) were collected from Arachis hypogaea seed samples and used in predictive models to rapidly identify varieties with high oleic acid. The method was developed for shelled peanut seeds with intact testa. Spectra were evaluated initially by principal component an...

  5. Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation.

    PubMed

    Li, Yonghua; Beisson, Fred; Pollard, Mike; Ohlrogge, John

    2006-05-01

    Arabidopsis thaliana is frequently used as a model for the study of oilseed biology and metabolism. However, the very small seeds of Arabidopsis can complicate analysis of their oil content and influence the application of results to larger-seeded plants. Here, we describe how seed anatomy, light, and plant-to-plant variation influence the content and measurement of oil in Arabidopsis seeds. The anatomy of Arabidopsis and Brassica napus seeds were compared and the distribution of mass, oil and the fatty acid composition of different seed parts were determined. In Brassica, 90% of the seed oil resides in the cotyledons that contribute 74% of seed mass. By contrast, the values for Arabidopsis are 60% and 45%, respectively, with a higher fraction of the oil deposited in the radicle, hypocotyl, endosperm and seed coat. Growth of Arabidopsis plants with 600 micromol m(-2) s(-1) light resulted in a two-fold higher seed yield, a 40% increase in mass per seed and a 60% increase in oil per seed compared to growth at 100 micromol m(-2) s(-1). Factors that influence the analysis of oil content were evaluated. Intact-seed transmethylation followed by gas chromatography (GC) analysis provided reproducible analysis of Arabidopsis seed oil. However, plant-to-plant variation in oil content is large and we analyzed how this influences the ability to detect statistically valid changes in oil between different genotypes. These observations establish a reference data set on the fatty acid composition and distribution of mass and oil between tissues of Arabidopsis seeds that should help to predict the applicability of results obtained with Arabidopsis to other oilseeds.

  6. Application of response surface methodology for the optimization of supercritical fluid extraction of essential oil from pomegranate (Punica granatum L.) peel.

    PubMed

    Ara, Katayoun Mahdavi; Raofie, Farhad

    2016-07-01

    Essential oils and volatile components of pomegranate (Punica granatum L.) peel of the Malas variety from Meybod, Iran, were extracted using supercritical fluid extraction (SFE) and hydro-distillation methods. The experimental parameters of SFE that is pressure, temperature, extraction time, and modifier (methanol) volume were optimized using a central composite design after a (2(4-1)) fractional factorial design. Detailed chemical composition of the essential oils and volatile components obtained by hydro-distillation and optimum condition of the supercritical CO2 extraction were analyzed by GC-MS, and seventy-three and forty-six compounds were identified according to their retention indices and mass spectra, respectively. The optimum SFE conditions were 350 atm pressure, 55 °C temperature, 30 min extraction time, and 150 µL methanol. Results showed that oleic acid, palmitic acid and (-)-Borneol were major compounds in both extracts. The optimum extraction yield was 1.18 % (w/w) for SFE and 0.21 % (v/w) for hydro-distillation.

  7. Chemical composition of seed oils in native Taiwanese Camellia species.

    PubMed

    Su, Mong Huai; Shih, Ming Chih; Lin, Kuan-Hung

    2014-08-01

    The aim of this study was to examine the fatty acid (FA) composition and levels in seeds of twelve native Camellia species collected in different populations of major producing regions in Taiwan. The constituents of FAs varied within and among populations. Oleic acid (OA) was found to be the predominant FA constituent in all species. Remarkably high levels of unsaturated OA and linoleic acid (LA), found in two populations of Camellia tenuiflora (CT), C. transarisanensis (CTA), and C. furfuracea (CFA), were similar to those reported for olive oil. The levels of saturated palmitic acid (PA) from most of the tested seed oils were less than 13%. Among the different fats, some FAs can be used as functional ingredients for topical applications. The seed oils of CT, CTA, and CFA possess chemical compounds that make them useful in health-oriented cooking due to their high OA and LA contents and low PA content.

  8. Composition of vegetable oil from seeds of native halophytes

    Treesearch

    D. J. Weber; B. Gul; A. Khan; T. Williams; N. Williams; P. Wayman; S. Warner

    2001-01-01

    Of the world’s land area, about 7 percent is salt affected. Irrigated land is more susceptible to salinity and it is estimated that over 1/3 of the irrigated soils are becoming saline. Certain plants (halophytes) grow well on high saline soils. One approach would be to grow halophytes on high saline soils and harvest their seeds. The oil in the seeds would be extracted...

  9. Analytical characterization of Salicornia bigelovii seed oil cultivated in Pakistan.

    PubMed

    Anwar, Farooq; Bhanger, M I; Nasir, M Khalil A; Ismail, Sarwat

    2002-07-17

    Seeds of Salicornia bigelovii (hybrid variety sos-10) were collected from five coastal areas of Pakistan on the Arabian Sea. Hexane-extracted oil content was 27.2-32.0%. Results of other physical and chemical parameters of the extracted oil were as follows: iodine value, 128.0-130.5; refractive index (40 degrees C), 1.4680-1.4695; unsaponifiable matter, 1.63-2.00%; saponification value, 178.6-189.0; density (30 degrees C), 0.9036-0.9074. Tocopherols (alpha, gamma, and delta) in the oil ranged up to 200 mg/kg. The S. bigelovii seed oil was found to contain high levels of linoleic acid (74.66-79.49%) and less oleic acid (12.33-16.83%). Saturated fatty acids, palmitic and stearic acids, ranged from 7 to 8.50% and from 1.24 to 1.69%, respectively. Linolenic acid (C(18:3) omega-3) was found within the range of 1.50-2.31%. The induction period (Rancimat, 20 L/h, 120 degrees C) of the crude oil was 1.40-1.70 h. Specific extinctions at 232 and 270 nm were 1.90-2.40 and 0.40-0.62, respectively. Many parameters of S. bigelovii seed oil were quite compatible with those of safflower oil.

  10. Antihypertensive and cardioprotective effects of pumpkin seed oil.

    PubMed

    El-Mosallamy, Aliaa E M K; Sleem, Amany A; Abdel-Salam, Omar M E; Shaffie, Nermeen; Kenawy, Sanaa A

    2012-02-01

    Pumpkin seed oil is a natural product commonly used in folk medicine for treatment of prostatic hypertrophy. In the present study, the effects of treatment with pumpkin seed oil on hypertension induced by the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME) (50 mg /kg/day) in rats were studied and compared with those of the calcium channel blocker amlodipine. Pumpkin seed oil (40 or 100 mg/kg), amlodipine (0.9 mg/kg), or vehicle (control) was given once daily orally for 6 weeks. Arterial blood pressure (BP), heart rate, electrocardiogram (ECG) changes, levels of serum nitric oxide (NO) (the concentrations of nitrite/nitrate), plasma malondialdehyde (MDA), blood glutathione, and erythrocytic superoxide dismutase activity were measured. Histopathological examination of heart and aorta was conducted as well. L-NAME administration resulted in a significant increase in BP starting from the second week. Pumpkin seed oil or amlodipine treatment significantly reduced the elevation in BP by L-NAME and normalized the L-NAME-induced ECG changes-namely, prolongation of the RR interval, increased P wave duration, and ST elevation. Both treatments significantly decreased the elevated levels of MDA and reversed the decreased levels of NO metabolites to near normal values compared with the L-NAME-treated group. Amlodipine also significantly increased blood glutathione content compared with normal (but not L-NAME-treated) rats. Pumpkin seed oil as well as amlodipine treatment protected against pathological alterations in heart and aorta induced by L-NAME. In conclusion, this study has shown that pumpkin seed oil exhibits an antihypertensive and cardioprotective effects through a mechanism that may involve generation of NO.

  11. A new method for seed oil body purification and examination of oil body integrity following germination.

    PubMed

    Tzen, J T; Peng, C C; Cheng, D J; Chen, E C; Chiu, J M

    1997-04-01

    Plant seeds store triacylglycerols as energy sources for germination and postgerminative growth of seedlings. The triacylglycerols are preserved in small, discrete, intracellular organelles called oil bodies. A new method was developed to purify seed oil bodies. The method included extraction, flotation by centrifugation, detergent washing, ionic elution, treatment with a chaotropic agent, and integrity testing by use of hexane. These processes subsequently removed non-specifically associated or trapped proteins within the oil bodies. Oil bodies purified by this method maintained their integrity and displayed electrostatic repulsion and steric hindrance on their surface. Compared with the previous procedure, this method allowed higher purification of oil bodies, as demonstrated by SDS-PAGE using five species of oilseeds. Oil bodies purified from sesame were further analyzed by two-dimensional gel electrophoresis and revealed two potential oleosin isoforms. The integrity of oil bodies in germinating sesame seedlings was examined by hexane extraction. Our results indicated that consumption of triacylglycerols reduced gradually the total amount of oil bodies in seedlings, whereas no alteration was observed in the integrity of remaining oil bodies. This observation implies that oil bodies in germinating seeds are not degraded simultaneously. It is suggested that glyoxisomes, with the assistance of mitochondria, fuse and digest oil bodies one at a time, while the remaining oil bodies are preserved intact during the whole period of germination.

  12. Biochemical characterisation during seed development of oil palm (Elaeis guineensis).

    PubMed

    Kok, Sau-Yee; Namasivayam, Parameswari; Ee, Gwendoline Cheng-Lian; Ong-Abdullah, Meilina

    2013-07-01

    Developmental biochemical information is a vital base for the elucidation of seed physiology and metabolism. However, no data regarding the biochemical profile of oil palm (Elaeis guineensis Jacq.) seed development has been reported thus far. In this study, the biochemical changes in the developing oil palm seed were investigated to study their developmental pattern. The biochemical composition found in the seed differed significantly among the developmental stages. During early seed development, the water, hexose (glucose and fructose), calcium and manganese contents were present in significantly high levels compared to the late developmental stage. Remarkable changes in the biochemical composition were observed at 10 weeks after anthesis (WAA): the dry weight and sucrose content increased significantly, whereas the water content and hexose content declined. The switch from a high to low hexose/sucrose ratio could be used to identify the onset of the maturation phase. At the late stage, dramatic water loss occurred, whereas the content of storage reserves increased progressively. Lauric acid was the most abundant fatty acid found in oil palm seed starting from 10 WAA.

  13. Cannabinoid Poisoning by Hemp Seed Oil in a Child.

    PubMed

    Chinello, Matteo; Scommegna, Salvatore; Shardlow, Alison; Mazzoli, Francesca; De Giovanni, Nadia; Fucci, Nadia; Borgiani, Paola; Ciccacci, Cinzia; Locasciulli, Anna; Calvani, Mauro

    2017-05-01

    We report a case of mild cannabinoid poisoning in a preschool child, after 3-week ingestion of hemp seed oil prescribed by his pediatrician to strengthen his immune system. The patient presented neurological symptoms that disappeared after intravenous hydration. A possible mild withdrawal syndrome was reported after discharge. The main metabolite of Δ-tetrahydrocannabinol was detected in urine, and very low concentration of Δ-tetrahydrocannabinol was detected in the ingested product. This is, as far as we know, the first report of cannabinoid poisoning after medical prescription of hemp seed oil in a preschool child.

  14. Chemical composition and functional characterisation of commercial pumpkin seed oil.

    PubMed

    Procida, Giuseppe; Stancher, Bruno; Cateni, Francesca; Zacchigna, Marina

    2013-03-30

    Pumpkin (Cucurbita pepo L.) seed oil is a common product in Slovenia, Hungary and Austria and is considered a preventive agent for various pathologies, particularly prostate diseases. These properties are related to its high content of carotenoids and liposoluble vitamins. In this study the carotenoid (lutein and zeaxanthin), vitamin E (α- and γ-tocopherol) and fatty acid contents of 12 samples of commercial pumpkin seed oil were investigated together with the composition of the volatile fraction resulting from the roasting process. The aromatic profile obtained from the commercial samples was directly related to the intensity of the roasting process of the crushed pumpkin seeds. The roasting temperature played a crucial role in the concentrations of volatile substances originating from Strecker degradation, lipid peroxidation and Maillard reaction. The findings suggest that high-temperature roasting leads to the production of an oil with intense aromatic characteristics, while mild conditions, generally employed to obtain an oil with professed therapeutic characteristics, lead to a product with minor characteristic pumpkin seed oil aroma. The nutraceutical properties of the product are confirmed by the high content of α- and γ-tocopherol and carotenoids. © 2012 Society of Chemical Industry.

  15. Antioxidant activity of oils extracted from orange (Citrus sinensis) seeds.

    PubMed

    Jorge, Neuza; Silva, Ana Carolina da; Aranha, Caroline P M

    2016-05-31

    Due to the increasing production of food in the world with consequent increase of the production of waste, the importance of developing researches for its use is noticed. Thus, the interest in vegetable oils with bioactive compounds, such as the ones extracted from fruit seeds, is growing. Therefore, the present study aims to characterize the oils extracted from seeds of Hamlin, Natal, Pera-rio and Valencia orange varieties (Citrus sinensis), as to the levels of total carotenoids, total phenolic compounds, tocopherols and phytosterols, as well as to determine their antioxidant activity. The orange seed oils presented important content of total carotenoids (19.01 mg/kg), total phenolic compounds (4.43 g/kg), α-tocopherol (135.65 mg/kg) and phytosterols (1304.2 mg/kg). The antioxidant activity ranged from 56.0% (Natal) to 70.2% (Pera-rio). According to the results it is possible to conclude that the orange seed oils can be used as specialty oils in diet, since they contain considerable amounts of bioactive compounds and antioxidants.

  16. Diversity of Sterol Composition in Tunisian Pistacia lentiscus Seed Oil.

    PubMed

    Mezni, Faten; Labidi, Arbia; Khouja, Mohamed Larbi; Martine, Lucy; Berdeaux, Olivier; Khaldi, Abdelhamid

    2016-05-01

    Pistacia lentiscus L. seed oil is used in some Mediterranean forest area for culinary and medicinal purposes. In this study, we aim to examine, for the first time, the effect of growing area on sterol content of Pistacia lentiscus seed oil. Fruits were harvested from 13 different sites located in northern and central Tunisia. Gas chromatography-flame-ionization detection (GC-FID) was used to quantify sterols and gas chromatography/mass spectrometry (GC/MS) was used to identify them. The major sterol identified was β-sitosterol with a value ranging from 854.12 to 1224.09 mg/kg of oil, thus making up more than 54% of the total sterols. The other two main sterols were cycloartenol (11%) and 24-methylene-cycloartenol (5%). Statistical results revealed that growing location significantly (P < 0.001) affected phytosterol levels in these oils.

  17. Effects of seed preparation and oil pressing on milkweed (Asclepias spp.) protein functional properties

    USDA-ARS?s Scientific Manuscript database

    The effects of seed cooking and oil processing conditions on functional properties of milkweed seed proteins were determined to identify potential value-added uses for the meal. Milkweed seeds were flaked and then cooked in the seed conditioner at 82°C for 30, 60 or 90 min. Oil was extracted by scre...

  18. Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils

    PubMed Central

    Matthäus, Bertrand; Özcan, Mehmet Musa

    2015-01-01

    Oil content, fatty acid composition and the distribution of vitamin-E-active compounds of selected Turkish seeds that are typically by-products of the food processing industries (linseed, apricot, pear, fennel, peanut, apple, cotton, quince and chufa), were determined. The oil content of the samples ranged from 16.9 to 53.4 g/100 g. The dominating fatty acids were oleic acid (apricot seed oil, peanut oil, and chufa seed oil) in the range of 52.5 to 68.4 g/100 g and linoleic acid (pear seed oil, apple seed oil, cottonseed oil and quince seed oil) with 48.1 to 56.3 g/100 g, while in linseed oil mainly α-linolenic acid (53.2 g/100 g) and in fennel seed oil mainly 18:1 fatty acids (80.5 g/100 g) with petroselinic acid predominating. The total content of vitamin-E-active compounds ranged from 20.1 (fennel seed oil) to 96 mg/100 g (apple seed oil). The predominant isomers were established as α- and γ-tocopherol. PMID:26785341

  19. Characteristics, composition and oxidative stability of Lannea microcarpa seed and seed oil.

    PubMed

    Bazongo, Patrice; Bassolé, Imaël Henri Nestor; Nielsen, Søren; Hilou, Adama; Dicko, Mamoudou Hama; Shukla, Vijai K S

    2014-02-24

    The proximate composition of seeds and main physicochemical properties and thermal stability of oil extracted from Lannea microcarpa seeds were evaluated. The percentage composition of the seeds was: ash (3.11%), crude oil (64.90%), protein (21.14%), total carbohydrate (10.85%) and moisture (3.24%). Physicochemical properties of the oil were: refractive index, 1.473; melting point, 22.60°C; saponification value, 194.23 mg of KOH/g of oil; iodine value, 61.33 g of I2/100 g of oil; acid value, 1.21 mg of KOH/g of oil; peroxide value, 1.48 meq of O2/kg of oil and oxidative stability index, 43.20 h. Oleic (43.45%), palmitic (34.45%), linoleic (11.20%) and stearic (8.35%) acids were the most dominant fatty acids. Triacylglycerols with equivalent carbon number (ECN) 48 and ECN 46 were dominant (46.96% and 37.31%, respectively). The major triacylglycerol constituents were palmitoyl diolein (POO) (21.23%), followed by dipalmitoyl olein (POP) (16.47%), palmitoyl linoleyl olein (PLO) (12.03%), dipalmitoyl linolein (PLP) (10.85%) and dioleoyl linolein (LOO) (9.30%). The total polyphenol and tocopherol contents were 1.39 mg GAE g-1 DW and 578.56 ppm, respectively. γ-Tocopherol was the major tocopherol (437.23 ppm). These analytical results indicated that the L. microcarpa seed oil could be used as a frying oil and in the cosmetic industry.

  20. Alterations in Seed Development Gene Expression Affect Size and Oil Content of Arabidopsis Seeds1[C][W][OPEN

    PubMed Central

    Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

    2013-01-01

    Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds. PMID:24014578

  1. The physico-chemical properties of some citrus seeds and seed oils.

    PubMed

    Juhaimi, Fahad A L; Matthäus, Bertrand; Özcan, Mehmet Musa; Ghafoor, Kashif

    2016-03-01

    The chemical properties, mineral contents, fatty acid and tocopherol contents of seed and seed oils of some citrus genus provided from several locations in Turkey and Saudi Arabia were determined. While Ca contents of seeds were between 5018 mg/kg (Kütdiken lemon) and 7619 mg/kg (kinnow mandarin), K contents of seeds varied between 7007 mg/kg (Orlando orange) and 10334 mg/kg (kinnow mandarin). Glucose and fructose contents of citrus seed samples varied between 3.75 g/kg and 5.75 g/kg, and 4.09 g/kg and 6.03 g/kg. Palmitic, oleic and linoleic acids were established as dominant fatty acids. Palmitic, oleic and linoleic acid contents of citrus seed oils varied between 19.6% (Kütdiken lemon) and 26.2% (pineapple orange), 21.3% (kinnow mandarin) and 31.4% (Kütdiken lemon) and 32.3% (Kütdiken lemon) and 43.7% (kinnow mandarin), respectively. The total amount of tocopherols of Turkish citrus oil varied between 0.5 mg/100 g (Fremont mandarin) and 18.8 mg/100 g (bitter orange).

  2. Chemical Composition, Physicochemical Characteristics, and Nutritional Value of Lannea kerstingii Seeds and Seed Oil

    PubMed Central

    Ouilly, Judicaël Thomas; Bazongo, Patrice; Bougma, Adjima; Kaboré, Nèbpawindé; Lykke, Anne Mette; Ouédraogo, Amadé

    2017-01-01

    The chemical composition, main physicochemical properties, and nutritional value of seed flour and seed oil of Lannea kerstingii were studied. The results indicated that seeds contained 3.61% moisture, 57.85% fat, 26.39% protein, 10.07% carbohydrates, and 2.08% ash. Potassium was the predominant mineral, followed by magnesium and calcium. The essential amino acids were at higher levels than the estimated amino acid requirements of FAO/WHO/UNU except for lysine. Fatty acid composition showed that oleic acid was the major fatty acid, followed by palmitic, linoleic, and stearic acids. Physicochemical properties of the seed oil were melting point, 19.67°C; refractive index (25°C), 1.47; iodine value, 60.72/100 g of oil; peroxide value, 0.99 meq. O2/kg of oil; p-anisidine value, 0.08; total oxidation (TOTOX) value, 2.06; oxidative stability index (120°C), 52.53 h; free fatty acids, 0.39%; acid value, 0.64 mg of KOH/g of oil; saponification value, 189.73. Total amount of tocopherols, carotenoids, and sterols was 578.60, 4.60, and 929.50 mg/kg of oil, respectively. γ-Tocopherol (82%), lutein (80%), and β-sitosterol (93%) were the most abundant forms of tocopherols, carotenoids, and sterols, respectively. Seeds of L. kerstingii constitute an alternative source of stable vegetable oil and protein for nutritional and industrial applications. PMID:28255501

  3. Chemical Composition, Physicochemical Characteristics, and Nutritional Value of Lannea kerstingii Seeds and Seed Oil.

    PubMed

    Ouilly, Judicaël Thomas; Bazongo, Patrice; Bougma, Adjima; Kaboré, Nèbpawindé; Lykke, Anne Mette; Ouédraogo, Amadé; Bassolé, Imaël Henri Nestor

    2017-01-01

    The chemical composition, main physicochemical properties, and nutritional value of seed flour and seed oil of Lannea kerstingii were studied. The results indicated that seeds contained 3.61% moisture, 57.85% fat, 26.39% protein, 10.07% carbohydrates, and 2.08% ash. Potassium was the predominant mineral, followed by magnesium and calcium. The essential amino acids were at higher levels than the estimated amino acid requirements of FAO/WHO/UNU except for lysine. Fatty acid composition showed that oleic acid was the major fatty acid, followed by palmitic, linoleic, and stearic acids. Physicochemical properties of the seed oil were melting point, 19.67°C; refractive index (25°C), 1.47; iodine value, 60.72/100 g of oil; peroxide value, 0.99 meq. O2/kg of oil; p-anisidine value, 0.08; total oxidation (TOTOX) value, 2.06; oxidative stability index (120°C), 52.53 h; free fatty acids, 0.39%; acid value, 0.64 mg of KOH/g of oil; saponification value, 189.73. Total amount of tocopherols, carotenoids, and sterols was 578.60, 4.60, and 929.50 mg/kg of oil, respectively. γ-Tocopherol (82%), lutein (80%), and β-sitosterol (93%) were the most abundant forms of tocopherols, carotenoids, and sterols, respectively. Seeds of L. kerstingii constitute an alternative source of stable vegetable oil and protein for nutritional and industrial applications.

  4. Fatty acid composition of seed oil from Fremontodendron californicum

    USDA-ARS?s Scientific Manuscript database

    The fatty acid composition of the low water-use shrub Fremontodendron californicum was examined by high temperature capillary gas chromatography. The ground seeds were extracted by supercritical fluid extraction (SFE) to obtain the oil (25.6% w/w) and for subsequent determination of the fatty acid c...

  5. Extraction of oil from Euphorbia Lagascae seeds by screw pressing

    USDA-ARS?s Scientific Manuscript database

    Euphorbia lagascae (Spreng.) is a drought tolerant plant native to Spain. Euphorbia seeds contain 45-50% oil with 60-65% of its fatty acids as vernolic (12S,13R-epoxy-cis-9-octadecenoic) acid. Vernolic acid has wide applications in paints and coatings, plasticizers, adhesives, polymers, and lubrican...

  6. Methyl esters (biodiesel) from Pachyrhizus erosus seed oil

    USDA-ARS?s Scientific Manuscript database

    The search for additional or alternative feedstocks is one of the major areas of interest regarding biodiesel. In this paper, the fuel properties of Pachyrhizus erosus (commonly known as yam bean or Mexican potato or jicama) seed oil methyl esters were investigated by methods prescribed in biodiesel...

  7. FATTY ACID COMPOSITION AND TOCOPHEROL CONTENT OF PUMPKIN SEED OIL

    USDA-ARS?s Scientific Manuscript database

    Pumpkin seed oil (PSO) has high tocopherol content (TC) and unsaturated fatty acids (UFA) making it well-suited for improving human nutrition. PSO has been implicated in preventing prostate growth, retarding hypertension, mitigating hypercholesterolemia and arthritis, improved bladder compliance, a...

  8. Seed oil development of pennycress under field conditions

    USDA-ARS?s Scientific Manuscript database

    Pennycress (Thlaspi sp) has been targeted as a potential oilseed for the biofuels industry. Its seeds contain ~36% oil, where erucic acid is the major fatty acid presented with 38.1%. Additionally, the physical proprieties of the methyl esters are in the range to satisfy the needs of the biodiesel m...

  9. Seed oil composition of Paullinia cupana var. sorbilis (Mart.) Ducke.

    PubMed

    Avato, P; Pesante, M A; Fanizzi, F P; Santos, C Aimbiré de Moraes

    2003-07-01

    The chemical composition of the oil extracted from the seeds of Paullinia cupana var. sorbilis (Mart.) Ducke (syn. P. sorbilis) was investigated. Cyanolipids constituted 3% of the total oil from guaraná seeds, whereas acylglycerols accounted for 28%. 1H and 13C NMR analyses indicated that type I cyanolipids (1-cyano-2-hydroxymethylprop-2-ene-1-ol diesters) are present in the oil from P. cupana. GC and GC-MS analysis showed that cis-11-octadecenoic (cis-vaccenic acid) and cis-11-eicosenoic acids were the main FA (30.4 and 38.7%) esterified to the nitrile group. Paullinic acid (7.0%) was also an abundant component. Oleic acid (37.4%) was the dominant fatty acyl chain in the acylglycerols.

  10. Osage orange (Maclura pomifera L) seed oil poly-(-a-hydroxy dibutylamine) triglycerides: Synthesis and characterization

    USDA-ARS?s Scientific Manuscript database

    In exploring alternative vegetable oils for non-food industrial applications, especially in temperate climates, tree seed oils that are not commonly seen as competitors to soybean, peanut, and corn oils can become valuable sources of new oils. Many trees produce edible fruits and seeds while others ...

  11. Photoprotection by Punica granatum seed oil nanoemulsion entrapping polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in human keratinocyte (HaCaT) cell line.

    PubMed

    Baccarin, Thaisa; Mitjans, Montserrat; Ramos, David; Lemos-Senna, Elenara; Vinardell, Maria Pilar

    2015-12-01

    There has been an increase in the use of botanicals as skin photoprotective agents. Pomegranate (Punica granatum L.) is well known for its high concentration of polyphenolic compounds and for its antioxidant and anti-inflammatory properties. The aim of this study was to analyze the photoprotection provided by P. granatum seed oil nanoemulsion entrapping the polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in the keratinocyte HaCaT cell line. For this purpose, HaCaT cells were pretreated for 1h with nanoemulsions in a serum-free medium and then irradiated with UVB (90-200 mJ/cm(2)) rays. Fluorescence microscopy analysis provided information about the cellular internalization of the nanodroplets. We also determined the in vitro SPF of the nanoemulsions and evaluated their phototoxicity using the 3T3 Neutral Red Uptake Phototoxicity Test. The nanoemulsions were able to protect the cells' DNA against UVB-induced damage in a concentration dependent manner. Nanodroplets were internalized by the cells but a higher proportion was detected along the cell membrane. The SPF obtained (~25) depended on the concentration of the ethyl acetate fraction and pomegranate seed oil in the nanoemulsion. The photoprotective formulations were classified as non-phototoxic. In conclusion, nanoemulsions entrapping the polyphenol-rich ethyl acetate fraction show potential for use as a sunscreen product. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Physicochemical and antioxidative characteristics of Iranian pomegranate (Punica granatum L. cv. Rabbab-e-Neyriz) juice and comparison of its antioxidative activity with Zataria multiflora Boiss essential oil

    PubMed Central

    Bazargani-Gilani, Behnaz; Tajik, Hossein; Aliakbarlu, Javad

    2014-01-01

    Pomegranate juice (PJ) and its products are directly used in foods due to their pleasant taste and palatability as well as preservative effects. In spite of useful effects of essential oils such as zataria multiflora Boiss essential oil (ZEO) on prolonging shelf-life of foods, their application is restricted due to their vigorous taste and aroma. In the present study, physicochemical characteristics, chemical compositions and antioxidative activities of two Iranian native plants, PJ (Rabbab-e-Neyriz cultivar) and ZEO were investigated. 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and reducing power tests were used for measuring antioxidant activity. The level of total phenolic of them were also determined. Total soluble solids content, pH value, titratable acidity content and total anthocyanins content of PJ were also measured. Chemical compositions of ZEO were determined using gas-chromatography, mass-spectrometry (GC-MS). The results of antioxidative tests indicated that the ZEO was significantly more potent (p < 0.05) than PJ. Also the phenolic content in ZEO (262.52 mg per g) was significantly higher (p < 0.05) than PJ (154.90 mg per 100g). Chemical compositions analysis of ZEO indicated that its major components were carvacrol (59.17%), linalool (23.67%), trans-caryophyllene (3.07%) and carvacrol methyl ether (2.44%). In the present study, physicochemical and antioxidative characteristics of Rabbab-e-Neyriz PJ were determined for first time. It was aslo found that ZEO in comparison with PJ had higher antioxidative activity and total phenolic content. PMID:25610584

  13. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean

    USDA-ARS?s Scientific Manuscript database

    Demand for soybean [Glycine max (L.) Merr.] meal has increased worldwide and soybean importers often offer premiums for soybean containing higher contents of protein and oil. Objectives were to detect quantitative trait loci (QTL) associated with soybean seed protein, oil, and seed weight in a soyb...

  14. Chlorophyll and carbohydrate metabolism in developing silique and seed are prerequisite to seed oil content of Brassica napus L.

    PubMed

    Hua, Shuijin; Chen, Zhong-Hua; Zhang, Yaofeng; Yu, Huasheng; Lin, Baogang; Zhang, Dongqing

    2014-12-01

    Although the seed oil content in canola is a crucial quality determining trait, the regulatory mechanisms of its formation are not fully discovered. This study compared the silique and seed physiological characteristics including fresh and dry weight, seed oil content, chlorophyll content, and carbohydrate content in a high oil content line (HOCL) and a low oil content line (LOCL) of canola derived from a recombinant inbred line in 2010, 2011, and 2012. The aim of the investigation is to uncover the physiological regulation of silique and seed developmental events on seed oil content in canola. On average, 83% and 86% of silique matter while 69% and 63% of seed matter was produced before 30 days after anthesis (DAA) in HOCL and LOCL, respectively, over three years. Furthermore, HOCL exhibited significantly higher fresh and dry matter at most developmental stages of siliques and seeds. From 20 DAA, lipids were deposited in the seed of HOCL significantly faster than that of LOCL, which was validated by transmission electron microscopy, showing that HOCL accumulates considerable more oil bodies in the seed cells. Markedly higher silique chlorophyll content was observed in HOCL consistently over the three consecutive years, implying a higher potential of photosynthetic capacity in siliques of HOCL. As a consequence, HOCL exhibited significantly higher content of fructose, glucose, sucrose, and starch mainly at 20 to 45 DAA, a key stage of seed lipid deposition. Moreover, seed sugar content was usually higher than silique indicating the importance of sugar transportation from siliques to seeds as substrate for lipid biosynthesis. The much lower silique cellulose content in HOCL was beneficial for lipid synthesis rather than consuming excessive carbohydrate for cell wall. Superior physiological characteristics of siliques in HOCL showed advantage to produce more photosynthetic assimilates, which were highly correlated to seed oil contents.

  15. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil

    PubMed Central

    Zheljazkov, Valtcho D.; Gawde, Archana; Cantrell, Charles L.; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14–0.5% concentration range), β-pinene (3.7–10.3% range), γ-cymene (5–7.3% range), γ-terpinene (1.8–7.2% range), cumin aldehyde (50–66% range), α-terpinen-7-al (3.8–16% range), and β-terpinen-7-al (12–20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5–60 min DT, and low in the oils obtained at 240–600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0–5 and at 5–7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved

  16. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil.

    PubMed

    Zheljazkov, Valtcho D; Gawde, Archana; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range), β-pinene (3.7-10.3% range), γ-cymene (5-7.3% range), γ-terpinene (1.8-7.2% range), cumin aldehyde (50-66% range), α-terpinen-7-al (3.8-16% range), and β-terpinen-7-al (12-20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant

  17. Protein composition of oil bodies from mature Brassica napus seeds.

    PubMed

    Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Larré, Colette; Barre, Marion; Rogniaux, Hélène; d'Andréa, Sabine; Chardot, Thierry; Nesi, Nathalie

    2009-06-01

    Seed oil bodies (OBs) are intracellular particles storing lipids as food or biofuel reserves in oleaginous plants. Since Brassica napus OBs could be easily contaminated with protein bodies and/or myrosin cells, they must be purified step by step using floatation technique in order to remove non-specifically trapped proteins. An exhaustive description of the protein composition of rapeseed OBs from two double-zero varieties was achieved by a combination of proteomic and genomic tools. Genomic analysis led to the identification of sequences coding for major seed oil body proteins, including 19 oleosins, 5 steroleosins and 9 caleosins. Most of these proteins were also identified through proteomic analysis and displayed a high level of sequence conservation with their Arabidopsis thaliana counterparts. Two rapeseed oleosin orthologs appeared acetylated on their N-terminal alanine residue and both caleosins and steroleosins displayed a low level of phosphorylation.

  18. Isotope labeling-based quantitative proteomics of developing seeds of castor oil seed (Ricinus communis L.).

    PubMed

    Nogueira, Fábio C S; Palmisano, Giuseppe; Schwämmle, Veit; Soares, Emanuela L; Soares, Arlete A; Roepstorff, Peter; Domont, Gilberto B; Campos, Francisco A P

    2013-11-01

    In this study, we used a mass spectrometry-based quantification approach employing isotopic (ICPL) and isobaric (iTRAQ) labeling to investigate the pattern of protein deposition during castor oil seed (Ricinus communis L.) development, including that of proteins involved in fatty acid metabolism, seed-storage proteins (SSPs), toxins, and allergens. Additionally, we have used off-line hydrophilic interaction chromatography (HILIC) as a step of peptide fractionation preceding the reverse-phase nanoLC coupled to a LTQ Orbitrap. We were able to identify a total of 1875 proteins, and from these 1748 could be mapped to extant castor gene models, considerably expanding the number of proteins so far identified from developing castor seeds. Cluster validation and statistical analysis resulted in 975 protein trend patterns and the relative abundance of 618 proteins. The results presented in this work give important insights into certain aspects of the biology of castor oil seed development such as carbon flow, anabolism, and catabolism of fatty acid and the pattern of deposition of SSPs, toxins, and allergens such as ricin and 2S albumins. We also found, for the first time, some genes of SSP that are differentially expressed during seed development.

  19. Mineral contents of seed and seed oils of Capparis species growing wild in Turkey.

    PubMed

    Duman, Erman; Ozcan, Mehmet Musa

    2014-01-01

    The mineral contents of seed and seed oils of Capparis species growing wild in Turkey were established by inductively coupled plasma-atomic emission spectrometry. Capparis spinosa var. spinosa (2010) and Capparis ovata var. canescens variety (2009) were determined to be rich in terms of mineral matter as 19,514.60 and 16,995.92 ppm as a total, respectively. C. spinosa var. spinosa collected from Muğla-Milas region (2009) had the highest amount of Ca with 1,010.67 ppm in C. spinosa species and in C. ovata species. C. ovata var. canescens collected from Ankara-Beypazarı (2010) region had the highest amount of Ca with 833.92 ppm Ca amount in C. spinosa var. spinosa, inermis, herbaceae seeds decreased in 2010. C. spinosa var. inermis collected from Antalya-Serik (2010) in C. spinosa species had rich amount of Ca with 123.78 ppm and C. ovata var. palaestina seed oils collected from Mardin-Savur region (2009) had rich amount of Ca with 253.71 ppm in C. ovata species. The oil of C. spinosa var. herbaceae variety collected from Mardin-Midyat region (2010) was determined to have the highest major mineral matter (Ca, K, Mg, Na, and P) with 1,424.37 ppm in C. spinosa species. It was also determined that as a result, caper seed and oils were found to be important sources of nutrients and essential elements.

  20. Investigations into the chemistry and insecticidal activity of euonymus europaeus seed oil and methanol extract

    USDA-ARS?s Scientific Manuscript database

    Euonymus europaeus seeds and seed oil were investigated for their volatiles using GC-MS-FID, Headspace-SPME/GC-MS-FID, and derivative GC-MS-FID for their volatiles and HPLC-DAD-CAD/MS for their non-volatile compounds. The seeds contain about 30% of fatty oil, mainly glyceryl trioleate, small amounts...

  1. Bio-electricity Generation using Jatropha Oil Seed Cake.

    PubMed

    Raheman, Hifjur; Padhee, Debasish

    2016-01-01

    The review of patents reveals that Handling of Jatropha seed cake after extraction of oil is essential as it contains toxic materials which create environmental pollution. The goal of this work is complete utilisation of Jatropha seeds. For this purpose, Jatropha oil was used for producing biodiesel and the byproduct Jatropha seed cake was gasified to obtain producer gas. Both biodiesel and producer gas were used to generate electricity. To achieve this, a system comprising gasifier, briquetting machine, diesel engine and generator was developed. Biodiesel was produced successfully using the method patented for biodiesel production and briquettes of Jatropha seed cake were made using a vertical extruding machine. Producer gas was obtained by gasifying these briquettes in a downdraft gasifier. A diesel engine was then run in dual fuel mode with biodiesel and producer gas instead of only diesel. Electricity was generated by coupling it to a generator. The cost of producing kilowatthour of electricity with biodiesel and diesel in dual fuel mode with producer gas was found to be 0.84 $ and 0.75 $, respectively as compared to 0.69 $ and 0.5 $ for the same fuels in single fuel mode resulting in up to 48 % saving of pilot fuel. Compared to singlefuel mode, there was 25-32 % reduction in system and brake thermal efficiency along with significantly lower NOx, higher CO and CO2 emissions when the bio-electricity generating system was operated in dual fuel mode. Overall, the developed system could produce electricity successfully by completely uti- lising Jatropha seeds without leaving any seed cake to cause environmental pollution.

  2. Integrated extraction and anaerobic digestion process for recovery of nutraceuticals and biogas from pomegranate marcs

    USDA-ARS?s Scientific Manuscript database

    Pomegranate marc (PM), a by-product from pomegranate juice processing, has not been effectively utilized. The objectives of this study were to (1) determine the yields and properties of antioxidants (henceforth referring to total phenolics in terms of tannic acid equivalent) and oil extracted from v...

  3. The Effect of Camellia Seed Oil Intake on Lipid Metabolism in Mice.

    PubMed

    Satou, Tadaaki; Sato, Naoko; Kato, Haruyo; Kawamura, Mana; Watanabe, Sanae; Koike, Kazuo

    2016-04-01

    Camellia seed oil has mainly been applied to the production of cosmetics, and research into its dietary effects is required. Alterations in lipid metabolism by the intake of camellia seed oil were investigated. Health parameters such as diet intake, weight gain, fat mass, and plasma cholesterol and triglyceride levels were measured in mice fed a high fat diet containing camellia seed oil; comparisons were made to a normal diet and a high fat diet containing either soybean oil or olive oil as controls. No significant differences in weight gain and diet intake were observed between the groups. However, the camellia seed oil diet suppressed epididymal fat weight similarly to the olive oil diet. In total cholesterol and HDL (high density lipoprotein) cholesterol levels, the soybean oil, olive oil and camellia seed oil diet groups showed significant increases compared with the normal diet. However, increases in LDL (low density lipoprotein) cholesterol levels were inhibited by the camellia seed oil diet similarly to the olive oil diet. As the high oleic acid content of camellia seed oil is similar to that of olive oil, it is proposed that its presence mitigated fat accumulation and plasma cholesterol levels.

  4. Effects of specific organs on seed oil accumulation in Brassica napus L.

    PubMed

    Liu, Jing; Hua, Wei; Yang, Hongli; Guo, Tingting; Sun, Xingchao; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2014-10-01

    Seed oil content is an important agricultural characteristic in rapeseed breeding. Genetic analysis shows that the mother plant and the embryo play critical roles in regulating seed oil accumulation. However, the overwhelming majority of previous studies have focused on oil synthesis in the developing seed of rapeseed. In this study, to elucidate the roles of reproductive organs on oil accumulation, silique, ovule, and embryo from three rapeseed lines with high oil content (zy036, 6F313, and 61616) were cultured in vitro. The results suggest that zy036 silique wall, 6F313 seed coat, and 61616 embryo have positive impacts on the seed oil accumulation. In zy036, our previous studies show that high photosynthetic activity of the silique wall contributes to seed oil accumulation (Hua et al., 2012). Herein, by transcriptome sequencing and sucrose detection, we found that sugar transport in 6F313 seed coat might regulate the efficiency of oil synthesis by controlling sugar concentration in ovules. In 61616 embryos, high oil accumulation efficiency was partly induced by the elevated expression of fatty-acid biosynthesis-related genes. Our investigations show three organ-specific mechanisms regulating oil synthesis in rapeseed. This study provides new insights into the factors affecting seed oil accumulation in rapeseed and other oil crops. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Evaluation of the safety and efficacy of Lesquerella fendleri seed and oils as poultry feed additives

    USDA-ARS?s Scientific Manuscript database

    Lesquerella (Lesquerella fendleri (Gray) Wats) is an oil seed plant capable of growth over a large geographic area of the southwestern U.S. The seed oil contains hydroxyfatty acids, useful in a variety of industrial products, and can replace imported castor bean oil (Ricinus communis L.). Lesquere...

  6. Method for attaining fennel (Foeniculum vulgare Mill.) seed oil fractions with different composition and antioxidant capacity

    USDA-ARS?s Scientific Manuscript database

    Fennel (Foeniculum vulgare Mill.) is cultivated for its seeds and foliage, which contain essential oil. We hypothesized that the collection of fennel seed oil at different time points during the distillation process may result in fennel oil with distinct composition and bioactivity. We collected ess...

  7. Dehulling of cuphea seed for the production of crude oil with low chlorophyll content

    USDA-ARS?s Scientific Manuscript database

    Cuphea (PSR23) seed oil is rich in medium chain fatty acids (MCFAs). MCFAs are used in soaps, detergents, cosmetics, lubricants, and food applications. Currently, cuphea is being grown to provide oil needed for research. The oil can be extracted effectively by screw pressing flaked whole seeds. ...

  8. Study of optimal extraction conditions for achieving high yield and antioxidant activity of tomato seed oil

    USDA-ARS?s Scientific Manuscript database

    Tomato seeds resulting from tomato processing by-product have not been effectively utilized as value-added products. This study investigated the kinetics of oil extraction from tomato seeds and sought to optimize the oil extraction conditions. The oil was extracted by using hexane as solvent for 0 t...

  9. Sunflower seed oil: automotive fuel source. Final technical report

    SciTech Connect

    Denny, W.M.

    1984-01-01

    The intent of this portion of the project has to demonstrate the feasibility of utilizing sunflower seed oil as an alternate fuel for the spark ignition engine. The research was limited to small, one cylinder, air-cooled engines that are very common on the market place. Conventional fuels, such as gasoline, kerosene, diesel fuel blended with the sunflower oil were used. Sunfuel, sunflower oil, is difficult to procure and relatively expensive at approximately $4.00/gal. The research was unconcerned with how readily available or how competitively priced it was against petroleum products. All of the effort was to assume it was available and cost effective. We concentrated on making it burn in the heat engine and achieved it with marginal success. The review of the literature which was carried on concurrently with the research indicates several problems associated with producing Sunfuel.

  10. Pyrolysis of sunflower seed hulls for obtaining bio-oils.

    PubMed

    Casoni, Andrés I; Bidegain, Maximiliano; Cubitto, María A; Curvetto, Nestor; Volpe, María A

    2015-02-01

    Bio-oils from pyrolysis of as received sunflower seed hulls (SSH), hulls previously washed with acid (SSHA) and hulls submitted to a mushroom enzymatic attack (BSSH) were analyzed. The concentration of lignin, hemicellulose and cellulose varied with the pre-treatment. The liquid corresponding to SSH presented a relatively high concentration of acetic acid and a high instability to storage. The bio-oil from SSHA showed a high concentration of furfural and an appreciable amount of levoglucosenone. Lignin was degraded upon enzymatic activity, for this reason BSSH led to the highest yield of bio-oil, with relative high concentration of acetic acid and stability to storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Ultrasound induced green solvent extraction of oil from oleaginous seeds.

    PubMed

    Sicaire, Anne-Gaëlle; Vian, Maryline Abert; Fine, Frédéric; Carré, Patrick; Tostain, Sylvain; Chemat, Farid

    2016-07-01

    Ultrasound-assisted extraction of rapeseed oil was investigated and compared with conventional extraction for energy efficiency, throughput time, extraction yield, cleanness, processing cost and product quality. A multivariate study enabled us to define optimal parameters (7.7 W/cm(2) for ultrasonic power intensity, 40 °C for processing temperature, and a solid/liquid ratio of 1/15) for ultrasound-assisted extraction of oil from oilseeds to maximize lipid yield while reducing solvent consumption and extraction time using response surface methodology (RSM) with a three-variable central composite design (CCD). A significant difference in oil quality was noted under the conditions of the initial ultrasound extraction, which was later avoided using ultrasound in the absence of oxygen. Three concepts of multistage cross-current extraction were investigated and compared: conventional multistage maceration, ultrasound-assisted maceration and a combination, to assess the positive impact of using ultrasound on the seed oil extraction process. The study concludes that ultrasound-assisted extraction of oil is likely to reduce both economic and ecological impacts of the process in the fat and oil industry.

  12. Physicochemical and thermal characteristics of Australian chia seed oil.

    PubMed

    Timilsena, Yakindra Prasad; Vongsvivut, Jitraporn; Adhikari, Raju; Adhikari, Benu

    2017-08-01

    Physicochemical and thermal characteristics of Australian chia seed oil (CSO) were studied. The specific gravity, viscosity and refractive index of CSO at ambient temperature were 0.93, 43.2mPa.s and 1.48, respectively. The acid, peroxide, saponification and iodine values and unsaponifiable matter content of CSO were 2.54gKOH/kg oil, 4.33meqO2/kg oil, 197gKOH/kg oil, 204gI2/kg oil and 1.12%, respectively. α-linolenic acid is the most abundant fatty acid comprising (64.39% of total oil) followed by linoleic acid (21.46%), while saturated fatty acid content is less than 10%. This CSO contained twelve triacylglycerols (TAGs) out of which trilinolenin (αLnαLnαLn) was the most abundant comprising 33.2% of total TAG. Melting point and melting enthalpy of CSO were -34°C and 77.48J/g, respectively. CSO remained stable up to 300°C with negligible degradation. Due to these physicochemical and thermal properties, CSO is an excellent source of essential fatty acids for food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Ameliorating effects of exogenously applied proline on seed composition, seed oil quality and oil antioxidant activity of maize (Zea mays L.) under drought stress.

    PubMed

    Ali, Qasim; Anwar, Farooq; Ashraf, Muhammad; Saari, Nazamid; Perveen, Rashida

    2013-01-04

    This study was carried out to appraise whether or not the exogenous application of a potential osmoprotectant, proline, could ameliorate the adverse effects of drought stress on maize seed and seed oil composition, as well as oil antioxidant activity. Water stress reduced the kernel sugar, oil, protein and moisture contents and most of the seed macro- and micro-elements analyzed in both maize cultivars but it increased the contents of seed fiber and ash. Water stress increased the oil oleic acid content with a subsequent decrease in the amount of linoleic acid, resulting in an increased oil oleic/linoleic ratio for both maize cultivars. However, no variation was observed in oil stearic and palmitic acids content due to water stress. A considerable drought induced an increase in seed oil α-, γ-, δ- and total tocopherols and flavonoids were observed in both maize cultivars. However, oil phenolic and carotenoid content as well as 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging activity decreased. Foliar-applied proline significantly increased the content of seed sugar, oil, protein, moisture, fiber and ash in both maize cultivars under well irrigated and water deficit conditions. Furthermore, exogenous application of proline increased the oil oleic and linoleic acid contents. The concentrations of antioxidant compounds namely phenolics, carotenoids, flavonoids and tocopherols estimated in the seed oil increased due to foliar-applied proline under water deficit conditions that was positively correlated with the enhanced oil DPPH free radical scavenging activity. Moreover, the increase in the contents of these antioxidant compounds and oil antioxidant activity due to the foliar application of proline was noted to be more pronounced under water deficit conditions.

  14. Ameliorating Effects of Exogenously Applied Proline on Seed Composition, Seed Oil Quality and Oil Antioxidant Activity of Maize (Zea mays L.) under Drought Stress

    PubMed Central

    Ali, Qasim; Anwar, Farooq; Ashraf, Muhammad; Saari, Nazamid; Perveen, Rashida

    2013-01-01

    This study was carried out to appraise whether or not the exogenous application of a potential osmoprotectant, proline, could ameliorate the adverse effects of drought stress on maize seed and seed oil composition, as well as oil antioxidant activity. Water stress reduced the kernel sugar, oil, protein and moisture contents and most of the seed macro- and micro-elements analyzed in both maize cultivars but it increased the contents of seed fiber and ash. Water stress increased the oil oleic acid content with a subsequent decrease in the amount of linoleic acid, resulting in an increased oil oleic/linoleic ratio for both maize cultivars. However, no variation was observed in oil stearic and palmitic acids content due to water stress. A considerable drought induced an increase in seed oil α-, γ-, δ- and total tocopherols and flavonoids were observed in both maize cultivars. However, oil phenolic and carotenoid content as well as 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging activity decreased. Foliar-applied proline significantly increased the content of seed sugar, oil, protein, moisture, fiber and ash in both maize cultivars under well irrigated and water deficit conditions. Furthermore, exogenous application of proline increased the oil oleic and linoleic acid contents. The concentrations of antioxidant compounds namely phenolics, carotenoids, flavonoids and tocopherols estimated in the seed oil increased due to foliar-applied proline under water deficit conditions that was positively correlated with the enhanced oil DPPH free radical scavenging activity. Moreover, the increase in the contents of these antioxidant compounds and oil antioxidant activity due to the foliar application of proline was noted to be more pronounced under water deficit conditions. PMID:23344043

  15. Effective antibacterial and antioxidant properties of methanolic extract of Laurus nobilis seed oil.

    PubMed

    Ozcan, Birgul; Esen, Mari; Sangun, M Kemal; Coleri, Arzu; Caliskan, Mahmut

    2010-09-01

    This study was carried out to determine the in vitro antimicrobial and antioxidant activities of the essential oil, seed oil, and methanolic extract of seed oil obtained from Laurus nobilis L. (Lauraceae). The methanolic extract of seed oil exhibited more effective antibacterial activity comparing to essential oil and seed oil, GC-MS analyses of the essential oil resulted in the identification of 25 compounds. 1.8-Cineol (44.72%), a-Terpinyl acetate (12.95%), Sabinene (12.82%) were the main components. The fatty acid composition was characterized with the high content of linoleic acid (40.79%) and lauric acid (38.08%). The 50% (IC50) inhibition activity of the essential oil on the free radical DPPH was determined as 94.655 mg ml(-1), whereas IC50 value of methanolic extract of seed oil was found unstable. In the case of the linoleic acid system, oxidation of linoleic acid was inhibited by essential oil and methanolic extract of seed oil, which showed 64.28 and 88.76% inhibition, respectively. The inhibition value of the methanolic extract of seed oil was quite close to the synthetic antioxidant BHT, 92.46% inhibition.

  16. [Study on porous maize starch preparation and powdering coix seed oil].

    PubMed

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Ding, Dong-Mei; Sun, E; Wang, Jing; Jia, Xiao-Bin

    2013-07-01

    To optimize the preparation conditions of porous starch The porous starch was used to powder coix seed oil. Porous starch was made of maize starch by using compound enzymes of glucoamylase and alpha-amylase. The preparation process was optimized through orthogonal test design with oil absorption rate to salad oil as indexes. The effect of different dosages of porous starch on yield of triglyceride by powdering coix seed oil was studied. The triglyceride release behaviors and fluidity of powdered coix seed oil were also studied. The results showed that the optimum conditions for preparation of porous maize starch were as follows, the mass radio of glucoamylase to a-amylase was 3:1, the temperatures was 55 degrees C, pH was 5.0, and hydrolysis time was 12 h. Under these conditions, the oil absorption rate to salad oil was 98.5% for porous maize starch. Porous starch was used to power coix seed oil. When porous starch to coix seed oil was 4:1, the triglyceride yield of powering coix seed oil was up to 97.02%. The fluidity of powdered coix seed oil was favorable and control released. The preparation of powdered liquid oil with porous starch had many advantages such as simple production technology, convenient operation, low cost and was worth generalizing.

