Science.gov

Sample records for ponds cooling

  1. The Transient Response of Cooling Ponds

    NASA Astrophysics Data System (ADS)

    Adams, E. Eric

    1982-10-01

    Cooling ponds are a form of closed cycle cooling used for steam-electric power plants. Because of their thermal inertia they provide an advantage over cooling towers in filtering fluctuations in intake temperature, which results in improved plant efficiency. By using linear systems theory, the transient behavior of various types of ponds is analyzed in response to periodic meteorological conditions (characterized by equilibrium temperature) and plant operational conditions (characterized by condenser temperature rise). Frequency response is expressed in terms of dimensionless ratios involving frequency of input forcing, characteristic hydraulic residence and surface response times, and appropriate mixing parameters. Results are also interpreted with respect to physical design variables, such as pond area, depth, degree of stratification, intake submergence, discharge entrance mixing, condenser flow rate, and temperature rise.

  2. Update: Cooling tower and spray pond technology

    SciTech Connect

    Bartz, J.A.

    1995-05-01

    The 9th Cooling Tower and Spray Pond Symposium, under the auspices of the International Association for Hydraulic Research, took place at the von Karman Institute for Fluid Dynamics, Belgium, in September 1994. Technical topics discussed included cooling system design, performance, operation, environmental effects, modeling and components. Symposium proceedings will not be published. However, information of primary interest to staffs of power plants in the United States is summarized in this article.

  3. Sport fishery potential of power plant cooling ponds: Final report

    SciTech Connect

    Heidinger, R.C.; Lewis, W.M.

    1986-10-01

    This research was undertaken to determine if cooling ponds could serve as habitat for several coolwater fish species and also to evaluate the potential use of cooling ponds as nursery areas for receiving waters. The work was conducted on two cooling ponds in northern Illinois. Walleye (Stizostedion vitreum), muskellunge (Esox masquinongy), striped bass (Morone saxatilis) fingerlings, and adult threadfin shad (Dorosoma petenense) were stocked into both cooling ponds. The hybrids between the striped bass and white bass (M. chrysops) had been previously stocked into Collins Pond. Smallmouth bass (Micropterus dolomieui) fingerlings and larval striped bass and walleye were stocked in Dresden Pond. Several sampling techniques including seining, electrofishing, and rotenoning were used to monitor growth and survival of stocked species. In addition, escapement of stocked and indigenous species was monitored at the Dresden Pond spillway. Walleye, muskellunge, striped bass and hybrid striped bass exhibited excellent growth in Collins Pond as did smallmouth bass in Dresden Pond. One of the primary differences between an open system (such as Dresden Pond) and a closed system (such as Collins Pond) is the potential that the open system has to serve as a fish nursery area for receiving waters. The stocking of ''coolwater'' species in a closed type system such as Collins Pond is an effective way to control and maintain selected sport species. Dresden Pond was not open to public fishing during this study, but Collins Pond developed an excellent sport fishery as a result of these stockings.

  4. International cooling-tower and spray pond symposium

    SciTech Connect

    Not Available

    1990-09-01

    This document contains the manuscripts of sixty-one papers that were presented at the 7th Cooling Tower and Spray Pond Symposium of the International Association for Hydraulic Research, organized by the B.E. Vedeneev Institute (VNIIG) and held in Leningrad, USSR, in June 1990. This report represents a worldwide state-of-the-art survey of recent work on cooling towers and spray ponds. Individual papers are indexed separately on the energy database.

  5. Substantial overnight reaeration by convective cooling discovered in pond ecosystems

    NASA Astrophysics Data System (ADS)

    Holgerson, Meredith A.; Zappa, Christopher J.; Raymond, Peter A.

    2016-08-01

    Trends in freshwater dissolved oxygen (DO) reflect whole-ecosystem properties and influence organismal survival and behavior. Here we show that small ponds have unique oxygen dynamics that differ from larger lakes. We discovered that ponds undersaturated in DO experienced substantial increases in oxygen concentration overnight. Nighttime increases in DO occurred on 45% of the nights sampled and resulted in DO saturation increasing 12-fold (22% saturation) on average. Oxygen spikes were likely to occur when ponds became at least 1.8°C warmer than the air and later in the season when oxygen levels were low (<31% saturation) and the air was warm (≥5.8°C). We demonstrate that overnight increases in surface water DO resulted from atmospheric oxygen invasion as opposed to internal production. Convective cooling enhanced turbulence and air-water gas exchange, leading to intense bursts of oxygen invasion during nighttime hours. This mechanism has not been demonstrated before and has important implications for the biogeochemistry of these systems, as well as understanding how organisms survive in hypoxic small ponds.

  6. Thermal storage case study: Combined building mass and cooling pond

    SciTech Connect

    Arnold, D.

    2000-07-01

    In 1994 a large U.K. credit card company decided to relocate and centralize its offices and operations from a number of city center sites to the outskirts on a green field site. The company decided that the concept for the new building should be environmentally friendly, i.e., naturally ventilated and cooled by openable windows. However, during initial studies there was concern over whether natural cooling and ventilation alone would be adequate to maintain thermal comfort during hot weather. The design solution was to provide a mix of passive and mechanical systems that could be switched in response to internal conditions and the prevailing weather. The object was to use passive features, i.e., the building thermal mass and storage and cooling effects of a pond, to maintain thermal comfort whenever possible and only switch to mechanical cooling under extreme conditions. The building was occupied progressively during the spring of 1997. The case study covers the period from the initial design concept to the end of the first 18 months of occupation.

  7. Ultimate Heat Sink Thermal Performance and Water Utilization: Measurements on Cooling and Spray Ponds

    SciTech Connect

    Athey, G. F.; Hadlock, R. K.; Abbey, O. B.

    1982-02-01

    A data acquisition research program, entitled "Ultimate Heat Sink Performance Field Experiments," has been brought to completion. The primary objective is to obtain the requisite data to characterize thermal performance and water utilization for cooling ponds and spray ponds at elevated temperature. Such data are useful for modeling purposes, but the work reported here does not contain modeling efforts within its scope. The water bodies which have been studied are indicative of nuclear reactor ultimate heat sinks, components of emergency core cooling systems. The data reflect thermal performance and water utilization for meteorological and solar influences which are representative of worst-case combinations of conditions. Constructed water retention ponds, provided with absolute seals against seepage, have been chosen as facilities for the measurement programs; the first pond was located at Raft River, Idaho, and the second at East Mesa, California. The data illustrate and describe, for both cooling ponds and spray ponds, thermal performance and water utilization as the ponds cool from an initially elevated temperature. To obtain the initial elevated temperature, it has been convenient to conduct the measurements at geothermal sites having large supplies and delivery rates of hot geothermal fluid. The data are described and discussed in the text, and presented in the form of data volumes as appendices.

  8. Environmental problems associated with decommissioning the Chernobyl Nuclear Power Plant Cooling Pond.

    PubMed

    Oskolkov, B Ya; Bondarkov, M D; Gaschak, S P; Maksymenko, A M; Maksymenko, V M; Martynenko, V I; Farfán, E B; Jannik, G T; Marra, J C

    2010-11-01

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities associated with residual radioactive contamination of their territories is an imperative issue. Significant problems may result from decommissioning of cooling ponds with residual radioactive contamination. The Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond is one of the largest self-contained water reservoirs in the Chernobyl region and Ukrainian and Belorussian Polesye region. The 1986 ChNPP Reactor Unit Number Four significantly contaminated the ChNPP Cooling Pond. The total radionuclide inventory in the ChNPP Cooling Pond bottom deposits are as follows: ¹³⁷Cs: 16.28 ± 2.59 TBq; ⁹⁰Sr: 2.4 ± 0.48 TBq; and ²³⁹+²⁴⁰Pu: 0.00518 ± 0.00148 TBq. The ChNPP Cooling Pond is inhabited by over 500 algae species and subspecies, over 200 invertebrate species, and 36 fish species. The total mass of the living organisms in the ChNPP Cooling Pond is estimated to range from about 60,000 to 100,000 tons. The territory adjacent to the ChNPP Cooling Pond attracts many birds and mammals (178 bird species and 47 mammal species were recorded in the Chernobyl Exclusion Zone). This article describes several options for the ChNPP Cooling Pond decommissioning and environmental problems associated with its decommissioning. The article also provides assessments of the existing and potential exposure doses for the shoreline biota. For the 2008 conditions, the estimated total dose rate values were 11.4 40 μGy h⁻¹ for amphibians, 6.3 μGy h⁻¹ for birds, 15.1 μGy h⁻¹ for mammals, and 10.3 μGy h⁻¹ for reptiles, with the recommended maximum dose rate being equal to 40 μGy h⁻¹. However, drying the ChNPP Cooling Pond may increase the exposure doses to 94.5 μGy h⁻¹ for amphibians, 95.2 μGy h⁻¹ for birds, 284.0 μGy h⁻¹ for mammals, and 847.0 μGy h⁻¹ for reptiles. All of these anticipated dose rates exceed the recommended values.

  9. Environmental Problems Associated with Decommissioning of Chernobyl Power Plant Cooling Pond

    NASA Astrophysics Data System (ADS)

    Foley, T. Q.; Oskolkov, B. Y.; Bondarkov, M. D.; Gashchak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.; Jannik, G. T.; Farfan, E. B.; Marra, J. C.

    2009-12-01

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities associated with residual radioactive contamination is a fairly pressing issue. Significant problems may result from decommissioning of cooling ponds. The Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond is one of the largest self-contained bodies of water in the Chernobyl Region and Ukrainian Polesye with a water surface area of 22.9 km2. The major hydrological feature of the ChNPP Cooling Pond is that its water level is 6-7 m higher than the water level in the Pripyat River and water losses due to seepage and evaporation are replenished by pumping water from the Pripyat River. In 1986, the accident at the ChNPP #4 Reactor Unit significantly contaminated the ChNPP Cooling Pond. According to the 2001 data, the total radionuclide inventory in the ChNPP Cooling Pond bottom deposits was as follows: 16.28 ± 2.59 TBq for 137Cs; 2.4 ± 0.48 TBq for 90Sr, and 0.00518 ± 0.00148 TBq for 239+240Pu. Since ChNPP is being decommissioned, the ChNPP Cooling Pond of such a large size will no longer be needed and cost effective to maintain. However, shutdown of the water feed to the Pond would expose the contaminated bottom deposits and change the hydrological features of the area, destabilizing the radiological and environmental situation in the entire region in 2007 - 2008, in order to assess potential consequences of draining the ChNPP Cooling Pond, the authors conducted preliminary radio-ecological studies of its shoreline ecosystems. The radioactive contamination of the ChNPP Cooling Pond shoreline is fairly variable and ranges from 75 to 7,500 kBq/m2. Three areas with different contamination levels were selected to sample soils, vegetation, small mammals, birds, amphibians, and reptilians in order to measure their 137Cs and 90Sr content. Using the ERICA software, their dose exposures were estimated. For the 2008 conditions, the estimated dose rates were found to be as follows: amphibians - 11

  10. Suppression of ice fog from the Fort Wainwright, Alaska, cooling pond. Special report

    SciTech Connect

    Walker, K.E.; Brunner, W.

    1982-10-01

    Ice fog near the Ft. Wainwright cooling pond creates a visibility hazard. Observations show a substantial reduction in visibility along both private and public roadways in the path of the cooling pond's ice fog plume. This reduction in visibility increases as the ambient air temperature decreases. Visibility was less than 215 m (700 ft) on the Richardson Highway on the average of 8 days for each of the 3 data years. Data collected during the winters of 1979-80, 1980-81 and 1981-82 statistically show that use of a monomolecular film evaporation suppressant, hexadecanol (C16H33OH), on the pond to reduce ice fog is ineffective. There is an immediate need for a driver warning system when visibility is affected by the ice fog.

  11. Numerical-Model Investigation of the Hydrothermal Regime of a Straight-Through Shallow Cooling Pond

    SciTech Connect

    Sokolov, A. S.

    2013-11-15

    A mathematic model based on solution of hydrodynamics and heat-transfer equations by the finite-element method is constructed to predict the hydrothermal regime of a straight-through shallow cooling pond, which provides cooling circulating water to a repository of spent nuclear fuel. Numerical experiments made it possible to evaluate the influence exerted by wind conditions and flow rate of water in the river on the temperature of the circulating water.

  12. Phytoplankton in the cooling pond of a nuclear fuel plant. II. Spectral analysis

    SciTech Connect

    Tokarskaya, Z.B.; Smagin, A.I.; Ryzhkov, E.G.; Nikitina, L.V.

    1995-09-01

    This study continues investigations into the development dynamics of phytoplankton and hydrochemical and meteorological factors over a periods of 26 years in the cooling pond of the Mayak Production Association in the Kyzyl-Trash Lake. The aim is to evaluate the long-term oscillations in phytoplankton owing to changes in hydrochemical and meteorological factors. 6 refs., 2 figs., 1 tab.

  13. Decommissioning of magnox Ltd fuel cooling pond facilities in the UK

    SciTech Connect

    Bertoncini, Carlo

    2013-07-01

    Magnox reactors were the first generation of nuclear power stations built in the UK; ten sites in total, of which, nine had wet fuel routes with cooling ponds. Five ponds are currently in a decommissioning phase; this paper will focus primarily on Hunterston-A (HNA) Site and the central programme of work which governs its management. During its operation, the Cartridge Cooling Pond at HNA was used to receive the spent fuel discharged from the Site's two reactors, it was then stored for cooling purposes prior to dispatch off site. The current decommissioning phase focusses on draining the 6500 m{sup 3} pond. Due to the Site's limited caesium removal facilities, a stand-alone effluent treatment plant was constructed to improve abatement and reduce the pond activity from 200 to 0.7 Bq/ml (β). This was necessary due to increased environmental standards introduced since the site had ceased generation ten years previously. Early characterisation and experience from other sites concluded that if the pond were to be drained without any treatment to the walls, doses to the Operators, during subsequent decommissioning works, would routinely be in excess of 1 mSv.hr{sup -1}(γ). An opportunity was realised within the Ponds Programme that if the surface layer of the pond walls were to be removed during drain-down, ambient dose rates would be reduced by a factor of 10; this would allow for more cost-effective decommissioning options in the future. Ultrahigh pressure water jetting was tested and proved to yield a ∼95% total-activity reduction on treated surfaces. Challenges were overcome in providing safe and secure access to Decommissioning Operators to perform this operation by means of floating platforms on the surface of the pond. As strategies to clear facilities to exemption levels are becoming both cost prohibitive and not reasonably practicable, work is now underway in the Programme to determine the optimum condition for entry into long-term quiescent storage, prior

  14. ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    SciTech Connect

    Farfan, E.

    2009-09-30

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  15. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    SciTech Connect

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

    2009-11-09

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  16. Radioecological exposure assessment for the Chernobyl cooling pond (Lake) with hydrodynamics impacts

    SciTech Connect

    Feng, Y.; Miller, L.F.; Bartell, S.M.

    1996-06-01

    The purpose of this study was to investigate the implication of adding hydrodynamic complexity in estimating the exposure of biota to {sup 137}Cs in the Chernobyl cooling pond (lake) from May to September 1986. Hydrodynamics was incorporated into this study in two ways. First, the radionuclide transport and distributions were estimated by using a hydrodynamic-transport Finite Element model. The model considered surface wind forces, bottom friction forces, bathymetry, advection, turbulent diffusion, and sedimentation. Second, hydrodynamics was coupled with the ecological process (population dynamics) in the transport model to determine phytoplankton and zooplankton biomass density change and distributions in the cooling pond (lake). The exposure estimation for plankton and fish was conducted in a two-dimensional finite element mesh which was used in the hydrodynamic-transport model. The results indicated that the influence of hydrodynamics on formation of water circulation patterns and {sup 137}Cs transport and distribution in the cooling pond (lake) was significant. The impacts of hydrodynamics upon the plankton biomass change and distribution were roughly equivalent to plankton population growth. Estimated exposure concentrations with the hydrodynamics effect were five times greater than those calculated without the effect at some locations. Overall, the results suggest that the consideration of hydrodynamics in studying exposure and risk can be necessary for a large water system.

  17. Comprehensive Cooling Water Study: Volume 7, Ecology of Par Pond, Savannah River Plant: Final report

    SciTech Connect

    Wilde, E.W.

    1987-10-01

    The Comprehensive Cooling Water Study (CCWS) was initiated in 1983 to evaluate the environmental effects of the intake and release of cooling water on the structure and function of aquatic ecosystems at the Savannah River Plant. The initial report (Gladden et al., 1985) described the results from the first year of the study. This document is the final report and concludes the program. The report comprises eight volumes. The first is a summary of environmental effects. The other seven volumes address water quality, radionuclide and heavy metal transport, wetlands, aquatic ecology, Federally endangered species, ecology of Par Pond, and waterfowl. 222 refs., 31 figs., 67 tabs.

  18. Lack of demonstratable effects of pollutants on cyt b sequences in wood ducks from a contaminated nuclear reactor cooling pond.

    PubMed

    Johnson, K P; Stout, J; Brisbin, I L; Zink, R M; Burger, J

    1999-08-01

    The effects of low levels of radiation on DNA mutation rates are largely unknown for free-living vertebrates. In this study we investigated the effects of contamination from cooling ponds at a nuclear production facility in South Carolina on the mutation rates in mitochondrial DNA in wood ducks (Aix sponsa). Specifically, we sequenced a 433-bp portion of the cytochrome b gene from 18 female-offspring pairs of wood ducks from contaminated ponds and 2 female-offspring pairs from control ponds. Very low haplotype diversity was observed overall, and no case of mutation between female and offspring could be satisfactorily documented. This suggests that the levels of radioactive contamination in these cooling ponds have little effect on the mutation rate of mitochondrial DNA in these waterfowl and that mitochondrial DNA may not be as sensitive an indicator as previously anticipated. Copyright 1999 Academic Press.

  19. Simulation model for the performance analysis of roof pond systems for heating and cooling

    SciTech Connect

    Tavana, M.; Kammerud, R.; Akbari, H.; Borgers, T.

    1980-06-01

    A detailed computer model has been developed for simulating the dynamic thermal behavior of roof pond systems. The model is composed of outer movable insulation, an optional evaporative water layer over water bags on steel decking, and an inner movable insulation. A control strategy for the movable insulations which provides near optimum thermal performance is included in the model. An hourly thermal balance analysis of the system is performed using theoretical and/or empirical expressions to determine the heat transfer coefficients for each of the surfaces in the model. The model has been used to study the effect on system thermal performance of (1) the R-value of both the top and bottom movable insulations; (2) the depth of the pond water, and (3) the depth of the evaporative layer. The heating and cooling potentials of the roof pond have also been investigated in four climates. The model was developed for incorporation into the public domain building energy analysis computer program BLAST.

  20. Model testing using Chernobyl data: II. Assessment of the consequences of the radioactive contamination of the Chernobyl Nuclear Power Plant cooling pond.

    PubMed

    Kryshev, I I; Sazykina, T G; Ryabov, I N; Chumak, V K; Zarubin, O L

    1996-01-01

    The "Cooling Pond" scenario is designed to test models for radioactive contamination of aquatic ecosystems, based on data for contamination of different aquatic media and biota due to fallout of radionuclides into the cooling pond of the Chernobyl Nuclear Power Plant. Input data include characteristics of the cooling pond ecosystem (hydrological, hydrochemical, and hydrobiological conditions) and estimates of the amounts of 137Cs in the cooling pond. Predictions are requested in two stages: (1) calculations for 137Cs concentrations for comparison against actual measurements, including activities of 137Cs in the cooling pond water, in sediment layers, and in fish; and (2) calculations for which actual measurements are not available, including dose and risk estimates for aquatic biota and for humans following hypothetical consumption of contaminated biota. The latter calculations are intended to provide an opportunity for intercomparison among modelers of their results for a simulated assessment problem.

  1. Nuclear fuel assemblies' deformations measurement by optoelectronic methods in cooling ponds

    NASA Astrophysics Data System (ADS)

    Senchenko, E. S.; Zavyalov, P. S.; Finogenov, L. V.; Khakimov, D. R.

    2013-12-01

    Increasing the reliability and life-time of nuclear fuel is actual problems for nuclear power engineering. It takes to provide the high geometric stability of nuclear fuel assemblies (FA) under exploitation, since various factors cause FA mechanical deformation (bending and twisting). To obtain the objective information and make recommendations for the FA design improvement one have to fulfill the post reactor FA analysis. Therefore it takes measurements of the FA geometric parameters in cooling ponds of nuclear power plants. As applied to this problem we have developed and investigated the different optoelectronic methods, namely, structured light method, television and shadow ones. In this paper effectiveness of these methods has been investigated using the special experimental test stand and fulfilled researches are described. The experimental results of FA measurements by different methods and recommendation for their usage is given.

  2. Phytoplankton in the cooling pond of a nuclear fuel plant. Spectral Analysis (Report 1)

    SciTech Connect

    Tokarskaya, Z.B.; Smagin, A.I.; Ryzhkov, E.G.

    1995-07-01

    Dynamics of average monthly indices for 3 classes of phytoplankton and for 24 hydrochemical 7 meteorological, and 3 radiative factors were investigated over a period of 26 years in the cooling pond of the Mayak Production Association in Kyzyl-Tash Lake. The parameters were statistically treated by procedures of time series analysis. A seasonal succession of examined features is described. It is established that development of the diatoms peaks in February, and that of the green and the blue-green algae peaks in June and August, respectively. Seasonal growth of the blue-green algae is substantially influence by water temperature, Mn{sup 2+}, O{sub 2}, CO{sub 2}, and solar radiation; that of the green algae is effected by water temperature, solar radiation, CO{sup 2}, Mn{sup 2+}, and cloudiness; that of the diatoms is controlled by SiO{sub 3}{sup 2-}, K{sup +} + Na{sup +}, CO{sub 2}, and water temperature. 6 refs., 2 figs., 1 tab.

  3. Formation of perched lava ponds on basaltic volcanoes: Interaction between cooling rate and flow geometry allows estimation of lava effusion rates

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Parfitt, E. A.

    1993-01-01

    Perched lava ponds are infrequent but distinctive topographic features formed during some basaltic eruptions. Two such ponds, each approximately 150 m in diameter, formed during the 1968 eruption at Napau Crater and the 1974 eruption of Mauna Ulu, both on Kilauea Volcano, Hawaii. Each one formed where a channelized, high volume flux lava flow encountered a sharp reduction of slope: the flow spread out radially and stalled, forming a well-defined terminal levee enclosing a nearly circular lava pond. We describe a model of how cooling limits the motion of lava spreading radially into a pond and compare this with the case of a channelized flow. The difference in geometry has a major effect, such that the size of a pond is a good indicator of the volume flux of the lava forming it. Lateral spreading on distal shallow slopes is a major factor limiting the lengths of lava flows.

  4. Solar ponds

    NASA Astrophysics Data System (ADS)

    Tabor, H.

    1981-01-01

    The history and current status of salt-gradient non-convecting solar ponds are presented. These ponds are large-area collectors, capable of providing low-cost thermal, mechanical, or electrical energy using low-temperature turbo-generators. The basic theory of salt-gradient solar ponds is sketched; the effects of wind, leakage, and fouling and their constraints on location selection for solar ponds are discussed. The methods of building and filling the ponds, as well as extracting heat from them are explained in detail. Practical operating temperatures of 90 C can be obtained with collection efficiencies between 15% and 25%, demonstrating the practical use of the ponds for heating and cooling purposes, power production, and desalination. A condensed account of solar pond experience in several countries is given. This includes the 150 kW solar pond power station (SPPS) operating in Israel since December, 1979 and a 5000 kW unit currently under development. A study of the economics involved in using the ponds is presented: despite a low conversion efficiency, the SPPS is shown to have applications in many countries.

  5. RADIATION DOSE ASSESSMENT FOR THE BIOTA OF TERRESTRIAL ECOSYSTEMS IN THE SHORELINE ZONE OF THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    SciTech Connect

    Farfan, E.; Jannik, T.

    2011-10-01

    Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. The article addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from {sup 90}Sr and {sup 137}Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to drawdown naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.

  6. Radiation dose assessment for the biota of terrestrial ecosystems in the shoreline zone of the Chernobyl nuclear power plant cooling pond.

    PubMed

    Oskolkov, Boris Ya; Bondarkov, Mikhail D; Gaschak, Sergey P; Maksimenko, Andrey M; Hinton, Thomas G; Coughlin, Daniel; Jannik, G Timothy; Farfán, Eduardo B

    2011-10-01

    Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. This paper addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from 90Sr and 137Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to draw down naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.

  7. The formation of perched lava ponds on basaltic volcanoes: the influence of flow geometry on cooling-limited lava flow lengths

    NASA Astrophysics Data System (ADS)

    Wilson, Lionel; Parfitt, Elisabeth A.

    1993-05-01

    Analysis of the formation of morphologically distinctive perched lava ponds produced in effusive basaltic eruptions focusses attention on the ways in which cooling and fluid dynamics interact to limit the distance a lava flow can travel. If a previously channelised flow spreads laterally on encountering a sudden decrease in the slope of the substrate or some other abrupt change in topography, its speed and thickness decrease progressively, in a way dictated by the requirements of mass and energy conservation. There is a consequent dramatic increase in heat loss from the lava as it thins. Where a flow spreads approximately radially in this way, it may form a perched lava pond. The high heat loss limits the size of any such pond to be at most a few hundred meters under almost all circumstances. Pond size depends much more strongly on lava volume flux than on any other physical parameter involved in the system, and the formation of these features provides a means of estimating eruption rates in paleo-eruptive episodes.

  8. Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond

    DOEpatents

    Phillips, John R.; Halbig, James K.; Menlove, Howard O.; Klosterbuer, Shirley F.

    1985-01-01

    A detector head for in situ inspection of irradiated nuclear fuel assemblies submerged in a water-filled nuclear fuel storage pond. The detector head includes two parallel arms which extend from a housing and which are spaced apart so as to be positionable on opposite sides of a submerged fuel assembly. Each arm includes an ionization chamber and two fission chambers. One fission chamber in each arm is enclosed in a cadmium shield and the other fission chamber is unshielded. The ratio of the outputs of the shielded and unshielded fission chambers is used to determine the boron content of the pond water. Correcting for the boron content, the neutron flux and gamma ray intensity are then used to verify the declared exposure, cooling time and fissile material content of the irradiated fuel assembly.

  9. Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond

    DOEpatents

    Phillips, J.R.; Halbig, J.K.; Menlove, H.O.; Klosterbuer, S.F.

    1984-01-01

    A detector head for in situ inspection of irradiated nuclear fuel assemblies submerged in a water-filled nuclear fuel storage pond. The detector head includes two parallel arms which extend from a housing and which are spaced apart so as to be positionable on opposite sides of a submerged fuel assembly. Each arm includes an ionization chamber and two fission chambers. One fission chamber in each arm is enclosed in a cadmium shield and the other fission chamber is unshielded. The ratio of the outputs of the shielded and unshielded fission chambers is used to determine the boron content of the pond water. Correcting for the boron content, the neutron flux and gamma ray intensity are then used to verify the declared exposure, cooling time and fissile material content of the irradiated fuel assembly.

  10. The assessment of ionising radiation impact on the cooling pond freshwater ecosystem non-human biota from the Ignalina NPP operation beginning to shut down and initial decommissioning.

    PubMed

    Mazeika, J; Marciulioniene, D; Nedveckaite, T; Jefanova, O

    2016-01-01

    The radiological doses to non-human biota of freshwater ecosystem in the Ignalina NPP cooling pond - Lake Druksiai were evaluated for several cases including the plant's operation period and initial decommissioning activities, using the ERICA 1.2 code with IAEA SRS-19 models integrated approach and tool. Among the Lake Druksiai freshwater ecosystem reference organisms investigated the highest exposure dose rate was determined for bottom fauna - benthic organisms (mollusc-bivalves, crustaceans, mollusc-gastropods, insect larvae), and among the other reference organisms - for vascular plants. The mean and maximum total dose rate values due to anthropogenic radionuclide ionising radiation impact in all investigated cases were lower than the ERICA screening dose rate value of 10 μGy/h. The main exposure of reference organisms as a result of Ignalina NPP former effluent to Lake Druksiai is due to ionizing radiation of radionuclides (60)Co and (137)Cs, of predicted releases to Lake Druksiai during initial decommissioning period - due to radionuclides (60)Co, (134)Cs and (137)Cs, and as a result of predicted releases to Lake Druksiai from low- and intermediate-level short-lived radioactive waste disposal site in 30-100 year period - due to radionuclides (99)Tc and (3)H. The risk quotient expected values in all investigated cases were <1, and therefore the risk to non-human biota can be considered negligible with the exception of a conservative risk quotient for insect larvae. Radiological protection of non-human biota in Lake Druksiai, the Ignalina NPP cooling pond, is both feasible and acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Solar ponds

    SciTech Connect

    Jayadev, T.S.; Edesess, M.

    1980-04-01

    This report first describes the different types of solar ponds including the nonconvecting salt gradient pond and various saltless pond designs. It then discusses the availability and cost of salts for salt gradient ponds, and compares the economics of salty and saltless ponds as a function of salt cost. A simple computational model is developed to approximate solar pond performance. This model is later used to size solar ponds for district heating and industrial process heat applications. For district heating, ponds are sized to provide space conditioning for a group of homes, in different regions of the United States. Size requirements is on the order of one acre for a group of 25 to 50 homes. An economic analysis is performed of solar ponds used in two industrial process heat applications. The analysis finds that solar ponds are competitive when conventional heat sources are priced at $5 per million Btu and expected to rise in price at a rate of 10% per year. The application of solar ponds to the generation of electricity is also discussed. Total solar pond potential for displacing conventional energy sources is estimated in the range of from one to six quadrillion Btu per year in the near and intermediate future.

  12. Freshwater ponds

    USDA-ARS?s Scientific Manuscript database

    This book chapter summarizes aquaculture pond ecology. The underlying theme is how ponds supply essential life-support functions (food, oxygen, and waste treatment) and how those functions are subsidized by external resources as culture intensity increases. Ponds are confined bodies of standing wate...

  13. 216-B-3 expansion ponds closure plan

    SciTech Connect

    Not Available

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.

  14. Surface Sediments in Precooler Ponds 2, 4, and 5: March 2000

    SciTech Connect

    Dunn, D.L.

    2001-01-29

    Pond 2, Pond 4, and Pond 5 are inactive reactor cooling impoundments built in 1961 on the R-Reactor Effluent System in the east-central portion of the Department of Energy's Savannah River Site in Aiken, South Carolina. These precooler ponds are part of the Par Pond cooling water system and are considered part of the Par Pond operable unit. The intent was not to characterize the ponds, but to identify the maximum levels of contamination that could be exposed if the ponds are drained to remove the danger of dam failure.

  15. Solar pond

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1978-01-01

    Shallow pools of liquid to collect low-temperature solar generated thermal energy are described. Narrow elongated trenches, grouped together over a wide area, are lined with a heat-absorbing black liner. The heat-absorbing liquid is kept separate from the thermal energy removing fluid by means such as clear polyethylene material. The covering for the pond may be a fluid or solid. If the covering is a fluid, fire fighting foam, continuously generated, or siloons are used to keep the surface covering clean and insulated. If the thermal energy removing fluid is a gas, a fluid insulation layer contained in a flat polyethlene tubing is used to cover the pond. The side of the tube directed towards the sun is treated to block out ultraviolet radiation and trap in infrared radiation.

  16. Saltless Solar Ponds

    NASA Technical Reports Server (NTRS)

    Lin, E. I.

    1984-01-01

    Problems associated with heat storage in solar ponds eliminated by transparent insulating cover at surface of pond. Cover makes unnecessary salt gradient that suppresses natural convection within pond to promote thermal storage.

  17. Purification of Solar Ponds

    NASA Technical Reports Server (NTRS)

    Carpenter, S.

    1985-01-01

    Flocculatory agents added to solar saltponds remove turbidity to increase solar-energy collection efficiency. Flocculating agent or bacteriocide used to remove micro-organisms sprayed onto pond from airplane and allowed to settle to bottom of pond.

  18. Purification of Solar Ponds

    NASA Technical Reports Server (NTRS)

    Carpenter, S.

    1985-01-01

    Flocculatory agents added to solar saltponds remove turbidity to increase solar-energy collection efficiency. Flocculating agent or bacteriocide used to remove micro-organisms sprayed onto pond from airplane and allowed to settle to bottom of pond.

  19. Waste Stabilization Ponds.

    ERIC Educational Resources Information Center

    Koundakjian, Philip

    This self-paced course contains reading assignments from a waste stabilization ponds operating manual, supportive text, example problems, and review questions, and a final examination. The course covers calculation of pond surface area, pond volume, organic load, detention time, drawdown, storage capacity, efficiency, and discharge. In addition,…

  20. Lagoons and Oxidation Ponds.

    ERIC Educational Resources Information Center

    O'Brien, W. J.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers lagoons and oxidation ponds, and it includes some areas such as improving the effluents from ponds, stabilization ponds, aerated lagoons, and oxidation ditches. A list of 36 references is also presented. (HM)

  1. Lagoons and Oxidation Ponds.

    ERIC Educational Resources Information Center

    O'Brien, W. J.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers lagoons and oxidation ponds, and it includes some areas such as improving the effluents from ponds, stabilization ponds, aerated lagoons, and oxidation ditches. A list of 36 references is also presented. (HM)

  2. Surface and subsurface soils at the Pond B dam: July 1998

    SciTech Connect

    Halverson, N.V.

    1999-12-03

    Pond B, 685-13G, is an inactive reactor cooling impoundment built in 1961 on the Savannah River Site (SRS). Between 1961 and 1964, Pond B received R-Reactor cooling water discharges that were contaminated with {sup 137}Cs, {sup 90}Sr and plutonium. Though the pond has not been used since 1964, radionuclides from the contaminated cooling water remain in the water and in the surface sediments of the pond. The current proposal to fix and repair the Pond B dam structure includes installing a new drain system and monitoring equipment. The dam will be reinforced with additional previous material on the downstream face of the dam. The objectives of this report are to describe the sampling methodology used during the July 1998 sampling event at the downstream face of the Pond B dam and in Pond B, present the results of the sampling event, and compare, where possible, these results to related risk-based standards.

  3. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  4. Limnological database for Par Pond: 1959 to 1980

    SciTech Connect

    Tilly, L.J.

    1981-03-01

    A limnological database for Par Pond, a cooling reservoir for hot reactor effluent water at the Savannah River Plant, is described. The data are derived from a combination of research and monitoring efforts on Par Pond since 1959. The approximately 24,000-byte database provides water quality, primary productivity, and flow data from a number of different stations, depths, and times during the 22-year history of the Par Pond impoundment. The data have been organized to permit an interpretation of the effects of twenty years of cooling system operations on the structure and function of an aquatic ecosystem.

  5. Suppression of Ice Fog from Cooling Ponds

    DTIC Science & Technology

    1976-11-01

    On the other hand , if the higher water temperature and above-freezing air values of Yen and Landvatter’s study are in- cluded, then their average...securing instrumentation and in giving de- tailed critiques of the manuscript, and to the U.S. Air Force for its cooperation and logistics support during...coefficient from water to ice and from ice to air .................................................................................................... 77

  6. Solar ponds: a selected bibliography

    SciTech Connect

    Not Available

    1981-11-01

    This bibliography contains citations on: regular solar ponds; shallow solar ponds; and patents. Certain references are specifically recommended. The data bases searched for the bibliography are listed. (LEW)

  7. Heat extraction from a large solar pond

    SciTech Connect

    Wittenberg, L.J.; Etter, D.E.

    1982-08-01

    The largest operational, salt-gradient solar pond in the United States, occupying 2000 m/sup 2/, was constructed during 1978 in Miamisburg, Ohio. The heat from this solar pond, nearly 1055 GJ/y (1000 million Btu/y) is used to heat an outdoor swimming pool in the summer and an adjacent recreation building during part of the winter. A new heat exchanger system has been installed externally to the pond and operated successfully to deliver 391 GJ (371 million Btu) of heat during May-June. Hot brine water is drawn through a diffuser by a self-priming pump fabricated from fiberglass reinforced plastic. The brine water passes through copper-10% nickel tubes of a tube-and-shell heat exchanger and is then returned to the bottom of the pond. Cooling water from the swimming pool circulates through the shell side of the heat exchanger. Several designs and flow velocities of the brine inlet and outlet diffusers into the pond have been tested in order to minimize the effect of turbulence upon the salt gradient zone.

  8. Heat extraction from a large solar pond

    NASA Astrophysics Data System (ADS)

    Wittenberg, L. J.; Etter, D. E.

    1982-08-01

    The largest operational, salt-gradient solar pond in the United States, occupying 2000 squares meters, was constructed during 1978 in Miamisburg, Ohio. The heat from this solar pond, nearly 1055 GJ/y (1000 million Btu/y) is used to heat an outdoor swimming pool in the summer and an adjacent recreation building during part of the winter. A new heat exchanger system was installed externally to the pond and operated successfully to deliver 391 GJ (271 million Btu) of heat during May to June. Hot brine water is drawn through a diffuser by a self-priming pump fabricated from fiberglass reinforced plastic. The brine water passes through copper 10% nickel tubes of a tube-and-shell heat exchanger and is then returned to the bottom of the pond. Cooling water from the swimming pool circulates through the shell side of the heat exchanger. Several designs and flow velocities of the brine inlet and outlet diffusers into the pond were tested in order to minimize the effect of turbulence upon the salt gradient zone.

  9. Exploring Pond Water

    ERIC Educational Resources Information Center

    Raun, Chester E.; Metz, William C.

    1975-01-01

    An activity utilizing a bucket of pond water for study of microorganisms as presented to elementary school preservice and inservice teachers, and subsequently to their pupils, is described. Procedures for collecting, studying, tabulating data and extended activities are presented. (EB)

  10. Fuel Pond Sludge - Lessons Learned from Initial De-sludging of Sellafield's Pile Fuel Storage Pond - 12066

    SciTech Connect

    Carlisle, Derek; Adamson, Kate

    2012-07-01

    The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took over fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site facilities to

  11. Saltless solar pond

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H. (Inventor)

    1984-01-01

    A solar pond adapted for efficiently trapping and storing radiant solar energy without the use of a salt concentration gradient in the pond is disclosed. A body of water which may be fresh, saline, relatively clear or turbid, is substantially covered by a plurality of floating honeycomb panels. The honeycomb panels are made of a material such as glass which is pervious to short wave solar radiation but impervious to infrared radiation. Each honeycomb panel includes a multitude of honeycomb cells. The honeycomb panels are divided into the elongated honeycomb cells by a multitude of intermediate plates disposed between a bottom plate and top plate of the panel. The solar pond is well suited for providing hot water of approximately 85 to 90 C temperature for direct heating applications, and for electrical power generation.

  12. Saltless solar pond

    NASA Astrophysics Data System (ADS)

    Lin, E. I. H.

    1984-09-01

    A solar pond adapted for efficiently trapping and storing radiant solar energy without the use of a salt concentration gradient in the pond is disclosed. A body of water which may be fresh, saline, relatively clear or turbid, is substantially covered by a plurality of floating honeycomb panels. The honeycomb panels are made of a material such as glass which is pervious to short wave solar radiation but impervious to infrared radiation. Each honeycomb panel includes a multitude of honeycomb cells. The honeycomb panels are divided into the elongated honeycomb cells by a multitude of intermediate plates disposed between a bottom plate and top plate of the panel. The solar pond is well suited for providing hot water of approximately 85 to 90 C temperature for direct heating applications, and for electrical power generation.

  13. Evaluation of solar pond performance

    SciTech Connect

    Wittenberg, L.J.

    1980-01-01

    The City of Miamisburg, Ohio, constructed during 1978 a large, salt-gradient solar pond as part of its community park development project. The thermal energy stored in the pond is being used to heat an outdoor swimming pool in the summer and an adjacent recreational building during part of the winter. This solar pond, which occupies an area of 2020 m/sup 2/ (22,000 sq. ft.), was designed from experience obtained at smaller research ponds located at Ohio State University, the University of New Mexico and similar ponds operated in Israel. During the summer of 1979, the initial heat (40,000 kWh, 136 million Btu) was withdrawn from the solar pond to heat the outdoor swimming pool. All of the data collection systems were installed and functioned as designed so that operational data were obtained. The observed performance of the pond was compared with several of the predicted models for this type of pond. (MHR)

  14. Agricultural ponds support amphibian populations

    USGS Publications Warehouse

    Knutson, M.G.; Richardson, W.B.; Reineke, D.M.; Gray, B.R.; Parmelee, J.R.; Weick, S.E.

    2004-01-01

    In some agricultural regions, natural wetlands are scarce, and constructed agricultural ponds may represent important alternative breeding habitats for amphibians. Properly managed, these agricultural ponds may effectively increase the total amount of breeding habitat and help to sustain populations. We studied small, constructed agricultural ponds in southeastern Minnesota to assess their value as amphibian breeding sites. Our study examined habitat factors associated with amphibian reproduction at two spatial scales: the pond and the landscape surrounding the pond. We found that small agricultural ponds in southeastern Minnesota provided breeding habitat for at least 10 species of amphibians. Species richness and multispecies reproductive success were more closely associated with characteristics of the pond (water quality, vegetation, and predators) compared with characteristics of the surrounding landscape, but individual species were associated with both pond and landscape variables. Ponds surrounded by row crops had similar species richness and reproductive success compared with natural wetlands and ponds surrounded by nongrazed pasture. Ponds used for watering livestock had elevated concentrations of phosphorus, higher turbidity, and a trend toward reduced amphibian reproductive success. Species richness was highest in small ponds, ponds with lower total nitrogen concentrations, tiger salamanders (Ambystoma tigrinum) present, and lacking fish. Multispecies reproductive success was best in ponds with lower total nitrogen concentrations, less emergent vegetation, and lacking fish. Habitat factors associated with higher reproductive success varied among individual species. We conclude that small, constructed farm ponds, properly managed, may help sustain amphibian populations in landscapes where natural wetland habitat is rare. We recommend management actions such as limiting livestock access to the pond to improve water quality, reducing nitrogen input, and

  15. Prevention of sewage pollution by stabilization ponds.

    PubMed

    Lakshminarayana, J S

    1975-01-01

    Water is polluted when it constitutes a health hazard or when its usefulness is impaired. The major sources of water pollution are municipal, manufacturing, mining, steam, electric power, cooling and agricultural. Municipal or sewage pollution forms a greater part of the man's activity and it is the immediate need of even smaller communities of today to combat sewage pollution. It is needless to stress that if an economic balance of the many varied services which a stream or a body of water is called upon to render is balanced and taken into consideration one could think of ending up in a wise management programme. In order to eliminate the existing water pollutional levels of the natural water one has to think of preventive and treatment methods. Of the various conventional and non-conventional methods of sewage treatment known today, in India, where the economic problems are complex, the waste stabilization ponds have become popular over the last two decades to let Public Health Engineers use them with confidence as a simple and reliable means of treatment of sewage and certain industrial wastes, at a fraction of the cost of conventional waste treatment plants used hitherto. A waste stabilization pond makes use of natural purification processes involved in an ecosystem through the regulating of such processes. The term "waste stabilization pond" in its simplest form is applied to a body of water, artificial or natural, employed with the intention of retaining sewage or organic waste waters until the wastes are rendered stable and inoffensive for discharge into receiving waters or on land, through physical, chemical and biological processes commonly referred to as "self-purification" and involving the symbiotic action of algae and bacteria under the influence of sunlight and air. Organic matter contained in the waste is stabilized and converted in the pond into more stable matter in the form of algal cells which find their way into the effluent and hence the term

  16. The Little School Pond

    ERIC Educational Resources Information Center

    Rawitscher-Kunkel, Erika

    1973-01-01

    A small pond in a schoolyard provided year-round biological activities for children. As seasons changed, concepts and life relations also changed. Besides microscopic organisms in water, children learned about microscopic algae, detritus, and food chains. Concepts of predator-prey relationships and of ecosystems were successfully developed. (PS)

  17. The Little School Pond

    ERIC Educational Resources Information Center

    Rawitscher-Kunkel, Erika

    1973-01-01

    A small pond in a schoolyard provided year-round biological activities for children. As seasons changed, concepts and life relations also changed. Besides microscopic organisms in water, children learned about microscopic algae, detritus, and food chains. Concepts of predator-prey relationships and of ecosystems were successfully developed. (PS)

  18. Partitioned pond aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    World aquaculture is dominated by the use of simple earthen ponds in which suitable water quality is maintained by photosynthetic processes. Relying upon sunlight to maintain water quality offers the lowest cost and most sustainable approach to fish or shellfish production, which explains the popula...

  19. Transport of radioactive droplet moisture from a source in a nuclear power plant spray pond

    SciTech Connect

    Elokhin, A.P.

    1995-11-01

    In addition to a change in the microclimate in the region surrounding a nuclear power plant resulting from the emission of vapor form a cooling tower, evaporation of water from the water surface of a cooling pond or a spray pond, in the latter case direct radioactive contamination of the underlying surface around the nuclear power plant can also occur due to discharge of process water (radioactive) into the pond and its transport in the air over a certain distance in the form of droplet moisture. A typical example may be the situation at the Zaporozhe nuclear power plant in 1986 when accidental discharge of process water into the cooling pond occurred. Below we present a solution for the problem of transport of droplet moisture taking into account its evaporation, which may be used to estimate the scale of radioactive contamination of the locality.

  20. Microbiology of solar salt ponds

    NASA Technical Reports Server (NTRS)

    Javor, B.

    1985-01-01

    Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.

  1. Operation of a pond-cooler: the case of Berezovskaya GRES-1

    NASA Astrophysics Data System (ADS)

    Morozova, O. G.; Kamoza, T. L.; Koyupchenko, I. N.; Savelyev, A. S.; Pen, R. Z.; Veselkova, N. S.; Kudryavtsev, M. D.

    2017-08-01

    Pond-coolers at heat and nuclear power stations are natural-technological systems, so the program of their monitoring should include the effect made by the SRPS (state regional power station) on the pond ecosystem, including thermal discharge of cooling water. The objectives of this study were development and implementation of a monitoring program for the cooling pond of Berezovskaya SRPS-1 on the chemical and biological water quality indicators and identification of patterns of the thermal and hydrochemical regime when operating the progressive power plant (from 1996 to 2015). The quality of the cooling water of the pond-cooler BGRES-1 was studied under full-scale conditions by selecting and analyzing the water samples of the pond in accordance with the principles of complexity, systematic observation, and consistency of timing their conduct with the characteristic hydrological phases. Processing of the obtained array of monitoring data by methods of mathematical statistics makes it possible to identify the main factors affecting the water quality of the pond. The data on water quality obtained during their monitoring and mathematical processing over a long time interval are the scientific basis for forecasting the ecological state of the pond, which is necessary to economically ensure the efficient energy production and safety of water use. Recommendations proposed by these authors, including those partially already implemented, have been to prevent the development of eutrophication processes in the pond-cooler: the construction of a dam that cuts off the main peat massif and cleaning the river banks forming the cooling pond.