  17. Morphological and oil content variation in seeds of Azadirachta indica A. Juss. (Neem) from northern and western provenances of India.

    PubMed

    Kaura, S K; Gupta, S K; Chowdhury, J B

    1998-01-01

    Seed morphology (seed length and 20 seed weight) and oil content was studied in Azadirachta indica A. Juss. (Neem) of five provenances of northern and western India. Trees with wide ranges of girths were considered for study. Maximum average oil content was observed in trees from Hisar provenance. Seed oil content in most of the provenances was not consistently and significantly correlated with morphological parameters of seeds. Age of the tree had no significant effect on the oil yield.

  18. Fatty acid composition of two Tunisian pine seed oils.

    PubMed

    Nasri, Nizar; Khaldi, Abdelhamid; Hammami, Mohamed; Triki, Saida

    2005-01-01

    Oils were extracted from fully ripen Pinus pinea L. and Pinus halepensis Mill seeds and fatty acid composition has been established by capillary gas chromatography. Seeds are rich in lipids, 34.63-48.12% on a dry weight basis. Qualitatively, fatty acid composition of both species is identical. For P. halepensis linoleic acid is the major fatty acid (56.06% of total fatty acids) followed by oleic (24.03%) and palmitic (5.23%) acids. For P. pinea, the same fatty acids are found with the proportions 47.28%, 36.56%, and 6.67%, respectively. Extracted fatty acids from both species are mainly unsaturated, respectively, 89.87% and 88.01%. Pinus halepensis cis-5 olefinic acids are more abundant (7.84% compared to 2.24%). Results will be important as a good indication of the potential nutraceutical value of Pinus seeds as new sources of fruit oils rich in polyunsaturated fatty acids and cis-5 olefinic acids.

  19. Characteristics and composition of watermelon, pumpkin, and paprika seed oils and flours.

    PubMed

    El-Adawy, T A; Taha, K M

    2001-03-01

    The nutritional quality and functional properties of paprika seed flour and seed kernel flours of pumpkin and watermelon were studied, as were the characteristics and structure of their seed oils. Paprika seed and seed kernels of pumpkin and watermelon were rich in oil and protein. All flour samples contained considerable amounts of P, K, Mg, Mn, and Ca. Paprika seed flour was superior to watermelon and pumpkin seed kernel flours in content of lysine and total essential amino acids. Oil samples had high amounts of unsaturated fatty acids with linoleic and oleic acids as the major acids. All oil samples fractionated into seven classes including triglycerides as a major lipid class. Data obtained for the oils' characteristics compare well with those of other edible oils. Antinutritional compounds such as stachyose, raffinose, verbascose, trypsin inhibitor, phytic acid, and tannins were detected in all flours. Pumpkin seed kernel flour had higher values of chemical score, essential amino acid index, and in vitro protein digestibility than the other flours examined. The first limiting amino acid was lysine for both watermelon and pumpkin seed kernel flours, but it was leucine in paprika seed flour. Protein solubility index, water and fat absorption capacities, emulsification properties, and foam stability were excellent in watermelon and pumpkin seed kernel flours and fairly good in paprika seed flour. Flour samples could be potentially added to food systems such as bakery products and ground meat formulations not only as a nutrient supplement but also as a functional agent in these formulations.

  20. Characterisation and some possible uses of Plukenetia conophora and Adenopus breviflorus seeds and seed oils.

    PubMed

    Akintayo, E T; Bayer, E

    2002-10-01

    Two non-conventional seeds, Plukenetia conophora (PKCP) and Adenopus breviflorus (ADB) were analysed for their proximate, fatty acids, sterols composition and physico-chemical characteristics. Crude protein was 25.65% for PKCP and 28.25% for ADB. ADB had lower moisture content (4.5%) than PKCP (8.0%) indicating that the former has better shelf life. Oil yields of the seeds were 49.58% for PKCP and 56.22% for ADB. The major sterols were stigmasterol and beta-sitosterol in PKCP and ADB respectively. PKCP oil had 98.8% unsaturated fatty acids with linolenic acid predominating (70.1%) while ADB had 85.1% unsaturated fatty acids with linoleic acid being most abundant (65.3%). The very high saponification and iodine values of PKCP oil suggest its utilisation in alkyd resin, shoe polish, liquid soap and shampoo production. There is the possibility of using ADB oil in these regards as well as for edible purposes.

  1. Physico-chemical properties of Tecoma stans Linn. seed oil: a new crop for vegetable oil.

    PubMed

    Sbihi, Hassen Mohamed; Mokbli, Sadok; Nehdi, Imededdine Arbi; Al-Resayes, Saud Ibrahim

    2015-01-01

    Tecoma stans Linn. is known to have various medicinal and therapeutic properties. However, to our knowledge, no information is available regarding their seed oils. In this study, the fatty acid (FA) compositions, physico-chemical properties and antioxidant capacities of T. stans seed oils (TSOs) were investigated. The oil content of the seeds was 15%. The FAs of the TSOs were analysed by GC-MS. α-Linolenic (45.47%), oleic (23.56%), linoleic (11.48%), palmitic (6.09%) and stearic (4.12%) acids were the major detected FAs. γ-Linolenic acid and stearidonic acid, unusually FAs, were also present (1.04% and 6.65%, respectively). The total tocol content in the TSOs was found to be 266.06 mg/100 g. The main component was γ-tocopherol (78.93%). The total phenolic content (168.69 mg GAE/100 g oil) and total flavonoid content (5.54 mg CE/g oil) were also determined in the TSOs.

  2. Biodiesel from Forsythia suspense [(Thunb.) Vahl (Oleaceae)] seed oil.

    PubMed

    Jiao, Jiao; Gai, Qing-Yan; Wei, Fu-Yao; Luo, Meng; Wang, Wei; Fu, Yu-Jie; Zu, Yuan-Gang

    2013-09-01

    In the present work, Forsythia suspense seed oil (FSSO) was investigated for the first time as an alternative non-conventional feedstock for the preparation of biodiesel. The FSSO yield is 30.08±2.35% (dry weight of F. suspense seed basis), and the oil has low acid value (1.07 mg KOH/g). The fatty acid composition of FSSO exhibits the predominance of linoleic acid (72.89%) along with oleic acid (18.68%) and palmitic acid (5.65%), which is quite similar to that of sunflower oil. Moreover, microwave-assisted transesterification process of FSSO with methanol in the presence of potassium hydroxide catalyst was optimized and an optimal biodiesel yield (90.74±2.02%) was obtained. Furthermore, the fuel properties of the biodiesel product were evaluated as against ASTM D-6751 biodiesel standards and an acceptable agreement was observed except the cetane number. Overall, this study revealed the possibility of FSSO as a potential resource of biodiesel feedstock.

  3. Potent health effects of pomegranate

    PubMed Central

    Zarfeshany, Aida; Asgary, Sedigheh; Javanmard, Shaghayegh Haghjoo

    2014-01-01

    Accumulating data clearly claimed that Punica granatum L. (pomegranate) has several health benefits. Pomegranates can help prevent or treat various disease risk factors including high blood pressure, high cholesterol, oxidative stress, hyperglycemia, and inflammatory activities. It is demonstrated that certain components of pomegranate such as polyphenols have potential antioxidant, anti-inflammatory, and anticarcinogenic effects. The antioxidant potential of pomegranate juice is more than that of red wine and green tea, which is induced through ellagitannins and hydrosable tannins. Pomegranate juice can reduce macrophage oxidative stress, free radicals, and lipid peroxidation. Moreover, pomegranate fruit extract prevents cell growth and induces apoptosis, which can lead to its anticarcinogenic effects. In addition, promoter inhibition of some inflammatory markers and their production are blocked via ellagitannins. In this article, we highlight different studies on the therapeutic effects of pomegranate and their suggested mechanisms of actions. PMID:24800189

  4. Potent health effects of pomegranate.

    PubMed

    Zarfeshany, Aida; Asgary, Sedigheh; Javanmard, Shaghayegh Haghjoo

    2014-01-01

    Accumulating data clearly claimed that Punica granatum L. (pomegranate) has several health benefits. Pomegranates can help prevent or treat various disease risk factors including high blood pressure, high cholesterol, oxidative stress, hyperglycemia, and inflammatory activities. It is demonstrated that certain components of pomegranate such as polyphenols have potential antioxidant, anti-inflammatory, and anticarcinogenic effects. The antioxidant potential of pomegranate juice is more than that of red wine and green tea, which is induced through ellagitannins and hydrosable tannins. Pomegranate juice can reduce macrophage oxidative stress, free radicals, and lipid peroxidation. Moreover, pomegranate fruit extract prevents cell growth and induces apoptosis, which can lead to its anticarcinogenic effects. In addition, promoter inhibition of some inflammatory markers and their production are blocked via ellagitannins. In this article, we highlight different studies on the therapeutic effects of pomegranate and their suggested mechanisms of actions.

  5. Improved Estimation of Oil, Linoleic and Oleic Acid and Seed Hull Fractions in Safflower by NIRS.

    PubMed

    Rudolphi, Sabine; Becker, Heiko C; Schierholt, Antje; von Witzke-Ehbrecht, Sabine

    2012-03-01

    Near-infrared reflectance spectroscopy (NIRS) of intact seeds allows the non-destructive estimation of seed quality parameters which is highly desirable in plant breeding. Together with yield, oil content and quality, a main aim in safflower (Carthamus tinctorius L.) breeding is the selection of genotypes with a low percentage of empty seeds even under cooler climates. We developed NIRS calibrations for seed oil content, oleic and linoleic acid content, the seed hull fraction and the percentage of empty seeds using seed meal and intact seeds. For the different calibrations 108-534 samples from a safflower breeding program with lines adapted to German conditions, were analyzed with reference analyses (Soxhlet, gas chromatography), and scanned by NIRS as intact seeds and seed meal. Calibration equations were developed and tested through cross validation. The coefficient of determination of the calibration (R(2)) for intact seeds ranged from 0.91(oil content), 0.90 (seed hull fraction), 0.84 (empty seeds), 0.73 (linoleic acid) to 0.68 (oleic acid). The coefficient of determination of the cross validation was higher for seed meal than for intact seeds except for the parameter seed hull fraction. The results show that NIRS calibrations are applicable in safflower breeding programs for a fast screening.

  6. Proximate composition, extraction, characterization and comparative assessment of coconut (Cocos nucifera) and melon (Colocynthis citrullus) seeds and seed oils.

    PubMed

    Obasi, N A; Ukadilonu, Joy; Eze, Eberechukwu; Akubugwo, E I; Okorie, U C

    2012-01-01

    Proximate composition, extraction, characterization and comparative assessment of Cocos nucifera and Colocynthis citrullus seeds and seed oils were evaluated in this work using standard analytical techniques. The results showed the percentage (%) moisture, crude fibre, ash, crude protein, lipids and total carbohydrate contents of the seeds as 7.51 and 4.27, 7.70 and 5.51, 1.02 and 2.94, 10.57 and 11.67, 47.80 and 50.42 and 32.84 and 29.47 while the calorific values were 553.99 and 567.32 Kcal/100 g for C. nucifera and C. citrullus, respectively. The two seed oils were odourless and at room temperature (30 degrees C) liquids, with a pale yellow to yellowish colouration. Lipid indices of the seed oils indicated the Acid Values (AV) as 2.06-6.36 mg NaOH g(-1) and 2.99-6.17 mg NaOH g(-1), Free Fatty Acids (FFA) as 1.03-3.18 and 1.49-3.09%, Saponification Values (SV) as 252.44-257.59 and 196.82-201.03 mg KOH g(-1), Iodine Values (IV) as 9.73-10.99 and 110.93-111.46 mg of I2 g(-1) of oil and Peroxide Values (PV) as 0.21-0.21 and 1.53-2.72 mg O2 kg(-1) for soxhlet-mechanical extracted C. nucifera and C. citrullus seed oils, respectively. The studied characteristics of the oil extracts in most cases compared favourably with most conventional vegetable oils sold in the Nigeria markets; however, there were some observed levels of significant differences in the values at p < or = 0.05. These results suggest that the seeds examined may be nutritionally potent and also viable sources of seed oils judging by their oil yield. The data also showed that the seed oils were edible inferring from their low AV and their corresponding low FFA contents. Industrially, the results revealed the seed oils to have great potentials in soap manufacturing industries because of their high SV. They were also shown to be non-drying due to their low IV which also suggested that the oils contain few unsaturated bonds and therefore have low susceptibility to oxidative rancidity and deterioration as

  7. Seed oil polyphenols: rapid and sensitive extraction method and high resolution-mass spectrometry identification.

    PubMed

    Koubaa, Mohamed; Mhemdi, Houcine; Vorobiev, Eugène

    2015-05-01

    Phenolic content is a primary parameter for vegetables oil quality evaluation, and directly involved in the prevention of oxidation and oil preservation. Several methods have been reported in the literature for polyphenols extraction from seed oil but the approaches commonly used remain manually handled. In this work, we propose a rapid and sensitive method for seed oil polyphenols extraction and identification. For this purpose, polyphenols were extracted from Opuntia stricta Haw seed oil, using high frequency agitation, separated, and then identified using a liquid chromatography-high resolution mass spectrometry method. Our results showed good sensitivity and reproducibility of the developed methods.

  8. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars.

    PubMed

    Stevenson, David G; Eller, Fred J; Wang, Liping; Jane, Jay-Lin; Wang, Tong; Inglett, George E

    2007-05-16

    Twelve pumpkin cultivars (Cucurbita maxima D.), cultivated in Iowa, were studied for their seed oil content, fatty acid composition, and tocopherol content. Oil content ranged from 10.9 to 30.9%. Total unsaturated fatty acid content ranged from 73.1 to 80.5%. The predominant fatty acids present were linoleic, oleic, palmitic, and stearic. Significant differences were observed among the cultivars for stearic, oleic, linoleic, and gadoleic acid content of oil. Low linolenic acid levels were observed (<1%). The tocopherol content of the oils ranged from 27.1 to 75.1 microg/g of oil for alpha-tocopherol, from 74.9 to 492.8 microg/g for gamma-tocopherol, and from 35.3 to 1109.7 microg/g for delta-tocopherol. The study showed potential for pumpkin seed oil from all 12 cultivars to have high oxidative stability that would be suitable for food and industrial applications, as well as high unsaturation and tocopherol content that could potentially improve the nutrition of human diets.

  9. Pumpkin Seed Oil Extracted From Cucurbita maxima Improves Urinary Disorder in Human Overactive Bladder

    PubMed Central

    Nishimura, Mie; Ohkawara, Tatsuya; Sato, Hiroji; Takeda, Hiroshi; Nishihira, Jun

    2014-01-01

    The pumpkin seed oil obtained from Cucurbita pepo has been shown to be useful for the treatment of nocturia in patients with urinal disorders in several western countries. In this study, we evaluated the effect of the pumpkin seed oil from Cucurbita maxima on urinary dysfunction in human overactive bladder (OAB). Forty-five subjects were enrolled in this study. An extract of pumpkin seed oil from C. maxima (10 g of oil/day) was orally administrated for 12 weeks. After 6 and 12 weeks, urinary function was evaluated using Overactive Bladder Symptom Score (OABSS). Pumpkin seed oil from C. maxima significantly reduced the degree of OABSS in the subjects. The results from our study suggest that pumpkin seed oil extracts from C. maxima as well as from C. pepo are effective for urinary disorders such as OAB in humans. PMID:24872936

  10. Pumpkin Seed Oil Extracted From Cucurbita maxima Improves Urinary Disorder in Human Overactive Bladder.

    PubMed

    Nishimura, Mie; Ohkawara, Tatsuya; Sato, Hiroji; Takeda, Hiroshi; Nishihira, Jun

    2014-01-01

    The pumpkin seed oil obtained from Cucurbita pepo has been shown to be useful for the treatment of nocturia in patients with urinal disorders in several western countries. In this study, we evaluated the effect of the pumpkin seed oil from Cucurbita maxima on urinary dysfunction in human overactive bladder (OAB). Forty-five subjects were enrolled in this study. An extract of pumpkin seed oil from C. maxima (10 g of oil/day) was orally administrated for 12 weeks. After 6 and 12 weeks, urinary function was evaluated using Overactive Bladder Symptom Score (OABSS). Pumpkin seed oil from C. maxima significantly reduced the degree of OABSS in the subjects. The results from our study suggest that pumpkin seed oil extracts from C. maxima as well as from C. pepo are effective for urinary disorders such as OAB in humans.

  11. Physicochemical properties and aroma volatile profiles in a diverse collection of California-grown pomegranate (Punica granatum L.) germplasm

    USDA-ARS?s Scientific Manuscript database

    There are thousands of pomegranate accessions and more than 500 known pomegranate cultivars with around 50 available commercially, exhibiting different growing characteristics and quality attributes; such as fruit size, color, shape, seed hardness, taste and flavor traits which are sometimes not wel...

  12. Evaluation and Characterization of Malabar Tamarind [Garcinia cambogia (Gaertn.) Desr.] Seed Oil.

    PubMed

    Choppa, Tharachand; Selvaraj, Chinnadurai Immanuel; Zachariah, Abraham

    2015-09-01

    The objective of this study is to evaluate the chemical compounds present in the Malabar tamarind seed oil. The oil was extracted from the seeds of Malabar tamarind fruits collected from NBPGR Regional station, Thrissur. The seeds yielded 46.5 % of oil. Parameters such as the peroxide value, iodine value, saponification value, and acid value of the extracted Malabar tamarind seed oil were determined. These values were used to predict the quality of fatty acid methyl esters present in the oil. UV absorption spectroscopy of the oil showed hypsochromic shift, and the maximum absorbance was at 269 nm. The Fourier Transform Infrared Spectrum revealed the presence of olefin hydrogen and carbonyl group of ester compounds in the oil sample. The evaluation of the chemical compounds in the oil using gas chromatography coupled with mass spectrometry (GC-MS) revealed that, a total of five fatty acid methyl esters were present in the oil sample. Among the five fatty acid esters present in the Malabar tamarind seed oil, Methyl 16-methyl heptadecanoate (54.57 %) was found to be the predominant compound. This study also supports the presence of olefins in the long chain fatty acids from Nuclear Magnetic Resonance (NMR) data. There is a significant correlation between the properties and the characteristic profile of the oil sample. This study is the first report that shows Malabar tamarind as a promising source of oil seeds.

  13. [Supercritical CO2 extraction and component analysis of Aesculus wilsonii seed oil].

    PubMed

    Chen, Guang-Yu; Shi, Zhao-Hua; Li, Hai-Chi; Ge, Fa-Huan; Zhan, Hua-Shu

    2013-03-01

    To research the optimal extraction process of supercritical CO2 extraction and analyze the component of the oil extracted from Aesculus wilsonii seed. Using the yield of Aesculus wilsonii seed oil as the index, optimized supercritical CO2 extraction parameter by orthogonal experiment methodology and analysed the compounds of Aesculus wilsonii seed oil by GC-MS. The optimal parameters of the supercritical CO2 extraction of the oil extracted from Aesculus wilsoniit seed were determined: the extraction pressure was 28 MPa and the temperature was 38 degrees C, the separation I pressure was 12 MPa and the temperature was 40 degrees C, the separation II pressure was 5 MPa and the temperature was 40 degrees C, the extraction time was 110 min. The average extraction rate of Aesculus wilsonii seed oil was 1.264%. 26 kinds of compounds were identified by GC-MS in Aesculus wilsonii seed oil extracted by supercritical CO2. The main components were fatty acids. Comparing with the petroleum ether extraction, the supercritical CO2 extraction has higher extraction rate, shorter extraction time, more clarity oil. The kinds of fatty acids with high amounts in Aesculus wilsonii seed oil is identical in general, the kinds of fatty acids with low amounts in Aesculus wilsonii seed oil have differences.

  14. Selection for a zinc-finger protein contributes to seed oil increase during soybean domestication.

    PubMed

    Li, Qing-Tian; Lu, Xiang; Song, Qingxin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Bian, Xiao-Hua; Shen, Ming; Ma, Biao; Zhang, Wan-Ke; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Lam, Sin Man; Shui, Guanghou; Chen, Shou-Yi; Zhang, Jin-Song

    2017-02-09

    Seed oil is a momentous agronomical trait of soybean targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, the knowledge of regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that seed-preferred gene GmZF351 encoding tandem CCCH zinc finger protein is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRI1, BCCP2, KASIII, TAG1 and OLEO2 in transgenic Arabidopsis seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. ZF351 haplotype from Glycine max group and Glycine soja subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation and manipulation of GmZF351 may have great potential in improvement of oil production in soybean and other related crops.

  15. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies.

    PubMed

    Lin, Li-Jen; Tai, Sorgan S K; Peng, Chi-Chung; Tzen, Jason T C

    2002-04-01

    Besides abundant oleosin, three minor proteins, Sop 1, 2, and 3, are present in sesame (Sesamum indicum) oil bodies. The gene encoding Sop1, named caleosin for its calcium-binding capacity, has recently been cloned. In this study, Sop2 gene was obtained by immunoscreening, and it was subsequently confirmed by amino acid partial sequencing and immunological recognition of its overexpressed protein in Escherichia coli. Immunological cross recognition implies that Sop2 exists in seed oil bodies of diverse species. Along with oleosin and caleosin genes, Sop2 gene was transcribed in maturing seeds where oil bodies are actively assembled. Sequence analysis reveals that Sop2, tentatively named steroleosin, possesses a hydrophobic anchoring segment preceding a soluble domain homologous to sterol-binding dehydrogenases/reductases involved in signal transduction in diverse organisms. Three-dimensional structure of the soluble domain was predicted via homology modeling. The structure forms a seven-stranded parallel beta-sheet with the active site, S-(12X)-Y-(3X)-K, between an NADPH and a sterol-binding subdomain. Sterol-coupling dehydrogenase activity was demonstrated in the overexpressed soluble domain of steroleosin as well as in purified oil bodies. Southern hybridization suggests that one steroleosin gene and certain homologous genes may be present in the sesame genome. Comparably, eight hypothetical steroleosin-like proteins are present in the Arabidopsis genome with a conserved NADPH-binding subdomain, but a divergent sterol-binding subdomain. It is indicated that steroleosin-like proteins may represent a class of dehydrogenases/reductases that are involved in plant signal transduction regulated by various sterols.

  16. Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-02-01

    Soybean seed is a major source of oil for human consumption worldwide and the main renewable feedstock for biodiesel production in North America. Increasing seed oil concentration in soybean [Glycine max (L.) Merrill] with no or minimal impact on protein concentration could be accelerated by exploiting quantitative trait loci (QTL) or gene-specific markers. Oil concentration in soybean is a polygenic trait regulated by many genes with mostly small effects and which is negatively associated with protein concentration. The objectives of this study were to discover and validate oil QTL in two recombinant inbred line (RIL) populations derived from crosses between three moderately high-oil soybean cultivars, OAC Wallace, OAC Glencoe, and RCAT Angora. The RIL populations were grown across several environments over 2 years in Ontario, Canada. In a population of 203 F(3:6) RILs from a cross of OAC Wallace and OAC Glencoe, a total of 11 genomic regions on nine different chromosomes were identified as associated with oil concentration using multiple QTL mapping and single-factor ANOVA. The percentage of the phenotypic variation accounted for by each QTL ranged from 4 to 11 %. Of the five QTL that were tested in a population of 211 F(3:5) RILs from the cross RCAT Angora × OAC Wallace, a "trait-based" bidirectional selective genotyping analysis validated four QTL (80 %). In addition, a total of seven two-way epistatic interactions were identified for oil concentration in this study. The QTL and epistatic interactions identified in this study could be used in marker-assisted introgression aimed at pyramiding high-oil alleles in soybean cultivars to increase oil concentration for biodiesel as well as edible oil applications.

  17. Diversity in oil content and fatty acid profile in seeds of wild cassava germplasm

    USDA-ARS?s Scientific Manuscript database

    Cassava (Manihot esculenta) is the only commercial species of the Manihot genus, cultivated for its starchy tuber roots. However, cassava seeds are known to be rich in oils and fats, there are scant reports on the content and properties of oil from cassava seeds and its wild relatives. Wild Manihot ...

  18. Diversity in oil content and fatty acid profile in seeds of Manihot species

    USDA-ARS?s Scientific Manuscript database

    Cassava (Manihot esculenta) is the only commercial species of the genus, cultivated mainly for its starchy tuber roots. Cassava seeds are known to be rich in oils and fats. However, there are very scant reports on the content and properties of oil from cassava seeds and its wild relatives, which usu...

  19. Identification and characterization of large DNA deletions affecting oil quality traits in soybean seeds through transcriptome sequencing analysis

    USDA-ARS?s Scientific Manuscript database

    Understanding the molecular and genetic mechanisms underlying variation in seed composition and contents among different genotypes is important for soybean oil quality improvement. We designed a bioinformatics approach to compare seed transcriptomes of 9 soybean genotypes varying in oil composition ...

  20. Tissue culture-mediated biotechnological intervention in pomegranate: a review.

    PubMed

    Naik, Soumendra K; Chand, Pradeep K

    2011-05-01

    The past 30 years have witnessed a series of systematic biotechnological advances made in pomegranate. These encompass optimization and establishment of in vitro culture techniques including micropropagation, somatic embryogenesis, synthetic seed production, plant regeneration via callus-mediated shoot organogenesis, adventitious shoot regeneration, anther culture, tetraploid induction and genetic transformation. This review attempts to provide a comprehensive account on the tissue culture-mediated biotechnological interventions made in pomegranate aimed at complementing conventional programmes for improvement of this nutraceutically important fruit crop.

  1. Agricultural practices altered soybean seed protein, oil, fattyacids,sugars, and minerals in the Midsouth USA

    USDA-ARS?s Scientific Manuscript database

    Management practices such as seeding rate (SR), planting date (PD), and row-type (RT: single- and twin-rows) may alter seed nutrition in soybean. The objective of this research was to investigate the effects of SR and PD on soybean seed composition (protein, oil, fatty acids, and sugars) and mineral...

  2. Genetic variability for phenotype, seed production, oil content, and fatty acid composition among 17 Roselle (Hibiscus sabdariffa) accessions

    USDA-ARS?s Scientific Manuscript database

    Seed oil and fatty acids in plants have human health implications. Oil from roselle (Hibiscus sabdariffa L.) seeds are used in Taiwan as a diuretic, laxative, and tonic. The objectives of this study were to evaluate seeds from 17 roselle accessions for oil and fatty acid variation in a greenhouse. S...

  3. Characterization of Canadian black currant (Ribes nigrum L.) seed oils and residues.

    PubMed

    Bakowska-Barczak, Anna M; Schieber, Andreas; Kolodziejczyk, Paul

    2009-12-23

    The seeds from five black currant (Ribes nigrum L.) cultivars grown in western Canada were evaluated for their oil content, fatty acid and triacylglycerol (TAG) composition, and tocopherol and phytosterol profiles and contents. Moreover, polyphenolic compounds and antioxidant activity in the seed extracts remaining after oil extraction were determined. Oil contents of black currant seeds ranged from 27 to 33%. The gamma-linolenic acid content varied significantly among the cultivars (from 11% for Ben Conan to 17% for Ben Tirran). Among the 44 TAGs identified, LLalphaLn, alphaLnLgammaLn, and PLgammaLn (where L = linoleoyl, alphaLn = alpha-linolenoyl, gammaLn = gamma-linolenoyl, and P = palmitoyl) were the predominant ones. Black currant seed oil was a good source of tocopherols (1143 mg/100 g of oil on average) and phytosterols (6453 mg/100 g of oil on average). Quercetin-3-glucoside and p-coumaric acid were the main phenolic components in the seed residues. The high concentration of flavonols and phenolic acids was correlated with a high antioxidant activity of seed residue (average ABTS value of 1.5 mM/100 g and DPPH value of 1.2 mM/100 g). The data obtained from this study indicate that Canadian black currant seed oil is a good source of essential fatty acids, tocopherols, and phytosterols. Extraction of phenolic antioxidants from the seed residues even allows the recovery of additional valuable components from the byproduct of fruit processing.

  4. Genetic analysis of seed yield, oil content and their components in safflower (Carthamus tinctorius L.).

    PubMed

    Ramachandram, M; Goud, J V

    1981-05-01

    The genetic architecture of seed yield, oil content and their components was studied in a diallel cross of F1 and F2: eleven parents, representing an adequate diversity for all considered characters in safflower were used. Combining ability analysis revealed the predominance of gca variance for plant height, total capitula, seed weight, seed number and seed yield in F1 and F2 generations and for days to flowering and oil content in F1. The analysis of components of variance indicated that the non-additive factor was the major influence on total capitula and seed yield in F1s, and F2s, and on plant height, seed weight and seed number in the F2 alone. The heterogeneity of the dominance component over generations has been attributed to coupling phase linkage. All four Indian parents, namely S 144, A1, MS 49 and 6 spl, together with G 1157 and US 104 in the exotic group, were the best combiners for seed yield and/or for one of its components while the remainder of the exotic parents were characterized by high gca effects for oil content. VFstp 1 and Frio were the only parents approximating both properties of oil content and seed yield. Breeding methods, such as biparental mating followed by reciprocal recurrent selection, were suggested for the simultaneous improvement of seed yield and oil content.

  5. Quality and characteristics of fermented ginseng seed oil based on bacterial strain and extraction method.

    PubMed

    Lee, Myung-Hee; Rhee, Young-Kyoung; Choi, Sang-Yoon; Cho, Chang-Won; Hong, Hee-Do; Kim, Kyung-Tack

    2017-07-01

    In this study, the fermentation of ginseng seeds was hypothesized to produce useful physiologically-active substances, similar to that observed for fermented ginseng root. Ginseng seed was fermented using Bacillus, Pediococcus, and Lactobacillus strains to extract ginseng seed oil, and the extraction yield, color, and quantity of phenolic compounds, fatty acids, and phytosterol were then analyzed. The ginseng seed was fermented inoculating 1% of each strain on sterilized ginseng seeds and incubating the seeds at 30°C for 24 h. Oil was extracted from the fermented ginseng seeds using compression extraction, solvent extraction, and supercritical fluid extraction. The color of the fermented ginseng seed oil did not differ greatly according to the fermentation or extraction method. The highest phenolic compound content recovered with the use of supercritical fluid extraction combined with fermentation using the Bacillus subtilis Korea Food Research Institute (KFRI) 1127 strain. The fatty acid composition did not differ greatly according to fermentation strain and extraction method. The phytosterol content of ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method was highest at 983.58 mg/100 g. Therefore, our results suggested that the ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method can yield a higher content of bioactive ingredients, such as phenolics, and phytosterols, without impacting the color or fatty acid composition of the product.

  6. Determination of antimicrobial activity and resistance to oxidation of moringa peregrina seed oil.

    PubMed

    Lalas, Stavros; Gortzi, Olga; Athanasiadis, Vasilios; Tsaknis, John; Chinou, Ioanna

    2012-02-24

    The antimicrobial activity of the oil extracted with n-hexane from the seeds of Moringa peregrina was tested against Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Candida albicans, C. tropicalis and C. glabrata. The oil proved effective against all of the tested microorganisms. Standard antibiotics (netilmycin, 5-flucytocine, intraconazole and 7-amino-4-methylcoumarin-3-acetic acid) were used for comparison. The resistance to oxidation of the extracted seed oil was also determined.

  7. Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds.

    PubMed

    Miquel, Martine; Trigui, Ghassen; d'Andréa, Sabine; Kelemen, Zsolt; Baud, Sébastien; Berger, Adeline; Deruyffelaere, Carine; Trubuil, Alain; Lepiniec, Loïc; Dubreucq, Bertrand

    2014-04-01

    Oil bodies (OBs) are seed-specific lipid storage organelles that allow the accumulation of neutral lipids that sustain plantlet development after the onset of germination. OBs are covered with specific proteins embedded in a single layer of phospholipids. Using fluorescent dyes and confocal microscopy, we monitored the dynamics of OBs in living Arabidopsis (Arabidopsis thaliana) embryos at different stages of development. Analyses were carried out with different genotypes: the wild type and three mutants affected in the accumulation of various oleosins (OLE1, OLE2, and OLE4), three major OB proteins. Image acquisition was followed by a detailed statistical analysis of OB size and distribution during seed development in the four dimensions (x, y, z, and t). Our results indicate that OB size increases sharply during seed maturation, in part by OB fusion, and then decreases until the end of the maturation process. In single, double, and triple mutant backgrounds, the size and spatial distribution of OBs are modified, affecting in turn the total lipid content, which suggests that the oleosins studied have specific functions in the dynamics of lipid accumulation.

  8. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds.

    PubMed

    Kozłowska, Mariola; Gruczyńska, Eliza; Ścibisz, Iwona; Rudzińska, Magdalena

    2016-12-15

    This study determined and compared the contents of bioactive components in plant seed oils extracted with n-hexane (Soxhlet method) and chloroform/methanol (Folch method) from coriander, caraway, anise, nutmeg and white mustard seeds. Oleic acid dominated among unsaturated fatty acids in nutmeg and anise seed oils while petroselinic acid was present in coriander and caraway oils. Concerning sterols, β-sitosterol was the main component in seed oils extracted with both methods. The content of total phenolics in nutmeg, white mustard and coriander seed oils extracted with chloroform/methanol was higher than in their counterparts prepared with n-hexane. The seed oil samples extracted according to the Folch method exhibited a higher ability to scavenge DPPH radicals compared to the oil samples prepared with the Soxhlet method. DPPH values of the methanolic extracts derived from oils produced with the Folch method were also higher than in the oils extracted with n-hexane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Supercritical fractional extraction of fennel seed oil and essential oil: Experiments and mathematical modeling

    SciTech Connect

    Reverchon, E.; Marrone, C.; Poletto, M.; Daghero, J.; Mattea, M.

    1999-08-01

    Supercritical CO{sub 2} extraction of fennel seeds has been performed in two steps; the first step was performed at 90 bar and 50 C to obtain the selective extraction of essential oil. The second one was performed at 200 bar and 40 C and allowed the extraction of vegetable oil. The experiments were performed using the fractional separation of the extracts using three different CO{sub 2} flow rates (0.5, 1.0, and 1.5 kg/h). On the basis of the extraction results and of the analysis of scanning electron microscopy (SEM) images of the vegetable matter, mathematical models of the two extraction processes have been proposed. The extraction of fennel vegetable oil has been modeled using a model based on differential mass balances and on the concept of broken and intact cells as evidenced by SEM. Only one adjustable parameter has been used: the internal mass-transfer coefficient k{sub t}. A fairly good fitting of the experimental data was obtained by setting k{sub t} = 8 {times} 10{sup {minus}8} m/s. The fennel essential oil extraction process was modeled as desorption from the vegetable matter plus a small mass-transfer resistance. The same internal mass-transfer coefficient value used for vegetable oil extraction allowed a fairly good fitting of the essential oil extraction data.

  10. Oil Biosynthesis in Underground Oil-Rich Storage Vegetative Tissue: Comparison of Cyperus esculentus Tuber with Oil Seeds and Fruits.

    PubMed

    Yang, Zhenle; Ji, Hongying; Liu, Dantong

    2016-12-01

    Cyperus esculentus is unique in that it can accumulate rich oil in its tubers. However, the underlying mechanism of tuber oil biosynthesis is still unclear. Our transcriptional analyses of the pathways from pyruvate production up to triacylglycerol (TAG) accumulation in tubers revealed many distinct species-specific lipid expression patterns from oil seeds and fruits, indicating that in C. esculentus tuber: (i) carbon flux from sucrose toward plastid pyruvate could be produced mostly through the cytosolic glycolytic pathway; (ii) acetyl-CoA synthetase might be an important contributor to acetyl-CoA formation for plastid fatty acid biosynthesis; (iii) the expression pattern for stearoyl-ACP desaturase was associated with high oleic acid composition; (iv) it was most likely that endoplasmic reticulum (ER)-associated acyl-CoA synthetase played a significant role in the export of fatty acids between the plastid and ER; (v) lipid phosphate phosphatase (LPP)-δ was most probably related to the formation of the diacylglycerol (DAG) pool in the Kennedy pathway; and (vi) diacylglyceroltransacylase 2 (DGAT2) and phospholipid:diacylglycerolacyltransferase 1 (PDAT1) might play crucial roles in tuber oil biosynthesis. In contrast to oil-rich fruits, there existed many oleosins, caleosins and steroleosins with very high transcripts in tubers. Surprisingly, only a single ortholog of WRINKLED1 (WRI1)-like transcription factor was identified and it was poorly expressed during tuber development. Our study not only provides insights into lipid metabolism in tuber tissues, but also broadens our understanding of TAG synthesis in oil plants. Such knowledge is of significance in exploiting this oil-rich species and manipulating other non-seed tissues to enhance storage oil production. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Pilot scale biodiesel production from rubber seed oil

    NASA Astrophysics Data System (ADS)

    Kien, Le Anh; Hai, Le Xuan

    2017-09-01

    Rubber seed oil (RSO) is tend to be one of the replacement for fossil fuel in future. This paper is to present the study on treatment of RSO to become the fuel using for engine and burber. The experiments were setup as: the mol of MeOH/RSO was of 6/1; H2SO4 was 2% of mass of RSO; temperature of reaction was 60°C ± 2°C; time of reaction was 90mins. The quality of the obtained RSO was good properties. The Specific gravity was 0.880; Calorific value (MJ/kg) was 40.5; Viscosity (mm2/s) at 40°C was 5.28; Flash point (°C) was 190; and Acid value (mg KOH/g) index was 0.14.

  12. Comparative plant sphingolipidomic reveals specific lipids in seeds and oil.

    PubMed

    Tellier, Frédérique; Maia-Grondard, Alessandra; Schmitz-Afonso, Isabelle; Faure, Jean-Denis

    2014-07-01

    Plant sphingolipids are a highly diverse family of structural and signal lipids. Owing to their chemical diversity and complexity, a powerful analytical method was required to identify and quantify a large number of individual molecules with a high degree of structural accuracy. By using ultra-performance liquid chromatography with a single elution system coupled to electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) in the positive multiple reaction monitoring (MRM) mode, detailed sphingolipid composition was analyzed in various tissues of two Brassicaceae species Arabidopsis thaliana and Camelina sativa. A total of 300 molecular species were identified defining nine classes of sphingolipids, including Cers, hCers, Glcs and GIPCs. High-resolution mass spectrometry identified sphingolipids including amino- and N-acylated-GIPCs. The comparative analysis of seedling, seed and oil sphingolipids showed tissue specific distribution suggesting metabolic channeling and compartmentalization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. New vitamin E isomers (gamma-tocomonoenol and alpha-tocomonoenol) in seeds, roasted seeds and roasted seed oil from the Slovenian pumpkin variety 'Slovenska golica'.

    PubMed

    Butinar, Bojan; Bučar-Miklavčič, Milena; Mariani, Carlo; Raspor, Peter

    2011-09-15

    The Štajerska region in north-eastern Slovenia and the Styria region in southern Austria have a long tradition of growing pumpkins (Cucurbita pepo L.) as an oil crop. GC-MS determination of the free and esterified minor compounds in oil of roasted pumpkin seeds from the Slovenian C. pepo L. variety 'Slovenska golica' revealed the presence of two previously unreported compounds: alpha-tocomonoenol and gamma-tocomonoenol. Using the GC-MS data, reference samples (Crude Palm Oil) and tocopherol and tocotrienol standards it was possible to assign and quantify alpha-tocomonoenol (17.6±0.6μg/g) and gamma-tocomonoenol (118.7±1.0μg/g) compounds in roasted 'S. golica' seed oil using HPLC. The concentrations of alpha-tocopherol and gamma-tocopherol were 77.9±1.9μg/g and 586.0±4.6μg/g, respectively. Surprisingly the gamma-tocotrienol concentration found was only 6.9±0.2μg/g. Analysis of the seeds from which the oil was pressed showed the initial gamma-tocotrienol amount was even lower (1.6±0.1 and 2.2±0.1μg/g in the ground and roasted seeds, respectively) than in the roasted seed oil.

  14. Hydrodistillation time affects dill seed essential oil yield, composition, and bioactivity

    USDA-ARS?s Scientific Manuscript database

    Dill (Anethum graveolens L.) essential oil is widely used by the food and pharmaceutical industries. We hypothesized that the chemical constituents of dill seed essential oil are eluted at different times during the hydrodistillation process, resulting in oils with different composition and bioactiv...

  15. Fatty acid profile of Albizia lebbeck and Albizia saman seed oils: Presence of coronaric acid

    USDA-ARS?s Scientific Manuscript database

    In this work, the fatty acid profiles of the seed oils of Albizia lebbeck and Albizia saman (Samanea saman) are reported. The oils were analyzed by GC, GC-MS, and NMR. The most prominent fatty acid in both oils is linoleic acid (30-40%), followed by palmitic acid and oleic acid for A. lebbeck and ol...

  16. Cytosolic phosphorylating glyceraldehyde-3-phosphate dehydrogenases affect Arabidopsis cellular metabolism and promote seed oil accumulation.

    PubMed

    Guo, Liang; Ma, Fangfang; Wei, Fang; Fanella, Brian; Allen, Doug K; Wang, Xuemin

    2014-07-01

    The cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPC) catalyzes a key reaction in glycolysis, but its contribution to plant metabolism and growth are not well defined. Here, we show that two cytosolic GAPCs play important roles in cellular metabolism and seed oil accumulation. Knockout or overexpression of GAPCs caused significant changes in the level of intermediates in the glycolytic pathway and the ratios of ATP/ADP and NAD(P)H/NAD(P). Two double knockout seeds had ∼3% of dry weight decrease in oil content compared with that of the wild type. In transgenic seeds under the constitutive 35S promoter, oil content was increased up to 42% of dry weight compared with 36% in the wild type and the fatty acid composition was altered; however, these transgenic lines exhibited decreased fertility. Seed-specific overexpression lines had >3% increase in seed oil without compromised seed yield or fecundity. The results demonstrate that GAPC levels play important roles in the overall cellular production of reductants, energy, and carbohydrate metabolites and that GAPC levels are directly correlated with seed oil accumulation. Changes in cellular metabolites and cofactor levels highlight the complexity and tolerance of Arabidopsis thaliana cells to the metabolic perturbation. Further implications for metabolic engineering of seed oil production are discussed. © 2014 American Society of Plant Biologists. All rights reserved.

  17. Multigene Engineering of Triacylglycerol Metabolism Boosts Seed Oil Content in Arabidopsis1[W][OPEN

    PubMed Central

    van Erp, Harrie; Kelly, Amélie A.; Menard, Guillaume; Eastmond, Peter J.

    2014-01-01

    Increasing the yield of oilseed crops is an important objective for biotechnologists. A number of individual genes involved in triacylglycerol metabolism have previously been reported to enhance the oil content of seeds when their expression is altered. However, it has yet to be established whether specific combinations of these genes can be used to achieve an additive effect and whether this leads to enhanced yield. Using Arabidopsis (Arabidopsis thaliana) as an experimental system, we show that seed-specific overexpression of WRINKLED1 (a transcriptional regulator of glycolysis and fatty acid synthesis) and DIACYLGLYCEROL ACYLTRANSFERASE1 (a triacylglycerol biosynthetic enzyme) combined with suppression of the triacylglycerol lipase SUGAR-DEPENDENT1 results in a higher percentage seed oil content and greater seed mass than manipulation of each gene individually. Analysis of total seed yield per plant suggests that, despite a reduction in seed number, the total yield of oil is also increased. PMID:24696520

  18. Nutritional quality and essential oil compositions of Thaumatococcus danielli (Benn.) tissue and seed.

    PubMed

    Abiodun, O A; Akinoso, R; Olosunde, O O; Adegbite, J A; Omolola, O A

    2014-10-01

    Nutritional quality and essential oil compositions of Thaumatococcus danielli (Benn.) tissue and seed were determined. Oil was extracted from the seed using standard methods while the fatty acids of the oil, chemical and anti-nutritional properties of defatted seed flour were determined. Total fat yield of the seed flour was 12.20%. Defatted seed flour had higher crude fibre (36.92%), carbohydrate (40.07%) and ash (8.17%) contents. Major mineral contents were potassium, calcium, sodium and magnesium. The tissue contain appreciable amount of vitamin C (8.10 mg/100 g). Oleic acid (42.59%) was the major fatty acid in the seed oil and the total unsaturated fatty acid was 62.38%. The seed oil had higher acid and saponification values and low iodine value. Oxalate (11.09 mg/100 g) content was the major anti-nutrient in the defatted seed flour. Defatted T. danielli seed flour serves as good source of dietary fibre and energy.

  19. Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis.

    PubMed

    Liu, Fang; Xia, Yuping; Wu, Lei; Fu, Donghui; Hayward, Alice; Luo, Junling; Yan, Xiaohong; Xiong, Xiaojuan; Fu, Ping; Wu, Gang; Lu, Changming

    2015-02-25

    Oilseed rape (Brassica napus) is one of the most important oilseed crops globally. To meet increasing demand for oil-based products, the ability to enhance desirable oil content in the seed is required. This study assessed the capability of five genes in the triacylglyceride (TAG) synthesis pathway to enhance oil content. The genes BnGPDH, BnGPAT, BnDGAT, ScGPDH and ScLPAAT were overexpressed separately in a tobacco (Nicotiana benthamiana) model system, and simultaneously by pyramiding in B. napus, under the control of a seed specific Napin promoter. ScLPAAT transgenic plants showed a significant increase of 6.84% to 8.55% in oil content in tobacco seeds, while a ~4% increase was noted for BnGPDH and BnGPAT transgenic seeds. Seed-specific overexpression of all four genes in B. napus resulted in as high a 12.57% to 14.46% increased in seed oil content when compared to WT, equaling close to the sum of the single-gene overexpression increases in tobacco. Taken together, our study demonstrates that BnGPDH, BnGPAT and ScLPAAT may effectively increase seed oil content, and that simultaneous overexpression of these in transgenic B. napus may further enhance the desirable oil content relative to single-gene overexpressors. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Antimelanoma Potential of Eruca sativa Seed Oil and its Bioactive Principles.

    PubMed

    Bansal, Prachi; Medhe, S; Ganesh, N; Srivastava, M M

    2015-01-01

    The present communication reports the comparison of in vivo antioxidant, antimelanoma and antimutagenic activities of Eruca sativa seed oil and its bio principles (allyl isothiocyanate, phenylethyl isothiocyanate and sulphoraphane) against B16F10 melanoma cells induced in C57BL/6 mice model. Among the various treatments considered for the study, isothiocyanates combination (allyl isothiocyanate, phenylethyl isothiocyanate and sulphoraphane; 1:1:1; 10 µM) exhibited optimum antioxidant activity, 51.95±1.14 µM glutathione per mg protein compared to seed oil 25.91±1.26 µM. Lipid peroxidation value was 9.97±1.72 µM malondialdehyde per mg wet weight for isothiocyanates combination against seed oil, 28.45±1.87 µM and rendered significant protection against oxidative stress induced by melanoma in liver tissue. Isothiocyanates combination significantly suppressed various parameters, such as tumor growth, isothiocyanates combination by 36.36% while the seed oil by 15.23%; tumor weight, isothiocyanates combination by 45.9% and seed oil by 19.6%; tumor volume, isothiocyanates combination by 41.7% while the seed oil by 32.3%, measured for antimelanoma activity at a concentration of 10 µM. Isothiocyanates combination has been found to be more cytotoxic bioagent against B16F10 melanoma cells induced in C57BL/6 mice compared to naturally occurring Eruca sativa seed oil.

  1. Antimelanoma Potential of Eruca sativa Seed Oil and its Bioactive Principles

    PubMed Central

    Bansal, Prachi; Medhe, S.; Ganesh, N.; Srivastava, M. M.

    2015-01-01

    The present communication reports the comparison of in vivo antioxidant, antimelanoma and antimutagenic activities of Eruca sativa seed oil and its bio principles (allyl isothiocyanate, phenylethyl isothiocyanate and sulphoraphane) against B16F10 melanoma cells induced in C57BL/6 mice model. Among the various treatments considered for the study, isothiocyanates combination (allyl isothiocyanate, phenylethyl isothiocyanate and sulphoraphane; 1:1:1; 10 µM) exhibited optimum antioxidant activity, 51.95±1.14 µM glutathione per mg protein compared to seed oil 25.91±1.26 µM. Lipid peroxidation value was 9.97±1.72 µM malondialdehyde per mg wet weight for isothiocyanates combination against seed oil, 28.45±1.87 µM and rendered significant protection against oxidative stress induced by melanoma in liver tissue. Isothiocyanates combination significantly suppressed various parameters, such as tumor growth, isothiocyanates combination by 36.36% while the seed oil by 15.23%; tumor weight, isothiocyanates combination by 45.9% and seed oil by 19.6%; tumor volume, isothiocyanates combination by 41.7% while the seed oil by 32.3%, measured for antimelanoma activity at a concentration of 10 µM. Isothiocyanates combination has been found to be more cytotoxic bioagent against B16F10 melanoma cells induced in C57BL/6 mice compared to naturally occurring Eruca sativa seed oil. PMID:26009655

  2. Analysis of components and study on antioxidant and antimicrobial activities of oil in apple seeds.

    PubMed

    Tian, Hong-Lei; Zhan, Ping; Li, Kai-Xiong

    2010-06-01

    In order to improve the comprehensive utilization of major by-products in apple-juice processing, the components, antioxidant and antimicrobial activities of oil in two species apple seeds, Fuji and New Red Star, were investigated. The Soxhlet extracted oil content of apple seeds raged from 20.69 to 24.32 g/100 g. The protein, fiber and ash contents were found to be 38.85-49.55 g/100 g, 3.92-4.32 g/100 g and 4.31-5.20 g/100 g, respectively; the extracted oils exhibited an iodine value of 94.14-101.15 g I/100 g oil; refractive index (40 degrees C) was 1.465-1.466; density (25 degrees C) was 0.902-0.903 mg/ml; saponification value was 179.01-197.25 mg KOH/g oil; and the acid value was 4.036-4.323 mg KOH/g oil. The apple seed oils mainly consisted of linoleic acid (50.7-51.4 g/100 g) and oleic acid (37.49-38.55 g/100 g). Other prominent fatty acids were palmitic acid (6.51-6.60 g/100 g), stearic acid (1.75-1.96 g/100 g) and arachidic acid (1.49-1.54 g/100 g). Apple seed oil was proven to possess interesting properties, emerging from its chemical composition and from the evaluation of its in vitro biological activities. The apple seed oil was almost completely active against bacteria, mildews were less sensitive to apple seed oil than yeasts, and the minimum inhibitory concentration (MIC) of apple seed oil ranged from 0.3 to 0.6 mg/ml. The observed biological activities showed that the oil had a good potential for use in the food industry and pharmacy.

  3. [Comparison of seed oil physicochemical characteristics among three cultivars of Jatropha curcas L].

    PubMed

    Chen, Jian-miao; Liu, Lian; Liu, Zhao-pu; Long, Xiao-hua; Zheng, Qing-song; Mao, Yi-qing

    2009-12-01

    Taking the cultivars Nanyou 1, 2, and 3 of barbadosnut (Jatropha curcas L. ) with different genotypes that can grow and seed normally at the inshore land in Hainan as test materials, the characters of their seeds and the physicochemical characteristics of their seed oils were analyzed and compared. No significant differences were observed in the seed length, width, thickness, and surface area among the cultivars, but Nanyou 2 had greater 1000 seed mass and lower unsound kernel percentage than Nanyou 1 and Nanyou 3, suggesting that the seed satiation of Nanyou 2 was good and the fecundity was excellent. The kernel oil content of Nanyou 3 was significantly higher than that of Nanyou 1 and Nanyou 2, and there was no significant difference between Nanyou 1 and Nanyou 2. The seed oil peroxide value, refractive index, and saponification value of the three cultivars had no significant differences, but the acid value for Nanyou 2 was much lower than that for Nanyou 1 and Nanyou 3. The seed oil iodine value of the three cultivars was all below 100, and was significantly lower for Nanyou 2 than for Nanyou 1 and Nanyou 3. The fatty acids in the three cultivars seed oils were mainly oleic acid, palmitic acid, linoleic acid, stearic acid, and margaric acid, and dominated by unsaturated fatty acids. The contents of saturated fatty acids in Nanyou 2 seed oil were relatively higher than those in Nanyou 1 and Nanyou 3 seed oils, indicating that comparing with Nanyou 1, cultivars Nanyou 2 and Nanyou 3 had relatively good potential for application.