  2. METAPOPULATION STRUCTURE AND DYNAMICS OF POND BREEDING

    EPA Science Inventory

    Our review indicates that pond breeding amphibians exhibit highly variable spatial and temporal population dynamics, such that no single generalized model can realistically describe these animals. We propose that consideration of breeding pond permanence, and adaptations to pond ...

  3. Schoolyard Ponds: Safety and Liability.

    ERIC Educational Resources Information Center

    Danks, Sharon Gamson

    2001-01-01

    Engaging, attractive schoolyard ponds provide habitat for wildlife and hold great educational promise. Reviews water safety and liability issues including mud, stagnant pond water that serves as mosquito breeding grounds, and drowning. Offers ideas for creatively addressing those issues through site planning, shallow water depth, signage and…

  4. Schoolyard Ponds: Safety and Liability.

    ERIC Educational Resources Information Center

    Danks, Sharon Gamson

    2001-01-01

    Engaging, attractive schoolyard ponds provide habitat for wildlife and hold great educational promise. Reviews water safety and liability issues including mud, stagnant pond water that serves as mosquito breeding grounds, and drowning. Offers ideas for creatively addressing those issues through site planning, shallow water depth, signage and…

  5. The Pond Is Our Laboratory

    ERIC Educational Resources Information Center

    Marchewka, Barbara Turco

    1978-01-01

    This science teacher's laboratory is a pond within walking distance of his school that provides a stimulating environment for exploring the natural world. With simple materials students practice making careful observations, taking measurements and compiling and graphing information for their science studies. They also extend their pond experiences…

  6. Melt Pond Optics

    NASA Image and Video Library

    2017-09-27

    On July 6, 2011, Don Perovich, of Cold Regions Research and Engineering Laboratory, used a spectroradiometer to measure the amount of sunlight reflected from the surface of ice and melt ponds in the Chukchi Sea. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Sampling Melt Ponds

    NASA Image and Video Library

    2017-09-27

    On July 10, 2011, Jens Ehn of Scripps Institution of Oceanography (left), and Christie Wood of Clark University (right), scooped water from melt ponds on sea ice in the Chukchi Sea. The water was later analyzed from the Healy's onboard science lab. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Pond Ecology in the Classroom.

    ERIC Educational Resources Information Center

    Kneidl, Sally Stenhouse

    1993-01-01

    Describes activities with organisms from freshwater ponds and ditches. Several experiments involve predation, some involve habitat choices, and one addressees the role of sunlight in supporting plant-eating animals. (PR)

  9. Pond Ecology in the Classroom.

    ERIC Educational Resources Information Center

    Kneidl, Sally Stenhouse

    1993-01-01

    Describes activities with organisms from freshwater ponds and ditches. Several experiments involve predation, some involve habitat choices, and one addressees the role of sunlight in supporting plant-eating animals. (PR)

  10. Salton Sea solar pond project

    NASA Technical Reports Server (NTRS)

    French, R. L.; Meitlis, I.

    1980-01-01

    The feasibility of constructing salt gradient solar ponds within the Salton Sea is being studied. These ponds would serve a dual purpose: (1) become a depository for unwanted salt and (2) supply thermal energy for driving turbine electric power systems. Under present circumstances, the rise in salinity is expected to eliminate fish life and create other unfavorable conditions. The proposed concept would have a power generation potential of 600 MWe.

  11. Stable Stratification for Solar Ponds

    NASA Technical Reports Server (NTRS)

    Mehta, G. D.

    1982-01-01

    Stable density gradient forms in pond saturated with disodium phosphate (DSP). Volume of DSP saturated water tends to develop temperature and density layers. Since tests indicate thermal and density gradients remain in equilibrium at heat removal rates of 60 percent or more of heat input rate, pond containing DSP would be suitable for collecting solar energy and transferring it to heat exchanger for practical use.

  12. Biogeochemical ecology of aquaculture ponds

    SciTech Connect

    Weisburd, R.S.J.

    1988-01-01

    Two methods to determine rates of organic matter production and consumption were applied in shrimp aquaculture ponds. Several questions were posed: can net rates of organic matter production and consumption be determined accurately through application of dissolved inorganic carbon (DIC) mass balance in a pond with high advective through-put Are organically loaded aquaculture ponds autotrophic How do rates of organic production vary temporally Are there diurnal changes in respiration rates Four marine ponds in Hawaii have been evaluated for a 53 day period through the use of geochemical mass balances. All fluxes of DIC into and out of the ponds were considered. DIC was calculated from hourly pH measurements and weekly alkalinity measurements. Average uptake of DIC from the pond water, equivalent to net community production, revealed net autotrophy in all cases. Hourly and longer period variations in organic matter production rates were examined. The daily cycle dominated the variation in rates of net community production. Maximal rates of net community production were maintained for four to six hours starting in mid-morning. Respiration rates decreased rapidly during the night in two of the ponds and remained essentially constant in the others. A similar pattern of decreasing respiration at night was seen in freshwater shrimp ponds which were studied with incubations. A new method involving isotope dilution of {sup 14}C-labeled DIC was used to measure respiration rates in light and dark bottles. This method is an inexpensive and convenient procedure which should also be useful in other environments. The incubations demonstrated that plankton respiration rates peak at or soon after solar noon and vary over the course of the day by about a factor of two.

  13. Par Pond vegetation status 1996

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1996-12-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995, and into the early spring and late summer of 1996. Communities similar to the pre-drawdown, Par Pond aquatic plant communities continue to become re-established. Emergent beds of maidencane, lotus, waterlily, watershield, and Pontederia are extensive and well developed. Measures of percent cover, width of beds, and estimates of area of coverage with satellite data indicate regrowth within two years of from 40 to 60% of levels prior to the draw down. Cattail occurrence continued to increase during the summer of 1996, especially in the former warm arm of Par Pond, but large beds common to Par Pond prior to the draw down still have not formed. Lotus has invaded and occupies many of the areas formerly dominated by cattail beds. To track the continued development of macrophytes in Par Pond, future surveys through the summer and early fall of 1997, along with the evaluation of satellite data to map the extent of the macrophyte beds of Par Pond, are planned.

  14. Emergency Cooling of Nuclear Power Plant Reactors With Heat Removal By a Forced-Draft Cooling Tower

    SciTech Connect

    Murav’ev, V. P.

    2016-07-15

    The feasibility of heat removal during emergency cooling of a reactor by a forced-draft cooling tower with accumulation of the peak heat release in a volume of precooled water is evaluated. The advantages of a cooling tower over a spray cooling pond are demonstrated: it requires less space, consumes less material, employs shorter lines in the heat removal system, and provides considerably better protection of the environment from wetting by entrained moisture.

  15. Ponded Impact Melt Dynamics and its Effects on Pond Surface Morphology - Insights from King Crater

    NASA Astrophysics Data System (ADS)

    Ashley, J. W.; DiCarlo, N.; Enns, A. C.; Hawke, B. R.; Hiesinger, H.; Robinson, M. S.; Sato, H.; Speyerer, E.; van der Bogert, C.; Wagner, R.; Young, K. E.; LROC Science Team

    2011-12-01

    King crater is a 77-km diameter impact feature located at 5.0°N and 120.5°E on the lunar farside. Previous work delimited King crater with an asymmetric distribution of ejecta that includes a large impact melt pond (~385 square kilometer surface area), located in nearby Al-Tusi crater. The pond provides an opportunity to study the behavior of a large impact melt deposit. The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NAC) [1] imaged King crater from a nominal 50 km altitude at pixel scales of 100 meters and up to 0.5 meters, respectively providing the means to create geologic maps for the region. Digital terrain/elevation models (DTMs) were derived [2] from both WAC and NAC images for the area, and supplemented the mapping effort. The high-resolution (50 cm/p) NAC images show fine details within the Al-Tusi melt pond that raise questions about melt pond dynamics and evolution. These include both positive- and negative-relief features, anomalous crater morphologies, and flow features that show variable degrees of melt viscosity. WAC DTM processing reveals a horizontal and relatively flat (at the 20 m contour interval) pond, demonstrating that an equipotential surface was achieved during initial melt accumulation. The NAC DTM shows kilometer-scale zones of topographic down-warping within the 20 m contour interval. The perimeters of these depressed areas show moderate to high spatial correlation with the occurrence of negative relief features (~10 to 100 m in length). Such sagging may have occurred as the result of contraction and/or compaction within the melt both during and following cooling, with the negative relief features resulting from consequent structural failure and separation of the thickening surface crust. The variability in the degree of contraction/compaction may be explained by the presence of underlying hummocky ejecta deposits (which probably also explains the positive relief features) emplaced by

  16. Blogging from North Pond

    NASA Astrophysics Data System (ADS)

    Marziali, C. G.; Edwards, K. J.

    2009-12-01

    Sea going research expeditions provide an ideal opportunity for outreach through blogs: the finite duration limits the author's commitment; scientists are usually in a remote location with fewer distractions; and fieldwork is visual and interesting to describe. Over four weeks this winter, Katrina Edwards of USC authored a blog about her deep-sea drilling expedition to North Pond, a depression in the ocean crust in the mid-Atlantic. She emailed daily dispatches and photos to USC Media Relations, which maintained a (still accessible) blog. Written for the general public, the blog quickly attracted interest from lay readers as well as from media organizations. Scientific American carried the blog on its web site, and the National Science Foundation linked to it in its "Science 360" electronic news digest. The blog also led to a Q&A with Edwards in the widely-read "Behind the Scenes" feature of LiveScience. Interest from science bloggers and National Geographic towards the end suggests that the blog could have expanded its reach given more time: expeditions lasting between six weeks and three months, such as occur during ocean drilling expeditions, would appear to be ideal candidates for a blog. Most importantly, the blog educated readers about the importance to planetary life of what Edwards calls the "intraterrestrials": the countless microbes that inhabit the oceanic crust and influence major chemical and biological cycles. Considering that the subjects of the expedition were invisible critters in a pitch-dark place, the blog shows what can be accomplished by scientists and institutions committed to public outreach.

  17. Solar Pond Fluid Dynamics and Heat Transfer

    NASA Technical Reports Server (NTRS)

    Jones, G. F.

    1984-01-01

    The primary objective of the solar pond research was to obtain an indepth understanding of solar pond fluid dynamics and heat transfer. The key product was the development of a validated one-dimensional computer model with the capability to accurately predict time-dependent solar pond temperature, salinities, and interface motions. Laboratory scale flow visualization experiments were conducted to better understand layer motion. Two laboratory small-scale ponds and a large-scale outdoor solar pond were designed and built to provide quantitative data. This data provided a basis for validating the model and enhancing the understanding of pond dynamic behavior.

  18. Perched Lava Pond Complex on South Rift of Axial Volcano Revealed in AUV Mapping

    NASA Astrophysics Data System (ADS)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Thomas, H. J.

    2013-12-01

    -like structures and jumbled sheet flows on the floors suggest the eruption was on-going when the ponds emptied. 14C-dating of foraminifera from basal sediments on the pond floors gives a minimum age for the ponds of ~1500 years, which is older than any of the surface flows in Axial's summit caldera. Limu o Pele was abundant. Glass contents of the recovered lavas are 7.6 to 8.0 wt% MgO with few exceptions, and other than being plagioclase-phyric, the chemistry is similar to the majority of lavas at the summit. Lava samples from the floors of several ponds have a few tenths of a weight percent lower MgO than the nearby levees, suggesting the pond's molten interior or resupplied lavas had some time to cool. The varying levee rim heights and abundance of ponds in the vicinity suggest this type of activity occurred many times in this area, but it is an unusual eruption style for mid-ocean ridges. Another lava pond complex with even higher levees occurs on the north rift of Axial Volcano. Formation of these ponds requires long-lived, steady, moderate-eruption-rate lava effusion on nearly horizontal seafloor and may occur only on deep distal rift zones of central volcanoes.

  19. CERCLA interim action at the Par Pond unit: A case study

    SciTech Connect

    Hickey, H.M.; Matthews, S.S.; Neal, L.W.; Weiss, W.R.

    1993-11-01

    The Par Pond unit designated under CERCLA consists of sediments within a Savannah River Site (SRS) cooling water reservoir. The sediments are contaminated with radionuclides and nonradioactive constituents from nuclear production reactor operations. The mercury in Par Pond is believed to have originated from the Savannah River. Because of Par Pond Dam safety Issues, the water level of the reservoir was drawn down, exposing more than 1300 acres of contaminated sediments and triggering the need for CERCLA interim remedial action. This paper presents the interim action approach taken with Par Pond as a case study. The approach considered the complexity of the Par Pond ecosystem, the large size of Par Pond, the volume of contaminated sediments, and the institutional controls existing at SRS. The Environmental Protection Agency (EPA) considers units with large volumes of low-concentration wastes, as is the case with Par Pond, to be {open_quotes}special sites.{close_quotes} Accordingly, EPA guidance establishes that the range of alternatives developed focus primarily on containment options and other remedial approaches that mitigate potential risks associated with the {open_quotes}special site.{close_quotes} The remedial alternatives, according to EPA, are not to be prohibitively expensive or difficult to implement. This case study also is representative of the types of issues that will need to be addressed within the Department of Energy (DOE) complex as nuclear facilities are transitioned to inactive status and corrective/remedial actions are warranted.

  20. Simulated pond-aquifer interactions under natural and stressed conditions near Snake Pond, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Masterson, John P.; LeBlanc, Denis R.

    2002-01-01

    A numerical model was used to simulate pond-aquifer interactions under natural and stressed conditions near Snake Pond, Cape Cod, Massachusetts. Simulation results show that pond-bottom hydraulic conductivity, which represents the degree of hydraulic connection between the pond and the aquifer, is an important control on these interactions. As this parameter was incrementally increased from 10 to 350 feet per day, the rate of ground-water inflow into the pond under natural conditions increased by about 250 percent, the associated residence times of water in the pond decreased by about 50 percent, and ground-water inflow to the pond shifted closer to the pond shore. Most ground-water inflow (90 to 98 percent) was in the upper model layer, which corresponded to shallow, near-shore areas of the pond, over the entire range of pond-bottom hydraulic conductivity. Ground-water flow paths into the pond became more vertical, the contributing area to the pond became larger, and the pond captured water from greater depths in the aquifer as the hydraulic conductivity of the pond bottom was increased. The pond level, however, remained nearly constant, and regional ground-water levels and gradients differed little over the range of pond-bottom hydraulic conductivity, indicating that calibrated models with similar head solutions can have different pond-aquifer interaction characteristics. Hydrologic stresses caused by a simulated plume-containment system that specifies the extraction and injection of large volumes of ground water near the pond increased the pond level by about 0.4 foot and ground-water inflow rates into the pond by about 25 percent. Several factors related to the operation of the simulated containment system are affected by the hydraulic conductivity of the pond bottom. With increasing pond-bottom hydraulic conductivity, the amount of injected water that flows into Snake Pond increased and the amount of water recirculated between extraction and injection wells

  1. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  2. Salinity gradient solar pond technology applied to potash solution mining

    SciTech Connect

    Martell, J.A.; Aimone-Martin, C.T.

    2000-06-12

    A solution mining facility at the Eddy Potash Mine, Eddy County, New Mexico has been proposed that will utilize salinity gradient solar pond (SGSP) technology to supply industrial process thermal energy. The process will include underground dissolution of potassium chloride (KCl) from pillars and other reserves remaining after completion of primary room and pillar mining using recirculating solutions heated in the SGSP. Production of KCl will involve cold crystallization followed by a cooling pond stage, with the spent brine being recirculated in a closed loop back to the SGSP for reheating. This research uses SGSP as a renewable, clean energy source to optimize the entire mining process, minimize environmental wastes, provide a safe, more economical extraction process and reduce the need for conventional processing by crushing, grinding and flotation. The applications of SGSP technology will not only save energy in the extraction and beneficiation processes, but also will produce excess energy available for power generation, desalination, and auxiliary structure heating.

  3. Preliminary design of sedimentation ponds

    SciTech Connect

    Wilson, L.C.; Wayland, L.D.

    1982-12-01

    Almost one-hundred sedimentation ponds were conceptually designed for a large surface mining study are in northeast Texas. An approximate procedure was developed to economically estimate construction quantities in order to predict surface water control costs. This procedure utilized site-specific empirical relationships developed from detailed analyses on a representative number of proposed sedimentation ponds. Use of these equations provided earthwork volumes, and spillway pipe lengths. The procedure developed for this study is presented along with the results of a verification analysis.

  4. Lagoons and oxidation ponds. [Wastewater treatment

    SciTech Connect

    George, D.B.

    1982-06-01

    A review of the literature on waste stabilization pond systems is presented. Factors such as wastewater temperature, and levels of heavy metals that affect the stability of the lagoons and oxidation ponds, and methods to upgrade stabilization pond effluent to meet state and federal effluent requirements are discussed. Model simulations utilized to predict the treatment efficiency of various waste stabilization pond geometries, and inlet and outlet configurations are reviewed. (KRM)

  5. Five synthetic rubber pond liners protect against leakage and weather

    SciTech Connect

    Weinreich, G.; Hofsess, R.; Toy, D.A.

    1987-03-01

    More than 137 million cu ft of pipeline quality gas is produced daily at the Great Plains Coal Gasification Project in Beulah, ND. The facility is the only commercial plant in the US which produces gaseous and liquid fuels from low-grade coal. The plant needs to recycle and reuse 100% of the organic process wastewater, requiring a complicated treatment system of cooling towers, evaporators, a liquid waste incinerator and other units, each of which has its own surge pond. In total, the plant has five surge ponds which hold near 80 million gallons. To prevent the seepage of wastewater from the surge ponds into the ground water, a liner material was needed that would fulfill several design criteria. The liner had to be resistant to degradation caused by a very wide range of temperatures and it had to have a low coefficient of expansion. Resistance to both organic and inorganic chemical substances was another key requirement. Finally, the liner material needed to be easy to seam during field installation. An elastomeric membrane liner using the synthetic rubber and reinforcing polyester scrim best met the plant's requirements. One of the primary reasons for selecting synthetic rubber was its low coefficient of expansion. Extreme seasonal weather conditions, with temperatures ranging from below zero in the winter to over 100/sup 0/F in the summer, are common in North Dakota. And because the level of wastewater in the ponds constantly varies, a liner is frequently exposed to the elements. Overall, the synthetic rubber pond liners have performed through extreme weather conditions and have proven to be a cost-effective solution to wastewater storage at the gasification project.

  6. Par Pond Fish, Water, and Sediment Chemistry

    SciTech Connect

    Paller, M.H.; Wike, L.D.

    1996-06-01

    The objectives of this report are to describe the Par Pond fish community and the impact of the drawdown and refill on the community, describe contaminant levels in Par Pond fish, sediments, and water and indicate how contaminant concentrations and distributions were affected by the drawdown and refill, and predict possible effects of future water level fluctuations in Par Pond.

  7. Distance Education of Pennsylvania Pond Owners.

    ERIC Educational Resources Information Center

    Schmidt, Katherine L.; Swistock, Bryan R.; Sharpe, William E.

    2003-01-01

    Evaluations by 175 of 557 Pennsylvania pond owners who attended an Extension program via satellite revealed that most were interested in aesthetic/recreational pond use and pond management. They wanted more in-depth information over a shorter time frame. Only 10% did not favor satellite delivery. Shorter, more focused satellite programs and…

  8. 33 CFR 117.600 - Lagoon Pond.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lagoon Pond. 117.600 Section 117.600 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.600 Lagoon Pond. The draw of the Lagoon Pond...

  9. 33 CFR 117.600 - Lagoon Pond.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lagoon Pond. 117.600 Section 117.600 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.600 Lagoon Pond. The draw of the Lagoon Pond...

  10. 33 CFR 117.600 - Lagoon Pond.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lagoon Pond. 117.600 Section 117.600 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.600 Lagoon Pond. The draw of the Lagoon Pond...

  11. 33 CFR 117.600 - Lagoon Pond.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lagoon Pond. 117.600 Section 117.600 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.600 Lagoon Pond. The draw of the Lagoon Pond...

  12. 33 CFR 117.600 - Lagoon Pond.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lagoon Pond. 117.600 Section 117.600 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.600 Lagoon Pond. The draw of the Lagoon Pond...

  13. Distance Education of Pennsylvania Pond Owners.

    ERIC Educational Resources Information Center

    Schmidt, Katherine L.; Swistock, Bryan R.; Sharpe, William E.

    2003-01-01

    Evaluations by 175 of 557 Pennsylvania pond owners who attended an Extension program via satellite revealed that most were interested in aesthetic/recreational pond use and pond management. They wanted more in-depth information over a shorter time frame. Only 10% did not favor satellite delivery. Shorter, more focused satellite programs and…

  14. Stabilization Pond Operation and Maintenance Manual.

    ERIC Educational Resources Information Center

    Sexauer, Willard N.; Karn, Roger V.

    This manual provides the waste stabilization pond operator with the basics necessary for the treatment of wastewater in stabilization ponds. The material is organized as a comprehensive guide that follows the normal operation and maintenance procedures from the time the wastewater enters the left station until it leaves the pond. A comprehensive…

  15. Stabilization Pond Operation and Maintenance Manual.

    ERIC Educational Resources Information Center

    Sexauer, Willard N.; Karn, Roger V.

    This manual provides the waste stabilization pond operator with the basics necessary for the treatment of wastewater in stabilization ponds. The material is organized as a comprehensive guide that follows the normal operation and maintenance procedures from the time the wastewater enters the left station until it leaves the pond. A comprehensive…

  16. Energy and peak power saved by passively cooled residences

    NASA Astrophysics Data System (ADS)

    Clark, G.; Loxsom, F.; Doderer, E.; Vieira, R.; Fleischhacker, P.

    1983-11-01

    The energy displacement potential of roof pond cooling in humid climates is sensitive to the type of dehumidification equipment employed and the humidity levels allowed. The simulated energy requirements of roof pond residences assisted by two high efficiency dehumidifier options are described. One dehumidifier was a vapor compression air conditioner with sensible cooling recovery by an air-to-air heat exchanger (improved mechanical dehumidification or IMD). The second option was a solar regenerated desiccant dehumidifier (SRDD). An IMD assisted roof pond house had energy savings of 30 to 65% in humid climates compared to the conventional house; an SRDD assisted roof pond house had energy savings of 70 to 75% in humid climates.

  17. HRE-Pond Cryogenic Barrier Technology Demonstration: Pre- and Post-Barrier Hydrologic Assessment

    SciTech Connect

    Moline, G.R.

    1999-06-01

    The Homogeneous Reactor Experiment (HRE) Pond is the site of a former impoundment for radioactive wastes on the Oak Ridge Reservation (ORR) in east Tennessee. The pond received radioactive wastes from 1957 to 1962, and was subsequently drained, filled with soil, and covered with an asphalt cap. The site is bordered to the east and south by an unnamed stream that contains significant concentrations of radioactive contaminants, primarily {sup 90}Sr. Because of the proximity of the stream to the HRE disposal site and the probable flow of groundwater from the site to the stream, it was hypothesized that the HRE Pond has been a source of contamination to the creek. The HRE-Pond was chosen as the site of a cryogenic barrier demonstration to evaluate this technology as a means for rapid, temporary isolation of contaminants in the type of subsurface environment that exists on the ORR. The cryogenic barrier is created by the circulation of liquid CO{sub 2} through a system of thermoprobes installed in boreholes which are backfilled with sand. The probes cool the subsurface, creating a vertical ice wall by freezing adjacent groundwater, effectively surrounding the pond on four sides. The purpose of this investigation was to evaluate the hydrologic conditions within and around the pond prior to, during, and after the cryogenic barrier emplacement. The objectives were (1) to provide a hydrologic baseline for post-banner performance assessment, (2) to confirm that the pond is hydraulically connected to the surrounding sediments, (3) to determine the likely contaminant exit pathways from the pond, and (4) to measure changes in hydrologic conditions after barrier emplacement in order to assess the barrier performance. Because relatively little information about the subsurface hydrology and the actual configuration of the pond existed, data from multiple sources was required to reconstruct this complex system.

  18. Nitrogen Removal in Wastewater Ponds,

    DTIC Science & Technology

    1984-06-01

    by convection to the interaction between the algae and the CO,/ and radiation. Eckenfelder ’ developed the follow- alkalinity system in the pond. If...Pollu- 4. Eckenfelder , W.W. (1966) Industrial Water tion Control Federation, 54(4): 344. Pollution Control. New York: McGraw-Hill. 19. Porcella, D.B., P.H

  19. BLDG. - MISC - VIEW ACROSS POND

    NASA Image and Video Library

    1965-08-01

    S65-41769 (1965) --- View of facilities at the Manned Spacecraft Center, Houston, Texas. Photo is taken from across the fish pond. NOTE: The Manned Spacecraft Center was named Lyndon B. Johnson Space Center in memory of the late President following his death.

  20. How Healthy Is Our Pond?

    ERIC Educational Resources Information Center

    Sterling, Donna R.; Hargrove, Dori L.

    2014-01-01

    With crosscutting concepts such as stability and change in the "Next Generation Science Standards," this article was written for those who have wondered how to teach these concepts in a way that is relevant to students. In this investigation, students ask the question, "Why is the pond dirty?" As students investigate the health…

  1. How Healthy Is Our Pond?

    ERIC Educational Resources Information Center

    Sterling, Donna R.; Hargrove, Dori L.

    2014-01-01

    With crosscutting concepts such as stability and change in the "Next Generation Science Standards," this article was written for those who have wondered how to teach these concepts in a way that is relevant to students. In this investigation, students ask the question, "Why is the pond dirty?" As students investigate the health…

  2. Nuclear Fuel Traces Definition in Storage Ponds of Research VVR-2 and OR Reactors in NRC 'Kurchatov Institute'

    SciTech Connect

    Stepanov, Alexey; Simirskii, Iurii; Stepanov, Vyacheslav; Semin, Ilya; Volkovich, Anatoly

    2015-07-01

    The Gas Plant complex is the experimental base of the Institute of Nuclear Reactors, which is part of the Kurchatov Institute. In 1954 the commissioning of the first Soviet water-cooled water-moderated research reactor VVR-2 on enriched uranium, and until 1983 the complex operated two research water-cooled water-moderated reactors 3 MW (VVR-2) and 300 kW (OR) capacity, which were dismantled in connection with the overall upgrades of the complex. The complex has three storage ponds in the reactor building. They are sub-surface vessels filled with water (the volume of water in each is about 6 m{sup 3}). In 2007-2013 the spent nuclear fuel from storages was removed for processing to 'Mayk'. Survey of Storage Ponds by Underwater Collimated Spectrometric System shows a considerable layer of slime on the bottom of ponds and traces of spent nuclear fuel in one of the storage. For determination qualitative and the quantitative composition of radionuclide we made complex α-, β-, γ- spectrometric research of water and bottom slimes from Gas Plant complex storage ponds. We found the spent nuclear fuel in water and bottom slime in all storage ponds. Specific activity of radionuclides in the bottom slime exceeded specific activity of radionuclides in the ponds water and was closed to levels of high radioactive waste. Analysis of the obtained data and data from earlier investigation of reactor MR storage ponds showed distinctions of specific activity of uranium and plutonium radionuclides. (authors)

  3. Oxidation pond for municipal wastewater treatment

    NASA Astrophysics Data System (ADS)

    Butler, Erick; Hung, Yung-Tse; Suleiman Al Ahmad, Mohammed; Yeh, Ruth Yu-Li; Liu, Robert Lian-Huey; Fu, Yen-Pei

    2017-03-01

    This literature review examines process, design, and cost issues related to using oxidation ponds for wastewater treatment. Many of the topics have applications at either full scale or in isolation for laboratory analysis. Oxidation ponds have many advantages. The oxidation pond treatment process is natural, because it uses microorganisms such as bacteria and algae. This makes the method of treatment cost-effective in terms of its construction, maintenance, and energy requirements. Oxidation ponds are also productive, because it generates effluent that can be used for other applications. Finally, oxidation ponds can be considered a sustainable method for treatment of wastewater.

  4. POND MOUNTAIN AND POND MOUNTAIN ADDITION ROADLESS AREAS, TENNESSEE.

    USGS Publications Warehouse

    Griffitts, W.R.; Bitar, Richard

    1984-01-01

    As a result of a mineral study of the Pond Mountain Roadless Areas, Tennessee, a probable potential for the occurrence of tin, niobium, and tungsten resource with associated beryllium, molybdenum, zinc, and fluorite was identified in rocks of Precambrian age particularly in the southeastern part of the area. Detailed geologic mapping and geochemical sampling of the soils and rocks in the area of Precambrian rocks is recommended to identify and delimit the areas of potential resources of tin, niobium, and tungsten.

  5. 216-U-10 Pond and 216-Z-19 Ditch characterization studies

    SciTech Connect

    Last, G.V.; Duncan, D.W.; Graham, M.J.; Hall, M.D.; Hall, V.W.; Landeen, D.S.; Leitz, J.G.; Mitchell, R.M.

    1994-02-01

    The chemical, reprocessing of spent nuclear fuels at the US Department of Energy`s Hanford Site has generated large volumes of radioactive liquid effluents. The majority of these effluents have been used strictly for cooling or other supportive functions and have been discharged to ditches and ponds. The 216-U-10 Pond and 216-Z-19 Ditch are two such disposal facilities. These facilities are components of an integrated system of ditches, ponds, and overflow facilities collectively referred to as the U-Pond disposal system. The U-Pond system has been used since 1943 and has received a large variety of radioisotopes from several sources. This study covered tho major aspects of the environment, including wind resuspension, biological uptake and transport, geologic distribution in surface and subsurface sediments, and ground-water impacts. The long-term use of U-Pond and the Z-19 Ditch has resulted in the localized accumulation of transuranic and fission product inventories as a result of sorption and filtration of particulates onto the uppermost sediments.

  6. Effects of pond draining on biodiversity and water quality of farm ponds.

    PubMed

    Usio, Nisikawa; Imada, Miho; Nakagawa, Megumi; Akasaka, Munemitsu; Takamura, Noriko

    2013-12-01

    Farm ponds have high conservation value because they contribute significantly to regional biodiversity and ecosystem services. In Japan pond draining is a traditional management method that is widely believed to improve water quality and eradicate invasive fish. In addition, fishing by means of pond draining has significant cultural value for local people, serving as a social event. However, there is a widespread belief that pond draining reduces freshwater biodiversity through the extirpation of aquatic animals, but scientific evaluation of the effectiveness of pond draining is lacking. We conducted a large-scale field study to evaluate the effects of pond draining on invasive animal control, water quality, and aquatic biodiversity relative to different pond-management practices, pond physicochemistry, and surrounding land use. The results of boosted regression-tree models and analyses of similarity showed that pond draining had little effect on invasive fish control, water quality, or aquatic biodiversity. Draining even facilitated the colonization of farm ponds by invasive red swamp crayfish (Procambarus clarkii), which in turn may have detrimental effects on the biodiversity and water quality of farm ponds. Our results highlight the need for reconsidering current pond management and developing management plans with respect to multifunctionality of such ponds. Efectos del Drenado de Estanques sobre la Biodiversidad y la Calidad del Agua en Estanques de Cultivo.

  7. Review of SERI solar pond work

    NASA Astrophysics Data System (ADS)

    Zangrando, F.; Johnson, D. H.

    1985-07-01

    This report provides documentation of SERI's solar pond research effort, which began in 1979. The SERI staff analyzed solar pond topics from modeling and feasibility studies to laboratory experiments on physical properties and hydrodynamical stability. The SERI's perspective on the maturity of this solar technology is described, including the technical state-of-the-art of salt-gradient solar ponds, state of knowledge of pond design, estimated cost ranges for various locations and applications, and perceived barriers to commercial development. Recommendations for future work are also presented. The SERI research and development on solar ponds is described, emphasizing analytical and experimental tools developed at SERI. All AERI and subcontract reports dealing with solar ponds or related system components are summarized, and a bibliography is provided.

  8. South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project

    EPA Pesticide Factsheets

    Information about the SFBWQP South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  9. The Salt-Gradient Solar Pond.

    DTIC Science & Technology

    1983-02-01

    3.1.1.2 Radiation effects ........ ... 15 3.3.2 Concentration measurements .......... . 16 4. THE NUMERICAL MODEL ...... ................. ... 17 - -Maw...fraction of radiation which is absorbed in a small distance, 6, of solution (non-dimensional) I h irradiance at a given pond depth [=1 W/m 2 I s...simulate solar radiation . -2- Wilkins and Pinder have reported work done on a small- scale solar pond model (Ref. 3). The pond they used had surface

  10. Cooling wall

    SciTech Connect

    Nosenko, V.I.

    1995-07-01

    Protecting the shells of blast furnaces is being resolved by installing cast iron cooling plates. The cooling plates become non-operational in three to five years. The problem is that defects occur in manufacturing the cooling plates. With increased volume and intensity of work placed on blast furnaces, heat on the cast iron cooling plates reduces their reliability that limits the interim repair period of blast furnaces. Scientists and engineers from the Ukraine studied this problem for several years, developing a new method of cooling the blast furnace shaft called the cooling wall. Traditional cast iron plates were replaced by a screen of steel tubes, with the area between the tubes filled with fireproof concrete. Before placing the newly developed furnace shaft into operation, considerable work was completed such as theoretical calculations, design, research of temperature fields and tension. Continual testing over many years confirms the value of this research in operating blast furnaces. The cooling wall works with water cooling as well as vapor cooling and is operating in 14 blast furnaces in the Ukraine and two in Russia, and has operated for as long as 14 years.

  11. Cool & Connected

    EPA Pesticide Factsheets

    The Cool & Connected planning assistance program helps communities develop strategies and an action plan for using broadband to promote environmentally and economically sustainable community development.

  12. Review of SERI Solar Pond Work

    NASA Technical Reports Server (NTRS)

    Zangrando, F.; Johnson, D. H.

    1984-01-01

    Development of models of pond thermal performance; analysis of solar pond use for building space heat and hot water production; use of low-temperature pond-produced heat for industrial processes, desalination, and electricity production; development of direct-contact heat exchanger to reduce conversion equipment cost; determination of effects of extracted heat and mass from the storage layer on pond performance; and investigation of factors which determine gradient layer stability and the stability of this interface between this level and the upper and lower convecting layers were described.

  13. Review of SERI Solar Pond Work

    NASA Technical Reports Server (NTRS)

    Zangrando, F.; Johnson, D. H.

    1984-01-01

    Development of models of pond thermal performance; analysis of solar pond use for building space heat and hot water production; use of low-temperature pond-produced heat for industrial processes, desalination, and electricity production; development of direct-contact heat exchanger to reduce conversion equipment cost; determination of effects of extracted heat and mass from the storage layer on pond performance; and investigation of factors which determine gradient layer stability and the stability of this interface between this level and the upper and lower convecting layers were described.

  14. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  15. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  16. Digital Discover of Ephemeral Ponds

    DTIC Science & Technology

    2012-08-01

    ER D C/ CE RL T R - 12 -2 1 Center Directed Research Program Digital Discover of Ephemeral Ponds En gi ne er R es ea rc h an d D ev el...r.mapcalc formula : r.terraflow lidar_elev filled=elev_filled \\ accum=elev_accum memory=2000 \\ dir=elev_dir swater=elev_sink tci =elev_tci...J. D., M. Shapiro, W. D. Goran, and D. P. Gerdes. 1992. Geographic Resources Analysis Support System (GRASS) Version 4.0 User’s Reference Manual . N

  17. Assessing Chemical Retention Process Controls in Ponds

    NASA Astrophysics Data System (ADS)

    Torgersen, T.; Branco, B.; John, B.

    2002-05-01

    Small ponds are a ubiquitous component of the landscape and have earned a reputation as effective chemical retention devices. The most common characterization of pond chemical retention is the retention coefficient, Ri= ([Ci]inflow-[Ci] outflow)/[Ci]inflow. However, this parameter varies widely in one pond with time and among ponds. We have re-evaluated literature reported (Borden et al., 1998) monthly average retention coefficients for two ponds in North Carolina. Employing a simple first order model that includes water residence time, the first order process responsible for species removal have been separated from the water residence time over which it acts. Assuming the rate constant for species removal is constant within the pond (arguable at least), the annual average rate constant for species removal is generated. Using the annual mean rate constant for species removal and monthly water residence times results in a significantly enhanced predictive capability for Davis Pond during most months of the year. Predictive ability remains poor in Davis Pond during winter/unstratified periods when internal loading of P and N results in low to negative chemical retention. Predictive ability for Piedmont Pond (which has numerous negative chemical retention periods) is improved but not to the same extent as Davis Pond. In Davis Pond, the rate constant for sediment removal (each month) is faster than the rate constant for water and explains the good predictability for sediment retention. However, the removal rate constant for P and N is slower than the removal rate constant for sediment (longer water column residence time for P,N than for sediment). Thus sedimentation is not an overall control on nutrient retention. Additionally, the removal rate constant for P is slower than for TOC (TOC is not the dominate removal process for P) and N is removed slower than P (different in pond controls). For Piedmont Pond, sediment removal rate constants are slower than the removal

  18. Sydney Tar Ponds Remediation: Experience to China

    ERIC Educational Resources Information Center

    Liu, Fan; Bryson, Ken A.

    2009-01-01

    The infamous "Sydney Tar Ponds" are well known as one of the largest toxic waste sites of Canada, due to almost 100 years of steelmaking in Sydney, a once beautiful and peaceful city located on the east side of Cape Breton Island, Nova Scotia. This article begins with a contextual overview of the Tar Ponds issue including a brief…

  19. 100-D Ponds closure plan. Revision 1

    SciTech Connect

    Petersen, S.W.

    1997-09-01

    The 100-D Ponds is a Treatment, Storage, and Disposal (TSD) unit on the Hanford Facility that received both dangerous and nonregulated waste. This Closure Plan (Rev. 1) for the 100-D Ponds TSD unit consists of a RCRA Part A Dangerous Waste Permit Application (Rev. 3), a RCRA Closure Plan, and supporting information contained in the appendices to the plan. The closure plan consists of eight chapters containing facility description, process information, waste characteristics, and groundwater monitoring data. There are also chapters containing the closure strategy and performance standards. The strategy for the closure of the 100-D Ponds TSD unit is clean closure. Appendices A and B of the closure plan demonstrate that soil and groundwater beneath 100-D Ponds are below cleanup limits. All dangerous wastes or dangerous waste constituents or residues associated with the operation of the ponds have been removed, therefore, human health and the environment are protected. Discharges to the 100-D Ponds, which are located in the 100-DR-1 operable unit, were discontinued in June 1994. Contaminated sediment was removed from the ponds in August 1996. Subsequent sampling and analysis demonstrated that there is no contamination remaining in the ponds, therefore, this closure plan is a demonstration of clean closure.

  20. Par Pond vegetation status Summer 1995 -- Summary

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1996-01-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar to the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.

  1. WMOST v2 Case Study: Monponsett Ponds

    EPA Science Inventory

    This webinar presents an overview of the preliminary results of a case study application of EPA's Watershed Management Optimization Support Tool v2 (WMOST) for stakeholders in the Monponsett Ponds Watershed Workgroup. Monponsett Ponds is a large water system consisting of two ba...

  2. WMOST v2 Case Study: Monponsett Ponds

    EPA Science Inventory

    This webinar presents an overview of the preliminary results of a case study application of EPA's Watershed Management Optimization Support Tool v2 (WMOST) for stakeholders in the Monponsett Ponds Watershed Workgroup. Monponsett Ponds is a large water system consisting of two ba...

  3. Sydney Tar Ponds Remediation: Experience to China

    ERIC Educational Resources Information Center

    Liu, Fan; Bryson, Ken A.

    2009-01-01

    The infamous "Sydney Tar Ponds" are well known as one of the largest toxic waste sites of Canada, due to almost 100 years of steelmaking in Sydney, a once beautiful and peaceful city located on the east side of Cape Breton Island, Nova Scotia. This article begins with a contextual overview of the Tar Ponds issue including a brief…

  4. Electron Cooling

    NASA Astrophysics Data System (ADS)

    Ellison, Timothy J. P.

    1991-08-01

    Electron cooling is a method of reducing the 6 -dimensional phase space volume of a stored ion beam. The technique was invented by Budker and first developed by him and his colleagues at the Institute for Nuclear Physics in Novosibirsk. Further studies of electron cooling were subsequently performed at CERN and Fermilab. At the Indiana University Cyclotron Facility (IUCF) an electron cooling system was designed, built, and commissioned in 1988. This was the highest energy system built to date (270 keV for cooling 500 MeV protons) and the first such system to be used as an instrument for performing nuclear and atomic physics experiments. This dissertation summarizes the design principles; measurements of the longitudinal drag rate (cooling force), equilibrium cooled beam properties and effective longitudinal electron beam temperature. These measurements are compared with theory and with the measured performance of other cooling systems. In addition the feasibility of extending this technology to energies an order of magnitude higher are discussed.

  5. Gradient zone erosion in seawater solar ponds

    SciTech Connect

    Shi, J.; Hart, R.A.; Kleis, S.J.; Bannerot, R.B.

    1995-11-01

    An experimental program has been conducted to examine the feasibility of using seawater solar ponds in mariculture operations along the Texas gulf coast to protect fish crops from the potentially lethal, cold temperatures experienced in outdoor ponds. Seawater solar ponds in the form of floating thermal refuge areas are proposed as a method for reducing the loss of heat from small sections of a pond. Gradient zone erosion under various ambient and operating conditions is examined. Comparisons with previous laboratory studies show a much lower entrainment rate in the natural environment. A simple (linear) correlation of entrainment rate with wind speed was found, for conditions which are typical of those encountered in mariculture pond operations.

  6. Solar pond technology for Navy applications

    NASA Astrophysics Data System (ADS)

    Huang, L. C. P.; Major, W. R.

    1985-04-01

    Many of the Navy and Marine Corps bases have potential for thermal solar pond systems that can cost-effectively displace existing thermal and electrical loads. The salt-gradient solar pond offers a simple method of collecting solar insulation while providing its own storage medium for the energy collected. The economic attractiveness of a solar pond is enhanced by this feature; however, the viability of a given application is dependent on site attributes and requirements. For the salt-gradient solar pond, site specific features such as solar radiation, siting area, type of load to be displaced, and availability of salt, clay, and water are important factors affecting the success of each application. An investigation of current salt-gradient solar pond technology was conducted and a preliminary technical and economic analysis was performed for a proposed application at the Marine Corps Logistics Base, Barstow, California.

  7. Intermediate pond sizes contain the highest density, richness, and diversity of pond-breeding amphibians.

    PubMed

    Semlitsch, Raymond D; Peterman, William E; Anderson, Thomas L; Drake, Dana L; Ousterhout, Brittany H

    2015-01-01

    We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes.

  8. Intermediate Pond Sizes Contain the Highest Density, Richness, and Diversity of Pond-Breeding Amphibians

    PubMed Central

    Semlitsch, Raymond D.; Peterman, William E.; Anderson, Thomas L.; Drake, Dana L.; Ousterhout, Brittany H.

    2015-01-01

    We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes. PMID:25906355

  9. Turbulent convection driven by internal radiative heating of melt ponds on sea ice

    NASA Astrophysics Data System (ADS)

    Wells, Andrew; Langton, Tom; Rees Jones, David; Moon, Woosok

    2016-11-01

    The melting of Arctic sea ice is strongly influenced by heat transfer through melt ponds which form on the ice surface. Melt ponds are internally heated by the absorption of incoming radiation and cooled by surface heat fluxes, resulting in vigorous buoyancy-driven convection in the pond interior. Motivated by this setting, we conduct two-dimensional direct-numerical simulations of the turbulent convective flow of a Boussinesq fluid between two horizontal boundaries, with internal heating predicted from a two-stream radiation model. A linearised thermal boundary condition describes heat exchange with the overlying atmosphere, whilst the lower boundary is isothermal. Vertically asymmetric convective flow modifies the upper surface temperature, and hence controls the partitioning of the incoming heat flux between emission at the upper and lower boundaries. We determine how the downward heat flux into the ice varies with a Rayleigh number based on the internal heating rate, the flux ratio of background surface cooling compared to internal heating, and a Biot number characterising the sensitivity of surface fluxes to surface temperature. Thus we elucidate the physical controls on heat transfer through Arctic melt ponds which determine the fate of sea ice in the summer.

  10. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  11. Cool Vest

    NASA Technical Reports Server (NTRS)

    1982-01-01

    ILC, Dover Division's lightweight cooling garment, called Cool Vest was designed to eliminate the harmful effects of heat stress; increases tolerance time in hot environments by almost 300 percent. Made of urethane-coated nylon used in Apollo, it works to keep the body cool, circulating chilled water throughout the lining by means of a small battery-powered pump. A pocket houses the pump, battery and the coolant which can be ice or a frozen gel, a valve control allows temperature regulation. One version is self-contained and portable for unrestrained movement, another has an umbilical line attached to an external source of coolant, such as standard tap water, when extended mobility is not required. It is reported from customers that the Cool Vest pays for itself in increased productivity in very high temperatures.

  12. Cool School.

    ERIC Educational Resources Information Center

    Stephens, Suzanne

    1980-01-01

    The design for Floyd Elementary School in Miami (Florida) seeks to harness solar energy to provide at least 70 percent of the annual energy for cooling needs and 90 percent for hot water. (Author/MLF)

  13. Stable density stratification solar pond

    NASA Technical Reports Server (NTRS)

    Lansing, F. L. (Inventor)

    1985-01-01

    A stable density-stratification solar pond for use in the collection and storage of solar thermal energy including a container having a first section characterized by an internal wall of a substantially cylindrical configuration and a second section having an internal wall of a substantially truncated conical configuration surmounting the first section in coaxial alignment therewith, the second section of said container being characterized by a base of a diameter substantially equal to the diameter of the first section and a truncated apex defining a solar energy acceptance opening is discussed. A body of immiscible liquids is disposed within the container and comprises a lower portion substantially filling the first section of the container and an upper portion substantially filling the second section of the container, said lower portion being an aqueous based liquid of a darker color than the upper portion and of a greater density. A protective cover plate is removably provided for covering the acceptance opening.

  14. CO₂ efflux from shrimp ponds in Indonesia.

    PubMed

    Sidik, Frida; Lovelock, Catherine E

    2013-01-01

    The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored 'blue' carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO₂) efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO₂ efflux from the floors and walls of shrimp ponds. Rates of CO₂ efflux within shrimp ponds were 4.37 kg CO₂ m⁻² y⁻¹ from the walls and 1.60 kg CO₂ m⁻² y⁻¹ from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO₂ emissions to the atmosphere between 5.76 and 13.95 Tg y⁻¹. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO₂ emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO₂ released to atmosphere.