  4. Gamma-linolenic acid egg production enriched with hemp seed oil and evening primrose oil in diet of laying hens.

    PubMed

    Park, Sang-Oh; Hwangbo, Jong; Yuh, In-Suh; Park, Byung-Sung

    2014-07-01

    This study was carried out to find out the effect of supplying gamma linolenic acid (GLA) on laying performance and egg quality. A hundred twenty of 30 weeks old hyline brown laying hens with 98% of egg production were completely randomized to 4 different treatment groups by 30 hens (the control group fed with the diet containing beef tallow, 3 treatment groups fed with the diet containing corn oil, the diet containing hemp seed oil and the diet containing evening primrose oil, respectively), and their laying performance and egg production were investigated for 5 weeks. Intake of hemp seed oil or evening primrose helped to increase the retention rate of GLA, which was transmigrated into eggs from blood. GLA was not detected in the blood samples of control group and treatment group fed diet containing corn oil, while it was significantly increased in the blood samples of the treatment groups fed with diet containing hemp seed oil and diet containing evening primrose oil, respectively. GLA retention was not observed in the eggs produced respectively by control group and treatment group fed with diet containing corn oil, whereas it was significantly increased in the eggs produced by the treatment group fed with diet containing hemp seed oil by 1.09% and the treatment group fed with diet containing evening primrose oil by 4.87%. This result suggests that GLA-reinforced functional eggs can be produced by adding hemp seed oil and evening primrose oil to the feed for laying hens and feeding them with it. It is thought that further researches and clinical trials on biochemical mechanism related to atopic dermatitis should be conducted in future.

  5. Physicochemical properties and potential food applications of Moringa oleifera seed oil blended with other vegetable oils.

    PubMed

    Dollah, Sarafhana; Abdulkarim, Sabo Muhammad; Ahmad, Siti Hajar; Khoramnia, Anahita; Ghazali, Hasanah Mohd

    2014-01-01

    Blends (30:70, 50:50 and 70:30 w/w) of Moringa oleifera seed oil (MoO) with palm olein (PO), palm stearin (PS), palm kernel oil (PKO) and virgin coconut oil (VCO) were prepared. To determine the physicochemical properties of the blends, the iodine value (IV), saponication value (SV), fatty acid (FA) composition, triacylglycerol (TAG) composition, thermal behaviour (DSC) and solid fat content (SFC) tests were analysed. The incorporation of high oleic acid (81.73%) MoO into the blends resulted in the reduction of palmitic acid content of PO and PS from 36.38% to 17.17% and 54.66% to 14.39% and lauric acid content of PKO and VCO from 50.63% to 17.70% and 51.26% to 26.05% respectively while oleic acid and degree of unsaturation were increased in all blends. Changes in the FA composition and TAG profile have significantly affected the thermal behavior and solid fat content of the oil blends. In MoO/PO blends the melting temperature of MoO decreased while, in MoO/PS, MoO/PKO and MoO/VCO blends, it increased indicating produce of zero-trans harder oil blends without use of partial hydrogenation. The spreadability of PS, PKO and VCO in low temperatures was also increased due to incorporation of MoO. The melting point of PS significantly decreased in MoO/PS blends which proved to be suitable for high oleic bakery shortening and confectionary shortening formulation. The finding appears that blending of MoO with other vegetable oils would enable the initial properties of the oils to be modified or altered and provide functional and nutritional attributes for usage in various food applications, increasing the possibilities for the commercial use of these oils.

  6. Automated small scale oil seed processing plant for production of fuel for diesel engines

    SciTech Connect

    Thompson, J.C.; Peterson, C.L.

    1982-01-01

    University of Idaho seed processing research is centered about a CeCoCo oil expeller. A seed preheater-auger, seed bin, meal auger, and oil pump have been constructed to complete the system, which is automated and instrumented. The press, preheater, cake removal auger, and oil transfer pump are tied into a central panel where energy use is measured and the process controlled. Extracted oil weight, meal weight, process temperature, and input energy are all recorded during operation. The oil is transferred to tanks where it settles for 48 hours or more. It is then pumped through a filtering system and stored ready to be used as an engine fuel. The plant has processed over 11,000 kg of seed with an average extraction efficiency of 78 percent. 5 tables.

  7. The relationship of antioxidant components and antioxidant activity of sesame seed oil.

    PubMed

    Wan, Yin; Li, Huixiao; Fu, Guiming; Chen, Xueyang; Chen, Feng; Xie, Mingyong

    2015-10-01

    Although sesame seed oil contains high levels of unsaturated fatty acids and even a small amount of free fatty acids in its unrefined flavored form, it shows markedly greater stability than other dietary vegetable oils. The good stability of sesame seed oil against autoxidation has been ascribed not only to its inherent lignans and tocopherols but also to browning reaction products generated when sesame seeds are roasted. Also, there is a strong synergistic effect among these components. The lignans in sesame seed oil can be categorized into two types, i.e. inherent lignans (sesamin, sesamolin) and lignans mainly formed during the oil production process (sesamol, sesamolinol, etc.). The most abundant tocopherol in sesame seed oil is γ-tocopherol. This article reviews the antioxidant activities of lignans and tocopherols as well as the browning reaction and its products in sesame seed and/or its oil. It is concluded that the composition and structure of browning reaction products and their impacts on sesame ingredients need to be further studied to better explain the remaining mysteries of sesame oil.

  8. Hydroprocessing of rubber seed oil to renewable fuels

    NASA Astrophysics Data System (ADS)

    Tran, Tan Viet; Phung, Minh Tri

    2017-09-01

    Hydroprocessing of rubber seed oil (RSO) with various types of alumina-silica support catalyst was conducted at 400°C and a hydrogen partial pressure of 3.0 MPa in 3 hours. The effects of the alumina-silica and metal doping on alumina-silica on the conversion, and distribution of oil fraction products (initial boiling point (IBP) to 80°C, from 80-200°C, from 200-360°C and higher than 360°C boiling point) were investigated. Compared to the results obtained when using Mo@Al2O3-SiO2, hydroprocessing of RSO resulted in a higher conversion and much higher yield of the light fraction (BP <230°C). Both alumina-silica catalysts led to an improved conversion as well as a higher light fraction yield. Results show that hydroprocessing of RSO with metal doping on alumina-silica support was more efficient than that only Al2O3-SiO2.

  9. [Study on the extraction process for cannabinoids in hemp seed oil by orthogonal design].

    PubMed

    Zhang, Gang; Guo, Jiangning; Bi, Kaishun

    2005-05-01

    To select the optimum extracting procedure for cannabinoids from hemp seed oil. The optimum extracting procedure was selected with the content of cannabinol and delta9-tetrehydrocannabinol from hemp seed oil by orthogonal test design. We have examined three factors that may influence the extraction rate: the time of extraction, the times of extraction and the amount of methanol. The optimum extraction condition was adding 5 ml, two times amount of methanol into hemp seed oil for 15 min. The above extraction process gave the most rational, stable, feasible and satisfactory results. The method is convenient.

  10. Physicochemical characterisation and radical-scavenging activity of Cucurbitaceae seed oils.

    PubMed

    Jorge, Neuza; da Silva, Ana Carolina; Malacrida, Cassia Roberta

    2015-01-01

    Oils extracted from Cucurbitaceae seeds were characterised for their fatty acid and tocopherol compositions. In addition, some physicochemical characteristics, total phenolic contents and the radical-scavenging activities were determined. Oil content amounted to 23.9% and 27.1% in melon and watermelon seeds, respectively. Physicochemical characteristics were similar to those of other edible oils and the oils showed significant antioxidant activities. Fatty acid composition showed total unsaturated fatty acid content of 85.2-83.5%, with linoleic acid being the dominant fatty acid (62.4-72.5%), followed by oleic acid (10.8-22.7%) and palmitic acid (9.2-9.8%). The oils, especially watermelon seed oil, showed high total tocopherol and phenolic contents. The γ-tocopherol was the predominant tocopherol in both oils representing 90.9 and 95.6% of the total tocopherols in melon and watermelon seed oils, respectively. The potential utilisation of melon and watermelon seed oils as a raw material for food, chemical and pharmaceutical industries appears to be favourable.

  11. Pomegranate MR images analysis using ACM and FCM algorithms

    NASA Astrophysics Data System (ADS)

    Morad, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.

    2011-10-01

    Segmentation of an image plays an important role in image processing applications. In this paper segmentation of pomegranate magnetic resonance (MR) images has been explored. Pomegranate has healthy nutritional and medicinal properties for which the maturity indices and quality of internal tissues play an important role in the sorting process in which the admissible determination of features mentioned above cannot be easily achieved by human operator. Seeds and soft tissues are the main internal components of pomegranate. For research purposes, such as non-destructive investigation, in order to determine the ripening index and the percentage of seeds in growth period, segmentation of the internal structures should be performed as exactly as possible. In this paper, we present an automatic algorithm to segment the internal structure of pomegranate. Since its intensity of stem and calyx is close to the internal tissues, the stem and calyx pixels are usually labeled to the internal tissues by segmentation algorithm. To solve this problem, first, the fruit shape is extracted from its background using active contour model (ACM). Then stem and calyx are removed using morphological filters. Finally the image is segmented by fuzzy c-means (FCM). The experimental results represent an accuracy of 95.91% in the presence of stem and calyx, while the accuracy of segmentation increases to 97.53% when stem and calyx are first removed by morphological filters.

  12. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa

    PubMed Central

    Dalal, Jyoti; Vasani, Naresh; Lopez, Harry O.; Sederoff, Heike W.

    2017-01-01

    With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs) consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt.) was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0) and myristate (C14:0) were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0), from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production. PMID:28212406

  13. The use of powder and essential oil of Cymbopogon citratus against mould deterioration and aflatoxin contamination of "egusi" melon seeds.

    PubMed

    Bankole, S A; Joda, A O; Ashidi, J S

    2005-01-01

    Experiments were carried out to determine the potential of using the powder and essential oil from dried ground leaves of Cymbopogon citratus (lemon grass) to control storage deterioration and aflatoxin contamination of melon seeds. Four mould species: Aspergillus flavus, A. niger, A. tamarii and Penicillium citrinum were inoculated in the form of conidia suspension (approx. 10(6) conidia per ml) unto shelled melon seeds. The powdered dry leaves and essential oil from lemon grass were mixed with the inoculated seeds at levels ranging from 1-10 g/100 g seeds and 0.1 to 1.0 ml/100 g seeds respectively. The ground leaves significantly reduced the extent of deterioration in melon seeds inoculated with different fungi compared to the untreated inoculated seeds. The essential oil at 0.1 and 0.25 ml/100 g seeds and ground leaves at 10 g/100 g seeds significantly reduced deterioration and aflatoxin production in shelled melon seeds inoculated with toxigenic A. flavus. At higher dosages (0.5 and 1.0 ml/100 g seeds), the essential oil completely prevented aflatoxin production. After 6 months in farmers' stores, unshelled melon seeds treated with 0.5 ml/ 100 g seeds of essential oil and 10 g/100 g seeds of powdered leaves of C. citratus had significantly lower proportion of visibly diseased seeds and Aspergillus spp. infestation levels and significantly higher seed germination compared to the untreated seeds. The oil content, free fatty acid and peroxide values in seeds protected with essential oil after 6 months did not significantly differ from the values in seeds before storage. The efficacy of the essential oil in preserving the quality of melon seeds in stores was statistically at par with that of fungicide (iprodione) treatment.

  14. Composition and Biological Activity of Picea pungens and Picea orientalis Seed and Cone Essential Oils.

    PubMed

    Wajs-Bonikowska, Anna; Szoka, Łukasz; Karna, Ewa; Wiktorowska-Owczarek, Anna; Sienkiewicz, Monika

    2017-03-01

    The increasing consumption of natural products lead us to discover and study new plant materials, such as conifer seeds and cones, which could be easily available from the forest industry as a waste material, for their potential uses. The chemical composition of the essential oils of Picea pungens and Picea orientalis was fully characterized by GC and GC/MS methods. Seed and cone oils of both tree species were composed mainly of monoterpene hydrocarbons, among which limonene, α- and β-pinene were the major, but in different proportions in the examined conifer essential oils. The levorotary form of chiral monoterpene molecules was predominant over the dextrorotary form. The composition of oils from P. pungens seeds and cones was similar, while the hydrodistilled oils of P. orientalis seeds and cones differed from each other, mainly by a higher amount of oxygenated derivatives of monoterpenes and by other higher molar mass terpenes in seed oil. The essential oils showed mild antimicrobial action, however P. orientalis cone oil exhibited stronger antimicrobial properties against tested bacterial species than those of P. pungens. Effects of the tested cone essential oils on human skin fibroblasts and microvascular endothelial cells (HMEC-1) were similar: in a concentration of 0 - 0.075 μl/ml the oils were rather safe for human skin fibroblasts and 0 - 0.005 μl/ml for HMEC-1 cells. IC50 value of Picea pungens oils was 0.115 μl/ml, while that of Picea orientalis was 0.105 μl/ml. The value of IC50 of both oils were 0.035 μl/ml for HMEC-1 cells. The strongest effect on cell viability had the oil from Picea orientalis cones, while on DNA synthesis the oil from Picea pungens cones. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  15. Headspace-solid phase microextraction-gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS2) method for the determination of pyrazines in perilla seed oils: impact of roasting on the pyrazines in perilla seed oils.

    PubMed

    Kwon, Tae Young; Park, Ji Su; Jung, Mun Yhung

    2013-09-11

    A new headspace (HS)-solid phase microextraction (SPME)-gas chromatography-tandem quadrupole mass spectrometry (GC-MS(2)) was established for the simultaneous characterization and quantitation of pyrazines in perilla seed oils. HS-SPME conditions such as fiber choice, extraction temperature, and adsorption times were tested. The established GC-MS(2) showed low detection limit (LOD) and high specificity, recovery, and precision for analysis of pyrazines in perilla seed oils. The LODs for the pyrazines were in the range of 0.07-22.22 ng/g oil. The relative standard deviations (RSDs) for the intra- and interday repeated analyses of pyrazines were less than 9.49 and 9.76%, respectively. The mean recoveries for spiked pyrazines in perilla seed oil were in the range of 94.6-107.92%. Perilla seed oils were obtained by mechanical pressing from perilla seeds roasted to different degrees of roasting (mild, medium, medium dark, and dark roasting). Fourteen pyrazine compounds in perilla seed oils were isolated, identified, and quantitated. Among them, 2-methyl-3-propylpyrazine, tetramethylpyrazine, and 2,3-diethyl-5-methylpyrazine were the first identified in perilla seed oils. Degree of roasting influenced greatly the composition and contents of pyrazines in perilla seed oils. In light-roasted perilla seed oil, 2,5-dimethylpyrazine was the most predominant pyrazine. However, in dark-roasted perilla seed oil, 2-methylpyrazine was the most abundant pyrazine in the oil, representing 38.3% of its total pyrazine content. Dark-roasted perilla seed oil contains 16.78 times higher quantity of pyrazines than light-roasted perilla seed oil. This represents the first report on the quantity of pyrazines in perilla seed oils.

  16. Challenges and issues concerning mycotoxins contamination in oil seeds and their edible oils: Updates from last decade.

    PubMed

    Bhat, Rajeev; Reddy, Kasa Ravindra Nadha

    2017-01-15

    Safety concerns pertaining towards fungal occurrence and mycotoxins contamination in agri-food commodities has been an issue of high apprehension. With the increase in evidence based research knowledge on health effects posed by ingestion of mycotoxins-contaminated food and feed by humans and livestock, concerns have been raised towards providing more insights on screening of agri-food commodities to benefit consumers. Available reports indicate majority of edible oil-yielding seeds to be contaminated by various fungi, capable of producing mycotoxins. These mycotoxins can enter human food chain via use of edible oils or via animals fed with contaminated oil cake residues. In this review, we have decisively evaluated available data (from the past decade) pertaining towards fungal occurrence and level of mycotoxins in various oil seeds and their edible oils. This review can be of practical use to justify the prevailing gaps, especially relevant to the research on presence of mycotoxins in edible plant based oils.

  17. Bioactive properties of faveleira (Cnidoscolus quercifolius) seeds, oil and press cake obtained during oilseed processing

    PubMed Central

    Silva, Denise Maria de Lima e; de Assis, Cristiane Fernandes; Correia, Roberta Targino Pinto; Damasceno, Karla Suzanne Florentino da Silva Chaves

    2017-01-01

    To the best of our knowledge, this is the first report in the literature concerning the bioactive properties of faveleira products. This work focuses on the physicochemical evaluation of faveleira oil, as well as it investigates the bioactive properties of faveleira seeds, faveleira oil and the press cake obtained during the oilseed processing. The seeds were cold pressed and the following tests were performed: physicochemical characteristics (acidity, peroxide values, moisture and volatile matter, density and viscosity) and fatty acid profile of faveleira oil; total phenolic and flavonoid content of faveleira seed and press cake; antibacterial activity of seed, oil and press cake; and antioxidant activity (DPPH radical scavenging activity, reducing power assay, total antioxidant capacity, superoxide radical scavenging assay and oxygen radical absorbance capacity) of seed, oil and press cake. Our work demonstrated that the faveleira seed oil has low acidity (0.78 ± 0.03% oleic acid) and peroxide value (1.13 ± 0.12 mEq/1000g), associated with the relevant concentration of linoleic acid (53.56%). It was observed that important phenolics (398.89 ± 6.34 mg EAG/100 g), especially flavonoids (29.81 ± 0.71 mg RE/g) remain in the press cake, which indicates that the by-product of the faveleira oilseed production constitutes a rich residual source of bioactive compounds. No bacterial growth inhibition was detected, but all samples including faveleira seeds, press cake, oil and its fractions have potent antioxidant activities, mainly the press cake, with oxygen radical absorbance capacity of 28.39 ± 4.36 μM TE/g. Our results also show that faveleira oil has potential to be used as edible oil and the press cake should be used to contain the most antioxidants from seed. PMID:28846740

  18. Effects of Pinus pinaster and Pinus koraiensis seed oil supplementation on lipoprotein metabolism in the rat.

    PubMed

    Asset, G; Staels, B; Wolff, R L; Baugé, E; Madj, Z; Fruchart, J C; Dallongeville, J

    1999-01-01

    The aim of the present study was to assess the effect of vegetal oils obtained from Pinus pinaster and P. koraiensis seeds on plasma lipoprotein levels and apolipoprotein (apo) gene expression in rats. These oils contain two particular fatty acids of the delta5-unsaturated polymethylene-interrupted fatty acid (delta5-UPIFA) family: all-cis-5,9,12-1 8:3 (pinolenic) and/or all-cis-5,11,14-20:3 (sciadonic) acids. Rats were fed for 28 d a diet containing 5% (w/w) oil supplement. Two control diets were prepared to match the fatty acid composition of P. pinaster or P. koraiensis oils with the exception of delta5-UPIFA, which were replaced by oleic acid. Pinus pinaster seed oil decreased serum triglycerides by 30% (P < 0.02), very low density lipoprotein (VLDL)-triglycerides by 40% (P < 0.01), and VLDL-cholesterol by 33% (P < 0.03). Pinus koraiensis seed oil decreased serum triglycerides by 16% [not statistically significant (ns)] and VLDL-triglycerides by 21% (ns). Gel permeation chromatography and nondenaturating polyacrylamide gel electrophoresis showed a tendency of high density lipoprotein to shift toward larger particles in pine seed oil-supplemented rats. Finally, P. pinaster seed oil treatment was associated with a small decrease of liver apoC-III (P < 0.02) but not in apoE, apoA-I, or apoA-II mRNA levels. The levels of circulating apo were not affected by pine seed oil supplementation. In conclusion, P. pinaster seed oil has a triglyceride-lowering effect in rats, an effect that is due to a reduction in circulating VLDL.

  19. Integration of omics approaches to understand oil/protein content during seed development in oilseed crops.

    PubMed

    Gupta, Manju; Bhaskar, Pudota B; Sriram, Shreedharan; Wang, Po-Hao

    2017-05-01

    Oilseed crops, especially soybean (Glycine max) and canola/rapeseed (Brassica napus), produce seeds that are rich in both proteins and oils and that are major sources of energy and nutrition worldwide. Most of the nutritional content in the seed is accumulated in the embryo during the seed filling stages of seed development. Understanding the metabolic pathways that are active during seed filling and how they are regulated are essential prerequisites to crop improvement. In this review, we summarize various omics studies of soybean and canola/rapeseed during seed filling, with emphasis on oil and protein traits, to gain a systems-level understanding of seed development. Currently, most (80-85%) of the soybean and rapeseed reference genomes have been sequenced (950 and 850 megabases, respectively). Parallel to these efforts, extensive omics datasets from different seed filling stages have become available. Transcriptome and proteome studies have detected preponderance of starch metabolism and glycolysis enzymes to be the possible cause of higher oil in B. napus compared to other crops. Small RNAome studies performed during the seed filling stages have revealed miRNA-mediated regulation of transcription factors, with the suggestion that this interaction could be responsible for transitioning the seeds from embryogenesis to maturation. In addition, progress made in dissecting the regulation of de novo fatty acid synthesis and protein storage pathways is described. Advances in high-throughput omics and comprehensive tissue-specific analyses make this an exciting time to attempt knowledge-driven investigation of complex regulatory pathways.

  20. A noninvasive platform for imaging and quantifying oil storage in submillimeter tobacco seed.

    PubMed

    Fuchs, Johannes; Neuberger, Thomas; Rolletschek, Hardy; Schiebold, Silke; Nguyen, Thuy Ha; Borisjuk, Nikolai; Börner, Andreas; Melkus, Gerd; Jakob, Peter; Borisjuk, Ljudmilla

    2013-02-01

    While often thought of as a smoking drug, tobacco (Nicotiana spp.) is now considered as a plant of choice for molecular farming and biofuel production. Here, we describe a noninvasive means of deriving both the distribution of lipid and the microtopology of the submillimeter tobacco seed, founded on nuclear magnetic resonance (NMR) technology. Our platform enables counting of seeds inside the intact tobacco capsule to measure seed sizes, to model the seed interior in three dimensions, to quantify the lipid content, and to visualize lipid gradients. Hundreds of seeds can be simultaneously imaged at an isotropic resolution of 25 µm, sufficient to assess each individual seed. The relative contributions of the embryo and the endosperm to both seed size and total lipid content could be assessed. The extension of the platform to a range of wild and cultivated Nicotiana species demonstrated certain evolutionary trends in both seed topology and pattern of lipid storage. The NMR analysis of transgenic tobacco plants with seed-specific ectopic expression of the plastidial phosphoenolpyruvate/phosphate translocator, displayed a trade off between seed size and oil concentration. The NMR-based assay of seed lipid content and topology has a number of potential applications, in particular providing a means to test and optimize transgenic strategies aimed at the manipulation of seed size, seed number, and lipid content in tobacco and other species with submillimeter seeds.

  1. Comparison of chemical composition of Aerva javanica seed essential oils obtained by different extraction methods.

    PubMed

    Samejo, Muhammad Qasim; Memon, Shahabuddin; Bhanger, Muhammad Iqbal; Khan, Khalid Mohammed

    2013-07-01

    Aerva javanica (Burm.f.) Juss. ex Schult. seed essential oils were obtained by hydrodistillation (HD) and dry steam distillation (SD) extracting methods and analyzed by using gas chromatography-mass spectrometry(GC-MS). Twenty and eighteen components representing 90.5% and 95.6% of the seed essential oil were identified, using hydrodistillation and dry steam distillation, respectively. The major constituent identified from seed essential oil obtained by HD were heptacosane (25.4%), 3-allyl-6-methoxyphenol (14.1%), pentacosane (12.1%), 6,10,14-trimethyl-2-pentade-canone (7.9%), nonacosane (7.1%), tricosane (3.6%), α-farnesene (3.5%), dodecanal (2.7%) and octacosane (2.1%). Whereas the major constituent identified from seed essential oil obtained by SD were heptacosane (41.4%), pentacosane (21.2%), nonacosane (14.8%), tricosane (6.3%), octacosane (4.2%) and tetracosane (3.0%).

  2. Utilization of sunflower seed oil as a renewable fuel for diesel engines

    SciTech Connect

    Bruwer, J.J.; van der Boshoff, B.; Hugo, F.J.C.; Fuls, J.; Hawkins, C.; van der Walt, A.N.; Engelbrecht, A.; du Plessis, L.M.

    1981-01-01

    Research, using several makes of diesel engine, showed that sunflower seed oil, and particularly an ethyl ester mixture, has the potential to extend diesel fuel provided solutions are found for injector coking problems. (MHR)

  3. The Effect of Aloe Vera, Pomegranate Peel, Grape Seed Extract, Green Tea, and Sodium Ascorbate as Antioxidants on the Shear Bond Strength of Composite Resin to Home-bleached Enamel

    PubMed Central

    Sharafeddin, Farahnaz; Farshad, Farnaz

    2015-01-01

    Statement of the Problem Immediate application of bonding agent to home- bleached enamel leads to significant reduction in the shear bond strength of composite resin due to the residual oxygen. Different antioxidant agents may overcome this problem. Purpose This study aimed to assess the effect of different antioxidants on the shear bond strength of composite resin to home-bleached. Materials and Method Sixty extracted intact human incisors were embedded in cylindrical acrylic resin blocks (2.5×1.5 cm), with the coronal portion left out of the block. After bleaching the labial enamel surface with 15% carbamide peroxide, they were randomly divided into 6 groups (n=10). Before performing composite resin restoration by using a cylindrical Teflon mold (5×2 mm), each group was treated with one of the following antioxidants: 10% sodium ascorbate solution, 10% pomegranate peel solution, 10% grape seed extract, 5% green tea extract, and aloe vera leaf gel. One group was left untreated as the control. The shear bond strength of samples was tested under a universal testing machine (ZwickRoell Z020). The shear bond strength data were analyzed by one-way ANOVA and post hoc Tukey tests (p< 0.05). Results No significant difference existed between the control and experimental groups. Moreover, there was no statistically significant difference between the effects of different antioxidants on the shear bond strength of bleached enamel. Conclusion Different antioxidants used in this study had the same effect on the shear bond strength of home-bleached enamel, and none of them caused a statistically significant increase in its value. PMID:26636116

  4. Protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury

    PubMed Central

    Shi, Jing; Wang, Lan; Lu, Yan; Ji, Yue; Wang, Yaqing; Dong, Ke; Kong, Xiangqing; Sun, Wei

    2017-01-01

    Radiation-induced gastrointestinal syndrome, including nausea, diarrhea and dehydration, contributes to morbidity and mortality after medical or industrial radiation exposure. No safe and effective radiation countermeasure has been approved for clinical therapy. In this study, we aimed to investigate the potential protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury. C57/BL6 mice were orally administered seabuckthorn pulp oil, seed oil and control olive oil once per day for 7 days before exposure to total-body X-ray irradiation of 7.5 Gy. Terminal deoxynucleotidyl transferase dUTP nick end labeling, quantitative real-time polymerase chain reaction and western blotting were used for the measurement of apoptotic cells and proteins, inflammation factors and mitogen-activated protein (MAP) kinases. Seabuckthorn oil pretreatment increased the post-radiation survival rate and reduced the damage area of the small intestine villi. Both the pulp and seed oil treatment significantly decreased the apoptotic cell numbers and cleaved caspase 3 expression. Seabuckthorn oil downregulated the mRNA level of inflammatory factors, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-8. Both the pulp and seed oils elevated the level of phosphorylated extracellular-signal-regulated kinase and reduced the levels of phosphorylated c-Jun N-terminal kinase and p38. Palmitoleic acid (PLA) and alpha linolenic acid (ALA) are the predominant components of pulp oil and seed oil, respectively. Pretreatment with PLA and ALA increased the post-radiation survival time. In conclusion, seabuckthorn pulp and seed oils protect against mouse intestinal injury from high-dose radiation by reducing cell apoptosis and inflammation. ALA and PLA are promising natural radiation countermeasure candidates. PMID:27422938

  5. Protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury.

    PubMed

    Shi, Jing; Wang, Lan; Lu, Yan; Ji, Yue; Wang, Yaqing; Dong, Ke; Kong, Xiangqing; Sun, Wei

    2017-01-01

    Radiation-induced gastrointestinal syndrome, including nausea, diarrhea and dehydration, contributes to morbidity and mortality after medical or industrial radiation exposure. No safe and effective radiation countermeasure has been approved for clinical therapy. In this study, we aimed to investigate the potential protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury. C57/BL6 mice were orally administered seabuckthorn pulp oil, seed oil and control olive oil once per day for 7 days before exposure to total-body X-ray irradiation of 7.5 Gy. Terminal deoxynucleotidyl transferase dUTP nick end labeling, quantitative real-time polymerase chain reaction and western blotting were used for the measurement of apoptotic cells and proteins, inflammation factors and mitogen-activated protein (MAP) kinases. Seabuckthorn oil pretreatment increased the post-radiation survival rate and reduced the damage area of the small intestine villi. Both the pulp and seed oil treatment significantly decreased the apoptotic cell numbers and cleaved caspase 3 expression. Seabuckthorn oil downregulated the mRNA level of inflammatory factors, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-8. Both the pulp and seed oils elevated the level of phosphorylated extracellular-signal-regulated kinase and reduced the levels of phosphorylated c-Jun N-terminal kinase and p38. Palmitoleic acid (PLA) and alpha linolenic acid (ALA) are the predominant components of pulp oil and seed oil, respectively. Pretreatment with PLA and ALA increased the post-radiation survival time. In conclusion, seabuckthorn pulp and seed oils protect against mouse intestinal injury from high-dose radiation by reducing cell apoptosis and inflammation. ALA and PLA are promising natural radiation countermeasure candidates. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation

  6. Effects of oil extraction on functional properties of protein in pennycress (Thlaspi arvense) seed and press cake

    USDA-ARS?s Scientific Manuscript database

    Current interest in pennycress (Thlaspi arvense) comes from its seed oil, which is being evaluated for biodiesel production. The seed also has notable protein content (33% db). The effects of oil processing conditions on functionality of pennycress seed proteins were determined to identify potential...

  7. Decreased seed oil production in FUSCA3 Brassica napus mutant plants.

    PubMed

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2015-11-01

    Canola (Brassica napus L.) oil is extensively utilized for human consumption and industrial applications. Among the genes regulating seed development and participating in oil accumulation is FUSCA3 (FUS3), a member of the plant-specific B3-domain family of transcription factors. To evaluate the role of this gene during seed storage deposition, three BnFUSCA3 (BnFUS3) TILLING mutants were generated. Mutations occurring downstream of the B3 domain reduced silique number and repressed seed oil level resulting in increased protein content in developing seeds. BnFUS3 mutant seeds also had increased levels of linoleic acid, possibly due to the reduced expression of ω-3 FA DESATURASE (FAD3). These observed phenotypic alterations were accompanied by the decreased expression of genes encoding transcription factors stimulating fatty acid (FA) synthesis: LEAFY COTYLEDON1 and 2 (LEC1 and 2) ABSCISIC ACID-INSENSITIVE 3 (BnABI3) and WRINKLED1 (WRI1). Additionally, expression of genes encoding enzymes involved in sucrose metabolism, glycolysis, and FA modifications were down-regulated in developing seeds of the mutant plants. Collectively, these transcriptional changes support altered sucrose metabolism and reduced glycolytic activity, diminishing the carbon pool available for the synthesis of FA and ultimately seed oil production. Based on these observations, it is suggested that targeted manipulations of BnFUS3 can be used as a tool to influence oil accumulation in the economically important species B. napus. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Water-triacylglycerol interactions affect oil body structure and seed viability

    USDA-ARS?s Scientific Manuscript database

    We are investigating interactions between water and triacylglycerols (TAG) that appear to affect oil body stability and viability of seeds. Dried seeds are usually stored at freezer temperatures (-20oC) for long-term conservation of genetic resources. This globally accepted genebanking practice is...

  9. Variability of seed oil content and fatty acid composition in the entire USDA sesame germplasm collection

    USDA-ARS?s Scientific Manuscript database

    Sesame (Sesame indicum L.) is one of the oldest oilseed crops with a long history of cultivation for its edible seeds and oil. The U.S. sesame germplasm collection (containing about 1,232 accessions) is a useful genetic resource for improving seed quality and enhancing grain yield. Variability of se...

  10. Soybean seed protein, oil, fatty acids, and isoflavones altered by potassium fertilizer rates in the midsouth

    USDA-ARS?s Scientific Manuscript database

    Previous research has shown that the effect of potassium fertilizer on soybean ([Glycine max (L.) Merr.] seed composition (protein, oil, fatty acids, and isoflavones) is still largely unknown. Therefore, the objective of this research was to investigate the effects of potassium application on seed p...

  11. Solubilization of Tea Seed Oil in a Food-Grade Water-Dilutable Microemulsion

    PubMed Central

    Deng, Lingli; Que, Fei; Wei, Hewen; Xu, Guangwei; Dong, Xiaowei; Zhang, Hui

    2015-01-01

    Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40–45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line. PMID:25996147

  12. Effect of Replacing Beef Fat with Poppy Seed Oil on Quality of Turkish Sucuk

    PubMed Central

    2015-01-01

    Sucuk is the most popular dry-fermented meat product. Sucuk has a relatively high fat. Poppy seed oil as animal fat replacer was used in Turkish sucuk and effects of its use on sucuk quality were investigated. There was a significant (p<0.5) treatment × ripening time interaction for moisture, pH (p<0.05) and 2-thiobarbituric acid reactive substances (TBARS) values (p<0.01). Increasing poppy seed oil level decreased (p<0.05) TBARS values. Addition of poppy seed oil to the sucuks had a significant effect (p<0.01) on hardness, cohesiveness, gumminess, chewiness and springiness values. Cholesterol content of sucuks decreased (p<0.05) with poppy seed oil addition. Using pre-emulsified poppy seed oil as partial fat replacer in Turkish sucuk decreased cholesterol and saturated fatty acid content, but increased polyunsaturated fatty acids. Poppy seed oil as partial animal fat replacer in Turkish sucuk may have significant health benefits. PMID:26761834

  13. Essential oil composition analysis of three cultivars seeds of Resina ferulae from Xinjiang, China.

    PubMed

    Li, Xiaojin; Wang, Yue'e; Zhu, Jun; Xiao, Qiong

    2011-04-01

    Three cultivars seeds of Resina ferulae were analyzed for essential oil composition, Ferula sinkiangensis K. M. Shen, Ferula fukangensis K. M. Shen, and Ferula ovina, investigated differences among different genera of medicinal R. ferulae. The essential oils were extracted by the method of hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS), using normalization method to calculate relative amount. Twenty-six compounds were identified in F. sinkiangensis K. M. Shen, comprised 99.001% of total essential oil; 21 compounds were identified in F. fukangensis K. M. Shen, comprised 100% of total essential oil; 25 compounds were identified in F. ovina, comprised 99.459% of total essential oil. n-Propyl sec-butyl disulfide is the main component in three cultivars seeds of R. ferulae, accounting for 55.875%, 49.797%, 53.781%, respectively. Little diversity among three cultivars seeds of R. ferulae from Xinjiang.

  14. Essential oil composition analysis of three cultivars seeds of Resina ferulae from Xinjiang, China

    PubMed Central

    Li, Xiaojin; Wang, Yue’e; Zhu, Jun; Xiao, Qiong

    2011-01-01

    Objective: Three cultivars seeds of Resina ferulae were analyzed for essential oil composition, Ferula sinkiangensis K. M. Shen, Ferula fukangensis K. M. Shen, and Ferula ovina, investigated differences among different genera of medicinal R. ferulae. Materials and Methods: The essential oils were extracted by the method of hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS), using normalization method to calculate relative amount. Results: Twenty-six compounds were identified in F. sinkiangensis K. M. Shen, comprised 99.001% of total essential oil; 21 compounds were identified in F. fukangensis K. M. Shen, comprised 100% of total essential oil; 25 compounds were identified in F. ovina, comprised 99.459% of total essential oil. n-Propyl sec-butyl disulfide is the main component in three cultivars seeds of R. ferulae, accounting for 55.875%, 49.797%, 53.781%, respectively. Conclusion: Little diversity among three cultivars seeds of R. ferulae from Xinjiang. PMID:21716620

  15. Increased antioxidant content in juice enriched with dried extract of pomegranate (Punica granatum) peel.

    PubMed

    Mastrodi Salgado, Jocelem; Baroni Ferreira, Tânia Rachel; de Oliveira Biazotto, Fúvia; Dos Santos Dias, Carlos Tadeu

    2012-03-01

    Antioxidants are compounds responsible for free radical scavenging in the body. They protect the organism from oxidative modification of cells and tissues. These modifications have been associated with degenerative diseases, atherosclerosis and carcinogenesis. Punica granatum displays high antioxidant potential due to the presence of phenolic compounds, which are capable of disease prevention. The present study showed the highest antioxidant activity in pomegranate peel than in seeds and pulp. Based on these results, pomegranate peel was used to produce dried extract that was added to commercial tomato juice and orange juice with strawberries. Analysis to determine the content of phenolic compounds and antioxidant activity was performed on pomegranate pulp, seeds and peel and in juices enriched with dried extract of pomegranate peel. The dried extract was responsible for a significant increase in antioxidant activity of the juices, proportional to the concentrations added. However, although both flavors of enriched juices displayed high antioxidant levels, the samples with higher dried extract concentrations received the lowest scores from sensory analysis participants due to the characteristic astringent flavor of pomegranate peels. Therefore, to obtain greater acceptance in the consumer market, we concluded that the maximum addition of dried pomegranate peel extract is 0.5% in tomato juice and orange juice with strawberries.

  16. Analytic investigations on protein content in refined seed oils: implications in food allergy.

    PubMed

    Ramazzotti, Matteo; Mulinacci, Nadia; Pazzagli, Luigia; Moriondo, Maria; Manao, Giampaolo; Vincieri, Franco Francesco; Degl'Innocenti, Donatella

    2008-11-01

    A number of scientific reports have investigated the possible implications of refined seed oils in allergic reactions, resulting in conflicting points of view. Also the total amount of residual proteins after refinement is still a matter of debate. Nevertheless, seed oils are now blamed as possible cause of allergic reactions. To determine the true amount of proteins after oil refinement and to shed new lights on allergenic properties of refined seed oils. We optimized a protein extraction procedure on several commercial refined seed oils. Both colorimetric and amino acid analysis were used to measure residual protein content. SDS-PAGE was also used for characterizations of protein band patterns. Sensitized child patients sera were tested by Western blot on PAGE-resolved proteins. Our extraction method proved to be effective and reproducible. Amino acid analysis resulted more accurate in determining the protein content with respect to colorimetric methods, indicating a higher protein content than that previously reported. IgE responsive residual proteins were found in peanut oil extracts. Our preliminary data suggest that fully refined seed oils should be taken into account in the context of allergic reactions and would benefit of further toxicological studies.

  17. Storage stability of sunflower oil with added natural antioxidant concentrate from sesame seed oil.

    PubMed

    Nasirullah; Latha, R Baby

    2009-01-01

    Demand for use of natural additives such as nutraceuticals, antioxidants, coloring and flavoring matter is continuously increasing world over. It is due to nutritional awareness among the masses and belief that most of the natural products are safe for human consumption. Interest has been shown recently on the use of natural antioxidants from oil seeds. Hence, oils obtained from sesame (Sesamum indicum) had been utilized for this purpose. Oils were thermally treated (T) to enhance the sesamol content from 4,900 to 9,500 ppm. A portion of resultant oil had been extracted with ethanol in a controlled conditions to yield a concentrate (ESSO-T) with sesamol content of 28,500 ppm. Whereas another portion after silica gel column separation yielded a concentrate (SSO-TFII) with sesamol content of 27,100 ppm. Refined sunflower oil without antioxidant was mixed with ESSO-T and SSO-TFII separately at the level of 2,000, 1,000, 500 and 200 ppm and its storage stability assessed was at ambient (22-28 degrees C) and elevated (37 degrees C) temperatures. Peroxide value (PV) and Free Fatty Acid content (FFA) of samples were estimated at intervals of 2 weeks for a total storage period of 12 weeks. Results indicated that ESSO-T at the level of 500 ppm had maximum protective effect on refined sunflower oil, where PV and FFA were found ranging between 2.1 to 5.9 and 0.10 to 0.15%; and 4.1 to 9.8 and 0.11 to 0.21% for samples stored at ambient and elevated conditions respectively. The storage stability of this sample was very close to the storage stability of sunflower oil containing TBHQ at 200 ppm. Comparatively in sunflower oil without antioxidant PV and FFA had gone up from 2.0 to 45.4 and 0.11 to 1.3% at ambient and 2.0 to 56.4 and 0.11 to 2.8% at elevated temperatures.

  18. Ricinus communis and Jatropha curcas (Euphorbiaceae) seed oil toxicity against Atta sexdens rubropilosa (Hymenoptera: Formicidae).

    PubMed

    Alonso, E C; Santos, D Y A C

    2013-04-01

    Leaf-cutting ants are the main herbivores in the New World tropics. Although the toxicity of seed oils against these ants has been poorly investigated, previous results revealed that seed oils exert considerable toxic activity against these insects. This paper analyzes the toxic action and deterrent properties of castor oil, Ricinus communis L., and physic nut oil, Jatropha curcas L., against workers of the leaf-cutting ant Atta sexdens rubropilosa reared in laboratory. Toxic effect was analyzed by feeding insects artificial diets supplemented with different oil concentrations and direct contact with the two oils. Deterrent activity was assessed by measuring the frequency of attendance to diets during the first 48 h of the ingestion bioassay. Castor oil at 10 and 30 mg/ml and physic nut oil at 5, 10, and 30 mg/ml were toxic by ingestion. In the direct contact bioassay, toxicity was observed for physic nut oil at 0.1 and 0.2 mg/ml, whereas castor oil exerted toxic effects only when the highest concentration was applied. Also, castor oil had a more pronounced deterrent effect against the leaf-cutting ant, compared with physic nut oil. Methods to apply these oils to control these insects are discussed.

  19. Bioefficacy of essential and vegetable oils of Zanthoxylum xanthoxyloides seeds against Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae).

    PubMed

    Fogang, Hervet Paulain Dongmo; Womeni, Hilaire Macaire; Piombo, Georges; Barouh, Nathalie; Tapondjou, Léon Azefack

    2012-03-01

    Experiments were conducted in the laboratory to evaluate the bioefficacy of essential and vegetable oils of Zanthoxylum xanthoxyloides (Rutaceae) against Acanthoscelides obtectus (Coleoptera: Bruchidae). The chemical composition of the essential oil and the fatty acid composition of the vegetable oil extracted from the seeds of Z. xanthoxyloides were determined. The insecticidal activities of these oils and the associated aromatized clay powder were evaluated against A. obtectus. Both oils were strongly repellent (100% repellency at 0.501 μl/cm² essential oil and 3.144 μl/cm² vegetable oil) and highly toxic (LC₅₀ = 0.118 μl/cm² for essential oil) to this beetle after contact on filter paper. The vapors of the essential oil were highly toxic to adult insects (LC₅₀ = 0.044 μl/cm³), and the aromatized powder made from clay and essential oil was more toxic (LD₅₀ = 0.137 μl/g) than the essential oil alone (LD₅₀ = 0.193 μl/g) after 2 days of exposure on a common bean. Both oils greatly reduced the F₁ insect production and bean weight loss and did not adversely affect the bean seed viability. In general, the results obtained indicate that these plant oils can be used for control of A. obtectus in stored beans.

  20. Effects of the heating process of soybean oil and seeds on fatty acid biohydrogenation in vitro.

    PubMed

    Troegeler-Meynadier, A; Puaut, S; Farizon, Y; Enjalbert, F

    2014-09-01

    Heating fat is an efficient way to alter ruminal biohydrogenation (BH) and milk fat quality. Nevertheless, results are variable among studies and this could be due to various heating conditions differently affecting BH. The objectives of this study were to determine the effect of type and duration of heating of soybean oil or seeds on BH in vitro. Ruminal content cultures were incubated to first investigate the effects of roasting duration (no heating, and 0.5- and 6-h roasting) at 125°C and its interaction with fat source (soybean seeds vs. soybean oil), focusing on linoleic acid BH and its intermediates: conjugated linoleic acid (CLA) and trans-C18:1. Additionally, we compared the effects of seed extrusion with the 6 combinations of unheated and roasted oils and seeds. None of the treatments was efficient to protect linoleic acid from BH. Soybean oil resulted in higher trans-11 isomer production than seeds: 5.7 and 1.2 times higher for cis-9,trans-11 CLA and trans-11 C18:1, respectively. A 125°C, 0.5-h roasting increased trans-11 isomer production by 11% compared with no heating and 6-h roasted fat. Extrusion of seeds was more efficient to increase trans-11 C18:1 production than seed roasting, leading to values similar to oils. For other fatty acids, including cis-9,trans-11 CLA, extrusion resulted in similar balances to seeds (mainly 0.5-h-roasted seeds). Extruded oilseeds would be more efficient than roasted seeds to produce trans-11 C18:1; nevertheless, effects of conditions of extrusion need to be explored.

  1. Design of new genome- and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar.

    PubMed

    Sun, Meiyu; Hua, Wei; Liu, Jing; Huang, Shunmou; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2012-01-01

    Rapeseed (Brassica napus L.) is one of most important oilseed crops in the world. There are now various rapeseed cultivars in nature that differ in their seed oil content because they vary in oil-content alleles and there are high-oil alleles among the high-oil rapeseed cultivars. For these experiments, we generated doubled haploid (DH) lines derived from the cross between the specially high-oil cultivar zy036 whose seed oil content is approximately 50% and the specially low-oil cultivar 51070 whose seed oil content is approximately 36%. First, to address the deficiency in polymorphic markers, we designed 5944 pairs of newly developed genome-sourced primers and 443 pairs of newly developed primers related to oil-content genes to complement the 2244 pairs of publicly available primers. Second, we constructed a new DH genetic linkage map using 527 molecular markers, consisting of 181 publicly available markers, 298 newly developed genome-sourced markers and 48 newly developed markers related to oil-content genes. The map contained 19 linkage groups, covering a total length of 2,265.54 cM with an average distance between markers of 4.30 cM. Third, we identified quantitative trait loci (QTL) for seed oil content using field data collected at three sites over 3 years, and found a total of 12 QTL. Of the 12 QTL associated with seed oil content identified, 9 were high-oil QTL which derived from the specially high-oil cultivar zy036. Two high-oil QTL on chromosomes A2 and C9 co-localized in two out of three trials. By QTL mapping for seed oil content, we found four candidate genes for seed oil content related to four gene markers: GSNP39, GSSR161, GIFLP106 and GIFLP046. This information will be useful for cloning functional genes correlated with seed oil content in the future.

  2. Design of New Genome- and Gene-Sourced Primers and Identification of QTL for Seed Oil Content in a Specially High-Oil Brassica napus Cultivar

    PubMed Central

    Liu, Jing; Huang, Shunmou; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2012-01-01

    Rapeseed (Brassica napus L.) is one of most important oilseed crops in the world. There are now various rapeseed cultivars in nature that differ in their seed oil content because they vary in oil-content alleles and there are high-oil alleles among the high-oil rapeseed cultivars. For these experiments, we generated doubled haploid (DH) lines derived from the cross between the specially high-oil cultivar zy036 whose seed oil content is approximately 50% and the specially low-oil cultivar 51070 whose seed oil content is approximately 36%. First, to address the deficiency in polymorphic markers, we designed 5944 pairs of newly developed genome-sourced primers and 443 pairs of newly developed primers related to oil-content genes to complement the 2244 pairs of publicly available primers. Second, we constructed a new DH genetic linkage map using 527 molecular markers, consisting of 181 publicly available markers, 298 newly developed genome-sourced markers and 48 newly developed markers related to oil-content genes. The map contained 19 linkage groups, covering a total length of 2,265.54 cM with an average distance between markers of 4.30 cM. Third, we identified quantitative trait loci (QTL) for seed oil content using field data collected at three sites over 3 years, and found a total of 12 QTL. Of the 12 QTL associated with seed oil content identified, 9 were high-oil QTL which derived from the specially high-oil cultivar zy036. Two high-oil QTL on chromosomes A2 and C9 co-localized in two out of three trials. By QTL mapping for seed oil content, we found four candidate genes for seed oil content related to four gene markers: GSNP39, GSSR161, GIFLP106 and GIFLP046. This information will be useful for cloning functional genes correlated with seed oil content in the future. PMID:23077542

  3. [Analysis of essential oil extracted from Lactuca sativa seeds growing in Xinjiang by GC-MS].

    PubMed

    Xu, Fang; Wang, Qiang; Haji, Akber Aisa

    2011-12-01

    To analyze the components of essential oil from Lactuca sativa seeds growing in Xinjiang. The components of essential oil from Lactuca sativa seeds were analyzed by gas chromatography-mass spectrometry (GC-MS). 62 components were identified from 71 separated peaks,amounting to total mass fraction 95.07%. The dominant compounds were n-Hexanol (36.31%), n-Hexanal (13.71%), trans-2-Octen-l-ol (8.09%) and 2-n-Pentylfuran (4.41%). The research provides a theoretical basis for the exploitation and use of Lactuca sativa seeds resource.

  4. Biodiesel from Citrus reticulata (Mandarin orange) seed oil, a potential non-food feedstock

    USDA-ARS?s Scientific Manuscript database

    Oil extracted from Citrus reticulata (Mandarin orange) seeds was investigated as a potential feedstock for the production of biodiesel. The biodiesel fuel was prepared by sodium methoxide-catalyzed transesterification of the oil with methanol. Fuel properties that were determined include cetane numb...

  5. Processing of coriander fruits for the production of essential oil, triglyceride, and high protein seed meal

    USDA-ARS?s Scientific Manuscript database

    Coriander (Coriandrum sativum L.) is a summer annual traditionally grown for use as a fresh green herb or as a spice. The essential oil extracted from coriander fruit is also widely used as flavoring in a variety of food products. The fatty oil (triglyceride) fraction in the seed is rich in petrosel...

  6. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus

    PubMed Central

    Huang, Ke-Lin; Zhang, Mei-Li; Ma, Guang-Jing; Wu, Huan; Wu, Xiao-Ming; Ren, Feng

    2017-01-01

    Seed oil content is an important agronomic trait in oilseed rape. However, the molecular mechanism of oil accumulation in rapeseeds is unclear so far. In this report, RNA sequencing technique (RNA-Seq) was performed to explore differentially expressed genes in siliques of two Brassica napus lines (HFA and LFA which contain high and low oil contents in seeds, respectively) at 15 and 25 days after pollination (DAP). The RNA-Seq results showed that 65746 and 66033 genes were detected in siliques of low oil content line at 15 and 25 DAP, and 65236 and 65211 genes were detected in siliques of high oil content line at 15 and 25 DAP, respectively. By comparative analysis, the differentially expressed genes (DEGs) were identified in siliques of these lines. The DEGs were involved in multiple pathways, including metabolic pathways, biosynthesis of secondary metabolic, photosynthesis, pyruvate metabolism, fatty metabolism, glycophospholipid metabolism, and DNA binding. Also, DEGs were related to photosynthesis, starch and sugar metabolism, pyruvate metabolism, and lipid metabolism at different developmental stage, resulting in the differential oil accumulation in seeds. Furthermore, RNA-Seq and qRT-PCR data revealed that some transcription factors positively regulate seed oil content. Thus, our data provide the valuable information for further exploring the molecular mechanism of lipid biosynthesis and oil accumulation in B. nupus. PMID:28594951

  7. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus.

    PubMed

    Huang, Ke-Lin; Zhang, Mei-Li; Ma, Guang-Jing; Wu, Huan; Wu, Xiao-Ming; Ren, Feng; Li, Xue-Bao

    2017-01-01

    Seed oil content is an important agronomic trait in oilseed rape. However, the molecular mechanism of oil accumulation in rapeseeds is unclear so far. In this report, RNA sequencing technique (RNA-Seq) was performed to explore differentially expressed genes in siliques of two Brassica napus lines (HFA and LFA which contain high and low oil contents in seeds, respectively) at 15 and 25 days after pollination (DAP). The RNA-Seq results showed that 65746 and 66033 genes were detected in siliques of low oil content line at 15 and 25 DAP, and 65236 and 65211 genes were detected in siliques of high oil content line at 15 and 25 DAP, respectively. By comparative analysis, the differentially expressed genes (DEGs) were identified in siliques of these lines. The DEGs were involved in multiple pathways, including metabolic pathways, biosynthesis of secondary metabolic, photosynthesis, pyruvate metabolism, fatty metabolism, glycophospholipid metabolism, and DNA binding. Also, DEGs were related to photosynthesis, starch and sugar metabolism, pyruvate metabolism, and lipid metabolism at different developmental stage, resulting in the differential oil accumulation in seeds. Furthermore, RNA-Seq and qRT-PCR data revealed that some transcription factors positively regulate seed oil content. Thus, our data provide the valuable information for further exploring the molecular mechanism of lipid biosynthesis and oil accumulation in B. nupus.