  15. Photosynthesis and fish production in culture ponds

    SciTech Connect

    Szyper, J.P.

    1995-12-31

    The widely-cultured Nile tilapia, Oreochromis niloticus, has been the major species used in standardized experiments by the Pond Dynamics/Aquaculture Collaborative Research Support Program (PD/ACRSP). Yields of Nile Tilapia from fertilized, unfed ponds have served as a bioassay for effectiveness of pond management protocols developed during worldwide tropical experiments. Yield rates near 10 T/ha/y can be achieved without feed inputs in ponds which maintain high standing stocks of phytoplankton and exhibit high rates near 10 T/ha/y can be achieved without feed inputs in ponds which maintain high standing stocks of phytoplankton and exhibit high rates of primary production. Fish production is related to daytime net photosynthetic production, but it is not clear whether production of food materials or oxygen is the more direct influence. Excessively high standing stocks of phytoplankton are not the best net producers, and increase and risk of nighttime oxygen depletion. Fish readily grow to individual sizes of 200-300 g/fish in fertilized ponds, which is sufficient market size in many locations. Supplemental feeding of caged or free-ranging fish greatly accelerates growth beyond 300 g and potentiates high areal yields; the PD/A CRSP has also developed efficient feeding regimes and shown that supplemental feeding need not begin before fish reach 200 g weight. High standing stocks of phytoplankton and high photosynthetic rates in eutrophic ponds make study of photosynthesis possible without radioisotopes. Such ponds also exhibit complete extinction of incident solar radiation within shallow depths, and vertical temperature structure resembling that of deeper bodies of water. These characteristics make ponds useful as microcosms for study of some aspects of photosynthesis in natural waters.

  16. Gas transfer velocities in small forested ponds

    NASA Astrophysics Data System (ADS)

    Holgerson, Meredith A.; Farr, Emily R.; Raymond, Peter A.

    2017-05-01

    Inland waters actively exchange gases with the atmosphere, and the gas exchange rate informs system biogeochemistry, ecology, and global carbon budgets. Gas exchange in medium- to large-sized lakes is largely regulated by wind; yet less is known about processes regulating gas transfer in small ponds where wind speeds are low. In this study, we determined the gas transfer velocity, k600, in four small (<250 m2) ponds by using a propane (C3H8) gas injection. When estimated across 12 h periods, the average k600 ranged from 0.19 to 0.72 m d-1 across the ponds. We also estimated k600 at 2 to 3 h intervals during the day and evaluated the relationship with environmental conditions. The average daytime k600 ranged from 0.33 to 1.83 m d-1 across the ponds and was best predicted by wind speed and air or air-water temperature; however, the explanatory power was weak (R2 < 0.27) with high variability within and among ponds. To compare our results to larger water bodies, we compiled direct measurements of k600 from 67 ponds and lakes worldwide. Our k600 estimates were within the range of estimates for other small ponds, and variability in k600 increased with lake size. However, the majority of studies were conducted on medium-sized lakes (0.01 to 1 km2), leaving small ponds and large lakes understudied. Overall, this study adds four small ponds to the existing body of research on gas transfer velocities from inland waters and highlights uncertainty in k600, with implications for calculating metabolism and carbon emissions in inland waters.

  17. Solar ponds. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-08-01

    Federally funded research on the design, performance, and use of solar ponds is discussed on these. Topic areas cover the use of solar ponds in industrial process heat production, roof ponds for passive solar buildings, and solar ponds use in the production of biomass for renewable fuels.

  18. Floristics of ephemeral ponds in east-central Texas

    Treesearch

    Barbara R. MacRoberts; Michael H. MacRoberts; D. Craig Rudolph; David W. Peterson

    2014-01-01

    Beginning in 2009, we surveyed the vegetation of ephemeral ponds in Sabine and Nacogdoches counties in east-central Texas. These ponds are shallow and flat-bottomed, with a small but distinct flora dominated by grasses (Poaceae) and sedges (Cyperaceae). The floras of these ponds are most similar to those of flatwoods ponds located on the lower coastal plain. Once more...

  19. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  20. Cooling Vest

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  1. Pond-aquifer interaction at South Pond of Lake Cochituate, Natick, Massachusetts

    USGS Publications Warehouse

    Friesz, Paul J.; Church, Peter E.

    2001-01-01

    A U.S. Army facility on a peninsula in South Pond of Lake Cochituate was designated a Superfund site by the U.S. Environmental Protection Agency in 1994 because contaminated ground water was detected at the facility, which is near the Natick Springvale public-supply wellfield. The interaction between South Pond and the underlying aquifer controls ground-water flow patterns near the pond and determines the source of water withdrawn from the wellfield.A map of the bathymetry and the thickness of fine-grained pond-bottom sediments was prepared on the basis of fathometer, ground-penetrating radar, and continuous seismic-reflection surveys. The geophysical data indicate that the bottom sediments are fine grained toward the middle of the pond but are coarse grained in shoreline areas. Natick Springvale wellfield, which consists of three active public-supply wells adjacent to South Pond, is 2,200 feet downgradient from the boundary of the Army facility. That part of South Pond between the Natick Springvale wellfield and the Army facility is 18 feet deep with at least 14 feet of fine-grained sediment beneath the pond-bottom. Water levels from the pond and underlying sediments indicate a downward vertical gradient and the potential for infiltration of pond water near the wellfield. Head differences between the pond and the wellfield ranged from 1.66 to 4.41 feet during this study. The velocity of downward flow from South Pond into the pond-bottom sediments, determined on the basis of temperature profiles measured over a diurnal cycle at two locations near the wellfield, was 0.5 and 1.0 feet per day. These downward velocities resulted in vertical hydraulic conductivities of 1.1 and 2.9 feet per day for the pond-bottom sediments.Naturally occurring stable isotopes of oxygen and hydrogen were used as tracers of pond water and ground water derived from recharge of precipitation, two potential sources of water to a well in a pond-aquifer setting. The isotopic composition of pond

  2. State Environmental Policy Act (SEPA) Environmental Checklist Form 216-B-3 Expansion Ponds Closure Plan. Revision 1

    SciTech Connect

    Not Available

    1993-12-01

    The 216-B-3 Expansion Ponds Closure Plan (Revision 1) consists of a Part A Dangerous Waste Permit Application and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and five appendices. The 216-B-3 Pond System consists of a series of four earthen, unlined, interconnected ponds and the 216-B-3-3 Ditch that receive waste water from various 200 East Area operating facilities. These four ponds, collectively. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the 216-B-3-3 Ditch. Water discharged to the 216-8-3-3 Ditch flows directly into the 216-B-3 Pond. In the past, waste water discharges to B Pond and the 216-B-3-3 Ditch contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous portion of mixed waste is regulated under RCRA. Mixed waste also may be considered a hazardous substance under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) when considering remediation of waste sites.

  3. South Bay Salt Pond Mercury Studies Project

    EPA Pesticide Factsheets

    Information about the SFBWQP South Bay Salt Pond Mercury Studies Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  4. Ecologic simulation of warm water aquaculture ponds

    SciTech Connect

    Piedrahitu, R.H.; Brune, D.E.; Orlob, G.T.; Tchobanoglous, G.

    1983-06-01

    A generalized ecologic model of a fertilized warm-water aquaculture pond is under development. The model is intended to represent the pond ecosystem and its response to external stimuli. The major physical, chemical and biological processes and parameters are included in the model. A total of 19 state variables are included in the model (dissolved oxygen, alkalinity, pH, ammonia, phytoplankton, etc.). The model is formulated as a system of mass balance equations. The equations include stimulatory and inhibitory effects of environmental parameters on processes taking place in the pond. The equations may be solved for the entire growth period and diurnal as well as seasonal fluctuations may be identified. The ultimate objective of the model is to predict the fish biomass that can be produced in a pond under a given set of environmental conditions.

  5. Determining the Population Size of Pond Phytoplankton.

    ERIC Educational Resources Information Center

    Hummer, Paul J.

    1980-01-01

    Discusses methods for determining the population size of pond phytoplankton, including water sampling techniques, laboratory analysis of samples, and additional studies worthy of investigation in class or as individual projects. (CS)

  6. This Pond Is Not for Ducks.

    ERIC Educational Resources Information Center

    American School and University, 1980

    1980-01-01

    The latest development in solar energy is a four-acre pond planned for Clark College in Vancouver (Washington). Filled with brine, it will serve both as collector and heat storage tank for the entire campus. (Author)

  7. Sediment Pond Removal and Enhanced Designs

    EPA Pesticide Factsheets

    Sediment Pond Removal Considerations; Scheduling, Baseflow diversion, Dewatering provisions, Sediment handling, Potential to discharge sediment, Down‐gradient sediment control(s), Erosion control(s), Stream reconstruction, Riparian vegetation.

  8. Wintertime Emissions from Produced Water Ponds

    NASA Astrophysics Data System (ADS)

    Evans, J.; Lyman, S.; Mansfield, M. L.

    2013-12-01

    Every year oil and gas drilling in the U.S. generates billions of barrels of produced water (water brought to the surface during oil or gas production). Efficiently disposing of produced water presents a constant financial challenge for producers. The most noticeable disposal method in eastern Utah's Uintah Basin is the use of evaporation ponds. There are 427 acres of produced water ponds in the Uintah Basin, and these were used to evaporate more than 5 million barrels of produced water in 2012, 6% of all produced water in the Basin. Ozone concentrations exceeding EPA standards have been observed in the Uintah Basin during winter inversion conditions, with daily maximum 8 hour average concentrations at some research sites exceeding 150 parts per billion. Produced water contains ozone-forming volatile organic compounds (VOC) which escape into the atmosphere as the water is evaporated, potentially contributing to air quality problems. No peer-reviewed study of VOC emissions from produced water ponds has been reported, and filling this gap is essential for the development of accurate emissions inventories for the Uintah Basin and other air sheds with oil and gas production. Methane, carbon dioxide, and VOC emissions were measured at three separate pond facilities in the Uintah Basin in February and March of 2013 using a dynamic flux chamber. Pond emissions vary with meteorological conditions, so measurements of VOC emissions were collected during winter to obtain data relevant to periods of high ozone production. Much of the pond area at evaporation facilities was frozen during the study period, but areas that actively received water from trucks remained unfrozen. These areas accounted for 99.2% of total emissions but only 9.5% of the total pond area on average. Ice and snow on frozen ponds served as a cap, prohibiting VOC from being emitted into the atmosphere. Emissions of benzene, toluene, and other aromatic VOCs averaged over 150 mg m-2 h-1 from unfrozen pond

  9. Material Selection Considerations for Solar Ponds

    NASA Technical Reports Server (NTRS)

    Sastri, S.; Vaidyanathan, T. K.; Marsh, H. E.; French, R. L.

    1984-01-01

    Among the various candidate materials tested, stainless steel shows the best potential for applications as heat exchanger components in solar ponds. Even stainless steel may lead to pitting type of corrosion. Weight loss measurements are probably unsatisfactory for corrosion evaluation in solar pond situations. Also included are the results from the potentiodynamic anodic polarization analysis, corrosion rate calculation via corrosion behavior diagrams, and immersion weight loss measurements.

  10. Material Selection Considerations for Solar Ponds

    NASA Technical Reports Server (NTRS)

    Sastri, S.; Vaidyanathan, T. K.; Marsh, H. E.; French, R. L.

    1984-01-01

    Among the various candidate materials tested, stainless steel shows the best potential for applications as heat exchanger components in solar ponds. Even stainless steel may lead to pitting type of corrosion. Weight loss measurements are probably unsatisfactory for corrosion evaluation in solar pond situations. Also included are the results from the potentiodynamic anodic polarization analysis, corrosion rate calculation via corrosion behavior diagrams, and immersion weight loss measurements.

  11. Pits, pipes, ponds--and me.

    PubMed

    Mara, Duncan

    2013-05-01

    My life in low-cost sanitation and low-cost wastewater treatment and the use of treated wastewater in agriculture and aquaculture really has been 'pits, pipes and ponds' - 'pits' are low-cost sanitation technologies (LCST) such as VIP latrines and pour-flush toilets; 'pipes' are low-cost sewerage, principally condominial (simplified) sewerage; and 'ponds' are low-cost wastewater treatment systems, especially waste stabilization ponds, and the use of treated wastewater in agriculture and aquaculture. 'Pits' were mainly working on World Bank LCST research projects, with fieldwork principally in Zimbabwe, 'pipes' were working on condominial sewerage projects in Brazil and disseminating this LCST to a wider global audience, and 'ponds' were waste stabilization ponds, with fieldwork mainly in Brazil, Colombia, Portugal and the United Kingdom, the development of aerated rock filters to polish facultative-pond effluents, and the human-health aspects of treated wastewater use in agriculture and aquaculture, with fieldwork in Brazil and the UK, and the application of quantitative microbial risk analysis. The paper provides a professional perspective and lessons from historical developments and gives recommended future directions based on my career working on low-cost sanitation technologies and treated wastewater use in agriculture and aquaculture.

  12. Cooling vest

    NASA Technical Reports Server (NTRS)

    Kosmo, J.; Kane, J.; Coverdale, J.

    1977-01-01

    Inexpensive vest of heat-sealable urethane material, when strapped to person's body, presents significant uncomplicated cooling system for environments where heavy accumulation of metabolic heat exists. Garment is applicable to occupations where physical exertion is required under heavy protective clothing.

  13. Cool Andromeda

    NASA Image and Video Library

    2013-01-28

    In this new view of the Andromeda, also known as M31, galaxy from the Herschel space observatory, cool lanes of forming stars are revealed in the finest detail yet. M31 is the nearest major galaxy to our own Milky Way at a distance of 2.5 million light-ye

  14. Methods of beam cooling

    SciTech Connect

    Sessler, A.M.

    1996-02-01

    Diverse methods which are available for particle beam cooling are reviewed. They consist of some highly developed techniques such as radiation damping, electron cooling, stochastic cooling and the more recently developed, laser cooling. Methods which have been theoretically developed, but not yet achieved experimentally, are also reviewed. They consist of ionization cooling, laser cooling in three dimensions and stimulated radiation cooling.

  15. Closing the Energy Budget: Advances in assessing heat fluxes into shallow lakes and ponds (Invited)

    NASA Astrophysics Data System (ADS)

    Tyler, S. W.; Hausner, M. B.; Suarez, F. I.; Selker, J. S.

    2009-12-01

    While soil heat flux is traditionally directly measured in any land surface energy study, measuring heat flux into and out of lakes and ponds is complicated by water column mixing processes, differing radiation adsorption coefficients, turbidity variation and heat flux through the sediment-water interface. High resolution thermal profile, to assess heat storage changes in aquatic systems is both time consuming and challenging using traditional thermister or thermocouple strings or casts. Recent advances in Raman spectra distributed temperature sensing (DTS) offer the opportunity to measure, at high spatial and temporal resolution, the thermal storage changes occurring in lakes and ponds. Measurements of thermal storage using DTS are presented from two distinct environments; a strongly density stratified solar pond and a deep cavern system (Devils Hole in Death Valley National Park), demonstrating the effectiveness of high resolution temperature measurements. In the solar pond environment, closure of the energy budget using direct measurements of evaporation and net radiation was greatly improved by incorporating transient thermal measurements, and the development of a cooling boundary layer easily shown. At Devils Hole, variations in shading of the water surface produced small but measureable horizontal gradients in water column temperature for short periods of the day, which impact both pool evaporation and the metabolism and behavior of aquatic organisms

  16. Cool Sportswear

    NASA Technical Reports Server (NTRS)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  17. Cooling technique

    DOEpatents

    Salamon, Todd R; Vyas, Brijesh; Kota, Krishna; Simon, Elina

    2017-01-31

    An apparatus and a method are provided. Use is made of a wick structure configured to receive a liquid and generate vapor in when such wick structure is heated by heat transferred from heat sources to be cooled off. A vapor channel is provided configured to receive the vapor generated and direct said vapor away from the wick structure. In some embodiments, heat conductors are used to transfer the heat from the heat sources to the liquid in the wick structure.

  18. A review of the salt-gradient solar pond technology

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H.

    1982-01-01

    The state of the salt-gradient solar pond technology is reviewed. Highlights of findings and experiences from existing ponds to data are presented, and the behavior, energy yield, operational features, and economics of solar ponds are examined. It is concluded that salt-gradient solar ponds represent a technically feasible, environmentally benign, and economically attractive energy producing alternative. In order to bring this emerging technology to maturity, however, much research and development effort remains to be undertaken. Specific R&D areas requiring the attention and action of technical workers and decision-makers are discussed, both from the perspectives of smaller, thermally-oriented ponds and larger, electricity generating ponds.

  19. Models and observations of Arctic melt ponds

    NASA Astrophysics Data System (ADS)

    Golden, K. M.

    2016-12-01

    During the Arctic melt season, the sea ice surface undergoes a striking transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is largely determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a significant role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a challenge to improving climate projections. It has been found that as the ponds grow and coalesce, the fractal dimension of their boundaries undergoes a transition from 1 to about 2, around a critical length scale of 100 square meters in area. As the ponds evolve they take complex, self-similar shapes with boundaries resembling space-filling curves. I will outline how mathematical models of composite materials and statistical physics, such as percolation and Ising models, are being used to describe this evolution and predict key geometrical parameters that agree very closely with observations.

  20. Event-based stormwater management pond runoff temperature model

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Sattar, A. M. A.; Thompson, A. M.

    2016-09-01

    Stormwater management wet ponds are generally very shallow and hence can significantly increase (about 5.4 °C on average in this study) runoff temperatures in summer months, which adversely affects receiving urban stream ecosystems. This study uses gene expression programming (GEP) and artificial neural networks (ANN) modeling techniques to advance our knowledge of the key factors governing thermal enrichment effects of stormwater ponds. The models developed in this study build upon and compliment the ANN model developed by Sabouri et al. (2013) that predicts the catchment event mean runoff temperature entering the pond as a function of event climatic and catchment characteristic parameters. The key factors that control pond outlet runoff temperature, include: (1) Upland Catchment Parameters (catchment drainage area and event mean runoff temperature inflow to the pond); (2) Climatic Parameters (rainfall depth, event mean air temperature, and pond initial water temperature); and (3) Pond Design Parameters (pond length-to-width ratio, pond surface area, pond average depth, and pond outlet depth). We used monitoring data for three summers from 2009 to 2011 in four stormwater management ponds, located in the cities of Guelph and Kitchener, Ontario, Canada to develop the models. The prediction uncertainties of the developed ANN and GEP models for the case study sites are around 0.4% and 1.7% of the median value. Sensitivity analysis of the trained models indicates that the thermal enrichment of the pond outlet runoff is inversely proportional to pond length-to-width ratio, pond outlet depth, and directly proportional to event runoff volume, event mean pond inflow runoff temperature, and pond initial water temperature.

  1. Effects of urbanization on three ponds in Middleton, Wisconsin

    USGS Publications Warehouse

    House, Leo B.

    1984-01-01

    A digital hydrologic model was used to simulate the effects of future residential development on pond inflow volumes and resulting water levels of three ponds in Middleton, Wisconsin. The model computed the daily water budget and the resulting water level for each pond. The results of the model calibration are presented in the report, along with the existing watershed hydrologic conditions and runoff volumes for the 1982 study period. Data was collected during 1982 to claibrate the model; the data included pond stage, ground-water levels, precipitation and other meteorological characteristics. In addition, water-quality samples were collected at each pond to characterize the water quality. Simulation of pond levels with the 1982 rainfall and fully developed watersheds did not result in stages greater than those observed in 1982. Simulation of pond levels with rainfall having a 20-year recurrence interval (1978) and hypothetical, fully developed watersheds resulted in maximum pond stages above those observed in 1982. Peak stage of Tiedeman 's Pond would increase by 2.77 feet, Stricker 's Pond by 3.91 feet, and Esser 's Pond by 1.44 feet. Simulation of pond levels with an estimated 100-year rainfall and hyopthetical, fully developed watersheds would result in peak stage increases of 5.30, 5.32, and 1.97 feet above the peak 1982 observed stages for Tiedeman's, Stricker's, and Esser 's Ponds, respectively. (USGS)

  2. Trace metal concentrations in oxidation ponds

    SciTech Connect

    Suffern, J.S.; Fitzgerald, C.M.; Szluha, A.T.

    1981-11-01

    Heavy metal concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the wastewater, sludge, and biotic components of the Oak Ridge National Laboratory oxidation ponds were examined to determine whether metals accumulated in tilapia. Results indicated that metal levels in the wastewater and biotic components are generally low and that the major metal reservoir is the sludge. Metals did not accumulate beyond established standards in the muscle or liver of tilapia grown in the oxidation ponds. This result may be partially due to the rapid growth rates of these fish (1-2 g fish/sup -1//day/sup -1/), with new tissue developing more rapidly than metals can accumulate. Another factor may be that the high concentrations of organic complexes in the ponds lower the availability of metals to the biota.

  3. Falmouth pond watchers: Water quality monitoring of Falmouth's coastal ponds. Report from the 1992 season

    SciTech Connect

    Howes, B.L.; Goehringer, D.D.

    1993-04-01

    1992 has seen a significant expansion in the focus of the Pond Watchers program. The long-term, high quality data base for the ponds is now enabling more emphasis on the ecological management and remediation aspects of the study, the ultimate goal of the program. Overall, 1992 saw only slight variation in the water quality conditions of Oyster, Little, Green, Great and Bournes Ponds from previous years, with a declining trend for Green Pond and small improvements in lower Great and Bournes Ponds. However, Oyster Pond showed a potentially significant improvement in bottom water oxygen conditions which suggests a new management direction for this system. All of the ponds continue to exhibit high nutrient levels and periodic bottom water oxygen depletion, especially in their upper reaches, and all stations exceed the nutrient levels specified by the Nutrient Overlay Bylaw. In contrast, the first year measurements in West Falmouth Harbor indicate high levels of water quality, although the inner reaches of the harbor do exceed those levels specified by the Bylaw.

  4. Cooling device

    SciTech Connect

    Teske, L.

    1984-02-21

    A cooling device is claimed for coal dust comprising a housing, a motor-driven conveyor system therein to transport the coal dust over coolable trays in the housing and conveyor-wheel arms of spiral curvature for moving the coal dust from one or more inlets to one or more outlets via a series of communicating passages in the trays over which the conveyor-wheel arms pass under actuation of a hydraulic motor mounted above the housing and driving a vertical shaft, to which the conveyor-wheel arms are attached, extending centrally downwardly through the housing.

  5. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  6. Salt Ponds, South San Francisco Bay

    NASA Technical Reports Server (NTRS)

    2002-01-01

    higher resolution 1000 pixel-wide image The red and green colors of the salt ponds in South San Francisco Bay are brilliant visual markers for astronauts. The STS-111 crew photographed the bay south of the San Mateo bridge in June, 2002. This photograph is timely because a large number of the salt ponds (more than 16,500 acres) that are owned by Cargill, Inc. will be sold in September for wetlands restoration-a restoration project second in size only to the Florida Everglades project. Rough boundaries of the areas to be restored are outlined on the image. Over the past century, more than 80% of San Francisco Bay's wetlands have been filled and developed or diked off for salt mining. San Francisco Bay has supported salt mining since 1854. Cargill has operated most of the bay's commercial salt ponds since 1978, and had already sold thousands of acres to the State of California and the Don Edwards National Wildlife Refuge. This new transaction will increase San Francisco Bay's existing tidal wetlands by 50%. The new wetlands, to be managed by the California Department of Fish and Game and the U.S. Fish and Wildlife Service, will join the Don Edwards National Wildlife Refuge, and provide valuable habitat for birds, fish and other wildlife. The wetlands will contribute to better water quality and flood control in the bay, and open up more coastline for public enjoyment. Additional information: Cargill Salt Ponds (PDF) Turning Salt Into Environmental Gold Salt Ponds on Way to Becoming Wetlands Historic Agreement Reached to Purchase San Francisco Bay Salt Ponds Astronaut photograph STS111-376-3 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth

  7. 1. ENVIRONMENTAL VIEW OF SOUTHEAST PORTION OF LOWER POND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ENVIRONMENTAL VIEW OF SOUTHEAST PORTION OF LOWER POND AND SPILLWAY, LOOKING SOUTH - Whitman Estate, Lower Pond Spillway, Approx. .5 mile south of intersection of DE72 & Ebeneezer Church Road, Newark, New Castle County, DE

  8. 2. ENVIRONMENTAL VIEW OF SOUTHEAST PORTION OF LOWER POND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ENVIRONMENTAL VIEW OF SOUTHEAST PORTION OF LOWER POND AND SPILLWAY WITH FOREBAY IN FOREGROUND, LOOKING SOUTH - Whitman Estate, Lower Pond Spillway, Approx. .5 mile south of intersection of DE72 & Ebeneezer Church Road, Newark, New Castle County, DE

  9. Pond dyes are Culex mosquito oviposition attractants

    PubMed Central

    2017-01-01

    Background British mosquito population distribution, abundance, species composition and potential for mosquito disease transmission are intimately linked to the physical environment. The presence of ponds and water storage can significantly increase the density of particular mosquito species in the garden. Culex pipiens is the mosquito most commonly found in UK gardens and a potential vector of West Nile Virus WNV, although the current risk of transmission is low. However any factors that significantly change the distribution and population of C. pipiens are likely to impact subsequent risk of disease transmission. Pond dyes are used to control algal growth and improve aesthetics of still water reflecting surrounding planting. However, it is well documented that females of some species of mosquito prefer to lay eggs in dark water and/or containers of different colours and we predict that dyed ponds will be attractive to Culex mosquitoes. Methods Black pond dye was used in oviposition choice tests using wild-caught gravid C. pipiens. Larvae from wild-caught C. pipiens were also reared in the pond dye to determine whether it had any impact on survival. An emergence trap caught any adults that emerged from the water. Water butts (80 L) were positioned around university glasshouses and woodland and treated with black pond dye or left undyed. Weekly sampling over a six month period through summer and autumn was performed to quantified numbers of larvae and pupae in each treatment and habitat. Results Gravid female Culex mosquitoes preferred to lay eggs in dyed water. This was highly significant in tests conducted under laboratory conditions and in a semi-field choice test. Despite this, survivorship in black dyed water was significantly reduced compared to undyed water. Seasonal analysis of wild larval and pupal numbers in two habitats with and without dye showed no impact of dye but a significant impact of season and habitat. Mosquitoes were more successful, with

  10. Recovery of phosphorus from waste ponds

    SciTech Connect

    Crea, D. A.

    1985-01-08

    Process for recovery of elemental phosphorus from waste ponds by dredging the waste pond to obtain an aqueous phosphorus slurry, separating particles larger than 2 mm from the slurry, treating the remaining slurry in an initial hydrocyclone and removing an overflow of solids larger than 500 micrometers, treating the underflow from the initial hydrocyclones in smaller diameter hydrocyclones, removing a second overflow enriched in slimes and diminished in phosphorus, removing a second underflow enriched in phosphorus and diminished in slimes and heating it sufficiently to melt the phosphorus therein, treating the heated second underflow in a centrifugal separator, and separating and recovering a stream of coalesced phosphorus from a heavy fraction of impurities.

  11. Simulation of the melt season using a resolved sea ice model with snow cover and melt ponds

    NASA Astrophysics Data System (ADS)

    Skyllingstad, Eric D.; Shell, Karen M.; Collins, Lee; Polashenski, Chris

    2015-07-01

    A three-dimensional sea ice model is presented with resolved snow thickness variations and melt ponds. The model calculates heating from solar radiative transfer and simulates the formation and movement of brine/melt water through the ice system. Initialization for the model is based on observations of snow topography made during the summer melt seasons of 2009, 2010, and 2012 from a location off the coast of Barrow, AK. Experiments are conducted to examine the importance of snow properties and snow and ice thickness by comparing observed and modeled pond fraction and albedo. One key process simulated by the model is the formation of frozen layers in the ice as relatively warm fresh water grid cells freeze when cooled by adjacent, cold brine-filled grid cells. These layers prevent vertical drainage and lead to flooding of melt water commonly observed at the beginning of the melt season. Flooding persists until enough heat is absorbed to melt through the frozen layer. The resulting long-term melt pond coverage is sensitive to both the spatial variability of snow cover and the minimum snow depth. For thin snow cover, initial melting results in earlier, reduced flooding with a small change in pond fraction after drainage of the melt water. Deeper snow tends to generate a delayed, larger peak pond fraction before drainage.

  12. Water quality, phytoplankton and zooplankton of Par Pond and Pond B. Volume 2. Phytoplankton. Final report, January 1984-June 1985

    SciTech Connect

    Chimney, M.J.; Cody, W.R.; Starkel, W.M.

    1985-08-01

    This document reports on the Par Pond and Pond B phytoplankton community. The objectives of this study were to (1) characterize the biological communities and environmental conditions in Par Pond and Pond B; (2) assess the impact and significance of entrainment losses of plankton at the Par Pond pumphouse; (3) assess the impact of heated discharge on the biotic communities throughout the reservoir; and (4) help determine if Par Pond maintains an indigenous balanced biological community as defined in state and federal regulations. A total of 368 phytoplankton taxa, representing all the major taxonomic groups characteristic of North American freshwaters, were identified from Par Pond and Pond B during this study (73 Bacillariophyta, 166 Chlorophyta, 30 Chrysophyta, 5 Cryptophyta, 47 Cyanophyta, 18 Euglenophyta, 11 phytoflaggelates and 18 Pyrrophyta).

  13. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Eel Pond Channel. 117.598 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The following requirements apply to the draw of Eel Pond (Water Street) drawbridge at mile 0.0 at...

  14. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Eel Pond Channel. 117.598 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The following requirements apply to the draw of Eel Pond (Water Street) drawbridge at mile 0.0 at...

  15. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Eel Pond Channel. 117.598 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The following requirements apply to the draw of Eel Pond (Water Street) drawbridge at mile 0.0 at...

  16. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Eel Pond Channel. 117.598 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The following requirements apply to the draw of Eel Pond (Water Street) drawbridge at mile 0.0 at...

  17. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Eel Pond Channel. 117.598 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The following requirements apply to the draw of Eel Pond (Water Street) drawbridge at mile 0.0 at...

  18. One year's experience with an operating saturated solar pond

    SciTech Connect

    Ochs, T.L.; Stojanoff, C.G.; Day, D.L.

    1980-01-01

    While the saturated non-convecting solar pond concept is not new, the borax pond at the Desert Research Institute (DRI) is the first application of the concept to an operating solar pond. As with any new application there have been experimentally identified problem areas. Four of these problems are discussed: 1) departure from saturation, 2) contamination, 3) bottom crystalization, and 4) covers.

  19. Vermont lakes and ponds: a pilot recreation planning process

    Treesearch

    Daniel T. Malone; John J. Lindsay

    1992-01-01

    This report analyzes a pilot planning study conducted on two Vermont ponds by University of Vermont outdoor recreation planning students. It discusses the planning process used for these ponds and offers ways in which a statewide lake and pond planning process could be implemented.

  20. Costs and risks of catfish split-pond systems

    USDA-ARS?s Scientific Manuscript database

    Split ponds are a recently developed, pond-based aquaculture system that allows intensification of catfish aquaculture. Successful industry-wide adoption of newly developing technologies like split-pond systems will depend upon their productivity and cost efficiencies. Costs and production performan...

  1. Aquatic Habitats: Exploring Desktop Ponds. Teacher's Guide.

    ERIC Educational Resources Information Center

    Barrett, Katharine; Willard, Carolyn

    This book, for grades 2-6, is designed to provide students with a highly motivating and unique opportunity to investigate an aquatic habitat. Students set up, observe, study, and reflect upon their own "desktop ponds." Accessible plants and small animals used in these activities include Elodea, Tubifex worms, snails, mosquito larvae, and fish.…

  2. MONITORING OF A BEST MANAGEMENT PRACTICE POND

    EPA Science Inventory

    The USEPA's Urban Watershed Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its research program. One BMP currently being monitored, a retention pond with wetland plantings, is in the Richmond Creek (RC) watershed part of New Yor...

  3. Ecology of Great Salt Pond, Block Island

    EPA Science Inventory

    Great Salt Pond is an island of estuarine water on Block Island, which sits in the middle of the Northwest Atlantic Continental Shelf. When the last continental glaciers retreated, they left a high spot on a terminal moraine. The rising sea from melting glaciers formed two island...

  4. Excavations in Hanford ponds, cribs, or ditches

    SciTech Connect

    Ryan, G.W., Westinghouse Hanford

    1996-09-20

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Unplanned Excavation/Drilling in Pond/Ditch/Crib. The calculations needed to quantify the risk associated with this accident scenario are included within.

  5. Pond fractals in a tidal flat.

    PubMed

    Cael, B B; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.

  6. Interconnected ponds operation for flood hazard distribution

    NASA Astrophysics Data System (ADS)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  7. Aquatic Habitats: Exploring Desktop Ponds. Teacher's Guide.

    ERIC Educational Resources Information Center

    Barrett, Katharine; Willard, Carolyn

    This book, for grades 2-6, is designed to provide students with a highly motivating and unique opportunity to investigate an aquatic habitat. Students set up, observe, study, and reflect upon their own "desktop ponds." Accessible plants and small animals used in these activities include Elodea, Tubifex worms, snails, mosquito larvae, and fish.…

  8. MONITORING OF A BEST MANAGEMENT PRACTICE POND

    EPA Science Inventory

    The USEPA's Urban Stormwater Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its research program. One BMP being monitored, a wetland/retention pond, is in the Richmond Creek (RC) watershed in the New York City Department of Envi...

  9. Solar Pond Research at Argonne National Laboratory

    NASA Technical Reports Server (NTRS)

    Hull, J. R.

    1984-01-01

    Focus is on applications that utilize the seasonal heat-storage capability of the solar pond for low-temperature thermal processes, however the results of the research are directly applicable to electricity-generating and other applications. Important technical results are summarized.

  10. MONITORING OF A BEST MANAGEMENT PRACTICE POND

    EPA Science Inventory

    The USEPA's Urban Stormwater Management Branch has monitored stormwater drainage and best management practices (BMP) as part of its research program. One BMP being monitored, a wetland/retention pond, is in the Richmond Creek (RC) watershed in the New York City Department of Envi...

  11. Plankton Management for Channel Catfish Nursery Ponds

    USDA-ARS?s Scientific Manuscript database

    We conducted a series of studies examining the fertilization practices used for channel catfish nursery ponds. The best fertilization protocol would be one that uses low-cost fertilizers, quickly establishes a desirable phytoplankton bloom, and produces the greatest number of large zooplankton. In...

  12. Ecology of Great Salt Pond, Block Island

    EPA Science Inventory

    Great Salt Pond is an island of estuarine water on Block Island, which sits in the middle of the Northwest Atlantic Continental Shelf. When the last continental glaciers retreated, they left a high spot on a terminal moraine. The rising sea from melting glaciers formed two island...

  13. Cibola High Levee Pond annual report 2004

    USGS Publications Warehouse

    Mueller, Gordon A.; Carpenter, Jeanette; Marsh, Paul C.

    2005-01-01

    Remaining work will be finished this coming summer and a final report describing CHLP and the ecology of these fish will be completed by the end of 2005. We offer our assistance to the Fish and Wildlife Service in the pond’s renovation and support for the creation of additional refuge ponds. Funding for this work ends September 2005.

  14. Pond fractals in a tidal flat

    NASA Astrophysics Data System (ADS)

    Cael, B. B.; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.

  15. Contour Mapping for Pools and Ponds.

    ERIC Educational Resources Information Center

    Berry, Noel

    1985-01-01

    Simple jigs (positioning devices) to make contour mapping tasks easier and more accurate are easily constructed from 5mm-thick acetate sheets. These plastic holders are used with meter sticks to provide scanning guides to measure pools and ponds. Instructions for making the jigs and sample results are included. (DH)

  16. Microalgal separation from high-rate ponds

    SciTech Connect

    Nurdogan, Y.

    1988-01-01

    High rate ponding (HRP) processes are playing an increasing role in the treatment of organic wastewaters in sunbelt communities. Photosynthetic oxygenation by algae has proved to cost only one-seventh as much as mechanical aeration for activated sludge systems. During this study, an advanced HRP, which produces an effluent equivalent to tertiary treatment has been studied. It emphasizes not only waste oxidation but also algal separation and nutrient removal. This new system is herein called advanced tertiary high rate ponding (ATHRP). Phosphorus removal in HRP systems is normally low because algal uptake of phosphorus is about one percent of their 200-300 mg/L dry weights. Precipitation of calcium phosphates by autofluocculation also occurs in HRP at high pH levels, but it is generally not complete due to insufficient calcium concentration in the pond. In the case of Richmond where the studies were conducted, the sewage is very low in calcium. Therefore, enhancement of natural autoflocculation was studied by adding small amounts of lime to the pond. Through this simple procedure phosphorus and nitrogen removals were virtually complete justifying the terminology ATHRP.

  17. Chemical Soups Around Cool Stars

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This artist's conception shows a young, hypothetical planet around a cool star. A soupy mix of potentially life-forming chemicals can be seen pooling around the base of the jagged rocks. Observations from NASA's Spitzer Space Telescope hint that planets around cool stars the so-called M-dwarfs and brown dwarfs that are widespread throughout our galaxy might possess a different mix of life-forming, or prebiotic, chemicals than our young Earth.

    Life on our planet is thought to have arisen out of a pond-scum-like mix of chemicals. Some of these chemicals are thought to have come from a planet-forming disk of gas and dust that swirled around our young sun. Meteorites carrying the chemicals might have crash-landed on Earth.

    Astronomers don't know if these same life-generating processes are taking place around stars that are cooler than our sun, but the Spitzer observations show their disk chemistry is different. Spitzer detected a prebiotic molecule, called hydrogen cyanide, in the disks around yellow stars like our sun, but found none around cooler, less massive, reddish stars. Hydrogen cyanide is a carbon-containing, or organic compound. Five hydrogen cyanide molecules can join up to make adenine a chemical element of the DNA molecule found in all living organisms on Earth.

  18. Chemical Soups Around Cool Stars

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This artist's conception shows a young, hypothetical planet around a cool star. A soupy mix of potentially life-forming chemicals can be seen pooling around the base of the jagged rocks. Observations from NASA's Spitzer Space Telescope hint that planets around cool stars the so-called M-dwarfs and brown dwarfs that are widespread throughout our galaxy might possess a different mix of life-forming, or prebiotic, chemicals than our young Earth.

    Life on our planet is thought to have arisen out of a pond-scum-like mix of chemicals. Some of these chemicals are thought to have come from a planet-forming disk of gas and dust that swirled around our young sun. Meteorites carrying the chemicals might have crash-landed on Earth.

    Astronomers don't know if these same life-generating processes are taking place around stars that are cooler than our sun, but the Spitzer observations show their disk chemistry is different. Spitzer detected a prebiotic molecule, called hydrogen cyanide, in the disks around yellow stars like our sun, but found none around cooler, less massive, reddish stars. Hydrogen cyanide is a carbon-containing, or organic compound. Five hydrogen cyanide molecules can join up to make adenine a chemical element of the DNA molecule found in all living organisms on Earth.

  19. Saltwater Ponds: Biogeochemically Dynamic Components of Salt Marsh Ecosystems

    NASA Astrophysics Data System (ADS)

    Spivak, A. C.; Gosselin, K.

    2016-02-01

    Saltwater ponds can be prominent features of salt marsh ecosystems. Located within the high marsh, these shallow depressions are continuously submerged and only hydrologically connected to saltwater tidal creeks on spring tides. The spatial extent of marsh ponds is expected to increase with sea level rise yet the consequences of pond expansion on marsh ecosystem processes, including organic matter production, burial and export, are largely unknown. To better understand how ponding affects the biogeochemistry of salt marshes, we characterized water column and sediment processes in three ponds within the Plum Island Ecosystems Long Term Ecological Research site (Rowley, MA). The ponds were characterized by different plant communities; two ponds were dominated by macroalgae and the submerged grass Ruppia while the third pond was unvegetated except for isolated patches of macroalgae. Sensors measuring dissolved oxygen (DO) concentrations, salinity, temperature, and light levels were deployed in each of the ponds from May - November 2014. Sediment processes were evaluated over 11 weeks in summer and fall by characterizing by organic matter composition and pore water chemistry. The ponds were shallow ( 30cm) and had similar salinity and temperature regimes. Whole-pond metabolism varied with plant abundance and rates of production declined from summer to fall. In the vegetated ponds, water column DO concentrations were often supersaturated during the day and hypoxic at night. In contrast, day-to-night swings in DO were not as extreme in the unvegetated pond and concentrations rarely fell to hypoxic levels. In the sediments, concentrations bacteria-specific lipids as well as rates of respiration and sulfate reduction were higher in the vegetated ponds but varied over time. Considerable variability in plant community composition and abundance across seasons and between ponds as well as the unique hydrology of these systems make them biogeochemically dynamic components of

  20. Combining mariculture and seawater-based solar ponds

    SciTech Connect

    Lowrey, P.; Ford, R.; Collando, F.; Morgan, J.; Frusti, E. . Dept. of Mechanical Engineering)

    1990-05-01

    Solar ponds have been thoroughly studied as a means to produce electricity or heat, but there may be comparable potential to use solar ponds to produce optimized environments for the cultivation of some aquaculture crops. For this, conventional brine-based solar ponds could be used. This strategy would probably be most suitable at desert sites where concentrated brine was abundant, pond liners might not be needed, and the crop produced could be shipped to market. Generally, a heat exchanger would be required to transfer heat from the solar pond into the culture ponds. Culture ponds could therefore use either fresh or marine water. In contrast, this paper explores seawater-based solar ponds. These are solar ponds which use seawater in the bottom storage zone and fresh water in the upper convective zone. Because the required temperature elevations for mariculture are only about 10{degrees}C, seawater-based solar ponds are conceivable. Seawater-based ponds should be very inexpensive because, by the shore, salt costs would be negligible and a liner might be unnecessary.

  1. Urban ponds as an aquatic biodiversity resource in modified landscapes.

    PubMed

    Hill, Matthew J; Biggs, Jeremy; Thornhill, Ian; Briers, Robert A; Gledhill, David G; White, James C; Wood, Paul J; Hassall, Christopher

    2017-03-01

    Urbanization is a global process contributing to the loss and fragmentation of natural habitats. Many studies have focused on the biological response of terrestrial taxa and habitats to urbanization. However, little is known regarding the consequences of urbanization on freshwater habitats, especially small lentic systems. In this study, we examined aquatic macro-invertebrate diversity (family and species level) and variation in community composition between 240 urban and 782 nonurban ponds distributed across the United Kingdom. Contrary to predictions, urban ponds supported similar numbers of invertebrate species and families compared to nonurban ponds. Similar gamma diversity was found between the two groups at both family and species taxonomic levels. The biological communities of urban ponds were markedly different to those of nonurban ponds, and the variability in urban pond community composition was greater than that in nonurban ponds, contrary to previous work showing homogenization of communities in urban areas. Positive spatial autocorrelation was recorded for urban and nonurban ponds at 0-50 km (distance between pond study sites) and negative spatial autocorrelation was observed at 100-150 km and was stronger in urban ponds in both cases. Ponds do not follow the same ecological patterns as terrestrial and lotic habitats (reduced taxonomic richness) in urban environments; in contrast, they support high taxonomic richness and contribute significantly to regional faunal diversity. Individual cities are complex structural mosaics which evolve over long periods of time and are managed in diverse ways. This facilitates the development of a wide range of environmental conditions and habitat niches in urban ponds which can promote greater heterogeneity between pond communities at larger scales. Ponds provide an opportunity for managers and environmental regulators to conserve and enhance freshwater biodiversity in urbanized landscapes whilst also facilitating

  2. Renewable Heating and Cooling

    EPA Pesticide Factsheets

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  3. Phytoplankton, zooplankton, primary productivity and physico-chemical parameters of Par Pond and Pond B. Interim report, December 1983-May 1984

    SciTech Connect

    Chimney, M.J.; Cody, W.R.

    1985-04-01

    This report summarizes phytoplankton, zooplankton, primary productivity and physico-chemical parameter data from Par Pond and Pond B during the first six months of a study initiated in December 1983 and scheduled to continue through June 1985. A total of 195 phytoplankton taxa from Par Pond and 105 taxa from pond B were recorded during this study. A total of 89 zooplankton taxa from Par Pond and 58 taxa from Pond B were identified during this study.

  4. Simulated ground-water flow for a pond-dominated aquifer system near Great Sandy Bottom Pond, Pembroke, Massachusetts

    USGS Publications Warehouse

    Carlson, Carl S.; Lyford, Forest P.

    2005-01-01

    A ground-water flow simulation for a 66.4-square-mile area around Great Sandy Bottom (GSB) Pond (105 acres) near Pembroke, Massachusetts, was developed for use by local and State water managers to assess the yields for public water supply of local ponds and wells for average climatic and drought conditions and the effects of water withdrawals on nearby water levels and streamflows. Wetlands and ponds cover about 30 percent of the study area and the aquifer system is dominated by interactions between ground water and the ponds. The three largest surface-water bodies in the study area are Silver Lake (640 acres), Monponsett Pond (590 acres), and Oldham Pond (236 acres). The study area is drained by tributaries of the Taunton River to the southwest, the South and North Rivers to the northeast, and the Jones River to the southeast. In 2002, 10.8 million gallons per day of water was exported from ponds and 3.5 million gallons per day from wells was used locally for public supply. A transient ground-water-flow model with 69 monthly stress periods spanning the period from January 1998 through September 2003 was calibrated to stage at GSB Pond and nearby Silver Lake and streamflow and water levels collected from September 2002 through September 2003. The calibrated model was used to assess hydrologic responses to a variety of water-use and climatic conditions. Simulation of predevelopment (no pumping or export) average monthly (1949-2002) water-level conditions caused the GSB Pond level to increase by 6.3 feet from the results of a simulation using average 2002 pumping for all wells, withdrawals, and exports. Most of this decline can be attributed to pumping, withdrawals, and exports of water from sites away from GSB Pond. The effects of increasing the export rate from GSB Pond by 1.25 and 1.5 times the 2002 rate were a lowering of pond levels by a maximum of 1.6 and 2.8 feet, respectively. Simulated results for two different drought conditions, one mild drought similar to

  5. Improving nitrogen reduction in waste stabilisation ponds.

    PubMed

    Archer, H E; O'Brien, B M

    2005-01-01

    This paper reviews the performance of two waste stablisation ponds (WSP) systems in the South Island of New Zealand that have been upgraded to multiple ponds-in-series to improve effluent quality. Results of monitoring are provided which show that it is possible to achieve relatively low ammonia (approximately 1 g/m3) and total nitrogen (approximately 10 g/m3) effluent concentrations through the use of nitrification filter beds (rock trickling filters) and sand filters. Evidence suggests that the nitrification and denitrification processes in the extra biofilm surface area provided by the rock filters or rock bank protection is primarily responsible for the improved effluent quality. The paper also compares the WSP results with effluent quality predicted by published formulae. It is concluded that these formulae do not reliably predict the performance of WSP systems and the development of universally applicable design guidelines would be useful.

  6. Consider the cold facts about steam-jet vacuum cooling

    SciTech Connect

    Decker, L.O. )

    1993-01-01

    This article compares the advantages of steam-jet vacuum cooling systems with mechanical compression or absorption systems. Steam-jet vacuum systems are popular where large flow rates of cool water are continuously required. Some utility and cogeneration plants find steam-jet cooling a convenient use for excess summer steam to improve the summer load balance between steam production and electric power generation. Initial costs depend on size and capacity. A 100-200 ton unit may be comparable to a mechanical system of the same size. In addition a cooling tower will be needed where river, pond, or lake water is not available. Simplicity and reliability of the system means savings in maintenance costs.

  7. Restaurant food cooling practices.

    PubMed

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  8. Local and landscape determinants of amphibian communities in urban ponds.

    PubMed

    Hamer, Andrew J; Parris, Kirsten M

    2011-03-01

    Urbanization is currently responsible for widespread declines of amphibian populations globally through the loss, isolation, and degradation of habitat. However, it is not clear how urbanization affects amphibian communities at both local (pond) and landscape scales. We assessed the breeding distribution of frogs in ponds along an urban-rural gradient in Greater Melbourne, Australia, and examined community relationships with habitat quality and landscape context. We sampled frog larvae at 65 ponds on four separate occasions and collected data on local pond and landscape variables. Using Bayesian Poisson regression modeling we found that species richness decreased at ponds surrounded by high densities of human residents and at ponds with high water conductivity, whereas species richness increased substantially at ponds surrounded by a high proportion of green open space. Ordination of individual species presence-absence data by canonical correspondence analysis largely confirmed these findings. Ordination also highlighted the negative influences of pond shading and density of predatory fish, and the positive influence of aquatic vegetation, on community composition. Individual species' responses to urbanization varied. Urbanization had strong negative effects on species that were associated with well-vegetated, sunny, fish-free ponds. Our study highlights the importance of strategic management actions in urban landscapes to improve terrestrial habitat and connectivity around ponds and other wetlands, and local management actions to improve water quality, remove predatory fish, and plant aquatic vegetation at breeding sites.

  9. Changes in tundra pond limnology: re-sampling Alaskan ponds after 40 years.

    PubMed

    Lougheed, Vanessa L; Butler, Malcolm G; McEwen, Daniel C; Hobbie, John E

    2011-09-01

    The arctic tundra ponds at the International Biological Program (IBP) site in Barrow, AK, were studied extensively in the 1970s; however, very little aquatic research has been conducted there for over three decades. Due to the rapid climate changes already occurring in northern Alaska, identifying any changes in the ponds' structure and function over the past 30-40 years can help identify any potential climate-related impacts. Current research on the IBP ponds has revealed significant changes in the physical, chemical, and biological characteristics of these ponds over time. These changes include increased water temperatures, increased water column nutrient concentrations, the presence of at least one new chironomid species, and increased macrophyte cover. However, we have also observed significant annual variation in many measured variables and caution that this variation must be taken into account when attempting to make statements about longer-term change. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on freshwater ecosystem structure and function. Continued monitoring and protection of these invaluable sites is required to help understand the implications of climate change on freshwater ecosystems in the Arctic.

  10. Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients.

    PubMed

    Roy, Virginie; Amyot, Marc; Carignan, Richard

    2009-08-01

    Beaver impoundments flood forested areas and may be important production sites for methylmercury (MeHg) because of the resulting enhanced microbial activity and oxygen depletion. The influence of 17 beaver impoundments on streamwater chemistry (total mercury (THg), MeHg, nutrients, cations, and anions)] was investigated by sampling sites located along vegetation and pond-age gradients in southwestern Quebec (Canada). Recently inundated beaver ponds (< 10 years old) and those located in coniferous watersheds had the highest MeHg concentrations (range, 0.10-4.53 ng L(-1)) and greatest methylation efficiencies (% THg as MeHg; range, 10-74%). High heterotrophic activity likely occurred in the beaver ponds as suggested by depletions of dissolved oxygen, sulfate and nitrite-nitrate concentrations, and increases in nutrients (e.g., dissolved organic carbon, total phosphorus, and total nitrogen) in outlets compared to inlets. Acidic waters at coniferous sites may have stimulated more MeHg production than in mixed woodland regions. Lower methylation efficiencies in older ponds (> 20 years old) may be due to the degradation of less labile organic matter as ponds age. Beavers actively alter watersheds by building impoundments, and our findings indicate that this landscape disturbance may be a significant source of MeHg to downstream water bodies.

  11. Holocene closure of Lib Pond, Marshall Islands.

    PubMed

    Myhrvold, Conor L; Janny, Fran; Nelson, Daniel; Ladd, S Nemiah; Atwood, Alyssa; Sachs, Julian P

    2014-01-01

    Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18' 48.99″ N, 167 22' 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water.

  12. Holocene Closure of Lib Pond, Marshall Islands

    PubMed Central

    Myhrvold, Conor L.; Janny, Fran; Nelson, Daniel; Ladd, S. Nemiah; Atwood, Alyssa; Sachs, Julian P.

    2014-01-01

    Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18′ 48.99″ N, 167 22′ 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water. PMID:24638020

  13. Par Pond refill water quality sampling

    SciTech Connect

    Koch, J.W. II; Martin, F.D.; Westbury, H.M.

    1996-08-01

    This study was designed to document anoxia and its cause in the event that the anoxia caused a fish kill. However, no fish kill was observed during this study, and dissolved oxygen and nutrient concentrations generally remained within the range expected for southeastern reservoirs. Par Pond water quality monitoring will continue during the second summer after refill as the aquatic macrophytes become reestablished and nutrients in the sediments are released to the water column.

  14. New approaches for Artemia pond culture.

    PubMed

    Van Hoa, Nguyen; Le Tran, Huu; Hong Van, Nguyen Thi; Sorgeloos, P; Van Stappen, G

    2013-01-01

    A project for intensive culture of Artemia in Vinhchau solar saltwork was funded by Soctrang Authority. The aim of this project is to increase the average cyst yield of 50kg.ha-1.crop, and to build up a stable culture technique with a better yield for local farmers. Multiple laboratory experiments were set up with inert food including fermented rice bran, tiger shrimp feed (PL15), as well as their combination with live algae (Chaetoceros). Results showed that, under laboratory conditions, fermented rice bran and tiger shrimp feed can be used as supplemental food sources. The shrimp feed alone or in combination with algae always gave better cyst production compared to the others, but should not account for more than 50% of the diet. In the field trials, aeration of Artemia ponds also increased cyst yields (from 195.8+/-44.2 to 207+/-46.1kg.ha-1.crop with 6 and 12 aeration a day, respectively) compared to ponds with no aeration (88.2+/-27.5kg.ha-1.crop), however the returns on investment (ROI=2.73-2.71 with aera tion vs. 2.24 without) are not significantly different. Utilization of fermented rice bran (20kg.ha-1.day) and shrimp feed (6kg.ha-1.day) as a supplementary feed during pond production in combination with greenwater supplies (10% of pond volume daily) resulted in higher yields (96.0+/-15.9 and 157.2+/-15.0kg.ha-1.crop, respectively) than traditional culture; Shrimp feed as a supplemental feed supported the cyst yield but their negative effect was at a high cost vs. traditional culture and use of fermented rice bran. Based on the cyst yield and ROI, fermented rice bran should be a promising item for poor farmers.

  15. Rapid surface-water volume estimations in beaver ponds

    NASA Astrophysics Data System (ADS)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  16. Dispersion of plutonium from contaminated pond sediments

    USGS Publications Warehouse

    Rees, T.F.; Cleveland, J.M.; Carl, Gottschall W.

    1978-01-01

    Sediment-water distributions of plutonium as a function of pH and contact time are investigated in a holding pond at the Rocky Flats plant of the Department of Energy. Although plutonium has been shown to sorb from natural waters onto sediments, the results of this study indicate that under the proper conditions it can be redispersed at pH 9 and above. Concentrations greater than 900 pCi Pu/L result after 34 h contact at pH 11 or 12 and the distribution coefficient, defined as the ratio of concentration in the sediment to that in the liquid, decreases from 1.1 ?? 105 at pH 7 to 1.2 ?? 103 at pH 11. The plutonium is probably dispersed as discrete colloids or as hydrolytic species adsorbed onto colloidal sediment particles whose average size decreases with increasing pH above pH 9. About 5% of the total plutonium is dispersed at pH 12, and the dispersion seems to readsorb on the sediment with time. Consequently, migration of plutonium from the pond should be slow, and it would be difficult to remove this element completely from pond sediment by leaching with high pH solutions. ?? 1978 American Chemical Society.

  17. Ice-wedge networks and "whale-hole" ponds in frozen ground

    NASA Astrophysics Data System (ADS)

    Plug, Lawrence J.

    The patterns of ice-wedge networks and of whale-hole ponds in frozen ground self-organize by strong interactions between pattern elements. Mechanisms for the consistent spacing (15--25 m) and orientation between ice wedges are examined in a model encapsulating the opening of fractures under a combination of thermally-induced tensile stress, stress reduction near open fractures, and heterogeneity of frozen ground and insulating snow. Modeled networks are similar to ice-wedge networks on the Espenberg coastal plain, Bering Land-Bridge National Park, Alaska, at the level of variation among Espenberg networks, as indicated by: (i) comparisons of distributions of relative orientation and spacing between wedges; and (ii) application of nonlinear spatial forecasting to modeled and Espenberg network patterns. Spacing in modeled networks is sensitive to fracture depth and weakly sensitive to thermally-induced tensile stress and substrate strength, consistent with the narrow range of spacing between natural ice wedges in different regions. In an extended model that includes recurring fractures over thousands of winters, networks similar to natural ice-wedge networks form. The annual pattern of fractures diverges from the ice-wedge pattern, with only ½--¾ of wedges fracturing in a single year at a steady-state reached after approximately 103 y. Short-lived sequences of extreme stress from cooling can permanently alter the spacing between and the fracture frequency of modeled ice wedges, suggesting that the existence and characteristics of existing and relic natural ice-wedge networks reflect extreme, not mean, climate conditions. Ponds on the Espenberg beach-ridge plain, approximately 2 m across and 1 m deep and surrounded by raised rings of ice-rich permafrost 2 m across and 0.5 m high, form through an interplay between localized bacterial decomposition of peat, thawing of frozen ground and frost heaving of peat in rings. Groups of hundreds of ponds at Espenberg assemble

  18. A survey of catfish pond water chemistry parameters for copper toxicity modelling

    USDA-ARS?s Scientific Manuscript database

    Water samples were collected from 20 catfish ponds in 2015 to obtain data useful in predicting copper toxicity and chemical behavior. Ponds were located in major catfish producing areas of west Alabama, east Arkansas, and Mississippi. Pond types included traditional levee ponds, split-ponds, water...

  19. Treatment of piggery wastes in waste stabilization ponds.

    PubMed

    Estrada, V E E; Hernández, D E A

    2002-01-01

    The piggery industry produces high effluent loads. This is due to the high concentration of animals kept in a confined space, foods with high protein content that are not well assimilated by the animals, and poor on-farm water management. In this study, we present the characteristics, design, site selection, soil study, and the construction of a pilot pond system for a family farm located in a warm climate area. The design includes a solids sedimentation phase, an anaerobic pond, a facultative pond and three maturation ponds. Once the system had reached steady state, the organic and bacterial kinetic constants were determined for each pond. The control parameters were determined and the dissolved oxygen and removal efficiency profiles were obtained. The results indicate that the effluent from the second maturation pond complies with the Official Mexican Standard for reuse in agriculture ("1000 FC/100 ml).

  20. Truscott Brine Lake solar-pond system conceptual design

    NASA Astrophysics Data System (ADS)

    Leboeuf, C. M.; May, E. K.

    1982-08-01

    Discussed is a conceptual design study for a system of electricity-producing salt-gradient solar ponds that will provide power to a chloride control project under construction near Truscott, Tex. The chloride control project comprises a 1200-ha (3000-acre) brine impoundment lake to which brine will be pumped from several salty sources in the Wichita River basin. The solar ponds are formed by natural evaporation of the briny water pumped to Truscott. Heat is extraced from the solar ponds and used to drive organic Rankine-cycle generators. Ponds were sized to provide the pumping needs of the chloride control project and the maintenance requirements of the solar ponds. The system includes six solar pond modules for a total area of 63.1 ha, and produces 1290 kW of base load electricity. Although sized for continuous power production, alternative operating scenarios involving production of peak power for shorter durations were also examined.

  1. Polishing ponds for post-treatment of digested sewage. Part 1: Flow-through ponds.

    PubMed

    Cavalcanti, P F; van Haandel, A; Lettinga, G

    2001-01-01

    Polishing ponds are used to improve the quality of effluents from efficient anaerobic sewage treatment plants like UASB reactors, so that the final effluent quality becomes compatible with legal or desired standards. The residual organic material and suspended solids concentrations in the digested sewage are reduced, but often the main objective of polishing ponds is to improve the hygienic quality, measured by the concentration of two indicator organisms: helminth eggs and faecal coliforms (FC). The FC removal is normally the slowest process and for that reason becomes the main design criterion for a polishing pond. By contrast in conventional waste stabilisation pond (WSP) systems the organic material removal is the governing design parameter. The feasibility of operating a single polishing pond for the post-treatment of UASB effluent is shown in this paper and the final effluent quality as a function of the retention time is discussed. Even under the most adverse weather conditions (several weeks of rain) the population of algae remained stable and produced enough oxygen to maintain a predominantly aerobic environment. The final effluent TSS and BOD concentrations were not very low for retention times of less than 1 week, but this could be attributed to the presence of algae in the final effluent. Filtered effluent BOD and TSS concentrations were very low. For retention times of more than 1 week algae were efficiently removed from the liquid phase by the action of predators and algae flocculation and settling, so that a final effluent with a very low BOD and TSS concentrations was produced. To maximise the FC removal efficiency the polishing pond was constructed with the objective of approaching a plug flow regime. However, the observed efficiency was well below the expected value for all retention times, which was attributable to imperfections of the flow regime. From tracer studies it was established that the dispersion number was in the range of 0.14 to 0

  2. A gradient maintenance technique for seawater solar ponds

    SciTech Connect

    Kleis, S.J.; Li, H.; Shi, J.

    1997-02-01

    Seawater solar ponds are being evaluated as a means of reducing heat losses from thermal refuge areas in outdoor mariculture ponds during cold weather. The thermal refuge areas are intended to provide a reliable means of protecting fish crops from lethal cold water temperatures in the winter months. A continuous filling technique is demonstrated for use in gradient zone maintenance of the seawater solar ponds. The technique allows indefinite operation of the refuge areas with a minimal amount of fresh water.

  3. A gradient maintenance technique for seawater solar ponds

    SciTech Connect

    Kleis, S.J.; Li, H.; Shi, J.

    1995-11-01

    Seawater solar ponds are being evaluated as a means of reducing heat losses from thermal refuge areas in outdoor mariculture ponds during cold weather. The thermal refuge areas are intended to provide a reliable means of protecting fish crops from lethal cold water temperatures in the winter months. A continuous filling technique is demonstrated for use in gradient zone maintenance of the seawater solar ponds. The technique allows indefinite operation of the refuge areas with a minimal amount of fresh water.

  4. Unexpected early extinction of the European pond turtle (Emys orbicularis) in Sweden and climatic impact on its Holocene range.

    PubMed

    Sommer, Robert S; Lindqvist, Charlotte; Persson, Arne; Bringsøe, Henrik; Rhodin, Anders G J; Schneeweiss, Norbert; Siroký, Pavel; Bachmann, Lutz; Fritz, Uwe

    2009-03-01

    Using ancient DNA sequences of subfossil European pond turtles (Emys orbicularis) from Britain, Central and North Europe and accelerator mass spectrometry radiocarbon dating for turtle remains from most Swedish sites, we provide evidence for a Holocene range expansion of the pond turtle from the southeastern Balkans into Britain, Central Europe and Scandinavia, according to the 'grasshopper pattern' of Hewitt. Northeastern Europe and adjacent Asia were colonized from another refuge located further east. With increasing annual mean temperatures, pond turtles reached southern Sweden approximately 9800 years ago. Until approximately 5500 years ago, rising temperatures facilitated a further range expansion up to Ostergötland, Sweden (approximately 58 degrees 30'N). However, around 5500 years ago pond turtle records suddenly terminate in Sweden, some 1500 years before the Holocene thermal maximum ended in Scandinavia and distinctly earlier than previously thought. This extinction coincides with a temporary cooling oscillation during the Holocene thermal maximum and is likely related to lower summer temperatures deteriorating reproductive success. Although climatic conditions improved later again, recolonization of Sweden from southern source populations was prevented by the Holocene submergence of the previous land connection via the Danish Straits that occurred approximately 8500 years ago.

  5. 7. PUMPING PLANT, SOUTHWEST AND SOUTHEAST SIDES, AND STILLING POND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. PUMPING PLANT, SOUTHWEST AND SOUTHEAST SIDES, AND STILLING POND - Outlook Irrigation District, Pumping Plant & Woodstave Pipe, Hudson Road & Snipes Lateral Road vicinity, Outlook, Yakima County, WA

  6. 7. William E. Barrett, Photographer, August 1975. LOG PONDS LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. William E. Barrett, Photographer, August 1975. LOG PONDS LOOKING WEST FROM POWERHOUSE ROOF. TRANSFORMER SHED IN FOREGROUND. - Meadow River Lumber Company, Highway 60, Rainelle, Greenbrier County, WV

  7. A model of the refreezing of melt ponds

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Feltham, D. L.; Schroeder, D.

    2012-12-01

    Melt ponds form on Arctic sea ice during the melting season and their presence affects the heat and mass balance of the ice cover. Towards the end of the melt season melt ponds cover up to 50% of the sea ice area decreasing the value of the surface albedo by up to 20%. The dramatic impact of melt ponds on the albedo feedback mechanism for sea ice melt has been demonstrated in previous studies. Here, we focus on the refreezing of melt ponds. As the ponds freeze from above, they gradually release latent heat that inhibits basal ice growth. The refreezing process can take up to three months. Within the ASBO (Arctic Synoptic Basin-wide Observations) project we have developed a model of refreezing melt ponds that uses mushy layer theory to describe the sea ice and takes account of the presence of salt in the refreezing melt pond. We use this model to investigate the rate at which melt ponds refreeze, releasing latent heat, and their impact on sea ice growth. Model results are compared with in situ data collected by Ice Mass Balance buoys in the Arctic. Furthermore we will give an estimate of the impact of the melt pond presence on sea ice growth in the Arctic basin.

  8. Minimizing contamination hazards to waterbirds using agricultural drainage evaporation ponds

    NASA Astrophysics Data System (ADS)

    Bradford, David F.; Smith, Lynda A.; Drezner, Deborah S.; Shoemaker, J. David

    1991-11-01

    In much of the San Joaquin Valley, California, USA, inadequate drainage of applied irrigation water and accumulating salts in the soil have necessitated the installation of subsurface tile drainage systems to preserve crop productivity. At present, these subsurface drainage waters are disposed of by means of evaporation ponds or discharges into the San Joaquin River. Unfortunately, most of these agricultural drainage waters contain high concentrations of salts and naturally occurring trace elements, such as selenium, and recent evidence indicates that substantial numbers of waterbirds are exposed to contamination by selenium in the evaporation ponds. In order to avoid, minimize, or mitigate the adverse impacts on wildlife using the ponds, alternative pond management methods must be identified and evaluated for implementation. A number of methods have the potential to be cost-effective in significantly reducing the contamination hazard to birds using agricultural evaporation ponds. Twenty general methods were evaluated in this study, and four methods are recommended for implementation: remove levee vegetation, remove windbreaks, deepen the ponds, and haze birds. A number of other methods are recommended for further consideration because they appear to have good prospects for reducing the contamination hazard: steepen interior levee slopes, apply herbicides and insecticides, place netting on pond shorelines, and provide freshwater habitat adjacent to evaporation ponds. It may be necessary to use a combination of methods to effectively control selenium contamination of aquatic birds because it is unlikely that a single affordable pond management method will be able to entirely eliminate the contamination hazard.

  9. Suncatcher and cool pool. Project report

    SciTech Connect

    Hammond, J.

    1981-03-01

    The Suncatcher is a simple, conical solar concentrating device that captures light entering clerestory windows and directs it onto thermal storage elements at the back of a south facing living space. The cone shape and inclination are designed to capture low angle winter sunlight and to reflect away higher angle summer sunlight. It is found that winter radiation through a Suncatcher window is 40 to 50% higher than through an ordinary window, and that the average solar fraction is 59%. Water-filled steal culvert pipes used for thermal storage are found to undergo less stratification, and thus to be more effective, when located where sunlight strikes the bottom rather than the top. Five Suncatcher buildings are described. Designs are considered for 32/sup 0/, 40/sup 0/ and 48/sup 0/ north latitude, and as the latitude increases, the inclination angle of the cone should be lowered. The Cool Pool is an evaporating, shaded roof pond which thermosiphons cool water into water-filled columns within a building. Preliminary experiments indicate that the best shade design has unimpeded north sky view, good ventilation, complete summer shading, a low architectural profile, and low cost attic vent lowers work. Another series of experiments established the satisfactory performance of the Cool Pool on a test building using four water-filled cylinders, two cylinders, and two cylinders connected to the Cool Pool through a heat exchanger. Although an unshaded pool cools better at night than a shaded one, daytime heat gain far offsets this advantage. A vinyl waterbag heat exchanger was developed for use with the Cool Pool. (LEW)

  10. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  11. Salt-Pond Box Model (SPOOM) and Its Application to the Napa-Sonoma Salt Ponds, San Francisco Bay, California

    USGS Publications Warehouse

    Lionberger, Megan L.; Schoellhamer, David H.; Buchanan, Paul A.; Meyer, Scott

    2004-01-01

    A box model to simulate water volume and salinity of a salt pond has been developed by the U.S. Geological Survey to obtain water and salinity budgets. The model, SPOOM, uses the principle of conservation of mass to calculate daily pond volume and salinity and includes a salt crystallization and dissolution algorithm. Model inputs include precipitation, evaporation, infiltration, and water transfers. Salinity and water-surface-elevation data were collected monthly in the Napa-Sonoma Salt-Pond Complex from February 1999 through September 2001 and were used to calibrate and validate the model. The months when water transfers occurred were known but the magnitudes were unknown, so the magnitudes of water transfers were adjusted in the model to calibrate simulated pond volumes to measured pond volumes for three ponds. Modeled salinity was then compared with measured salinity, which remained a free parameter, in order to validate the model. Comparison showed good correlation between modeled and measured salinity. Deviations can be attributed to lack of water-transfer information. Water and salinity budgets obtained through modeling will be used to help interpret ecological data from the ponds. This model has been formulated to be applicable to the Napa-Sonoma salt ponds, but can be applied to other salt ponds.

  12. Oxygen and nitrogen dyamics in split ponds vs. intensive and conventional catfish production ponds

    USDA-ARS?s Scientific Manuscript database

    The Split Pond aquaculture system (SP) has captured the attention of catfish producers across the southern U.S. The SP represents a lower cost adaptation of Clemson University’s Partitioned Aquaculture System (PAS). The original PAS design relied on slowly rotating paddlewheels to move water throu...

  13. Oxygen and nitrogen dynamics in split ponds vs. conventional catfish production ponds

    USDA-ARS?s Scientific Manuscript database

    The Split Pond aquaculture system (SP) has captured the attention of catfish producers across the southern U.S. The SP represents a lower cost adaptation of Clemson University’s Partitioned Aquaculture System (PAS). The original PAS design relied on slowly rotating paddlewheels to move water throu...

  14. Comparison of phytoplankton communities in catfish split-pond aquaculture systems with conventional ponds.

    USDA-ARS?s Scientific Manuscript database

    There has been a growing interest and use of variations of partitioned aquaculture systems (PAS) in recent years by the southeastern United States of America farmed catfish industry. Split-pond systems, one type of PAS, are designed to better manage fish waste byproducts (e.g., ammonia) and dissolv...

  15. The Magnetism of Ponds: Getting the Most Out of a Class Excursion To a Nearby Pond.

    ERIC Educational Resources Information Center

    Earley, Chris

    1996-01-01

    Offers suggestions for leading a field trip to a pond. Such field trips encourage children to be comfortable in natural habitats, to ask questions about the natural world and to discuss the validity of the answers, understand that their behavior affects the environment, and take active part in preserving resources. Includes activities and…

  16. Experimental canopy removal enhances diversity of vernal pond amphibians.

    PubMed

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha

    2014-03-01

    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have

  17. Sludge accumulation in polishing ponds treating anaerobically digested wastewater.

    PubMed

    Cavalcanti, P; van Haandel, A; Lettinga, G

    2002-01-01

    When ponds are used for wastewater treatment, settleable solids will form a steadily growing bottom sludge layer, which reduces their effective volume. Eventually this sludge must be removed to ensure that the pond maintains the required retention time to keep performing properly. The settleable solids may either be present in the influent or they are formed during the treatment as a result of algal flocculation. An experimental investigation was carried out to evaluate bottom sludge accumulation in a polishing pond used for treatment of UASB effluent. The mass and composition of the bottom sludge formed in a polishing pond was evaluated after the pilot scale pond had been in operation for 1 year and about 60 m3 of digested wastewater had been treated per m3 of pond. The bottom sludge mass represented a solids accumulation of 70 g per m3 of digested wastewater. About half of these solids were the result of settling of influent solids in the first part of the pond, while the other half was attributable to settling of algae, formed in the pond. It is concluded that the bottom sludge growth in a polishing pond is so low, that desludging during the useful life span of the pond will most likely not be necessary. This leads to the important conclusion that excess sludge discharge from UASB reactors (a major factor in operational costs) may be omitted, if a polishing pond is used for post-treatment. The bottom sludge had a high volatile solids concentration (58%) and the macronutrient fractions were also high (3.9% N and 1.1% P of the TSS mass). The bottom sludge was stable and could be dried directly without problems. The hygienic quality of the bottom sludge was very poor: about half the influent helminth eggs during one year of operation were found in the bottom sludge and the faecal coliform concentration was very high.

  18. First description of underwater acoustic diversity in three temperate ponds

    PubMed Central

    Rybak, Fanny; Depraetere, Marion; Gasc, Amandine; Le Viol, Isabelle; Pavoine, Sandrine; Sueur, Jérôme

    2015-01-01

    The past decade has produced an increased ecological interest in sonic environments, or soundscapes. However, despite this rise in interest and technological improvements that allow for long-term acoustic surveys in various environments, some habitats’ soundscapes remain to be explored. Ponds, and more generally freshwater habitats, are one of these acoustically unexplored environments. Here we undertook the first long term acoustic monitoring of three temperate ponds in France. By aural and visual inspection of a selection of recordings, we identified 48 different sound types, and according to the rarefaction curves we calculated, more sound types are likely present in one of the three ponds. The richness of sound types varied significantly across ponds. Surprisingly, there was no pond-to-pond daily consistency of sound type richness variation; each pond had its own daily patterns of activity. We also explored the possibility of using six acoustic diversity indices to conduct rapid biodiversity assessments in temperate ponds. We found that all indices were sensitive to the background noise as estimated through correlations with the signal-to-noise ratio (SNR). However, we determined that the AR index could be a good candidate to measure acoustic diversities using partial correlations with the SNR as a control variable. Yet, research is still required to automatically compute the SNR in order to apply this index on a large data set of recordings. The results showed that these three temperate ponds host a high level of acoustic diversity in which the soundscapes were variable not only between but also within the ponds. The sources producing this diversity of sounds and the drivers of difference in daily song type richness variation both require further investigation. Such research would yield insights into the biodiversity and ecology of temperate ponds. PMID:26587351

  19. Examining Water Quality Variations of Tidal Pond System

    NASA Astrophysics Data System (ADS)

    Chui, T. F. M.; Cui, W.

    2014-12-01

    Brackish tidal shrimp ponds, traditionally referred to as gei wais, have been constructed along coastal areas in many parts of the world. The regular exchange of pond water with the surrounding coastal environment is important as it brings shrimp larvae and nutrients, etc. into and out of the pond. Such a water exchange can reduce the quality of the receiving waters; though there are opposing views recently because farming practices are becoming more sustainable while other sources of pollutions in the surroundings are increasing. This project monitors the water quality of a tidal shrimp pond and its receiving water at high temporal resolution. The pond is located within the wetland complex of Mai Po Nature Reserve in Hong Kong, China. Water quality parameters (i.e., dissolved oxygen, temperature, salinity, pH, water depth and chlorophyll) were recorded at 15-minute interval from December 2013 to March 2014 within the pond and also at its receiving water which is a water channel within a mangrove forest. Data reveals both daily and fortnightly fluctuations. Daily variations in mangrove correspond to both tidal flushing and insolation, whereas those within the pond correspond mainly to insolation. For example, dissolved oxygen in mangrove shows two peaks daily which correlate with tidal elevation, and that within the pond shows only one peak which correlates with sunlight. Dissolved oxygen within the pond also shows a fortnightly pattern that corresponds to the schedule of water exchange. Such high temporal resolution of monitoring reveals the two-way water quality influences between the pond and the mangrove. It sheds insights that can possibly lead to refinement of water exchange practice and water sampling schedule given the temporal variations of the water quality both inside and outside the pond. It thus enables us to take a step closer in adopting more sustainable farming practices despite increasing pollution in the surrounding areas.

  20. The critical role of islands for waterbird breeding and foraging habitat in managed ponds of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California

    USGS Publications Warehouse

    Ackerman, Joshua T.; Hartman, C. Alex; Herzog, Mark P.; Smith, Lacy M.; Moskal, Stacy M.; De La Cruz, Susan E. W.; Yee, Julie L.; Takekawa, John Y.

    2014-01-01

    The South Bay Salt Pond Restoration Project aims to restore 50–90 percent of former salt evaporation ponds into tidal marsh in South San Francisco Bay, California. However, large numbers of waterbirds use these ponds annually as nesting and foraging habitat. Islands within ponds are particularly important habitat for nesting, foraging, and roosting waterbirds. To maintain current waterbird populations, the South Bay Salt Pond Restoration Project plans to create new islands within former salt ponds in South San Francisco Bay. In a series of studies, we investigated pond and individual island attributes that are most beneficial to nesting, foraging, and roosting waterbirds.

  1. Field Scale Transport of Chromate in Groundwater From Cooling Tower Wastes

    NASA Astrophysics Data System (ADS)

    Gladding, S. M.; Hunt, J. R.

    2007-12-01

    Chromate (Cr(VI)) was used extensively in evaporative cooling systems to prevent corrosion and scale formation. Waters from the cooling systems were discharged to ponds that were intended as evaporation ponds, but there were instances where the wastewaters infiltrated into the soil and released chromate to groundwater. Cooling tower discharges containing chromate also have elevated salt concentrations compared to the ambient groundwater because of the intended evaporative cooling process. Density driven flow and emplacement of contaminated brines should thus be expected. This conceptual model is being evaluated by the analysis of field data at two natural gas compressor facilities in the deserts of southeastern California. These facilities continuously released chromate containing water to unlined evaporation ponds for more than a decade, and subsequent investigations have identified groundwater plumes containing chromate. At one site, extensive remediation over a 15 year period has limited the plume migration but has not reduced groundwater concentrations. At the other site, density-stratified flow is observed. While there are uncertainties in the amounts released, the data available at these sites suggest that remedial approaches based on groundwater extraction are not effective in removing the source of chromate contamination from emplaced pockets of highly concentrated cooling tower discharge. Long term data sets collected during site investigations and remediation are valuable sources of data on field scale transport of highly mobile contaminants such as chromate.

  2. Box Model of a Series of Salt Ponds, as Applied to the Alviso Salt Pond Complex, South San Francisco Bay, California

    USGS Publications Warehouse

    Lionberger, Megan A.; Schoellhamer, David H.; Shellenbarger, Gregory; Orlando, James L.; Ganju, Neil K.

    2007-01-01

    This report documents the development and application of a box model to simulate water level, salinity, and temperature of the Alviso Salt Pond Complex in South San Francisco Bay. These ponds were purchased for restoration in 2003 and currently are managed by the U.S. Fish and Wildlife Service to maintain existing wildlife habitat and prevent a build up of salt during the development of a long-term restoration plan. The model was developed for the purpose of aiding pond managers during the current interim management period to achieve these goals. A previously developed box model of a salt pond, SPOOM, which calculates daily pond volume and salinity, was reconfigured to simulate multiple connected ponds and a temperature subroutine was added. The updated model simulates rainfall, evaporation, water flowing between the ponds and the adjacent tidal slough network, and water flowing from one pond to the next by gravity and pumps. Theoretical and measured relations between discharge and corresponding differences in water level are used to simulate most flows between ponds and between ponds and sloughs. The principle of conservation of mass is used to calculate daily pond volume and salinity. The model configuration includes management actions specified in the Interim Stewardship Plan for the ponds. The temperature subroutine calculates hourly net heat transfer to or from a pond resulting in a rise or drop in pond temperature and daily average, minimum, and maximum pond temperatures are recorded. Simulated temperature was compared with hourly measured data from pond 3 of the Napa?Sonoma Salt Pond Complex and monthly measured data from pond A14 of the Alviso Salt-Pond Complex. Comparison showed good agreement of measured and simulated pond temperature on the daily and monthly time scales.

  3. Cannibalism in single-batch hybrid catfish production ponds

    USDA-ARS?s Scientific Manuscript database

    Hybrid catfish are more efficiently harvested by seining than are Channel Catfish. Due to that, and their faster growth, hybrids are typically produced in “single-batch” production systems, either in intensively-aerated commercial ponds or in split-pond systems. In either production system, hybrids...

  4. Amphibian Oasis: Designing and Building a Schoolyard Pond.

    ERIC Educational Resources Information Center

    Gosselin, Heather; Johnson, Bob

    1996-01-01

    Building a pond in a schoolyard is a rewarding way to help boost local populations of amphibians, to increase the natural value of school grounds, and to serve as a locale for observing the life cycles of plants, invertebrates, and amphibians. This article outlines important considerations in designing and building a pond from siting through…

  5. Effects of riparian buffers on hydrology of northern seasonal ponds

    Treesearch

    Randall K. Kolka; Brian J. Palik; Daniel P. Tersteeg; James C. Bell

    2011-01-01

    Although seasonal ponds are common in northern, glaciated, forested landscapes, forest management guidelines are generally lacking for these systems. The objective of this study was to determine the effect of riparian buffer type on seasonal pond hydrology following harvest of the adjacent upland forest. A replicated block design consisting of four buffer treatments...

  6. Gauging the Health of New England's Lakes and Ponds

    EPA Science Inventory

    The New England Lakes and Ponds Project provides a consistent and first time comprehensive assessment of the ecological and water quality condition of lakes and ponds across the New England region. The project is being conducted by EPA along with the New England Interstate Water...

  7. Amphibian Oasis: Designing and Building a Schoolyard Pond.

    ERIC Educational Resources Information Center

    Gosselin, Heather; Johnson, Bob

    1996-01-01

    Building a pond in a schoolyard is a rewarding way to help boost local populations of amphibians, to increase the natural value of school grounds, and to serve as a locale for observing the life cycles of plants, invertebrates, and amphibians. This article outlines important considerations in designing and building a pond from siting through…

  8. STORMWATER TREATMENT: WET/DRY PONDS VS. CONSTRUCTED WETLANDS

    EPA Science Inventory

    Extant data were used to assess the relative effectiveness of ponds vs. wetland-type BMPs. Compared to wet ponds, wetlands tended toward higher constituent concentrations in effluent, were inefficient at nitrogen removal, and appeared to preferentially retain phosphorous. These d...

  9. Falling head ponded infiltration in the nonlinear limit

    NASA Astrophysics Data System (ADS)

    Triadis, D.

    2014-12-01

    The Green and Ampt infiltration solution represents only an extreme example of behavior within a larger class of very nonlinear, delta function diffusivity soils. The mathematical analysis of these soils is greatly simplified by the existence of a sharp wetting front below the soil surface. Solutions for more realistic delta function soil models have recently been presented for infiltration under surface saturation without ponding. After general formulation of the problem, solutions for a full suite of delta function soils are derived for ponded surface water depleted by infiltration. Exact expressions for the cumulative infiltration as a function of time, or the drainage time as a function of the initial ponded depth may take implicit or parametric forms, and are supplemented by simple asymptotic expressions valid for small times, and small and large initial ponded depths. As with surface saturation without ponding, the Green-Ampt model overestimates the effect of the soil hydraulic conductivity. At the opposing extreme, a low-conductivity model is identified that also takes a very simple mathematical form and appears to be more accurate than the Green-Ampt model for larger ponded depths. Between these two, the nonlinear limit of Gardner's soil is recommended as a physically valid first approximation. Relative discrepancies between different soil models are observed to reach a maximum for intermediate values of the dimensionless initial ponded depth, and in general are smaller than for surface saturation without ponding.

  10. Attributes of successful stock water ponds in southern Arizona

    Treesearch

    Barry L. Imler; Richard H. Wawkins; D. Phillip Guertin; Don W. Young

    2000-01-01

    The attributes of 20 ponds (or stock tanks) on the Nogales Ranger District of the Coronado National Forest were studied in detail by groups. Two contrasting groups, judged to be either functional (n = 11) or nonfunctional (n = 9) were used in the study. Differences between the groups were evaluated on the basis of attributes of the ponds themselves, the contributing...

  11. Effects of acidification on algal assemblages in temporary ponds

    SciTech Connect

    Glackin, M.E.; Pratt, J.R.

    1994-12-31

    Atmospheric deposition monitoring in Pennsylvania has characterized a steep gradient of acidic ion depositions across the north-central portion of the state. This study evaluated acidification effects on the composition of algal assemblages in temporary ponds in two forested areas exposed to atmospheric deposition that varied in degree of acidity. Artificial substrates were used to sample and compare the algal assemblages in the two areas. Colonized communities were also transplanted to lower pH ponds to observe changes in species composition. A laboratory microcosm experiment manipulating pH was conducted to reduce the variables that differed between the two areas. Fewer algal taxa were present in lower pH ponds, on colonized substrates after transplant to lower pH ponds, and in lower pH laboratory treatments. Species composition was altered in the lower pH conditions. Most taxa that were excluded from the lower pH ponds naturally also did not survive when experimentally introduced to those conditions. These results suggest that acidification of temporary ponds can alter the structure of algal communities. There is interest in a possible link between acid deposition and reports of worldwide declines in amphibian populations. Algae are an important food source for larval amphibians, such as the wood frog, which require temporary ponds to breed. Changes in algal species composition could potentially impact the temporary pond and forest ecosystem.

  12. Gauging the Health of New England's Lakes and Ponds

    EPA Science Inventory

    The New England Lakes and Ponds Project provides a consistent and first time comprehensive assessment of the ecological and water quality condition of lakes and ponds across the New England region. The project is being conducted by EPA along with the New England Interstate Water...

  13. Delayed feeding of channel catfish fry stocked in ponds

    USDA-ARS?s Scientific Manuscript database

    We compared production variables between channel catfish, Ictalurus punctatus, nursery ponds fed according to industry standards, that is feeding immediately at stocking, to an alternative practice of delaying feeding for 6 wk after stocking in an effort to utilize natural pond productivity and red...

  14. A model of the refreezing of melt ponds

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Feltham, D. L.; Shroeder, D.

    2012-04-01

    Melt ponds form on Arctic sea ice during the melting season and their presence affects the heat and mass balance of the ice cover. Towards the end of the melt season melt ponds cover up to 50% of the sea ice area decreasing the value of the surface albedo by up to 20%. The dramatic impact of melt ponds on the albedo feedback mechanism for sea ice melt has been demonstrated in previous studies. Here, we focus on the refreezing of melt ponds. As the ponds freeze from above, they gradually release latent heat that inhibits basal ice growth. The refreezing process can take up to three months. Within the ASBO (Arctic Synoptic Basin-wide Observations) project we have developed a model of refreezing melt ponds that uses mushy layer theory to describe the sea ice and takes account of the presence of salt in the refreezing melt pond. We use this model to investigate the rate at which melt ponds refreeze, releasing latent heat, and their impact on sea ice growth. Model results are compared with in situ data collected by Ice Mass Balance buoys in the Arctic.

  15. Fate of permethrin in model outdoor ponds

    SciTech Connect

    Rawn, G.P.; Webster, G.R.; Muir, D.C.

    1982-01-01

    In 1979 and 1980, outdoor artificial ponds were treated with /sup 14/C-permethrin (labelled at either the cyclopropyl or methylene position) at 0.028 kg/ha (15 ug/L). Uptake of permethrin by duckweed and hydrosoil was monitored by direct combustion, TLC-autoradiography, HPLC, and liquid scintillation counting. Rapid loss of permethrin from the water coincided with the detection of five degradation products in the water at concentrations below 2.0 ug/L. The products were cis- and trans-cyclopropyl acid, phenoxybenzoic acid, and phenoxybenzyl alcohol, and an unknown non-cleaved product of permethrin. Permethrin was readily sorbed by duckweed but was not persistent. Permethrin residues in the hydrosoil, which was the major sink for permethrin added to the ponds, were persistent and were detected at 420 days post-treatment. Cis-permethrin was more persistent in the hydrosoil than the trans-permethrin. The results indicated that permethrin in water was short-lived at an application rate of 15 ug/L because of the rapid degradation of permethrin in the water and sorption of permethrin by the hydrosoil and vegetation. However, at one year post-treatment, permethrin residues were still detected in the hydrosoil at 1.0 ug/kg.

  16. 2101-M Pond hydrogeologic characterization report

    SciTech Connect

    Chamness, M.A.; Luttrell, S.P.; Bates, D.J.; Martin, W.J.

    1990-09-01

    This report documents information collected by the Pacific Northwest Laboratory {sup (a)} at the request of Westinghouse Hanford Company. Presented in this report is the interpretation of the hydrogeologic environment at the 2101-M Pond, located in the 200-East Area of the Hanford Site. This information and its accompanying interpretation were derived from sampling and testing activities associated with the installation of four ground-water monitoring wells, in addition to data gathered from several previously existing wells. The new monitoring wells were installed as part of a groundwater monitoring program initiated in 1988. The four new monitoring wells were installed around the 2101-M Pond between May 23 and August 27, 1988. Geologic sampling, aquifer testing, and initial ground-water sampling were performed during the installation of these wells. Laboratory analyses of the sediment samples for particle size, calcium carbonate content, and selected natural and contaminant constituents were performed. A full year of quarterly ground-water sampling and the first statistical analysis of background and downgradient data have also been performed. 112 refs., 49 figs., 18 tabs.

  17. Phytoremediation efficiency of Eichhornia crassipes in fly ash pond.

    PubMed

    Pandey, Vimal Chandra

    2016-01-01

    The present study was focused on field research to examine the phytoremediation potential of naturally grown Eichhornia crassipes in fly ash (FA) pond. Field results indicate the efficiency of E. crassipes for remediation of heavy metals from FA pond. The bioconcentration factor trend was Cr (3.75) > Cu (2.62) > Cd (1.05), and Cu (1.35) in root and stem, respectively. The survival and abundance growth of E. crassipes in the circumstance of heavy metal enriched FA pond is another highlight of the present research that reveals its toxitolerant characteristics. Thus, this lesson on phytoremediation proved that E. crassipes is a potential accumulator of Cu, Cr, and Cd from FA ponds and is a promising species for FA pond's remediation globally.

  18. Walden Pond, Massachusetts: Environmental Setting and Current Investigations

    USGS Publications Warehouse

    Colman, John A.; Waldron, Marcus C.

    1998-01-01

    Introduction Walden Pond, in Concord, Massachusetts, is famous among lakes because of its unique social history. Walden was the setting for American naturalist Henry David Thoreau's well-known essay 'Walden; or, Life in the Woods,' first published in 1854. Thoreau lived and wrote at Walden Pond from July 1845 to September 1847. In 'Walden,' Thoreau combined highly admired writing on Transcendental philosophy with pioneering observations of aquatic ecology and physical aspects of limnology, the study of lakes. Because Thoreau also defended so effectively the value of living close to nature in the Walden woods, the pond is considered by many to be the birthplace of the American conservation movement. Visitors come from all over the world to the pond, which has been designated a National Historic Landmark, and its fame has resulted in a major fund drive to preserve the surrounding woods. Walden Pond has no surfacewater inflow or outflow, and much of its ground-water contributing area likely is preserved within the Walden Pond Reservation area (fig. 1). Only 15 miles from Boston, the pond is unusually clear and pristine for an urban-area lake. However, point sources of nutrients near the pond, and a large annual visitor attendance, concentrated during the summer when the swimming beach (fig. 2) is open, may contribute a nutrient load sufficient to change the pond environment. The occurrence of nuisance algal species, a recent beach closing, and an awareness of water-quality problems suffered by other ponds in the region raise concerns about the risk of ecological change at Walden Pond. Despite the role of Walden Pond as a cultural and environmental icon, little is known about the pond's ecological features, such as its internal nutrient cycling or the structure of its food web, nor have consistent measurements been made to determine whether these features are changing or are stable. Production rates of aquatic plants in lakes and ponds naturally undergo a slow increase

  19. Salton Sea Project, Phase 1. [solar pond power plant

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.

    1982-01-01

    A feasibility study was made for a salt gradient solar pond power plant in or near the Salton Sea of California. The conclusions support continuance 5-MWe proof-of-concept experiment, and ultimate construction by an electric utility company of a 600-MWe plant. The Solar Pond concept would be an environmental benefit to the Salton Sea by reversing the increasing salinity trend. The greatest cost drivers are the lake dike construction and pond sealing. Problems to be resolved include method of brine production from Salton Sea water for the first unit (which requires evaporation pond area and time), the high turbidity and color content of the Salton Sea water (which requires pretreatment), and other questions related to pond permeability, bio-activity and soil/brine chemical reactions. All technical and environmental problems appear solvable and/or manageable if care is taken in mitigating impacts.

  20. Gradient-zone erosion in seawater solar ponds

    SciTech Connect

    Shi, J.; Hart, R.A.; Kleis, S.J.; Bannerot, R.B.