  8. Some rape/canola seed oils: fatty acid composition and tocopherols.

    PubMed

    Matthaus, Bertrand; Özcan, Mehmet Musa; Al Juhaimi, Fahad

    2016-03-01

    Seed samples of some rape and canola cultivars were analysed for oil content, fatty acid and tocopherol profiles. Gas liquid chromotography and high performance liquid chromotography were used for fatty acid and tocopherol analysis, respectively. The oil contents of rape and canola seeds varied between 30.6% and 48.3% of the dry weight (p<0.05). The oil contents of rapeseeds were found to be high compared with canola seed oils. The main fatty acids in the oils are oleic (56.80-64.92%), linoleic (17.11-20.92%) and palmitic (4.18-5.01%) acids. A few types of tocopherols were found in rape and canola oils in various amounts: α-tocopherol, γ-tocopherol, δ-tocopherol, β-tocopherol and α-tocotrienol. The major tocopherol in the seed oils of rape and canola cultivars were α-tocopherol (13.22-40.01%) and γ-tocopherol (33.64-51.53%) accompanied by α-T3 (0.0-1.34%) and δ-tocopherol (0.25-1.86%) (p<0.05). As a result, the present study shows that oil, fatty acid and tocopherol contents differ significantly among the cultivars.

  9. Enviromental Effects on Oleic Acid in Soybean Seed Oil of Plant Introductions with Elevated Oleic Concentration

    USDA-ARS?s Scientific Manuscript database

    Soybean [Glycine max (L.) Merr.] oil with oleic acid content >500 g per kg is desirable for a broader role in food and industrial uses. Seed oil in commercially grown soybean genotypes averages about 230 g per kg oleic acid (18:1). Some maturity group (MG) II to V plant introductions (PIs) have el...

  10. Emergence timing and fitness consequences of variation in seed oil composition in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    Early seedling emergence can increase plant fitness under competition. Seed oil composition (the types and relative amounts of fatty acids in the oils) may play an important role in determining emergence timing in oilseeds. Saturated fatty acids provide more energy per carbon atom than unsaturated...

  11. Soybean seed protein oil fatty acids sugars and minerals as affected by seeding rates and row spacing in the Midsouth USA

    USDA-ARS?s Scientific Manuscript database

    Research on the effects of seeding rates (SDR) and row spacing (RS) on soybean seed composition is almost non-existent. The objective of this research was to investigate the effect of SDR and RS on soybean seed protein, oil, fatty acids, sugars, and minerals using two soybean cultivars, P 93M90 (ear...

  12. Enzymatic lipophilization of epicatechin with free fatty acids and its effect on antioxidative capacity in crude camellia seed oil.

    PubMed

    Chen, Sa-Sa; Luo, Shui-Zhong; Zheng, Zhi; Zhao, Yan-Yan; Pang, Min; Jiang, Shao-Tong

    2017-02-01

    Crude camellia seed oil is rich in free fatty acids, which must be removed to produce an oil of acceptable quality. In the present study, we reduced the free fatty acid content of crude camellia seed oil by lipophilization of epicatechin with these free fatty acids in the presence of Candida antarctica lipase B (Novozym 435), and this may enhance the oxidative stability of the oil at the same time. The acid value of crude camellia seed oil reduced from 3.7 to 2.5 mgKOH g(-1) after lipophilization. Gas chomatography-mass spectrometry analysis revealed that epicatechin oleate and epicatechin palmitate were synthesized in the lipophilized oil. The peroxide, p-anisidine, and total oxidation values during heating of the lipophilized oil were much lower than that of the crude oil and commercially available camellia seed oil, suggesting that lipophilized epicatechin derivatives could help enhance the oxidative stability of edible oil. The enzymatic process to lipophilize epicatechin with the free fatty acids in crude camellia seed oil described in the present study could decrease the acid value to meet the quality standards for commercial camellia seed oil and, at the same time, obtain a new edible camellia seed oil product with good oxidative stability. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Inhibition of testosterone-induced hyperplasia of the prostate of sprague-dawley rats by pumpkin seed oil.

    PubMed

    Gossell-Williams, M; Davis, A; O'Connor, N

    2006-01-01

    The oil from the pumpkin (Cucurbita pepo) seed is claimed to be useful in the management of benign prostatic hyperplasia. This investigation seeks to examine the effect of pumpkin seed oil on testosterone-induced hyperplasia of the prostate of rats. Hyperplasia was induced by subcutaneous administration of testosterone (0.3 mg/100 g of body weight) for 20 days. Simultaneous oral administration of either pumpkin seed oil (2.0 and 4.0 mg/100 g of body weight) or corn oil (vehicle) was also given for 20 days. The weights of the rats were recorded weekly, and the influence of testosterone and pumpkin seed oil on the weight gain of the rats was examined. On day 21, rats were sacrificed, and the prostate was removed, cleaned, and weighed. The prostate size ratio (prostate weight/rat body weight) was then calculated. Neither testosterone nor pumpkin seed oil had any significant influence on the weight gain of the rats. Testosterone significantly increased prostate size ratio (P < .05), and this induced increase was inhibited in rats fed with pumpkin seed oil at 2.0 mg/100 g of body weight. The protective effect of pumpkin seed oil was significant at the higher pumpkin seed oil dose (P < .02). We conclude pumpkin seed oil can inhibit testosterone-induced hyperplasia of the prostate and therefore may be beneficial in the management of benign prostatic hyperplasia.

  14. Behavioral and Biochemical Evidences for Antidepressant-Like Activity of Celastrus Paniculatus Seed Oil in Mice

    PubMed Central

    Valecha, Rekha; Dhingra, Dinesh

    2016-01-01

    Introduction: Celastrus paniculatus seed oil, commonly known as Malkangni or Jyotishmati, was in use from time immemorial to treat brain related disorders. Celastrus paniculatus seed oil has significant antidepressant-like activity in chronic unpredictable stressed mice. The present study was undertaken to evaluate the antidepressant-like effect of Celastrus paniculatus seed oil in unstressed mice and to explore its mechanism of action. Methods: The seed oil (50, 100, and 200 mg/kg, PO) and fluoxetine per se were administered for 14 successive days to Swiss young albino mice. On the 14th day, 60 min after drug administration, animals were subjected to Tail Suspension Test (TST) and Forced Swim Test (FST). The mechanism of action was also studied. Results: The oil significantly decreased immobility period of mice in both tail suspension test and forced swim test, indicating its significant antidepressant-like activity. The efficacy was found to be comparable to fluoxetine (P<0.0001). ED50 value of celastrus seed oil using FST and TST were 17.38 and 31.62 mg/kg, respectively. The oil did not show any significant effect on locomotor activity. It significantly inhibited brain MAO–A activity and decreased plasma corticosterone levels. Sulpiride (selective D2-receptor antagonist), p-CPA (tryptophan hydroxylase inhibitor), and baclofen (GABAB agonist) significantly attenuated the oil-induced antidepressant-like effect, when assessed during TST. Discussion: Celastrus paniculatus seed oil produced significant antidepressant-like effect in mice possibly through interaction with dopamine D2, serotonergic, and GABAB receptors; as well as inhibition of MAO–A activity and decrease in plasma corticosterone levels. PMID:27303599

  15. Comparison of Moringa Oleifera seeds oil characterization produced chemically and mechanically

    NASA Astrophysics Data System (ADS)

    Eman, N. A.; Muhamad, K. N. S.

    2016-06-01

    It is established that virtually every part of the Moringa oleifera tree (leaves, stem, bark, root, flowers, seeds, and seeds oil) are beneficial in some way with great benefits to human being. The tree is rich in proteins, vitamins, minerals. All Moringa oleifera food products have a very high nutritional value. They are eaten directly as food, as supplements, and as seasonings as well as fodder for animals. The purpose of this research is to investigate the effect of seeds particle size on oil extraction using chemical method (solvent extraction). Also, to compare Moringa oleifera seeds oil properties which are produced chemically (solvent extraction) and mechanically (mechanical press). The Moringa oleifera seeds were grinded, sieved, and the oil was extracted using soxhlet extraction technique with n-Hexane using three different size of sample (2mm, 1mm, and 500μm). The average oil yield was 36.1%, 40.80%, and 41.5% for 2mm, 1mm, and 500μm particle size, respectively. The properties of Moringa oleifera seeds oil were: density of 873 kg/m3, and 880 kg/m3, kinematic viscosity of 42.2mm2/s and 9.12mm2/s for the mechanical and chemical method, respectively. pH, cloud point and pour point were same for oil produced with both methods which is 6, 18°C and 12°C, respectively. For the fatty acids, the oleic acid is present with high percentage of 75.39%, and 73.60% from chemical and mechanical method, respectively. Other fatty acids are present as well in both samples which are (Gadoleic acid, Behenic acid, Palmitic acid) which are with lower percentage of 2.54%, 5.83%, and 5.73%, respectively in chemical method oil, while they present as 2.40%, 6.73%, and 6.04%, respectively in mechanical method oil. In conclusion, the results showed that both methods can produce oil with high quality. Moringa oleifera seeds oil appear to be an acceptable good source for oil rich in oleic acid which is equal to olive oil quality, that can be consumed in Malaysia where the olive oil

  16. Protective role of Ashwagandharishta and flax seed oil against maximal electroshock induced seizures in albino rats.

    PubMed

    Tanna, Ila R; Aghera, Hetal B; Ashok, B K; Chandola, H M

    2012-01-01

    Ashwagandharishta, an Ayurvedic classical formulation, is the remedy for Apasmara (epilepsy), Murchha (syncope), Unmada (psychosis), etc. Recent studies in animal models have shown that n-3 PUFAs can raise the threshold of epileptic seizures. The indigenous medicinal plant, called Atasi (Linum usitatissimum Linn.) in Ayurveda, or flax seed, is the best plant source of omega-3 fatty acids. The present study is designed to investigate whether Ashwagandharishta and Atasi taila (flax seed oil) protect against maximal electroshock (MES) seizures in albino rats. Further, a possible protective role of flax seed oil as an adjuvant to Ashwagandharishta in its anticonvulsant activity has also been evaluated in the study. MES seizures were induced for rats and seizure severity was assessed by the duration of hind limb extensor phase. Phenytoin was used as the standard antiepileptic drug for comparison. Both flax seed oil and Ashwagandharishta significantly decreased convulsion phase. Pre-treatment with flax seed oil exhibited significant anticonvulsant activity by decreasing the duration of tonic extensor phase. Contrary to the expectations, pre-treatment with flax seed oil as an adjuvant to Ashwagandharishta failed to decrease the tonic extensor phase; however, it significantly decreased the flexion phase (P < 0.001) and duration of the convulsions (P < 0.05). Both the drugs exhibited an excellent anti-post-ictal depression effect and complete protection against mortality.

  17. Olive seed protein bodies store degrading enzymes involved in mobilization of oil bodies.

    PubMed

    Zienkiewicz, Agnieszka; Zienkiewicz, Krzysztof; Rejón, Juan David; Alché, Juan de Dios; Castro, Antonio Jesús; Rodríguez-García, María Isabel

    2014-01-01

    The major seed storage reserves in oilseeds are accumulated in protein bodies and oil bodies, and serve as an energy, carbon, and nitrogen source during germination. Here, the spatio-temporal relationships between protein bodies and several key enzymes (phospholipase A, lipase, and lipoxygenase) involved in storage lipid mobilization in cotyledon cells was analysed during in vitro seed germination. Enzyme activities were assayed in-gel and their cellular localization were determined using microscopy techniques. At seed maturity, phospholipase A and triacylglycerol lipase activities were found exclusively in protein bodies. However, after seed imbibition, these activities were shifted to the cytoplasm and the surface of the oil bodies. The activity of neutral lipases was detected by using α-naphthyl palmitate and it was associated mainly with protein bodies during the whole course of germination. This pattern of distribution was highly similar to the localization of neutral lipids, which progressively appeared in protein bodies. Lipoxygenase activity was found in both the protein bodies and on the surface of the oil bodies during the initial phase of seed germination. The association of lipoxygenase with oil bodies was temporally correlated with the appearance of phospholipase A and lipase activities on the surface of oil bodies. It is concluded that protein bodies not only serve as simple storage structures, but are also dynamic and multifunctional organelles directly involved in storage lipid mobilization during olive seed germination.

  18. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content.

    PubMed

    Weselake, Randall J; Shah, Saleh; Tang, Mingguo; Quant, Patti A; Snyder, Crystal L; Furukawa-Stoffer, Tara L; Zhu, Weiming; Taylor, David C; Zou, Jitao; Kumar, Arvind; Hall, Linda; Laroche, Andre; Rakow, Gerhard; Raney, Phillip; Moloney, Maurice M; Harwood, John L

    2008-01-01

    Top-down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content.

  19. In vitro antioxidant activities of extract and oil from roselle (Hibiscus sabdariffa L.) seed against sunflower oil autoxidation.

    PubMed

    Nyam, K L; Teh, Y N; Tan, C P; Kamariah, L

    2012-08-01

    In order to overcome the stability problems of oils and fats, synthetic antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) have widespread use as food additives in many countries. Recent reports reveal that these compounds may be implicated in many health risks, including cancer and carcinogenesis. Hence, there is a move towards the use of natural antioxidants of plant origin to replace these synthetic antioxidants. In this study, roselle seed oil (RSO) and extract (RSE) were mixed with sunflower oil, respectively to monitor degradation rate and investigate antioxidant activity during accelerated storage. The antioxidant activity was found to stabilise sunflower oil of various samples and in the order of RSE>RSO>tocopherol>sunflower oil. The total percentage increased after 5 days of storage period in free fatty acid (FFA), peroxide value (PV) and anisidine value (AV). Total oxidation value (TOx) of sunflower oil supplemented with 1500 ppm RSE was 33.3%, 47.7%, 14.5%, and 45.5%, respectively. While the total percentage increased under different analysis methods, sunflower oil supplemented with 5% RSO was 17.2%, 60.4%, 36.2% and 59.0% in the order of FFA, PV, AV and TOTOX. Both RSO and RSE were found to be more effective in stabilisation of sunflower oil compared to tocopherol. Total phenolic content of RSE was 46.40 +/- 1.51 mg GAE/100g of oil while RSO was 12.51 +/- 0.15 mg GAE/ 100g of oil. The data indicates that roselle seed oil and seed extract are rich in phenolics and antioxidant activities and may be a potential source of natural antioxidants.

  20. Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil.

    PubMed

    Lee, Chia-Pu; Yen, Gow-Chin

    2006-02-08

    The oil of tea seed (Camellia oleifera Abel.) is used extensively in China as cooking oil. The objectives of this study were to investigate the antioxidant activity of tea seed oil and its active compounds. Of the five solvent extracts, methanol extract of tea seed oil exhibited the highest yield and the strongest antioxidant activity as determined by DPPH scavenging activity and Trolox equivalent antioxidant capacity (TEAC). Two peaks separated from the methanol extract by HPLC contributed the most significant antioxidant activity. These two peaks were further identified as sesamin and a novel compound: 2,5-bis-benzo[1,3]dioxol-5-yl-tetrahydro-furo [3,4-d][1,3]dioxine (named compound B) by UV absorption and characterized by MS, IR, 1H NMR, and 13C NMR techniques. Sesamin and compound B decreased H2O2-mediated formation of reactive oxygen species in red blood cells (RBCs), inhibited RBCs hemolysis induced by AAPH, and increased the lag time of conjugated dienes formation in human low-density lipoprotein. The results indicate that both compounds isolated from tea seed oil exhibit remarkable antioxidant activity. Apart from the traditional pharmacological effects of Camellia oleifera, the oil of tea seed may also act as a prophylactic agent to prevent free radical related diseases.

  1. Identification and quantitation of carotenoids and tocopherols in seed oils recovered from different Rosaceae species.

    PubMed

    Fromm, Matthias; Bayha, Sandra; Kammerer, Dietmar R; Carle, Reinhold

    2012-10-31

    Seed oils recovered from Rosaceae species such as dessert and cider apples (Malus domestica Borkh.), quince (Cydonia oblonga Mill.), and rose hip (Rosa canina L.) were analyzed for their tocopherol and carotenoid contents using HPLC-DAD-MS(n) following saponification. Qualitative and quantitative tocopherol and carotenoid compositions significantly differed, not only among the different genera but also among cultivars of one species. In particular, seed oils of cider apples were shown to contain higher amounts of both antioxidant classes than that of dessert apples. Total contents of tocopherols of the investigated Rosaceous seed oils ranged from 597.7 to 1099.9 mg/kg oil, while total carotenoid contents varied between 0.48 and 39.15 mg/kg oil. Thus, these seed oils were found to contain appreciable amounts of lipohilic antioxidants having health beneficial potential. The results of the present study contribute to a more economical and exhaustive exploitation of seed byproducts arising from the processing of these Rosaceous fruits.

  2. Antioxidant effect of poleo and oregano essential oil on roasted sunflower seeds.

    PubMed

    Quiroga, Patricia R; Grosso, Nelson R; Nepote, Valeria

    2013-12-01

    The objective was to evaluate the stability of sensory and chemical parameters in roasted sunflower seeds supplemented with oregano and poleo essential oils; and the consumer acceptability of this product. Four samples were prepared: plain roasted sunflower seeds (Control = RS-C), and sunflower seeds added with oregano (RS-O) or poleo (RS-P) essential oils or BHT (RS-BHT). Consumer acceptance was determined on fresh samples. The overall acceptance averages were 6.13 for RS-C, 5.62 for RS-P, and 5.50 for RS-O (9-point hedonic scale). The addition of BHT showed greater protection against the oxidation process in the roasted sunflower seeds. Oregano essential oil exhibited a greater antioxidant effect during storage than poleo essential oil. Both essential oils (oregano and poleo) provided protection to the product, inhibiting the formation of undesirable flavors (oxidized and cardboard). The antioxidant activity that presents essential oils of oregano and poleo could be used to preserve roasted sunflower seeds.

  3. Genetic Analysis of Seed Isoflavones, Protein, and Oil Contents in Soybean [Glycine max (L.) Merr.

    DTIC Science & Technology

    2014-09-13

    high contents of protein, oil , isoflavones, and other bioactive compounds. However, it is susceptible to many biotic stresses such fungal, bacterial...for protein, oil , and isoflavones contents in three recombinant inbred line (RIL) populations of soybean. We have achieved 100% of the goals. We have...Jun-2011 31-May-2014 Approved for Public Release; Distribution Unlimited Final Report: Genetic Analysis of Seed Isoflavones, Protein, and Oil

  4. Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes.

    PubMed

    Venkatesagowda, Balaji; Ponugupaty, Ebenezer; Barbosa, Aneli M; Dekker, Robert F H

    2012-01-01

    Commercial oil-yielding seeds (castor, coconut, neem, peanut, pongamia, rubber and sesame) were collected from different places in the state of Tamil Nadu (India) from which 1279 endophytic fungi were isolated. The oil-bearing seeds exhibited rich fungal diversity. High Shannon-Index H' was observed with pongamia seeds (2.847) while a low Index occurred for coconut kernel-associated mycoflora (1.018). Maximum Colonization Frequency (%) was observed for Lasiodiplodia theobromae (176). Dominance Index (expressed in terms of the Simpson's Index D) was high (0.581) for coconut kernel-associated fungi, and low for pongamia seed-borne fungi. Species Richness (Chao) of the fungal isolates was high (47.09) in the case of neem seeds, and low (16.6) for peanut seeds. All 1279 fungal isolates were screened for lipolytic activity employing a zymogram method using Tween-20 in agar. Forty isolates showed strong lipolytic activity, and were morphologically identified as belonging to 19 taxa (Alternaria, Aspergillus, Chalaropsis, Cladosporium, Colletotrichum, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor, Penicillium, Pestalotiopsis, Phoma, Phomopsis, Phyllosticta, Rhizopus, Sclerotinia, Stachybotrys and Trichoderma). These isolates also exhibited amylolytic, proteolytic and cellulolytic activities. Five fungal isolates (Aspergillus niger, Chalaropsis thielavioides, Colletotrichum gloeosporioides, Lasiodiplodia theobromae and Phoma glomerata) exhibited highest lipase activities, and the best producer was Lasiodiplodia theobromae (108 U/mL), which was characterized by genomic sequence analysis of the ITS region of 18S rDNA.

  5. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter.

    PubMed

    Vigeolas, Helene; Waldeck, Peter; Zank, Thorsten; Geigenberger, Peter

    2007-05-01

    Previous attempts to manipulate oil synthesis in plants have mainly concentrated on the genes involved in the biosynthesis and use of fatty acids, neglecting the possible role of glycerol-3-phosphate supply on the rate of triacylglycerol synthesis. In this study, a yeast gene coding for cytosolic glycerol-3-phosphate dehydrogenase (gpd1) was expressed in transgenic oil-seed rape under the control of the seed-specific napin promoter. It was found that a twofold increase in glycerol-3-phosphate dehydrogenase activity led to a three- to fourfold increase in the level of glycerol-3-phosphate in developing seeds, resulting in a 40% increase in the final lipid content of the seed, with the protein content remaining substantially unchanged. This was accompanied by a decrease in the glycolytic intermediate dihydroxyacetone phosphate, the direct precursor of glycerol-3-phosphate dehydrogenase. The levels of sucrose and various metabolites in the pathway from sucrose to fatty acids remained unaltered. The results show that glycerol-3-phosphate supply co-limits oil accumulation in developing seeds. This has important implications for strategies that aim to increase the overall level of oil in commercial oil-seed crops for use as a renewable alternative to petrol.

  6. Oxidative stability, chemical composition and organoleptic properties of seinat (Cucumis melo var. tibish) seed oil blends with peanut oil from China.

    PubMed

    Siddeeg, Azhari; Xia, Wenshui

    2015-12-01

    Seinat seed oil was blended with peanut oil for the enhancement of stability and chemical characteristics of the blend. The physicochemical properties (relative density, refractive index, free fatty acids, saponification value, iodine value and peroxide value) of seinat seed and peanut oil blends in ratios 95:5, 85:15, 30:70 and 50:50 proportions were evaluated, as well as oxidative stability index, deferential scanning calorimetric (DSC) characteristics and tocopherols content. Results of oil blend showed that there was no negative effect by the addition of seinat seed oil to peanut oil and also had decreased percentages of all saturated fatty acids except stearic acid, conversely, increased the levels of unsaturated fatty acids. As for the sensory evaluation, the panelist results showed that seinat seed oil blends had no significant differences (p < 0.05) in all attributes except the purity. The results indicated that the blending of seinat seed oil with peanut oil had also increased the stability and tocopherols content. As Sudan is the first producer of seinat oil, blending of seinat seed oil with traditional oil like quality, and may decrease the consumption of other expensive edible oils.

  7. Transfer of thallium from rape seed to rape oil is negligible and oil is fit for human consumption.

    PubMed

    Loula, Martin; Kaňa, Antonín; Vosmanská, Magda; Koplík, Richard; Mestek, Oto

    2016-01-01

    Rape and other Brassicaceae family plants can accumulate appreciable amounts of thallium from the soil. Because some species of this family are common crops utilised as food for direct consumption or raw materials for food production, thallium can enter the food chain. A useful method for thallium determination is inductively coupled plasma mass spectrometry. The limit of detection (0.2 pg ml(-1) Tl or 0.02 ng g(-1) Tl, taking in the account dilution during sample decomposition) found in the current study was very low, and the method can be used for ultra-trace analysis. Possible transfer of thallium from rape seed to the rape oil was investigated in two ways. The balance of thallium in rape seed meal (content 140-200 ng g(-1) Tl) and defatted rape seed meal indicated that thallium did not pass into the oil (p < 0.05). Moreover, the analyses of thallium in six kinds of edible rape seed oil and three kinds of margarines showed that the amount of thallium in rape seed oil is negligible.

  8. IR and Raman studies of oil and seedcake extracts from natural and genetically modified flax seeds

    NASA Astrophysics Data System (ADS)

    Żuk, M.; Dymińska, L.; Kulma, A.; Boba, A.; Prescha, A.; Szopa, J.; Mączka, M.; Zając, A.; Szołtysek, K.; Hanuza, J.

    2011-03-01

    Flax plant of the third generation (F3) overexpressing key genes of flavonoid pathway cultivated in field in 2008 season was used as the plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts from natural and transgenic flax plants were compared. Overproduction of flavonoids (kaempferol), phenolic acids (coumaric, ferulic/synapic) and lignan-secoisolariciresinol diglucoside (SDG) in oil and extracts from transgenic seeds has been revealed providing a valuable source of these compounds for biotechnological application. The changes in fatty acids composition and increase in their stability against oxidation along three plant generations were also detected. The analysis of oil and seedcake extracts was performed using Raman and IR spectroscopy. The wavenumbers and integral intensities of Raman and IR bands were used to identify the components of phenylpropanoid pathway in oil and seedcake extracts from control and transgenic flax seeds. The spectroscopic data were compared to those obtained from biochemical analysis.

  9. Spectroscopic and thermooxidative analysis of organic okra oil and seeds from Abelmoschus esculentus.

    PubMed

    de Sousa Ferreira Soares, Geórgia; Gomes, Vinicius de Morais; Dos Reis Albuquerque, Anderson; Barbosa Dantas, Manoel; Rosenhain, Raul; de Souza, Antônio Gouveia; Persunh, Darlene Camati; Gadelha, Carlos Alberto de Almeida; Costa, Maria José de Carvalho; Gadelha, Tatiane Santi

    2012-01-01

    With changes in human consumption from animal fats to vegetable oils, the search for seed types, often from unconventional vegetable sources has grown. Research on the chemical composition of both seed and oil for Brazilian Okra in South America is still incipient. In this study, flour and oil from organic Okra seeds (Abelmoschus esculentus L Moench), grown in northeastern Brazil were analyzed. Similar to Okra varieties from the Middle East and Central America, Brazilian Okra has significant amounts of protein (22.14%), lipids (14.01%), and high amounts of unsaturated lipids (66.32%), especially the oleic (20.38%) and linoleic acids (44.48%). Oil analysis through PDSC revealed an oxidation temperature of 175.2 °C, which in combination with low amounts of peroxide, demonstrates its resistance to oxidation and favors its use for human consumption.

  10. Spectroscopic and Thermooxidative Analysis of Organic Okra Oil and Seeds from Abelmoschus esculentus

    PubMed Central

    de Sousa Ferreira Soares, Geórgia; Gomes, Vinicius de Morais; dos Reis Albuquerque, Anderson; Barbosa Dantas, Manoel; Rosenhain, Raul; de Souza, Antônio Gouveia; Persunh, Darlene Camati; Gadelha, Carlos Alberto de Almeida; Costa, Maria José de Carvalho; Gadelha, Tatiane Santi

    2012-01-01

    With changes in human consumption from animal fats to vegetable oils, the search for seed types, often from unconventional vegetable sources has grown. Research on the chemical composition of both seed and oil for Brazilian Okra in South America is still incipient. In this study, flour and oil from organic Okra seeds (Abelmoschus esculentus L Moench), grown in northeastern Brazil were analyzed. Similar to Okra varieties from the Middle East and Central America, Brazilian Okra has significant amounts of protein (22.14%), lipids (14.01%), and high amounts of unsaturated lipids (66.32%), especially the oleic (20.38%) and linoleic acids (44.48%). Oil analysis through PDSC revealed an oxidation temperature of 175.2°C, which in combination with low amounts of peroxide, demonstrates its resistance to oxidation and favors its use for human consumption. PMID:22645459

  11. Hemp-seed and olive oils: their stability against oxidation and use in O/W emulsions.

    PubMed

    Sapino, S; Carlotti, M E; Peira, E; Gallarate, M

    2005-01-01

    Hemp-seed oil has several positive effects on the skin: thanks to its unsaturated fatty acid (PUFA) content it alleviates skin problems such as dryness and those related to the aging process. We present a comparative study of hemp-seed and olive oils, determining some physicochemical indices and evaluating their stability against oxidation. The peroxide value of hemp-seed oil was below 20, the threshold limit for edible oils. Hemp-seed oil was less stable against peroxidation than olive oil, but MDA and MONO assays showed its stability to be above expectations. The chlorophyll contained in extra virgin olive oil had a higher photostability than that contained in hemp-seed oil, possibly due to the larger amount of antioxidant in the olive oil. A certain amount of Vitamin E was found in hemp-seed oil. Since quality analyses indicated that hemp-seed oil is relatively stable, emulsions were prepared with the two oils, and their stability and rheological characteristics were tested. Some of the resulting gel-emulsions were suitable for spraying on the skin.

  12. Histidine Regulates Seed Oil Deposition through Abscisic Acid Biosynthesis and β-Oxidation.

    PubMed

    Ma, Huimin; Wang, Shui

    2016-10-01

    The storage compounds are deposited into plant seeds during maturation. As the model oilseed species, Arabidopsis (Arabidopsis thaliana) has long been studied for seed oil deposition. However, the regulation of this process remains unclear. Through genetic screen with a seed oil body-specific reporter, we isolated low oil1 (loo1) mutant. LOO1 was mapped to HISTIDINE BIOSYNTHESIS NUMBER 1A (HISN1A). HISN1A catalyzes the first step of His biosynthesis. Oil significantly decreased, and conversely proteins markedly increased in hisn1a mutants, indicating that HISN1A regulates both oil accumulation and the oil-protein balance. HISN1A was predominantly expressed in embryos and root tips. Accordingly, the hisn1a mutants exhibited developmental phenotype especially of seeds and roots. Transcriptional profiling displayed that β-oxidation was the major metabolic pathway downstream of HISN1A β-Oxidation was induced in hisn1a mutants, whereas it was reduced in 35S:HISN1A-transgenic plants. In plants, seed storage oil is broken-down by β-oxidation, which is controlled by abscisic acid (ABA). We found that His activated genes of ABA biosynthesis and correspondingly advanced ABA accumulation. Exogenous ABA rescued the defects of hisn1a mutants, whereas mutation of ABA DEFICIENT2, a key enzyme in ABA biosynthesis, blocked the effect of His on β-oxidation, indicating that ABA mediates His regulation in β-oxidation. Intriguingly, structural analysis showed that a potential His-binding domain was present in the general amino acid sensors GENERAL CONTROL NON-DEREPRESSIBLE2 and PII, suggesting that His may serve as a signal molecule. Taken together, our study reveals that His promotes plant seed oil deposition through ABA biosynthesis and β-oxidation.

  13. Cold pressed versus solvent extracted lemon (Citrus limon L.) seed oils: yield and properties.

    PubMed

    Yilmaz, Emin; Güneşer, Buket Aydeniz

    2017-06-01

    During the processing of lemon fruit, a large quantity of seeds is produced as a by-product. These seeds contain valuable components; therefore, required to be evaluated. This study aimed to compare the cold pressed with hexane-extracted lemon seed oils and determine their physicochemical and thermal properties. Cold pressing yielded significantly lower oil (36.84%) than hexane extraction (71.29%). In addition, the concentrations of free fatty acids, peroxides, and p-anisidine were lower in the cold pressed oil. Cold pressed oil showed higher total phenolics, α-tocopherol and antioxidant capacity. The major fatty acids found in the cold pressed oil were linoleic and palmitic acids, whereas β-sitosterol and campesterol were the dominant sterols. The crystallization and melting temperatures and enthalpies were also elucidated. In conclusion, this study proved that high quality of lemon seed oils can be produced by the cold pressing technique; this oil can be used in industries such as the food, cosmetic or chemical industries.

  14. Acute toxicity of Opuntia ficus indica and Pistacia lentiscus seed oils in mice.

    PubMed

    Boukeloua, A; Belkhiri, A; Djerrou, Z; Bahri, L; Boulebda, N; Hamdi Pacha, Y

    2012-01-01

    Opuntia ficus indica and Pistacia lentiscus L. seeds are used in traditional medicine. The objective of this study was to investigate the toxicity of the fixed oil of Opuntia ficus indica and Pistacia lentiscus L. seeds in mice through determination of LD₅₀ values, and also the physicochemical characteristics of the fixed oil of these oils. The acute toxicity of their fixed oil were also investigated in mice using the method of Kabba and Berhens. The fixed oil of Pistacia lentiscus and Opuntia ficus indica seeds were extracted and analyzed for its chemical and physical properties such as acid value, free fatty acid percentage (% FFA), iodine index, and saponification value as well as refractive index and density. LD₅₀ values obtained by single doses, orally and intraperitoneally administered in mice, were respectively 43 ± 0,8 ;[40.7- 45.4 ] ml/kg body wt. p.o. and 2.72 ± 0,1 ;[2.52-2.92] ml/kg body wt. i.p. for Opuntia ficus indica ; and 37 ± 1 ;[34.4 - 39.8 ] ml/kg body wt. p.o. and 2.52 ± 0,2 ;[2.22 - 2.81 ] ml/kg body wt. i.p. for Pistacia lentiscus respectively. The yields of seed oil were respectively calculated as 20.25% and 10.41%. The acid and free fatty acid values indicated that the oil has a low acidity.

  15. Effects of pumpkin seed oil and saw palmetto oil in Korean men with symptomatic benign prostatic hyperplasia.

    PubMed

    Hong, Heeok; Kim, Chun-Soo; Maeng, Sungho

    2009-01-01

    This study was to investigate the role of complementary and alternative medicine in the prevention and treatment of benign prostatic hyperplasia. For this purpose, a randomized, double-blind, placebo-controlled trial was performed over 12 months on 47 benign prostatic hyperplasia patients with average age of 53.3 years and international prostate symptom score over 8. Subjects received either sweet potato starch (group A, placebo, 320 mg/day), pumpkin seed oil (group B, 320 mg/day), saw palmetto oil (group C, 320 mg/day) or pumpkin seed oil plus saw palmetto oil (group D, each 320 mg/day). International prostate symptom score, quality of life, serum prostate specific antigen, prostate volume and maximal urinary flow rate were measured. In groups B, C and D, the international prostate symptom score were reduced by 3 months. Quality of life score was improved after 6 months in group D, while those of groups B and C were improved after 3 months, compared to the baseline value. Serum prostate specific antigen was reduced only in group D after 3 months, but no difference was observed in prostate volume in all treatment groups. Maximal urinary flow rate were gradually improved in groups B and C, with statistical significance after 6 months in group B and after 12 months in group C. None of the parameters were significantly improved by combined treatment with pumpkin seed oil and saw palmetto oil. From these results, it is suggested that administrations of pumpkin seed oil and saw palmetto oil are clinically safe and may be effective as complementary and alternative medicine treatments for benign prostatic hyperplasia.

  16. Effects of pumpkin seed oil and saw palmetto oil in Korean men with symptomatic benign prostatic hyperplasia

    PubMed Central

    Hong, Heeok; Kim, Chun-Soo

    2009-01-01

    This study was to investigate the role of complementary and alternative medicine in the prevention and treatment of benign prostatic hyperplasia. For this purpose, a randomized, double-blind, placebo-controlled trial was performed over 12 months on 47 benign prostatic hyperplasia patients with average age of 53.3 years and international prostate symptom score over 8. Subjects received either sweet potato starch (group A, placebo, 320 mg/day), pumpkin seed oil (group B, 320 mg/day), saw palmetto oil (group C, 320 mg/day) or pumpkin seed oil plus saw palmetto oil (group D, each 320 mg/day). International prostate symptom score, quality of life, serum prostate specific antigen, prostate volume and maximal urinary flow rate were measured. In groups B, C and D, the international prostate symptom score were reduced by 3 months. Quality of life score was improved after 6 months in group D, while those of groups B and C were improved after 3 months, compared to the baseline value. Serum prostate specific antigen was reduced only in group D after 3 months, but no difference was observed in prostate volume in all treatment groups. Maximal urinary flow rate were gradually improved in groups B and C, with statistical significance after 6 months in group B and after 12 months in group C. None of the parameters were significantly improved by combined treatment with pumpkin seed oil and saw palmetto oil. From these results, it is suggested that administrations of pumpkin seed oil and saw palmetto oil are clinically safe and may be effective as complementary and alternative medicine treatments for benign prostatic hyperplasia. PMID:20098586

  17. Effect of essential oil of Origanum rotundifolium on some plant pathogenic bacteria, seed germination and plant growth of tomato

    NASA Astrophysics Data System (ADS)

    Dadaşoǧlu, Fatih; Kotan, Recep; Karagöz, Kenan; Dikbaş, Neslihan; Ćakmakçi, Ramazan; Ćakir, Ahmet; Kordali, Şaban; Özer, Hakan

    2016-04-01

    The aim of this study is to determine effect of Origanum rotundifolium's essential oil on some plant pathogenic bacterias, seed germination and plant growth of tomato. Xanthomonas axanopodis pv. vesicatoria strain (Xcv-761) and Clavibacter michiganensis ssp. michiganensis strain (Cmm) inoculated to tomato seed. The seeds were tested for germination in vitro and disease severity and some plant growth parameters in vivo. In vitro assay, maximum seed germination was observed at 62,5 µl/ml essential oil treatment in seeds inoculated with Xcv-761 and at 62,5 µl/ml essential oil and streptomycin treatment in seeds inoculated with Cmm. The least infected cotiledon number was observed at 500 µg/ml streptomycin treatment in seeds inoculated with Cmm. In vivo assay, maximum seed germination was observed at 250 µl/ml essential oil teratment in tomato inoculated with Cmm. Lowest disease severity, is seen in the CMM infected seeds with 250 µl/ml essential oil application these results were statistically significant when compared with pathogen infected seeds. Similarly, in application conducted with XCV-761 infected seed, the lowest disease severity was observed for seeds as a result of 250 µl/ml essential oil application. Also according to the results obtained from essential oil application of CMM infected seeds conducted with 62,5 µl/ml dose; while disease severity was found statistically insignificant compared to 250 µl/ml to essential oil application, ıt was found statistically significant compared to pathogen infected seeds. The results showed that essential oil of O. rotundifolium has a potential for some suppressed plant disease when it is used in appropriate dose.

  18. LTC4 synthase polymorphism modifies efficacy of botanical seed oil combination in asthma.

    PubMed

    Kazani, Shamsah; Arm, Jonathan P; Boyce, Joshua; Chhay, Heng; Dutile, Stefanie; Wechsler, Michael E; Govindarajulu, Usha; Ivester, Priscilla; Ainsworth, Hannah C; Sergeant, Susan; Chilton, Floyd H; Israel, Elliot

    2014-01-01

    Botanical seed oils reduce the generation of leukotrienes in patients with asthma. Our objective was to determine the efficacy of a botanical seed oil combination against airflow obstruction in asthma, and to determine the pharmacogenomic effect of the leukotriene C4 synthase (LTC4S) polymorphism A-444C. We conducted a randomized, double-blind, placebo-controlled, cross-over clinical trial in mild to moderate asthmatics to determine the change in FEV1 after 6 weeks of therapy with borage and echium seed oils versus corn oil placebo. We also examined the effect of the variant LTC4S -444C allele on the change in lung function. We did not identify a difference in FEV1 in the study cohort as a whole (n = 28), nor in the group of A homozygotes. In the C allele carriers (n = 9), FEV1 improved by 3% after treatment with borage and echium seed oils and declined by 4% after placebo corn oil (p = 0.02). All 9 C allele carriers demonstrated an improvement in their FEV1 on active treatment compared to placebo as compared to only 7 out of 19 A allele homozygotes (p = 0.007). We observed transient differences in ex vivo leukotriene generation from circulating basophils and granulocytes. We did not observe significant differences in urinary LTE4 levels. We conclude that compared to corn oil, a combination of borage and echium seed oils improves airflow obstruction in mild to moderate asthmatics who carry the variant allele in the LTC4S gene (A-444C). Botanical oil supplementation may have therapeutic potential in asthma if used in a personalized manner. This trial was registered at http://www.clinicaltrials.gov as NCT00806442.

  19. The structural organization of seed oil bodies could explain the contrasted oil extractability observed in two rapeseed genotypes.

    PubMed

    Boulard, Céline; Bardet, Michel; Chardot, Thierry; Dubreucq, Bertrand; Gromova, Marina; Guillermo, Armel; Miquel, Martine; Nesi, Nathalie; Yen-Nicolaÿ, Stéphanie; Jolivet, Pascale

    2015-07-01

    The protein, phospholipid and sterol composition of the oil body surface from the seeds of two rapeseed genotypes was compared in order to explain their contrasted oil extractability. In the mature seeds of oleaginous plants, storage lipids accumulate in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids surrounded by a phospholipid monolayer in which structural proteins are embedded. The physical stability of OBs is a consequence of the interactions between proteins and phospholipids. A detailed study of OB characteristics in mature seeds as well as throughout seed development was carried out on two contrasting rapeseed genotypes Amber and Warzanwski. These two accessions were chosen because they differ dramatically in (1) crushing ability, (2) oil extraction yield and, (3) the stability of purified OBs. Warzanwski has higher crushing ability, better oil extraction yield and less stable purified OBs than Amber. OB morphology was investigated in situ using fluorescence microscopy, transmission electron microscopy and pulsed field gradient NMR. During seed development, OB diameter first increased and then decreased 30 days after pollination in both Amber and Warzanwski embryos. In mature seeds, Amber OBs were significantly smaller. The protein, phospholipid and sterol composition of the hemi-membrane was compared between the two accessions. Amber OBs were enriched with H-oleosins and steroleosins, suggesting increased coverage of the OB surface consistent with their higher stability. The nature and composition of phospholipids and sterols in Amber OBs suggest that the hemi-membrane would have a more rigid structure than that of Warzanwski OBs.

  20. Seed-Specific Over-Expression of an Arabidopsis cDNA Encoding a Diacylglycerol Acyltransferase Enhances Seed Oil Content and Seed Weight1

    PubMed Central

    Jako, Colette; Kumar, Arvind; Wei, Yangdou; Zou, Jitao; Barton, Dennis L.; Giblin, E. Michael; Covello, Patrick S.; Taylor, David C.

    2001-01-01

    We recently reported the cloning and characterization of an Arabidopsis (ecotype Columbia) diacylglycerol acyltransferase cDNA (Zou et al., 1999) and found that in Arabidopsis mutant line AS11, an ethyl methanesulfonate-induced mutation at a locus on chromosome II designated as Tag1 consists of a 147-bp insertion in the DNA, which results in a repeat of the 81-bp exon 2 in the Tag1 cDNA. This insertion mutation is correlated with an altered seed fatty acid composition, reduced diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) activity, reduced seed triacylglycerol content, and delayed seed development in the AS11 mutant. The effect of the insertion mutation on microsomal acyl-coenzyme A-dependent DGAT is examined with respect to DGAT activity and its substrate specificity in the AS11 mutant relative to wild type. We demonstrate that transformation of mutant AS11 with a single copy of the wild-type Tag1 DGAT cDNA can complement the fatty acid and reduced oil phenotype of mutant AS11. More importantly, we show for the first time that seed-specific over-expression of the DGAT cDNA in wild-type Arabidopsis enhances oil deposition and average seed weight, which are correlated with DGAT transcript levels. The DGAT activity in developing seed of transgenic lines was enhanced by 10% to 70%. Thus, the current study confirms the important role of DGAT in regulating the quantity of seed triacylglycerols and the sink size in developing seeds. PMID:11402213

  1. Nutritive Value of Pomegranate Fruit and Juice

    USDA-ARS?s Scientific Manuscript database

    Pomegranates have become popular in recent years due to their high antioxidant content. Pomegranates are grown in California, where the "Wonderful" cultivar represents over 90% of the U.S. retail market. Nutrient data for pomegranates in the USDA nutrient database (SR) were primarily based on olde...

  2. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines

    PubMed Central

    Wong, Yu Hua; Tan, Wai Yan; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-01-01

    Objective To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines. Methods The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope. Results The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected. Conclusions KSE and KSO could be potential sources of natural anti-cancer agents. Further investigations on using kenaf seeds for anti-proliferative properties are warranted. PMID:25183141

  3. Modified method for combined DNA and RNA isolation from peanut and other oil seeds.

    PubMed

    Dang, Phat M; Chen, Charles Y

    2013-02-01

    Isolation of good quality RNA and DNA from seeds is difficult due to high levels of polysaccharides, polyphenols, and lipids that can degrade or co-precipitate with nucleic acids. Standard RNA extraction methods utilizing guanidinium-phenol-chloroform extraction has not shown to be successful. RNA isolation from plant seeds is a prerequisite for many seed specific gene expression studies and DNA is necessary in marker-assisted selection and other genetic studies. We describe a modified method to isolate both RNA and DNA from the same seed tissue and have been successful with several oil seeds including peanut, soybean, sunflower, canola, and oil radish. An additional LiCl precipitation step was added to isolate both RNA and DNA from the same seed tissues. High quality nucleic acids were observed based on A(260)/A(280) and A(260)/A(230) ratios above 2.0 and distinct bands on gel-electrophoresis. RNA was shown to be suitable for reverse transcriptase polymerase chain reaction based on actin or 60S ribosomal primer amplification and DNA was shown to have a single band on gel-electrophoresis analysis. This result shows that RNA and DNA isolated using this method can be appropriate for molecular studies in peanut and other oil containing seeds.

  4. Antimicrobial Activity and Chemical Composition of Essential Oil From the Seeds of Artemisia aucheri Boiss

    PubMed Central

    Asghari, Gholamreza; Jalali, Mohamad; Sadoughi, Ehsan

    2012-01-01

    Background Artemisia aerial parts are well known for antimicrobial activities including anti malaria. Objectives This study was carried out to evaluate the antimicrobial activity and chemical composition of essential oil from the seeds of Artemisia aucheri Boiss (Asteraceae). Materials and Methods Essential oil was extracted from the powdered seeds of Artemisia aucheri by hydrodistillation. Antimicrobial activity against five bacterial species was tested using the disc diffusion method, and the chemical composition of the essential oil was analyzed by gas chromatography-mass spectrometry (GC-MS). Results The essential oil of Artemisia aucheri seed showed activity against Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes. The essential oil constituents identified by GC-MS were as follows: decane, ρ-cymene, 1,8-cineole, linalool, ρ-mentha-8-ol, triene, borneol, lavandulol, bornyl acetate, chrysanthenyl acetate, dehydro aromadenderene, and caryophyllene oxide. Most of these compounds are also found in the aerial parts of Artemisia aucheri. Conclusions Variation in the compositions of essential oils from Artemisia aucheri, and thus variation in the antimicrobial activity of these oils, may be due to the plant parts used for essential oil prepration. PMID:24624145

  5. Suitability of elemental fingerprinting for assessing the geographic origin of pumpkin (Cucurbita pepo var. styriaca) seed oil.

    PubMed

    Bandoniene, Donata; Zettl, Daniela; Meisel, Thomas; Maneiko, Marija

    2013-02-15

    An analytical method was developed and validated for the classification of the geographical origin of pumpkin seeds and oil from Austria, China and Russia. The distribution of element traces in pumpkin seed and pumpkin seed oils in relation to the geographical origin of soils of several agricultural farms in Austria was studied in detail. Samples from several geographic origins were taken from parts of the pumpkin, pumpkin flesh, seeds, the oil extracted from the seeds and the oil-extraction cake as well as the topsoil on which the plants were grown. Plants from different geographical origin show variations of the elemental patterns that are significantly large, reproducible over the years and ripeness period and show no significant influence of oil production procedure, to allow to a discrimination of geographical origin. A successful differentiation of oils from different regions in Austria, China and Russia classified with multivariate data analysis is demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Populus seed fibers as a natural source for production of oil super absorbents.

    PubMed

    Likon, Marko; Remškar, Maja; Ducman, Vilma; Švegl, Franc

    2013-01-15

    The genus Populus, which includes poplars, cottonwoods and aspen trees, represents a huge natural source of fibers with exceptional physical properties. In this study, the oil absorption properties of poplar seed hair fibers obtained from Populus nigra italica when tested with high-density motor oil and diesel fuel are reported. Poplar seed hair fibers are hollow hydrophobic microtubes with an external diameter between 3 and 12 μm, an average length of 4±1 mm and average tube wall thickness of 400±100 nm. The solid skeleton of the hollow fibers consists of lignocellulosic material coated by a hydrophobic waxy coating. The exceptional chemical, physical and microstructural properties of poplar seed hair fibers enable super-absorbent behavior with high absorption capacity for heavy motor oil and diesel fuel. The absorption values of 182-211 g heavy oil/g fiber and 55-60 g heavy oil/g fiber for packing densities of 0.005 g/cm(3) and 0.02 g/cm(3), respectively, surpass all known natural absorbents. Thus, poplar seed hair fibers obtained from Populus nigra italica and other trees of the genus Populus are an extremely promising natural source for the production of oil super absorbents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Agricultural practices altered soybean seed protein, oil, fatty acids, sugars, and minerals in the Midsouth USA

    PubMed Central

    Bellaloui, Nacer; Bruns, H. Arnold; Abbas, Hamed K.; Mengistu, Alemu; Fisher, Daniel K.; Reddy, Krishna N.

    2015-01-01

    Information on the effects of management practices on soybean seed composition is scarce. Therefore, the objective of this research was to investigate the effects of planting date (PD) and seeding rate (SR) on seed composition (protein, oil, fatty acids, and sugars) and seed minerals (B, P, and Fe) in soybean grown in two row-types (RTs) on the Mississippi Delta region of the Midsouth USA. Two field experiments were conducted in 2009 and 2010 on Sharkey clay and Beulah fine sandy loam soil at Stoneville, MS, USA, under irrigated conditions. Soybean were grown in 102 cm single-rows and 25 cm twin-rows in 102 cm centers at SRs of 20, 30, 40, and 50 seeds m-2. The results showed that in May and June planting, protein, glucose, P, and B concentrations increased with increased SR, but at the highest SRs (40 and 50 seeds m-2), the concentrations remained constant or declined. Palmitic, stearic, and linoleic acid concentrations were the least responsive to SR increases. Early planting resulted in higher oil, oleic acid, sucrose, B, and P on both single and twin-rows. Late planting resulted in higher protein and linolenic acid, but lower oleic acid and oil concentrations. The changes in seed constituents could be due to changes in environmental factors (drought and temperature), and nutrient accumulation in seeds and leaves. The increase of stachyose sugar in 2010 may be due to a drier year and high temperature in 2010 compared to 2009; suggesting the possible role of stachyose as an environmental stress compound. Our research demonstrated that PD, SR, and RT altered some seed constituents, but the level of alteration in each year dependent on environmental factors such as drought and temperature. This information benefits growers and breeders for considering agronomic practices to select for soybean seed nutritional qualities under drought and high heat conditions. PMID:25741347

  8. Agricultural practices altered soybean seed protein, oil, fatty acids, sugars, and minerals in the Midsouth USA.

    PubMed

    Bellaloui, Nacer; Bruns, H Arnold; Abbas, Hamed K; Mengistu, Alemu; Fisher, Daniel K; Reddy, Krishna N

    2015-01-01

    Information on the effects of management practices on soybean seed composition is scarce. Therefore, the objective of this research was to investigate the effects of planting date (PD) and seeding rate (SR) on seed composition (protein, oil, fatty acids, and sugars) and seed minerals (B, P, and Fe) in soybean grown in two row-types (RTs) on the Mississippi Delta region of the Midsouth USA. Two field experiments were conducted in 2009 and 2010 on Sharkey clay and Beulah fine sandy loam soil at Stoneville, MS, USA, under irrigated conditions. Soybean were grown in 102 cm single-rows and 25 cm twin-rows in 102 cm centers at SRs of 20, 30, 40, and 50 seeds m(-2). The results showed that in May and June planting, protein, glucose, P, and B concentrations increased with increased SR, but at the highest SRs (40 and 50 seeds m(-2)), the concentrations remained constant or declined. Palmitic, stearic, and linoleic acid concentrations were the least responsive to SR increases. Early planting resulted in higher oil, oleic acid, sucrose, B, and P on both single and twin-rows. Late planting resulted in higher protein and linolenic acid, but lower oleic acid and oil concentrations. The changes in seed constituents could be due to changes in environmental factors (drought and temperature), and nutrient accumulation in seeds and leaves. The increase of stachyose sugar in 2010 may be due to a drier year and high temperature in 2010 compared to 2009; suggesting the possible role of stachyose as an environmental stress compound. Our research demonstrated that PD, SR, and RT altered some seed constituents, but the level of alteration in each year dependent on environmental factors such as drought and temperature. This information benefits growers and breeders for considering agronomic practices to select for soybean seed nutritional qualities under drought and high heat conditions.

  9. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus.