    1997-02-01

    An experimental program has been conducted to examine the feasibility of using seawater solar ponds in mariculture operations along the Texas gulf coast to protect fish crops from the potentially lethal, cold temperatures experienced in outdoor ponds. Seawater solar ponds in the form of floating thermal refuge areas are proposed as a method for reducing the loss of heat from small sections of a pond. Gradient zone erosion under various ambient and operating conditions is examined. Comparisons with previous laboratory studies show a much lower entrainment rate in the natural environment. For conditions which are typical of those encountered in mariculture pond operation, the entrainment rate was found to depend only weakly on the Richardson number. For these conditions, a simple (linear) correlation of entrainment rate with wind speed was developed.

  1. Comments on ionization cooling channels

    DOE PAGES

    Neuffer, David

    2017-09-25

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this study, we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  2. Comments on ionization cooling channels

    NASA Astrophysics Data System (ADS)

    Neuffer, D.

    2017-09-01

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this paper we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  3. Multidisciplinary benefits from biomonitoring studies of cooling reservoirs

    SciTech Connect

    Bowers, J.A.; Gladden, J.B.

    1990-01-01

    Therefore, biomonitoring studies of once-through cooling reservoirs for nuclear reactors not only provide field and laboratory information for environmental compliance, but also offer results which benefit lake and reservoir management constructs and limnetic community ecology. Biomonitoring programs have been performed at the Department of Energy's Savannah River Site to provide information fro compliance with Section 316a of the Clean Water Act. On Par Pond and Pond B comprehensive field efforts monitored nutrient chemistry, plankton populations, fisheries, benthic assemblages, and littoral zone biota from 1983 through 1985. A similar effort, begun in 1985 and continuing through 1992, is in progress on L Lake. Results have indicated that nonplanned whole-basin manipulations and the comprehensive intensity of monitoring studies offer new insights into how limnetic communities function.

  4. Multidisciplinary benefits from biomonitoring studies of cooling reservoirs

    SciTech Connect

    Bowers, J.A.; Gladden, J.B.

    1990-12-31

    Therefore, biomonitoring studies of once-through cooling reservoirs for nuclear reactors not only provide field and laboratory information for environmental compliance, but also offer results which benefit lake and reservoir management constructs and limnetic community ecology. Biomonitoring programs have been performed at the Department of Energy`s Savannah River Site to provide information fro compliance with Section 316a of the Clean Water Act. On Par Pond and Pond B comprehensive field efforts monitored nutrient chemistry, plankton populations, fisheries, benthic assemblages, and littoral zone biota from 1983 through 1985. A similar effort, begun in 1985 and continuing through 1992, is in progress on L Lake. Results have indicated that nonplanned whole-basin manipulations and the comprehensive intensity of monitoring studies offer new insights into how limnetic communities function.

  5. Turbopump thermodynamic cooling

    NASA Technical Reports Server (NTRS)

    Patten, T. C.; Mckee, H. B.

    1972-01-01

    System for cooling turbopumps used in cryogenic fluid storage facilities is described. Technique uses thermodynamic propellant vent to intercept pump heat at desired conditions. Cooling system uses hydrogen from outside source or residual hydrogen from cryogenic storage tank.

  6. Liquid-Cooled Garment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.

  7. Liquid cooled garments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Liquid cooled garments employed in several applications in which severe heat is encountered are discussed. In particular, the use of the garments to replace air line cooling units in a variety of industrial processing situations is discussed.

  8. Metamaterial enhances natural cooling

    NASA Astrophysics Data System (ADS)

    2017-03-01

    A new metamaterial film that uses passive radiative cooling to dissipate heat from an object and provides cooling without a power input has been developed by a team at the University of Colorado Boulder in the US.

  9. Cooling Water Intakes

    EPA Pesticide Factsheets

    Industries use large volumes of water for cooling. The water intakes pull large numbers of fish and other organisms into the cooling systems. EPA issues regulations on intake structures in order to minimize adverse environmental impacts.

  10. Factors Influencing Fecal Contamination in Pond of Bangladesh

    NASA Astrophysics Data System (ADS)

    Knappett, P. S.; Escamilla, V.; Layton, A.; McKay, L. D.; Emch, M.; Mailloux, B. J.; Williams, D. E.; Huq, M. R.; Alam, M.; Farhana, L.; Ferguson, A. S.; Sayler, G. S.; Ahmed, K.; Serre, M. L.; Akita, Y.; Yunus, M.; van Geen, A.

    2010-12-01

    Occurrence of diarrheal disease in villages in rural Bangladesh remains relatively common, even though many households have switched to tubewell water for drinking and cooking. One factor contributing to this may be exposure to fecal contamination in ponds, which are often used for bathing and fishing. The objective of this study is to determine the dominant sources of fecal pollution in typical ponds and to explore the relationship between local population, latrine density, latrine quality and concentrations of fecal bacteria and pathogens in pond water. Forty-three ponds were sampled and analyzed for E. coli using culture-based methods and for E. coli, Bacteroides and adenovirus using quantitative PCR. Population and sanitation infrastructure were surveyed and compared to levels of pond fecal contamination. Molecular fecal source tracking using Bacteroides, determined that humans were the dominant source of fecal contamination in 79% of the ponds. Ponds directly receiving latrine effluent had the highest concentrations of fecal indicator bacteria. Concentrations of fecal indicator bacteria correlated with population surveyed within a distance of 30-70 m (p<0.01) and total latrines surveyed within 50-70 m (p<0.05). Unsanitary latrines with visible effluent within the pond drainage basin were also significantly correlated to fecal indicator concentrations (p<0.05). The vast majority of the surveyed ponds contained unsafe levels of fecal contamination primarily due to unsanitary latrines, and to lesser extent to sanitary latrines and cattle. Since the majority of fecal pollution is from humans, use of pond water could help explain the persistence of diarrheal disease in rural Bangladesh.

  11. Impact of permafrost thaw on Arctic tundra pond geochemistry

    NASA Astrophysics Data System (ADS)

    Reyes, F.; Lougheed, V.

    2012-12-01

    Increasing evidence indicates the arctic tundra is changing physically, biologically, and chemically due to climate warming. With a warmer climate, permafrost is expected to thaw and influence the chemistry of arctic aquatic ecosystems. However, knowledge is limited on how geochemistry of arctic tundra pond ecosystems will respond. By re-sampling historical IBP ponds in Barrow, AK first sampled in the 1970s, previous studies have shown an increase in water temperature, nutrients and algal biomass through time. Results from this study indicate an increase of Ca, Mg, and Na in the water column, and a decrease in pH relative to the 1970s, suggesting an increased rate and magnitude of carbonate and Mg release. Seasonal trends were also examined to understand what processes, such as mineral weathering, peat decomposition and evaporation, were currently most influential in determining pond geochemistry. An increase in Ca/Na molar ratios, and carbonate and magnesium concentrations indicates that these tundra ponds are experiencing greater carbonate weathering compared to the 1970s and the rate of carbonate weathering increases in ponds as the summer progresses. However, increasing dissolved organic carbon (DOC) concentrations originating from peat decomposition are likely neutralizing additional inputs of carbonate, causing pond pH to decrease and exacerbating mineral weathering. A strong positive relationship between element concentrations and active layer pond thaw depth suggests that the origin of these additional solutes is likely from permafrost thaw. Active layer thaw depth has increased substantially over the past 40 years in the IBP ponds. Chloride/Bromide molar ratios and Deuterium/ 18-Oxygen isotope ratios will be used to determine the degree of evaporation occurring in tundra ponds. Ultimately, this study provides evidence for how geochemistry can identify the sources of chemical inputs to Arctic ponds affected by climate change and permafrost thaw.

  12. Pollutant removal efficacy of three wet detention ponds.

    PubMed

    Mallin, Michael A; Ensign, Scott H; Wheeler, Tracey L; Mayes, David B

    2002-01-01

    Monthly inflow and outflow data were collected from three wet detention ponds in Wilmington, North Carolina, for a 29-mo period. Two ponds drained urban areas consisting primarily of residential, mixed services, and retail usage, while the third mainly drained residential and golf course areas. One of the urban ponds achieved significant reductions in total nitrogen, nitrate, ammonium, total phosphorus, orthophosphate, and fecal coliform bacterial counts. This pond was characterized by a high length to width ratio, with most inputs directed into the upper area, and extensive coverage by a diverse community of aquatic macrophyte vegetation. The second urban pond achieved significant reductions in turbidity and fecal coliform bacterial counts, but there were no significant differences between inflowing and outflowing water nutrient concentrations. There were substantial suburban runoff inputs entering the mid- and lower-pond areas that short-circuited pollutant removal contact time. The golf course pond showed significant increases in nitrate, ammonium, total phosphorus, and orthophosphate in the outflow relative to the inflow, probably as a result of course fertilization. However, nutrient concentrations in the outflow water were low compared with discharges from a selection of other area golf courses, possibly a result of the outflow passing through a wooded wetland following pond discharge. To achieve good reduction in a variety of pollutants, wet pond design should include maximizing the contact time of inflowing water with rooted vegetation and organic sediments. This can be achieved through a physical pond design that provides a high length to width ratio, and planting of native macrophyte species.

  13. Emissions from Produced Water Treatment Ponds, Uintah Basin, Utah, USA

    NASA Astrophysics Data System (ADS)

    Mansfield, M. L.; Lyman, S. N.; Tran, H.; O'Neil, T.; Anderson, R.

    2015-12-01

    An aqueous phase, known as "produced water," usually accompanies the hydrocarbon fluid phases that are extracted from Earth's crust during oil and natural gas extraction. Produced water contains dissolved and suspended organics and other contaminants and hence cannot be discharged directly into the hydrosphere. One common disposal method is to discharge produced water into open-pit evaporation ponds. Spent hydraulic fracturing fluids are also often discharged into the same ponds. It is obvious to anyone with a healthy olfactory system that such ponds emit volatile organics to the atmosphere, but very little work has been done to characterize such emissions. Because oil, gas, and water phases are often in contact in geologic formations, we can expect that more highly soluble compounds (e.g., salts, alcohols, carbonyls, carboxyls, BTEX, etc.) partition preferentially into produced water. However, as the water in the ponds age, many physical, chemical, and biological processes alter the composition of the water, and therefore the composition and strength of volatile organic emissions. For example, some ponds are aerated to hasten evaporation, which also promotes oxidation of organics dissolved in the water. Some ponds are treated with microbes to promote bio-oxidation. In other words, emissions from ponds are expected to be a complex function of the composition of the water as it first enters the pond, and also of the age of the water and of its treatment history. We have conducted many measurements of emissions from produced water ponds in the Uintah Basin of eastern Utah, both by flux chamber and by evacuated canister sampling with inverse modeling. These measurements include fluxes of CO2, CH4, methanol, and many other volatile organic gases. We have also measured chemical compositions and microbial content of water in the ponds. Results of these measurements will be reported.

  14. Eutrophic urban ponds suffer from cyanobacterial blooms: Dutch examples.

    PubMed

    Waajen, Guido W A M; Faassen, Elisabeth J; Lürling, Miquel

    2014-01-01

    Ponds play an important role in urban areas. However, cyanobacterial blooms counteract the societal need for a good water quality and pose serious health risks for citizens and pets. To provide insight into the extent and possible causes of cyanobacterial problems in urban ponds, we conducted a survey on cyanobacterial blooms and studied three ponds in detail. Among 3,500 urban ponds in the urbanized Dutch province of North Brabant, 125 showed cyanobacterial blooms in the period 2009-2012. This covered 79% of all locations registered for cyanobacterial blooms, despite the fact that urban ponds comprise only 11% of the area of surface water in North Brabant. Dominant bloom-forming genera in urban ponds were Microcystis, Anabaena and Planktothrix. In the three ponds selected for further study, the microcystin concentration of the water peaked at 77 μg l(-1) and in scums at 64,000 μg l(-1), which is considered highly toxic. Microcystin-RR and microcystin-LR were the most prevalent variants in these waters and in scums. Cyanobacterial chlorophyll-a peaked in August with concentrations up to 962 μg l(-1) outside of scums. The ponds were highly eutrophic with mean total phosphorus concentrations between 0.16 and 0.44 mg l(-1), and the sediments were rich in potential releasable phosphorus. High fish stocks dominated by carp lead to bioturbation, which also favours blooms. As urban ponds in North Brabant, and likely in other regions, regularly suffer from cyanobacterial blooms and citizens may easily have contact with the water and may ingest cyanobacterial material during recreational activities, particularly swimming, control of health risk is of importance. Monitoring of cyanobacteria and cyanobacterial toxins in urban ponds is a first step to control health risks. Mitigation strategies should focus on external sources of eutrophication and consider the effect of sediment P release and bioturbation by fish.

  15. Characterizing bacterial communities in tilapia pond surface sediment and their responses to pond differences and temporal variations.

    PubMed

    Fan, Limin; Barry, Kamira; Hu, Gengdong; Meng, Shunlong; Song, Chao; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Chen, Jiazhang; Xu, Pao

    2017-01-01

    Bacterial community compositions in the surface sediment of tilapia ponds and their responses to pond characteristics or seasonal variations were investigated. For that, three ponds with different stocking densities were selected to collect the samples. And the method of Illumina high-throughput sequencing was used to amplify the bacterial 16S rRNA genes. A total of 662, 876 valid reads and 5649 operational taxonomic units were obtained. Further analysis showed that the dominant phyla in all three ponds were Proteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria. The phyla Planctomycetes, Firmicutes, Chlorobi, and Spirochaetae were also relatively abundant. Among the eight phyla, the abundances of only Proteobacteria, Bacteroidetes, Firmicutes, and Spirochaetae were affected by seasonal variations, while seven of these (with the exception of Acidobacteria) were affected by pond differences. A comprehensive analysis of the richness and diversity of the bacterial 16S rRNA gene, and of the similarity in bacterial community composition in sediment also showed that the communities in tilapia pond sediment were shaped more by pond differences than by seasonal variations. Linear discriminant analysis further indicated that the influences of pond characteristics on sediment bacterial communities might be related to feed coefficients and stocking densities of genetically improved farmed tilapia (GIFT).

  16. Data center cooling system

    DOEpatents

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  17. Stochastic cooling in RHIC

    SciTech Connect

    Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

    2009-05-04

    After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

  18. Cooling of Stored Beams

    SciTech Connect

    Mills, F.

    1986-06-10

    Beam cooling methods developed for the accumulation of antiprotons are being employed to assist in the performance of experiments in Nuclear and Particle Physics with ion beams stored in storage rings. The physics of beam cooling, and the ranges of utility of stochastic and electron cooling are discussed in this paper.

  19. Par Pond phytoplankton in association with refilling of the pond: Final Report for sampling from February 1995 -- September 1996

    SciTech Connect

    Wilde, E.W.; Johnson, M.A.; Cody, W.C.

    1996-12-31

    This report describes the results of phytoplankton analyses from Par Pond samples collected between February 1995 and September 1996. The principal objective of the study was to determine the effect of refilling of Par Pond following repair of the dam on the phytoplankton community. Algal blooms are often responsible for fish kills and other detrimental effects in ponds and lakes, and it was postulated that decaying vegetation from formerly exposed sediments might trigger algal blooms that could result in fish kills in Par Pond following the refill. Sporadic algal blooms involving blue-green algae were detected, especially during the summer of 1996. However, the data derived from the study demonstrates that overall, the refilling effort caused no significant negative impact to the pond attributable to phytoplankton dynamics.

  20. Results of submerged sediment core sampling and analysis on Par Pond, Pond C, and L Lake: July 1995

    SciTech Connect

    Koch, J.W. II; Martin, F.D.; Friday, G.P.

    1996-06-01

    Sediment cores from shallow and deep water locations in Par Pond, Pond C, and L Lake were collected and analyzed in 1995 for radioactive and nonradioactive constituents. This core analysis was conducted to develop a defensible characterization of contaminants found in the sediments of Par Pond, Pond C, and L Lake. Mercury was the only nonradiological constituent with a nonestimated quantity that was detected above the U.S Environmental Protection Agency Region IV potential contaminants of concern screening criteria. It was detected at a depth of 0.3--0.6 meters (1.0--2.0 feet) at one location in L Lake. Cesium-137, promethium-146, plutonium-238, and zirconium-95 had significantly higher concentrations in Par Pond sediments than in sediments from the reference sites. Cobalt-60, cesium-137, plutonium-238, plutonium-239/240, and strontium-90 had significantly higher concentrations in L-Lake sediments than sediments from the reference sites.

  1. Trapping carbon in small ponds and wetlands

    NASA Astrophysics Data System (ADS)

    Quinton, J. N.; Ockenden, M. C.; Deasy, C.; Favaretto, N.

    2012-04-01

    There is no doubt that carbon (C) is on the move. Recent estimates have suggested that the global sediment flux in agricultural landscapes due to water and tillage erosion is 35±10 Pg C y-1. Some of this C is oxidised and lost to the atmosphere, other material may be deposited and burried in colluvium and some may be delivered through both surface and subsurface flow paths to surface waters. In many agricultural landscapes these surface waters may take the form of small ponds and wetlands (field wetlands). In this paper we explore the potential of field wetlands to trap particulate C and influence the fate of dissolved organic carbon within the context of a small agricultural catchments in England. Since 2008 the mitigation options for phosphorus and sediment project (MOPS) has established ten monitored field wetlands across three catchments in the UK at Crake Trees, Cumbria (silt soils, rainfall 1500 mm y-1), Whinton Hill Cumbria (sandy soils, rainfall 1200 mm y-1), Newton Rigg, Cumbria (Silt soils, rainfall c1200 mm y-1) and Loddington, Leicestershire (Clay soils, rainfall 650 mm y-1). Although originally designed to capture sediment and phosphorus, their potential for influencing catchment scale C dynamics is becoming apparent. The C contents of sediments from the three catchments are typically in the range of 1.8 - 3.0% at Crake Trees Catchment, 2.5 to 9% at Whinton Hill and 2.0 to 3.1 % at Crake Trees. At the high rainfall sites the wetlands trap upwards of 20 t y-1 of sediment equating to several hundred kilograms of C. There is also some evidence that the ponds and wetlands may influence DOC, with DOC concentrations falling from approximately 35 mg l-1 to 15 mg l-1 at the Whinton Hill site as water passes through a series of field wetlands. In this paper we will present data from the last two years of monitoring and consider the wider implications for C sequestration by ponds and wetlands in agricultural landscapes.

  2. Cooling water distribution system

    DOEpatents

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  3. Postexercise Cooling Rates in 2 Cooling Jackets

    PubMed Central

    Brade, Carly; Dawson, Brian; Wallman, Karen; Polglaze, Ted

    2010-01-01

    Abstract Context: Cooling jackets are a common method for removing stored heat accumulated during exercise. To date, the efficiency and practicality of different types of cooling jackets have received minimal investigation. Objective: To examine whether a cooling jacket containing a phase-change material (PC17) results in more rapid postexercise cooling than a gel cooling jacket and a no-jacket (control) condition. Design: Randomized, counterbalanced design with 3 experimental conditions. Setting: Participants exercised at 75% V̇o2max workload in a hot climate chamber (temperature  =  35.0 ± 1.4°C, relative humidity  =  52 ± 4%) for 30 minutes, followed by postexercise cooling for 30 minutes in cool laboratory conditions (ambient temperature  =  24.9 ± 1.8°C, relative humidity  =  39% ± 10%). Patients or Other Participants: Twelve physically active men (age  =  21.3 ± 1.1 years, height  =  182.7 ± 7.1 cm, body mass  =  76.2 ± 9.5 kg, sum of 6 skinfolds  =  50.5 ± 6.9 mm, body surface area  =  1.98 ± 0.14 m2, V̇o2max  =  49.0 ± 7.0 mL·kg−1·min−1) participated. Intervention(s): Three experimental conditions, consisting of a PC17 jacket, a gel jacket, and no jacket. Main Outcome Measure(s): Core temperature (TC), mean skin temperature (TSk), and TC cooling rate (°C/min). Results: Mean peak TC postexercise was 38.49 ± 0.42°C, 38.57 ± 0.41°C, and 38.55 ± 0.40°C for the PC17 jacket, gel jacket, and control conditions, respectively. No differences were observed in peak TC cooling rates among the PC17 jacket (0.038 ± 0.007°C/min), gel jacket (0.040 ± 0.009°C/min), and control (0.034 ± 0.010°C/min, P > .05) conditions. Between trials, no differences were calculated for mean TSk cooling. Conclusions: Similar cooling rates for all 3 conditions indicate that there is no benefit associated with wearing the PC17 or gel jacket. PMID:20210620

  4. CO2 Efflux from Shrimp Ponds in Indonesia

    PubMed Central

    Sidik, Frida; Lovelock, Catherine E.

    2013-01-01

    The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored ‘blue’ carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO2) efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO2 efflux from the floors and walls of shrimp ponds. Rates of CO2 efflux within shrimp ponds were 4.37 kg CO2 m−2 y−1 from the walls and 1.60 kg CO2 m−2 y−1 from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO2 emissions to the atmosphere between 5.76 and 13.95 Tg y−1. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO2 emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO2 released to atmosphere. PMID:23755306

  5. Life-history evolution when Lestes damselflies invaded vernal ponds.

    PubMed

    De Block, Marjan; McPeek, Mark A; Stoks, Robby

    2008-02-01

    We know little about the macroevolution of life-history traits along environmental gradients, especially with regard to the directionality compared to the ancestral states and the associated costs to other functions. Here we examine how age and size at maturity evolved when Lestes damselflies shifted from their ancestral temporary pond habitat (i.e., ponds that may dry once every decade or so) to extremely ephemeral vernal ponds (ponds that routinely dry completely each year). Larvae of three species were reared from eggs until emergence under different levels of photoperiod and transient starvation stress. Compared to the two temporary-pond Lestes, the phylogenetically derived vernal-pond Lestes dryas developed more rapidly across photoperiod treatments until the final instar, and only expressed plasticity in development time in the final instar under photoperiod levels that simulated a later hatching date. The documented change in development rate can be considered adaptive and underlies the success of the derived species in vernal ponds. Results suggest associated costs of faster development are lower mass at maturity and lower immune function after transient starvation stress. These costs may not only have impeded further evolution of the routine development rate to what is physiologically maximal, but also maintained some degree of plasticity to time constraints when the habitat shift occurred.

  6. Environmental selection of planktonic methanogens in permafrost thaw ponds

    NASA Astrophysics Data System (ADS)

    Crevecoeur, Sophie; Vincent, Warwick F.; Lovejoy, Connie

    2016-08-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type.

  7. Environmental selection of planktonic methanogens in permafrost thaw ponds

    PubMed Central

    Crevecoeur, Sophie; Vincent, Warwick F.; Lovejoy, Connie

    2016-01-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type. PMID:27501855

  8. Renewable energy for the aeration of wastewater ponds.

    PubMed

    Hobus, I; Hegemann, W

    2003-01-01

    The application of a decentralised renewable energy supply for the aeration of wastewater ponds, and the influence of an unsteady oxygen supply on the specific conversion rate and biocoenose was investigated. With the discontinuous aeration the specific conversion rate is increased as compared to facultative ponds. The estimation of the microorganisms consortia was done with in situ hybridisation techniques. A significant shift in the bacteria population with the chosen specific probes for anaerobic, sulphate reducing and nitrifying bacteria could not be detected. Wastewater ponds have sufficient buffer volume to compensate for the fluctuating energy supply. But the efficiency of the energy supply of a photovoltaic plant decreases in shallow lakes (d < 1.5 m) corresponding to a high oxygen production of algae. For the layout of the individual components: photovoltaic and wind power plant, energy management, aeration system and wastewater pond, a simulation model was developed and tested. The application of renewable energy for the aeration of wastewater ponds is a useful alternative for the redevelopment of overloaded ponds as well as the construction of new wastewater ponds, especially in areas with an inadequate central electricity grid and a high availability of wind and solar energy.

  9. Performance of a baffled facultative pond treating piggery wastes.

    PubMed

    Zanotelli, C T; Medri, W; Belli, Filho P; Perdomo, C C; Mulinari, M R; Costa, R H R

    2002-01-01

    This paper shows the performance of a baffled facultative pond for the treatment of piggery wastes. The full-scale system is composed of an equalizer, one decanter (DP), two anaerobic ponds (LA1 and LA2), one facultative pond (LF), with five baffles, and one maturation pond with water hyacinths (LAG). The studies were conducted over a 12 month period in the west region of Santa Catarina, Brazil. The system was supplied daily with a volume of 3 m3/day of farm wastes. A good performance of the treatment system was obtained with average removal efficiencies of 98% for chemical oxygen demand, 93% for total solids, 98% for total phosphorus, 92% for total nitrogen, 7 log units of faecal coliforms and 5 log units of total coliforms. The facultative pond performed well, removing 43% of the chemical oxygen demand, 47% of total nitrogen and 54% of total phosphorus. It was found that the first baffle in the facultative pond was mainly responsible for the efficiency of this pond, and compared with another study the introduction of the baffles improved the removal efficiency by 20% for total phosphorus.

  10. Solar pond research at the Los Alamos National Laboratory

    SciTech Connect

    Jones, G.F.; Meyer, K.A.; Hedstrom, J.C.; Grimmer, D.P.

    1984-01-01

    A description of solar pond research at Los Alamos National Laboratory is presented. The main issues in the theory of solar ponds are discussed. Among these are the interfacial-boundary-layer model, models for interface motion and pond performance, heat extraction, and ground heat loss. The core of the research effort at Los Alamos was the development of a one-dimensional computer program to accurately predict dynamic performance of a solar pond. The computer model and the experiments that were designed and performed to validate it are described. The experiments include two laboratory tanks wherein temperature, salinity, and flow visualization data were obtained and a 232 m/sup 2/ outdoor solar pond. Results from preliminary validation show good agreement between the pond's predicted dynamic behavior and that which actually occurred in the experiments. More validation using data from full-sized solar ponds is needed. A new correlation for the ratio of interfacial salt-flux to heat-flux is proposed which agrees well with our data. Recommendations for future research are given.

  11. Environmental selection of planktonic methanogens in permafrost thaw ponds.

    PubMed

    Crevecoeur, Sophie; Vincent, Warwick F; Lovejoy, Connie

    2016-08-09

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type.

  12. Algal bioflocculation and energy conservation in microalgal sewage ponds

    SciTech Connect

    Eisenberg, D.M.; Koopman, B.; Benemann, J.R.; Oswald, W.J.

    1981-01-01

    Controlled bioflocculation for harvesting of microalgae produced during municipal wastewater treatment in high-rate ponds was investigated. Nonflocculant algal cultures were produced in high-rate ponds operated at very high dilution rates or with poor mixing. Bioflocculation of such cultures was achieved by isolating them in secondary ponds, but isolation periods of up to 29 days were required. In-pond sedimentation of flocculant algal cultures produced by the isolation technique resulted in algal removals consistently exceeding 80%. When high-rate ponds were operated with improved mixing and at moderate-to-high dilution rates, flocculant algal cultures were developed. The settleability of flocculant algal cultures produced in this manner averaged 76 to 80% when measured in 24-h-detention Imhoff cones and 71% when measured in 48-h-detention settling ponds. It is estimated that, under suitable climate conditions, a high-rate pond system employing bioflocculation-sedimentation for algal removal would require less than one-half the direct energy input of an equivalently sized activated sludge or trickling filter plant. This requirement could be provided entirely through complete utilization of biogas produced from anaerobic digestion of primary (sewage) sludge.

  13. Groundwater impact assessment report for the 100-D Ponds

    SciTech Connect

    Alexander, D.J.

    1993-07-01

    The 183-D Water Treatment Facility (WTF) discharges effluent to the 120-0-1 Ponds (100-D Ponds) located north of the 100-D Area perimeter fence. This report satisfies one of the requirements of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-17-00B as agreed by the US Department of Energy, Washington State Department of Ecology, and the US Environmental Protection Agency. Tri-Party Agreement Milestone M-17-00B includes a requirement to assess impacts to groundwater from disposal of the 183-D WTF effluent to the 100-D Ponds. In addition, the 100-D Ponds are a Resource Conservation and Recovery Act of 1976 treatment, storage, and disposal facility covered by the 100-D Ponds Closure Plan (DOE-RL 1993a). There is evidence of groundwater contamination, primarily nitrate, tritium, and chromium, in the unconfined aquifer beneath the 100-D Area and 100 Areas in general. The contaminant plumes are area wide and are a result of past-practice reactor and disposal operations in the 100-D Area currently being investigated as part of the 100-DR-1 and 100-HR-3 Operable Units (DOE-RL 1992b, 1992a). Based on current effluent conditions, continued operation of the 100-D Ponds will not adversely affect the groundwater quality in the 100-D Area. Monitoring wells near the pond have slightly higher alkaline pH values than wells in the rest of the area. Concentrations of known contaminants in these wells are lower than ambient 100-D Area groundwater conditions and exhibit a localized dilution effect associated with discharges to the pond. Hydraulic impact to the local groundwater system from these discharges is minor. The groundwater monitoring well network for the 100-D Ponds is adequate.

  14. Disentangling natural and anthropogenic influences on Patagonian pond water quality.

    PubMed

    Epele, Luis B; Manzo, Luz M; Grech, Marta G; Macchi, Pablo; Claverie, Alfredo Ñ; Lagomarsino, Leonardo; Miserendino, M Laura

    2017-09-20

    The water quality of wetlands is governed not only by natural variability in hydrology and other factors, but also by anthropogenic activities. Patagonia is a vast sparsely-populated in which ponds are a key component of rural and urban landscapes because they provide several ecosystem services such as habitat for wildlife and watering for livestock. Integrating field-based and geospatial data of 109 ponds sampled across the region, we identified spatial trends and assessed the effects of anthropogenic and natural factors in pond water quality. The studied ponds were generally shallow, well oxygenated, with maximum nutrient values reported in sites used for livestock breeding. TN:TP ratio values were lower than 14 in >90% of the ponds, indicating nitrogen limitation. Water conductivity decreased from de east to the west, meanwhile pH and dissolved oxygen varied associated with the latitude. To assess Patagonian ponds water status we recommend the measure of total suspended solids and total nitrogen in the water, and evaluate the mallín (wetland vegetation) coverage in a 100m radius from the pond, since those features were significantly influenced by livestock land use. To evaluate the relative importance of natural variability and anthropogenic influences as driving factors of water quality we performed three generalized linear models (GLM) that encompassed the hydrology, hydroperiod and biome (to represent natural influences), and land use (to represent anthropogenic influences) as fixed effects. Our results revealed that at the Patagonian scale, ponds water quality would be strongly dependent on natural gradients. We synthetized spatial patterns of Patagonian pond water quality, and disentangled natural and anthropic factors finding that the dominant environmental influence is rainfall gradient. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Evaluation of the Rulison drilling effluent pond as trout habitat

    SciTech Connect

    1998-06-23

    The Rulison Site is located in Section 25, township 7 South, Range 95 West, Garfield County, Colorado. The site is approximately 19 kilometers (km) (12 miles [mi]) southwest of Rifle Colorado, and approximately 65 km (40 mi) northeast of Grand Junction, Colorado. Project Ruhson was an experiment conducted jointly by the U.S. Atomic Energy Commission and Austral Oil Company to test the feasibility of using a nuclear device to increase natural gas production in low permeability geological formations. The experiment was conducted on September 10, 1969, and consisted of detonating a 43-kiloton nuclear device at a depth of 2,568 meters (m) (8,426 feet [ft]) below the ground surface (DOE, 1994). The Rulison Drilling Effluent Pond (called `the pond`) is an engineered structure covering approximately 0.2 hectare (0.5 acre), which was excavated and used to store drilling fluids during drilling of the device emplacement well. The drilling fluids consisted of bentonitic drilling mud with additives such as diesel fuel and chrome lignosulfonate. Most of the drilling muds were removed from the pond when the site was decommissioned in 1976, and the pond was subsequently stocked with rainbow trout by the land owner and used as a fishing pond. In 1994 and 1995, the U.S. Department of Energy (DOE) conducted sampling of the pond to evaluate residual contamination from the drilling fluids. Based on the results of this sampling, the DOE conducted a voluntary cleanup action in order to reduce the levels of total petroleum hydrocarbons and chromium in pond sediments. The cleanup was conducted between August and mid-November of 1995. At the end of cleanup activities, the pond was lined with a clay geofabric and left dry. The geofabric was covered with sod to protect it. The pond has since been refilled by snowmelt and inflow from a spring. Prior to remediation, the pond apparently had sufficient water quality and food resources to support stocked rainbow trout. The purpose of this

  16. A review of virus removal in wastewater treatment pond systems.

    PubMed

    Verbyla, Matthew E; Mihelcic, James R

    2015-03-15

    Wastewater treatment ponds (lagoons) are one of the most common types of technologies used for wastewater management worldwide, especially in small cities and towns. They are particularly well-suited for systems where the effluent is reused for irrigation. However, the efficiency of virus removal in wastewater treatment pond systems is not very well understood. The main objective of this paper is to critically review the major findings related to virus removal in wastewater treatment pond systems and to statistically analyze results reported in the literature from field studies on virus removal in these systems. A comprehensive analysis of virus removal reported in the literature from 71 different wastewater treatment pond systems reveals only a weak to moderate correlation of virus removal with theoretical hydraulic retention time. On average, one log10 reduction of viruses was achieved for every 14.5-20.9 days of retention, but the 95th percentile value of the data analyzed was 54 days. The mechanisms responsible for virus removal in wastewater treatment ponds were also reviewed. One recent finding is that sedimentation may not be a significant virus removal mechanism in some wastewater ponds. Recent research has also revealed that direct and indirect sunlight-mediated mechanisms are not only dependent on pond water chemistry and optics, but also on the characteristics of the virus and its genome. MS2 coliphage is considered to be the best surrogate for studying sunlight disinfection in ponds. The interaction of viruses with particles, with other microorganisms, and with macroinvertebrates in wastewater treatment ponds has not been extensively studied. It is also unclear whether virus internalization by higher trophic-level organisms has a protective or a detrimental effect on virus viability and transport in pond systems. Similarly, the impact of virus-particle associations on sunlight disinfection in ponds is not well understood. Future research should focus on

  17. Dual Wall Angles Would Enhance Performance Of A Solar Pond

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1995-01-01

    Proposed dual-angle design for Sun-facing wall of solar pond enhances solar-energy-storage performance of pond; increase in performance over that of similar pond with conventional (single-angle) wall estimated to be 25 percent. Design compromises between maximizing heating and minimizing convection. Top part of Sun-facing wall optimized for top colder layer of water, less tendency toward convective mixing. Bottom part of wall optimized for bottom, warmer layer of water, greater tendency towards convection. Optimization involves consideration of both anticipated temperature-vs.-depth profile (affects tendency toward convection) and latitude (affects angle of incidence of solar radiation and rate of heating).

  18. Greenhouse Gas Exchange in Small Arctic Thaw Ponds

    NASA Astrophysics Data System (ADS)

    Laurion, I.; Bégin, P. N.; Bouchard, F.; Preskienis, V.

    2014-12-01

    Arctic lakes and ponds can represent up to one quarter of the land surface in permafrost landscapes, particularly in lowland tundra landscapes characterized by ice wedge organic polygons. Thaw ponds can be defined as the aquatic ecosystems associated to thawing of organic soils, either resulting from active layer processes and located above low-center peat polygons (hereafter low-center polygonal or LCP ponds), or resulting from thermokarst slumping above melting ice wedges linked to the accelerated degradation of permafrost (hereafter ice-wedge trough or IWT ponds). These ponds can merge together forming larger water bodies, but with relatively stable shores (hereafter merged polygonal or MPG ponds), and with limnological characteristics similar to LCP ponds. These aquatic systems are very small and shallow, and present a different physical structure than the larger thermokarst lakes, generated after years of development and land subsidence. In a glacier valley on Bylot Island, Nunavut, Canada, thermokarst and kettle lakes together represent 29% of the aquatic area, with a thermal profile resembling those of more standard arctic lakes (mixed epilimnion). The IWT ponds (44% of the area) are stratified for a large fraction of the summer despite their shallowness, while LCP and MPG ponds (27% of the area) show a more homogeneous water column. This will affect gas exchange in these diverse aquatic systems, in addition to their unique microbiota and organic carbon lability that control the production and consumption rates of greenhouse gases. The stratification in IWT ponds generates hypoxic conditions at the bottom, and together with the larger availability of organic carbon, stimulates methanogenesis and limits the mitigating action of methanotrophs. Overall, thaw ponds are largely supersaturated in methane, with IWT ponds dominating the emissions in this landscape (92% of total aquatic emissions estimated for the same valley), and they present large variations in

  19. Fate of endocrine disrupters in waste stabilization pond systems.

    PubMed

    Gomez, E; Wang, X; Dagnino, S; Leclercq, M; Escande, A; Casellas, C; Picot, B; Fenet, H

    2007-01-01

    The performance in the removal of estrogenicity from wastewater was studied in three wastewater treatment plants (WWTPs). Different treatment processes were evaluated: stabilization ponds and trickling filter. Sampling was performed from the input to the output of the treatment systems. The total estrogenic activity was determined with MCF-7-derived cell lines which express the endogenous estrogen receptor alpha. The two wastewater stabilization ponds with long retention time had high removal of estrogenicity (90% to 95%). Trickling filters despite being effective at removing organic load were less effective in removing estrogenicity (42%), and post tertiary ponds enhanced estrogenicity removal.

  20. Geohydrology and limnology of Walden Pond, Concord, Massachusetts

    USGS Publications Warehouse

    Colman, John A.; Friesz, Paul J.

    2001-01-01

    The trophic ecology and ground-water contributing area of Walden Pond, in Concord and Lincoln, Mass., were investigated by the U.S. Geological Survey in cooperation with the Massachusetts Department of Environmental Management from April 1997 to July 2000. Bathymetric investigation indicated that Walden Pond (24.88 hectares), a glacial kettle-hole lake with no surface inlet or outlet, has three deep areas. The maximum depth (30.5 meters) essentially was unchanged from measurements made by Henry David Thoreau in 1846. The groundwater contributing area (621,000 square meters) to Walden Pond was determined from water-table contours in areas of stratified glacial deposits and from land-surface contours in areas of bedrock highs. Walden Pond is a flow-through lake: Walden Pond gains water from the aquifer along its eastern perimeter and loses water to the aquifer along its western perimeter. Walden Pond contributing area also includes Goose Pond and its contributing area. A water budget calculated for Walden Pond, expressed as depth of water over the lake surface, indicated that 45 percent of the inflow to the lake was from precipitation (1.215 meters per year) and 55 percent from ground water (1.47 meters per year). The groundwater inflow estimate was based on the average of two different approaches including an isotope mass-balance approach. Evaporation accounted for 26 percent of the outflow from the lake (0.71 meters per year) whereas lake-water seepage to the groundwater system contributed 74 percent of the outflow (1.97 meters per year). The water-residence time of Walden Pond is approximately 5 years. Potential point sources of nutrients to ground water, the Concord municipal landfill and a trailer park, were determined to be outside the Walden Pond groundwater contributing area. A third source, the septic leach field for the Walden Pond State Reservation facilities, was within the groundwater contributing area. Nutrient budgets for the lake indicated that

  1. Stochastic cooling in RHIC

    SciTech Connect

    Brennan J. M.; Blaskiewicz, M.; Mernick, K.

    2012-05-20

    The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

  2. Measurements of hydrocarbons and reduced sulfur compounds emitted from a wastewater treatment pond

    SciTech Connect

    Tran, G.; Geen, C.; Friel, D.

    1996-12-31

    A flux chamber was deployed on the water surface to monitor the emissions of hydrocarbons and reduced sulfur compounds from a wastewater treatment pond at a refinery site. Air samples were collected in Tedlar bags and analyzed on-site by means of a gas chromatograph/flame ionization detector (GC/FID) for hydrocarbons and a gas chromatograph/flame photometric detector (GC/FPD) for reduced sulfur compounds. The standard deviations of the duplicate samples for hydrocarbons and for reduced sulfur compounds were better than 4% and 11%, respectively. The pond was monitored during the daytime and nighttime, under two different weather conditions where the daytime temperatures were about 22{degrees}C and 14{degrees}C. The results showed that the difference between day and night emissions of hydrocarbons and reduced sulfur compounds were greater during the warm weather compared to those during cool weather. Air samples were also collected with charcoal adsorbent tubes and analyzed by means of a gas chromatograph/mass selective detector (GC/MSD) at the BOVAR Environmental (BE) laboratory to confirm the GC/FID hydrocarbon analyses. There was excellent agreement between hydrocarbons identified by GC/FID and GC/MSD. 10 refs., 3 figs.

  3. Characterising legacy spent nuclear fuel pond materials using microfocus X-ray absorption spectroscopy.

    PubMed

    Bower, W R; Morris, K; Mosselmans, J F W; Thompson, O R; Banford, A W; Law, K; Pattrick, R A D

    2016-11-05

    Analysis of a radioactive, coated concrete core from the decommissioned, spent nuclear fuel cooling pond at the Hunterston-A nuclear site (UK) has provided a unique opportunity to study radionuclides within a real-world system. The core, obtained from a dividing wall and sampled at the fill level of the pond, exhibited radioactivity (dominantly (137)Cs and (90)Sr) heterogeneously distributed across both painted faces. Chemical analysis of the core was undertaken using microfocus spectroscopy at Diamond Light Source, UK. Mapping of Sr across the surface coatings using microfocus X-ray fluorescence (μXRF) combined with X-ray absorption spectroscopy showed that Sr was bound to TiO2 particles in the paint layers, suggesting an association between TiO2 and radiostrontium. Stable Sr and Cs sorption experiments using concrete coupons were also undertaken to assess their interactions with the bulk concrete in case of a breach in the coating layers. μXRF and scanning electron microscopy showed that Sr was immobilized by the cement phases, whilst at the elevated experimental concentrations, Cs was associated with clay minerals in the aggregates. This study provides a crucial insight into poorly understood infrastructural contamination in complex systems and is directly applicable to the UK's nuclear decommissioning efforts. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Proposed Casey`s Pond Improvement Project, Fermi National Accelerator Laboratory

    SciTech Connect

    1995-05-01

    The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA), evaluating the impacts associated with the proposed Casey`s Pond Improvement Project at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The improvement project would maximize the efficiency of the Fermilab Industrial Cooling Water (ICW) distribution system, which removes (via evaporation) the thermal load from experimental and other support equipment supporting the high energy physics program at Fermilab. The project would eliminate the risk of overheating during fixed target experiments, ensure that the Illinois Water Quality Standards are consistently achieved and provide needed additional water storage for fire protection. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  5. Withdrawal of ground water and pond water on Long Island from 1904 to 1949

    USGS Publications Warehouse

    Lusczynski, Norbert J.

    1950-01-01

    For more than 50 years the highly productive and readily replenishable water-bearing sands and gravels on Long Island -- capable of yielding an average of at least 1,000 million gallons a day -- and also some surface streams and ponds have been utilized on a large scale of public water supply and industrial, agricultural and domestic uses. During the drought months of 1949, when many surface and groundwater supplied were being depleted at an alarming rate in many localities in the Northeast, the abundant water resources of Long Island provided sufficient water for public water supply for a large number of private companies and municipalities, as well as for large emergency drafts by the City of New York. In addition they kept industrial concerns from curtailing production, saved millions of dollars of potato, cauliflower, and other Long Island crops, and even furnished, during the summer heat, comfort cooling and theatergoers.

  6. Cooling by Thermodynamic Induction

    NASA Astrophysics Data System (ADS)

    Patitsas, S. N.

    2017-03-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  7. NASA Microclimate Cooling Challenges

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.

    2004-01-01

    The purpose of this outline form presentation is to present NASA's challenges in microclimate cooling as related to the spacesuit. An overview of spacesuit flight-rated personal cooling systems is presented, which includes a brief history of cooling systems from Gemini through Space Station missions. The roles of the liquid cooling garment, thermal environment extremes, the sublimator, multi-layer insulation, and helmet visor UV and solar coatings are reviewed. A second section is presented on advanced personal cooling systems studies, which include heat acquisition studies on cooling garments, heat rejection studies on water boiler & radiators, thermal storage studies, and insulation studies. Past and present research and development and challenges are summarized for the advanced studies.

  8. Gas turbine cooling system

    DOEpatents

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  9. Cooling by Thermodynamic Induction

    NASA Astrophysics Data System (ADS)

    Patitsas, S. N.

    2016-11-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  10. Treatment of oilfield produced water by waste stabilization ponds.

    PubMed

    Shpiner, R; Vathi, S; Stuckey, D C

    2007-01-01

    Produced water (PW) from oil wells can serve as an alternative water resource for agriculture if the main pollutants (hydrocarbons and heavy metals) can be removed to below irrigation standards. Waste stabilization ponds seem like a promising solution for PW treatment, especially in the Middle East where solar radiation is high and land is available. In this work, hydrocarbon removal from PW in a biological waste stabilization pond was examined at lab-scale followed by an intermittent slow sand filter. The system was run for 300 days and removed around 90% of the oil in the pond, and 95% after the sand filter. COD removal was about 80% in the pond effluent, and 85% after the filter. The system was tested under various operational modes and found to be stable to shock loads. Installation of oil booms and decantation of surface oil seem to be important in order to maintain good system performance over time.

  11. VIEW WEST FROM BEHIND ISLAND AND INFIELD POND. EAST FACADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW WEST FROM BEHIND ISLAND AND INFIELD POND. EAST FACADE OF CLUBHOUSE AND PORTION OF GRANDSTANDS IN BACKGROUND. FLAMINGOS IN FOREGROUND: CD-W. - Hialeah Park Race Track, East Fourth Avenue, Hialeah, Miami-Dade County, FL

  12. 52. View of "grandpappy" tree with Wings Rest Pond in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View of "grandpappy" tree with Wings Rest Pond in background looking from the northeast (similar to HALS no. LA-1-22) - Briarwood: The Caroline Dormon Nature Preserve, 216 Caroline Dormon Road, Saline, Bienville Parish, LA

  13. 54. View of footbridge from Wings Rest Pond looking from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. View of footbridge from Wings Rest Pond looking from the east (similar to HALS no. LA-1-24) - Briarwood: The Caroline Dormon Nature Preserve, 216 Caroline Dormon Road, Saline, Bienville Parish, LA

  14. 53. View of Wings Rest Pond with reflection of "grandpappy" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. View of Wings Rest Pond with reflection of "grandpappy" looking from the southwest (similar to HALS no. LA-1-23) - Briarwood: The Caroline Dormon Nature Preserve, 216 Caroline Dormon Road, Saline, Bienville Parish, LA

  15. 8. Environmental view facing northwest showing pond in relationship to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Environmental view facing northwest showing pond in relationship to house - John Bly House, East side of County Road 857, just north of intersection with Quarry Run Road, Cheat Neck, Monongalia County, WV

  16. 10. VIEW OF THE SEDIMENT DAM AND POND, FACING SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF THE SEDIMENT DAM AND POND, FACING SOUTH. PHOTO TAKEN FROM WATER PUMP (FEATURE B-25). - Nevada Lucky Tiger Mill & Mine, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  17. Beyond Historical Fiction: Speare's "The Witch of Blackbird Pond."