    PubMed

    Liu, Sheng; Fan, Chuchuan; Li, Jiana; Cai, Guangqin; Yang, Qingyong; Wu, Jian; Yi, Xinqi; Zhang, Chunyu; Zhou, Yongming

    2016-06-01

    A set of additive loci for seed oil content were identified using association mapping and one of the novel loci on the chromosome A5 was validated by linkage mapping. Increasing seed oil content is one of the most important goals in the breeding of oilseed crops including Brassica napus, yet the genetic basis for variations in this important trait remains unclear. By genome-wide association study of seed oil content using 521 B. napus accessions genotyped with the Brassica 60K SNP array, we identified 50 loci significantly associated with seed oil content using three statistical models, the general linear model, the mixed linear model and the Anderson-Darling test. Together, the identified loci could explain approximately 80 % of the total phenotypic variance, and 29 of these loci have not been reported previously. Furthermore, a novel locus on the chromosome A5 that could increase 1.5-1.7 % of seed oil content was validated in an independent bi-parental linkage population. Haplotype analysis showed that the favorable alleles for seed oil content exhibit cumulative effects. Our results thus provide valuable information for understanding the genetic control of seed oil content in B. napus and may facilitate marker-based breeding for a higher seed oil content in this important oil crop.

  10. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication1[OPEN

    PubMed Central

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Ma, Biao; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Shui, Guang-Hou; Chen, Shou-Yi

    2017-01-01

    Seed oil is a momentous agronomical trait of soybean (Glycine max) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351, encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1, BIOTIN CARBOXYL CARRIER PROTEIN2, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III, DIACYLGLYCEROL O-ACYLTRANSFERASE1, and OLEOSIN2 in transgenic Arabidopsis (Arabidopsis thaliana) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean (Glycine soja) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. PMID:28184009

  11. [Effect of conditions and duration of storage on composition of essential oil from coriander seeds].

    PubMed

    Misharina, T A

    2001-01-01

    The composition of volatile components of the essential oil extracted from seeds of coriander (Coriandrum sativum L.) grown in different years in either Russia or Georgia was studied by capillary gas chromatography. Climatic conditions had a weaker effect on the essential oil composition than the region of growth. After one-year storage in the dark, minor changes were observed in the oil composition, and its organoleptic properties were virtually unchanged. However, the essential oil underwent significant chemical transformation of monoterpenes when stored in the light.

  12. Effect of long-term optional ingestion of canola oil, grape seed oil, corn oil and yogurt butter on serum, muscle and liver cholesterol status in rats.

    PubMed

    Asadi, Farzad; Shahriari, Ali; Chahardah-Cheric, Marjan

    2010-01-01

    The aim of the present study was to determine the effect of long-term optional intake of vegetable oils (canola, grape seed, corn) and yogurt butter on the serum, liver and muscle cholesterol status. Twenty-five male Wistar rats were randomly categorized into five groups (n=5) as follows: control, canola oil, grape seed oil, corn oil and manually prepared yogurt butter. In each group, 24h two bottle choice (oil and water) tests were performed for 10 weeks. Serum cholesterol values showed a trend to decrease in grape seed oil, corn oil and yogurt butter groups compared to the control. Optional intake of yogurt butter made a significant increase in HDL-C values (42.34+/-9.98 mg/dL) yet decrease in LDL-C values (11.68+/-2.06 mg/dL) compared to the corresponding control (19.07+/-3.51; 30.96+/-6.38 mg/dL, respectively). Furthermore, such findings were concomitant with a significant decrease in the liver TC levels (1.75+/-0.31 mg/g liver) and an increase in the muscle TC levels (1.85+/-0.32 mg/g liver) compared to the corresponding control (2.43+/-0.31; 0.94+/-0.14 mg/g liver, respectively). Optional intake of manually prepared yogurt butter has more beneficial effects on serum lipoprotein cholesterol values with some alterations in the liver and muscle cholesterol states than the vegetable oils.

  13. Antioxidant (Tocopherol and Canolol) Content in Rapeseed Oil Obtained from Roasted Yellow-Seeded Brassica napus.

    PubMed

    Siger, Aleksander; Gawrysiak-Witulska, Marzena; Bartkowiak-Broda, Iwona

    2017-01-01

    In this study, the effect of temperature (140, 160, 180 °C) and roasting time (5, 10, 15 min) on the bioactive compound content (canolol, tocopherol and plastochromanol-8) of cold-pressed oil from yellow-seeded rapeseed lines of different colors was investigated. Roasting increased the peroxide value in the seed oils compared to the oils from the control samples. However, roasting did not affect the acid values of the oils, which were 1.15-1.47 and 1.30-1.40 mg KOH/g, for line PN1 03/1i/14 (yellow seeds) and line PN1 563/1i/14 (brown seeds), respectively. In this study, the seeds of line PN1 03/1i/14 were characterized by different changes in canolol content during roasting than the seeds of PN1 563/1i/14. There was a 90-fold increase in canolol for the line PN1 03/1i/14 (768.26 µg/g) and a 46-fold increase for the line PN1 563/1i/14 (576.43 µg/g). Changes in tocopherol and PC-8 contents were also observed. There was an increase in the contents of γ-T and PC-8 in the oils obtained from the seeds roasted at 180 °C for 10 and 15 min. γ-T content increased by 17-18% after 15 min of roasting, whereas the PC-8 content increased twofold.

  14. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean.

    PubMed

    Lardizabal, Kathryn; Effertz, Roger; Levering, Charlene; Mai, Jennifer; Pedroso, M C; Jury, Tom; Aasen, Eric; Gruys, Ken; Bennett, Kristen

    2008-09-01

    Oilseeds are the main source of lipids used in both food and biofuels. The growing demand for vegetable oil has focused research toward increasing the amount of this valuable component in oilseed crops. Globally, soybean (Glycine max) is one of the most important oilseed crops grown, contributing about 30% of the vegetable oil used for food, feed, and industrial applications. Breeding efforts in soy have shown that multiple loci contribute to the final content of oil and protein stored in seeds. Genetically, the levels of these two storage products appear to be inversely correlated with an increase in oil coming at the expense of protein and vice versa. One way to overcome the linkage between oil and protein is to introduce a transgene that can specifically modulate one pathway without disrupting the other. We describe the first, to our knowledge, transgenic soy crop with increased oil that shows no major impact on protein content or yield. This was achieved by expressing a codon-optimized version of a diacylglycerol acyltransferase 2A from the soil fungus Umbelopsis (formerly Mortierella) ramanniana in soybean seed during development, resulting in an absolute increase in oil of 1.5% (by weight) in the mature seed.

  15. Expression of Umbelopsis ramanniana DGAT2A in Seed Increases Oil in Soybean1[OA

    PubMed Central

    Lardizabal, Kathryn; Effertz, Roger; Levering, Charlene; Mai, Jennifer; Pedroso, M.C.; Jury, Tom; Aasen, Eric; Gruys, Ken; Bennett, Kristen

    2008-01-01

    Oilseeds are the main source of lipids used in both food and biofuels. The growing demand for vegetable oil has focused research toward increasing the amount of this valuable component in oilseed crops. Globally, soybean (Glycine max) is one of the most important oilseed crops grown, contributing about 30% of the vegetable oil used for food, feed, and industrial applications. Breeding efforts in soy have shown that multiple loci contribute to the final content of oil and protein stored in seeds. Genetically, the levels of these two storage products appear to be inversely correlated with an increase in oil coming at the expense of protein and vice versa. One way to overcome the linkage between oil and protein is to introduce a transgene that can specifically modulate one pathway without disrupting the other. We describe the first, to our knowledge, transgenic soy crop with increased oil that shows no major impact on protein content or yield. This was achieved by expressing a codon-optimized version of a diacylglycerol acyltransferase 2A from the soil fungus Umbelopsis (formerly Mortierella) ramanniana in soybean seed during development, resulting in an absolute increase in oil of 1.5% (by weight) in the mature seed. PMID:18633120

  16. Formulation, Characterization and Properties of Hemp Seed Oil and Its Emulsions.

    PubMed

    Mikulcová, Veronika; Kašpárková, Věra; Humpolíček, Petr; Buňková, Leona

    2017-04-27

    The formulation, characterization, and anticipated antibacterial properties of hemp seed oil and its emulsions were investigated. The oil obtained from the seeds of Cannabis sativa L. in refined and unrefined form was characterized using iodine, saponification, acid values, and gas chromatography, and was employed for the preparation of stable oil-in-water emulsions. The emulsions were prepared using pairs of non-ionic surfactants (Tween, Span). The effects of the emulsification method (spontaneous emulsification vs. high-intensity stirring), hydrophilic lipophilic balance (HLB), type and concentration of surfactant, and oil type on the size and distribution of the emulsion particles were investigated. It was found that the ability to form stable emulsions with small, initial particle sizes is primarily dependent on the given method of preparation and the HLB value. The most efficient method of emulsification that afforded the best emulsions with the smallest particles (151 ± 1 nm) comprised the high-energy method, and emulsions stable over the long-term were observed at HBL 9 with 10 wt % concentration of surfactants. Under high-intensity emulsification, refined and unrefined oils performed similarly. The oils as well as their emulsions were tested against the growth of selected bacteria using the disk diffusion and broth microdilution methods. The antibacterial effect of hemp seed oil was documented against Micrococcus luteus and Staphylococcus aureus subsp. aureus. The formulated emulsions did not exhibit the antibacterial activity that had been anticipated.

  17. Seed oil and fatty acid content in okra (Abelmoschus esculentus) and related species.

    PubMed

    Jarret, Robert L; Wang, Ming Li; Levy, Irvin J

    2011-04-27

    Approximately 1100 genebank accessions of okra (Abelmoschus esculentus) and 540 additional accessions that included six of its related species-A. caillei, A. crinitis, A. esculentus, A. ficulneus, A. manihot, A. moschatus and A. tuberculatus-were evaluated for seed oil content using time domain NMR (TD-NMR). Oil content in seed of A. caillei, A. esculentus, A. ficulneus, A. manihot, A. moschatus and A. tuberculatus was in the ranges 2.51-13.61%, 12.36-21.56%, 6.62-16.7%, 16.1-22.0%, 10.3-19.8% and 10.8-23.2%, respectively. Accession PI639680 (A. tuberculatus) had the highest seed oil content (∼23%). Accessions of A. esculentus with high seed oil content included PI nos. PI274350 (21.5%), PI538082 (20.9%) and PI538097 (20.9%). Values for the three accessions of A. manihot with the highest seed oil content were PI nos. PI639673 (20.4%), PI639674 (20.9%) and PI639675 (21.9%), all representing var. tetraphyllus. Average percent seed oil in materials of A. esculentus from Turkey and Sudan (17.35% and 17.36%, respectively) exceeded the averages of materials from other locations. Ninety-eight accessions (total of six species) were also examined for fatty acid composition. Values of linoleic acid ranged from 23.6-50.65% in A. esculentus. However, mean linoleic acid concentrations were highest in A. tuberculatus and A. ficulneus. Concentrations of palmitic acid were significantly higher in A. esculentus (range of 10.3-36.35%) when compared to that of other species, and reached a maximum in PI489800 Concentrations of palmitic acid were also high in A. caillei (mean = ∼30%). Levels of oleic acid were highest in A. manihot, A. manihot var. tetraphyllus and A. moschatus.

  18. Salt-induced modulation in inorganic nutrients, antioxidant enzymes, proline content and seed oil composition in safflower (Carthamus tinctorius L.).

    PubMed

    Siddiqi, Ejaz Hussain; Ashraf, Muhammad; Al-Qurainy, Fahad; Akram, Nudrat Aisha

    2011-12-01

    Safflower (Carthamus tinctorius L.) has gained considerable ground as a potential oil-seed crop. However, its yield and oil production are adversely affected under saline conditions. The present study was conducted to appraise the influence of salt (NaCl) stress on yield, accumulation of different inorganic elements, free proline and activities of some key antioxidant enzymes in plant tissues as well as seed oil components in safflower. Two safflower accessions differing in salt tolerance (Safflower-33 (salt sensitive) and Safflower-39 (salt tolerant)) were grown under saline (150 mmol L(-1) ) conditions and salt-induced changes in the earlier-mentioned physiological attributes were determined. Salt stress enhanced leaf and root Na(+) , Cl(-) and proline accumulation and activities of leaf superoxide dismutase, catalase and peroxidase, while it decreased K(+) , Ca(2+) and K(+) /Ca(2+) and Ca(2+) /Na(+) ratios and seed yield, 100-seed weight, number of seeds, as well as capitula, seed oil contents and oil palmitic acid. No significant effect of salt stress was observed on seed oil α-tocopherols, stearic acid, oleic acid or linoleic acid contents. Of the two safflower lines, salt-sensitive Safflower-33 was higher in leaf and root Na(+) and Cl(-) , while Safflower-39 was higher in leaf and root K(+) , K(+) /Ca(2+) and Ca(2+) /Na(+) and seed yield, 100-seed weight, catalase activity, seed oil contents, seed oil α-tocopherol and palmitic acid. Other attributes remained almost unaffected in both accessions. Overall, high salt tolerance of Safflower-39 could be attributed to Na(+) and Cl(-) exclusion, high accumulation of K(+) and free proline, enhanced CAT activity, seed oil α-tocopherols and palmitic acid contents. Copyright © 2011 Society of Chemical Industry.

  19. The embryo and the endosperm contribute equally to argan seed oil yield but confer distinct lipid features to argan oil.

    PubMed

    Errouane, Kheira; Doulbeau, Sylvie; Vaissayre, Virginie; Leblanc, Olivier; Collin, Myriam; Kaid-Harche, Meriem; Dussert, Stéphane

    2015-08-15

    In the perspective of studying lipid biosynthesis in the argan seed, the anatomy, ploidy level and lipid composition of mature seed tissues were investigated using an experimental design including two locations in Algeria and four years of study. Using flow cytometry, we determined that mature argan seeds consist of two well-developed tissues, the embryo and the endosperm. The lipid content of the embryo was higher than that of the endosperm, but the dry weight of the endosperm was higher. Consequently, both tissues contribute equally to seed oil yield. Considerable differences in fatty acid composition were observed between the two tissues. In particular, the endosperm 18:2 percentage was twofold higher than that of the embryo. The tocopherol content of the endosperm was also markedly higher than that of the embryo. In contrast, the endosperm and the embryo had similar sterol and triterpene alcohol contents and compositions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Analysis of oil content of Jatropha curcas seeds under storage condition.

    PubMed

    Sushma

    2014-05-01

    Jatropha curcas has been recognized as an ideal plant for biodiesel. There are unlimited reasons to consider Jatropha curcas a better tree borne oilseed plants than any other as it grows well on arid soils and entail minimal investment. The present study evaluates the effect of seed storage on quality and quantity of oil content such that it can be used for oil extraction and ensures availability of biodiesel throughout the year. The seeds were collected and stored at four temperatures viz. -5 °C, 0 °C, 5 °C and room temperature (open air condition) for 15 months of storage durations and evaluated at every three months interval. There was a significant decrease in oil content and oil quality with increase in storage duration. Although, the seed stored at temperature 5 °C gave the highest quality and quantity attributes at all durations. The first 3 months of storage account for the least decline as in the initial oil content in Kernel weight basis (54.61%) and seed weight basis (36.12%), there was a only decrease of 4.67% and 4.97% respectively at 5 °C whereas in other temperatures viz. -5 °C, 0 °C and room temperature (open air condition), there was a decline of 18.11, 14.48 and 9.06% in kernel weight basis and 18.36, 15.14 and 9.30% in seed weight basis respectively which accelerated with duration. Similarly, quality parameters viz. moisture content, acid value, iodine value, saponification value, refractive index (30 °C), relative viscosity and specific gravity were initially as 7.59%, 1.42 mg KOH g⁻¹ oil, 108.61 g l₂ 100 g⁻¹ oil, 189.37 mg KOH g⁻¹ oil, 1.466, 21.30 and 0.911 respectively which change to 13.71%, 1.74 mg KOH g⁻¹ oil, 107.95 g l₂ 100 g⁻¹ oil, 191.48 mg KOH g⁻¹ oil, 1.470, 23.45 and 0.918, respectively after 3 months of storage. Hence, change in quality and quantity parameters indicated the importance of proper seed storage on availability of bio-diesel throughout the year and economics in its processing i e

  1. Moringa oleifera Seeds and Oil: Characteristics and Uses for Human Health.

    PubMed

    Leone, Alessandro; Spada, Alberto; Battezzati, Alberto; Schiraldi, Alberto; Aristil, Junior; Bertoli, Simona

    2016-12-20

    Moringa oleifera seeds are a promising resource for food and non-food applications, due to their content of monounsaturated fatty acids with a high monounsaturated/saturated fatty acids (MUFA/SFA) ratio, sterols and tocopherols, as well as proteins rich in sulfated amino acids. The rapid growth of Moringa trees in subtropical and tropical areas, even under conditions of prolonged drought, makes this plant a reliable resource to enhance the nutritional status of local populations and, if rationalized cultivation practices are exploited, their economy, given that a biodiesel fuel could be produced from a source not in competition with human food crops. Despite the relatively diffuse use of Moringa seeds and their oil in traditional medicine, no pharmacological activity study has been conducted on humans. Some encouraging evidence, however, justifies new efforts to obtain clear and definitive information on the benefits to human health arising from seed consumption. A critical review of literature data concerning the composition of Moringa oil has set in motion a plan for future investigations. Such investigations, using the seeds and oil, will focus on cultivation conditions to improve plant production, and will study the health effects on human consumers of Moringa seeds and their oil.

  2. Moringa oleifera Seeds and Oil: Characteristics and Uses for Human Health

    PubMed Central

    Leone, Alessandro; Spada, Alberto; Battezzati, Alberto; Schiraldi, Alberto; Aristil, Junior; Bertoli, Simona

    2016-01-01

    Moringa oleifera seeds are a promising resource for food and non-food applications, due to their content of monounsaturated fatty acids with a high monounsaturated/saturated fatty acids (MUFA/SFA) ratio, sterols and tocopherols, as well as proteins rich in sulfated amino acids. The rapid growth of Moringa trees in subtropical and tropical areas, even under conditions of prolonged drought, makes this plant a reliable resource to enhance the nutritional status of local populations and, if rationalized cultivation practices are exploited, their economy, given that a biodiesel fuel could be produced from a source not in competition with human food crops. Despite the relatively diffuse use of Moringa seeds and their oil in traditional medicine, no pharmacological activity study has been conducted on humans. Some encouraging evidence, however, justifies new efforts to obtain clear and definitive information on the benefits to human health arising from seed consumption. A critical review of literature data concerning the composition of Moringa oil has set in motion a plan for future investigations. Such investigations, using the seeds and oil, will focus on cultivation conditions to improve plant production, and will study the health effects on human consumers of Moringa seeds and their oil. PMID:27999405

  3. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars.

    PubMed

    Nawirska-Olszańska, Agnieszka; Kita, Agnieszka; Biesiada, Anita; Sokół-Łętowska, Anna; Kucharska, Alicja Z

    2013-08-15

    The objective of this study was to determine the antioxidant properties, and provide characteristics, of the oil obtained from the seeds of 12 pumpkin varieties belonging to the species Cucurbita maxima Duch. and Cucurbita pepo L. Another objective was to establish which of the two extracting agents, ethanol or methanol, is more effective. The seeds of the pumpkin varieties examined differ in chemical composition and antioxidant activity. The seeds of the cultivars belonging to the species C. maxima are characterised by a higher content of fatty acids than are the cultivars of the species C. pepo. In the seed oil, unsaturated acids are dominant (oleic and linoleic), and their proportion depends on the pumpkin variety. The highest content of unsaturated acids has been measured in the oil extracted from the seeds of the cultivar, Jet F1 (C. pepo). Antioxidant activity analysis has produced the following findings. The seeds of the pumpkin varieties that belong to the species C. pepo exhibit better antioxidant properties, regardless of the extraction solvent used. 50% ethanol is more efficient than 80% methanol when used as an extracting agent. The antioxidant activity values obtained with 50% ethanol are higher than those achieved with 80% methanol. Owing to the considerable differences in composition among the fatty acids examined, it is possible to choose the desired pumpkin variety for the intended use. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. [Efectiveness of long-term consumption of nuts, seeds and seeds' oil on glucose and lipid levels; systematic review].

    PubMed

    De Lira-García, C; Bacardí-Gascón, M; Jiménez-Cruz, A

    2012-01-01

    The aim of this study was to determine the effectiveness of long-term consumption of nuts, seeds and vegetable oil (NSO) on weight, glucose, and lipid levels. We searched English articles published in Pubmed and Ebsco up to May 2011. Studies were included if they were randomized clinical trials, and had an intervention period of 24 or more weeks. Search terms include: "diabetes mellitus", "Nuts", "Diet Mediterranean", "Seeds", "Oils", "Canola oil", "Olive oil","Walnut", "Almond", "Pistachio", "Paleolithic diet", "High monounsaturated diet", "High polyunsaturated diet", "Soya" and "Sunflower". Thirteen studies met the inclusion criteria; eight studies had a 24 weeks intervention period, one had 42 weeks, one had 48 weeks, and for the other three the intervention lasted 52 or more weeks. At 24 weeks a consistent increase of HDL levels and inconsistent improvement of weight, BMI, waist to hip index, A1C, total cholesterol, LDL: HDL, LDL, triglycerides, and diastolic blood pressure was observed. Four studies with an intervention ≥ 48 weeks showed no statistical difference, and in one study a reduction of weight, BMI, waist hip index, glucose, insulin, total cholesterol, HDL: cholesterol, triglycerides, and blood pressure was observed. No evidence of long-term improvement of NSO on weight, glucose or lipids in the adult population was found.

  5. Fatty acid profile in the seeds and seed tissues of Paeonia L. species as new oil plant resources

    PubMed Central

    Yu, Shuiyan; Du, Shaobo; Yuan, Junhui; Hu, Yonghong

    2016-01-01

    Most common plant oils have little α-linolenic acid (C18:3Δ9,12,15, ALA) and an unhealthy ω6/ω3 ratio. Here, fatty acids (FAs) in the seeds of 11 species of Paeonia L., including 10 tree peony and one herbaceous species, were explored using gas chromatograph–mass spectrometer. Results indicated that all Paeonia had a ω6/ω3 ratio less than 1.0, and high amounts of ALA (26.7–50%), oleic acid (C18:1Δ9, OA) (20.8–46%) and linoleic acid (C18:2Δ9,12, LA) (10–38%). ALA was a dominant component in oils of seven subsection Vaginatae species, whereas OA was predominant in two subsection Delavayanae species. LA was a subdominant oil component in P. ostii and P. obovata. Moreover, the FA composition and distribution of embryo (22 FAs), endosperm (14 FAs) and seed coat (6 FAs) in P. ostii, P. rockii and P. ludlowii were first reported. Peony species, particularly P. decomposita and P. rockii, can be excellent plant resources for edible oil because they provide abundant ALA to balance the ω6/ω3 ratio. The differences in the ALA, LA and OA content proportion also make the peony species a good system for detailed investigation of FA biosynthesis pathway and ALA accumulation. PMID:27240678

  6. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis.

    PubMed

    Hua, Wei; Li, Rong-Jun; Zhan, Gao-Miao; Liu, Jing; Li, Jun; Wang, Xin-Fa; Liu, Gui-Hua; Wang, Han-Zhong

    2012-02-01

    Seed oil content is an important agronomic trait in rapeseed. However, our understanding of the regulatory processes controlling oil accumulation is still limited. Using two rapeseed lines (zy036 and 51070) with contrasting oil content, we found that maternal genotype greatly affects seed oil content. Genetic and physiological evidence indicated that difference in the local and tissue-specific photosynthetic activity in the silique wall (a maternal tissue) was responsible for the different seed oil contents. This effect was mimicked by in planta manipulation of silique wall photosynthesis. Furthermore, the starch content and expression of the important lipid synthesis regulatory gene WRINKLED1 in developing seeds were linked with silique wall photosynthetic activity. 454 pyrosequencing was performed to explore the possible molecular mechanism for the difference in silique wall photosynthesis between zy036 and 51070. Interestingly, the results suggested that photosynthesis-related genes were over-represented in both total silique wall expressed genes and genes that were differentially expressed between genotypes. A potential regulatory mechanism for elevated photosynthesis in the zy036 silique wall is proposed on the basis of knowledge from Arabidopsis. Differentially expressed ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-related genes were used for further investigations. Oil content correlated closely with BnRBCS1A expression levels and Rubisco activities in the silique wall, but not in the leaf. Taken together, our results highlight an important role of silique wall photosynthesis in the regulation of seed oil content in terms of maternal effects. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  7. Improvement in HDL cholesterol in postmenopausal women supplemented with pumpkin seed oil: pilot study.

    PubMed

    Gossell-Williams, M; Hyde, C; Hunter, T; Simms-Stewart, D; Fletcher, H; McGrowder, D; Walters, C A

    2011-10-01

    Pumpkin seed oil is rich in phytoestrogens and animal studies suggest that there is some benefit to supplementation in low estrogen conditions. This study is the first to evaluate the benefit of pumpkin seed oil in postmenopausal women. This pilot study was randomized, double-blinded and placebo-controlled. Study participants included 35 women who had undergone natural menopause or had iatrogenically entered the climacteric due to surgery for benign pathology. Wheat germ oil (placebo; n = 14) and pumpkin seed oil (n = 21) were administered to eligible participants over a 12-week period at a dose of 2 g per day. Serum lipids, fasting plasma glucose and blood pressure were measured and an 18-point questionnaire regarding menopausal symptoms was administered; the atherogenic index was also calculated. Differences between groups, as well as before and after the period of supplementation, were evaluated with Student's t-test, Wilcoxon matched-pair signed-ranked test and Mann-Whitney test, as appropriate (Stata version 10.1). Women receiving pumpkin seed oil showed a significant increase in high density lipoprotein cholesterol concentrations (0.92 ± 0.23 mmol/l vs. 1.07 ± 0.27 mmol/l; p = 0.029) and decrease in diastolic blood pressure (81.1 ± 7.94 mmHg vs. 75.67 ± 11.93 mmHg; p < 0.046). There was also a significant improvement in the menopausal symptom scores (18.1 ± 9.0 vs. 13.2 ± 6.7; p < 0.030), with a decrease in severity of hot flushes, less headaches and less joint pains being the main contributors. Women in the group receiving wheat germ oil reported being more depressed and having more unloved feeling. This pilot study showed pumpkin seed oil had some benefits for postmenopausal women and provided strong evidence to support further studies.

  8. Seed oil content and fatty acid composition in a genebank collection of Cucurbita moschata Duchesne and C. argyrosperma C. Huber

    USDA-ARS?s Scientific Manuscript database

    Data on intraspecific variability for seed oil content, fatty acid composition and seed oil characteristics in Cucurbita moschata and C. argyrosperma are lacking in the scientific literature. We examined 528 genebank accessions of C. moschata and 166 accessions of C. argyrosperma - that included mem...

  9. Fatty acid profiles of Garuga floribunda, Ipomoea pes-caprae, Melanolepis multiglandulosa and Premna odorata seed oils

    USDA-ARS?s Scientific Manuscript database

    The fatty acid profiles of the seed oils of four species from four plant families for which no or only sparse information on the fatty acid profiles is available are reported. The five seed oils are Garuga floribunda of the Burseraceae family, Ipomoea pes-caprae of the Convolvulaceae family, Melanol...

  10. Safety and healing efficacy of Sea buckthorn (Hippophae rhamnoides L.) seed oil on burn wounds in rats.

    PubMed

    Upadhyay, N K; Kumar, R; Mandotra, S K; Meena, R N; Siddiqui, M S; Sawhney, R C; Gupta, A

    2009-06-01

    The present investigation was undertaken to determine the safety and efficacy of supercritical CO2-extracted Hippophae rhamnoides L. (Sea buckthorn) (SBT) seed oil on burn wound model. SBT seed oil was co-administered by two routes at a dose of 2.5 ml/kg body weight (p.o.) and 200 microl (topical) for 7 days on experimental burn wounds in rats. The SBT seed oil augmented the wound healing process as indicated by significant increase in wound contraction, hydroxyproline, hexosamine, DNA and total protein contents in comparison to control and reference control treated with silver sulfadiazine (SS) ointment. Histopathological findings further confirmed the healing potential of SBT seed oil. SBT seed oil treatment up-regulated the expression of matrix metalloproteinases (MMP-2 and 9), collagen type-III and VEGF in granulation tissue. It was observed that SBT seed oil also possesses antioxidant properties as evidenced by significant increase in reduced glutathione (GSH) level and reduced production of reactive oxygen species (ROS) in wound granulation tissue. In acute and sub-acute oral toxicity studies, no adverse effects were observed in any of the groups administered with SBT seed oil. These results suggest that the supercritical CO2-extracted Sea buckthorn seed oil possesses significant wound healing activity and have no associated toxicity or side effects.

  11. Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours.

    PubMed

    Lutterodt, Herman; Slavin, Margaret; Whent, Monica; Turner, Ellen; Yu, Liangli Lucy

    2011-09-15

    Cold-pressed chardonnay, muscadine, ruby red, and concord grape seed oils and their defatted flours were studied for their fatty acid composition, oxidative stability and antioxidant and antiproliferative activities. The phenolic profiles of the seed flours were also measured. The most abundant fatty acid in the oils was linoleic acid, ranging from 66.0g/100g of total fatty acids in ruby red seed oil to 75.3g/100g of total fatty acids in concord seed oil. The oils were also high in oleic acid and low in saturated fat. Ruby red grape seed oil recorded the highest oxidative stability index of 40h under the accelerated conditions. Total phenolic content (TPC) was up to 100 times lower in the oils than in the flours. Lutein, zeaxanthin, cryptoxanthin, β-carotene, and α-tocopherol levels were also measured. DPPH radical-scavenging capacity ranged from 0.07 to 2.22mmol trolox equivalents (TE)/g of oil and 11.8 to 15.0mmol TE/g of flour. Oxidative stability of menhaden fish oil containing extracts of the seed flours was extended by up to 137%. HPLC analysis was conducted to determine the levels of free soluble, soluble conjugated and insoluble bound phenolics in the seed flours. The phenolic compounds analyzed included catechin, epicatechin, epicatechin gallate, quercetin, gallic acid, and procyanidins B1 and B2. Antiproliferative activity was tested against HT-29 colon cancer cells. All of the seed flours and muscadine seed oil registered significant (P<0.05) inhibition of cancer cell growth. The results from this study demonstrate the potential of developing value-added uses for these seed oils and flours as dietary sources of natural antioxidants and antiproliferative agents for optimal health. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Crude oil as a microbial seed bank with unexpected functional potentials

    PubMed Central

    Cai, Man; Nie, Yong; Chi, Chang-Qiao; Tang, Yue-Qin; Li, Yan; Wang, Xing-Biao; Liu, Ze-Shen; Yang, Yunfeng; Zhou, Jizhong; Wu, Xiao-Lei

    2015-01-01

    It was widely believed that oil is a harsh habitat for microbes because of its high toxicity and hydrophobicity. However, accumulating evidence has revealed the presence of live microbes in crude oil. Therefore, it’s of value to conduct an in-depth investigation on microbial communities in crude oil. To this end, microorganisms in oil and water phases were collected from four oil-well production mixtures in Qinghai Oilfield, China, and analyzed for their taxonomic and functional compositions via pyrosequencing and GeoChip, respectively. Hierarchical clustering of 16S rRNA gene sequences and functional genes clearly separated crude oil and water phases, suggestive of distinct taxonomic and functional gene compositions between crude oil and water phases. Unexpectedly, Pseudomonas dominated oil phase where diverse functional gene groups were identified, which significantly differed from those in the corresponding water phases. Meanwhile, most functional genes were significantly more abundant in oil phase, which was consistent with their important roles in facilitating survival of their host organisms in crude oil. These findings provide strong evidence that crude oil could be a “seed bank” of functional microorganisms with rich functional potentials. This offers novel insights for industrial applications of microbial-enhanced oil recovery and bioremediation of petroleum-polluted environments. PMID:26525361

  13. Crude oil as a microbial seed bank with unexpected functional potentials.

    PubMed

    Cai, Man; Nie, Yong; Chi, Chang-Qiao; Tang, Yue-Qin; Li, Yan; Wang, Xing-Biao; Liu, Ze-Shen; Yang, Yunfeng; Zhou, Jizhong; Wu, Xiao-Lei

    2015-11-03

    It was widely believed that oil is a harsh habitat for microbes because of its high toxicity and hydrophobicity. However, accumulating evidence has revealed the presence of live microbes in crude oil. Therefore, it's of value to conduct an in-depth investigation on microbial communities in crude oil. To this end, microorganisms in oil and water phases were collected from four oil-well production mixtures in Qinghai Oilfield, China, and analyzed for their taxonomic and functional compositions via pyrosequencing and GeoChip, respectively. Hierarchical clustering of 16S rRNA gene sequences and functional genes clearly separated crude oil and water phases, suggestive of distinct taxonomic and functional gene compositions between crude oil and water phases. Unexpectedly, Pseudomonas dominated oil phase where diverse functional gene groups were identified, which significantly differed from those in the corresponding water phases. Meanwhile, most functional genes were significantly more abundant in oil phase, which was consistent with their important roles in facilitating survival of their host organisms in crude oil. These findings provide strong evidence that crude oil could be a "seed bank" of functional microorganisms with rich functional potentials. This offers novel insights for industrial applications of microbial-enhanced oil recovery and bioremediation of petroleum-polluted environments.

  14. Crude oil as a microbial seed bank with unexpected functional potentials

    NASA Astrophysics Data System (ADS)

    Cai, Man; Nie, Yong; Chi, Chang-Qiao; Tang, Yue-Qin; Li, Yan; Wang, Xing-Biao; Liu, Ze-Shen; Yang, Yunfeng; Zhou, Jizhong; Wu, Xiao-Lei

    2015-11-01

    It was widely believed that oil is a harsh habitat for microbes because of its high toxicity and hydrophobicity. However, accumulating evidence has revealed the presence of live microbes in crude oil. Therefore, it’s of value to conduct an in-depth investigation on microbial communities in crude oil. To this end, microorganisms in oil and water phases were collected from four oil-well production mixtures in Qinghai Oilfield, China, and analyzed for their taxonomic and functional compositions via pyrosequencing and GeoChip, respectively. Hierarchical clustering of 16S rRNA gene sequences and functional genes clearly separated crude oil and water phases, suggestive of distinct taxonomic and functional gene compositions between crude oil and water phases. Unexpectedly, Pseudomonas dominated oil phase where diverse functional gene groups were identified, which significantly differed from those in the corresponding water phases. Meanwhile, most functional genes were significantly more abundant in oil phase, which was consistent with their important roles in facilitating survival of their host organisms in crude oil. These findings provide strong evidence that crude oil could be a “seed bank” of functional microorganisms with rich functional potentials. This offers novel insights for industrial applications of microbial-enhanced oil recovery and bioremediation of petroleum-polluted environments.

  15. Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions.

    PubMed

    Ramadan, Mohamed F; Kroh, Lothar W; Mörsel, Jörg-T

    2003-11-19

    Crude vegetable oils are usually oxidatively more stable than the corresponding refined oils. Tocopherols, phospholipids (PL), phytosterols, and phenols are the most important natural antioxidants in crude oils. Processing of vegetable oils, moreover, could induce the formation of antioxidants. Black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils were extracted with n-hexane and the oils were further fractionated into neutral lipids (NL), glycolipids (GL), and PL. Crude oils and their fractions were investigated for their radical scavenging activity (RSA) toward the stable galvinoxyl radical by electron spin resonance (ESR) spectrometry and toward 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical by spectrophotometric method. Coriander seed oil and its fractions exhibited the strongest RSA compared to black cumin and niger seed oils. The data correlated well with the total content of polyunsaturated fatty acids, unsaponifiables, and PL, as well as the initial peroxide values of crude oils. In overall ranking, RSA of oil fractions showed similar patterns wherein the PL exhibited greater activity to scavenge both free radicals followed by GL and NL, respectively. The positive relationship observed between the RSA of crude oils and their color intensity suggests the Maillard reaction products may have contributed to the RSA of seed oils and their polar fractions. The results demonstrate the importance of minor components in crude seed oils on their oxidative stability, which will reflect on their food value and shelf life. As part of the effort to assess the potential of these seed oils, the information is also of importance in processing and utilizing the crude oils and their byproducts.

  16. Protection and viability of fruit seeds oils by nanostructured lipid carrier (NLC) nanosuspensions.

    PubMed

    Krasodomska, Olga; Paolicelli, Patrizia; Cesa, Stefania; Casadei, Maria Antonietta; Jungnickel, Christian

    2016-10-01

    In this paper, we focused on the development of nanostructured lipid carriers (NLCs) for dermal application. The NLC matrix was designed as a protective reservoir of biological active compounds that naturally occur in domestic fruit seed oils. Over the years, emulsions, as a popular physicochemical form of personal care products, were refined in order to obtain the best possible penetration into the skin of any bioactive compound introduced in the formulation, such as polyunsaturated fatty acids (PUFAs). In fact, the bioactive components are useful only if they are able to penetrate the skin unchanged. Therefore, an alternate way to deliver naturally occurring PUFAs is needed. NLCs present a novel delivery and protection system for the PUFAs. The cold pressed fruit seed oils obtained from waste material were used in this paper: blackcurrant, blackberry, raspberry, strawberry and plum. Thermodynamic (DSC) and structural techniques ((1)H NMR) were applied in order to characterize the obtained systems in terms of seed oil incorporation into the NLC, and oxidative stability tests were used to confirm the protective quality of the systems. During the formulation optimization process the most stable nanosuspension with the best seed oil incorporation was a mixture of 4% nonionic emulsifiers, 88% water and 6% lipids with a ratio of 6:2, wax:oil. The oxidative stability tests showed that the NLC was an effective method of protection of the PUFAs.

  17. Compositions of the seed oil of the Borago officinalis from Iran.

    PubMed

    Morteza, Elham; Akbari, Gholam-Ali; Moaveni, Payam; Alahdadi, Iraj; Bihamta, Mohammad-Reza; Hasanloo, Tahereh; Joorabloo, Ali

    2015-01-01

    In order to investigate the composition of borage (Borago officinalis L.) seed oil, this research was performed under the field conditions at Shahriyar and Garmsar zones, Iran during the 2012 planting year. The oil yield of borage was 31.46% and 33.7% at Shahriyar and Garmsar zone, respectively, and nine and eight fatty acids were identified in the seed oil of borage at Shahriyar and Garmsar, respectively - palmitic, linoleic, stearic and γ-linolenic acids were dominant in the seed oil of borage from both zones. Unsaturated fatty acid content was more than the saturated fatty acids in both zones. The ratio of linoleic acid and α-linolenic acid in the borage cultivated at Shahriyar and Garmsar zones was 2.13 and 2.29. The fatty acid profile of Garmsar borage, oleic and oleic/linoleic acid ratio, increased. Locations with different ecological conditions resulted in changes in both seed oil content and fatty acid profile of borage.

  18. Efficacy of glycerol and flax seed oil as anti-adhesive barriers after thyroidectomy.

    PubMed

    Idiz, Oguz; Aysan, Erhan; Firat, Deniz; Ersoy, Yeliz Emine; Cengiz, Merve Busra; Akbulut, Huseyin; Isık, Arda; Muslumanoglu, Mahmut

    2014-06-28

    We evaluated the effects of local flax seed oil and glycerol application for reducing adhesion formation after thyroidectomy. We randomly assigned 18 female Wistar albino rats (median weight: 275 g, median age: 4.5 mth) to 3 groups: 0.1 ml 0.9% NaCl, glycerol, and flax seed oil were sprayed in a perithyroidal area after thyroidectomy operation on all animals as anti-adhesive barriers. Rats were sacrificed on the postoperative 14th day and adhesions were evaluated macroscopically and microscopically. The median macroscopic adhesion score was 3.0±0.0 in the 0.9% NaCl group, 1.33±0.52 in the glycerol group, and 1.67±0.53 in the flax seed oil group. The median histopathological fibrosis scores were 2.33±0.82, 0.67±0.52, and 0.83±0.75, respectively. Both glycerol and flaxseed oil group macroscopic and microscopic scores were significantly lower than the 0.9% NaCl group (p<0.05). There was no significant difference among the groups (p>0.05). Glycerol and flax seed oil both decrease the incidence of post-thyroidectomy adhesion in rats, but glycerol is more effective.

  19. Inhibitory Effects of Two Varieties of Tunisian Pomegranate (Punica granatum L.) Extracts on Gastrointestinal Transit in Rat

    PubMed Central

    Souli, Abdelaziz; Sebai, Hichem; Rtibi, Kais; Chehimi, Latifa; Sakly, Mohsen; Amri, Mohamed; El-Benna, Jamel; Marzouki, Lamjed

    2015-01-01

    Abstract The present study was undertaken to determine whether total and methanol juice extracts of two Tunisian Pomegranate (Punica granatum L.) varieties (Garsi and Gabsi) protect against diarrhea as well as their effects on gastrointestinal transit (GIT) in healthy rats. In this respect, male Wistar rats were used and divided into control- and pomegranate-treated groups. The antidiarrheal activity was evaluated using the castor oil-induced diarrhea method and the GIT was assessed using charcoal meal. Our results showed that total and methanol P. granatum juice extracts produced a significant dose-dependent protection against castor oil-induced diarrhea. Pomegranate extracts and juice also decreased the GIT significantly and dose dependently. Importantly, the Garsi variety appeared to be more effective than the Gabsi variety on these two parameters. These findings suggest that pomegranate extracts have a potent antidiarrheal property in rats confirming their efficiency in the Tunisian traditional medicine. PMID:25775227

  20. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds.

    PubMed

    Chougui, Nadia; Tamendjari, Abderezak; Hamidj, Wahiba; Hallal, Salima; Barras, Alexandre; Richard, Tristan; Larbat, Romain

    2013-08-15

    The seed composition of four varieties of Opuntia ficus-indica growing in Algeria was investigated. Seeds ground into a fine powder were first, subjected to oil extraction and fatty acids analysis. The phenolic compounds were then extracted from the defatted powder of seeds in order to be quantified and characterised by liquid chromatography coupled to mass spectrometry (LC-MS(n)) and to nuclear magnetic resonance (LC-NMR) approaches. In addition, an evaluation of the antioxidant activity of the phenolic extracts was investigated. Gas chromatography analysis of the seed oil showed high percentages of linoleic acid in the four varieties ranging from 58% to 63%. The phenolic profile of the Opuntia ficus-indica seeds displayed a high complexity, with more than 20 compounds detected at 330 nm after the LC separation. Among them, three isomers of feruloyl-sucrose were firmly identified and another was strongly supposed to be a sinapoyl-diglycoside. High correlations were found between phenolic content in the defatted seed extracts and their antioxidant activity. The data indicate that the defatted cactus seed wastes still contain various components that constitute a source for natural foods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Expression of genes controlling unsaturated fatty acids biosynthesis and oil deposition in developing seeds of Sacha inchi (Plukenetia volubilis L.).

    PubMed

    Wang, Xiaojuan; Liu, Aizhong

    2014-10-01

    Sacha inchi (Plukenetia volubilis L., Euphorbiaceae) seed oil is rich in α-linolenic acid, a kind of n-3 fatty acids with many health benefits. To discover the mechanism underlying α-linolenic acid accumulation in sacha inchi seeds, preliminary research on sacha inchi seed development was carried out from one week after fertilization until maturity, focusing on phenology, oil content, and lipid profiles. The results suggested that the development of sacha inchi seeds from pollination to mature seed could be divided into three periods. In addition, investigations on the effect of temperature on sacha inchi seeds showed that total oil content decreased in the cool season, while unsaturated fatty acid and linolenic acid concentrations increased. In parallel, expression profiles of 17 unsaturated fatty acid related genes were characterized during seed development and the relationships between gene expression and lipid/unsaturated fatty acid accumulation were discussed.

  2. [GC-MS analysis of essential oils from seeds of Myristica fragrans in Chinese market].

    PubMed

    Wang, Ying; Yang, Xiu-wei; Tao, Hai-yan; Liu, Hai-xin

    2004-04-01

    To analyze the constituents of the essential oils extracted from nine samples of commercial seeds of Myristica fragrans Houtt respectively and to provide qualities control foundations. Water steam distillation and GC-MS were used. 95-118 compounds were separated respectively. 79 Compounds being identified which were 95.18%-98.70% of the total essential oil. Myristicin (39.63%) and terpene series were the main compounds.

  3. Phosphoenolpyruvate carboxylase activity and concentration in the endosperm of developing and germinating castor oil seeds.

    PubMed

    Sangwan, R S; Singh, N; Plaxton, W C

    1992-06-01

    Monospecific polyclonal antibodies against maize leaf phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) were utilized to examine the subunit composition and developmental profile of endosperm PEPC in developing and germinating castor oil seeds (Ricinus communis L. cv Baker 296). PEPC from developing endosperm consists of a single type of 100-kilodalton subunit, whereas the enzyme from 2- to 5-day germinated endosperm appears to contain equal proportions of immunologically related 103- and 108-kilodalton subunits. The maximal activity of PEPC in developing endosperms (2.67 micromoles oxaloacetate produced per minute per gram fresh weight) is approximately 20-fold and threefold greater than that of fully mature (dry seed) and germinating endosperms, respectively. The most significant increase in the activity and concentration of endosperm PEPC occurs during the middle cotyledon to full cotyledon stage of seed development; this period coincides with the most active phase of storage oil accumulation by ripening castor oil seeds. The data are compatible with the recent proposal (RG Smith, DA Gauthier, DT Dennis, DH Turpin [1992] Plant Physiol 1233-1238) that PEPC plays a fundamental role in vivo in the cytosolic production of an important substrate (malate) for fatty acid biosynthesis by developing castor oil seed leucoplasts. Immediately following seed imbibition, PEPC activity and concentration increase in parallel, with the greatest levels attained by the third day of germination. It is suggested that during this early phase of seed germination PEPC has a critical function to build up cellular dicarboxylic acid pools required to initiate significant activities of both the tricarboxylic acid and glyoxylate cycles.

  4. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.

    PubMed

    Nguyen, Huu T; Silva, Jillian E; Podicheti, Ram; Macrander, Jason; Yang, Wenyu; Nazarenus, Tara J; Nam, Jeong-Won; Jaworski, Jan G; Lu, Chaofu; Scheffler, Brian E; Mockaitis, Keithanne; Cahoon, Edgar B

    2013-08-01

    Camelina (Camelina sativa), a Brassicaceae oilseed, has received recent interest as a biofuel crop and production platform for industrial oils. Limiting wider production of camelina for these uses is the need to improve the quality and content of the seed protein-rich meal and oil, which is enriched in oxidatively unstable polyunsaturated fatty acids that are deleterious for biodiesel. To identify candidate genes for meal and oil quality improvement, a transcriptome reference was built from 2047 Sanger ESTs and more than 2 million 454-derived sequence reads, representing genes expressed in developing camelina seeds. The transcriptome of approximately 60K transcripts from 22 597 putative genes includes camelina homologues of nearly all known seed-expressed genes, suggesting a high level of completeness and usefulness of the reference. These sequences included candidates for 12S (cruciferins) and 2S (napins) seed storage proteins (SSPs) and nearly all known lipid genes, which have been compiled into an accessible database. To demonstrate the utility of the transcriptome for seed quality modification, seed-specific RNAi lines deficient in napins were generated by targeting 2S SSP genes, and high oleic acid oil lines were obtained by targeting FATTY ACID DESATURASE 2 (FAD2) and FATTY ACID ELONGASE 1 (FAE1). The high sequence identity between Arabidopsis thaliana and camelina genes was also exploited to engineer high oleic lines by RNAi with Arabidopsis FAD2 and FAE1 sequences. It is expected that these transcriptomic data will be useful for breeding and engineering of additional camelina seed traits and for translating findings from the model Arabidopsis to an oilseed crop.

  5. Hypolipidaemic effect and mechanism of paprika seed oil on Sprague-Dawley rats.

    PubMed

    Chen, Xuhui; Ding, Yongbo; Song, Jiaxin; Kan, Jianquan

    2017-09-01

    Details regarding the functional properties of paprika seed oil are relatively scarce. In this study the hypolipidaemic effects and mechanisms of paprika seed oil on Sprague-Dawley rats are explored, which may improve the usage of paprika seed source and provide a theoretical basis of paprika seed oil for the alleviation of hyperlipidaemia. In capsaicin and paprika seed oil (PSO) groups, total cholesterol (TC) and total triglyceride (TG) in serum and liver lipids of rats were significantly decreased (P < 0.05). The contents of serum HDL cholesterol were increased and the contents of serum LDL cholesterol were decreased (P < 0.05). Real-time PCR analyses revealed that the hepatic mRNA expression of fatty acid synthetase (FAS) is decreased and the expression levels of HSL is increased (P < 0.05). The mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) is decreased and the expression levels of low-density lipoprotein receptor (LDLR) is significantly improved (P < 0.05). The cholesterol 7-hydroxylase (CYP7A1) expression is regulated to control the cholesterol-to-bile acid transformation and cholesterol excretion is promoted. Capsaicin and unsaturated fatty acid PSO can activate and improve the mRNA expression of transient receptor potential vanilloid type-1 (TRPV1) and peroxisome proliferators-activated receptors (PPARα). The hypolipidaemic effects of paprika seed oil (PSO) may be attributed to the inhibition of lipid synthesis via suppressing the expression of HMG-CoAR, CYP7A1 and FAS, meanwhile, promoting the metabolism and excretion of lipids via up-regulating the expression of LDLR, HSL, TRPV1 and PPARα. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Analytical characterization of Hempseed (seed of Cannabis sativa L.) oil from eight regions in China.

    PubMed

    Chen, Tianpeng; He, Jinfeng; Zhang, Jianchun; Zhang, Hua; Qian, Ping; Hao, Jianxiong; Li, Lite

    2010-06-01

    In this study, eight cultivars of hempseed were collected from different regions of China for analysis of physiochemical properties and chemical composition, as well as for seed indexes and proximate composition of seed kernel. The results indicated that Yunma No. 1 and Bama Huoma, with more than 50% oil and 30% protein in dehulled seed, could be considered as oil extraction material and protein source with respect to kernel yield. Iodine values ranging from 153.6 to 169.1 g/100 g reflected the high degree of unsaturation. The concentration of unsaturated fatty acids exceeded 90%, higher than most conventional vegetable oils. Moreover, polyunsaturated fatty acids ranged from 76.26% to 82.75% and were mainly composed of linoleic acid and α-linolenic acid with a ratio close to 3:1. γ-Tocopherol was found at an average concentration of 28.23 mg/100 g of hempseed oil. The results indicated that hempseed oil is a potentially valuable vegetable oil.

  7. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds

    PubMed Central

    Ekman, Åsa; Hayden, Daniel M.; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development. PMID:19036843

  8. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds.

    PubMed

    Ekman, Asa; Hayden, Daniel M; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development.

  9. Fatty acid profile of gamma-irradiated and cooked African oil bean seed (Pentaclethra macrophylla Benth)

    PubMed Central

    Olotu, Ifeoluwa; Enujiugha, Victor; Obadina, Adewale; Owolabi, Kikelomo

    2014-01-01

    The safety and shelf-life of food products can be, respectively, ensured and extended with important food-processing technologies such as irradiation. The joint effect of cooking and 10 kGy gamma irradiation on the fatty acid composition of the oil of Pentaclethra macrophylla Benth was evaluated. Oils from the raw seed, cooked seeds, irradiated seeds (10 kGy), cooked, and irradiated seeds (10 kGy) were extracted and analyzed for their fatty acid content. An omega-6-fatty acid (linoleic acid) was the principal unsaturated fatty acid in the bean seed oil (24.6%). Cooking significantly (P < 0.05) increased Erucic acid by 3.3% and Linolenic acid by 23.0%. Combined treatment significantly (P < 0.05) increased C18:2, C6:0, C20:2, C18:3, C20:3, C24:0, and C22:6 being linoleic, caproic, eicosadienoic, linolenic, eicosatrienoic, ligoceric, and docosahexaenoic acid, respectively, and this increase made the oil sample to have the highest total fatty acid content (154.9%), unsaturated to saturated fatty acid ratio (109.6), and unsaturated fatty acid content (153.9%). 10 kGy irradiation induces the formation of C20:5 (eicosapentaenoic), while cooking induced the formation of C20:4 (arachidic acid), C22:6 (Heneicosanoic acid), and C22:2 (docosadienoic acid). Combined 10 kGy cooking and irradiation increased the susceptibility of the oil of the African oil bean to rancidity. PMID:25493197

  10. Plasma and hepatic cholesterol-lowering in hamsters by tomato pomace, tomato seed oil and defatted tomato seed supplemented in high fat diets

    USDA-ARS?s Scientific Manuscript database

    We determined the cholesterol-lowering effects of tomato pomace (TP), a byproduct of tomato processing, and its components such as tomato seed oil (TSO) and defatted tomato seed (DTS) in hamsters, a widely used animal model for cholesterol metabolism. Male Syrian Golden hamsters were fed high-fat di...

  11. Identification and expression of fructose-1,6-bisphosphate aldolase genes and their relations to oil content in developing seeds of tea oil tree (Camellia oleifera)

    USDA-ARS?s Scientific Manuscript database

    Tea oil tree (Camellia oleifera, Co) provides a fine edible oil source in China. Tea oil from the seeds is very beneficial to human health. Fructose-1,6-bisphosphate aldolase (FBA) hydrolyzes fructose-1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, two critical metab...

  12. Complementary blending of meadowfoam seed oil methyl esters with biodiesel prepared from soybean and waste cooking oils to enhance fuel properties

    USDA-ARS?s Scientific Manuscript database

    The complementary blending of meadowfoam seed oil methyl esters (MFME) with soybean and waste cooking oil methyl esters (SME and WCME) was investigated. MFME prepared from cold-pressed meadowfoam oil exhibited an exceptionally high induction period (IP) of 66.2 h whereas SME and WCME yielded conside...

  13. The effect of organic solvent, temperature and mixing time on the production of oil from Moringa oleifera seeds

    NASA Astrophysics Data System (ADS)

    Ghazali, Q.; Yasin, N. H. M.

    2016-06-01

    The effect of three different organic solvent, temperature and mixing time on the production of oil from M.oleifera seeds were studied to evaluate the effectiveness in obtaining the high oil yield based on the percentage of oil production. The modified version of Soxhlet extraction method was carried out to extract the oil from M.oleifera seeds by using hexane, heptane and ethanol as the organic solvent. Among the three solvents, it is found that heptane yield higher oil from M.oleifera seeds with maximum oil yield of 36.37% was obtained followed by hexane and ethanol with 33.89% and 18.46%, respectively. By using heptane as a solvent, the temperature (60oC, 70oC, 80oC) and mixing time (6 h, 7 h, and 8 h) were investigated to ensure the high oil yield over the experimental ranges employed and high oil yield was obtained at 600C for 6 h with percentage oil yield of 36.37%. The fatty acid compositions of M.oleifera seeds oil were analyzed using Gas Chromatography/Mass Spectrometry (GC-MS). The main components of fatty acid contained in the oil extracted from M.oleifera seeds was oleic acid, followed by palmitic acid and arachidic acid, and small amount of behenic acid and margaric acid.

  14. Osage orange (Maclura pomifera L) seed oil poly(alpha-hydroxydibutylamine) triglycerides: Synthesis and characterization

    USDA-ARS?s Scientific Manuscript database

    Milled Osage orange seeds (Maclura pomifera (Raf.) Schneid) were Soxhlet extracted with hexane, and portions of the extract were treated with activated carbon before solvent removal. The crude oil was winterized and degummed by centrifugation at low temperature. Decantation of the centrifuge gave an...

  15. Densities of mixtures containing n-alkanes with sunflower seed oil at different temperatures

    SciTech Connect

    Gonzalez, C.; Resa, J.M.; Ruiz, A.; Gutierrez, J.I.

    1996-07-01

    Densities for mixtures containing sunflower seed oil with pentane, hexane, heptane, and octane have been determined at various temperatures between 298.15 K and 313.15 K using a vibrating tube densimeter. The derived excess volumes have been correlated by the Redlich-Kister equation. All the systems showed negative deviations from ideality. The excess volumes increased with an increase in temperature.

  16. Effect of extrusion cooking of lesquerella seeds on the quality of the extracted oil

    USDA-ARS?s Scientific Manuscript database

    Lesquerella fendleri is an oilseed crop belonging to the Brassicaceae family that is native to the desert southwestern United States. The seed has 28% oil, which contains about 64% hydroxy fatty acid (HFA). HFA is used in a variety of industrial applications such as lubricants, corrosion inhibitor...

  17. Oil and fatty acid contents in seed of Citrullus lanatus Schrad.

    PubMed

    Jarret, Robert L; Levy, Irvin J

    2012-05-23

    Intact seed of 475 genebank accessions of Citrullus ( C. lanatus var. lanatus and C. lanatus var. citroides) were analyzed for percent oil content using TD-NMR. Extracts from whole seed of 96 accessions of C. lanatus (30 var. citroides, 33 var. lanatus, and 33 egusi), C. colocynthis (n = 3), C. ecirrhosus (n = 1), C. rehmii (n = 1), and Benincasa fistulosa (n = 3) were also analyzed for their fatty acids content. Among the materials analyzed, seed oil content varied from 14.8 to 43.5%. Mean seed oil content in egusi types of C. lanatus was significantly higher (mean = 35.6%) than that of either var. lanatus (mean = 23.2%) or var. citroides (mean = 22.6%). Egusi types of C. lanatus had a significantly lower hull/kernel ratio when compared to other C. lanatus var. lanatus or C. lanatus var. citroides. The principal fatty acid in all C. lanatus materials examined was linoleic acid (43.6-73%). High levels of linoleic acid were also present in the materials of C. colocynthis (71%), C. ecirrhosus (62.7%), C. rehmii (75.8%), and B. fistulosa (73.2%), which were included for comparative purposes. Most all samples contained traces (<0.5%) of arachidonic acid. The data presented provide novel information on the range in oil content and variability in the concentrations of individual fatty acids present in a diverse array of C. lanatus, and its related species, germplasm.

  18. Nutrient homeostasis, C:N ratio, and oil content in cuphea seed

    USDA-ARS?s Scientific Manuscript database

    Interrelationships between densities of 14 nutrients, C:N and N:S ratios, and oil and protein contents were assessed in seeds of indeterminate Cuphea plants subjected to no (GDD0) or to source-sink manipulation by removing the top 25% of plant foliage at 100 and 200 growing degree days (GDD1 and GDD...

  19. Seed oil and Fatty acid content in okra (Abelmoschus esculentus) and related species

    USDA-ARS?s Scientific Manuscript database

    Approximately 1100 genebank accessions of okra (Abelmoschus esculentus) and 540 additional accessions that included six of its related species were evaluated for seed oil content using TD-NMR. Species evaluated included; A. caillei, A. crinitis, A. esculentus, A. ficulneus, A. manihot, A. moschat...

  20. Synthesis of Polyurethanes Membranes from Rubber Seed Oil and Methylene Diphenyl Diisocyanates (MDI)

    NASA Astrophysics Data System (ADS)

    Marlina; Nurman, S.; Saleha, S.; Fitriani; Thanthawi, I.

    2017-03-01

    Rubber seed oil and methylene diphenyl diisocyanates (MDI) based polyurethane membrane has been prepared in this study. The main objective of this research is manufacture of polyurethane membranes from avocado seed oil, as a filter of this membrane use as a filter of metals from water such as mercury (Hg). In this study, the polyurethane membrane had been synthesized by varying compositions of rubber seed oil and MDI, with ratios of 10:0.2; 10:0.4; 10:0.6; 10:0.8; 10:1.0; 10:1.2; 10:1.4; 10:1.6; 10:1.8 and 10:2.0 (v/w) at 80°C and 170°C as polymerization and curing temperatures, respectively. Optimum polyurethane membrane was obtained at rubber seed oil: MDI 10: 0.8 v/w, it was dry, non-sticky, smooth and blackish brown. The membrane flux was 5,8307 L / m2.h.bar and rejection factor was 35,3015 %. The results of characterization indicated the formation of urethane bonds (NH at 3480 cm-1, C=O at 1620 cm-1, CN at 1374 cm-1, -OC-NH- at 1096 cm-1 and no -NCO at 2270 cm-1), the value of Tg was 55°C. The polyurethane membrane which treated at the optimum treatment conditions were used to the filter of metals from water such as mercury (Hg).

  1. Fatty acid profile of seashore mallow (Kosteletzkya pentacarpos) seed oil and properties of the methyl esters

    USDA-ARS?s Scientific Manuscript database

    In recent literature, seashore mallow (Kosteletzkya pentacarpos; also known previously as Kosteletzkya virginica) seed oil was reported as a potential alternative feedstock for biodiesel. In the present work, the fatty acid profile of K. pentacarpos is shown to correspond to that of other plants in ...

  2. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    USDA-ARS?s Scientific Manuscript database

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  3. Enrichment of erucic acid from pennycress (Thlaspi arvense L.) seed oil

    USDA-ARS?s Scientific Manuscript database

    Pennycress (Thlaspi arvense) is a winter annual that has a wide geographic distribution and a growth habitat that makes it suitable for an off-season rotation between corn and soybeans in much of the Midwestern United States. Pennycress seed contains 36% oil with 36.6% erucic acid content. There are...

  4. Technological Desition of Extraction of Melanin from the Waste of Production of Sunflower-Seed Oil

    NASA Astrophysics Data System (ADS)

    Kartushina, Yu N.; Nefedieva, E. E.; Sevriukova, G. A.; Gracheva, N. V.; Zheltobryukhov, V. F.

    2017-05-01

    The research was realized in the field of the technology for re-use of waste of sunflower-seed oil production. A technological scheme of production of melanin from sunflower husk as a waste was developed. Re-cycling will give the opportunity to reduce the amount of waste and to obtain an additional source of income.

  5. Methyl esters (biodiesel) from and fatty acid profile of Gliricidia sepium seed oil

    USDA-ARS?s Scientific Manuscript database

    Increasing the supply of biodiesel by defining and developing additional feedstocks is important to overcome the still limited amounts available of this alternative fuel. In this connection, the methyl esters of the seed oil of Gliricidia sepium were synthesized and the significant fuel-related prop...

  6. Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

    USDA-ARS?s Scientific Manuscript database

    This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cottonseed biodiesel while assessing the IDI engine multi-fuel capability. Millions of tons of cotton seeds are available in the southeast of the USA every year and they contain oils that can be transesteri...

  7. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H.; Shanklin, John

    2010-02-02

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  8. EVIDENCE OF SEED OILS IN FINE PARTICLES FROM THE NEW YORK METROPOLITAN AREA

    EPA Science Inventory

    This abstract describes a poster on the contribution of seed oils used for cooking to organic particulate matter to be presented at the 2006 International Aerosol Conference sponsored by the American Association for Aerosol Research in St. Paul, Minnesota on September 10-15. Sam...

  9. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H.; Shanklin, John

    2010-02-02

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  10. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H; Shanklin, John

    2014-03-18

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  11. EVIDENCE OF SEED OILS IN FINE PARTICLES FROM THE NEW YORK METROPOLITAN AREA

    EPA Science Inventory

    This abstract describes a poster on the contribution of seed oils used for cooking to organic particulate matter to be presented at the 2006 International Aerosol Conference sponsored by the American Association for Aerosol Research in St. Paul, Minnesota on September 10-15. Sam...

  12. Nutrient homeostasis, C:N:S ratios, protein, and oil content in Cuphea seed

    USDA-ARS?s Scientific Manuscript database

    Macro- and micro-nutrient densities, carbon:nitrogen (C:N), nitrogen:sulphur (N:S), protein, and oil contents and interrelationships were assessed during a 3-year study in seeds of the indeterminate Cuphea germplasm line PSR23 selected from an inter-specific cross between two species of the Lythrace...

  13. Coriander Seed Oil Methyl Esters as Biodiesel Fuel: Unique Fatty Acid Composition and Excellent Oxidative Stability

    USDA-ARS?s Scientific Manuscript database

    Coriander (Coriandrum sativum L.) seed oil methyl esters were prepared and evaluated as an alternative biodiesel fuel and contained an unusual fatty acid (FA) hitherto unreported as the principle component in biodiesel fuels: petroselinic (6Z-octadecenoic; 68.5 wt %) acid. Most of the remaining FA...

  14. Combining ability and performance of cotton germplasm with diverse seed oil content

    USDA-ARS?s Scientific Manuscript database

    A line by tester analysis was used to identify superior general and specific combining parents for seed oil content in upland cotton (Gossypium hirsutum L.). This experiment was conducted using four lines (PD 7723, PD 94042, PD 3246 and PD 5377) and four testers (TX 21, TX 101, TX 182 and TX 244) w...

  15. Camelina seed transcriptome: Tool for meal and oil improvement and translational research

    USDA-ARS?s Scientific Manuscript database

    Camelina (Camelina sativa), a Brassicaceae oilseed, has received intense interest as a biofuel crop and production platform for industrial oils. Limiting wider production of camelina for these uses is the need to improve seed composition traits such as the quality and content of the protein rich-me...

  16. Protective effect of Eruca sativa seed oil against oral nicotine induced testicular damage in rats.

    PubMed

    Abd El-Aziz, Gamal Said; El-Fark, Magdy Omar; Hamdy, Raid Mahmoud

    2016-08-01

    Nicotine is a pharmacologically active component of the tobacco that adversely affects the male reproductive system and fertility. Nicotine administration in experimental animals was found to affect spermatogenesis, epididymal sperm count, motility and the fertilizing potential of sperms. The goal of this work is to assess the protective or ameliorative effect of Eruca Sativa seed oil against testicular damage induced by oral administration of nicotine in rats. Male adult Sprague-Dawley rats were used and divided into three groups; control, nicotine treated and nicotine and Eruca seed oil treated groups. After three weeks of treatment, the rats were weighed and sacrificed where testes were removed and weighed then calculating relative testis weights. The testes were processed for routine paraffin embedding and staining and the sections were examined for different morphometric and histopathological changes. The results show that nicotine administration had an effect on the body and testis weight and various morphometric parameters of the testis. It also induced varying degrees of structural damage to the seminiferous tubules, with shrinkage and absence of mature spermatids. Disorganized, vacuolization and loss of germinal cells were noticed in the basement membrane. The co-administration of Eruca Sativa seed oil led to improvement in the morphometric and histopathological changes of the seminiferous tubules. In conclusion, Eruca Sativa seed oil treatment in this study had a protective role by reversing, almost completely, all morphometric and histological changes in the testis induced by nicotine administration.

  17. In vivo anti-Trichophyton Activities of Seed Oil Obtained from Caraganakorshinskii Kom.

    PubMed

    Zhou, Wenna; Xu, Heng; Luan, Guangxiang; Wang, HongLun; Wang, Xiaoyan; Ji, Mingkai

    2016-01-01

    The objective of this study was to evaluate the effects of seed oil of Caragana korshinskii Kom. against Trichophyton mentagrophytes on an in vivo guinea pig model of dermatophytosis. The skin of albino guinea pigs was infected with T. mentagrophytes, and the animals were divided into five groups: negative control (NC group), positive control (PC group), vehicle control, CK50% group (received topical 50% seed oil of C.korshinskii), and CK100% group (received topical 100% seed oil of C.korshinskii). Evaluation of clinical efficacy was performed 72 h after the completion of a 10-day treatment regimen. Skin biopsy samples were processed for histopathological examination. The infected untreated control guinea pigs showed patches of hair loss and ulcerated or scaly skin. Lower clinical scores indicate improved efficacy compared with NC. The lesion scores significantly declined in the CK50%, CK100%, and PC groups in comparison with the NC group. The CK50% group (45.31%) and the CK100% group (75%) showed clinical efficacy compared with the PC group (78.13%). In addition, no fungal elements, inflammation, or tissue destruction was observed in any of the PAS-stained sections of the infected skin in the groups treated with CK100% or 1% terbinafine. Seed oil of C.korshinskii demonstrated high antifungal efficacy in experimental dermatophytosis. © 2016 S. Karger AG, Basel.

  18. Creating Conventional Soybeans with the High Oleic Acid Seed Oil Trait

    USDA-ARS?s Scientific Manuscript database

    Commodity soybeans are poised to undergo a revolutionary change. Major shifts in market expectations for the nutritional quality of the oil, brought about in part through food labeling requirements and the suitability for biodiesel, are driving the commodity soybean to embrace new seed compositiona...

  19. Association mapping of seed oil and protein content in Sesamum indicum L. using SSR markers.

    PubMed

    Li, Chun; Miao, Hongmei; Wei, Libin; Zhang, Tide; Han, Xiuhua; Zhang, Haiyang

    2014-01-01

    Sesame is an important oil crop for the high oil content and quality. The seed oil and protein contents are two important traits in sesame. To identify the molecular markers associated with the seed oil and protein contents in sesame, we systematically performed the association mapping among 369 worldwide germplasm accessions under 5 environments using 112 polymorphic SSR markers. The general linear model (GLM) was applied with the criteria of logP ≥ 3.0 and high stability under all 5 environments. Among the 369 sesame accessions, the oil content ranged from 27.89%-58.73% and the protein content ranged from 16.72%-27.79%. A significant negative correlation of the oil content with the protein content was found in the population. A total of 19 markers for oil content were detected with a R2 value range from 4% to 29%; 24 markers for protein content were detected with a R2 value range from 3% to 29%, of which 19 markers were associated with both traits. Moreover, partial markers were confirmed using mixed linear model (MLM) method, which suggested that the oil and protein contents are controlled mostly by major genes. Allele effect analysis showed that the allele associated with high oil content was always associated with low protein content, and vice versa. Of the 19 markers associated with oil content, 17 presented near the locations of the plant lipid pathway genes and 2 were located just next to a fatty acid elongation gene and a gene encoding Stearoyl-ACP Desaturase, respectively. The findings provided a valuable foundation for oil synthesis gene identification and molecular marker assistant selection (MAS) breeding in sesame.

  20. Association Mapping of Seed Oil and Protein Content in Sesamum indicum L. Using SSR Markers

    PubMed Central

    Li, Chun; Miao, Hongmei; Wei, Libin; Zhang, Tide; Han, Xiuhua; Zhang, Haiyang

    2014-01-01

    Sesame is an important oil crop for the high oil content and quality. The seed oil and protein contents are two important traits in sesame. To identify the molecular markers associated with the seed oil and protein contents in sesame, we systematically performed the association mapping among 369 worldwide germplasm accessions under 5 environments using 112 polymorphic SSR markers. The general linear model (GLM) was applied with the criteria of logP≥3.0 and high stability under all 5 environments. Among the 369 sesame accessions, the oil content ranged from 27.89%–58.73% and the protein content ranged from 16.72%–27.79%. A significant negative correlation of the oil content with the protein content was found in the population. A total of 19 markers for oil content were detected with a R2 value range from 4% to 29%; 24 markers for protein content were detected with a R2 value range from 3% to 29%, of which 19 markers were associated with both traits. Moreover, partial markers were confirmed using mixed linear model (MLM) method, which suggested that the oil and protein contents are controlled mostly by major genes. Allele effect analysis showed that the allele associated with high oil content was always associated with low protein content, and vice versa. Of the 19 markers associated with oil content, 17 presented near the locations of the plant lipid pathway genes and 2 were located just next to a fatty acid elongation gene and a gene encoding Stearoyl-ACP Desaturase, respectively. The findings provided a valuable foundation for oil synthesis gene identification and molecular marker assistant selection (MAS) breeding in sesame. PMID:25153139

  1. Antibacterial activity of the essential oil from Ferula gummosa seed.

    PubMed

    Eftekhar, Fereshteh; Yousefzadi, Morteza; Borhani, K

    2004-12-01

    Antibacterial activity of Ferula gummosa essential oil was studied against bacterial laboratory ATCC standards using the disk diffusion method. The results showed activity against Gram(+) bacteria and Escherichia coli. Little antibacterial activity was found against Pseudomonas aeruginosa.

  2. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans.

    PubMed

    Wei, Chia-Cheng; Yen, Pei-Ling; Chang, Shang-Tzen; Cheng, Pei-Ling; Lo, Yi-Chen; Liao, Vivian Hsiu-Chuan

    2016-01-01

    Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans. The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%). Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans. This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods.

  3. Physico-chemical characteristics of papaya (Carica papaya L.) seed oil of the Hong Kong/Sekaki variety.

    PubMed

    Yanty, Noorzianna Abdul Manaf; Marikkar, Jalaldeen Mohammed Nazrim; Nusantoro, Bangun Prajanto; Long, Kamariah; Ghazali, Hasanah Mohd

    2014-01-01

    A study was carried out to determine the physicochemical characteristics of the oil derived from papaya seeds of the Hong Kong/Sekaki variety. Proximate analysis showed that seeds of the Hong Kong/Sekaki variety contained considerable amount of oil (27.0%). The iodine value, saponification value, unsaponifiable matter and free fatty acid contents of freshly extracted papaya seed oil were 76.9 g I2/100g oil, 193.5 mg KOH/g oil, 1.52% and 0.91%, respectively. The oil had a Lovibond color index of 15.2Y + 5.2B. Papaya seed oil contained ten detectable fatty acids, of which 78.33% were unsaturated. Oleic (73.5%) acid was the dominant fatty acids followed by palmitic acid (15.8%). Based on the high performance liquid chromatography (HPLC) analysis, seven species of triacylglycerols (TAGs) were detected. The predominant TAGs of papaya seed oil were OOO (40.4%), POO (29.1%) and SOO (9.9%) where O, P, and S denote oleic, palmitic and stearic acids, respectively. Thermal analysis by differential scanning calorimetry (DSC) showed that papaya seed oil had its major melting and crystallization transitions at 12.4°C and -48.2°C, respectively. Analysis of the sample by Z-nose (electronic nose) instrument showed that the sample had a high level of volatile compounds.

  4. An improved method for extraction of high-quality total RNA from oil seeds.

    PubMed

    Rayani, Azadeh; Dehghan Nayeri, Fatemeh

    2015-04-01

    Seeds of oilseed plants that contain large amounts of oil, polysaccharides, proteins and polyphenols are not amenable to conventional RNA isolation protocols. The presence of these substances affects the quality and quantity of isolated nucleic acids. Here, a rapid and efficient RNA isolation protocol that, in contrast to other methods tested, allows high purify, integrity and yield of total RNA from seeds of sesame, corn, sunflower, flax and rapeseed was developed. The average yields of total RNA from 70 mg oil seeds ranged from 84 to 310 µg with A260/A280 between 1.9 and 2.08. The RNA isolated with this protocol was verified to be suitable for PCR, quantitative real-time PCR, semi-quantitative RT-PCR, cDNA synthesis and expression analysis.

  5. Pomegranate fruit extract impairs invasion and motility in human breast cancer.

    PubMed

    Khan, Gazala N; Gorin, Michael A; Rosenthal, Devin; Pan, Quintin; Bao, Li Wei; Wu, Zhi Fen; Newman, Robert A; Pawlus, Alison D; Yang, Peiying; Lansky, Ephraim P; Merajver, Sofia D

    2009-09-01

    Pomegranate fruit extracts (PFEs) possess polyphenolic and other compounds with antiproliferative, pro-apoptotic and anti-inflammatory effects in prostate, lung, and other cancers. Because nuclear transcription factor-kB (NF-kB) is known to regulate cell survival, proliferation, tumorigenesis, and inflammation, it was postulated that PFEs may exert anticancer effects at least in part by modulating NF-kB activity. The authors investigated the effect of a novel, defined PFE consisting of both fermented juice and seed oil on the NF-kB pathway, which is constitutively active in aggressive breast cancer cell lines. The effects of the PFE on NF-kB-regulated cellular processes such as cell survival, proliferation, and invasion were also examined. Analytical characterization of the bioactive components of the PFE revealed active constituents, mainly ellagitannins and phenolic acids in the aqueous PFE and conjugated octadecatrienoic acids in the lipid PFE derived from seeds.The aqueous PFE dose-dependently inhibited NF-kB-dependent reporter gene expression associated with proliferation, invasion, and motility in aggressive breast cancer phenotypes while decreasing RhoC and RhoA protein expression. Inhibition of motility and invasion by PFEs, coincident with suppressed RhoC and RhoA protein expression, suggests a role for these defined extracts in lowering the metastatic potential of aggressive breast cancer species.

  6. Development of a hull-less pumpkin (Cucurbita pepo L.) seed oil press-cake spread.

    PubMed

    Radočaj, Olga; Dimić, Etelka; Vujasinović, Vesna

    2012-09-01

    A stable, oil-based spread rich in the omega-3 (ω-3) and omega-6 (ω-6) fatty acids was developed using a hull-less pumpkin seed (Cucurbita pepo L.) oil press-cake, a by-product of the pumpkin oil pressing process, along with cold-pressed hemp oil. Response surface methodology (RSM) was applied to investigate the effects of two factors, as the formulation's compositional variables: a commercial stabilizer (X(1) ) and cold-pressed hemp oil (X(2) ) added to the pumpkin seed oil press-cake in the spread formulations. A central composite, 2-factorial experimental design on 5 levels was used to optimize the spreads where model responses were ω-3 fatty acids content, spreadability (hardness), oil separation, and sensory evaluation. The selected responses were significantly affected by both variables (P < 0.05). The spreads resembled commercial peanut butter, both in appearance, texture and spreadability; were a source of ω-3 fatty acids and with no visual oil separation after 1 mo of storage. An optimum spread was produced using 1.25% (w/w) of stabilizer and 80% of hemp oil (w/w, of the total added oil) which had 0.97 g of ω-3 fatty acids per serving size; penetration depth of 68.4 mm; oil separation of 9.2% after 3 mo of storage; and a sensory score of 17.5. A use of by-products generated from different food processing technologies, where the edible waste is successfully incorporated as a value-added ingredient, has become a very important area of research to support global sustainability efforts. This study contributes to the knowledge of a product design process for oil-based spread development, where oil press-cake, a by-product of the oil pressing process of the naked pumpkin seeds, was used and where results have demonstrated that a new product can be successfully developed and potentially manufactured as a functional food. © 2012 Institute of Food Technologists®

  7. Seed Oil and Composition Development in Two Sunflower Hybrids

    USDA-ARS?s Scientific Manuscript database

    Desiccants/harvest aids are becoming more commonly used to hasten sunflower harvest. Currently, it is recommended that desiccants such as glyphosate and paraquat be applied at 35% or less seed moisture at physiological maturity (PM). Recently, Johnson and Gesch (2009) showed that PM for two commerci...

  8. [GC-MS analysis of chemical components in seeds oil from Croton tiglium].

    PubMed

    Lan, Mei; Wan, Ping; Wang, Zhi-Ying; Huang, Xiao-Lan

    2012-07-01

    To identify the chemical components and their relative content in seeds oil from Croton tiglium. The oil obtained by extracting of the seeds of Croton tiglium with petroleum ether was subjected to methyl-esterification or dilution with ethylether. GC-MS were used to identify the components in croton oil,peak area normalization method was used to determine the relative content of these substances in the sample. Seventeen fat acid components were identified from croton oil. The main components were linoleic acid, oleic acid, and eicosenoic acid in methyl-esterified sample, whose quantities accouted for 77.33%. In addition, five aromatic compounds were also found in the sample diluted with ethylether, such as isoborneol, fenchyl alcohol, etc. Phorbol esters, having carcinogenesis and anti-HIV-1 effects, were not been identified. There are abundant of linoleic acid, oleic acid and eicosenoic acid in the seeds oil extracted from Chinese Croton tiglium. In contrast, the active component with carcinogenesis and anti-HIV-1 might be very rare in the samples and difficult to be obtained by ordinary separating and extracting methods.

  9. Immunotoxicity activity from the essential oils of coriander (Coriandrum sativum) seeds.

    PubMed

    Chung, Ill-Min; Ahmad, Ateeque; Kim, Eun-Hye; Kim, Seung-Hyun; Jung, Woo-Suk; Kim, Jin-Hoi; Nayeem, Abdul; Nagella, Praveen

    2012-06-01

    The seeds of the Coriandrum sativum were extracted and the essential oil composition and immunotoxicity effects were studied. The analysis of the essential oil was conducted by gas chromatography-mass spectroscopy, which revealed 33 components, representing 99.99% of the total oil from the seeds of coriander. The major components are linalool (55.09%), α-pinene (7.49%), 2,6-Octadien-1-ol, 3,7-dimethyl-, acetate, (E)- (5.70%), geraniol (4.83%), 3-Cyclohexene-1-methanol, α,α,4-trimethyl- (4.72%), hexadecanoic acid (2.65%), tetradecanoic acid (2.49%), 2-α-pinene (2.39%), citronellyl acetate (1.77%), and undecanal (1.29%). The seed oil had significant toxic effects against the larvae of Aedes aegypti with an LC(50) value of 21.55 ppm and LC(90) value of 38.79 ppm. The above data indicate that the major components in the essential oil of coriander play an important role as immunotoxicity on the A. aegypti.

  10. Capsaicin and tocopherol in red pepper seed oil enhances the thermal oxidative stability during frying.

    PubMed

    Yang, Cheul-Young; Mandal, Prabhat K; Han, Kyu-Ho; Fukushima, Michihiro; Choi, Kangduk; Kim, Cheon-Jei; Lee, Chi-Ho

    2010-03-01

    Thermal oxidative stability of red pepper (Capsicum annuum) seed oil added with different levels of capsaicin or tocopherol as antioxidant during heating up to 48 h at 140±5°C was studied. Lipid oxidation of soy and pepper oil with different levels of capsaicin (0.12, 0.24%) and tocopherol (0.3, 0.6%) were evaluated during storage at 1400C for 0, 12, 24 and 48 h by monitoring peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and chemiluminiscence (CL). Capsaicin content of crude pepper oil (0.16 mg/ml) was much higher than that of commercial brands (0.004-0.02 mg/ml). Oleate content was significantly (p<0.05) higher in soy oil (53.7%) than pepper oil (9.5%), however, linoleate and linolenate contents were significantly (p<0.05) higher in pepper oil (70.6, 5.8%) than in soy oil (25.9, 5.8%). TBARS, PV, and CL of pepper oil were significantly (p<0.05) lower than soy oil after frying. TBARS and CL values of pepper oil with different levels of capsaicin or tocopherol showed significantly (p<0.05) lower values than untreated pepper oil during frying and storage. TBARS and CL values of 0.6% tocopherol treated pepper oil showed significantly (p<0.05) lower values than those of soy oil. The study suggests that capsaicin and tocopherol may play a key role to prevent the thermal oxidation of pepper oil during frying.

  11. The antioxidant effects of pumpkin seed oil on subacute aflatoxin poisoning in mice.

    PubMed

    Eraslan, Gökhan; Kanbur, Murat; Aslan, Öznur; Karabacak, Mürsel

    2013-12-01

    This study was aimed at the investigation of the antioxidant effect of pumpkin seed oil against the oxidative stress-inducing potential of aflatoxin. For this purpose, 48 male BALB/c mice were used. Four groups, each comprising 12 mice, were established. Group 1 was maintained as the control group. Group 2 was administered with pumpkin seed oil alone at a dose of 1.5 mL/kg.bw/day (∼1375mg/kg.bw/day). Group 3 received aflatoxin (82.45% AFB1 , 10.65% AFB2 , 4.13% AFG1, and 2.77% AFG2 ) alone at a dose of 625 μg/kg.bw/day. Finally, group 4 was given both 1.5 mL/kg.bw/day pumpkin seed oil and 625 μg/kg.bw/day aflatoxin. All administrations were oral, performed with the aid of a gastric tube and continued for a period of 21 days. At the end of day 21, the liver, lungs, kidneys, brain, heart, and spleen of the animals were excised, and the extirpated tissues were homogenized appropriately. Malondialdehyde (MDA) levels and catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities were determined in tissue homogenates. In conclusion, it was determined that aflatoxin exhibited adverse effects on most of the oxidative stress markers. The administration of pumpkin seed oil diminished aflatoxin-induced adverse effects. In other words, the values of the group, which was administered with both aflatoxin and pumpkin seed oil, were observed to have drawn closer to the values of the control group. Copyright © 2011 Wiley Periodicals, Inc.

  12. Study on preparation method of Zanthoxylum bungeanum seeds kernel oil with zero trans-fatty acids.

    PubMed

    Liu, Tong; Yao, Shi-Yong; Yin, Zhong-Yi; Zheng, Xu-Xu; Shen, Yu

    2016-04-01

    The seed of Zanthoxylum bungeanum (Z. bungeanum) is a by-product of pepper production and rich in unsaturated fatty acid, cellulose, and protein. The seed oil obtained from traditional producing process by squeezing or extracting would be bad quality and could not be used as edible oil. In this paper, a new preparation method of Z. bungeanum seed kernel oil (ZSKO) was developed by comparing the advantages and disadvantages of alkali saponification-cold squeezing, alkali saponification-solvent extraction, and alkali saponification-supercritical fluid extraction with carbon dioxide (SFE-CO2). The results showed that the alkali saponification-cold squeezing could be the optimal preparation method of ZSKO, which contained the following steps: Z. bungeanum seed was pretreated by alkali saponification under the conditions of adding 10 %NaOH (w/w), solution temperature was 80 °C, and saponification reaction time was 45 min, and pretreated seed was separated by filtering, water washing, and overnight drying at 50 °C, then repeated squeezing was taken until no oil generated at 60 °C with 15 % moisture content, and ZSKO was attained finally using centrifuge. The produced ZSKO contained more than 90 % unsaturated fatty acids and no trans-fatty acids and be testified as a good edible oil with low-value level of acid and peroxide. It was demonstrated that the alkali saponification-cold squeezing process could be scaled up and applied to industrialized production of ZSKO.

  13. Relative efficacy of casein or soya protein combined with palm or safflower-seed oil on hyperuricaemia in rats.

    PubMed

    Lo, Hui-Chen; Wang, Yao-Horng; Chiou, Hue-Ying; Lai, Shan-Hu; Yang, Yu

    2010-07-01

    Diets that ameliorate the adverse effects of uric acid (UA) on renal damage deserve attention. The effects of casein or soya protein combined with palm or safflower-seed oil on various serum parameters and renal histology were investigated on hyperuricaemic rats. Male Wistar rats administered with oxonic acid and UA to induce hyperuricaemia were fed with casein or soya protein plus palm- or safflower-seed oil-supplemented diets. Normal rats and hyperuricaemic rats with or without allopurinol treatment (150 mg/l in drinking water) were fed with casein plus maize oil-supplemented diets. After 8 weeks, allopurinol treatment and soya protein plus safflower-seed oil-supplemented diet significantly decreased serum UA in hyperuricaemic rats (one-way ANOVA; P < 0.05). In addition, soya protein and casein attenuated hyperuricaemia-induced decreases in serum albumin and insulin, respectively (two-way ANOVA; P < 0.05). Safflower-seed oil significantly decreased serum TAG and UA, whereas palm oil significantly increased serum cholesterol, TAG, blood urea N and creatinine. However, soya protein significantly decreased renal NO and nitrotyrosine and palm oil significantly decreased renal nitrotyrosine, TNF-alpha and interferon-gamma and increased renal transforming growth factor-beta. Casein with safflower-seed oil significantly attenuated renal tubulointerstitial nephritis, crystals and fibrosis. Comparing casein v. soya protein combined with palm or safflower-seed oil, the results support that casein with safflower-seed oil may be effective in attenuating hyperuricaemia-associated renal damage, while soya protein with safflower-seed oil may be beneficial in lowering serum UA and TAG.

  14. Identification and expression of fructose-1,6-bisphosphate aldolase genes and their relations to oil content in developing seeds of tea oil tree (Camellia oleifera).

    PubMed

    Zeng, Yanling; Tan, Xiaofeng; Zhang, Lin; Jiang, Nan; Cao, Heping

    2014-01-01

    Tea oil tree (Camellia oleifera, Co) provides a fine edible oil source in China. Tea oil from the seeds is very beneficial to human health. Fructose-1,6-bisphosphate aldolase (FBA) hydrolyzes fructose-1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, two critical metabolites for oil biosynthesis. The objectives of this study were to identify FBA genes and investigate the relationship between FBA gene expression and oil content in developing seeds of tea oil tree. In this paper, four developmentally up-regulated CoFBA genes were identified in Camellia oleifera seeds based on the transcriptome from two seed developmental stages corresponding to the initiation and peak stages of lipid biosynthesis. The expression of CoFBA genes, along with three key oil biosynthesis genes CoACP, CoFAD2 and CoSAD were analyzed in seeds from eight developmental stages by real-time quantitative PCR. The oil content and fatty acid composition were also analyzed. The results showed that CoFBA and CoSAD mRNA levels were well-correlated with oil content whereas CoFAD2 gene expression levels were correlated with fatty acid composition in Camellia seeds. We propose that CoFBA and CoSAD are two important factors for determining tea oil yield because CoFBA gene controls the flux of key intermediates for oil biosynthesis and CoSAD gene controls the synthesis of oleic acid, which accounts for 80% of fatty acids in tea oil. These findings suggest that tea oil yield could be improved by enhanced expression of CoFBA and CoSAD genes in transgenic plants.

  15. Identification and Expression of Fructose-1,6-Bisphosphate Aldolase Genes and Their Relations to Oil Content in Developing Seeds of Tea Oil Tree (Camellia oleifera)

    PubMed Central

    Zeng, Yanling; Tan, Xiaofeng; Zhang, Lin; Jiang, Nan; Cao, Heping

    2014-01-01

    Tea oil tree (Camellia oleifera, Co) provides a fine edible oil source in China. Tea oil from the seeds is very beneficial to human health. Fructose-1,6-bisphosphate aldolase (FBA) hydrolyzes fructose-1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, two critical metabolites for oil biosynthesis. The objectives of this study were to identify FBA genes and investigate the relationship between FBA gene expression and oil content in developing seeds of tea oil tree. In this paper, four developmentally up-regulated CoFBA genes were identified in Camellia oleifera seeds based on the transcriptome from two seed developmental stages corresponding to the initiation and peak stages of lipid biosynthesis. The expression of CoFBA genes, along with three key oil biosynthesis genes CoACP, CoFAD2 and CoSAD were analyzed in seeds from eight developmental stages by real-time quantitative PCR. The oil content and fatty acid composition were also analyzed. The results showed that CoFBA and CoSAD mRNA levels were well-correlated with oil content whereas CoFAD2 gene expression levels were correlated with fatty acid composition in Camellia seeds. We propose that CoFBA and CoSAD are two important factors for determining tea oil yield because CoFBA gene controls the flux of key intermediates for oil biosynthesis and CoSAD gene controls the synthesis of oleic acid, which accounts for 80% of fatty acids in tea oil. These findings suggest that tea oil yield could be improved by enhanced expression of CoFBA and CoSAD genes in transgenic plants. PMID:25215538

  16. Fatty acid composition and tocopherol profiles of safflower (Carthamus tinctorius L.) seed oils.

    PubMed

    Matthaus, B; Özcan, M M; Al Juhaimi, F Y

    2015-01-01

    The oil contents of safflower seeds ranged from 23.08% to 36.51%. The major fatty acid of safflower oil is linoleic acid, which accounted for 55.1-77.0% in oils, with a mean value of 70.66%. Three types of tocopherols were found in safflower oil in various amount α-tocopherol, β-tocopherol and γ-tocopherol, ranged from 46.05 to 70.93 mg/100 g, 0.85 to 2.16 mg/100 g and trace amount to 0.45 mg/100 g oils, respectively. This research shows that both fatty acid and tocopherol contents differ significantly among the safflowers.

  17. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds

    PubMed Central

    Soliman, T.; Lim, F. K. S.; Lee, J. S. H.

    2016-01-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land. PMID:27853605

  18. Effect of the refining process on Moringa oleifera seed oil quality.

    PubMed

    Sánchez-Machado, Dalia I; López-Cervantes, Jaime; Núñez-Gastélum, José A; Servín de la Mora-López, Gabriela; López-Hernández, Julia; Paseiro-Losada, Perfecto

    2015-11-15

    We evaluated the physicochemical properties and oxidative stability of the oil extracted from the seeds of Moringa oleifera during its refining process. Refining is accomplished in three stages: neutralization, degumming, and bleaching. Four samples were analyzed, corresponding to each step of the processed and crude oil. Increases in the density, viscosity, saponification value and oxidation of the oil were detected during the refining, while the peroxide value and carotenoid content diminished. Moreover, the refractive index and iodine content were stable throughout the refining. Nine fatty acids were detected in all four samples, and there were no significant differences in their composition. Oleic acid was found in the largest amount, followed by palmitic acid and behenic acid. The crude, neutralized, and degummed oils showed high primary oxidation stability, while the bleached oil had a low incidence of secondary oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds.

    PubMed

    Soliman, T; Lim, F K S; Lee, J S H; Carrasco, L R

    2016-08-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land.

  20. Investigation on the mineral contents of capers (Capparis spp.) seed oils growing wild in Turkey.

    PubMed

    Ozcan, M Musa

    2008-09-01

    Minor and major mineral contents of seed oils of Capparis ovata Desf. var. canescens (Coss.) Heywood and Capparis spinosa var. spinosa used as pickling products in Turkey were determined by inductively coupled plasma atomic emission spectrometry. The seed oils contained Al, P, Na, Mg, Fe, and Ca, in addition to fatty acids. The highest mineral concentrations measured were 14.91-118.81 mg/kg Al, 1,489.34-11,523.74 mg/kg P, 505.78-4,489.51 mg/kg Na, 102.15-1,655.33 mg/kg Mg, 78.83-298.14 mg/kg Fe, and 1.04-76.39 mg/kg Ca. The heavy metal concentrations were less than the limit of detection in all oil samples. The results may also be useful for the evaluation of nutritional information.

  1. Identification of differentially expressed genes in seeds of two near-isogenic Brassica napus lines with different oil content.

    PubMed

    Li, Rong-Jun; Wang, Han-Zhong; Mao, Han; Lu, Ying-Tang; Hua, Wei

    2006-09-01

    The regulation of seed oil synthesis in rapeseed is largely unknown. In this study, we compared the gene expression during seed development between two lines of Brassica napus with a 10% difference in oil content. We isolated the immature seeds 15 and 25 days after flowering at periods preceding and including the major accumulation of storage oils and proteins. The differentially expressed gene clones between the two rape lines were isolated by subtractive suppression hybridization (SSH). All SSH clones were arrayed and screened by dot blot hybridization, followed by RT-PCR analysis for selected clones. A total of 217 cDNA clones corresponding to 30 genes were found to have a high expression in seeds with high oil content. Six genes were highly expressed in seeds with low oil content. Northern blot and enzyme activity analysis demonstrated a change in expression pattern of several genes. The results provide information on gene-encoding factors responsible for the regulation of oil synthesis. The possible role of these genes in seeds is discussed. The genes in this study may be suitable as novel targets for genetic improvement of seed oil content and may also provide molecular markers for studies of rape breeding.

  2. Physico-chemical characteristics of oil produced from seeds of some date palm cultivars (Phoenix dactylifera L.) .

    PubMed

    Soliman, S S; Al-Obeed, R S; Ahmed, T A

    2015-03-01

    The oil content of saturated and unsaturated fatty acids with some physico-chemical properties and nutrients were investigated in oil produced from seeds of six important date palm cultivars and one seed strain present in Saudi Arabia. The results indicated that the oil extracted from six seed cultivars of date palm ranged from 6.73-10.89% w/w oil. The refractive index of date seeds oil was found to be between 1.4574 to 1.4615. The iodine values, acid values and saponification values were in the range of 74.2-86.6 g iodine 100 g(-1); 2.50-2.58 mg KOH g(-1) and 0.206-0.217 mg KOH g(-1), respectively. Lauric acid, Myristic acid, Palmitic acid C15, Palmitic acid C16 Stearic acid, Arachidic acid and Behenic acid of date seeds oil contents were found between 8.67-49.27; 7.01-15.43; 0-0.57; 4.82-18.09; 1.02-7.86; 0-0.08; and 0-0.15% w/w, in that order. Omega-6 and Omega-9 of date seeds oil were found between 7.31-17.87 and 52.12-58.78%, respectively. Khalas, Barhy cvs. and seed strain gave highest K and Ca, Na and Fe, Mg as compared with other studied cultivars.

  3. Studies on the effect of ohmic heating on oil recovery and quality of sesame seeds.

    PubMed

    Kumari, Kirti; Mudgal, V D; Viswasrao, Gajanan; Srivastava, Himani

    2016-04-01

    This research describes a new technological process for sesame oil extraction. The process deals with the effect of ohmic heating on enhancement of oil recovery and quality of cleaned and graded sesame seed. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on oil extraction process were investigated. Three levels of electric field strength (600, 750 and 900 V/m), end point temperature (65, 75 and 85 °C) and holding time (5, 10 and 15 min.) were taken as independent variables using full factorial design. Percentage oil recovered from sesame seed through mechanical extracted oil by application of ohmic heating varies from 39.98 to 43.15 %. The maximum oil recovery 43.15 % was obtained when the sample was heated and maintained at 85 °C using EFS of 900 V/m for a holding time of 10 min as against 34.14 % in control sample. The free fatty acid (FFA) of the extracted oil was within the acceptable limit (1.52 to 2.26 % oleic acid) of 0.5 to 3 % as prescribed respectively by Prevention of Food Adulteration (PFA) and Bureau of Indian Standards (BIS). The peroxide value of extracted oil was also found within the acceptable limit (0.78 to 1.01 meq/kg). The optimum value for maximum oil recovery, minimum residual oil content, free fatty acid (FFA) and peroxide value were 41.24 %, 8.61 %, 1.74 % oleic acid and 0.86 meq/kg, respectively at 722.52 V/m EFS at EPT 65 °C for 5 min. holding time which was obtained by response surface methodology.

  4. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.

    PubMed

    Iven, Tim; Hornung, Ellen; Heilmann, Mareike; Feussner, Ivo

    2016-01-01

    Seed oil composed of wax esters with long-chain monoenoic acyl moieties represents a high-value commodity for industry. Such plant-derived sperm oil-like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low-input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol-forming acyl-CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl-CoA substrates. To produce plant-derived sperm oil-like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1∆c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1∆c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Comparison of conventional and in situ methods of transesterification of seed oil from a series of sunflower cultivars

    SciTech Connect

    Harrington, K.J.; D'Arcy-Evans, C.

    1985-06-01

    The cost of vegetable oil monoesters represents one of the major restrictions on their use as an alternative fuel for diesel engines. This cost can be reduced by increasing the yield of esters produced from a given quantity of oil stive fuel for diesel engines. This cost can be reduced by increasing the yield of esters produced from a given quantity of oil seed. Transesterification of sunflower seed oil in situ with acidified methanol has been shown to produce fatty acid methyl esters in yields significantly greater than those obtained from conventional reaction with pre-extracted seed oil. Yield improvements of over 20% were achieved and could be related to the moisture content of the seed. Fatty ester compositions and cloud points of the products from the in situ reactions were virtually identical to those of esters produced using conventional techniques.

  6. A genome-wide association study of seed protein and oil content in soybean

    PubMed Central

    2014-01-01

    Background Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. Results A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r 2 ) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. Conclusions This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome

  7. Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods.

    PubMed

    Szentmihályi, Klára; Vinkler, Péter; Lakatos, Béla; Illés, Vendel; Then, Mária

    2002-04-01

    From the rose hip seed, which is generally a waste material, valuable oil can be obtained for medicinal use. Various extraction methods have been compared: traditional solvent extraction with ultrasound-, microwave-, sub- and supercritical fluid extraction (SFE). Unsaturated fatty acid (UFA: oleic-, linoleic- and linolenic acid; 16.25-22.11%, 35.94-54.75%, 20.29-26.48%) and polyunsaturated fatty acid (PUFA:linoleic- and linolenic acid) content were over 90% and 60% in the recovered oils. The oils contained different amounts of metals. The concentration of some metals, particularly iron in microwave oil (27.11 microg g(-1)) is undesirable from the aspect of stability. By traditional solvent extraction, oil was obtained in 4.85 wt/wt%. Subcritical FE appeared to be the best method for the recovery of rose hip oil with highest oil yield (6.68 wt/wt%), carotene- (145.3 microg g(-1)) and linoleic acid content (54.75%). Supercritical FE without organic solvent is suitable for mild recovery of oil. The oil was rich in UFA and PUFA (92.7% and 76.25%) and contained the lowest amount of carotene and pheophytin (36.3 and 45.8 microg g(-1)). Oil yield in most new extraction methods (microwave extraction, super- and subcritical FE) was higher than in the case of traditional Soxhlet extraction. The main benefit of supercritical FE with CO2 is the solvent free oil while in the case of other extractions evaporation of the solvent is needed. Although the content of bioactive compounds in oils was different, all oils may be appropriate for medicinal use.

  8. Effect of extraction process on composition, oxidative stability and rheological properties of purslane seed oil.

    PubMed

    Delfan-Hosseini, Sasan; Nayebzadeh, Kooshan; Mirmoghtadaie, Leila; Kavosi, Maryam; Hosseini, Seyede Marzieh

    2017-05-01

    Purslane seed oil could be considered as potential nutritious oil due to its desirable fatty acid composition and other biological active compounds. In this study the effect of three extraction procedure including solvent extraction, cold pressing and microwave pretreatment (MW) followed by cold pressing on oil yield, physicochemical properties, oxidative stability and rheological behaviors of oil was investigated. Solvent extracted oil had the highest extraction yield (72.31%). Pretreatment by microwave before cold press extraction resulted in an increase in extraction yield, total phenolic compound (TPC) and antioxidant activity. Cold press extracted oil had the lowest oxidative stability (4.64h). This property was greatly enhanced by microwave irradiation, so that the longest oxidative stability was found in MW-cold press extracted oil with 9.67h. Furthermore, all extracted oils demonstrated Newtonian flow behaviors. MW-cold press extracted oil had the greatest apparent viscosity and highest sensitivity to temperature changes (Ea=29.18kJ/mol(-1)).

  9. Variation in oil content and fatty acid composition of the seed oil of Acacia species collected from the northwest zone of India.

    PubMed

    Khan, Riyazuddeen; Srivastava, Ruchi; Khan, Mather Ali; Alam, Pravej; Abdin, Malik Zainul; Mahmooduzzafar

    2012-08-30

    The oil content and fatty acid composition of the mature seeds of Acacia species collected from natural habitat of the northwest zone of the Indian subcontinent (Rajasthan) were analyzed in order to determine their potential for human or animal consumption. Oil content varied between 40 and 102 g kg⁻¹. The highest oil content was obtained in Acacia bivenosa DC. (102 g kg⁻¹) among the nine Acacia species. The fatty acid composition showed higher levels of unsaturated fatty acids, especially linoleic acid (~757.7 g kg⁻¹ in A. bivenosa), oleic acid (~525.0 g kg⁻¹ in A. nubica) and dominant saturated fatty acids were found to be 192.5 g kg⁻¹ palmitic acid and 275.6 g kg⁻¹ stearic acid in A. leucophloea and A. nubica respectively. Seed oils of Acacia species can thus be classified in the linoleic-oleic acid group. Significant variations were observed in oil content and fatty acid composition of Acacia species. The present study revealed that the seed oil of Acacia species could be a new source of high linoleic-oleic acid-rich edible oil and its full potential should be exploited. The use of oil from Acacia seed is of potential economic benefit to the poor native population of the areas where it is cultivated. The fatty acid composition of Acacia seed oils is very similar to that reported for commercially available edible vegetable oils like soybean, mustard, sunflower, groundnut and olive. Hence the seed oil of Acacia species could be a new source of edible vegetable oil after toxicological studies. Copyright © 2012 Society of Chemical Industry.

  10. Effect of Pomegranate Juice on Dental Plaque Microorganisms (Streptococci and Lactobacilli)

    PubMed Central

    Kote, Sowmya; Kote, Sunder; Nagesh, Lakshminarayan

    2011-01-01

    To study the effect of pomegranate juice on dental plaque microorganisms. A clinical trial was conducted on thirty healthy volunteers aged 25-30 years who visited Out Patient Department (OPD) of Bapuji Dental College and Hospital, Davangere during the month of October 2006. Before conducting the study, thorough oral prophylaxis was done and the subjects were asked to refrain from the oral hygiene procedures for 24 hrs. Dental plaque was collected from each subject, before and after rinsing 30ml of pomegranate juice without sugar. Plaque samples were cultured using Mitis Salivarius Agar and Rogosa SL Agar media. Wilcoxon's signed rank test was used for statistical analysis. Results showed that pomegranate rinse was effective against dental plaque microorganisms. There was a significant reduction in the number of colony forming units of streptococci (23%) and lactobacilli (46%). The ruby red seeds may be a possible alternative for the treatment of dental plaque bacteria. PMID:23284205

  11. Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification.

    PubMed

    Davidov-Pardo, Gabriel; McClements, David Julian

    2015-01-15

    The aim of this work was to fabricate nanoemulsions-based delivery systems to encapsulate resveratrol. Nanoemulsions were formed using spontaneous emulsification method: 10% oil phase (grape seed oil plus orange oil) and 10% surfactant (Tween 80) were titrated into 80% aqueous phase. An optimum orange oil-to-grape seed oil ratio of 1:1(w/w) formed small droplets (d ≈ 100 nm) with good stability to droplet growth. The maximum amount of resveratrol that could be dissolved in the oil phase was 120 ± 10 μg/ml. The effect of droplet size on the chemical stability of encapsulated resveratrol was examined by preparing systems with different mean droplet diameters of 220 ± 2; 99 ± 3; and 45 ± 0.4 nm. Encapsulation of resveratrol improved its chemical stability after exposure to UV-light: 88% retention in nanoemulsions compared to 50% in dimethylsulphoxide (DMSO). This study showed that resveratrol could be encapsulated within low-energy nanoemulsion-based delivery systems and protected against degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Chemical composition and antioxidant activity of seed oil of two Algerian date palm cultivars (Phoenix dactylifera).