    ERIC Educational Resources Information Center

    Thuente, Mary Helen

    1985-01-01

    Reviews "The Witch of Blackbird Pond" by E. Speare to show how the full narrative power of the novel derives from the author's successful integration of two separate narrative genres: historical fiction and the folktale. (EL)

  18. South Bay Salt Pond Tidal Wetland Restoration Phase II Planning

    EPA Pesticide Factsheets

    Information about the SFBWQP South Bay Salt Pond Tidal Wetland Restoration Phase II Planning project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic re

  19. 2. VIEW OF POND B, LOOKING NORTHEAST FROM THE WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF POND B, LOOKING NORTHEAST FROM THE WEST SIDE OF THE SOURIS RIVER VALLEY, DUE SOUTH OF THE LOOKOUT TOWER - Upper Souris National Wildlife Refuge Dams, Souris River Basin, Foxholm, Surrey (England), ND

  20. Using Stormwater Detention Ponds for Aquatic Science Instruction.

    ERIC Educational Resources Information Center

    Cahoon, Lawrence B.

    1996-01-01

    Describes the use of recently constructed stormwater detention ponds to conduct a set of field and laboratory exercises in an undergraduate limnology course. Provides a number of logistical advantages that can benefit those teaching aquatic sciences. (JRH)

  1. Using Stormwater Detention Ponds for Aquatic Science Instruction.

    ERIC Educational Resources Information Center

    Cahoon, Lawrence B.

    1996-01-01

    Describes the use of recently constructed stormwater detention ponds to conduct a set of field and laboratory exercises in an undergraduate limnology course. Provides a number of logistical advantages that can benefit those teaching aquatic sciences. (JRH)

  2. Investigation of the environmental impacts of sedimentation in Anzali Pond

    NASA Astrophysics Data System (ADS)

    Barmal, Milad; Neshaei, Seyed Ahmad; Farzan, Niloofar

    2016-04-01

    Anzali harbor is the most essential transportation pole between Iran and other countries of the Caspian Sea basin. Anzali pond is an important ecosystem in the region due to its unique plant and animal species. In order to determine the effects of interaction between pond and sea, a series of in-depth studies and analysis on the pattern of sedimentation in Anzali harbor and pond were performed. The study area is Anzali harbor and pond which is located in southwest of the Caspian Sea in Iran. In recent years the economical importance and improvement program of this region has devoted many scientists and authorities attention to itself. In this paper, researches on environmental impact by sediment and pollution in this zone are performed. Analysis indicates that by disposal of sediment and pollution in this area, the physical and chemical quality of water has declined. Some practical suggestions are made to improve the quality of the studied region in terms of environmental aspects.

  3. [Reduction of radioactive cesium content in pond smelt by cooking].

    PubMed

    Nabeshi, Hiromi; Tsutsumi, Tomoaki; Hachisuka, Akiko; Matsuda, Rieko

    2013-01-01

    In Japan, seafood may be eaten raw or after having been cooked in diverse ways. Therefore, it is important to understand the effect of cooking on the extent of contamination with radioactive materials in order to avoid internal exposure to radioactive materials via seafood. In this study, we investigated the changes in radioactive cesium content in pond smelt cooked in four different ways: grilled, stewed (kanroni), fried and soaked (nanbanzuke). The radioactive cesium content in grilled, kanroni and fried pond smelt was almost unchanged compared with the uncooked state. In contrast, radioactive cesium content in nanbanzuke pond smelt was decreased by about 30%. Our result suggests that soaking cooked pond smelt in seasoning is an effective method of reducing the burden radioactive cesium.

  4. 90. VIEW OF THE HEAD ARCHES AND FAIRMOUNT POND, CA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. VIEW OF THE HEAD ARCHES AND FAIRMOUNT POND, CA. 1875 Collection of the Fairmount Park Commission - Fairmount Waterworks, East bank of Schuylkill River, Aquarium Drive, Philadelphia, Philadelphia County, PA

  5. 5. UPSTREAM (WEST) VIEW OF SPILLWAY, WITH COOKE DAM POND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. UPSTREAM (WEST) VIEW OF SPILLWAY, WITH COOKE DAM POND IN FOREGROUND AND NORTH EMBANKMENT (MI-98-A) AT LEFT. VIEW TO NORTHEAST. - Cooke Hydroelectric Plant, Spillway, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  6. South Bay Salt Pond Restoration, Phase II at Ravenswood

    EPA Pesticide Factsheets

    Information about the South Bay Salt Pond Restoration Project: Phase II Construction at Ravenswood, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  7. Beyond Historical Fiction: Speare's "The Witch of Blackbird Pond."

    ERIC Educational Resources Information Center

    Thuente, Mary Helen

    1985-01-01

    Reviews "The Witch of Blackbird Pond" by E. Speare to show how the full narrative power of the novel derives from the author's successful integration of two separate narrative genres: historical fiction and the folktale. (EL)

  8. Determining surface meltwater pond volume using satellite imagery

    NASA Astrophysics Data System (ADS)

    Sneed, W. A.; Hamilton, G. S.

    2006-12-01

    Ponded surface meltwater on Arctic ice caps and ice sheets is an important glaciological and climatological characteristic. Changes in the distribution and amount of ponds with time represent changes in the surface climate conditions controlling melting. The availability of large volumes of ponded surface water raises the possibility of sudden drainage to the bed, a change in basal lubrication, and a rapid increase in ice velocity. While the problem of calculating the areal extent of meltwater ponds using satellite imagery is fairly straightforward, determining the depth and thus the volume is not. We describe a method for deriving the depth of meltwater ponds using 15 m resolution ASTER imagery. We apply the technique to sequences of satellite imagery acquired over Austfonna, Svalbard and the western margin of the Greenland Ice Sheet, to derive changes in melt pond extent and volume during the period 2000-2005. These changes are probably related to accumulation and summer melt conditions. The method is well-suited to the near-optically-clear melt ponds of ice sheets and ice caps, but not to the turbid ponds of alpine glaciers. The method involves making some reasonable assumptions about the albedo of the bottom surface of the ponds and the optical attenuation characteristics of ASTER bands VNIR1 and VNIR3 through the ponded meltwater. Preliminary laboratory analysis of ponded meltwater from Greenland supports our assumption that such water contains little or no chlorophyll A with minimal levels of suspended organic and inorganic solids and, to a first approximation, can be consider laboratory-pure fresh water. For an ~78 km2 test area in northeastern Austfonna we have calculated a threefold increase in meltwater volume during one six-day period in July 2004. In northwestern Greenland, an ~171 km2 area near Melville Bay in July 2002 had a volume of surface meltwater of nearly 2x10^7 m3; in August 2005 the same area had a volume of 3.7x10^7 m3 of surface meltwater.

  9. The cooling of particle beams

    SciTech Connect

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling.

  10. Dissolved organic matter photolysis in Canadian arctic thaw ponds

    NASA Astrophysics Data System (ADS)

    Laurion, Isabelle; Mladenov, Natalie

    2013-09-01

    The abundant thaw lakes and ponds in the circumarctic receive a new pool of organic carbon as permafrost peat soils degrade, which can be exposed to significant irradiance that potentially increases as climate warms and ice cover shortens. Exposure to sunlight is known to accelerate the transformation of dissolved organic matter (DOM) into molecules that can be more readily used by microbes. We sampled the water from two common classes of ponds found in the ice-wedge system of continuous permafrost regions of Canada, polygonal and runnel ponds, and followed the transformation of DOM over 12 days by looking at dissolved organic carbon (DOC) concentration and DOM absorption and fluorescence properties. The results indicate a relatively fast decay of color (3.4 and 1.6% loss d-1 of absorption at 320 nm for the polygonal and runnel pond, respectively) and fluorescence (6.1 and 8.3% loss d-1 of total fluorescent components, respectively) at the pond surface, faster in the case of humic-like components, but insignificant losses of DOC over the observed period. This result indicates that direct DOM mineralization (photochemical production of CO2) is apparently minor in thaw ponds compared to the photochemical transformation of DOM into less chromophoric and likely more labile molecules with a greater potential for microbial mineralization. Therefore, DOM photolysis in arctic thaw ponds can be considered as a catalytic mechanism, accelerating the microbial turnover of mobilized organic matter from thawing permafrost and the production of greenhouse gases, especially in the most shallow ponds. Under a warming climate, this mechanism will intensify as summers lengthen.

  11. Operation of Stabilization Ponds in a Tropical Area

    DTIC Science & Technology

    1974-10-01

    The efficiency of solar energy conversion into useable photo- synthetic energy was estimated to be 2-A7. by Rich (1963), while Herman and Gloyna... solar radiation would be available throughout the year. Temperature also affects pond performance in still a different Banner. Algal cells acting as...treatment efficiency . The approach to design depends upon whether the pond is a single or multi- cell system, and whether it is to be an aerobic, a

  12. Formation of the "ponds" on asteroid (433) Eros by fluidization

    NASA Astrophysics Data System (ADS)

    Sears, D. W. G.; Tornabene, L. L.; Osinski, G. R.; Hughes, S. S.; Heldmann, J. L.

    2015-11-01

    The "ponds" on asteroid (433) Eros are fine-grained deposits approximating flat (quasi-equipotential) surfaces with respect to local topographic depressions (e.g., craters) in spacecraft images. These ponds are discussed in the context of laboratory simulation experiments, crater-related ponded and pitted deposits observed on Mars and Vesta, terrestrial phreatic craters, and degassing features associated with eroded impact craters on Earth. While the details of formation of these features on Mars, Vesta and the Earth are thought to be different, they all include mechanisms that require the interactions between surface materials and volatiles (e.g., water vapor). Indeed, analogous features similar to the Eros ponds can be reproduced in the laboratory by the release of vapor (ice sublimation, water evaporation, or N2) through an unconsolidated regolith (independent of regolith composition). Eros is widely thought to be dry, but the discovery of exogenic water on Vesta, and recent arguments that subsurface water might be present in the inner asteroid belt suggest that endogenic water might also be present and serve as a source of the gases produced in the ponds. The amount of water required is comparable to the amount of water observed in little-metamorphosed ordinary chondrites (a few wt%). The primary morphologic characteristics of the Eros ponds can be explained in this model. The heat source for degassing could have been solar heating following transfer from a main belt orbit to a near Earth orbit. Although other hypotheses (e.g., electrostatic levitation, seismic shaking, and comminution of boulders) can account for most of the features of the ponds, recent observations regarding the role of volatiles on planetary surfaces, our laboratory experiments, and fluidization deposits on active comets suggests that degassing is a reasonable hypothesis to be considered and further tested for explaining the Eros ponds, and similar features on other bodies.

  13. Level 1 remedial investigation work plan, 300 Area Process Ponds

    SciTech Connect

    Not Available

    1987-06-01

    This report discusses the objectives of the site characterization for the 300 Area Process Ponds which are to identify and quantify contamination at the ponds and to estimate their potential impact on human health and the environment. The results of the site characterization will be used to identify any future actions related to contamination at the site and to identify any additional data requirements needed to support selection of a remedial action. 9 refs., 12 figs., 8 tabs.

  14. Hydrogen film cooling investigation

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Ewen, R. L.

    1973-01-01

    Effects of flow turning, flow acceleration, and supersonic flow on film cooling were determined experimentally and correlated in terms of an entrainment film cooling model. Experiments were conducted using thin walled metal test sections, hot nitrogen mainstream gas, and ambient hydrogen or nitrogen as film coolants. The entrainment film cooling model relates film cooling effectiveness to the amount of mainstream gases entrained with the film coolant in a mixing layer. The experimental apparatus and the analytical model used are described in detail and correlations for the entrainment fraction and film coolant-to-wall heat transfer coefficient are presented.

  15. Coherent electron cooling.

    PubMed

    Litvinenko, Vladimir N; Derbenev, Yaroslav S

    2009-03-20

    Cooling intense high-energy hadron beams poses a major challenge for modern accelerator physics. The synchrotron radiation emitted from such beams is feeble; even in the Large Hadron Collider (LHC) operating with 7 TeV protons, the longitudinal damping time is about 13 hours. None of the traditional cooling methods seem able to cool LHC-class protons beams. In this Letter, we present a novel method of coherent electron cooling based on a high-gain free-electron laser (FEL). This technique could be critical for reaching high luminosities in hadron and electron-hadron colliders.

  16. Passive containment cooling system

    DOEpatents

    Conway, Lawrence E.; Stewart, William A.

    1991-01-01

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  17. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  18. District cooling gets hot

    SciTech Connect

    Seeley, R.S.

    1996-07-01

    Utilities across the country are adopting cool storage methods, such as ice-storage and chilled-water tanks, as an economical and environmentally safe way to provide cooling for cities and towns. The use of district cooling, in which cold water or steam is pumped to absorption chillers and then to buildings via a central community chiller plant, is growing strongly in the US. In Chicago, San Diego, Pittsburgh, Baltimore, and elsewhere, independent district-energy companies and utilities are refurbishing neglected district-heating systems and adding district cooling, a technology first developed approximately 35 years ago.

  19. Power electronics cooling apparatus

    DOEpatents

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  20. Calibration of laboratory bioassays with results from microcosms and ponds

    SciTech Connect

    Giddings, J.M.; Franco, P.J.

    1985-01-01

    Effects of an organic contaminant (as synthetic coal-derived crude oil) were measured in outdoor ponds and indoor pond-derived microcosms and compared with results of laboratory bioassays. Ponds and microcosms were treated with the oil continuously for eight weeks. Concentrations of phenolic compounds spanned the range of acute and chronic toxicity concentrations determined in single-species bioassays. Effects were similar in microcosms and ponds, implying that microcosms are suitable models for field studies for some purposes. Significant changes in community metabolism and zooplankton populations occurred in microcosms and ponds exposed to less than 0.05 mg/L phenols, near the 28-day lowest observed effect concentration (LOEC) for Daphnia magna. Ponds and microcosms were seriously damaged at concentrations near acute bioassay mean lethal concentration (LC/sub 50/) values. Indirect effects in the ecosystems occurred at all treatment levels, and included changes in water quality, replacement of sensitive taxa by more tolerant competitors, and changes in abundance of some species because of increases or decreases in their predators or grazers. The safe exposure level determined from the ecosystem experiments was accurately predicted by an application factor of 0.03 in conjunction with the most sensitive acute bioassay result (the D. magna 48-h LC/sub 50/). Less conservative extrapolation methods overestimated the safe concentration of this material in these ecosystems. 32 references, 3 figures, 5 tables.

  1. Calibration of laboratory bioassays with results from microcosms and ponds

    SciTech Connect

    Giddings, J.M.; Franco, P.J.

    1983-01-01

    Effects of an organic contaminant (a synthetic coal-derived crude oil) were measured in outdoor ponds and indoor pond-derived microcosms and compared with results of laboratory bioassays. Ponds and microcosms were treated with the oil continuously for 8 weeks. Concentrations of phenolic compounds (the major water-soluble constituents of the oil) spanned the range of acute and chronic toxicity concentrations determined in single-species bioassays. Effects were similar in microcosms and ponds, implying that microcosms are suitable models for field studies for some purposes. Significant changes in community metabolism and zooplankton populations occurred in microcosms and ponds exposed to less than 0.05 mg/litre phenols, near the 28-day Lowest Observed Effect Concentration for Daphnia magna. Ponds and microcosms were seriously damaged at concentrations near acute bioassay LC50 values. Indirect effects in the ecosystems occurred at all treatment levels, and included changes in water quality, replacement of sensitive taxa by more tolerant competitors, and changes in abundance of some species because of increases or decreases in their predators or grazers. The safe exposure level determined from the ecosystem experiments were accurately predicted by an application factor of 0.03 in conjunction with the most sensitive acute bioassay result (the D. magna 48-h LC50). Less conservative extrapolation methods overestimated the safe concentration of this material in these ecosystems. 28 references, 3 figures, 5 tables.

  2. Effectiveness of an urban runoff detention pond - Wetlands system

    USGS Publications Warehouse

    Martin, E.H.

    1988-01-01

    The effectiveness of an urban detention system, composed of a detention pond and wetlands in series, in reducing constituent loads carried in runoff was determined. The detention pond was effective in reducing loads of suspended solids and suspended metals. Suspended-phase efficiencies for solids, lead, and zinc ranged between 42 and 66%. Nutrient efficiencies were variable, ranging for all species and phases, from less than 0 to 72%. The wetlands generally was effective in reducing both suspended and dissolved loads of solids and metals. Total (dissolved + suspended) solids, lead, and zinc efficiencies ranged between 41 and 73%. Efficiencies for total nitrogen and phosphorus were 21 and 17%, respectively. The system, by combining the treatment of the pond of wetlands, was very effective in reducing loads of most constituents. Total solids, lead, and zinc efficiencies ranged between 55 and 83%. Total nitrogen and phosphorus efficiencies were 36 and 43%, respectively.The effectiveness of an urban detention system, composed of a detention pond and wetlands in series, in reducing constituent loads carried in runoff was determined. The detention pond was effective in reducing loads of suspended solids and suspended metals. Nutrient efficiencies were variable, ranging for all species and phases, from less than 0 to 72 percent. The wetlands generally was effective in reducing both suspended and dissolved loads of solids and metals. The system, by combining the treatment of the pond and wetlands, was very effective in reducing loads of most constituents.

  3. Water treatment plant sludge disposal into stabilization ponds.

    PubMed

    Filho, Sidney Seckler Ferreira; Piveli, Roque Passos; Cutolo, Silvana Audrá; de Oliveira, Alexandre Alves

    2013-01-01

    Researchers have paid particular attention to the disposal of sludge produced in water treatment plants (WTPs) into wastewater treatment plants (WWTPs) for further processing, mainly because it is considered an attractive alternative for the treatment of waste generated in water production processes. This study evaluated the effects of flow equalization and disposal of sludge, from a conventional WTP, into a WWTP system that includes an anaerobic stabilization pond followed by a facultative pond. During the period of sludge discharge from the WTP into the wastewater system, the influent to the WWTP presented an increase of 17% (from 171 to 200 mg L(-1)) of total suspended solids (TSS) and a 7.0% flow rate increase, without showing adverse effects on the organic load, TSS and nutrients removal. The most significant impact observed in the WWTP was the increase of solids accumulation rate in the anaerobic pond, with a value of 141 mm/year during the sludge discharge period. The operating time, before the dredging and desludging cycles required for this specific anaerobic pond, decreased from 12.7 to 10.4 years, which is consistent with previous studies in literature. Thus, based on the observed parameters of this study, it is viable to release solids from a WTP effluent into a WWTP that includes anaerobic stabilization ponds followed by a facultative pond. Indeed, this process scheme becomes a viable technical, environmental, and economical alternative for small to medium WWTPs.

  4. Acidification as environmental pollution: effects on fish-pond ecology

    SciTech Connect

    Murad, H.A.

    1987-01-01

    To establish the impact of acidity on fish production in ponds, experiments were conducted in fertilized sunfish (Lepomis spp.) ponds and fed channel catfish (Ictalurus punctatus) ponds. The alkalinity and pH of pond water were lowered by additions of H/sub 2/SO/sub 4/. Total alkalinity levels were 1, 3, 6, 8, and 20 mg/liter in sunfish ponds and 0, 5, and 20 in catfish production ponds. Water quality and phytoplankton density were monitored. The decrease in alkalinity caused changes in fish production and phytoplankton communities. Production of sunfish decreased with decreasing alkalinity below 20 mg/liter. Channel catfish yields were not affected significantly at a total alkalinity of 5 mg/liter and above (P > 0.05). No sign of fish stress of aluminum accumulation in the tissue were detected in catfish. There was no relation between alkalinity level and off-flavor in catfish. Chlorophyll a concentration increased as alkalinity and pH decreased, although total number of phytoplankters, gross photosynthesis, and turbidity decreased with decreases in total alkalinity. Phosphorus was more available at low alkalinity levels. Total hardness increased as alkalinity decreased.

  5. Enhancing Ecoefficiency in Shrimp Farming through Interconnected Ponds.

    PubMed

    Barraza-Guardado, Ramón Héctor; Arreola-Lizárraga, José Alfredo; Miranda-Baeza, Anselmo; Juárez-García, Manuel; Juvera-Hoyos, Antonio; Casillas-Hernández, Ramón

    2015-01-01

    The future development of shrimp farming needs to improve its ecoefficiency. The purpose of this study was to evaluate water quality, flows, and nitrogen balance and production parameters on a farm with interconnected pond design to improve the efficiency of the semi-intensive culture of Litopenaeus vannamei ponds. The study was conducted in 21 commercial culture ponds during 180 days at densities of 30-35 ind m(-2) and daily water exchange <2%. Our study provides evidence that by interconnecting ponds nutrient recycling is favored by promoting the growth of primary producers of the pond as chlorophyll a. Based on the mass balance and flow of nutrients this culture system reduces the flow of solid, particulate organic matter, and nitrogen compounds to the environment and significantly increases the efficiency of water (5 to 6.5 m(3) kg(-1) cycle(-1)), when compared with traditional culture systems. With this culture system it is possible to recover up to 34% of the total nitrogen entering the system, with production in excess of 4,000 kg ha(-1) shrimp. We believe that the production system with interconnected ponds is a technically feasible model to improve ecoefficiency production of shrimp farming.

  6. Enhancing Ecoefficiency in Shrimp Farming through Interconnected Ponds

    PubMed Central

    Barraza-Guardado, Ramón Héctor; Arreola-Lizárraga, José Alfredo; Miranda-Baeza, Anselmo; Juárez-García, Manuel; Juvera-Hoyos, Antonio; Casillas-Hernández, Ramón

    2015-01-01

    The future development of shrimp farming needs to improve its ecoefficiency. The purpose of this study was to evaluate water quality, flows, and nitrogen balance and production parameters on a farm with interconnected pond design to improve the efficiency of the semi-intensive culture of Litopenaeus vannamei ponds. The study was conducted in 21 commercial culture ponds during 180 days at densities of 30–35 ind m−2 and daily water exchange <2%. Our study provides evidence that by interconnecting ponds nutrient recycling is favored by promoting the growth of primary producers of the pond as chlorophyll a. Based on the mass balance and flow of nutrients this culture system reduces the flow of solid, particulate organic matter, and nitrogen compounds to the environment and significantly increases the efficiency of water (5 to 6.5 m3 kg−1 cycle−1), when compared with traditional culture systems. With this culture system it is possible to recover up to 34% of the total nitrogen entering the system, with production in excess of 4,000 kg ha−1 shrimp. We believe that the production system with interconnected ponds is a technically feasible model to improve ecoefficiency production of shrimp farming. PMID:26525070

  7. 2101-M pond closure plan. Volume 1, Revision 2

    SciTech Connect

    Izatt, R. D.; Lerch, R. E.

    1993-06-01

    This document describes activities for the closure of a surface impoundment (2101-M Pond) at the Hanford Site. The 2101-H Pond was initially constructed in 1953 to serve as a drainage collection area for the 2101-H Building. (Until the Basalt Waste Isolation Project (BWIP) Laboratory was constructed in the 2101-M Building in 1979--1981, the only source contributing discharge to the pond was condensate water from the 2101-H Building heating, ventilation, and air conditioning (HVAC) system. The drains for the BWIP Laboratory rooms were plumbed into a 4-in., cast-iron, low-pressure drain pipe that carries waste water from the HVAC system to the pond. During the active life of the BWIP Laboratory, solutions of dissolved barium in groundwater samples were discharged to the 2101-M Pond via the laboratory drains. As a result of the discharges, a Part A permit application was initially submitted to the Washington State Department of Ecology (Ecology) in August 1986 which designates the 2101-M Pond as a surface impoundment.

  8. Water quality, phytoplankton and zooplankton of Par Pond and Pond B. Volume 1. Water quality. Final report, January 1984-June 1985

    SciTech Connect

    Chimney, M.J.; Cody, W.R.; Starkel, W.M.

    1985-08-01

    The objectives of this study were to: (1) characterize the biological communities and environmental conditions in Par Pond and pond B; (2) assess the impact and significance of entrainment losses of plankton at the Par Pond pumphouse; (3) assess the impact of heated discharge on the biotic communities throughout the reservior; and (4) help determine if Par Pond maintains an indigenous balanced biological community as defined in state and federal regulations.

  9. Quality control summary report for the RFI/RI assessment of the submerged sediment core samples taken at Par Pond, Pond C, and L-Lake

    SciTech Connect

    Koch, J. II

    1996-12-01

    This report presents a summary of the sediment characterization performed under the direction of the Westinghouse Savannah River Company`s (WSRC) Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) in support of Par Pond, Pond C, and L- Lake. This characterization will be a screening study and will enable the Environmental Sciences Section (ESS) to develop a defensible contaminants of concern list for more extensive characterization of the Par Pond, Pond C, and L-Lake.

  10. Cooling Rates of Chondrules

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Hewins, R. H.; Eiben, B. A.

    1995-09-01

    Cooling rates for chondrules are among many aspects of chondrule forming events currently under debate and estimates by different authors vary considerably. Calculations based on radiation from isolated chondrules yield an extremely high cooling rate of ~10^5 degrees C/hr [1]. The cooling rates derived from previous petrological and experimental studies are much lower but inconsistent, ranging from 5 - 100 degrees C/hr [2] to ~1000 degrees C/hr [3]. Since cooling rates bear important information about the chondrule-forming environment, they need to be more tightly constrained. Here we re-evaluate the chondrule cooling rates based on the results of our recent flash heating experiments, mainly the volatile loss data, as well as textures, and olivine zoning profiles of the chondrule analog materials. Linear cooling vs. cooling curves. Many previous studies either assumed or used linear cooling rates for chondrules [2,3]. In reality, even with simple radiative cooling, the cooling rates should have followed a non-linear path, according to the Stefan- Boltzmann law. We used non-linear cooling rates throughout our experiments, and our observations show that the initial cooling rate at the high temperature end of a specific cooling curve affects chondrule properties most. Volatile loss results. Our Na and S loss experiments [4] have shown that to reproduce the very high Na contents [5,6] and primary sulfide [7] found in some natural chondrules, heating has to be brief, but fast cooling and relatively high fO2 are also essential. With an fO2 of ~10^(-10) atm, for a type II chondrule flash heated to its liquidus temperature, cooling curves beginning at ~2500 degrees C/hr are necessary to retain >90% of its original Na content or part of its S, unless the ambient gas is very enriched in these elements [8]. Under lower fO2, or for type I chondrule composition, even higher cooling rates are required. Textures and olivine zoning with ~10^1 - ~10^3 degrees C/hr initial cooling

  11. Stacking with stochastic cooling

    NASA Astrophysics Data System (ADS)

    Caspers, Fritz; Möhl, Dieter

    2004-10-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes.

  12. Nitrogen removal in recirculated duckweed ponds system.

    PubMed

    Benjawan, L; Koottatep, T

    2007-01-01

    Duckweed-based ponds (DWBPs) have the potential for nitrogen (N) removal from wastewater; however, operational problems such as duckweed die-off regularly occur. In this study, effluent recirculation was applied to the DWBPs to solve the above problem as well as to investigate N removal mechanisms. Two pilot scale recirculated DWBPs were employed to treat municipal wastewater. The average removal efficiencies for TN, TKN and NH4-N were 75%, 89% and 92%, respectively at TN loading of 1.3 g/m2.d and were 73%, 74% and 76%, respectively at TN loading of 3.3 g/m2.d. The effluent of the system under both operational conditions had stable quality and met the effluent standard. Duckweed die-off was not observed during the study, which proves the system stability and effluent recirculation which is thought to be a reason. N-mass balance revealed that nitrification-denitrification and duckweed uptake play major roles in these recirculated DWBPs. The rates of nitrification-denitrification were increased as TN loading was higher, which might be an influence from an abundance of N and a suitable condition. The rates of N uptake by duckweed were found similar and did not depend on the higher TN loading applied, as the duckweed has limited capacity to assimilate it.

  13. Compost treatment of contaminated pond sediment

    SciTech Connect

    Francis, M.; Gukert, D. |

    1995-12-31

    This paper summarizes an experiment involving compost treatment of pond sediment contaminated with hydrocarbons. Experimental variables included the size, shape, and aeration of the compost pile. Pile temperature measurements and hydrocarbon analyses were made periodically. Temperatures in the pyramid shaped compost piles rose quickly and remained elevated above ambient for about one month; during this period, hydrocarbon loss from the piles was greatest. The flat pile did not show elevated temperatures at any time, and total hydrocarbon losses by volatilization were 19.1 g. Total losses from the passively aerated pile were 1.02 g, while the actively aerated pile had losses of 0.08 g. Individual identified component compounds in the sediment included polycyclic aromatic hydrocarbons (PAHs). Final levels were in the 2 to 20 ppM range compared to 100 to 400 ppM in the original sediment. Composting removed PAH components and other light organics, and the composted material can be stored onsite or landfilled without leaching concerns.

  14. Actinide behavior in a freshwater pond

    SciTech Connect

    Trabalka, J.R.; Bogle, M.A.; Scott, T.G.

    1983-01-01

    Long-term investigations of solution chemistry in an alkaline freshwater pond have revealed that actinide oxidation state behavior, particularly that of plutonium, is complex. The Pu(V,VI) fraction was predominant in solution, but it varied over the entire range reported from other natural aquatic environments, in this case, as a result of intrinsic biological and chemical cycles (redox and pH-dependent phenomena). A strong positive correlation between plutonium (Pu), but not uranium (U), and hydroxyl ion over the observation period, especially when both were known to be in higher oxidation states, was particularly notable. Coupled with other examples of divergent U and Pu behavior, this result suggests that Pu(V), or perhaps a mixture of Pu(V,VI), was the prevalent oxidation state in solution. Observations of trivalent actinide sorption behavior during an algal bloom, coupled with the association with a high-molecular weight (nominally 6000 to 10,000 mol wt) organic fraction in solution, indicate that solution-detritus cycling of organic carbon, in turn, may be the primary mechanism in amercium-curium (Am-Cm) cycling. Sorption by sedimentary materials appears to predominate over other factors controlling effective actinide solubility and may explain, at least partially, the absence of an expected strong positive correlation between carbonate and dissolved U. 49 references, 6 figures, 12 tables.

  15. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  16. Mallards (Anas platyrhynchos) and wastewater ponds, Part I: Mallard ducks overwintering at a northern wastewater treatment pond.

    PubMed

    Welsh, Patrick O; Paszkowski, Cynthia A; Tierney, Keith B

    2017-09-01

    In northern urban areas, wastewater treatment ponds (WWTPs) may provide a thermal refuge during winter (~10°C) that is used by normally migratory mallards (Anas platyrhynchos). On the ponds, mallards may experience stress due to crowding, or through the ingestion of WWTP water, be exposed to a diverse array of synthetic chemicals, which may have adverse health effects. Photographic sampling was used to assess mallard sex ratios and behavioural patterns throughout the late winter on wastewater ponds in Edmonton, Canada. The WWTP mallard population was large (>1000 birds), but temporally variable and consistently male-dominated. Locomotion and dabbling were the primary behaviors observed; aggression was rarely observed, which suggests crowding stress was low or absent. Mallard abundance tended to be higher at lower air temperatures, suggesting that WWTP ponds acted as a thermal refuge. Stable isotope analysis of carbon and nitrogen from duck feces and potential food sources indicated that mallards were not feeding at the site, or on invertebrates or select waste grain from offsite. Rather, ducks either consumed an undetermined food source or were feeding very little. Taken together, the data suggest that winter use of northern WWTP ponds may serve as an alternative to migration, whether this strategy benefits or harms mallards likely depends on winter severity, and not on WWTP pond characteristics or water quality. Copyright © 2016. Published by Elsevier Inc.

  17. Small ponds with major impact: The relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Abnizova, A.; Siemens, J.; Langer, M.; Boike, J.

    2012-06-01

    Although ponds make up roughly half of the total area of surface water in permafrost landscapes, their relevance to carbon dioxide emissions on a landscape scale has, to date, remained largely unknown. We have therefore investigated the inflows and outflows of dissolved organic and inorganic carbon from lakes, ponds, and outlets on Samoylov Island, in the Lena Delta of northeastern Siberia in September 2008, together with their carbon dioxide emissions. Outgassing of carbon dioxide (CO2) from these ponds and lakes, which cover 25% of Samoylov Island, was found to account for between 74 and 81% of the calculated net landscape-scale CO2 emissions of 0.2-1.1 g C m-2 d-1 during September 2008, of which 28-43% was from ponds and 27-46% from lakes. The lateral export of dissolved carbon was negligible compared to the gaseous emissions due to the small volumes of runoff. The concentrations of dissolved inorganic carbon in the ponds were found to triple during freezeback, highlighting their importance for temporary carbon storage between the time of carbon production and its emission as CO2. If ponds are ignored the total summer emissions of CO2-C from water bodies of the islands within the entire Lena Delta (0.7-1.3 Tg) are underestimated by between 35 and 62%.

  18. Elastocaloric cooling: Stretch to actively cool

    NASA Astrophysics Data System (ADS)

    Ossmer, Hinnerk; Kohl, Manfred

    2016-10-01

    The elastocaloric effect can be exploited in solid-state cooling technologies as an alternative to conventional vapour compression. Now, an elastocaloric device based on the concept of active regeneration achieves a temperature lift of 15.3 K and efficiencies competitive with other caloric-based approaches.

  19. Direct Experimental Assessment of Microbial Activity in North Pond Sediments

    NASA Astrophysics Data System (ADS)

    Ferdelman, T. G.; Picard, A.; Morando, M.; Ziebis, W.

    2009-12-01

    North Pond, an isolated sediment pond located at 22°45’N on the western flank of the Mid-Atlantic Ridge, offered the opportunity to study microbial activities in deeply-buried low-activity sediments. About 8 x 15 km in size with sediment maximum thickness of about 300 m, North Pond is completely surrounded by exposed 7 Ma old basement. North Pond lies above the carbonate compensation depth at a water depth about 4500 m; hydrostatic pressure at the seafloor is about 45 MPa and the temperature is near 2°C. During the a R/V MS Merian cruise (MSM-11/1) in February -March 2009, 14 gravity cores of up to 9 m length were successfully obtained, from which samples were taken with 1-m resolution for experimental activity measurements. The goal of the experimental work was 1) to examine potential metabolic pathways in North Pond sediments and carbon assimilation pathways in this low-energy environment, and 2) explore the effects of pressure on microbial metabolic activities. As dissolved oxygen penetrated through all depths, sediments were aerobically sampled, processed and incubated at 4°C. Selected samples were immediately stored at in situ pressure until further use. The microbial uptake of both organic and inorganic carbon in selected North Pond sediment samples was investigated by following the fate of 14C in radio-labeled organic and organic compounds in North Pond sediment slurry incubations. Shipboard and on-shore experiments using 14C-leucine, 14C-glucose and 14C-bicarbonate were performed on selected cores. Day- to month- incubations were performed at 4°C. Parallel incubations were conducted at atmospheric pressure (0.1 MPa) and in situ pressure (~45 MPa). Either whole cell extraction (Kallmeyer et al., Limnol. Oceanogr.: Methods 6, 2008, 238-245) or protein-DNA extraction was carried on after various incubations to determine the fraction of 14C incorporated into cellular components. Formation of 14C-labeled CO2 was determined on samples incubated with 14C

  20. High rates of methane emissions from south taiga wetland ponds.

    NASA Astrophysics Data System (ADS)

    Glagolev, M.; Kleptsova, I.; Maksyutov, S.

    2012-04-01

    Since wetland ponds are often assumed to be insignificant sources of methane, there is a limited data about its fluxes. In this study, we found surprisingly high rates of methane emission at several shallow ponds in the south taiga zone of West Siberia. Wetland ponds within the Great Vasyugan Mire ridge-hollow-pool patterned bog system were investigated. 22 and 24 flux measurements from ponds and surrounded mires, respectively, were simultaneously made by a static chamber method in July, 2011. In contrast to previous measurements, fluxes were measured using the small boat with floated chamber to avoid disturbance to the water volume. Since the ebullition is most important emission pathway, minimization of physical disturbance provoking gas bubbling significantly increases the data accuracy. Air temperature varied from 15 to 22° C during the measurements, and pH at different pond depths - from 4.4 to 5. As it was found, background emission from surrounding ridges and hollows was 1.7/2.6/3.3 mgC·m-2·h1 (1st/2nd/3rd quartiles). These rates are in a perfect correspondence with the typical methane emission fluxes from other south taiga bogs. Methane emission from wetland ponds turned out to be by order of magnitude higher (9.3/11.3/15.6 mgC·m-2·h1). Comparing to other measurements in West Siberia, many times higher emissions (70.9/111.6/152.3 mgC·m-2·h1) were found in forest-steppe and subtaiga fen ponds. On the contrary, West Siberian tundra lakes emit methane insignificantly, with the flux rate close to surrounding wetlands (about 0.2-0.3 mgC·m-2·h1). Apparently, there is a naturally determined distribution of ponds with different flux rates over different West Siberia climate-vegetation zones. Further investigations aiming at revelation of the zones with different fluxes would be helpful for total flux revision purposes. With respect to other studies, high emission rates were already detected, for instance, in Baltic ponds (Dzyuban, 2002) and U.K. lakes

  1. DOAS, Radiant Cooling Revisited

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2012-12-01

    The article discusses dedicated outdoor air systems (DOAS) and radiant cooling technologies. Both of these topics were covered in previous ASHRAE Journal columns. This article reviews the technologies and their increasing acceptance. The two steps that ASHRAE is taking to disseminate DOAS information to the design community, available energy savings and the market potential of radiant cooling systems are addressed as well.

  2. Measure Guideline: Ventilation Cooling

    SciTech Connect

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  3. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2016-07-12

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  4. Cool Earth Solar

    SciTech Connect

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  5. Why Cool Roofs?

    SciTech Connect

    Chu, Steven

    2010-01-01

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  6. S'COOL Science

    ERIC Educational Resources Information Center

    Bryson, Linda

    2004-01-01

    This article describes one fifth grade's participation in in NASA's S'COOL (Students' Cloud Observations On-Line) Project, making cloud observations, reporting them online, exploring weather concepts, and gleaning some of the things involved in authentic scientific research. S?COOL is part of a real scientific study of the effect of clouds on…

  7. Data center cooling method

    DOEpatents

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  8. District cooling in Scandinavia

    SciTech Connect

    Andersson, B.

    1996-11-01

    This paper will present the status of the development of district cooling systems in Scandinavia over the last 5 years. It will describe the technologies used in the systems that have been constructed as well as the options considered in different locations. It will identify the drivers for the development of the cooling business to-date, and what future drivers for a continuing development of district cooling in Sweden. To-date, approximately 25 different cities of varying sizes have completed feasibility studies to determine if district cooling is an attractive option. In a survey, that was conducted by the Swedish District Heating Association, some 25 cities expected to have district cooling systems in place by the year 2000. In Sweden, district heating systems with hot water is very common. In many cases, it is simply an addition to the current service for the district heating company to also supply district cooling to the building owners. A parallel from this can be drawn to North America where district cooling systems now are developing rapidly. I am convinced that in these cities a district heating service will be added as a natural expansion of the district cooling company`s service.

  9. S'COOL Science

    ERIC Educational Resources Information Center

    Bryson, Linda

    2004-01-01

    This article describes one fifth grade's participation in in NASA's S'COOL (Students' Cloud Observations On-Line) Project, making cloud observations, reporting them online, exploring weather concepts, and gleaning some of the things involved in authentic scientific research. S?COOL is part of a real scientific study of the effect of clouds on…

  10. Liquid Cooled Garments

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Astronauts working on the surface of the moon had to wear liquid-cooled garments under their space suits as protection from lunar temperatures which sometimes reach 250 degrees Fahrenheit. In community service projects conducted by NASA's Ames Research Center, the technology developed for astronaut needs has been adapted to portable cooling systems which will permit two youngsters to lead more normal lives.

  11. Why Cool Roofs?

    ScienceCinema

    Chu, Steven

    2016-07-12

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  12. Pond-aquifer flow and water availability in the vicinity of two coastal area seepage ponds, Glynn and Bulloch Counties, Georgia

    USGS Publications Warehouse

    Clarke, John S.; Rumman, Malek Abu

    2005-01-01

    Pond-aquifer flow and water availability at excavated seepage pond sites in Glynn County and in southern Bulloch County, Georgia, were evaluated to determine their potential as sources of water supply for irrigation. Excavated seepage ponds derive water primarily from ground water seeping into the pond, in a manner similar to a dug well completed in a surficial aquifer. The availability of water from seepage ponds is controlled by the permeability of surficial deposits, the amount of precipitation recharging the ground-water system, and the volume of water stored in the pond. The viability of seepage ponds as supplies for irrigation is limited by low seepage rates and high dependence on climatic conditions. Ponds will not refill unless there is adequate precipitation to recharge the surficial aquifer, which subsequently drains (seeps) into the pond. Ground-water seepage was estimated using a water-budget approach that utilized on-site climatic and hydrologic measurements, computing pond-volume changes during pond pumping tests, and by digital simulation using steady-state and transient ground-water flow models. From August 1999 to May 2000, the Glynn County pond was mostly losing water (as indicated by negative net seepage); whereas from October 2000 to June 2001, the Bulloch County pond was mostly gaining water. At both sites, most ground-water seepage entered the pond following major rainfall events that provided recharge to the surficial aquifer. Net ground-water seepage, estimated using water-budget analysis and simulation, ranged from -11.5 to 15 gallons per minute (gal/min) at the Glynn County pond site and from -55 to 31 gal/min at the Bulloch County pond site. Simulated values during pumping tests indicate that groundwater seepage to both ponds increases with decreased pond stage. At the Glynn County pond, simulated net ground-water seepage varied between 7.8 gal/min at the beginning of the test (high pond stage and low hydraulic gradient) and 103 gal

  13. Water cooled steam jet

    DOEpatents

    Wagner, Jr., Edward P.

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  14. Water cooled steam jet

    DOEpatents

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  15. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  16. Modeling gasodynamic vortex cooling

    NASA Astrophysics Data System (ADS)

    Allahverdyan, A. E.; Fauve, S.

    2017-08-01

    We aim at studying gasodynamic vortex cooling in an analytically solvable, thermodynamically consistent model that can explain limitations on the cooling efficiency. To this end, we study an angular plus radial flow between two (coaxial) rotating permeable cylinders. Full account is taken of compressibility, viscosity, and heat conductivity. For a weak inward radial flow the model qualitatively describes the vortex cooling effect, in terms of both temperature and the decrease of the stagnation enthalpy, seen in short uniflow vortex (Ranque) tubes. The cooling does not result from external work and its efficiency is defined as the ratio of the lowest temperature reached adiabatically (for the given pressure gradient) to the lowest temperature actually reached. We show that for the vortex cooling the efficiency is strictly smaller than 1, but in another configuration with an outward radial flow, we find that the efficiency can be larger than 1. This is related to both the geometry and the finite heat conductivity.

  17. Turbine blade cooling

    DOEpatents

    Staub, F.W.; Willett, F.T.

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  18. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    2000-01-01

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  19. Hydronic rooftop cooling systems

    DOEpatents

    Bourne, Richard C [Davis, CA; Lee, Brian Eric [Monterey, CA; Berman, Mark J [Davis, CA

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  20. Stochastic cooling at Fermilab

    SciTech Connect

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system.

  1. Individual variation affects departure rate from the natal pond in an ephemeral pond-breeding anuran

    USGS Publications Warehouse

    Chelgren, N.D.; Rosenberg, D.K.; Heppell, S.S.; Gitelman, A.I.

    2008-01-01

    Frogs exhibit extreme plasticity and individual variation in growth and behavior during metamorphosis, driven by interactions of intrinsic state factors and extrinsic environmental factors. In northern red-legged frogs (Rana aurora Baird and Girard, 1852), we studied the timing of departure from the natal pond as it relates to date and size of individuals at metamorphosis in the context of environmental uncertainty. To affect body size at metamorphosis, we manipulated food availability during the larval stage for a sample (317) of 1045 uniquely marked individuals and released them at their natal ponds as newly metamorphosed frogs. We recaptured 34% of marked frogs in pitfall traps as they departed and related the timing of their initial terrestrial movements to individual properties using a time-to-event model. Median age at first capture was 4 and 9 days postmetamorphosis at two sites. The rate of departure was positively related to body size and to date of metamorphosis. Departure rate was strongly negatively related to time elapsed since rainfall, and this effect was diminished for smaller and later metamorphosing frogs. Individual variation in metamorphic traits thus affects individuals' responses to environmental variability, supporting a behavioral link with variation in survival associated with these same metamorphic traits. ?? 2008 NRC.

  2. Comparison of maturation ponds and constructed wetlands as the final stage of an advanced pond system.

    PubMed

    Tanner, C C; Craggs, R J; Sukias, J P S; Park, J B K

    2005-01-01

    The treatment performance of a maturation pond (MP), the typical final polishing stage of an Advanced Pond System (APS), is compared with that of a surface-flow constructed wetland (CW) over 19 months. Both received approximately 67 mm d-1 of wastewater after passage through upstream stages of the APS. The MP, with greater sunlight exposure, had higher algal biomass (and associated suspended solids) than the CW, showed higher dissolved oxygen (DO) concentrations and greater diurnal variation in DO and pH. Neither polishing stages reduced nutrients markedly, with the CW exporting slightly more NH(3)-N and DRP, and less NO(3)-N than the MP. Disinfection was more efficient in the MP (geometric mean 1 log load removal, 12 MPN (100ml)-1) compared to the CW (0.47 log load removal, 53 MPN (100ml)-1). Incorporation of a final rock filter (28% of area) reduced median solids levels to < 10 g m(-3) in both the MP and CW. A hybrid between MPs and CWs with alternating zones of open-water (for enhanced disinfection and zooplankton grazing of algal solids) and wetland vegetation (promoting sedimentation and denitrification, and providing refugia for zooplankton) may provide more consistent effluent quality that either stage alone.

  3. Cooled-Spool Piston Compressor

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  4. Par Pond vegetation status Summer 1995 -- June survey descriptive summary

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1995-06-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the shoreline aquatic plant communities in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level, indicated that much of the original plant communities and the intermediate shoreline communities present on the exposed sediments have been lost. The extensive old-field and emergent marsh communities that were present on the exposed shoreline during the drawdown have been flooded and much of the pre-drawdown Par Pond aquatic plant communities have not had sufficient time for re-establishment. The shoreline does, however, have extensive beds of maidencane which extend from the shoreline margin to areas as deep as 2 and perhaps 3 meters. Scattered individual plants of lotus and watershield are common and may indicate likely directions of future wetland development in Par Pond. In addition, within isolated coves, which apparently received ground water seepage and/or stream surface flows during the period of the Par Pond draw down, extensive beds of waterlilies and spike rush are common. Invasion of willow and red maple occurred along the lake shoreline as well. Although not absent from this survey, evidence of the extensive redevelopment of the large cattail and eel grass beds was not observed in this first survey of Par Pond. Future surveys during the growing seasons of 1995, 1996, and 1997 along with the evaluation of satellite date to map the areal extent of the macrophyte beds of Par Pond are planned.