    PubMed

    Boukouada, Mustapha; Ghiaba, Zineb; Gourine, Nadhir; Bombarda, Isabelle; Saidi, Mokhtar; Yousfi, Mohamed

    2014-12-01

    The fatty acid composition of date seed oil from two different date palm (Phoenix dactylifera L.) cultivars, locally known as Degla-Baïdha and Tafezouine, were investigated. GC analysis revealed the presence of five dominant fatty acids: oleic C18:1 (46.51; 39.15%), lauric C12:0 (22.1; 28.5%), myristic C14:0 (10.7; 11.4%), palmitic C16:0 (9.6; 8.7%) and linoleic C18:2 (6.9; 6.1%). The oils was characterised by a low content of tocopherols (0.53; 1.41 μg/g). The antioxidant activity of the oils was investigated using the DPPH*(1,1-di-phenyl-2-picryl-hydrazyl) scavenging assay. The oils had a weak bleaching effect on DPPH* free radicals. This study showed that the qualities of the tested oils are highly comparable with those of some commercial seed oils of other plants. Furthermore, a statistical analysis using the hierarchy ascendant classification method was conducted in order to highlight the similarities and/or the differences regarding the contents of the main fatty acids found in some common plants and in the five most famous cultivars of Phoenix dactylifera of south eastern Algeria (Tafezouine, Degla-Baïdha, Deglet-Nour, Ghars, Tamdjouhert).

  13. Emergence timing and fitness consequences of variation in seed oil composition in Arabidopsis thaliana.

    PubMed

    Pelc, Sandra E; Linder, C Randal

    2015-01-01

    Early seedling emergence can increase plant fitness under competition. Seed oil composition (the types and relative amounts of fatty acids in the oils) may play an important role in determining emergence timing and early growth rate in oilseeds. Saturated fatty acids provide more energy per carbon atom than unsaturated fatty acids but have substantially higher melting points (when chain length is held constant). This characteristic forms the basis of an adaptive hypothesis that lower melting point seeds (lower proportion of saturated fatty acids) should be favored under colder germination temperatures due to earlier germination and faster growth before photosynthesis, while at warmer germination temperatures, seeds with a higher amount of energy (higher proportion of saturated fatty acids) should be favored. To assess the effects of seed oil melting point on timing of seedling emergence and fitness, high- and low-melting point lines from a recombinant inbred cross of Arabidopsis thaliana were competed in a fully factorial experiment at warm and cold temperatures with two different density treatments. Emergence timing between these lines was not significantly different at either temperature, which aligned with warm temperature predictions, but not cold temperature predictions. Under all conditions, plants competing against high-melting point lines had lower fitness relative to those against low-melting point lines, which matched expectations for undifferentiated emergence times.

  14. Emergence timing and fitness consequences of variation in seed oil composition in Arabidopsis thaliana

    PubMed Central

    Pelc, Sandra E; Linder, C Randal

    2015-01-01

    Early seedling emergence can increase plant fitness under competition. Seed oil composition (the types and relative amounts of fatty acids in the oils) may play an important role in determining emergence timing and early growth rate in oilseeds. Saturated fatty acids provide more energy per carbon atom than unsaturated fatty acids but have substantially higher melting points (when chain length is held constant). This characteristic forms the basis of an adaptive hypothesis that lower melting point seeds (lower proportion of saturated fatty acids) should be favored under colder germination temperatures due to earlier germination and faster growth before photosynthesis, while at warmer germination temperatures, seeds with a higher amount of energy (higher proportion of saturated fatty acids) should be favored. To assess the effects of seed oil melting point on timing of seedling emergence and fitness, high- and low-melting point lines from a recombinant inbred cross of Arabidopsis thaliana were competed in a fully factorial experiment at warm and cold temperatures with two different density treatments. Emergence timing between these lines was not significantly different at either temperature, which aligned with warm temperature predictions, but not cold temperature predictions. Under all conditions, plants competing against high-melting point lines had lower fitness relative to those against low-melting point lines, which matched expectations for undifferentiated emergence times. PMID:25628873

  15. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies

    PubMed Central

    Izquierdo, Esther; Campo, Sonia; Badosa, Esther; Rossignol, Michel; Montesinos, Emilio; San Segundo, Blanca; Coca, María

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation. PMID:26760761

  16. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    PubMed

    Montesinos, Laura; Bundó, Mireia; Izquierdo, Esther; Campo, Sonia; Badosa, Esther; Rossignol, Michel; Montesinos, Emilio; San Segundo, Blanca; Coca, María

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation.

  17. Vasorelaxant effect of essential oil isolated from Nigella sativa L. seeds in rat aorta: Proposed mechanism.

    PubMed

    Cherkaoui-Tangi, Khadija; Israili, Zafar Hasan; Lyoussi, Badiaâ

    2016-01-01

    The effect of the essential oil extracted from Nigella sativa (L.) seeds (Nigella oil) was investigated for its vasorelaxant activity on isolated rat aorta. Nigella oil at concentrations of 10-100 μg/mL elicited a dose-dependent relaxation of the aorta, which was pre-contracted with noradrenaline (NA, 10(-6) M) or KCl (100mM). In the presence of Nigella oil (75 μg/mL, the dose response curves to increasing concentrations of NA (10(-9) M to 10(-4)M) or KCl (10mM-100mM) were displaced downwards, indicating inhibition of the vasoconstrictive effect. This relaxation effect was independent of the presence of endothelium. In addition, the vasodilatory activity of the Nigella oil was not affected by pre-treatment of the rings with N(G)-nitro-L-Arginine (an inhibitor of endothelial nitric oxide synthase; 0.1mM), suggesting that the vasorelaxant effect is not mediated by nitric oxide. Furthermore, pre-treatment of the rings with Nigella oil (75 μg/mL suppressed the tension increment produced by increasing external calcium concentration (0.25 mM to 1.5mM). Tin conclusion, the essential oil extracted from Nigella sativa seeds produces smooth muscle relaxation, which is independent of endothelium and is not mediated by nitric oxide. The results also suggest that the vasorelaxing effect of the oil results from the blockade of both voltage-sensitive and receptor-operated calcium channels, and this may have therapeutic significance, in that Nigella oil may be useful as an antihypertensive agent in humans.

  18. Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components.

    PubMed

    Singh, Gurdip; Marimuthu, Palanisamy; de Heluani, Carola S; Catalan, Cesar A N

    2006-01-11

    In the present study, chemical constituents of the essential oil and oleoresin of the seed from Carum nigrum obtained by hydrodistillation and Soxhlet extraction using acetone, respectively, have been studied by GC and GC-MS techniques. The major component was dillapiole (29.9%) followed by germacrene B (21.4%), beta-caryophyllene (7.8%), beta-selinene (7.1%), and nothoapiole (5.8%) along with many other components in minor amounts. Seventeen components were identified in the oleoresin (Table 2) with dillapiole as a major component (30.7%). It also contains thymol (19.1%), nothoapiole (15.2.3%), and gamma-elemene (8.0%). The antioxidant activity of both the essential oil and oleoresin was evaluated in mustard oil by monitoring peroxide, thiobarbituric acid, and total carbonyl and p-anisidine values of the oil substrate. The results showed that both the essential oil and oleoresin were able to reduce the oxidation rate of the mustard oil in the accelerated condition at 60 degrees C in comparison with synthetic antioxidants such as butylated hydroxyanisole and butylated hydroxytoluene at 0.02%. In addition, individual antioxidant assays such as linoleic acid assay, DPPH scavenging activity, reducing power, hydroxyl radical scavenging, and chelating effects have been used. The C. nigrum seed essential oil exhibited complete inhibition against Bacillus cereus and Pseudomonas aeruginosa at 2000 and 3000 ppm, respectively, by agar well diffusion method. Antifungal activity was determined against a panel of foodborne fungi such as Aspergillus niger, Penicillium purpurogenum, Penicillium madriti, Acrophialophora fusispora, Penicillium viridicatum, and Aspergillus flavus. The fruit essential oil showed 100% mycelial zone inhibition against P. purpurogenum and A. fusispora at 3000 ppm in the poison food method. Hence, both oil and oleoresin could be used as an additive in food and pharmaceutical preparations after screening.

  19. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene.

    PubMed

    Elhiti, Mohamed; Yang, Cunchun; Chan, Ainsley; Durnin, Douglas C; Belmonte, Mark F; Ayele, Belay T; Tahir, Muhammad; Stasolla, Claudio

    2012-07-01

    SHOOTMERISTEMLESS (STM) is a homeobox gene conserved among plant species which is required for the formation and maintenance of the shoot meristem by suppressing differentiation and maintaining an undetermined cell fate within the apical pole. To assess further the role of this gene during seed storage accumulation, transgenic Brassica napus (Bn) plants overexpressing or down-regulating BnSTM under the control of the 35S promoter were generated. Overexpression of BnSTM increased seed oil content without affecting the protein and sucrose level. These changes were accompanied by the induction of genes encoding several transcription factors promoting fatty acid (FA) synthesis: LEAFY COTYLEDON1 (BnLEC1), BnLEC2, and WRINKLE1 (BnWRI1). In addition, expression of key representative enzymes involved in sucrose metabolism, glycolysis, and FA biosynthesis was up-regulated in developing seeds ectopically expressing BnSTM. These distinctive expression patterns support the view of an increased carbon flux to the FA biosynthetic pathway in developing transformed seeds. The overexpression of BnSTM also resulted in a desirable reduction of seed glucosinolate (GLS) levels ascribed to a transcriptional repression of key enzymes participating in the GLS biosynthetic pathway, and possibly to the differential utilization of common precursors for GLS and indole-3-acetic acid synthesis. No changes in oil and GLS levels were observed in lines down-regulating BnSTM. Taken together, these findings provide evidence for a novel function for BnSTM in promoting desirable changes in seed oil and GLS levels when overexpressed in B. napus plants, and demonstrate that this gene can be used as a target for genetic improvement of oilseed species.

  20. Recovery potential of cold press byproducts obtained from the edible oil industry: physicochemical, bioactive, and antimicrobial properties.

    PubMed

    Karaman, Safa; Karasu, Salih; Tornuk, Fatih; Toker, Omer Said; Geçgel, Ümit; Sagdic, Osman; Ozcan, Nihat; Gül, Osman

    2015-03-04

    Physicochemical, bioactive, and antimicrobial properties of different cold press edible oil byproducts (almond (AOB), walnut (WOB), pomegranate (POB), and grape (GOB)) were investigated. Oil, protein, and crude fiber content of the byproducts were found between 4.82 and 12.57%, between 9.38 and 49.05%, and between 5.87 and 45.83%, respectively. GOB had very high crude fiber content; therefore, it may have potential for use as a new dietary fiber source in the food industry. As GOB, POB, and WOB oils were rich in polyunsaturated fatty acids, AOB was rich in monounsaturated fatty acids. Oil byproducts were also found to be rich in dietary mineral contents, especially potassium, calcium, phosphorus, and magnesium. WOB had highest total phenolic (802 ppm), flavonoid (216 ppm), and total hydrolyzed tannin (2185 ppm) contents among the other byproducts. Volatile compounds of all the byproducts are mainly composed of terpenes in concentration of approximately 95%. Limonene was the dominant volatile compound in all of the byproducts. Almond and pomegranate byproduct extracts showed antibacterial activity depending on their concentration, whereas those of walnut and grape byproducts showed no antibacterial activity against any pathogenic bacteria tested. According to the results of the present study, walnut, almond, pomegranate, and grape seed oil byproducts possess valuable properties that can be taken into consideration for improvement of nutritional and functional properties of many food products.

  1. Antiatherogenic Potential of Nigella sativa Seeds and Oil in Diet-Induced Hypercholesterolemia in Rabbits.

    PubMed

    Al-Naqeep, Ghanya; Al-Zubairi, Adel S; Ismail, Maznah; Amom, Zulkhairi Hj; Esa, Norhaizan Mohd

    2011-01-01

    Nigella sativa or Black seed (N. sativa L.) is traditionally used for several ailments in many Middle Eastern countries. It is an annual herbaceous plant that belongs to the Ranuculacea family with many beneficial properties as antitumor, antidiabetic, antihypertensive, antioxidative and antibacterial. This work attempted to study the effect of N. sativa seeds powder and oil on atherosclerosis in diet-induced hypercholesterolemic (HC) rabbits in comparison with simvastatin (ST). Twenty-five adult New Zealand male white rabbits, weighing 1.5-2.5 kg, were divided into five groups; normal group (NC, n = 5) and four hypercholesterolemic groups (n = 20): a positive control (PC) and three HC groups force fed diet supplemented with 1000 mg Kg(-1) body weight of N. sativa powder (NSP), 500 mg Kg(-1) body N. sativa oil (NSO) and 10 mg Kg(-1) ST for 8 weeks. Feeding HC rabbits with N. sativa either in powder or oil forms was shown to significantly reduce (P < .05) total cholesterol (TC) and low-density lipoprotein cholesterol (LDLC) levels and enhance high-density lipoprotein cholesterol (HDL) levels after treatment for 2, 4, 6 and 8 weeks compared to the PC group. Plaque formation was significantly inhibited while the intima: media ratio was significantly reduced in the NSP and NSO supplemented groups compared to the PC group. In conclusion, treatment of HC rabbits with N. sativa seeds powder or oil showed hypocholesterolemic and antiatherogenic cardioprotective properties.

  2. Induction of apoptotic cell death in HL-60 cells by jacaranda seed oil derived fatty acids.

    PubMed

    Yamasaki, Masao; Motonaga, Chihiro; Yokoyama, Marino; Ikezaki, Aya; Kakihara, Tomoka; Hayasegawa, Rintaro; Yamasaki, Kaede; Sakono, Masanobu; Sakakibara, Yoichi; Suiko, Masahito; Nishiyama, Kazuo

    2013-01-01

    Various fatty acids are attracting considerable interest for their anticancer effects. Among them, fatty acids containing conjugated double bonds show one of the most potent cytotoxic effects on cancer cells. Here, we focused on the cancer cell killing activity of jacaranda seed oil. The seed oil of jacaranda harvested from Miyazaki in Japan contained 30.9% cis-8, trans-10, cis-12 octadecatrienoic acid, called jacaric acid (JA). Fatty acid prepared from this oil (JFA) and JA strongly induced cell death in human leukemia HL-60 cells. On the other hand, linoleic acid and trans-10, cis-12 conjugated linoleic acid (<10 μM) did not affect cell proliferation and viability. An increase in the sub-G₁ population and internucleosomal fragmentation of DNA was observed in JA- and JFA-treated cells, indicating induction of apoptotic cell death. Finally, the cytotoxic effects of JA and JFA were completely abolished by α-tocopherol. Taken together, these data suggest that jacaranda seed oil has potent apoptotic activity in HL-60 cells through induction of oxidative stress.

  3. Characterization of novel triacylglycerol estolides from the seed oil of Mallotus philippensis and Trewia nudiflora.

    PubMed

    Smith, Mark A; Zhang, Haixia; Forseille, Li; Purves, Randy W

    2013-01-01

    Triacylglycerol estolides have been reported as components of the seed oil of a number of plant species and are generally associated with the presence of fatty acids containing hydroxyl groups. We have used MALDI-TOF MS to examine the intact acylglycerol species present in the seed oils of two plants that produce kamlolenic acid (18-hydroxy-Δ9cis,11trans,13trans-octadecatrienoic acid). Mallotus philippensis and Trewia nudiflora were both shown to produce seed oil rich in TAG-estolides. Analysis by MALDI-TOF MS/MS demonstrated that the TAG-estolides had a structure different to that previously proposed after enzymatic digestion of the oil. Acylglycerols containing up to 14 fatty acids were detected but fatty acid estolides were only present in a single position on the glycerol backbone, with predominantly non-hydroxyl fatty acids in the remaining two positions. Increased numbers of fatty acids per glycerol backbone were accounted for by the presence of fatty acid estolides containing a correspondingly greater number of fatty acids. For example, acylglycerols containing seven fatty acids had a fatty acid estolide of five fatty acids at one position on the glycerol backbone. Both capped and uncapped fatty acid estolides, with a free hydroxyl group, were present, with capped fatty acid estolides being more abundant in T. nudiflora and uncapped fatty acid estolides in M. philippensis.

  4. IR and Raman studies of oil and seedcake extracts from natural and genetically modified flax seeds.

    PubMed

    Zuk, M; Dymińska, L; Kulma, A; Boba, A; Prescha, A; Szopa, J; Mączka, M; Zając, A; Szołtysek, K; Hanuza, J

    2011-03-01

    Flax plant of the third generation (F3) overexpressing key genes of flavonoid pathway cultivated in field in 2008 season was used as the plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts from natural and transgenic flax plants were compared. Overproduction of flavonoids (kaempferol), phenolic acids (coumaric, ferulic/synapic) and lignan-secoisolariciresinol diglucoside (SDG) in oil and extracts from transgenic seeds has been revealed providing a valuable source of these compounds for biotechnological application. The changes in fatty acids composition and increase in their stability against oxidation along three plant generations were also detected. The analysis of oil and seedcake extracts was performed using Raman and IR spectroscopy. The wavenumbers and integral intensities of Raman and IR bands were used to identify the components of phenylpropanoid pathway in oil and seedcake extracts from control and transgenic flax seeds. The spectroscopic data were compared to those obtained from biochemical analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Antiatherogenic Potential of Nigella sativa Seeds and Oil in Diet-Induced Hypercholesterolemia in Rabbits

    PubMed Central

    Al-Naqeep, Ghanya; Al-Zubairi, Adel S.; Ismail, Maznah; Amom, Zulkhairi Hj; Esa, Norhaizan Mohd

    2011-01-01

    Nigella sativa or Black seed (N. sativa L.) is traditionally used for several ailments in many Middle Eastern countries. It is an annual herbaceous plant that belongs to the Ranuculacea family with many beneficial properties as antitumor, antidiabetic, antihypertensive, antioxidative and antibacterial. This work attempted to study the effect of N. sativa seeds powder and oil on atherosclerosis in diet-induced hypercholesterolemic (HC) rabbits in comparison with simvastatin (ST). Twenty-five adult New Zealand male white rabbits, weighing 1.5–2.5 kg, were divided into five groups; normal group (NC, n = 5) and four hypercholesterolemic groups (n = 20): a positive control (PC) and three HC groups force fed diet supplemented with 1000 mg Kg−1 body weight of N. sativa powder (NSP), 500 mg Kg−1 body N. sativa oil (NSO) and 10 mg Kg−1 ST for 8 weeks. Feeding HC rabbits with N. sativa either in powder or oil forms was shown to significantly reduce (P < .05) total cholesterol (TC) and low-density lipoprotein cholesterol (LDLC) levels and enhance high-density lipoprotein cholesterol (HDL) levels after treatment for 2, 4, 6 and 8 weeks compared to the PC group. Plaque formation was significantly inhibited while the intima: media ratio was significantly reduced in the NSP and NSO supplemented groups compared to the PC group. In conclusion, treatment of HC rabbits with N. sativa seeds powder or oil showed hypocholesterolemic and antiatherogenic cardioprotective properties. PMID:21792359

  6. Metabolic engineering plant seeds with fish oil-like levels of DHA.

    PubMed

    Petrie, James R; Shrestha, Pushkar; Zhou, Xue-Rong; Mansour, Maged P; Liu, Qing; Belide, Srinivas; Nichols, Peter D; Singh, Surinder P

    2012-01-01

    Omega-3 long-chain (≥C(20)) polyunsaturated fatty acids (ω3 LC-PUFA) have critical roles in human health and development with studies indicating that deficiencies in these fatty acids can increase the risk or severity of cardiovascular and inflammatory diseases in particular. These fatty acids are predominantly sourced from fish and algal oils, but it is widely recognised that there is an urgent need for an alternative and sustainable source of EPA and DHA. Since the earliest demonstrations of ω3 LC-PUFA engineering there has been good progress in engineering the C(20) EPA with seed fatty acid levels similar to that observed in bulk fish oil (∼18%), although undesirable ω6 PUFA levels have also remained high. The transgenic seed production of the particularly important C(22) DHA has been problematic with many attempts resulting in the accumulation of EPA/DPA, but only a few percent of DHA. This study describes the production of up to 15% of the C(22) fatty acid DHA in Arabidopsis thaliana seed oil with a high ω3/ω6 ratio. This was achieved using a transgenic pathway to increase the C(18) ALA which was then converted to DHA by a microalgal Δ6-desaturase pathway. The amount of DHA described in this study exceeds the 12% level at which DHA is generally found in bulk fish oil. This is a breakthrough in the development of sustainable alternative sources of DHA as this technology should be applicable in oilseed crops. One hectare of a Brassica napus crop containing 12% DHA in seed oil would produce as much DHA as approximately 10,000 fish.

  7. Metabolic Engineering Plant Seeds with Fish Oil-Like Levels of DHA

    PubMed Central

    Petrie, James R.; Shrestha, Pushkar; Zhou, Xue-Rong; Mansour, Maged P.; Liu, Qing; Belide, Srinivas; Nichols, Peter D.; Singh, Surinder P.

    2012-01-01

    Background Omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA) have critical roles in human health and development with studies indicating that deficiencies in these fatty acids can increase the risk or severity of cardiovascular and inflammatory diseases in particular. These fatty acids are predominantly sourced from fish and algal oils, but it is widely recognised that there is an urgent need for an alternative and sustainable source of EPA and DHA. Since the earliest demonstrations of ω3 LC-PUFA engineering there has been good progress in engineering the C20 EPA with seed fatty acid levels similar to that observed in bulk fish oil (∼18%), although undesirable ω6 PUFA levels have also remained high. Methodology/Principal Findings The transgenic seed production of the particularly important C22 DHA has been problematic with many attempts resulting in the accumulation of EPA/DPA, but only a few percent of DHA. This study describes the production of up to 15% of the C22 fatty acid DHA in Arabidopsis thaliana seed oil with a high ω3/ω6 ratio. This was achieved using a transgenic pathway to increase the C18 ALA which was then converted to DHA by a microalgal Δ6-desaturase pathway. Conclusions/Significance The amount of DHA described in this study exceeds the 12% level at which DHA is generally found in bulk fish oil. This is a breakthrough in the development of sustainable alternative sources of DHA as this technology should be applicable in oilseed crops. One hectare of a Brassica napus crop containing 12% DHA in seed oil would produce as much DHA as approximately 10,000 fish. PMID:23145108

  8. Arabidopsis Fructokinases Are Important for Seed Oil Accumulation and Vascular Development

    PubMed Central

    Stein, Ofer; Avin-Wittenberg, Tamar; Krahnert, Ina; Zemach, Hanita; Bogol, Vlada; Daron, Oksana; Aloni, Roni; Fernie, Alisdair R.; Granot, David

    2017-01-01

    Sucrose (a disaccharide made of glucose and fructose) is the primary carbon source transported to sink organs in many plants. Since fructose accounts for half of the hexoses used for metabolism in sink tissues, plant fructokinases (FRKs), the main fructose-phosphorylating enzymes, are likely to play a central role in plant development. However, to date, their specific functions have been the subject of only limited study. The Arabidopsis genome contains seven genes encoding six cytosolic FRKs and a single plastidic FRK. T-DNA knockout mutants for five of the seven FRKs were identified and used in this study. Single knockouts of the FRK mutants did not exhibit any unusual phenotype. Double-mutants of AtFRK6 (plastidic) and AtFRK7 showed normal growth in soil, but yielded dark, distorted seeds. The seed distortion could be complemented by expression of the well-characterized tomato SlFRK1, confirming that a lack of FRK activity was the primary cause of the seed phenotype. Seeds of the double-mutant germinated, but failed to establish on 1/2 MS plates. Seed establishment was made possible by the addition of glucose or sucrose, indicating reduced seed storage reserves. Metabolic profiling of the double-mutant seeds revealed decreased TCA cycle metabolites and reduced fatty acid metabolism. Examination of the mutant embryo cells revealed smaller oil bodies, the primary storage reserve in Arabidopsis seeds. Quadruple and penta FRK mutants showed growth inhibition and leaf wilting. Anatomical analysis revealed smaller trachea elements and smaller xylem area, accompanied by necrosis around the cambium and the phloem. These results demonstrate overlapping and complementary roles of the plastidic AtFRK6 and the cytosolic AtFRK7 in seed storage accumulation, and the importance of AtFRKs for vascular development. PMID:28119723

  9. Arabidopsis Fructokinases Are Important for Seed Oil Accumulation and Vascular Development.

    PubMed

    Stein, Ofer; Avin-Wittenberg, Tamar; Krahnert, Ina; Zemach, Hanita; Bogol, Vlada; Daron, Oksana; Aloni, Roni; Fernie, Alisdair R; Granot, David

    2016-01-01

    Sucrose (a disaccharide made of glucose and fructose) is the primary carbon source transported to sink organs in many plants. Since fructose accounts for half of the hexoses used for metabolism in sink tissues, plant fructokinases (FRKs), the main fructose-phosphorylating enzymes, are likely to play a central role in plant development. However, to date, their specific functions have been the subject of only limited study. The Arabidopsis genome contains seven genes encoding six cytosolic FRKs and a single plastidic FRK. T-DNA knockout mutants for five of the seven FRKs were identified and used in this study. Single knockouts of the FRK mutants did not exhibit any unusual phenotype. Double-mutants of AtFRK6 (plastidic) and AtFRK7 showed normal growth in soil, but yielded dark, distorted seeds. The seed distortion could be complemented by expression of the well-characterized tomato SlFRK1, confirming that a lack of FRK activity was the primary cause of the seed phenotype. Seeds of the double-mutant germinated, but failed to establish on 1/2 MS plates. Seed establishment was made possible by the addition of glucose or sucrose, indicating reduced seed storage reserves. Metabolic profiling of the double-mutant seeds revealed decreased TCA cycle metabolites and reduced fatty acid metabolism. Examination of the mutant embryo cells revealed smaller oil bodies, the primary storage reserve in Arabidopsis seeds. Quadruple and penta FRK mutants showed growth inhibition and leaf wilting. Anatomical analysis revealed smaller trachea elements and smaller xylem area, accompanied by necrosis around the cambium and the phloem. These results demonstrate overlapping and complementary roles of the plastidic AtFRK6 and the cytosolic AtFRK7 in seed storage accumulation, and the importance of AtFRKs for vascular development.

  10. Two Acyltransferases Contribute Differently to Linolenic Acid Levels in Seed Oil1[OPEN

    PubMed Central

    Stymne, Sten

    2017-01-01

    Acyltransferases are key contributors to triacylglycerol (TAG) synthesis and, thus, are of great importance for seed oil quality. The effects of increased or decreased expression of ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) or PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) on seed lipid composition were assessed in several Camelina sativa lines. Furthermore, in vitro assays of acyltransferases in microsomal fractions prepared from developing seeds of some of these lines were performed. Decreased expression of DGAT1 led to an increased percentage of 18:3n-3 without any change in total lipid content of the seed. The tri-18:3 TAG increase occurred predominantly in the cotyledon, as determined with matrix-assisted laser desorption/ionization-mass spectrometry, whereas species with two 18:3n-3 acyl groups were elevated in both cotyledon and embryonal axis. PDAT overexpression led to a relative increase of 18:2n-6 at the expense of 18:3n-3, also without affecting the total lipid content. Differential distributions of TAG species also were observed in different parts of the seed. The microsomal assays revealed that C. sativa seeds have very high activity of diacylglycerol-phosphatidylcholine interconversion. The combination of analytical and biochemical data suggests that the higher 18:2n-6 content in the seed oil of the PDAT overexpressors is due to the channeling of fatty acids from phosphatidylcholine into TAG before being desaturated to 18:3n-3, caused by the high activity of PDAT in general and by PDAT specificity for 18:2n-6. The higher levels of 18:3n-3 in DGAT1-silencing lines are likely due to the compensatory activity of a TAG-synthesizing enzyme with specificity for this acyl group and more desaturation of acyl groups occurring on phosphatidylcholine. PMID:28235891

  11. Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil: yield, fatty acid composition and triacylglycerol profile.

    PubMed

    Samaram, Shadi; Mirhosseini, Hamed; Tan, Chin Ping; Ghazali, Hasanah Mohd

    2013-10-10

    The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.

  12. Evaluation of Wound Healing Properties of Grape Seed, Sesame, and Fenugreek Oils

    PubMed Central

    Ksouda Moalla, Kamilia; Kammoun, Naziha Grati; Rebai, Tarek; Sahnoun, Zouheir

    2016-01-01

    Background. Medicinal plants have proved at all times to be a powerful remedy for health care. Accordingly, grape seed, sesame, and fenugreek extracted oils with pharmacological properties are investigated as wound treatments. This study assesses the potential of our oils for healing wounds induced on rats. Methods. Phytochemical analyses of oils have involved: quality value, polyphenol, chlorophylls, carotene, and fatty acids. Antibacterial activity was carried out. Antioxidant activity was evaluated: the scavenging effect on DPPH radicals, the reducing power, and β-carotene discoloration. Uniform wound excision was induced on rats dorsum randomly divided into five groups: groups treated with “CICAFLORA®” and tested oils and untreated one. The posthealing biopsies were histologically assessed. Results. Wound biopsies treated with oils showed the best tissue regeneration compared to control groups. Groups treated with our oils and “CICAFLORA” had higher wound contraction percentage. Polyunsaturated fatty acids in oils act as inflammatory mediators increasing neovascularization, extracellular remodeling, migration, and cell differentiation. Wound healing effect was attributed to antibacterial and antioxidant synergy. Conclusion. According to findings, oils showed better activity in wound healing compared to “CICAFLORA” due to a phytoconstituents synergy. However, clinical trials on humans are necessary to confirm efficacy on human pathology. PMID:27990170

  13. Hemp ( Cannabis sativa L.) seed oil: analytical and phytochemical characterization of the unsaponifiable fraction.

    PubMed

    Montserrat-de la Paz, S; Marín-Aguilar, F; García-Giménez, M D; Fernández-Arche, M A

    2014-02-05

    Non-drug varieties of Cannabis sativa L., collectively namely as "hemp", have been an interesting source of food, fiber, and medicine for thousands of years. The ever-increasing demand for vegetables oils has made it essential to characterize additional vegetable oil through innovative uses of its components. The lipid profile showed that linoleic (55%), α-linolenic (16%), and oleic (11%) were the most abundant fatty acids. A yield (1.84-1.92%) of unsaponifiable matter was obtained, and the most interesting compounds were β-sitosterol (1905.00 ± 59.27 mg/kg of oil), campesterol (505.69 ± 32.04 mg/kg of oil), phytol (167.59 ± 1.81 mg/kg of oil), cycloartenol (90.55 ± 3.44 mg/kg of oil), and γ-tocopherol (73.38 ± 2.86 mg/100 g of oil). This study is an interesting contribution for C. sativa L. consideration as a source of bioactive compounds contributing to novel research applications for hemp seed oil in the pharmaceutical, cosmetic food, and other non-food industries.

  14. Antioxidant and Antiproliferative Activities of Purslane Seed Oil

    PubMed Central

    Guo, Gai; Yue, Li; Fan, Shaoli; Jing, Siqun; Yan, Liang-Jun

    2016-01-01

    The aim of this study was to evaluate the antioxidant and antiproliferative activities of PSO in vitro and its application in horse oil storage. We determined the reducing power of PSO and its scavenging effects on hydroxyl (•OH) and 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH•) and tested its stabilizing effects on horse oil storage. The results showed that PSO had remarkable, dose-dependent antioxidant activities, and it effectively prevented horse oil lipid oxidation. We treated cervical cancer HeLa cells, esophageal cancer Eca-109 cells and breast cancer MCF-7 cells with PSO using non-neoplastic monkey kidney Vero cells as controls. The results indicate that PSO significantly inhibited tumor cell growth in a time- and dose-dependent fashion. Our studies suggest that PSO may be used as a substitute for synthetic antioxidants in food preservation and may be potentially useful as a food and cosmetic ingredient. Meanwhile, the oxidative stress can cause hypertension, so PSO is expected to develop a health care products for the prevention and mitigation hypertensive symptoms. PMID:27928516

  15. Production of biodiesel from winery waste: extraction, refining and transesterification of grape seed oil.

    PubMed

    Fernández, Carmen María; Ramos, María Jesús; Pérez, Angel; Rodríguez, Juan Francisco

    2010-09-01

    In regions with a large wine production the usage of their natural waste to make biodiesel can result an interesting alternative. In this work, different methods of extraction, refining and transesterification of grape seed oil were assayed. Two techniques of oil extraction were compared: solvent extraction and pressing. Two conventional transesterifications of the refined oil were carried out using methanol and bioethanol, being the methyl and ethyl ester contents higher than 97 wt.%. Finally, several in situ transesterifications were done. In situ transesterification did not reach either the oil yield extraction or the alkyl ester contents but the obtained biodiesel had better oxidation stability in comparison with the conventional process. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Stereospecific positional distribution of fatty acids of Camellia (Camellia japonica L.) seed oil.

    PubMed

    Noh, Siwon; Yoon, Suk Hoo

    2012-10-01

    The stereospecific positional distribution of fatty acids of camellia seed oil (also called camellia oil) was determined. The camellia oil was mainly composed of neutral lipids (88.2%), and the oleic acid (86.3%) was found to be a major fatty acid of neutral lipids. In the glycolipids and phospholipids, the oleic acid was also found to be a major fatty acid at 62.5% and 54.2%, respectively. The oleic acid was distributed abundantly in all sn-1, 2, and 3 positions. It was found that the oleic acid was present more at sn-2 (93.6%) and 3 positions (94.7%), than at sn-1 position (66.0%). Practical Application:  The information of stereospecific positional distribution of fatty acids in the camellia oil can be used for the development of the structured lipids for food, pharmaceutical, and medical purposes.

  17. Conversion of crude Jatropha curcas seed oil into biodiesel using liquid recombinant Candida rugosa lipase isozymes.

    PubMed

    Kuo, Ting-Chun; Shaw, Jei-Fu; Lee, Guan-Chiun

    2015-09-01

    The versatile Candida rugosa lipase (CRL) has been widely used in biotechnological applications. However, there have not been feasibility reports on the transesterification of non-edible oils to produce biodiesel using the commercial CRL preparations, mixtures of isozymes. In the present study, four liquid recombinant CRL isozymes (CRL1-CRL4) were investigated to convert various non-edible oils into biodiesel. The results showed that recombinant CRL2 and CRL4 exhibited superior catalytic efficiencies for producing fatty acid methyl ester (FAME) from Jatropha curcas seed oil. A maximum 95.3% FAME yield was achieved using CRL2 under the optimal conditions (50 wt% water, an initial 1 equivalent of methanol feeding, and an additional 0.5 equivalents of methanol feeding at 24h for a total reaction time of 48 h at 37 °C). We concluded that specific recombinant CRL isozymes could be excellent biocatalysts for the biodiesel production from low-cost crude Jatropha oil.

  18. Effect of cumin (Cuminum cyminum) seed essential oil on biofilm formation and plasmid Integrity of Klebsiella pneumoniae.

    PubMed

    Derakhshan, Safoura; Sattari, Morteza; Bigdeli, Mohsen

    2010-01-01

    Seeds of the cumin plant (Cuminum cyminum L.) have been used since many years in Iranian traditional medicine. We assessed the effect of cumin seed essential oil on the biofilm-forming ability of Klebsiella pneumoniae strains and on the integrity of a native resistance plasmid DNA from K. pneumoniae isolates, treated with essential oil. Antibacterial coaction between the essential oil and selected antibiotic disks were determined for inhibiting K. pneumoniae. The essential oil of the cumin seeds was obtained by hydrodistillation in a Clavenger system. A simple method for the formation of biofilms on semiglass lamellas was established. The biofilms formed were observed by scanning electron microscopy (SEM). The effect of essential oil on plasmid integrity was studied through the induction of R-plasmid DNA degradation. The plasmid was incubated with essential oil, and agarose gel electrophoresis was performed. Disk diffusion assay was employed to determine the coaction. The essential oil decreased biofilm formation and enhanced the activity of the ciprofloxacin disk. The incubation of the R-plasmid DNA with essential oil could not induce plasmid DNA degradation. The results of this study suggest the potential use of cumin seed essential oil against K. pneumoniae in vitro, may contribute to the in vivo efficacy of this essential oil.

  19. Effect of cumin (Cuminum cyminum) seed essential oil on biofilm formation and plasmid Integrity of Klebsiella pneumoniae

    PubMed Central

    Derakhshan, Safoura; Sattari, Morteza; Bigdeli, Mohsen

    2010-01-01

    Seeds of the cumin plant (Cuminum cyminum L.) have been used since many years in Iranian traditional medicine. We assessed the effect of cumin seed essential oil on the biofilm-forming ability of Klebsiella pneumoniae strains and on the integrity of a native resistance plasmid DNA from K. pneumoniae isolates, treated with essential oil. Antibacterial coaction between the essential oil and selected antibiotic disks were determined for inhibiting K. pneumoniae. The essential oil of the cumin seeds was obtained by hydrodistillation in a Clavenger system. A simple method for the formation of biofilms on semiglass lamellas was established. The biofilms formed were observed by scanning electron microscopy (SEM). The effect of essential oil on plasmid integrity was studied through the induction of R-plasmid DNA degradation. The plasmid was incubated with essential oil, and agarose gel electrophoresis was performed. Disk diffusion assay was employed to determine the coaction. The essential oil decreased biofilm formation and enhanced the activity of the ciprofloxacin disk. The incubation of the R-plasmid DNA with essential oil could not induce plasmid DNA degradation. The results of this study suggest the potential use of cumin seed essential oil against K. pneumoniae in vitro, may contribute to the in vivo efficacy of this essential oil. PMID:20548937

  20. Consumption and quantitation of delta9-tetrahydrocannabinol in commercially available hemp seed oil products.

    PubMed

    Bosy, T Z; Cole, K A

    2000-10-01

    There has been a recent and significant increase in the use and availability of hemp seed oil products. These products are being marketed as a healthy source of essential omega fatty acids when taken orally. Although the health aspects of these oils is open to debate, the probability that oils derived from the hemp seed will contain delta9-tetrahyrdocannabinol (THC) is noteworthy. Recent additions to the literature cite a number of studies illustrating that the ingestion of these products results in urinary levels of the THC metabolite, delta9-tetrahyrdocannabinol carboxylic acid (THCA), well above the administrative cutoff (50 ng/mL) used during random drug screens. Testing performed by our laboratory found that the concentration of THC in hemp oil products has been reduced considerably since the publication of earlier studies. The purpose of this study is to quantitate the THC levels in commercially available hemp oils and to administer those oils tested to THC-free volunteers to determine urine metabolite levels following several 15-g doses. Two extraction protocols were evaluated for removing THC from the oil matrix: a single step liquid-liquid extraction was compared to a two-phase process using both liquid-liquid and solid-phase techniques. Gas chromatography-mass spectrometry was used to determine THC levels in several products: four from Spectrum Essentials (3 bottled oils and 1-g capsules), two from Health from the Sun (1-g capsules and bottled oil) oils, and single samples of both Hempstead and Hempola hemp oils. These hemp oil products contained THC concentrations of 36.0, 36.4, 117.5, 79.5, 48.6, 45.7, 21.0, and 11.5 mg/g, respectively. The Abbott AxSYM FPIA and Roche On-Line KIMS immunoassays were used to screen the urine samples, and GC-MS was used to determine the amount of THC in each oil as well as confirm and quantitate THCA in the urine of study participants immediately before and 6 h after each dose. Peak THCA levels in the participants' urine

  1. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds.

    PubMed

    Tan, Helin; Yang, Xiaohui; Zhang, Fengxia; Zheng, Xiu; Qu, Cunmin; Mu, Jinye; Fu, Fuyou; Li, Jiana; Guan, Rongzhan; Zhang, Hongsheng; Wang, Guodong; Zuo, Jianru

    2011-07-01

    The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production.

  2. Enhanced Seed Oil Production in Canola by Conditional Expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in Developing Seeds1[W][OA

    PubMed Central

    Tan, Helin; Yang, Xiaohui; Zhang, Fengxia; Zheng, Xiu; Qu, Cunmin; Mu, Jinye; Fu, Fuyou; Li, Jiana; Guan, Rongzhan; Zhang, Hongsheng; Wang, Guodong; Zuo, Jianru

    2011-01-01

    The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production. PMID:21562329

  3. Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan.

    PubMed

    Anwar, Farooq; Bhanger, M I

    2003-10-22

    The hexane-extracted oil content of Moringa oleifera seeds ranged from 38.00 to 42.00%. Protein, fiber, and ash contents were found to be 26.50-32.00, 5.80-9.29, and, 5.60-7.50%, respectively. Results of physical and chemical parameters of the extracted oil were as follows: iodine value, 68.00-71.80; refractive index (40 degrees C), 1.4590-1.4625; density (24 degrees C), 0.9036-0.9080 mg/mL; saponification value, 180.60-190.50; unsaponifiable matter, 0.70-1.10%; and color (1 in. cell), 0.95-1.10 R + 20.00-35.30 Y. Tocopherols (alpha, gamma, and delta) in the oil were up to 123.50-161.30, 84.07-104.00, and 41.00-56.00 mg/kg, respectively. The oil was found to contain high levels of oleic acid (up to 78.59%) followed by palmitic, stearic, behenic, and arachidic acid up to levels of 7.00, 7.50, 5.99, and 4.21%, respectively. The induction period (Rancimat, 20 L/h, 120 degrees C) of the crude oil was 9.99 h and reduced to 8.63 h after degumming. Specific extinctions at 232 and 270 nm were 1.70 and 0.31, respectively. Many parameters of M. oleifera oil indigenous to Pakistan were comparable to those of typical Moringa seed oils reported in the literature. The results of the present analytical study were also compared with those of different vegetable oils.

  4. Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana.

    PubMed

    Misra, Aparna; Khan, Kasim; Niranjan, Abhishek; Nath, Pravendra; Sane, Vidhu A

    2013-12-01

    The increasing consumption of fossil fuels and petroleum products is leading to their rapid depletion and is a matter of concern around the globe. Substitutes of fossil fuels are required to sustain the pace of economic development. In this context, oil from the non food crops (biofuel) has shown potential to substitute fossil fuels. Jatropha curcas is an excellent shrub spread and naturalized across the globe. Its oil contains a high percentage of unsaturated fatty acids (about 78-84% of total fatty acid content) making the oil suitable for biodiesel production. Despite its high oil content, it has been poorly studied in terms of important enzymes/genes responsible for oil biosynthesis. Here, we describe the isolation of the full length cDNA clone of JcDGAT1, a key enzyme involved in oil biosynthesis, from J. curcas seeds and manipulation of oil content and composition in transgenic Arabidopsis plants by its expression. Transcript analysis of JcDGAT1 reveals a gradual increase from early seed development to its maturation. Homozygous transgenic Arabidopsis lines expressing JcDGAT1 both under CaMV35S promoter and a seed specific promoter show an enhanced level of total oil content (up by 30-41%) in seeds but do not show any phenotypic differences. In addition, our studies also show alterations in the oil composition through JcDGAT1 expression. While the levels of saturated FAs such as palmitate and stearate in the oil do not change, there is significant reproducible decrease in the levels of oleic acid and a concomitant increase in levels of linolenic acid both under the CaMV35S promoter as well as the seed specific promoter. Our studies thus confirm that DGAT is involved in flux control in oil biosynthesis and show that JcDGAT1 could be used specifically to manipulate and improve oil content and composition in plants.

  5. A Noninvasive Platform for Imaging and Quantifying Oil Storage in Submillimeter Tobacco Seed1[W][OA

    PubMed Central

    Fuchs, Johannes; Neuberger, Thomas; Rolletschek, Hardy; Schiebold, Silke; Nguyen, Thuy Ha; Borisjuk, Nikolai; Börner, Andreas; Melkus, Gerd; Jakob, Peter; Borisjuk, Ljudmilla

    2013-01-01

    While often thought of as a smoking drug, tobacco (Nicotiana spp.) is now considered as a plant of choice for molecular farming and biofuel production. Here, we describe a noninvasive means of deriving both the distribution of lipid and the microtopology of the submillimeter tobacco seed, founded on nuclear magnetic resonance (NMR) technology. Our platform enables counting of seeds inside the intact tobacco capsule to measure seed sizes, to model the seed interior in three dimensions, to quantify the lipid content, and to visualize lipid gradients. Hundreds of seeds can be simultaneously imaged at an isotropic resolution of 25 µm, sufficient to assess each individual seed. The relative contributions of the embryo and the endosperm to both seed size and total lipid content could be assessed. The extension of the platform to a range of wild and cultivated Nicotiana species demonstrated certain evolutionary trends in both seed topology and pattern of lipid storage. The NMR analysis of transgenic tobacco plants with seed-specific ectopic expression of the plastidial phosphoenolpyruvate/phosphate translocator, displayed a trade off between seed size and oil concentration. The NMR-based assay of seed lipid content and topology has a number of potential applications, in particular providing a means to test and optimize transgenic strategies aimed at the manipulation of seed size, seed number, and lipid content in tobacco and other species with submillimeter seeds. PMID:23232144

  6. Differences in hoarding behaviors among six sympatric rodent species on seeds of oil tea ( Camellia oleifera) in Southwest China

    NASA Astrophysics Data System (ADS)

    Chang, Gang; Zhang, Zhibin

    2011-05-01

    Seed hoarding is an important behavioral adaptation to food shortages for many rodent species. Sympatric rodents may affect the natural regeneration of large-seeded trees differently as seed dispersers or seed predators. Using seeds of oil tea ( Camellia oleifera), we investigated differences in hoarding behaviors among six sympatric rodent species in semi-natural enclosures in a subtropical forest in southwest of China. We found that all these six species ate seeds of C. oleifera, but only Edward's long-tailed rats ( Leopoldamys edwardsi) were predominantly scatter hoarders; chestnut rats ( Niviventer fulvescens) and white-bellied rats ( Niviventer confucianus) scatter hoarded and larder hoarded few seeds, but were seed predators; South China field mice ( Apodemus draco) exhibited little larder-hoarding behavior; and Chevrier's field mice ( A. chevrieri) as well as Himalayan rats ( Rattus nitidusa) did not hoard seeds at all. The rodents that engaged in scatter hoarding often formed single-seed caches and tended to cache seeds under grass or shrubs. Our findings indicate that sympatric rodents consuming seeds of the same species of plant can have different hoarding strategies, affecting seed dispersal and plant regeneration differently. We conclude by discussing the role of these species in hoarding seeds of C. oleifera and highlight the essential role of Edward's long-tailed rats as predominantly potential dispersers of this plant species.

  7. Edible oils for liver protection: hepatoprotective potentiality of Moringa oleifera seed oil against chemical-induced hepatitis in rats.

    PubMed

    Al-Said, Mansour S; Mothana, Ramzi A; Al-Yahya, Mohammed A; Al-Blowi, Ali S; Al-Sohaibani, Mohammed; Ahmed, Atallah F; Rafatullah, Syed

    2012-07-01

    In the present study, in vitro antioxidant, antioxidative stress and hepatoprotective activity of Moringa oleifera Lam. seed oil (Ben oil; BO) was evaluated against carbon tetrachloride (CCl(4) ) induced lipid peroxidation and hepatic damage in rats. The oil at 0.2 and 0.4 mL/rat was administered orally for 21 consecutive days. The substantially elevated serum enzymatic (GOT, GPT, ALP, GGT) and bilirubin levels were significantly restored towards normalization by the oil. There was a significant elevation in the level of malondialdehyde (MDA), non-protein sulfhydryl (NP-SH), and total protein (TP) contents in the liver tissue. The results obtained indicated that BO possesses potent hepatoprotective action against CCl(4) -induced hepatic damage by lowering liver marker enzymes, MDA concentration, and elevating NP-SH and TP levels in liver tissue. The biochemical observations were supplemented with histopathological examination of rat liver. The results of this study showed that treatment with Ben oil or silymarin (as a reference) appears to enhance the recovery from hepatic damage induced by CCl(4) . The pentobarbital induced narcolepsy prolongation in mice was retarded by the Ben oil. Acute toxicity test in mice showed no morbidity or mortality. In vitro DPPH radical scavenging and β-carotene-linolic acid assay tests of the BO exhibited a moderate antioxidant activity in both tests used. The possible mechanism(s) of the liver protective activity of Ben oil activity may be due to free radical scavenging potential caused by the presence of antioxidant component(s) in the oil. Consequently, BO can be used as a therapeutic regime in treatment of some hepatic disorders. © 2012 Institute of Food Technologists®

  8. Development of an in Vitro System to Simulate the Adsorption of Self-Emulsifying Tea (Camellia oleifera) Seed Oil.

    PubMed

    Sramala, Issara; Pinket, Wichchunee; Pongwan, Pawinee; Jarussophon, Suwatchai; Kasemwong, Kittiwut

    2016-04-29

    In this study, tea (Camellia oleifera) seed oil was formulated into self-emulsifying oil formulations (SEOF) to enhance the aqueous dispersibility and intestinal retention to achieve higher bioavailability. Self-emulsifying tea seed oils were developed by using different concentrations of lecithin in combination with surfactant blends (Span(®)80 and Tween(®)80). The lecithin/surfactant systems were able to provide clear and stable liquid formulations. The SEOF were investigated for physicochemical properties including appearance, emulsion droplets size, PDI and zeta potential. The chemical compositions of tea seed oil and SEOF were compared using GC-MS techniques. In addition, the oil adsorption measurement on artificial membranes was performed using a Franz cell apparatus and colorimetric analysis. The microscopic structure of membranes was observed with scanning electron microscopy (SEM). After aqueous dilution with fed-state simulated gastric fluid (FeSSGF), the droplet size of all SEOF was close to 200 nm with low PDI values and the zeta potential was negative. GC-MS chromatograms revealed that the chemical compositions of SEOF were not significantly different from that of the original tea seed oil. The morphological study showed that only the SEOF could form film layers. The oil droplets were extracted both from membrane treated with tea seed oil and the SEOF in order to evaluate the chemical compositions by GC-MS.

  9. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds.

    PubMed

    Da Porto, Carla; Porretto, Erica; Decorti, Deborha

    2013-07-01

    Ultrasound-assisted extraction (US) carried out at 20 KHz, 150 W for 30 min gave grape seed oil yield (14% w/w) similar to Soxhlet extraction (S) for 6 h. No significant differences for the major fatty acids was observed in oils extracted by S and US at 150 W. Instead, K232 and K268 of US- oils resulted lower than S-oil. From grape seeds differently defatted (S and US), polyphenols and their fractions were extracted by maceration for 12 h and by ultrasound-assisted extraction for 15 min. Sonication time was optimized after kinetics study on polyphenols extraction. Grape seed extracts obtained from seeds defatted by ultrasound (US) and then extracted by maceration resulted the highest in polyphenol concentration (105.20mg GAE/g flour) and antioxidant activity (109 Eq αToc/g flour). Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation.

    PubMed

    Peng, Chao; Zhao, Su-Qing; Zhang, Jun; Huang, Gui-Ying; Chen, Lan-Ying; Zhao, Feng-Yi

    2014-12-15

    In this study, the essential oil from mustard seed was isolated by simultaneous steam distillation and extraction (SDE) and analyzed by gas chromatography-mass spectrometry (GC-MS). Fourteen components were identified in the mustard seed essential oil with allyl isothiocyanate being the main component (71.06%). The essential oil has a broad-spectrum antimicrobial activity with inhibition zones and MIC values in the range of 9.68-15.57 mm and 128-512 μg/mL respectively. The essential oil was subsequently encapsulated in complex coacervation microcapsules with genipin, a natural water-soluble cross-linker. The optimum parameters for the hardening effectiveness of the genipin-hardened essential oil microcapsules were 8h at 40°C and pH 10.0 with a genipin concentration of 0.075 g/g gelatin. The genipin-hardened microcapsules had a particle size of mainly 5-10 μm and strong chemistry stability which is potential for its application in food preservation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus.