  5. Under-ice melt ponds in the Arctic

    NASA Astrophysics Data System (ADS)

    Smith, Naomi; Flocco, Daniela; Feltham, Daniel

    2017-04-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Double diffusion can lead to the formation of a sheet of ice, which is called a false bottom, at the interface between the fresh water and the ocean. These false bottoms isolate under-ice melt ponds from the ocean below, trapping the fresh water against the sea ice. These ponds and false bottoms have been estimated to cover between 5 and 40% of the base of the sea ice. [Notz et al. Journal of Geophysical Research 2003] We have developed a one-dimensional thermodynamic model of sea ice underlain by an under-ice melt pond and false bottom. Not only has this allowed us to simulate the evolution of under-ice melt ponds over time, identifying an alternative outcome than previously observed in the field, but sensitivity studies have helped us to estimate the impact that these pools of fresh water have on the mass-balance sea ice. We have also found evidence of a possible positive feedback cycle whereby increasingly less ice growth is seen due to the presence of under-ice melt ponds as the Arctic warms. Since the rate of basal ablation is affected by these phenomena, their presence alters the salt and freshwater fluxes from the sea ice into the ocean. We have coupled our under-ice melt pond model to a simple model of the oceanic mixed layer to determine how this affects mixed layer properties such as temperature, salinity, and depth. In turn, this changes the oceanic forcing reaching the sea ice.

  6. Toxicity of ammonia to algae in sewage oxidation ponds.

    PubMed

    Abeliovich, A; Azov, Y

    1976-06-01

    Ammonia, at concentrations over 2.0 mM and at pH values over 8.0, inhibits photosynthesis and growth of Scenedesmus obliquus, a dominant species in high-rate sewage oxidation ponds. Photosynthesis of Chlorella pyrenoidosa, Anacystis nidulans, and Plectonema boryanum is also susceptible to ammonia inhibition. Dark respiration and cell morphology were unaffected by any combination of pH and ammonia concentrations tested, thus limiting the apparent effect to inhibition of the normal function of the chloroplasts. Methylamine had the same effect as ammonia, and its penetration into the cells was found to be pH dependent. Therefore, the dependence of toxicity of amines to algae on pH apparently results from the inability to penetrate the cell membrane in the ionized form. When operated at 120-h detention time of raw wastewater, the high-rate oxidation pond maintained a steady state with respect to algal growth and oxygen concentration, and the concentration of ammonia did not exceed 1.0 mM. Shifting the pond to 48-h detention time caused an increase in ammonia concentration in the pond water to 2.5 mM, and the pond gradually turned anaerobic. Photosynthesis, which usually elevates the pH of the pond water to 9.0 to 10.0, could not proceed beyond pH 7.9 because of the high concentration of ammonia, and the algal population was washed out and reduced to a concentration that could maintain a doubling time of 48 h without photosynthesis bringing the pH to inhibitory levels. Under these conditions, the pH of the bond becomes a factor that limits the operational efficiency of the oxidation pond.

  7. Evaluation of relocation of unionid mussels into artificial ponds

    USGS Publications Warehouse

    Newton, T.J.; Monroe, E.M.; Kenyon, R.; Gutreuter, S.; Welke, K.I.; Thiel, P.A.

    2001-01-01

    Relocation of unionid mussels into refuges (e.g., hatchery ponds) has been suggested as a management tool to protect these animals from the threat of zebra mussel (Dreissena polymorpha) invasion. To evaluate the efficacy of relocation, we experimentally relocated 768 mussels, representing 5 species (Leptodea fragilis, Obliquaria reflexa, Fusconaia flava, Amblema plicata, and Quadrula quadrula) into an earthen pond at a National Fish Hatchery or back into the river. In both locations, mussels were placed into 1 of 4 treatments (mesh bags, corrals, and buried or suspended substrate-filled trays). Mussels were examined annually for survival, growth (shell length and wet mass), and physiological condition (glycogen concentration in foot and mantle and tissue condition index) for 36 mo in the pond or 40 mo in the river. We observed significant differences in mortality rates between locations (mortality was 4 times greater in the pond than in the river), among treatments (lowest mortality in the suspended trays), and among species (lower mortality in the amblemines than lamp-silines). Overall survival in both locations averaged 80% the 1st year; survival in the pond decreased dramatically after that. Although length and weight varied between locations and over time, these changes were small, suggesting that their utility as short-term measures of well being in long-lived unionids is questionable. Mussels relocated to the pond were in poor physiological condition relative to those in the river, but the magnitude of these differences was small compared to the inherent variability in physiological condition of reference mussels. These data suggest that relocation of unionids into artificial ponds is a high-risk conservation strategy; alternatives such as introduction of infected host fish, identification of mussel beds at greatest risk from zebra mussels, and a critical, large-scale assessment of the factors contributing to their decline should be explored.

  8. Pond permanence and the effects of exotic vertebrates on anurans

    USGS Publications Warehouse

    Adams, M.J.

    2000-01-01

    In many permanent ponds throughout western North America, the introduction of a variety of exotic fish and bullfrogs (Rana catesbeiana) correlates with declines in native amphibians. Direct effects of exotics are suspected to be responsible for the rarity of some native amphibians and are one hypothesis to explain the prevalence of amphibian declines in western North America. However, the prediction that the permanent ponds occupied by exotics would be suitable for native amphibians if exotics were absent has not been tested. I used a series of enclosure experiments to test whether survival of northern red-legged frog (Rana aurora aurora) and Pacific treefrog (Hyla regilla) larvae is equal in permanent and temporary ponds in the Puget Lowlands, Washington State, USA. I also examined the direct effects of bullfrog larvae and sunfish. Survival of both species of native anuran larvae was generally lower in permanent ponds. Only one permanent pond out of six was an exception to this pattern and exhibited increased larval survival rates in the absence of direct effects by exotics. The presence of fish in enclosures reduced survival to near zero for both native species. An effect of bullfrog larvae on Pacific treefrog larval survival was not detected, but effects on red-legged frog larvae were mixed. A hypothesis that food limitation is responsible for the low survival of native larvae in some permanent ponds was not supported. My results confirm that direct negative effects of exotic vertebrates on native anurans occur but suggest that they may not be important to broad distribution patterns. Instead, habitat gradients or indirect effects of exotics appear to play major roles. I found support for the role of permanence as a structuring agent for pond communities in the Puget Lowlands, but neither permanence nor exotic vertebrates fully explained the observed variability in larval anuran survival.

  9. Modelling faecal coliform mortality in water hyacinths ponds

    NASA Astrophysics Data System (ADS)

    Mayo, A. W.; Kalibbala, M.

    Removal of faecal coliforms was investigated in pilot-scale water hyacinths ponds. The investigation was conducted to evaluate the role of solar intensity, pH, dissolved oxygen, temperature, sedimentation, and attachment of faecal coliforms on Eichhornia crassipes on disappearance of bacteria in water hyacinths ponds. A mathematical model that used the plug flow philosophy and incorporating the aforementioned factors was developed to predict faecal coliform mortality rate. The proposed multifactor model satisfactorily predicted mortality rate of faecal coliforms in a pilot-scale water hyacinths ponds. After optimization of the parameters, mortality rate constant for pH ( kpH) was 0.001, mortality rate constant for DO ( kDO) was 0.0037 and solar intensity mortality rate constant k s was 0.0102 cm 2/cal. The results also showed that the thickness of biofilm ( Lf) was 2.5 × 10 -4 m, and the effective surface area of water hyacinths roots per unit surface area of pond ( Rs) was 10.4 m 2/m 2. The results further showed that environmental factors such as solar intensity and pH were the key factors when water hyacinths ponds have a large exposed surface area. However, attachment of bacteria to water hyacinths played a major role in ponds fully covered with water hyacinths. The inclusion of sedimentation parameters in the model improved model efficiency by only 3.2%. It was concluded that sedimentation is not a major factor governing faecal coliform disappearance in water hyacinths pond systems receiving pretreated wastewaters.

  10. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture.

    PubMed

    Liu, Xingguo; Xu, Hao; Ma, Zhuojun; Zhang, Yongjun; Tian, Changfeng; Cheng, Guofeng; Zou, Haisheng; Lu, Shimin; Liu, Shijing; Tang, Rong

    2016-01-01

    Bream pond aquaculture plays a very important role in China's aquaculture industry and is the main source of aquatic products. To regulate and control pond water quality and sediment, a movable solar pond aquaculture water quality regulation machine (SMWM) was designed and used. This machine is solar-powered and moves on water, and its primary components are a solar power supply device, a sediment lifting device, a mechanism for walking on the water's surface and a control system. The solar power supply device provides power for the machine, and the water walking mechanism drives the machine's motion on the water. The sediment lifting device orbits the main section of the machine and affects a large area of the pond. Tests of the machine's mechanical properties revealed that the minimum illumination necessary for the SMWM to function is 13,000 Lx and that its stable speed on the water is 0.02-0.03 m/s. For an illumination of 13,000-52,500 Lx, the sediment lifting device runs at 0.13-0.35 m/s, and its water delivery capacity is 110-208 m(3)/h. The sediment lifting device is able to fold away, and the angle of the suction chamber can be adjusted, making the machine work well in ponds at different water depths from 0.5 m to 2 m. The optimal distance from the sediment lifting device to the bottom of the pond is 10-15 cm. In addition, adjusting the length of the connecting rod and the direction of the traction rope allows the SMWM to work in a pond water area greater than 80%. The analysis of water quality in Wuchang bream (Parabramis pekinensis) and silver carp (Hypophthalmichthys molitrix) culture ponds using the SMWM resulted in decreased NH3(+)-N and available phosphorus concentrations and increased TP concentrations. The TN content and the amount of available phosphorus in the sediment were reduced. In addition, the fish production showed that the SMWM enhanced the yields of Wuchang bream and silver carp by more than 30% and 24%, respectively. These results

  11. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture

    PubMed Central

    Liu, Xingguo; Xu, Hao; Ma, Zhuojun; Zhang, Yongjun; Tian, Changfeng; Cheng, Guofeng; Zou, Haisheng; Lu, Shimin; Liu, Shijing; Tang, Rong

    2016-01-01

    Bream pond aquaculture plays a very important role in China’s aquaculture industry and is the main source of aquatic products. To regulate and control pond water quality and sediment, a movable solar pond aquaculture water quality regulation machine (SMWM) was designed and used. This machine is solar-powered and moves on water, and its primary components are a solar power supply device, a sediment lifting device, a mechanism for walking on the water’s surface and a control system. The solar power supply device provides power for the machine, and the water walking mechanism drives the machine’s motion on the water. The sediment lifting device orbits the main section of the machine and affects a large area of the pond. Tests of the machine’s mechanical properties revealed that the minimum illumination necessary for the SMWM to function is 13,000 Lx and that its stable speed on the water is 0.02–0.03 m/s. For an illumination of 13,000–52,500 Lx, the sediment lifting device runs at 0.13–0.35 m/s, and its water delivery capacity is 110–208 m3/h. The sediment lifting device is able to fold away, and the angle of the suction chamber can be adjusted, making the machine work well in ponds at different water depths from 0.5 m to 2 m. The optimal distance from the sediment lifting device to the bottom of the pond is 10–15 cm. In addition, adjusting the length of the connecting rod and the direction of the traction rope allows the SMWM to work in a pond water area greater than 80%. The analysis of water quality in Wuchang bream (Parabramis pekinensis) and silver carp (Hypophthalmichthys molitrix) culture ponds using the SMWM resulted in decreased NH3+–N and available phosphorus concentrations and increased TP concentrations. The TN content and the amount of available phosphorus in the sediment were reduced. In addition, the fish production showed that the SMWM enhanced the yields of Wuchang bream and silver carp by more than 30% and 24%, respectively. These

  12. Metal Cycling in Polymictic Suburban Retention Ponds

    NASA Astrophysics Data System (ADS)

    Segal, C. A.; Bushey, J. T.; Torgersen, T.

    2009-05-01

    Stratified conditions in lakes have been demonstrated to enhance metal species mobilization as well as the potential for mercury methylation. However, few studies have been conducted in shallow engineered systems. Although each system is relatively small in area, the overall number of such engineered systems is large (and increasing) and warrants consideration within overall landscape nutrient cycling. Previous research has documented strong diel stratification cycles and the frequent development of anoxia within the bottom waters of such polymictic systems compared with larger, dimictic lakes. We examined the impact of polymixis and the shorter hydraulic residence time on the bioavailability and the downstream transport of Hg species and other trace metals. Filtered and unfiltered lake water samples were collected at 15 and 50 cm above the sediment as well as the surface of the 1-m deep Mirror Lake retention pond on the University of Connecticut Storrs campus. Additional samples were collected from the lake outlet under baseflow and elevated discharge conditions, including the capture of initial mobilization during precipitation events. Samples were analyzed for Hg speciation as well as dissolved organic carbon (DOC), total suspended solids, cations (including Cu, Zn and Pb) and anions. We measured stage height at the lake outlet to calculate flux. Lake total Hg (THg) concentrations were generally less than 4 ng/L with the majority in the particulate phase. Outlet THg increased to 32 ng/L and dissolved THg increased to 1.2 ng/L during high flow events likely due to enhanced mobilization of particulates from the sediment and runoff from impervious surfaces, respectively. In contrast, DOC concentrations decreased as runoff contributions increased and were not correlated with dissolved THg. In addition, THg concentrations increased following copper algaecide applications, possibly due to re- suspension in the water column of biotic material.

  13. MEIC electron cooling program

    DOE PAGES

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is amore » high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less

  14. MEIC electron cooling program

    SciTech Connect

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is a high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.

  15. Comprehensive cooling water study: Volume 2, Water quality, Savannah River Plant: Final report

    SciTech Connect

    Lower, M.W.

    1987-10-01

    The Comprehensive Cooling Water Study (CCWS) was initiated in 1983 to evaluate the environmental effects of the intake and release of cooling water on the structure and function of aquatic ecosystems at the Savannah River Plant. The initial report described the results from the first year of the study. This document is the final report and concludes the program. The report comprises eight volumes. The first is a summary of environmental effects. The other seven volumes address water quality, radionuclide and heavy metal transport, wetlands, aquatic ecology, Federally endangered species, ecology of Par Pond, and waterfowl. 60 figs., 70 tabs.

  16. Methane production in sediments of small tundra ponds during winter

    NASA Astrophysics Data System (ADS)

    Macrae, M. L.; Fishback, L.; Bourbonniere, R. A.; Duguay, C. R.; Soliman, A. S.

    2011-12-01

    Shallow tundra ponds in the Churchill region of the Hudson Bay Lowlands (HBL) store large quantities of organic material in the form of sediments. Organic sediments in ponds and wetlands have been identified as a source of atmospheric methane (CH4) during the summer season in many landscapes. However, less is known about CH4 production and emission during the winter months, following the formation of an ice layer on the water surface. Unfrozen sediments may continue to produce methane (CH4) during this time, which may become trapped in the ponds beneath the ice layer. This occurrence has been identified in some regions through the sampling and analysis of CH4 bubbles frozen in lake ice. The goal of this project is to examine the potential for the production and trapping of CH4 in ponds beneath the pond ice (water/ice and sediment profiles) in the Churchill region of the HBL. Thermistor and gas sampling arrays were installed in the water and sediments of two ponds. Gas samples were collected at 1-4 week intervals at the sediment-water interface and at 0-15cm and 20-35 cm depth. Results show that sediments are indeed thawed for 3-4 months of the winter season, and deeper sediments remain within the range of 0 to -5 C whereas shallow sediment temperatures ranged between 10 and -10 C over an annual cycle. Laboratory experiments showed that little difference in CH4 production was observed at sediment temperatures between -2 and 5 C, whereas production was very low at -10 C. No significant differences in CH4 production rates were observed for different sediment depths in the laboratory. Field data collected between August 2010 and June 2011 showed consistent accumulation of CH4 in sediments following the formation of an ice layer on pond surfaces. However, CH4 concentrations in gas samplers decreased in February through April after sediments were frozen, but began to increase again (May-June) as sediments thawed and began to warm. Future work will include the examination

  17. Winter performance of an urban stormwater pond in southern Sweden

    NASA Astrophysics Data System (ADS)

    Semadeni-Davies, Annette

    2006-01-01

    Evidence from cold regions in North America has shown that the performance of stormwater ponds differs between winter and summer. The pond hydraulics change seasonally, and winters have lowered removal efficiency due to a combination of an ice cover, cold water and de-icing salts. This study examines the function of the Bäckaslov stormwater pond under the more mild conditions of southern Sweden, where there are several snow and melt cycles per year.Event sampling in the summer of 1997 showed good removal efficiencies for nutrients, total suspended solids (TSS) and a selection of metals (Cd, Cu, Pb, Zn), but winter grab-tests taken in 1995-96 and 1997-98 suggest that the pond acts as a pollutant source under cold conditions. To better assess winter and spring pond performance, water at the inflow and outflow was sampled from January to April 2003. The low intensity of runoff delivery and slow inflow velocities meant that time- rather than flow-weighted sampling was used. Five consecutive events were sampled and analysed for TSS, chloride and the metals As, Cd, Cr, Cu, Hg, Ni, Pb and Zn. YSI probes were in place at both the inlet (pH, temperature) and outlet (pH, temperature, conductivity, dissolved oxygen) to determine the timing of pollution flows. In addition, profiles of the same quality indicators allowed snapshots of pond processes.De-icing salt has a major effect on pond hydraulics. Strong stratification occurred after each snowmelt-generated flow event and up to 80% of chloride could be retained by the pond. However, continuous conductivity measurements show that chloride is flushed between events. Ice changes retention times and causes oxygen depletion, but bed scour was not observed. Pond performance decreased during the winter and spring, albeit not as badly as the grab tests suggest. A seasonal comparison of the removal efficiencies showed that removal of Cd (75%) and Cu (49%) was about the same for summer and winter-spring, but removal of Pb, Zn and TSS

  18. Simulation of outdoor pond cultures using indoor LED-lighted and temperature-controlled raceway ponds and Phenometrics photobioreactors

    SciTech Connect

    Huesemann, Michael; Dale, T.; Chavis, A.; Crowe, Braden; Twary, S.; Barry, A.; Valentine, D.; Yoshida, R.; Wigmosta, Mark; Cullinan, V.

    2016-12-02

    Two innovative culturing systems, the LED-lighted and temperature-controlled 800 liter indoor raceways at Pacific Northwest National Laboratory (PNNL) and the Phenometrics environmental Photobioreactors™ (ePBRs) were evaluated in terms of their ability to accurately simulate the microalgae growth performance of outdoor cultures subjected to fluctuating sunlight and water temperature conditions. When repeating a 60-day outdoor pond culture experiment (batch and semi-continuous at two dilution rates) conducted in Arizona with the freshwater strain Chlorella sorokiniana DOE 1412 in these two indoor simulators, it was found that ash-free dry weight based biomass growth and productivity in the PNNL climate-simulation ponds was comparatively slightly higher (8–13%) but significantly lower (44%) in the ePBRs. The difference in biomass productivities between the indoor and outdoor ponds was not statistically significant. When the marine Picochlorum soloecismus was cultured in five replicate ePBRs at Los Alamos National Laboratory (LANL) and in duplicate indoor climate-simulation ponds at PNNL, using the same inoculum, medium, culture depth, and light and temperature scripts, the optical density based biomass productivity and the rate of increase in cell counts in the ePBRs was about 35% and 66%, respectively, lower compared than in the indoor ponds. Potential reasons for the divergence in growth performance in these pond simulators, relative to outdoor raceways, are discussed. In conclusion, the PNNL climate-simulation ponds provide reasonably reliable biomass productivity estimates for microalgae strains cultured in outdoor raceways under different climatic conditions.

  19. Simulation of outdoor pond cultures using indoor LED-lighted and temperature-controlled raceway ponds and Phenometrics photobioreactors

    DOE PAGES

    Huesemann, Michael; Dale, T.; Chavis, A.; ...

    2016-12-02

    Two innovative culturing systems, the LED-lighted and temperature-controlled 800 liter indoor raceways at Pacific Northwest National Laboratory (PNNL) and the Phenometrics environmental Photobioreactors™ (ePBRs) were evaluated in terms of their ability to accurately simulate the microalgae growth performance of outdoor cultures subjected to fluctuating sunlight and water temperature conditions. When repeating a 60-day outdoor pond culture experiment (batch and semi-continuous at two dilution rates) conducted in Arizona with the freshwater strain Chlorella sorokiniana DOE 1412 in these two indoor simulators, it was found that ash-free dry weight based biomass growth and productivity in the PNNL climate-simulation ponds was comparatively slightlymore » higher (8–13%) but significantly lower (44%) in the ePBRs. The difference in biomass productivities between the indoor and outdoor ponds was not statistically significant. When the marine Picochlorum soloecismus was cultured in five replicate ePBRs at Los Alamos National Laboratory (LANL) and in duplicate indoor climate-simulation ponds at PNNL, using the same inoculum, medium, culture depth, and light and temperature scripts, the optical density based biomass productivity and the rate of increase in cell counts in the ePBRs was about 35% and 66%, respectively, lower compared than in the indoor ponds. Potential reasons for the divergence in growth performance in these pond simulators, relative to outdoor raceways, are discussed. In conclusion, the PNNL climate-simulation ponds provide reasonably reliable biomass productivity estimates for microalgae strains cultured in outdoor raceways under different climatic conditions.« less

  20. Cryogenic generator cooling

    NASA Astrophysics Data System (ADS)

    Eckels, P. W.; Fagan, T. J.; Parker, J. H., Jr.; Long, L. J.; Shestak, E. J.; Calfo, R. M.; Hannon, W. F.; Brown, D. B.; Barkell, J. W.; Patterson, A.

    The concept for a hydrogen cooled aluminum cryogenic generator was presented by Schlicher and Oberly in 1985. Following their lead, this paper describes the thermal design of a high voltage dc, multimegawatt generator of high power density. The rotor and stator are cooled by saturated liquid and supercritical hydrogen, respectively. The brushless exciter on the same shaft is also cooled by liquid hydrogen. Component development testing is well under way and some of the test results concerning the thermohydraulic performance of the conductors are reported. The aluminum cryogenic generator's characteristics are attractive for hydrogen economy applications.

  1. Personal Cooling System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Cool Head, a personal cooling system for use in heat stress occupations, is a spinoff of a channeled cooling garment for space wear. It is portable and includes a heat exchanger, control display unit, liquid reservoir and temperature control unit. The user can eliminate 40 to 60 percent of his body's heat storage and lower heart rate by 50 to 80 beats a minute. The system is used by the Army, Navy, crop dusting pilots, heavy equipment operators and auto racing drivers and is marketed by Life Enhancement Technologies, LLC. Further applications are under consideration.

  2. Beneficiation of coal pond ash by physical separation techniques.

    PubMed

    Lee, Sung-Joo; Cho, Hee-Chan; Kwon, Ji-Hoe

    2012-08-15

    In this study, investigations to develop a beneficiation process for separating coal pond ash into various products were undertaken. To this end, coal pond ash samples with different particle size ranges were tested in terms of their washability characteristics in a float-and-sink analysis. It was found that coal pond ash was heterogeneous in nature consisting of particles that varied in terms of their size and composition. However, it can be made more homogenous using a gravity separation method. Therefore, the possibility of separating coal pond ash was tested on standard equipment typically used for gravity concentration. To increase the separation efficiency, coal ash was separated according to the size of the particles and each size fraction was tested using equipment appropriate for the corresponding sizes. A hindered-settling column and a shaking table were tested for their ability to treat the 1.19 × 0.074 mm size fraction, and a Falcon concentrator was evaluated for its ability to treat the -0.074 mm size fraction. The results showed that various marketable products, such as lightweight aggregate, sand and high-carbon fuel, can be recovered from coal pond ash using simple physical separation techniques.

  3. Par Pond vegetation status Summer 1995 -- October survey descriptive summary

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1995-11-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the emergent shoreline aquatic plant communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level and continued with this late October survey. Communities similar to the pre-drawdown Par Pond aquatic plant communities are becoming re-established; especially, beds of maiden cane, lotus, waterlily, and watershield are now extensive and well established. Cattail occurrence continues to increase, but large beds common to Par Pond prior to the drawdown have not formed. Future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.

  4. Par Pond vegetation status Summer 1995 -- September survey descriptive summary

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1995-09-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the emergent shoreline aquatic plant communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level and continued with this mid-September survey. Communities similar to the pre-drawdown Par Pond aquatic plant communities are becoming re-established; especially, beds of maidencane, lotus, waterlily, and watershield are now extensive and well established. Cattail occurrence continues to increase, but large beds common to Par Pond prior to the drawdown have not formed. Future surveys during the late growing seasons of 1995, and throughout 1996 and 1997, along with the evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.

  5. Influences of radiation on carp from farm ponds in Fukushima.

    PubMed

    Suzuki, Yuzuru

    2015-12-01

    A massive release of artificial radionuclides from the Fukushima Dai-ichi Nuclear Power Plant caused radioactive contamination of farms as well as of aquatic products. Carp in small ponds in the highly radiocontaminated area of Iitate Village, Fukushima Prefecture, have been confined to the ponds since the accident, and it is thought that the carp may have suffered health issues as a result. Therefore, I investigated the health condition of the carp in order to elucidate the effects of radiation.Blood neutrophil, monocyte and lymphocyte counts in the carp from three ponds in Fukushima were lower than those in carp from a non-polluted pond in Tochigi Prefecture. Histological observations indicated abnormal hyperplasia of macrophages in the spleen, kidney, liver and pancreas of carp in Fukushima. Although there are likely to have been deleterious effects on carp health due to the radiation in Fukushima, this has not yet been confirmed because only one control pond was available for comparison, and I was not able to find any symptoms in the carp that correlated with internal cesium concentration. Further research is now being conducted to investigate the effects of radiation on carp.

  6. Role of probiotics on the environment of shrimp pond.

    PubMed

    Sambasivam, S; Chandran, R; Khan, S Ajmal

    2003-01-01

    Recent disease outbreak in shrimp farming caused mainly by bacteria, virus, fungi or a combination of these etiologic agents is attributed to disturbance in the environment of pond. To combat this, different antibiotics and chemicals are being used which are reported to be not environment friendly. Of late, a new and unique biotechnological product called "Probiotics " is being used widely by all the shrimp farmers worldwide, which is found to be more effective and environmentally safe also. In the present study 2 probiotics were used in a small 0.7 ha shrimp farm near Pattukottai in Tamil Nadu State for one culture period for the management of pond environment and also the gut ecology of Penaeus monodon. The environmental parameters analysed were within the acceptable limits. It was evident from the results that the production was better in the experimental pond where the probiotics were used. The biological parameters such as the average body weight, FCR and total harvest achieved were better in the experimental pond than the control pond, all due to congenial environment, which obtained in the former mainly due to the use of probiotics.

  7. [Effects of probiotics on Penaeus vannamei pond sediments].

    PubMed

    Wang, Yanbo; Zha, Longying; Xu, Zirong

    2006-09-01

    This paper studied the effects of probiotics on the sediment of Penaeus vannamei pond during 117 days of culture period. The results showed that probiotics application significantly decreased the concentrations of total nitrogen, total phosphorous, and sulfide in sediment, but no significant difference was observed in total plate count (TPC) of microbes between treated and control ponds. The final average presumptive vibrio count (PVC) of treated pond sediment (3.65 x 10(3) cfu x g(-1)) was significantly lower than that of the control (1.16 x 10(5) cfu x g(-1)), while the average number of BS (Bacillus), AB (ammonifying bacteria), PSOB (presumptive sulphur oxidizing bacteria) and SRB (sulphur reducing bacteria) in treated pond sediment was higher than that of the control. These data showed that probiotics could decrease the nutrients (nitrogen, phosphate and sulfur) accumulation and improve the composition of bacterial populations in pond sediment, and thus, supply a good sediment environment for the healthily culture of the shrimp.

  8. An estimate of the impact of trapped melt ponds on sea ice thinning

    NASA Astrophysics Data System (ADS)

    Flocco, Daniela; Feltham, Daniel; Schroeder, David

    2013-04-01

    Melt ponds form on Arctic sea ice during the melting season and their presence affects the heat and mass balance of the ice cover. Towards the end of the melt season melt ponds cover up to 50% of the sea ice area decreasing the value of the surface albedo by up to 20%. The dramatic impact of melt ponds on the albedo feedback mechanism for sea ice melt has been demonstrated in previous studies. Here, we focus on the refreezing of melt ponds. As the ponds freeze from above, they gradually release latent heat that inhibits basal ice growth. The refreezing process can take up to three months. Freezing of the melt pond comes to an halt if the pond's freezing point reaches the air temperature since the Stefan condition for sea ice growth is not met anymore. Since the ice in presence of melt pond will stay thinner and flatter for longer, the areas where ponds are present are likely location for pond formation in the subsequent years. The presence of a pond trapped in the ice delays significantly the sea ice growth at locations where melt ponds form. The potential volume loss of sea ice per year in the Arctic considering a melt pond cover of 20% is up to 1000 km3 without considering the presence of snow. Within the ASBO (Arctic Synoptic Basin-wide Observations) project we have developed a model of refreezing melt ponds that uses mushy layer theory to describe the sea ice and takes account of the presence of salt in the refreezing melt pond. We use this model to investigate the rate at which melt ponds refreeze, releasing latent heat, and their impact on sea ice growth. In this work we would like to present model result with climatology input. We will give an estimate of the impact of the melt pond presence on sea ice growth in the Arctic basin.

  9. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    PubMed

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  10. Revisiting salt marsh resilience to sea level rise: Are ponds responsible for permanent land loss?

    NASA Astrophysics Data System (ADS)

    Mariotti, G.

    2016-12-01

    Ponds are un-vegetated rounded depressions commonly present on marsh platforms. The role of ponds on the long-term morphological evolution of tidal marshes is unclear - at times ponds expand but eventually recover the marsh platform, at other times ponds never recover and lead to permanent marsh loss. Existing field observations indicate that episodic disturbances of the marsh vegetation cause the formation of small (1-10 m) isolated ponds, even if the vegetated platform keeps pace with Relative Sea Level Rise (RSLR), and that isolated ponds tend to deepen and enlarge until they eventually connect to the channel network. Here I implement a simple model to study the vertical and planform evolution of a single connected pond. A newly connected pond recovers if its bed lies above the limit for marsh plant growth, or if the inorganic deposition rate is larger than the RSLR rate. A pond that cannot accrete faster than RSLR will deepen and enlarge, eventually entering a runaway erosion by wave edge retreat. A large tidal range, a large sediment supply, and a low rate of RSLR favor pond recovery. The model suggests that inorganic sediment deposition alone controls pond recovery, even in marshes where organic matter dominates accretion of the vegetated platform. As such, halting permanent marsh loss by pond collapse requires to increase inorganic sediment deposition. Because pond collapse is possible even if the vegetated platform keeps pace with RSLR, I conclude that marsh resilience to RSLR is less than previously quantified.

  11. Revisiting salt marsh resilience to sea level rise: Are ponds responsible for permanent land loss?

    NASA Astrophysics Data System (ADS)

    Mariotti, G.

    2016-07-01

    Ponds are unvegetated rounded depressions commonly present on marsh platforms. The role of ponds on the long-term morphological evolution of tidal marshes is unclear—at times ponds expand but eventually recover the marsh platform, at other times ponds never recover and lead to permanent marsh loss. Existing field observations indicate that episodic disturbances of the marsh vegetation cause the formation of small (1-10 m) isolated ponds, even if the vegetated platform keeps pace with relative sea level rise (RSLR) and that isolated ponds tend to deepen and enlarge until they eventually connect to the channel network. Here I implement a simple model to study the vertical and planform evolution of a single connected pond. A newly connected pond recovers if its bed lies above the limit for marsh plant growth or if the inorganic deposition rate is larger than the RSLR rate. A pond that cannot accrete faster than RSLR will deepen and enlarge, eventually entering a runaway erosion by wave edge retreat. A large tidal range, a large sediment supply, and a low rate of RSLR favor pond recovery. The model suggests that inorganic sediment deposition alone controls pond recovery, even in marshes where organic matter dominates accretion of the vegetated platform. As such, halting permanent marsh loss by pond collapse requires to increase inorganic sediment deposition. Because pond collapse is possible even if the vegetated platform keeps pace with RSLR, I conclude that marsh resilience to RSLR is less than previously quantified.

  12. Effects of hydrology on zooplankton communities in high-mountain ponds, Mount Rainier National Park, USA

    USGS Publications Warehouse

    Girdner, Scott; Larson, Gary L.

    1995-01-01

    Ten high-mountain ponds in Mount Rainier National Park, Washington State, were studied from ice-out in June through September1992 to investigate the influences of fluctuating pond volumes on zooplankton communities. All of the ponds were at maximum volume immediately after ice-out. The temporary pond with the shortest wet phase was inhabited by rotifer taxa with short generation times and a crustacean taxon with the ability to encyst as drought-resistant resting bodies at immature stages of development. Dominant zooplankton taxa in three other temporary ponds and six permanent ponds were similar. Rotifer densities typically were lower in temporary ponds relative to those in permanent ponds, although Brachionus urceolaris was abundant shortly before the temporary ponds dried. Large volume loss was associated with large declines in total abundances of crustacean populations. Daphnia rosea was not present in temporary ponds following fall recharge. In deep-permanent ponds, copepods had slower developmental rates, smaller temporal changes in total abundances of crustacean populations and two additional large-bodied crustacean taxa were present relative to the characteristics of crustacean communities in shallow-permanent ponds. Owing to their small sizes and sensitivity to environmental change, collectively ponds such as these may provide an early signal of long-term climate change in aquatic systems.

  13. Cooling Devices in Laser therapy.

    PubMed

    Das, Anupam; Sarda, Aarti; De, Abhishek

    2016-01-01

    Cooling devices and methods are now integrated into most laser systems, with a view to protecting the epidermis, reducing pain and erythema and improving the efficacy of laser. On the basis of method employed, it can be divided into contact cooling and non-contact cooling. With respect to timing of irradiation of laser, the nomenclatures include pre-cooling, parallel cooling and post-cooling. The choice of the cooling device is dictated by the laser device, the physician's personal choice with respect to user-friendliness, comfort of the patient, the price and maintenance costs of the device. We hereby briefly review the various techniques of cooling, employed in laser practice.

  14. Warm and Cool Dinosaurs.

    ERIC Educational Resources Information Center

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  15. Waveguide cooling system

    NASA Technical Reports Server (NTRS)

    Chen, B. C. J.; Hartop, R. W. (Inventor)

    1981-01-01

    An improved system is described for cooling high power waveguides by the use of cooling ducts extending along the waveguide, which minimizes hot spots at the flanges where waveguide sections are connected together. The cooling duct extends along substantially the full length of the waveguide section, and each flange at the end of the section has a through hole with an inner end connected to the duct and an opposite end that can be aligned with a flange hole in another waveguide section. Earth flange is formed with a drainage groove in its face, between the through hole and the waveguide conduit to prevent leakage of cooling fluid into the waveguide. The ducts have narrowed sections immediately adjacent to the flanges to provide room for the installation of fasteners closely around the waveguide channel.

  16. Warm and Cool Dinosaurs.

    ERIC Educational Resources Information Center

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  17. Why Exercise Is Cool

    MedlinePlus

    ... Room? What Happens in the Operating Room? Why Exercise Is Cool KidsHealth > For Kids > Why Exercise Is ... day and your body will thank you later! Exercise Makes Your Heart Happy You may know that ...

  18. Cooling of a sunspot

    NASA Technical Reports Server (NTRS)

    Boruta, N.

    1977-01-01

    The question of whether a perturbed photospheric area can grow into a region of reduced temperature resembling a sunspot is investigated by considering whether instabilities exist that can lead to a growing temperature change and corresponding magnetic-field concentration in some region of the photosphere. After showing that Alfven cooling can lead to these instabilities, the effect of a heat sink on the temperature development of a perturbed portion of the photosphere is studied. A simple form of Alfven-wave cooling is postulated, and computations are performed to determine whether growing modes exist for physically relevant boundary conditions. The results indicate that simple inhibition of convection does not give growing modes, but Alfven-wave production can result in cooling that leads to growing field concentration. It is concluded that since growing instabilities can occur with strong enough cooling, it is quite possible that energy loss through Alfven waves gives rise to a self-generating temperature change and sunspot formation.

  19. Bunched beam stochastic cooling

    SciTech Connect

    Wei, Jie.

    1992-01-01

    The scaling laws for bunched-beam stochastic cooling has been derived in terms of the optimum cooling rate and the mixing condition. In the case that particles occupy the entire sinusoidal rf bucket, the optimum cooling rate of the bunched beam is shown to be similar to that predicted from the coasting-beam theory using a beam of the same average density and mixing factor. However, in the case that particles occupy only the center of the bucket, the optimum rate decrease in proportion to the ratio of the bunch area to the bucket area. The cooling efficiency can be significantly improved if the synchrotron side-band spectrum is effectively broadened, e.g. by the transverse tune spread or by using a double rf system.

  20. Bunched beam stochastic cooling

    SciTech Connect

    Wei, Jie

    1992-09-01

    The scaling laws for bunched-beam stochastic cooling has been derived in terms of the optimum cooling rate and the mixing condition. In the case that particles occupy the entire sinusoidal rf bucket, the optimum cooling rate of the bunched beam is shown to be similar to that predicted from the coasting-beam theory using a beam of the same average density and mixing factor. However, in the case that particles occupy only the center of the bucket, the optimum rate decrease in proportion to the ratio of the bunch area to the bucket area. The cooling efficiency can be significantly improved if the synchrotron side-band spectrum is effectively broadened, e.g. by the transverse tune spread or by using a double rf system.

  1. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  2. Nitrification-denitrification in waste stabilisation ponds: a mechanism for permanent nitrogen removal in maturation ponds.

    PubMed

    Camargo Valero, M A; Read, L F; Mara, D D; Newton, R J; Curtis, T P; Davenport, R J

    2010-01-01

    A pilot-scale primary maturation pond was spiked with (15)N-labelled ammonia ((15)NH(4)Cl) and (15)N-labelled nitrite (Na(15)NO(2)), in order to improve current understanding of the dynamics of inorganic nitrogen transformations and removal in WSP systems. Stable isotope analysis of delta(15)N showed that nitrification could be considered as an intermediate step in WSP, which is masked by simultaneous denitrification, under conditions of low algal activity. Molecular microbiology analysis showed that denitrification can be considered a feasible mechanism for permanent nitrogen removal in WSP, which may be supported either by ammonia-oxidising bacteria (AOB) or by methanotrophs, in addition to nitrite-oxidising bacteria (NOB). However, the relative supremacy of the denitrification process over other nitrogen removal mechanisms (e.g., biological uptake) depends upon phytoplanktonic activity.

  3. Laser cooling of solids

    SciTech Connect

    Epstein, Richard I; Sheik-bahae, Mansoor

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  4. Liquid cooled helmet

    NASA Technical Reports Server (NTRS)

    Elkins, William (Inventor); Williams, Bill A. (Inventor)

    1979-01-01

    Liquid cooled helmet comprising a cap of flexible material adapted to fit the head of a person, cooling panels mounted inside the cap forming passageways for carrying a liquid coolant, the panels being positioned to engage the cranium and neck of a person wearing the helmet, inlet and outlet lines communicating with the passageways, and releasable straps for securing the helmet about the neck of the wearer.

  5. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  6. Cooled Ion Frequency Standard.

    DTIC Science & Technology

    2014-09-26

    experiments 1. Laser cooled atomic clock . We have completed work on the first frequency standard based on laser cooled atoms . This work which was...inaccuracy essentially equal to the U.S. best Cesium atomic clock with a clear direction for improvement and (2) this system facilitates studies of generic...problems are (1) to suppress second order and residual first order Doppler shifts in atomic frequency standards in a fundamental way--by substantially

  7. WATER COOLED RETORT COVER

    DOEpatents

    Ash, W.J.; Pozzi, J.F.

    1962-05-01

    A retort cover is designed for use in the production of magnesium metal by the condensation of vaporized metal on a collecting surface. The cover includes a condensing surface, insulating means adjacent to the condensing surface, ind a water-cooled means for the insulating means. The irrangement of insulation and the cooling means permits the magnesium to be condensed at a high temperature and in massive nonpyrophoric form. (AEC)

  8. Sticklebacks from streams are more bold than sticklebacks from ponds.

    PubMed

    Alvarez, David; Bell, Alison M

    2007-11-01

    Risk-taking behaviour has important consequences for fitness. Here, we show that risk-taking behaviour in sticklebacks consistently varies according to the habitat of origin. We compared the risk-taking behaviour of individual sticklebacks from three pond and three stream populations. Specifically, we measured willingness to forage under predation risk following a simulated attack by a model heron predator. Sticklebacks from stream populations were more willing to forage under predation risk than fish from pond populations. Sticklebacks from streams resumed eating after the simulated attack faster and spent more time eating compared to sticklebacks from ponds. We discuss these findings in terms of differences in life history and predation pressure in the two habitat types.

  9. Investigation of indigenous water, salt and soil for solar ponds

    NASA Technical Reports Server (NTRS)

    Marsh, H. E.

    1983-01-01

    The existence of salt-gradient solar ponds in nature is a strong indication that the successful exploitation of this phenomenon must account adequately for the influences of the local setting. Sun, weather and other general factors are treated elsewhere. This paper deals with water, salt, and soil. A general methodology for evaluating and, where feasible, adjusting the effects of these elements is under development. Eight essential solar pond characteristics have been identified, along with a variety of their dependencies upon properties of water, salt and soil. The comprehensive methodology, when fully developed, will include laboratory investigation in such diverse areas as brine physical chemistry, light transmission, water treatment, brine-soil interactions, sealants, and others. With the Salton Sea solar pond investigation as an example, some methods under development will be described.

  10. A simple pond parametrization for malaria transmission models

    NASA Astrophysics Data System (ADS)

    Tompkins, A. M.; Asare, E.; Amekudzi, L. K.

    2012-04-01

    In order to model malaria effectively using a dynamical modelling approach, a realistic representation of the surface hydrology is required. Achieving this goal is hindered by the fact that key vector breeding sites are small in spatial scale, ranging from small permanent ponds to temporary puddles. This small spatial scale confounds modelling efforts as the topography on such small scales is unknown, and also renders detection by remote sensing techniques difficult implying a requirement of in-situ measurements. Results from ongoing measurements of breeding sites in Kumasi (Ghana) are shown, along with attempts to reproduce these using a simple pond 'parametrization'. The significant impact of the pond model implementation and settings on malaria simulations using the new VECTRI dynamical disease model is demonstrated.

  11. A model for anaerobic ponds combining settling and biological processes.

    PubMed

    Effebi, K R; Jupsin, H; Keffala, C; Vasel, J L

    2013-01-01

    This work presents an approach to an anaerobic pond model by combining the stoichiometry of the hydrolysis and acidogenic processes of the main constituents of wastewater, i.e. carbohydrates, proteins, and lipids, grouped as a 'combined substrate' with a previously published settling model (see 'Suspended solids settling and half removal time in stabilization ponds (Tunisia)' by Effebi et al. (2011)). This approach includes biomass production. Coupling the kinetics and stoichiometry of the previous processes with the usual methanogenic model, we developed an anaerobic pond model. This paper gives the stoichiometry of the different chemical reactions that occur during the degradation of a conventional influent (corresponding to what we define as a 'combined substrate') of domestic wastewater and the model's first results.

  12. Solar salt pond potential site survey for electrical power generation

    NASA Technical Reports Server (NTRS)

    Hurick, M. G.

    1982-01-01

    A solar salt gradient pond acts as a passive heat sink or thermal battery in which energy can be recovered through the conversion of thermal energy into electrical energy. Here, a condensation of a larger report that focused on the identification of potential salt gradient pond sites in the United States using in-situ resources is presented. It is shown that there are at least 24 states that lie in a primary or secondary potential site category. Fourteen states are assigned as primary states and ten are assigned as secondary. The division is subjectively based on the severity of winter weather. The most promising states are those that lie in the southern half of the country. When the primary and secondary category states are combined with the other states that may be able to support a pond, a total of 38 states exhibit the possibility of supporting power generation sites of various size.

  13. Investigation of indigenous water, salt and soil for solar ponds

    NASA Technical Reports Server (NTRS)

    Marsh, H. E.

    1983-01-01

    The existence of salt-gradient solar ponds in nature is a strong indication that the successful exploitation of this phenomenon must account adequately for the influences of the local setting. Sun, weather and other general factors are treated elsewhere. This paper deals with water, salt, and soil. A general methodology for evaluating and, where feasible, adjusting the effects of these elements is under development. Eight essential solar pond characteristics have been identified, along with a variety of their dependencies upon properties of water, salt and soil. The comprehensive methodology, when fully developed, will include laboratory investigation in such diverse areas as brine physical chemistry, light transmission, water treatment, brine-soil interactions, sealants, and others. With the Salton Sea solar pond investigation as an example, some methods under development will be described.

  14. Ammonia volatilisation in waste stabilisation ponds: a cascade of misinterpretations?

    PubMed

    Camargo Valero, M A; Mara, D D

    2010-01-01

    Ammonia volatilisation has generally been reported as, or assumed to be, the main nitrogen removal mechanism in waste stabilisation ponds (WSP). Nitrogen removal via ammonia volatilisation is based on two observations: (a) in-pond pH values can reach high values (>9, even >10), so increasing the proportion of the total ammonia present as the un-ionized form or free ammonia (NH(3)); and (b) in-pond temperatures can also be high, so improving the mass transfer rate of free ammonia to the atmosphere. Consequently, one of the most widely accepted models for ammonia removal in WSP is that reported by Pano & Middlebrooks in 1982, which was developed to reflect the occurrence of these two observations. This work reports how simple mathematical models for ammonia volatilisation in WSP, in spite of the possibility of their giving good predictions, may not accurately describe the main pathways and mechanisms involved in ammonia removal in WSP.

  15. Production and Cycling of Methylmercury in High Arctic Wetland Ponds

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; St. Louis, V. L.