    PubMed

    Chao, Hongbo; Wang, Hao; Wang, Xiaodong; Guo, Liangxing; Gu, Jianwei; Zhao, Weiguo; Li, Baojun; Chen, Dengyan; Raboanatahiry, Nadia; Li, Maoteng

    2017-04-10

    High-density linkage maps can improve the precision of QTL localization. A high-density SNP-based linkage map containing 3207 markers covering 3072.7 cM of the Brassica napus genome was constructed in the KenC-8 × N53-2 (KNDH) population. A total of 67 and 38 QTLs for seed oil and protein content were identified with an average confidence interval of 5.26 and 4.38 cM, which could explain up to 22.24% and 27.48% of the phenotypic variation, respectively. Thirty-eight associated genomic regions from BSA overlapped with and/or narrowed the SOC-QTLs, further confirming the QTL mapping results based on the high-density linkage map. Potential candidates related to acyl-lipid and seed storage underlying SOC and SPC, respectively, were identified and analyzed, among which six were checked and showed expression differences between the two parents during different embryonic developmental periods. A large primary carbohydrate pathway based on potential candidates underlying SOC- and SPC-QTLs, and interaction networks based on potential candidates underlying SOC-QTLs, was constructed to dissect the complex mechanism based on metabolic and gene regulatory features, respectively. Accurate QTL mapping and potential candidates identified based on high-density linkage map and BSA analyses provide new insights into the complex genetic mechanism of oil and protein accumulation in the seeds of rapeseed.

  12. Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus

    PubMed Central

    Chao, Hongbo; Wang, Hao; Wang, Xiaodong; Guo, Liangxing; Gu, Jianwei; Zhao, Weiguo; Li, Baojun; Chen, Dengyan; Raboanatahiry, Nadia; Li, Maoteng

    2017-01-01

    High-density linkage maps can improve the precision of QTL localization. A high-density SNP-based linkage map containing 3207 markers covering 3072.7 cM of the Brassica napus genome was constructed in the KenC-8 × N53-2 (KNDH) population. A total of 67 and 38 QTLs for seed oil and protein content were identified with an average confidence interval of 5.26 and 4.38 cM, which could explain up to 22.24% and 27.48% of the phenotypic variation, respectively. Thirty-eight associated genomic regions from BSA overlapped with and/or narrowed the SOC-QTLs, further confirming the QTL mapping results based on the high-density linkage map. Potential candidates related to acyl-lipid and seed storage underlying SOC and SPC, respectively, were identified and analyzed, among which six were checked and showed expression differences between the two parents during different embryonic developmental periods. A large primary carbohydrate pathway based on potential candidates underlying SOC- and SPC-QTLs, and interaction networks based on potential candidates underlying SOC-QTLs, was constructed to dissect the complex mechanism based on metabolic and gene regulatory features, respectively. Accurate QTL mapping and potential candidates identified based on high-density linkage map and BSA analyses provide new insights into the complex genetic mechanism of oil and protein accumulation in the seeds of rapeseed. PMID:28393910

  13. Effect of Celastrus paniculatus seed oil (Jyothismati oil) on acute and chronic immobilization stress induced in swiss albino mice

    PubMed Central

    Lekha, George; Mohan, Karthik; Samy, Irudhaya Arockia

    2010-01-01

    Stress alters the homeostasis and is produced by several factors. Immobilization stress induced due to reduced floor area provided for the mobility results in the imbalance of oxidant and antioxidant status. The modern computer savvy world decreases human mobility in the working environment, leading to the formation of oxygen free radicals and if left untreated might result in severe health problems like hypertension, cardiovascular disease, premature aging and brain dysfunction. Hence, modern medicines rely upon the medicinal plants for some drugs with zero side effects. In this context, Jyothismati oil (JO), extracted from Celastrus paniculatus seeds, was used to treat acute and chronic immobilization induced experimentally. C. paniculatus plant is considered to be rich in antioxidant content and so the seed oil extract's efficacy was tested against immobilization stress in albino mice. The animals were kept in a restrainer for short and long durations, grouped separately and fed with the drug. Animals were sacrificed and the samples were analyzed. The antioxidant enzyme levels of the animals regained and markedly increased in the acute and chronic immobilized groups, respectively. The results suggested that the extract of C. paniculatus seed was highly efficacious in reducing the stress induced by least mobility for hours. PMID:21808561

  14. Usage of immobilized porcine pancreas lipase in the hydrolysis of roselle (Hibiscus sabdariffa L.) seed oil

    NASA Astrophysics Data System (ADS)

    Ai, Chau Tran Diem; Linh, Vo Thi Hong; Yen, Tran Thi Ngoc; Nguyen, Nguyen Thi; Hoa, Phan Ngoc

    2017-09-01

    This study focused on the comparison among the usage of immobilized porcine pancreas lipase (PPL) on different hydrotalcite carriers (uncalcined and calcined hydrotalcite - like compound Mg /Al) and free lipase as the catalysts to hydrolyze of roselle (Hibiscus sabdariffa L.) seed oil. The reaction conditions were investigated including the ratio of oil to buffer, ratio of enzyme to substrate, the temperature of the hydrolysis, pH. The calcined hydrotalcite showed a higher lipase immobilization yield and a better reusability than the uncalcined hydrotalcite (87.15% and 86.78%, respectively).

  15. Chemical composition and biological activity of Abies alba and A. koreana seed and cone essential oils and characterization of their seed hydrolates.

    PubMed

    Wajs-Bonikowska, Anna; Sienkiewicz, Monika; Stobiecka, Agnieszka; Maciąg, Agnieszka; Szoka, Łukasz; Karna, Ewa

    2015-03-01

    The chemical composition, including the enantiomeric excess of the main terpenes, the antimicrobial and antiradical activities, as well as the cytotoxicity of Abies alba and A. koreana seed and cone essential oils were investigated. Additionally, their seed hydrolates were characterized. In the examined oils and hydrolates, a total of 174 compounds were identified, which comprised 95.6-99.9% of the volatiles. The essential oils were mainly composed of monoterpene hydrocarbons, whereas the composition of the hydrolates, differing from the seed oils of the corresponding fir species, consisted mainly of oxygenated derivatives of sesquiterpenes. The seed and cone essential oils of both firs exhibited DPPH-radical-scavenging properties and low antibacterial activity against the bacterial strains tested. Moreover, they evoked only low cytotoxicity towards normal fibroblasts and the two cancer cell lines MCF-7 and MDA-MBA-231. At concentrations up to 50 μg/ml, all essential oils were safe in relation to normal fibroblasts. Although they induced cytotoxicity towards the cancer cells at concentrations slightly lower than those required for the inhibition of fibroblast proliferation, their influence on cancer cells was weak, with IC50 values similar to those observed towards normal fibroblasts. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  16. Pomegranate: the grainy apple

    USDA-ARS?s Scientific Manuscript database

    ‘Parfianka’ (Garnet Sash) has dark red, large to very large fruit and arils with soft seeds. The taste is sweet with balanced acidity offering interest to the flavor (Kennedy, 2010). It tested with 15.2 °Brix and a TA of 1.04 (Table 2), attesting for the sugar-acid balance. It was selected in Turkme...

  17. Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant.

    PubMed

    Bhatia, Subhash; Othman, Zalina; Ahmad, Abdul Latif

    2007-06-25

    Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%).

  18. Garden cress (Lepidium sativum Linn.) seed oil as a potential feedstock for biodiesel production.

    PubMed

    Nehdi, Imededdine Arbi; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim

    2012-12-01

    Lepidium sativum L. (garden cress) is a fast growing annual herb, native to Egypt and west Asia but widely cultivated in temperate climates throughout the world. L. sativum seed oil (LSO) extracted from plants grown in Tunisia was analyzed to determine whether it has potential as a raw material for biodiesel production. The oil content of the seeds was 26.77%, mainly composed of polyunsaturated (42.23%) and monounsaturated (39.62%) fatty acids. Methyl esters (LSOMEs) were prepared by base-catalyzed transesterification with a conversion rate of 96.8%. The kinematic viscosity (1.92 mm(2)/s), cetane number (49.23), gross heat value (40.45), and other fuel properties were within the limits for biodiesel specified by the ASTM (American Standard for Testing and Materials). This study showed that LSOMEs have the potential to supplement petroleum-based diesel.

  19. Isozymes of the glycolytic enzymes in endosperm from developing castor oil seeds.

    PubMed

    Miernyk, J A; Dennis, D T

    1982-04-01

    Ion filtration chromatography on diethylaminoethyl-Sephadex A-25 has been used to separate two isozymes each of triose phosphate isomerase, glyceraldehyde 3-phosphate dehydrogenase, glycerate 3-phosphate kinase, enolase, and phosphoglycerate mutase from homogenates of developing castor oil (Ricinus communis L. cv. Baker 296) seeds. Crude plastid fractions, prepared by differential centrifugation, were enriched in one of the isozymes, whereas the cytosolic fractions were enriched in the other. These data (and data published previously) indicate that plastids from developing castor oil seeds have a complete glycolytic pathway and are capable of conversion of hexose phosphate to pyruvate for fatty acid synthesis. The enzymes of this pathway in the plastids are isozymes of the corresponding enzymes located in the cytosol.

  20. Acyl migration evaluation in monoacylglycerols from Echium plantagineum seed oil and Marinol.

    PubMed

    Rincón Cervera, Miguel Ángel; Venegas Venegas, Elena; Ramos Bueno, Rebeca; Rodríguez García, Ignacio; Guil-Guerrero, José Luis

    2013-05-01

    Production of 2-monoacylglycerols (2-MAGs) by selective hydrolysis of the triacylglycerols (TAGs) of Echium plantagineum seed oil and Marinol and further purification was carried out. Three purification methods, including silica gel column chromatography, liquid-liquid extraction and low-temperature crystallization were assayed. Partial acyl migration during the purification step is always observed. Acyl migration rates were similar both for the column chromatography and for the liquid-liquid extraction methods, and resulted in 1-MAG/2-MAG ratios higher than 1.0. Fatty acid (FA) profiles of 2-MAGs after enzyme hydrolysis showed that the major FAs were stearidonic acid (56.9% of total FA in 2-position) and docosahexaenoic acid (63.6% of total FA in 2-position) for E. plantagineum seed oil and Marinol, respectively.

  1. Acid esterification-alkaline transesterification process for methyl ester production from crude rubber seed oil.

    PubMed

    Thaiyasuit, Prachasanti; Pianthong, Kulachate; Worapun, Ittipon

    2012-01-01

    This study aims to examine methods and the most suitable conditions for producing methyl ester from crude rubber seed oil. An acid esterification-alkaline transesterification process is proposed. In the experiment, the 20% FFA of crude rubber seed oil could be reduced to 3% FFA by acid esterification. The product after esterified was then tranesterified by alkaline transesterification process. By this method, the maximum yield of methyl ester was 90% by mass. The overall consumption of methanol was 10.5:1 by molar ratio. The yielded methyl ester was tested for its fuel properties and met required standards. The major fatty acid methyl ester compositions were analyzed and constituted of methyl linoleate 41.57%, methyl oleate 24.87%, and methyl lonolenate 15.16%. Therefore, the cetane number of methyl ester could be estimated as 47.85, while the tested result of motor cetane number was 51.20.

  2. Extraction of kiwi seed oil: Soxhlet versus four different non-conventional techniques.

    PubMed

    Cravotto, Giancarlo; Bicchi, Carlo; Mantegna, Stefano; Binello, Arianna; Tomao, Valerie; Chemat, Farid

    2011-06-01

    Kiwi seed oil has a nutritionally interesting fatty acid profile, but a rather low oxidative stability, which requires careful extraction procedures and adequate packaging and storage. For these reasons and with the aim to achieve process intensification with shorter extraction time, lower energy consumption and higher yields, four different non-conventional techniques were experimented. Kiwi seeds were extracted in hexane using classic Soxhlet as well as under power ultrasound (US), microwaves (MWs; closed vessel) and MW-integrated Soxhlet. Supercritical CO₂ was also employed and compared to the other techniques in term of yield, extraction time, fatty acid profiles and organoleptic properties. All these non-conventional techniques are fast, effective and safe. A sensory evaluation test showed the presence of off-flavours in oil samples extracted by Soxhlet and US, an indicator of partial degradation.

  3. Chemical composition and antifungal activity of Carica papaya Linn. seed essential oil against Candida spp.

    PubMed

    He, X; Ma, Y; Yi, G; Wu, J; Zhou, L; Guo, H

    2017-05-01

    In recent years, the incidence of clinical yeast infections has increased dramatically. Due to the extensive use of broad-spectrum antifungal agents, there has been a notable increase in drug resistance among infections yeast species. As one of the most popular natural antimicrobial agents, essential oils (EOs) have attracted a lot of attention from the scientific community. The aim of this study was to analyse the chemical composition and examine the antifungal activity of the EO extracted from the seeds of Carica papaya Linn. The papaya seed EO was analysed by gas chromatography-mass spectrometry. The major constituent is benzyl isothiocyanate (99·36%). The filter paper disc diffusion method and broth dilution method were employed. The EO showed inhibitory effect against all the tested Candida strains including C. albicans, C. glabrata, C. krusei, C. parapsilosis and C. tropical with inhibition zone diameters in the range of 14·2-33·2 mm, the minimal inhibitory concentrations (MICs) in the range of 4·0-16·0 μg ml(-1) and the minimum fungicidal concentrations (MFCs) in the range of 16·0-64·0 μg ml(-1) . Here, we found that the papaya seed EO has promising anticandida activity and identify C. papaya L. as a potential natural source of antifungal agents. The chemical composition and antifungal activity of essential oil of Carica papaya seeds were studied. The oil of papaya seeds could inhibit the growth of Candida spp. for the first report. Carica Papaya may be recognized as a possible new source of natural antifungal agents. © 2017 The Society for Applied Microbiology.

  4. Roselle (Hibiscus sabdariffa) seed oil is a rich source of gamma-tocopherol.

    PubMed

    Mohamed, R; Fernández, J; Pineda, M; Aguilar, M

    2007-04-01

    The antioxidant potential of roselle (Hibiscus sabdariffa L.) extracts was studied. Different plant organs, including seeds, stems, leaves, and sepals, were analyzed with respect to their water-soluble antioxidant capacity, lipid-soluble antioxidant capacity, and tocopherol content, revealing that roselle seeds are a good source of lipid-soluble antioxidants, particularly gamma-tocopherol. Roselle seed oil was extracted and characterized, and its physicochemical parameters are summarized: acidity, 2.24%; peroxide index, 8.63 meq/kg; extinction coefficients at 232 (k(232)) and 270 nm (k(270)), 3.19 and 1.46, respectively; oxidative stability, 15.53 h; refractive index, 1.477; density, 0.92 kg/L; and viscosity, 15.9 cP. Roselle seed oil belongs to the linoleic/oleic category, its most abundant fatty acids being C18:2 (40.1%), C18:1 (28%), C16:0 (20%), C18:0 (5.3%), and C19:1 (1.7%). Sterols include beta-sitosterol (71.9%), campesterol (13.6%), Delta-5-avenasterol (5.9%), cholesterol (1.35%), and clerosterol (0.6%). Total tocopherols were detected at an average concentration of 2000 mg/kg, including alpha-tocopherol (25%), gamma-tocopherol (74.5%), and delta-tocopherol (0.5%). The global characteristics of roselle seed oil suggest that it could have important industrial applications, adding to the traditional use of roselle sepals in the elaboration of karkade tea.

  5. Poppy seed oil protection of the hippocampus after cerebral ischemia and re-perfusion in rats.

    PubMed

    Cevik-Demirkan, A; Oztaşan, N; Oguzhan, E O; Cil, N; Coskun, S

    2012-11-01

    The brain is highly sensitive to hypoxia; this is true particularly of parts that are crucial for cognitive function. The effects of hypoxia are especially dramatic in the hippocampus. We evaluated the potential protective effects of poppy seed oil on the number of hippocampus cells and the serum antioxidant/oxidant status after cerebral ischemia and re-perfusion (CIR). Eighteen rats were divided into three equal groups. Group 1 served as the control group without CIR. Group 2 received poppy seed oil daily by oral gavage at a dose of 0.4 ml/kg, while group 3 was given 0.4 ml/kg saline solution by oral gavage per day; these treatments were continued for one month. Groups 2 and 3 were subjected to CIR induced by clamps on two points of both of the carotid arteries for 45 min followed by 45 min re-perfusion. There were significant decreases in the number of hippocampus cells between groups 1 and 2, and between groups 1 and 3. The mean cell number in group 2 was not significantly different from that of group 3. The serum nitric oxide levels in CIR groups were elevated significantly compared to controls, and were significantly higher in group 2 than in group 3. The glutathione levels were increased significantly in the poppy seed oil treated group compared to the saline CIR groups. The malondialdehyde levels were markedly increased in group 3 compared to both groups 1 and 2. Our study suggests that poppy seed oil can improve antioxidant defense capacity after CIR, although this treatment did not alter significantly the frequency of cell death.

  6. Characteristics of prickly lettuce seed oil in relation to methods of extraction.

    PubMed

    Ramadan, A A

    1976-01-01

    Samples of seed oil of prickly lettuce (Lactuca Sacriola oleifera) which had been obtained by pressing or by extracting with acetone, ethyl ether, petroleum ether or carbon tetrachloride were analysed for the following parameters: viscosity, saponification number, iodine number, thiocyanogen value, unsaponifiable matter, free fatty acids, peroxide number and fatty acid composition. The different parameters varied in part considerably in relation to the method of production (pressing or solvent extraction) and to the solvent. It is tried to interprete these relationships.

  7. Effect of water stress and foliar boron application on seed protein oil fatty acids and nitrogen metabolism in soybean

    USDA-ARS?s Scientific Manuscript database

    Effects of water stress and foliar boron (FB) application on soybean (Glycine max (L) Merr.) seed composition and nitrogen metabolism have not been well investigated. Therefore, the objective of this study was to investigate the effects of water stress and FB on seed protein, oil, fatty acids, nitra...

  8. Multi-population selective genotyping to identify soybean (Glycine max (L.) Merr.) seed protein and oil QTLs

    USDA-ARS?s Scientific Manuscript database

    Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which in soybean [Glycine max (L.) Merr.] is seed protein and oil. Identification of genetic loci governing those two traits would facilitate that effort, and though genome-wide asso...

  9. Seed protein, oil, fatty acids, and minerals concentration as affected by foliar K-glyphosate application in soybean cultivars

    USDA-ARS?s Scientific Manuscript database

    Previous studies showed that glyphosate (Gly) may chelate cation nutrients, including potassium (K), which might affect the nutritional status of soybean seed. The objective of this study was to evaluate seed composition (protein, oil, fatty acids, and minerals) as influenced by foliar applications ...

  10. Effect of foliar and soil application of potassium fertilizer on soybean seed protein, oil, fatty acids, and minerals

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to evaluate the effectiveness of soil and foliar application of potassium (K) on leaf and seed mineral concentration levels, and seed composition (protein, oil, fatty acids, and minerals). Soybean cultivar (Pioneer 95470) of maturity group 5.7 was grown in a repeat...

  11. Fatty Acid Composition and Antioxidant Activity of Tea (Camellia sinensis L.) Seed Oil Extracted by Optimized Supercritical Carbon Dioxide

    PubMed Central

    Wang, Yuefei; Sun, Da; Chen, Hao; Qian, Lisheng; Xu, Ping

    2011-01-01

    Seeds are another product in addition to leaves (raw materials for teas) of tea (Camellia sinensis L.) plant. The great increase of tea consumption in recent years raises the challenge of finding commercial applications for tea seeds. In the present study, supercritical carbon dioxide (SC-CO2) extraction edible oil from tea seed was carried out, response surface methodology (RSM) was used to optimize processing parameters including time (20–90 min), temperature (35–45 °C) and pressure (50–90 MPa). The fatty acid composition and antioxidant activity of the extracted oil was also investigated. The highest yield of oil (29.2 ± 0.6%) was obtained under optimal SC-CO2 extraction conditions (45 °C, 89.7 min and 32 MPa, respectively), which was significantly higher (p < 0.05) than that (25.3 ± 1.0%) given by Soxhlet extraction. Meanwhile, tea seed oil extracted by SC-CO2 contained approximately 80% unsaturated fatty acids and showed a much stronger scavenging ability on the DPPH radical than that extracted by Soxhlet. SC-CO2 is a promising alternative for efficient extraction of edible oil from tea seed. Moreover, tea seed oil extracted by SC-CO2 is highly edible and has good antioxidant activity, and therefore may play a potential role as a health-promoting food resource in human diets. PMID:22174626

  12. Chemical composition, oxidative stability and antioxidant capacity of oil extracted from roasted seeds of Sacha-inchi (Plukenetia volubilis L.).

    PubMed

    Cisneros, Fausto H; Paredes, Daniel; Arana, Adrian; Cisneros-Zevallos, Luis

    2014-06-04

    The effect of roasting of Sacha-inchi (Plukenetia volubilis L.) seeds on the oxidative stability and composition of its oil was investigated. The seeds were subjected to light, medium and high roasting intensities. Oil samples were subjected to high-temperature storage at 60 °C for 30 days and evaluated for oxidation (peroxide value and p-anisidine), antioxidant activity (total phenols and DPPH assay), and composition (tocopherol content and fatty acid profile). Results showed that roasting partially increased oil oxidation and its antioxidant capacity, slightly decreased tocopherol content, and did not affect the fatty acid profile. During storage, oxidation increased for all oil samples, but at a slower rate for oils from roasted seeds, likely due to its higher antioxidant capacity. Also, tocopherol content decreased significantly, and a slight modification of the fatty acid profile suggested that α-linolenic acid oxidized more readily than other fatty acids present.

  13. Therapeutic value of black seed oil in methotrexate hepatotoxicity in Egyptian children with acute lymphoblastic leukemia.

    PubMed

    Hagag, Adel A; AbdElaal, Ahmed M; Elfaragy, Mohamed S; Hassan, Samir M; Elzamarany, Enas A

    2015-01-01

    'Acute lymphoblastic leukemia is the most common childhood malignancy'. Adding methotrexate to treatment protocols increased survival rate in children with leukemia. Methotrexate efficacy is limited by its hepatotoxicity. To assess the therapeutic value of Black seed oil in 'methotrexate induced hepatotoxicity in Egyptian children with acute lymphoblastic leukemia'. This study was conducted on 40 children with acute lymphoblastic leukemia' including 20 patients under methotrexate therapy and Black seeds 80 mg/kg/day for one week after each methotrexate dose [Group II] and 20 patients under methotrexate therapy and placebo [Group III]. This study included also '20 healthy children of matched age and sex as a control group' [Group I]. All patients were subjected to complete blood picture, bone marrow aspiration and liver functions. No significant differences in liver functions between group II and III before therapy were observed. There were nonsignificant increase in total, direct and indirect serum bilirubin, serum ALT, AST, and alkaline phosphatase levels and prothrombin time in group II after methotrexate and Black seed oil therapy but there was significant increase in group III after treatment with methotrexate and placebo with 'significant differences between group II and III ' after therapy. There were significant differences in prognosis regarding remission, relapse, death and 'disease free survival but no significant difference in overall survival between group II and III'. Black cumin seeds decreased MTX hepatotoxicity and improved survival in children with ALL and can be recommended as adjuvant drug in patients with ALL under methotrexate therapy.

  14. Swedish tests on rape-seed oil as an alternative to diesel fuel

    SciTech Connect

    Johansson, E.; Nordstroem, O.

    1982-01-01

    The cheapest version of Swedish rape-seed oil was chosen. First the rape-seed oil was mixed in different proportions with regular diesel fuel. A mixture of 1/3 rape-seed oil and 2/3 regular diesel fuel (R 33) was then selected for a long-term test. A Perkins 4.248 diesel engine was used for laboratory tests. Four regular farm tractors, owned and operated by farmers, and two tractors belonging to the Institute have been running on R 33. Each tractor was calibrated on a dynamometer according to Swedish and ISO-standards before they were operated on R 33. Since then the tractors have been regularly recalibrated. The test tractors have been operated on R 33 for more than 3400 h. An additional 1200 h have been covered by the laboratory test engine. None of the test tractors have hitherto required repairs due to the use of R 33, but some fuel filters have been replaced. Some fuel injectors have been cleaned due to deposits on the nozzles. 4 figures, 1 table.

  15. Phosphorylation of glyoxysomal malate synthase from castor oil seed endosperm and cucumber cotyledon

    SciTech Connect

    Yang, Y.P; Randall, D.D. )

    1989-04-01

    Glyoxysomal malate synthase (MS) was purified to apparent homogeneity from 3-d germinating castor oil seed endosperm by a relatively simple procedure including two sucrose density gradient centrifugations. Antibodies raised to the caster oil seed MS crossreacted with MS from cucumber cotyledon. MS was phosphorylated in both tissues in an MgATP dependent reaction. The phosphorylation pattern was similar for both enzymes and both enzymes were inhibited by NaF, NaMo, (NH{sub 4})SO{sub 4}, glyoxylate and high concentration of MgCl{sub 2} (60 mM), but was not inhibited by NaCl and malate. Further characterization of the phosphorylation of MS from castor oil seed endosperms showed that the 5S form of MS is the form which is labelled by {sup 32}P. The addition of exogenous alkaline phosphatase to MS not only decreased enzyme activity, but could also dephosphorylate phospho-MS. The relationship between dephosphorylation of MS and the decrease of MS activity is currently under investigation.

  16. Healing efficacy of sea buckthorn (Hippophae rhamnoides L.) seed oil in an ovine burn wound model.

    PubMed

    Ito, Hiroshi; Asmussen, Sven; Traber, Daniel L; Cox, Robert A; Hawkins, Hal K; Connelly, Rhykka; Traber, Lillian D; Walker, Timothy W; Malgerud, Erik; Sakurai, Hiroyuki; Enkhbaatar, Perenlei

    2014-05-01

    To investigate the efficacy of sea buckthorn (SBT) seed oil - a rich source of substances known to have anti-atherogenic and cardioprotective activity, and to promote skin and mucosa epithelization - on burn wound healing, five adult sheep were subjected to 3rd degree flame burns. Two burn sites were made on the dorsum of the sheep and the eschar was excised down to the fascia. Split-thickness skin grafts were harvested, meshed, and fitted to the wounds. The autograft was placed on the fascia and SBT seed oil was topically applied to one recipient and one donor site, respectively, with the remaining sites treated with vehicle. The wound blood flow (LASER Doppler), and epithelization (ultrasound) were determined at 6, 14, and 21 days after injury. 14 days after grafting, the percentage of epithelization in the treated sites was greater (95 ± 2.2% vs. 83 ± 2.9%, p<0.05) than in the untreated sites. Complete epithelization time was shorter in both treated recipient and donor sites (14.20 ± 0.48 vs. 19.60 ± 0.40 days, p<0.05 and 13.40 ± 1.02 vs. 19.60 ± 0.50 days, p<0.05, respectively) than in the untreated sites, confirmed by ultrasound. In conclusion, SBT seed oil has significant wound healing activity in full-thickness burns and split-thickness harvested wounds.

  17. A positive cannabinoids workplace drug test following the ingestion of commercially available hemp seed oil.

    PubMed

    Struempler, R E; Nelson, G; Urry, F M

    1997-01-01

    A commercially available health food product of cold-pressed hemp seed oil ingested by one volunteer twice a day for 4 1/2 days (135 mL total). Urine specimens collected from the volunteer were subjected to standard workplace urine drug testing procedures, and the following concentrations of 11-nor-delta9- tetrahydrocannabinol carboxylic acid (9-THCA) were detected: 41 ng/mL 9-THCA at 45 h, 49 ng/mL at 69 h, and 55 ng/mL at 93 h. Ingestion was discontinued after 93 h, and the following concentrations were detected: 68 ng/mL at 108 h, 57 ng/mL at 117 h, 31 ng/mL at 126 h, and 20 ng/mL at 142 h. The first specimen that tested negative (50 ng/mL initial immunoassay test, 15 ng/mL confirmatory gas chromatographic-mass spectrometric test) was at 146 h, which was 53 h after the last hemp seed oil ingestion. Four subsequent specimens taken to 177 h were also negative. This study indicates that a workplace urine drug test positive for cannabinoids may arise from the consumption of commercially available cold-pressed hemp seed oil.

  18. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil

    PubMed Central

    2011-01-01

    Background Fatty acids (FAs) are important as raw materials for the biotechnology industry. Existing methods of FAs production are based on chemical methods. In this study potassium hydroxide (KOH)-catalyzed reactions were utilized to hydrolysis Jatropha curcas seed oil. Results The parameters effect of ethanolic KOH concentration, reaction temperature, and reaction time to free fatty acid (FFA%) were investigated using D-Optimal Design. Characterization of the product has been studied using Fourier transforms infrared spectroscopy (FTIR), gas chromatography (GC) and high performance liquid chromatography (HPLC). The optimum conditions for maximum FFA% were achieved at 1.75M of ethanolic KOH concentration, 65°C of reaction temperature and 2.0 h of reaction time. Conclusions This study showed that ethanolic KOH concentration was significant variable for J. curcas seed oil hydrolysis. In a 18-point experimental design, FFA% of hydrolyzed J. curcas seed oil can be raised from 1.89% to 102.2%, which proved by FTIR and HPLC. PMID:22044685

  19. Assessment of Pb and Cd in seed oils and meals and methodology of their extraction.

    PubMed

    Yang, Yang; Li, Hongliang; Peng, Liang; Chen, Zhipeng; Zeng, Qingru

    2016-04-15

    Oil seed, which is a secondary product in phytoremediation, contaminated with heavy metals should be disposed of in an appropriate fashion. In this study, heavy metal concentrations found in oilseed rape and peanut oils were below 0.1 mg kg(-1) after extractions, being found most of the heavy metals in meals rather in oils. Extraction experiments were carried out to determine the optimum methodology for the removal of Pb and Cd from seed meals using K3C6H5O7, K2C4H4O6 and (NH4)2EDTA. The highest extraction of the Pb and Cd in the seed meals was achieved using 30 mM extractant solutions at 30°C for 24 h and a three-step extraction procedure. K3C6H5O7 and K2C4H4O6 had less impact on the removal of nutrients than (NH4)2EDTA.

  20. Enrichment of tocopherols and phytosterols in canola oil during seed germination.

    PubMed

    Zhang, Haiyan; Vasanthan, Thava; Wettasinghe, Mahinda

    2007-01-24

    The effect of canola (Brassica napus L.) seed germination under illuminated and dark environments on the total concentration and the composition of tocopherols and phytosterols in seedlings and extracted oil were investigated. During the first 10 days of germination, a decrease in gamma-tocopherol was offset by an increase in alpha-tocopherol, indicating the interconversion of these isomers. From day 10 to day 20 under illumination, there was a net increase in alpha-tocopherol and total tocopherols suggesting the synthesis of new tocopherols, whereas there was no net increase in tocopherols in dark. Tocopherols were mainly concentrated in the leafy seedling tops rather than in the non-photosynthesizing bottoms, whereas phytosterols were equally distributed across both sections. The total tocopherol content of oil extracted from 20-day-old seedlings was 4.3- to 6.5-fold higher than that of intact seeds. On a dry seedling basis, the content and composition of phytosterols did not change significantly (p > 0.05) over the sprouting period, but the concentration of total phytosterols in the oil fraction increased 4.2- to 5.2-fold. The concentration of these valuable phytochemicals in the oil fraction is largely due to the depletion of oil reserves during germination, as well as the de novo synthesis of new alpha-tocopherol stimulated by the presence of light. Germination may represent a viable means to naturally concentrate these high-value constituents in canola oil, offering improvements in oil quality based on the nutritional value and oxidative protection offered by tocopherols and the health benefits provided by both tocopherols and phytosterols.

  1. Optimization of transesterification of rubber seed oil using heterogeneous catalyst calcium oxide

    NASA Astrophysics Data System (ADS)

    Inggrid, Maria; Kristanto, Aldi; Santoso, Herry

    2015-12-01

    Biodiesel is an alternative fuel manufactured with the help of alkali hydroxide catalyst through transesterification reaction of vegetable oil. This study aims to examine methods and the most suitable conditions for transesterification reaction producing biodiesel from crude rubber seed oil by varying process parameters such as the molar ratio of alcohol, CaO amount as the alkaline catalyst, and reaction time. The rubber seed oil has a high level of free fatty acid content, which means the use of homogenous alkaline catalyst gives some technological problems such as soap formation which leaded in difficulty in the separation and purification of the product. Calcium oxide (CaO) is one of the most favorable heterogeneous base catalysts because it's reusable, noncorrosive, and low cost. Pre-treatment was performed by acid esterification with H2SO4 as the catalyst to decrease the content of free fatty acid in the rubber seed oil, in this pretreatment process the 12% FFA of crude oil could be reduced to below 3% FFA. The product after esterification process was then transesterified by alkaline transesterification by varying process parameters to convert triglyceride into biodiesel. The study found that maximum curvature for biodiesel yield occurred at 9:1 molar ratio of alcohol, 5%w catalyst loading, and 3 hours reaction time. Design expert software is used to determine the optimum point from experimental data. The result showed that the optimum yield of methyl ester from transesterification was 73.5 % by mass with 0.69 degree of desirability. The yielded methyl ester was tested for its density, viscosity, acid number, and solubility to meet SNI requirement standards.

  2. Lipids, Proteins, and Structure of Seed Oil Bodies from Diverse Species.

    PubMed Central

    Tzen, JTC.; Cao, Yz.; Laurent, P.; Ratnayake, C.; Huang, AHC.

    1993-01-01

    Oil bodies isolated from the mature seeds of rape (Brassica napus L.), mustard (Brassica juncea L.), cotton (Gossypium hirsutum L.), flax (Linus usitatis simum), maize (Zea mays L.), peanut (Arachis hypogaea L.), and sesame (Sesamum indicum L.) had average diameters that were different but within a narrow range (0.6-2.0 [mu]m), as measured from electron micrographs of serial sections. Their contents of triacylglycerols (TAG), phospholipids, and proteins (oleosins) were correlated with their sizes. The correlation fits a formula that describes a spherical particle surrounded by a shell of a monolayer of phospholipids embedded with oleosins. Oil bodies from the various species contained substantial amounts of the uncommon negatively charged phosphatidylserine and phosphatidylinositol, as well as small amounts of free fatty acids. These acidic lipids are assumed to interact with the basic amino acid residues of the oleosins on the surface of the phospholipid layer. Isoelectrofocusing revealed that the oil bodies from the various species had an isoelectric point of 5.7 to 6.6 and thus possessed a negatively charged surface at neutral pH. We conclude that seed oil bodies from diverse species are very similar in structure. In rapeseed during maturation, TAG and oleosins accumulated concomitantly. TAG-synthesizing acyltransferase activities appeared at an earlier stage and peaked during the active period of TAG accumulation. The concomitant accumulation of TAG and oleosins is similar to that reported earlier for maize and soybean, and the finding has an implication for the mode of oil body synthesis during seed maturation. PMID:12231682

  3. Characterisation of a highly saturated Irvingia gabonensis seed kernel oil with unusual linolenic acid content.

    PubMed

    Zoué, Lessoy T; Bédikou, Micaël E; Faulet, Betty M; Gonnety, Jean T; Niamké, Sébastien L

    2013-02-01

    The search for new sources of oil with improved characteristics has focused our attention on the characterisation of Irvingia gabonensis seed kernel oil. Physicochemical analysis have revealed the following assets: refractive index (1.42 ± 0.00), free fatty acids (2.3 ± 0.8%), peroxide value (3.33 ± 0.57 meq O(2)/kg), iodine value (32.43 ± 1.22 g I(2)/100 g), saponification value (233.75 ± 2.60 mg KOH/g), unsaponifiable matter (1.5 ± 0.02%), carotenoids (63 ± 0.01 mg β-carotene/100 g) and phospholipids (2.1 ± 0.01%). Absorbance of this oil decreased abruptly in the range of UV-B and UV-A wavelengths. Gas chromatography analysis showed that the major fatty acids were saturated, being mainly composed of lauric (C12:0, 39.35 ± 0.01%) and myristic acids (C14:0, 20.54 ± 0.01%). Nevertheless, an unusually high amount (6.44 ± 0.02%) of linolenic acid was also noted. Mass spectrometer analysis of volatile compounds highlighted the presence of various aromatic and aliphatic organic compounds. I. gabonensis seed kernel oil also showed oxidative stability at 60 °C after 12 days of storage with maximum peroxide value of 34.66 meq O(2)/kg. In view of these interesting characteristics, I. gabonensis seed kernel could be used as an alternative source of oil for lipid industries.

  4. Chemometric Classification of Different Tree Peony Species Native to China Based on the Assessment of Major Fatty Acids of Seed Oil and Phenotypic Characteristics of the Seeds.

    PubMed

    Zhang, Xiao-Xiao; Zhang, Yan-Long; Niu, Li-Xin; Sun, Jia-Yi; Li, Lin-Hao; Zhang, Jing; Li, Jian

    2017-01-01

    In the present study, we quantitatively measured five major fatty acids (FA) in seed oil using gas chromatography/mass spectrometry (GC/MS) and examined four phenotypic characteristics of the seeds from 19 populations from nine wild tree peony species native to China. The results showed that the unsaturated FAs contents were dominant, of which α-linolenic acid (ALA), linoleic acid, and oleic acid (OA) contents ranged from 14.84 to 42.54 g/100 g, 7.33 to 19.66 g/100 g, and 15.07 - 35.31 g/100 g crude oil, respectively. The phenotypic seed characteristics, such as thousand seed weight (244.01 - 1772.91 g), seed volume (91.31 - 1000.79 mm(3) ), weight rate of kernel and coat (1.29 - 3.62) and oil extraction ratio (20.32 - 34.69%), dramatically varied. Based on the contents of the five FAs, the nine species were classified into two groups. The species belonging to subsection Vaginatae were arranged in cluster I and were characterized by high ALA content. Cluster II, consistent with subsection Delavayanae, had a high OA content. From horizontal and vertical perspectives, the natural distribution areas of these two groups were different, reflecting differences in the FA contents and phenotypic seed characteristics. In conclusion, the FAs composition could be used as a chemotaxonomic marker for tree peony species. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  5. Increasing the stearate content in seed oil of Brassica juncea by heterologous expression of MlFatB affects lipid content and germination frequency of transgenic seeds.

    PubMed

    Bhattacharya, Surajit; Sinha, Saheli; Das, Natasha; Maiti, Mrinal K

    2015-11-01

    Fatty acids from dietary lipids can impart both beneficial and harmful health effects. The compositional balance between saturated and unsaturated fatty acids plays a decisive role in maintaining the physiological harmony, proper growth and development in the human system. In case of Brassica juncea seed oil, the level of saturated fatty acid, especially desirable stearate is very much lower than the recommended value, along with a high content of nutritionally undesirable erucic acid. Therefore, in order to shift the carbon flux towards the production of stearate at the expense of erucate, the MlFatB gene encoding a FatB thioesterase from Madhuca longifolia (latifolia) was expressed heterologously in seed tissues of B. juncea. The functional MlFatB competed with the highly active endogenous BjFatA thioesterase, and the transgenic B. juncea lines showed noteworthy changes in their seed fatty acid profiles. The proportion of stearate increased up to 16-fold, constituting almost 31% of the total fatty acids along with the production of arachidic acid in significant amount (up to ∼11%). Moreover, the content of erucate was reduced up to 71% in the seed oils of transgenic lines. Although a nutritionally desirable fatty acid profile was achieved, the transgenic seeds exhibit reduction or abolition of seed germination in addition to a decrease in seed lipid content. The findings of the present study revealing the stearoyl-ACP thioesterase-mediated enhancement of the stearate content that is associated with reduced germination frequency of transgenic B. juncea seeds, may explain why no natural or induced stearate-rich Brassica has been found or developed. Furthermore, this study also suggests that the newly characterized MlFatB is a potential candidate gene for refined metabolic engineering strategy in B. juncea or other plant species for increasing stearate content in seed oil. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Genome-wide association study in arabidopsis thaliana of natural variation in seed oil melting point, a widespread adaptive trait in plants

    USDA-ARS?s Scientific Manuscript database

    Seed oil melting point is an adaptive, quantitative trait determined by the relative proportions of the fatty acids that compose the oil. Micro- and macro-evolutionary evidence suggests selection has changed the melting point of seed oils to co-vary with germination temperatures because of a trade-o...

  7. Supercritical carbon dioxide (SC-CO2) extraction of essential oil from Swietenia mahagoni seeds

    NASA Astrophysics Data System (ADS)

    Norodin, N. S. M.; Salleh, L. M.; Hartati; Mustafa, N. M.

    2016-11-01

    Swietenia mahagoni (Mahogany) is a traditional plant that is rich with bioactive compounds. In this study, process parameters such as particle size, extraction time, solvent flowrate, temperature and pressure were studied on the extraction of essential oil from Swietenia mahagoni seeds by using supercritical carbon dioxide (SC-CO2) extraction. Swietenia mahagoni seeds was extracted at a pressure of 20-30 MPa and a temperature of 40-60°C. The effect of particle size on overall extraction of essential oil was done at 30 MPa and 50°C while the extraction time of essential oil at various temperatures and at a constant pressure of 30 MPa was studied. Meanwhile, the effect of flowrate CO2 was determined at the flowrate of 2, 3 and 4 ml/min. From the experimental data, the extraction time of 120 minutes, particle size of 0.5 mm, the flowrate of CO2 of 4 ml/min, at a pressure of 30 MPa and the temperature of 60°C were the best conditions to obtain the highest yield of essential oil.

  8. Protective effect of borage seed oil and gamma linolenic acid on DNA: in vivo and in vitro studies.

    PubMed

    Tasset-Cuevas, Inmaculada; Fernández-Bedmar, Zahira; Lozano-Baena, María Dolores; Campos-Sánchez, Juan; de Haro-Bailón, Antonio; Muñoz-Serrano, Andrés; Alonso-Moraga, Angeles

    2013-01-01

    Borage (Borago officinalis L.) seed oil has been used as a treatment for various degenerative diseases. Many useful properties of this oil are attributed to its high gamma linolenic acid content (GLA, 18:3 ω-6). The purpose of this study was to demonstrate the safety and suitability of the use of borage seed oil, along with one of its active components, GLA, with respect to DNA integrity, and to establish possible in vivo toxic and in vitro cytotoxic effects. In order to measure these properties, five types of assays were carried out: toxicity, genotoxicity, antigenotoxicity, cytotoxicity (using the promyelocytic leukaemia HL60 cell line), and life span (in vivo analysis using the Drosophila model). Results showed that i) Borage seed oil is not toxic to D. melanogaster at physiological concentrations below 125 µl/ml and the studies on GLA indicated non-toxicity at the lowest concentration analyzed ii) Borage seed oil and GLA are DNA safe (non-genotoxic) and antimutagenic compared to hydrogen peroxide, thereby confirming its antioxidant capacity; iii) Borage seed oil and GLA exhibited cytotoxic activity in low doses (IC50 of 1 µl/ml and 0.087 mM, respectively) iv) Low doses of borage seed oil (0.19%) increased the health span of D. melanogaster; and v) GLA significantly decreased the life span of D. melanogaster.Based on the antimutagenic and cytotoxic effects along with the ability to increase the health span, we propose supplementation with borage seed oil rather than GLA, because it protects DNA by modulating oxidative genetic damage in D. melanogaster, increases the health span and exerts cytotoxic activity towards promyelocytic HL60 cells.

  9. Protective Effect of Borage Seed Oil and Gamma Linolenic Acid on DNA: In Vivo and In Vitro Studies

    PubMed Central

    Tasset-Cuevas, Inmaculada; Fernández-Bedmar, Zahira; Lozano-Baena, María Dolores; Campos-Sánchez, Juan; de Haro-Bailón, Antonio; Muñoz-Serrano, Andrés; Alonso-Moraga, Ángeles

    2013-01-01

    Borage (Borago officinalis L.) seed oil has been used as a treatment for various degenerative diseases. Many useful properties of this oil are attributed to its high gamma linolenic acid content (GLA, 18:3 ω-6). The purpose of this study was to demonstrate the safety and suitability of the use of borage seed oil, along with one of its active components, GLA, with respect to DNA integrity, and to establish possible in vivo toxic and in vitro cytotoxic effects. In order to measure these properties, five types of assays were carried out: toxicity, genotoxicity, antigenotoxicity, cytotoxicity (using the promyelocytic leukaemia HL60 cell line), and life span (in vivo analysis using the Drosophila model). Results showed that i) Borage seed oil is not toxic to D. melanogaster at physiological concentrations below 125 µl/ml and the studies on GLA indicated non-toxicity at the lowest concentration analyzed ii) Borage seed oil and GLA are DNA safe (non-genotoxic) and antimutagenic compared to hydrogen peroxide, thereby confirming its antioxidant capacity; iii) Borage seed oil and GLA exhibited cytotoxic activity in low doses (IC50 of 1 µl/ml and 0.087 mM, respectively) iv) Low doses of borage seed oil (0.19%) increased the health span of D. melanogaster; and v) GLA significantly decreased the life span of D. melanogaster. Based on the antimutagenic and cytotoxic effects along with the ability to increase the health span, we propose supplementation with borage seed oil rather than GLA, because it protects DNA by modulating oxidative genetic damage in D. melanogaster, increases the health span and exerts cytotoxic activity towards promyelocytic HL60 cells. PMID:23460824

  10. The fatty acid and tocopherol constituents of the seed oil extracted from 21 grape varieties (Vitis spp.).

    PubMed

    Sabir, Ali; Unver, Ahmet; Kara, Zeki

    2012-07-01

    Fatty acids and tocopherols in appropriate quantities are invaluable attributes that are desirable in seeds of agricultural products. Studies have generally focused on the evaluation of the oil and tocopherol components of oil crops. Recently, investigations revealed that the grape seed has robust potential in the production of healthy fatty acids as well as tocopherols. This study was thus conducted to determine the oil and tocopherol components of grape seeds, obtained from various grape cultivars of different species, including two rootstock varieties. The grape seed oil concentration of the studied varieties ranged from 7.3 to 22.4%. The determined fatty acid profiles of the genotypes conformed to the pattern described in the literature for grapes. Linoleic acid is the major component comprising 53.6-69.6% of the total, followed by oleic (16.2-31.2%), palmitic (6.9-12.9%) and stearic (1.44-4.69%). The oils of all the seeds analysed showed a preponderance of α-tocopherol (ranging from 260.5 to 153.1 mg kg⁻¹ oil extract). β-Tocopherol, γ-tocopherol and δ-tocopherol were also detected with the general means of 0.98, 22.2 and 0.92 mg kg⁻¹, respectively. Linoleic acid showed a significantly negative correlation with all the fatty acids analysed. The strongest negative correlation existed between linoleic and oleic acids (r = -0.834, P < 0.01). Present investigations indicated that oil content, fatty acid composition and tocopherol constituents of grape seed show great variation among the genotypes. Markedly higher proportions of linoleic acid with considerable amounts of tocopherols found in the oil samples suggest that grape seed is a good source for culinary, pharmaceutical and cosmetic uses. Copyright © 2012 Society of Chemical Industry.

  11. Analysis of essential oils from Voacanga africana seeds at different hydrodistillation extraction stages: chemical composition, antioxidant activity and antimicrobial activity.

    PubMed

    Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na

    2015-01-01

    In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.

  12. Influence of dietary linseed oil and sunflower seed oil on some mechanical and metabolic parameters of isolated working rat hearts.

    PubMed

    Demaison, L; Grynberg, A

    1991-01-01

    The role played by membrane lipid environment on cardiac function remains poorly defined. The polyunsaturated fatty acid profile of myocardial phospholipids could be of utmost importance in the regulation of key-enzyme activities. This study was undertaken to determine whether selective incorporation of n-6 or n-3 fatty acids in membrane phospholipids might influence cardiac mechanical performances and metabolism. For 8 wk, male weaning Wistar rats were fed a semi-purified diet containing either 10% sunflower seed oil (72% C18:2 n-6) or 10% linseed oil (54% C18:3 n-3) as the sole source of lipids. The hearts were then removed and perfused according to working mode with a Krebs-Henseleit buffer containing glucose (11 mM) and insulin (10 Ul/l). Cardiac rate, coronary and aortic flows and ejection fraction were monitored after 30 min of perfusion. Myocardial metabolism was estimated by evaluating the intracellular fate of 1-14C palmitate. Sunflower seed oil and linseed oil feeding did not modify either coronary or aortic flow, which suggests that cardiac mechanical work was not affected by the diets. Conversely, cardiac rate was significantly decreased (-18%; P less than 0.01) when rats were fed the n-3 polyunsaturated fatty acid rich diet. Radioanalysis of the myocardial metabolism suggested that replacing n-6 polyunsaturated fatty acids by n-3 polyunsaturated fatty acids: i) did not alter palmitate uptake; ii) prolonged palmitate incorporation into cardiac triglycerides; iii) reduced beta-oxidation of palmitic acid. These results support the assumption that dietary fatty acids, particularly n-6 and n-3 fatty acids, play an important role in the regulation of cardiac mechanical and metabolic activity.

  13. Sea buckthorn seed oil protects against the oxidative stress produced by thermally oxidized lipids.

    PubMed

    Zeb, Alam; Ullah, Sana

    2015-11-01

    Thermally oxidized vegetable ghee was fed to the rabbits for 14 days with specific doses of sea buckthorn seed oil (SO). The ghee and SO were characterized for quality parameters and fatty acid composition using GC-MS. Rabbits serum lipid profile, hematology and histology were investigated. Major fatty acids were palmitic acid (44%) and oleic acid (46%) in ghee, while SO contains oleic acid (56.4%) and linoleic acid (18.7%). Results showed that oxidized vegetable ghee increases the serum total cholesterol, LDL-cholesterols, triglycerides and decrease the serum glucose. Oxidized ghee produced toxic effects in the liver and hematological parameters. Sea buckthorn oil supplementation significantly lowered the serum LDL-cholesterols, triglycerides and increased serum glucose and body weight of the animals. Sea buckthorn oil was found to reduce the toxic effects and degenerative changes in the liver and thus provides protection against the thermally oxidized lipids induced oxidative stress.

  14. Preliminary Study of Water Repellent Properties of Red Pepper Seed Oil

    NASA Astrophysics Data System (ADS)

    Kurniawan, F.; Madurani, K. A.; Wahyulis, N. C.

    2017-03-01

    The water-repellent properties of red pepper seed oil (capsicol) have been studied. The oil was coated on the glass surface by spray technique. Water repellent properties were performed by measuring the contact angle of water droplets. The measurement was conducted by varying the drying time of the oil coating at room temperature. The optimum contact angle of the droplets on the glass with capsicol coating is 46.77°, which can be achieved in 30 min of drying time. It also obtained the smallest diameter of the droplets (0.47 cm). The longer drying time decrease the contact angles and increases the diameter. The results were compared with the bare glass and commercial water repellent. The contact angle of the droplets on the glass surface with capsicol coating is higher than bare glass, but lower than glass with commercial water repellent coating. It means that capsicol has the water-repellent properties.

  15. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production.

    PubMed

    Kumar, Ritesh; Kumar, G Ravi; Chandrashekar, N

    2011-06-01

    In this study, microwave assisted transesterification of Pongamia pinnata seed oil was carried out for the production of biodiesel. The experiments were carried out using methanol and two alkali catalysts i.e., sodium hydroxide (NaOH) and potassium hydroxide (KOH). The experiments were carried out at 6:1 alcohol/oil molar ratio and 60°C reaction temperature. The effect of catalyst concentration and reaction time on the yield and quality of biodiesel was studied. The result of the study suggested that 0.5% sodium hydroxide and 1.0% potassium hydroxide catalyst concentration were optimum for biodiesel production from P. pinnata oil under microwave heating. There was a significant reduction in reaction time for microwave induced transesterification as compared to conventional heating.

  16. Variability in seed oil content and fatty acid composition, phenotypic traits and self-incompatibility among selected niger germplasm accessions

    USDA-ARS?s Scientific Manuscript database

    Niger (Guizotia abyssinica, L.) is a desirable oilseed crop for birdseed, especially for finches (Spinus spp.) because of its high ratio of unsaturated to saturated fatty acids and relatively high oil content. In 2012, phenotypic traits, seed oil and fatty acid content measurements were made on 14 p...

  17. Compositional analyses and shelf-life modeling of njangsa (ricinodendron heudelotii)seed oil using the weibull hazard method

    USDA-ARS?s Scientific Manuscript database

    This study investigated the compositional characteristics and shelf-life of Njangsa seed oil (NSO). Oil from Njangsa had a high polyunsaturated fatty acid (PUFA) content of which alpha eleosteric acid (alpha-ESA), an unusual conjugated linoleic acid was the most prevalent (about 52%). Linoleic acid...

  18. Optimization of oil extraction from giant bushel gourd seeds using response surface methodology.

    PubMed

    Popoola, Yetunde Yemisi; Akinoso, Rahman; Raji, Akeem Olayemi

    2016-09-01

    Gourd seeds have been identified as a source of edible oil, but there is sparse literature on the effect of processing factors on the characteristics of oil extracted from any Lagenaria spp. Optimization of oil extraction with the aid of expeller was achieved by applying response s