    2010-12-01

    Some species of freshwater fish in the Canadian high Arctic contain levels of methylmercury (MeHg) that pose health risks to the northern Inuit peoples that harvest these species as a traditional food source. In temperate regions, wetlands are known natural sites of MeHg production and hence significant MeHg sources to downstream ecosystems. However, the importance of wetlands to Hg methylation in the Arctic is unclear and the sources of MeHg to arctic freshwater ecosystems are still largely unidentified. Our research is demonstrating that some shallow and warm wetland ponds on the Arctic landscape contain high MeHg concentrations compared to nearby deep and cold lakes. We used a mass-balance approach to measure the net in-pond production of MeHg in two warm wetland ponds (Ponds 1 and 2) near Lake Hazen, Ellesmere Island, Nunavut (81° N latitude). We quantified external inputs and outputs of MeHg to and from the ponds, as well as the accumulation of MeHg in the water column during the summers of 2005 and 2008. Any changes in water column MeHg concentrations that could not be accounted for by external inputs or sinks were attributed to in-pond production. The principal external input and sink of MeHg was, respectively, wet atmospheric deposition and water-column MeHg photodemethylation. For 2005, we estimate that the net flux of MeHg from sediments into the water column was 0.015 μg m-2 d-1 in Pond 1 and 0.0016 μg m-2 d-1 in Pond 2. Compared to sediment-water MeHg fluxes measured in Alaskan tundra lakes (0.0015-0.0045 μg m-2 d-1), Pond 1 sediments are a greater source of MeHg while Pond 2 is similar to the Alaskan lakes. Furthermore, the accumulation of MeHg in the water column of Pond 1 (0.0061 μg m-2 d-1) was similar to the net yield of MeHg from temperate boreal wetlands (0.0005-0.006 μg m-2 d-1), demonstrating that these Arctic wetlands are important sites of MeHg production. In addition, we used mercury stable-isotope tracers to quantify methylation and

  16. Solar salt pond potential site survey for electrical power generation

    NASA Technical Reports Server (NTRS)

    Hurick, M. G.

    1982-01-01

    A solar salt gradient pond acts as a passive heat sink or thermal battery in which energy can be recovered through the conversion of thermal energy into electrical energy. Here, a condensation of a larger report that focused on the identification of potential salt gradient pond sites in the United States using in-situ resources is presented. It is shown that there are at least 24 states that lie in a primary or secondary potential site category. Fourteen states are assigned as primary states and ten are assigned as secondary. The division is subjectively based on the severity of winter weather. The most promising states are those that lie in the southern half of the country. When the primary and secondary category states are combined with the other states that may be able to support a pond, a total of 38 states exhibit the possibility of supporting power generation sites of various size.

  17. Weld electrode cooling study

    NASA Astrophysics Data System (ADS)

    Masters, Robert C.; Simon, Daniel L.

    1999-03-01

    The U.S. auto/truck industry has been mandated by the Federal government to continuously improve their fleet average gas mileage, measured in miles per gallon. Several techniques are typically used to meet these mandates, one of which is to reduce the overall mass of cars and trucks. To help accomplish this goal, lighter weight sheet metal parts, with smaller weld flanges, have been designed and fabricated. This paper will examine the cooling characteristics of various water cooled weld electrodes and shanks used in resistance spot welding applications. The smaller weld flanges utilized in modern vehicle sheet metal fabrications have increased industry's interest in using one size of weld electrode (1/2 inch diameter) for certain spot welding operations. The welding community wants more data about the cooling characteristics of these 1/2 inch weld electrodes. To hep define the cooling characteristics, an infrared radiometer thermal vision system (TVS) was used to capture images (thermograms) of the heating and cooling cycles of several size combinations of weld electrodes under typical production conditions. Tests results will show why the open ended shanks are more suitable for cooling the weld electrode assembly then closed ended shanks.

  18. Estimation of methane flux from fish ponds of southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, K. H.; Hung, C. C.

    2016-02-01

    CH4 is one of the trace gases in the atmosphere, but it is an important greenhouse gas, with 15 times more effective than CO2 absorbing infrared radiation capability. To date, scientists generally consider that the methane production is mainly from livestock farming, such as pigs and cattle, but the source of methane emission from aquaculture ponds have been ignored. Due to overfishing in the ocean, aquaculture fishery in coastal zone has been increasing globally and the methane emission from those fish ponds has seldom been studied. To better evaluate the emission of methane from fish ponds, we measured methane concentrations in both atmosphere and fish ponds of the southwestern Taiwan from March to September in 2015. Besides an extremely high flux (829 mmol/m2/d), the fluxes of methane in different fish ponds ranged from 19 to 725 μmol/m2/d, which is lower than the global mean value of lakes (2.7 mmol/m2/d). The low methane fluxes during sampling period may be due to non-harvest season, because when the harvest season comes, the higher trophic status will appear, and there will be more organic matter supply for methanogenesis. Currently, we have no idea where the extremely high methane flux comes from. We will try to measure C-isotopes to understand the sources of highest methane fluxes. Overall, the preliminary results provide substantive evidence that methane emission from aquaculture ponds could be an important source and it needs long-term investigations.

  19. Carbon dynamics in highly heterotrophic subarctic thaw ponds

    NASA Astrophysics Data System (ADS)

    Roiha, T.; Laurion, I.; Rautio, M.

    2015-07-01

    Global warming has accelerated the formation of permafrost thaw ponds in several subarctic and arctic regions. These ponds are net heterotrophic as evidenced by their greenhouse gas (GHG) supersaturation levels (CO2 and CH4), and generally receive large terrestrial carbon inputs from the thawing and eroding permafrost. We measured seasonal and vertical variations in the concentration and type of dissolved organic matter (DOM) in five subarctic thaw (thermokarst) ponds in northern Quebec, and explored how environmental gradients influenced heterotrophic and phototrophic biomass and productivity. Late winter DOM had low aromaticity indicating reduced inputs of terrestrial carbon, while the high concentration of dissolved organic carbon (DOC) suggests that some production of non-chromophoric dissolved compounds by the microbial food web took place under the ice cover. Summer DOM had a strong terrestrial signature, but was also characterized with significant inputs of algal-derived carbon, especially at the pond surface. During late winter, bacterial production was low (maximum of 0.8 mg C m-3 d-1) and was largely based on free-living bacterioplankton (58 %). Bacterial production in summer was high (up to 58 mg C m-3 d-1), dominated by particle-attached bacteria (67 %), and strongly correlated to the amount of terrestrial carbon. Primary production was restricted to summer surface waters due to strong light limitation deeper in the water column or in winter. The phototrophic biomass was equal to the heterotrophic biomass, but as the algae were mostly composed of mixotrophic species, most probably they used bacteria rather than solar energy in such shaded ponds. According to the δ13C analyses, non-algal carbon supported 51 % of winter and 37 % of summer biomass of the phantom midge larvae, Chaoborus sp., that are at the top of the trophic chain. Our results point to a strong heterotrophic energy pathway in these thaw pond ecosystems, where bacterioplankton dominates

  20. Carbon dynamics in highly heterotrophic subarctic thaw ponds

    NASA Astrophysics Data System (ADS)

    Roiha, T.; Laurion, I.; Rautio, M.

    2015-12-01

    Global warming has accelerated the formation of permafrost thaw ponds in several subarctic and arctic regions. These ponds are net heterotrophic as evidenced by their greenhouse gas (GHG) supersaturation levels (CO2 and CH4), and generally receive large terrestrial carbon inputs from the thawing and eroding permafrost. We measured seasonal and vertical variations in the concentration and type of dissolved organic matter (DOM) in five subarctic thaw (thermokarst) ponds in northern Quebec, and explored how environmental gradients influenced heterotrophic and phototrophic biomass and productivity. Late winter DOM had low aromaticity indicating reduced inputs of terrestrial carbon, while the high concentration of dissolved organic carbon (DOC) suggests that some production of non-chromophoric dissolved compounds by the microbial food web took place under the ice cover. Summer DOM had a strong terrestrial signature, but was also characterized with significant inputs of algal-derived carbon, especially at the pond surface. During late winter, bacterial production was low (maximum of 0.8 mg C m-3 d-1) and was largely based on free-living bacterioplankton (58 %). Bacterial production in summer was high (up to 58 mg C m-3 d-1), dominated by particle-attached bacteria (67 %), and strongly correlated with the amount of terrestrial carbon. Primary production was restricted to summer surface waters due to strong light limitation deeper in the water column or in winter. The phototrophic biomass was equal to the heterotrophic biomass, but as the algae were mostly composed of mixotrophic species, most probably they used bacteria rather than solar energy in such shaded ponds. Our results point to a strong heterotrophic energy pathway in these thaw pond ecosystems, where bacterioplankton dominates the production of new carbon biomass in both summer and winter.

  1. A holistic water depth simulation model for small ponds

    NASA Astrophysics Data System (ADS)

    Ali, Shakir; Ghosh, Narayan C.; Mishra, P. K.; Singh, R. K.

    2015-10-01

    Estimation of time varying water depth and time to empty of a pond is prerequisite for comprehensive and coordinated planning of water resource for its effective utilization. A holistic water depth simulation (HWDS) and time to empty (TE) model for small, shallow ephemeral ponds have been derived by employing the generalized model based on the Green-Ampt equation in the basic water balance equation. The HWDS model includes time varying rainfall, runoff, surface water evaporation, outflow and advancement of wetting front length as external inputs. The TE model includes two external inputs; surface water evaporation and advancement of wetting front length. Both the models also consider saturated hydraulic conductivity and fillable porosity of the pond's bed material as their parameters. The solution of the HWDS model involved numerical iteration in successive time intervals. The HWDS model has successfully evaluated with 3 years of field data from two small ponds located within a watershed in a semi-arid region in western India. The HWDS model simulated time varying water depth in the ponds with high accuracy as shown by correlation coefficient (R2 ⩾ 0.9765), index of agreement (d ⩾ 0.9878), root mean square errors (RMSE ⩽ 0.20 m) and percent bias (PB ⩽ 6.23%) for the pooled data sets of the measured and simulated water depth. The statistical F and t-tests also confirmed the reliability of the HWDS model at probability level, p ⩽ 0.0001. The response of the TE model showed its ability to estimate the time to empty the ponds. An additional field calibration and validation of the HWDS and TE models with observed field data in varied hydro-climatic conditions could be conducted to increase the applicability and credibility of the models.

  2. Toxicity of stormwater treatment pond sediments to Hyalella azteca (Amphipoda)

    SciTech Connect

    Karouna-Renier, N.K. |; Sparling, D.W.

    1997-04-01

    Stormwater runoff from highways and commercial, industrial, and residential areas contains a wide spectrum of pollutants including heavy metals, petroleum hydrocarbons, pesticides, herbicides, sediment, and nutrients. Recent efforts to reduce the impacts of urbanization on natural wetlands and other receiving waters have included the construction of stormwater treatment ponds and wetlands. These systems provide flood control and improve water quality through settling, adsorption, and precipitation of pollutants removing up to 95% of metals, nutrients and sediment before discharged from the site. The design of stormwater ponds to provide habitat for aquatic wildlife has prompted concern over the potential exposure of aquatic organisms to these contaminants. Aquatic sediments concentrate a wide array of organic and inorganic pollutants. Although water quality criteria may not be exceeded, organisms living in or near the sediments may be adversely affected. The availability of chemicals in sediments depends strongly on the prevailing chemistry. Physical conditions of the sediment and water quality characteristics including pH, redox potential and hardness, also influence contaminant availability. Studies have shown that heavy metals and nutrients carried by runoff concentrate in the sediment of stormwater ponds. Although several investigations have assessed the toxicity of sediments in streams receiving urban runoff, there have been few studies of the toxicity of stormwater treatment pond sediments to aquatic organisms. This study was part of a large-scale assessment of the contaminant hazards of stormwater treatment ponds. The objective of this study was to evaluate the toxicity of sediments and water from stormwater ponds over a 10-d period to juvenile Hyalella azteca. Bioassay results were related to concentrations of acid volatile sulfides and metals of the tested sediments. 17 refs., 4 tabs.

  3. Comparing Social Stories™ to Cool versus Not Cool

    ERIC Educational Resources Information Center

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  4. Comparing Social Stories™ to Cool versus Not Cool

    ERIC Educational Resources Information Center

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  5. Utilization of surface mine ponds in East Tennessee by breeding amphibians. Final report

    SciTech Connect

    Turner, L.J.; Fowler, D.K.

    1981-06-01

    Breeding amphibians were found in 21 of 24 ponds examined on the Ollis Creek Surface Mine in Campbell County, Tennessee. Twelve species of amphibians were identified in ponds that range from 4.0 to 8.0 in pH. Although ponds with low pH values were used by breeding amphibians, significantly more amphibian species were found in ponds with higher pH values. Findings indicated high biological productivity in the surface mine ponds examined. Aquatic vegetation was present in 20 of the 24 ponds. Aquatic insects and a diverse wildlife fauna utilized the study ponds. Surface mine ponds were found to supply an important habitat component for a variety of wildlife species.

  6. Salt-gradient Solar Ponds: Summary of US Department of Energy Sponsored Research

    NASA Technical Reports Server (NTRS)

    French, R. L.; Johnson, D. H.; Jones, G. F.; Zangrando, F.

    1984-01-01

    The solar pond research program conducted by the United States Department of Energy was discontinued after 1983. This document summarizes the results of the program, reviews the state of the art, and identifies the remaining outstanding issues. Solar ponds is a generic term but, in the context of this report, the term solar pond refers specifically to saltgradient solar pond. Several small research solar ponds have been built and successfully tested. Procedures for filling the pond, maintaining the gradient, adjusting the zone boundaries, and extracting heat were developed. Theories and models were developed and verified. The major remaining unknowns or issues involve the physical behavior of large ponds; i.e., wind mixing of the surface, lateral range or reach of horizontally injected fluids, ground thermal losses, and gradient zone boundary erosion caused by pumping fluid for heat extraction. These issues cannot be scaled and must be studied in a large outdoor solar pond.

  7. NUTRIENT-BASED ECOLOGICAL CONSIDERATIONS FOR STORMWATER MANAGEMENT BASINS: PONDS AND WETLANDS

    EPA Science Inventory

    The effects of stormwater pond and wetland best management practice (BMP) designs on phosphorus and nitrogen concentrations in effluent were considered using extant data and experimental observations from pond and wetland mesocosms. Relative difference between BMP types were eva...

  8. NUTRIENT-BASED ECOLOGICAL CONSIDERATIONS FOR STORMWATER MANAGEMENT BASINS: PONDS AND WETLANDS (PRESENTATION)

    EPA Science Inventory

    The effects of stormwater pond and wetland best management practice (BMP) designs on phosphorus and nitrogen concentrations in effluent were considered using extant data and experimental observations from pond and wetland mesocosms. Relative difference between BMP types were eva...

  9. A model to estimate hydrological processes and water budget from an irrigation pond in Mississippi

    USDA-ARS?s Scientific Manuscript database

    With increased interest to conserve groundwater resources without adversely affecting crop yield potential, more irrigation farm ponds have been constructed in recent years in Mississippi. However, the hydrological processes, water budget, and environmental benefits and consequences of these ponds h...

  10. Sedimentation rates and patterns in beaver ponds in a mountain environment

    NASA Astrophysics Data System (ADS)

    Butler, David R.; Malanson, George P.

    1995-09-01

    Sediment depth was measured at several sites within each of eight beaver ponds in Glacier National Park, Montana, and sediment samples wen; collected from five of these ponds. Accumulation rates of sediments far exceeded published rates from boreal forest landscapes in eastem and central North America. Pond area strongly predicts volume of sedimentation. Textural differences illustrated spatial variations associated with position in a pond and along a pond sequence. Organic matter content was significantly higher in older ponds, and has ramifications for the development of the benthos and the long-term storage of matter in ponds. The role of beavers as biogeomorphic agents is profound, but requires further elucidation to distinguish between fluvial sediment deposition in ponds and sediment deposition associated with beaver excavational activity.

  11. Arctic melt ponds and energy balance in the climate system

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  12. Primary production and biochemical compositions in Arctic melt ponds.

    NASA Astrophysics Data System (ADS)

    Lee, S.

    2015-12-01

    Areal extent of melt ponds within sea ice recently have increased during the arctic summer but the biological impacts of these changes on the arctic marine ecosystem have rarely been studied. Our survey of environmental conditions in melt ponds was conducted in 22 at sea ice camp 1 and 11 ponds at camp 2, respectively during the Korean Arctic expedition in 2014. The temperature range of melt ponds showed low variability at sea ice camp 1 (-1.3~0.8 °C) and camp 2 (-1.5~0.4 °C). In contrast, the salinity represented high variations ranging from 0.1 to 26.8 (mean ± S.D. = 16.7 ± 10.8) and 0 to 26.9 (mean ± S.D. = 12.3 ± 11.6), respectively. The average chlorophyll a (chl-a) concentrations were 0.124 mg m-2 (S.D. = ± 0.121 mg m-2) and 0.158 mg m-2 (S.D. = ± 0.067 mg m-2) in melt ponds, respectively at camp 1 and camp 2. Middle sized cells of phytoplankton (2-20 μm) were predominant in melt ponds accounting for 78 % and 63 % of total chl-a concentration at camp 1 and 2, respectively. The carbon uptake rates of phytoplankton in melt ponds ranged from 0.001 to 0.080 mg C m-3 h-1 (mean ± S.D. = 0.025 ± 0.024 mg C m-3 h-1) at camp 1 and 0.022 to 0.21 mg C m-3 h-1 (mean ± S.D. = 0.077 ± 0.006 mg C m-3 h-1) at camp 2 which is about three times higher than those of camp 1. The biochemical compositions averaged from various melt ponds were 35% (S.D. = ± 14.9%), 40% (S.D. = ± 13.2%), and 25% (S.D. = ± 12.9%), respectively for lipids, carbohydrates, and proteins at camp 1. In comparison, the overall average compositions of lipids, carbohydrates, and proteins were 29% (S.D. = ± 11.4%), 51% (S.D. = ± 9.8%), and 20% (S.D. = ± 7.9%), respectively at camp 2.

  13. Gradient zone boundary control in salt gradient solar ponds

    DOEpatents

    Hull, John R.

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  14. Valuating Ecosystem Services of Urban Ponds - case study from Bangladesh

    NASA Astrophysics Data System (ADS)

    Carle, Nina

    2016-04-01

    A climate risk assessment for the city of Barisal was carried out by a consultancy firm, financed by KfW Development Bank of Germany. Due to high dependencies on natural capital of people in developing countries they are facing high vulnerability when it comes to changes of the asset category 'natural capital' (here: urban ponds), whether due to the exposition on climate (change) related impacts, implemented measures or land use change. With a closer view on the city's assets, the question remained open to the author 1) Under current conditions, what is the demand for ecosystem services (ES) 2) What is the value of the benefits and the how much is the contribution to the city's welfare? 3) What are the future changes in the demand for ES? And what are the future changes on the supply side (pressures and threats to the ecosystem)? Methodology: The City of Barisal in Bangladesh has a calculated number of around 10.000 urban rain-fed ponds,representing 6.5% of the city area, which represents a huge natural water supply and gives the city its characteristic face. In August 2015 a user survey was conducted in the city of Barisal, in every ward (administrative unit), to determine the demand for ecosystem services related to urban ponds, evaluating over 600 ponds. The findings will present the huge variation of provisioning ecosystem services and an important regulating service, related to economic and domestic use, in a spatial resolution. It will be shown, how the importance of ES changes, by changing the unit of analysis (families or ponds or the city) and the importance for the livelihood of pond owners and users. A relationship between pond area(m2) and number of users was detected, also the role of compensation payments for the pond owners by the users. It will be shown how natural capital, privately and publicly owned,contributes in an important way in buffering unequal distribution of societies resources in the short- and long-run. However society's demand for ES

  15. Solar pond power plant feasibility study for Davis, California

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Singer, M. J.; Marsh, H. E.; Harris, J.; Walton, A. L.

    1982-01-01

    The feasibility of constructing a solar pond power plant at Davis, California was studied. Site visits, weather data compilation, soil and water analyses, conceptual system design and analyses, a material and equipment market survey, conceptual site layout, and a preliminary cost estimate were studied. It was concluded that a solar pond power plant is technically feasible, but economically unattractive. The relatively small scale of the proposed plant and the high cost of importing salt resulted in a disproportionately high capital investment with respect to the annual energy production capacity of the plant. Cycle optimization and increased plant size would increase the economical attractiveness of the proposed concept.

  16. Bacterioplankton secondary production estimates for artificially fertilized shrimp pond

    NASA Astrophysics Data System (ADS)

    Lu, Jing-Rang; Li, De-Shang; Zhang, Hong-Yan

    1997-03-01

    Experiments were conducted from June to September, 1995 in a controlled integrated culture pond-enclosure ecosystem. The principal objective of this study was to quantify the rate of heterotrophic bacterioplankton production in situ in a fertilization pond ecosystem. This paper presents a method by which bacterial production was estimated through incubation in situ and measurement of increased bacterial abundance with time. Bacterial growth rates, production and turnover per day during the periods of culture were estimated. The influence of zooplankton grazing, substrate limiting and water temperature on the bacterial growth rates and production were studied also.

  17. Cool Flame Quenching

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard

    2001-01-01

    Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism

  18. Impact of the Younger Dryas cooling event upon lowland vegetation of Maritime Canada

    SciTech Connect

    Mayle, F.E.; Cwynar, L.C.

    1995-05-01

    The aim of this research is to determine the response of the vegetation in coastal Maritime Canada to the Younger Dryas cooling event ({approx} 10800-10000 {sup 14}C yr BP) that interrupted the warming trend following the last glaciation. Detailed paleoecological studies were carried out on the organic, pollen, and plant macrofossil content of sediment cores recovered from six small lakes in New Brunswick and Nova Scotia. Results show that there was regional variation in the vegetation response to the cooling. Records from Splan Pond, Mayflower Lake, and Little Lake show a change from boreal forest or woodland to shrub-tundra as a result of the cooling, while Lac a Magie shows floristic changes of shrub-tundra, and Chase Pond and Main-a-Dieu Pond show replacement of shrub-tundra by herb-tundra in response to the Younger Dryas. The climate warming signifying the end of the Younger Dryas caused succession from shrub-tundra to boreal forest, or from herb-tundra to shrub-tundra. Macrofossil evidence of arctic/alpine species such as Dryas integrifolia, Salix herbacea, and Cassiope hypnoides attests to the severity of the Younger Dryas cooling. Vegetation changes in response to the climate cooling and warming, marketing the onset and termination of the Younger Dryas respectively, were very rapid, taking only 50-100 yr. However, the response of some taxa, such as dwarf birch, appears to have lagged the onset of the climate change by several decades, although the duration of the lag varies between sites. 53 refs., 15 figs., 2 tabs.

  19. Integrated reactor-containment hyperbolic-cooling-tower system

    SciTech Connect

    Patel, A.R.; Todreas, N.E.; Driscoll, M.J.

    1994-12-31

    A preliminary feasibility analysis has been conducted to evaluate placing a nuclear reactor containment building inside a large hyperbolic cooling tower, a concept previously suggested for fossil-fired units but for reasons other than those that motivate this evaluation. The geometry of the design, the amount of water available, and the shielding provided by the cooling tower are beneficial to the safety characteristics of the containment under accident conditions. Three means of decay heat management are employed: an initial water spray on the containment exterior, long-term air convection on side of the containment, and creation of a water pool inside the containment. A continuously spraying water tank on top of the containment allows for a completely passive decay heat removal system. An annular air chimney around the containment is effective in long-term removal of {approximately} 1O MW (thermal) through air convection. Five percent of the water inventory in the cooling-tower pond surrounding the containment is sufficient to flood the containment interior to a depth of 14.6 ft, thereby providing an internal containment heat sink. The packing and the height of the tower provide major scrubbing and dispersing sources for any uncontrolled radioactive leak. The cooling tower veil also protects the containment from external events such as lane crashes.

  20. Asteroid Pond Mineralogy: View from a Cognate Clast in LL3 NWA 8330

    NASA Technical Reports Server (NTRS)

    Zolensky, M.; Le, L.

    2017-01-01

    All asteroids surfaces imaged at the cm-scale reveal the presence of pond deposits. These ponds are important because it is likely all asteroid sample return missions will sample them, being the safest (very flat) places to touch down. Therefore, it is essential to understand the differences between the material at the pond surfaces and the host asteroid. Fortunately, some fine-grained cognate lithologies in chondrites show sedimentary features indicating that they sample asteroid ponds.

  1. Aquatic biodiversity in sedimentation ponds receiving road runoff - What are the key drivers?

    PubMed

    Sun, Zhenhua; Brittain, John E; Sokolova, Ekaterina; Thygesen, Helene; Saltveit, Svein Jakob; Rauch, Sebastien; Meland, Sondre

    2018-01-01

    Recently, increased attention has been paid to biodiversity conservation provided by blue-green solutions such as engineered ponds that are primarily established for water treatment and flood control. However, little research has been done to analyse the factors that affect biodiversity in such ponds. The purpose of this study was to evaluate the influence of environmental factors on aquatic biodiversity, mainly macroinvertebrate communities, in road sedimentation ponds in order to provide a foundation for recommendations on aquatic biodiversity conservation. Multivariate statistical methods, including unconstrained and constrained analysis, were applied to examine the relationships between organisms and the water quality as well as physical factors (including plant cover). Stepwise multiple regressions indicated that the most important variables governing the variation in the biological community composition were pond size, average annual daily traffic, metals, chloride, distance to the closest pond from study pond, dissolved oxygen, hydrocarbons, and phosphorus. The presence of most taxa was positively correlated with pond size and negatively correlated with metals. Small ponds with high pollutant loadings were associated with a low diversity and dominated by a few pollution tolerant taxa such as oligochaetes. A comprehensive understanding of impacts of various environmental factors on aquatic biodiversity is important to effectively promote and conserve aquatic biodiversity in such sedimentation ponds. Our results indicate that road sedimentation ponds should be designed large enough, because large ponds are likely to provide a more heterogeneous habitat and thus contain a species rich fauna. In addition, larger ponds seem to be less contaminated due to dilution compared to smaller ponds, thereby maintaining a higher biodiversity. Finally, creating some additional ponds in the vicinity of the sedimentation ponds in areas with few water bodies would increase the

  2. Remediation of a large contaminated reactor cooling reservoir: Resolving and environmental/regulatory paradox

    SciTech Connect

    Bowers, J.A.: Gladden, J.B.; Hickey, H.M.; Jones, M.P.; Mackey, H.E.; Mayer, J.J.; Doswell, A.

    1994-05-01

    This paper presents a case study of a former reactor cooling water reservoir, PAR Pond, located Savannah River Site. PAR Pond, a 2640 acre, man-made reservoir was built in 1958 and until 1988, received cooling water from two DOE nuclear production reactors, P and R. The lake sediments were contaminated with low levels of radiocesium (CS-137) and transuranics in the late 1950s and early 1960s because of leaking fuel elements. Elevated levels of mercury accumulated in the sediments from pumping water from the Savannah River to maintain a full pool. PAR Ponds` stability, size, and nutrient content made a significant, unique, and highly studied ecological resource for fish and wildlife populations until it was partially drained in 1991 due to a depression in the downslope of the earthen dam. The drawdown, created 1340 acres of exposed, radioactively contaminated sediments along 33 miles of shoreline. This led US EPA to declare PAR Pond as a CERCLA operable unit subject to remediation. The drawdown also raised concerns for the populations of aquatic plants, fish, alligators, and endangered species and increased the potential for off-site migration of contaminated wildlife from contact with the exposed sediments. Applicable regulations, such as NEPA and CERCLA, require wetland loss evaluations, human health and ecological risk assessments, and remediation feasibility studies. DOE is committed to spending several million dollars to repair the dam for safety reasons, even though the lake will probably not be used for cooling purposes. At the same time, DOE must make decisions whether to refill and expend additional public funds to maintain a full pool to reduce the risks defined under CERCLA or spend hundreds of millions in remediation costs to reduce the risks of the exposed sediments.

  3. Origin and flatness of ponds on asteroid 433 Eros

    NASA Astrophysics Data System (ADS)

    Roberts, J. H.; Prockter, L. M.; Barnouin, O. S.; Ernst, C. M.; Kahn, E.; Gaskell, R. W.

    2013-12-01

    Over 300 landforms have been identified on asteroid 433 Eros, consisting of flat, smooth deposits typically located at the bottoms of craters or other topographic lows [1-2]. These landforms are tens of meters across, and their surfaces appear to lie on a geopotential [2]. They are clearly delineated from the surrounding terrain by sharp embayments of the bounding depressions in which they lie. Where these depressions are emplaced on a local slope, the deposits are located downslope of the geometric center of the crater [1]. The deposits are slightly bluer in color than the surroundings [1] and are interpreted to consist of fine-grained material [2]. Because of their morphological resemblance to the terrestrial lacustrine features of similar size, these deposits have been called "ponds". A database of the locations and sizes of 334 ponds observed with the Multi-spectral Imager (MSI) on the Near-Earth Asteroid Rendezvous (NEAR)-Shoemaker spacecraft has been archived in the Planetary Data System (PDS) [3]. These ponds are largely concentrated near the equator at the ends of the long-axis of the asteroid [2]. Several mechanisms have been proposed for the origin of the ponds including electrostatic levitation of dust [2], seismic shaking due to impacts [1] and disaggregation of central boulders observed within several of the ponds [4]. Here, we further investigate the topography of ponds on Eros using a new shape model derived from stereophotoclinometric (SPC) analysis [5], which we have tied to altimetry measurements made by the NEAR Laser Rangefinder (NLR). We update the locations of 55 pond candidates identified in images registered to the new shape model. We classify the flatness of these features according to the behavior of the first and second derivatives of the topography. We find that a significant fraction (55% - 75%) of pond candidates do not have flat floors. On the basis of these results, we favor an origin for the ponds deposits from a source external to

  4. Radon tracing of groundwater input into Par Pond, Savannah River Site

    NASA Astrophysics Data System (ADS)

    Corbett, D. Reide; Burnett, William C.; Cable, Peter H.; Clark, Sue B.

    1997-12-01

    The groundwater contribution into Par Pond, a former cooling reservoir for two nuclear reactors located on the Department of Energy's Savannah River Site (South Carolina), was estimated using a standard hydrologic budget as well as one augmented by a natural tracer approach. We determined a geochemical budget for 222Rn, normally found at much higher concentrations in groundwater than surface waters, to assist in constraining the hydrologic estimates. The radon budget accounted for all quantifiable surface sources and sinks including the flux across the sediment-water interface which was determined by application of an advection-diffusion model. All hydrologic parameters and radon concentrations were monitored seasonally from February 1994 to August 1995. Using the water balance approach alone, the average groundwater discharge entering the lake was estimated to have an upper limit of approximately 0.95 ± 0.13 m 3 s -1. The groundwater contribution obtained using the combined hydrologic/ 222Rn approach ranged from 0.17 to 0.76 m 3 s -1 with a best estimate of 0.35 ± 0.16 m 3 s -1. Lake profiles show enhanced 222Rn concentrations in some areas indicating that groundwater enters Par Pond mostly through a small region in the northern portion of the lake, probably via small seeps or springs. Estimates show that groundwater plays a significant role in the overall water budget of the lake, accounting for 10%-33% of the total estimated inflow from all measured sources. Our results show that supplementing a standard hydrological water balance with radon budget considerations helps to constrain estimated groundwater flow into surface reservoirs.

  5. Utilization of surface mine ponds in East Tennessee by breeding amphibians

    SciTech Connect

    Turner, L.J.; Fowler, D.K.

    1981-06-01

    Of 24 ponds examined on Ollis Creek Surface Mine, Campbell County, Tennessee, 21 contained breeding amphibians. Twelve species of amphibians were identified in ponds that ranged from 4.0 to 8.0 in pH. Although ponds with low pH values were used by breeding amphibians, significantly more amphibian species were found in ponds with higher pH values. The average pH of ponds occupied by each amphibian species varied. Spring peepers (Hyla crucifer) occupied ponds with the lowest average pH (5.22) while upland chorus frogs (Pseudacris triseriata feriarum) utilized ponds with the highest average pH (6.33). Findings indicated high biological productivity in surface mine ponds. Aquatic vegetation was present in 20 of the 24 ponds. Aquatic insects and a diverse wildlife fauna utilized the study ponds. Large mammals (3 species), waterbirds (17 species), and snakes (2 species) were among those species observed. Surface mine ponds were found to supply an important habitat component for a variety of wildlife species and therefore improve the quality of wildlife habitat on the surface mines. In some areas, mine ponds are the only source of surface water available for wildlife use. 23 references, 9 figures, 5 tables.

  6. Transport of trace elements in runoff from unamended and pond-ash amended feedlot surfaces

    USDA-ARS?s Scientific Manuscript database

    The use of pond ash (fly ash that has been placed in evaporative ponds for storage and subsequently dewatered) for feedlot surfaces provides a drier environment for livestock and furnishes economic benefits. However, pond ash is known to have high concentrations of trace elements and the runoff wate...

  7. Variable response by aquatic invertebrates to experimental manipulations of leaf litter input into seasonal woodland ponds

    Treesearch

    Darold P. Batzer; Brian J. Palik

    2007-01-01

    Aquatic invertebrates are crucial components of foodwebs in seasonal woodland ponds, and leaf litter is probably the most important food resource for those organisms. We quantified the influence of leaf litter inputs on aquatic invertebrates in two seasonal woodland ponds using an interception experiment. Ponds were hydrologically split using a sandbag-plastic barrier...

  8. Estimating the ratio of pond size to irrigated soybeans land in Mississippi: A case study

    USDA-ARS?s Scientific Manuscript database

    Although more on-farm storage ponds have been constructed in recent years to mitigate groundwater resources depletion in Mississippi, little effort has been devoted to estimating the ratio of pond size to irrigated crop land based on pond matric and its hydrological conditions. Knowledge of this ra...

  9. Evaluation of the Preservation Value and Location of Farm Ponds in Yunlin County, Taiwan

    PubMed Central

    Chou, Wen-Wen; Lee, Soen-Han; Wu, Chen-Fa

    2013-01-01

    Farm ponds in Yunlin County first appeared in 1,622 and have played roles in habitation, production, the ecology, culture, and disaster reduction. Farm ponds largely disappeared with the development of urban areas and the industrial sector; thus, effective preservation of the remaining ponds is critical. The criteria to evaluate the preservation value of farm ponds is established by expert questionnaires which follow the Fuzzy Delphi Method (FDM) and Fuzzy Analytic Hierarchy Process (FAHP), and GIS, which are integrated into a spatial analysis of the remaining 481 farm ponds in Yunlin County. The results show that 28 ponds should be preserved to continue the cultural interaction between farm ponds and settlements; 36 ponds should preserved to connect coasts and streams, which are important habitats for birds; 30 ponds should be preserved to increase storage capacity, recharge groundwater, and reduce land subsidence; four ponds should be preserved as Feng-Shui ponds in front of temples in settlements or as recreation areas for local citizens; and four farms should be preserved (high priority) in agricultural production areas to support irrigation. In short, FAHP and GIS are integrated to evaluate the number and locations of farm ponds that provide water for habitation, production, the ecology, culture, and disaster reduction and maintain the overall preservation value in Yunlin County. The results could inform governmental departments when considering conservation policies. PMID:24384776

  10. Pumping performance of a slow-rotating paddlewheel for split-pond aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Commercial catfish farmers are intensifying production by retrofitting ponds with variations of the partitioned aquaculture system (PAS). The split-pond system is the most common variation used commercially. The split-pond consists of a small fish-holding basin connected to a waste treatment lagoon ...

  11. Pumping performance of a slow-rotating paddlewheel for split-ponds

    USDA-ARS?s Scientific Manuscript database

    Commercial catfish farmers are intensifying production by retrofitting ponds with variations of the partitioned aquaculture system. The split-pond system is the most common variation used commercially. The split-pond consists of a small fish-holding basin connected to a waste treatment lagoon by two...

  12. Evaluation of the preservation value and location of farm ponds in Yunlin County, Taiwan.

    PubMed

    Chou, Wen-Wen; Lee, Soen-Han; Wu, Chen-Fa

    2013-12-31

    Farm ponds in Yunlin County first appeared in 1,622 and have played roles in habitation, production, the ecology, culture, and disaster reduction. Farm ponds largely disappeared with the development of urban areas and the industrial sector; thus, effective preservation of the remaining ponds is critical. The criteria to evaluate the preservation value of farm ponds is established by expert questionnaires which follow the Fuzzy Delphi Method (FDM) and Fuzzy Analytic Hierarchy Process (FAHP), and GIS, which are integrated into a spatial analysis of the remaining 481 farm ponds in Yunlin County. The results show that 28 ponds should be preserved to continue the cultural interaction between farm ponds and settlements; 36 ponds should preserved to connect coasts and streams, which are important habitats for birds; 30 ponds should be preserved to increase storage capacity, recharge groundwater, and reduce land subsidence; four ponds should be preserved as Feng-Shui ponds in front of temples in settlements or as recreation areas for local citizens; and four farms should be preserved (high priority) in agricultural production areas to support irrigation. In short, FAHP and GIS are integrated to evaluate the number and locations of farm ponds that provide water for habitation, production, the ecology, culture, and disaster reduction and maintain the overall preservation value in Yunlin County. The results could inform governmental departments when considering conservation policies.

  13. A commercial-scale in-pond raceway system for ictalurid catfish production

    USDA-ARS?s Scientific Manuscript database

    A commercial-scale, in-pond raceway system was constructed in 2007 on a commercial catfish fish farm in west Alabama. The in-pond raceway system was installed in a 2.43-ha earthen pond with an average depth of 1.67 m. A slow-rotating paddlewheel (1.17 revolutions per minute) installed in each rac...

  14. Metapopulation dynamics of amphibians using isolated, ephemeral ponds in longleaf pine uplands of Florida

    Treesearch

    Cathryn H. Greenberg

    1998-01-01

    Several species of southeastern amphibians completely or facultatively depend upon small, ephemeral isolated ponds for reproduction, and inhabit surrounding uplands for much of their adult lives. However, spatio-temporal dynamics of pond use is little known. Since 1994, eight ephemeral ponds embedded within frequently (n=4) or infrequently (n=4) burned longleaf pine...

  15. Oxygen transfer in marsh-pond-marsh constructed wetlands treating swine wastewater

    USDA-ARS?s Scientific Manuscript database

    Marsh-pond-marsh (M-P-M) constructed wetlands have been used to treat wastewater from swine anaerobic lagoons. To mitigate undesired ammonia emission from M-P-M, ponds were covered with floating wetlands (M-FB-M). The pond sections of the M-FB-M were covered with floating wetlands consisted of recyc...

  16. Production Responses of Channel Catfish to Minimum Daily Dissolved Oxygen Concentrations in Earthen Ponds

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study was to determine the effects of the minimum daily dissolved oxygen (DO) concentration on production parameters of channel catfish Ictalurus punctatus in earthen ponds. Fifteen one-acre ponds (5 ponds per treatment) were managed as High Oxygen (minimum DO concentrations aver...

  17. Data analysis protocol for using resistivity array as an early-warning wastewater pond leak detector

    USDA-ARS?s Scientific Manuscript database

    Typically, holding ponds are used to control runoff from concentrated animal feeding operations. The integrity of these holding ponds has come under increased scrutiny since subsurface leakage has the potential to affect soil and groundwater quality. Traditionally, ponds are monitored by installin...

  18. Microbial and chemical properties of log ponds along the Oregon Coast.

    Treesearch

    Iwan Ho; Ching Yan. Li

    1987-01-01

    The microbial and chemical properties of log ponds along the Oregon coast were investigated. The log ponds were highly eutrophic, containing high concentrations of ammonium and nitrate nitrogen, phosphate, and organic compounds. Because of large microbial populations, the biochemical oxygen demand was high and dissolved oxygen was low. Bacterial species in log ponds...

  19. Estimating the ratio of pond size to irrigated soybean land in Mississippi: a case study

    Treesearch

    Ying Ouyang; G. Feng; J. Read; T. D. Leininger; J. N. Jenkins

    2016-01-01

    Although more on-farm storage ponds have been constructed in recent years to mitigate groundwater resources depletion in Mississippi, little effort has been devoted to estimating the ratio of on-farm water storage pond size to irrigated crop land based on pond metric and its hydrogeological conditions.  In this study, two simulation scenarios were chosen to...

  20. Oxygen transfer in marsh-pond-marsh constructed wetlands treating swine wastewater

    USDA-ARS?s Scientific Manuscript database

    Marsh-pond-marsh (M-P-M) constructed wetlands have been used to treat wastewater from swine anaerobic lagoons. To mitigate undesired ammonia emission from M-P-M, ponds were covered with floating wetlands (M-FB-M). The pond sections of the M-FB-M were covered with floating wetlands consisted of recyc...

  1. Estimated hydrologic budgets of kettle-hole ponds in coastal aquifers of southeastern Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Masterson, John P.

    2011-01-01

    Water fluxes through the ponds are a function of several factors, including the size, shape, and bathymetry of the pond, orientation of the pond relative to the regional hydraulic gradient, and hydrologic setting relative to the proximity of groundwater divides and discharge boundaries. Total steady-state fluxes through the ponds range from more than 3,300,000 to less than 2,000 cubic feet per day. For ponds without surface-water inlets or outlets, groundwater inflow accounts for 98 to 3 percent of total inflow; conversely, recharge onto the pond surface accounts for the remainder of inflow (between 2 and 97 percent). All natural flows from these ponds are through recharge from the pond into the aquifer. In one pond, about 94 percent of the total outflow is removed for water supply. For ponds that are connected to surface-water drainages, most inflow and outflow are through streams. Ponds that receive water from streams receive most (58 to 89 percent) of their water from those streams. Ponds that are drained by streams lose between 5 and 100 percent of their water to those streams.

  2. Design and fish culture considerations for catfish farming in split ponds

    USDA-ARS?s Scientific Manuscript database

    Split ponds are simple, pond-based aquaculture systems constructed by dividing an existing catfish pond into two unequal basins with an earthen levee. Fish are confined in the smaller basin (usually about 15-20% of total water area) while the larger basin serves as a waste-treatment lagoon. A high-v...

  3. Pumping performance of a modified commercial paddlewheel aerator for split-pond aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    The split-pond aquaculture system consists of a small fish-holding basin connected to a waste-treatment lagoon by two conduits. Split ponds require large water volumes circulated between the two basins (10,000 to 20,000 gal/min for 5- to 10-ac ponds) to remove fish waste and provide oxygenated water...

  4. Avian and amphibian use of fenced and unfenced stock ponds in northeastern Oregon forests.

    Treesearch

    Evelyn L. Bull; Jerry W. Deal; Janet E. Hohmann

    2001-01-01

    The abundance of birds and amphibian larvae was compared between fenced and unfenced stock ponds in 1993 to determine if fencing improved the habitat for these species in northeastern Oregon. Stock ponds that were fenced had significantly higher densities of bird species, guilds, and taxonomic groups than stock ponds that were unfenced. No differences in the relative...

  5. Cool WISPs for stellar cooling excesses

    NASA Astrophysics Data System (ADS)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  6. Comparison of physico-chemical parameters and zooplankton diversity in two perennial ponds at Aligarh, India.

    PubMed

    Parveen, Saltanat; Abdel Mola, Hesham R

    2013-07-01

    Investigations were carried out on the diversity of zooplankton in relation to physico-chemical parameters of two perennial ponds (Chautal Pond and Medical Pond) of Aligarh, India. Thirty nine species of holoplankton were identified belonging to copepoda (2 species), rotifera (28 species), cladocera (6 species) and protozoa (3 species). Other forms; like as meroplankton (insects) and tychoplankton (nematodes and ostracodes) were also recorded. Higher values of physico-chemical parameters and low zooplankton diversity were recorded in the Chautal Pond, whereas low values of physico-chemical parameters and high diversity were recorded in the Medical Pond. Ostracods considered to be the most dominant group in Medical Pond (32.16% of the total zooplankton) while Cladocerans are considered to be the most dominant group in Chautal Pond (38.83% of the total zooplankton). Rotifera contributed more in Medical Pond (16.42%) as compared to Chautal Pond (15.81%). Five species of Brachionus was recorded during study. Out of five, four Brachionus species were recorded in Chautal Pond while only two species were recorded in Medical pond. This indicates that Chautal Pond is more eutrophic than Medical pond. In addition, higher carbon dioxide values (37-105 mg l(-1)), low dissolved oxygen (0.7-3.3 mg I(-1)) and higher electrical conductivity values (1069-1691 mg l(-1)) were also indicative of eutrophic nature of Chautal Pond. Present study also revealed that total zooplankton species, species richness and diversity indices (Evenness, Shannon-Winner and Simpson) were comparatively higher in Medical pond. The rotifer species Philodina roseola (146 Org. l(-1)) and Monstyla closterocerca (109 Org. l(-1)) was dominated in Medical Pond while the rotifers Brachionus urceolaris (512 Org. l(-1)) and the cladocern species Ceriodaphnia cornuta (1540 Org. l(-1)) dominated in Chautal Pond during post-monsoon season. This might be due to the effect of rain water which played an important role in

  7. Cooling in a compound bucket

    SciTech Connect

    Shemyakin, A.; Bhat, C.; Broemmelsiek, D.; Burov, A.; Hu, M.; /Fermilab

    2007-09-01

    Electron cooling in the Fermilab Recycler ring is found to create correlation between longitudinal and transverse tails of the antiproton distribution. By separating the core of the beam from the tail and cooling the tail using 'gated' stochastic cooling while applying electron cooling on the entire beam, one may be able to significantly increase the overall cooling rate. In this paper, we describe the procedure and first experimental results.

  8. 1. GENERAL VIEW OF LOG POND AND BOOM FOR UNLOADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF LOG POND AND BOOM FOR UNLOADING CEDAR LOGS FROM TRUCKS AT LOG DUMP, ADJACENT TO MILL; TRUCKS FORMERLY USED TRIP STAKES, THOUGH FOR SAFER HANDLING OF LOGS WELDED STAKES ARE NOW REQUIRED; AS A RESULT LOADING IS NOW DONE WITH A CRANE - Lester Shingle Mill, 1602 North Eighteenth Street, Sweet Home, Linn County, OR

  9. How Circulation of Water Affects Freezing in Ponds

    ERIC Educational Resources Information Center

    Moreau, Theresa; Lamontagne, Robert; Letzring, Daniel

    2007-01-01

    One means of preventing the top of a pond from freezing involves running a circulating pump near the bottom to agitate the surface and expose it to air throughout the winter months. This phenomenon is similar to that of the flowing of streams in subzero temperatures and to the running of taps to prevent pipe bursts in winter. All of these cases…

  10. MONITORING OF A RETENTION POND BEFORE AND AFTER MAINTENANCE

    EPA Science Inventory

    The USEPA’s Urban Watershed Management Branch monitored a retention pond with wetland plantings in the Richmond Creek (RC) watershed. This BMP, designated RC-5, is owned and operated by the New York City Department of Environmental Protection’s (DEP) as part of the Bluebelt progr...

  11. Water quality in hybrid catfish ponds after partial fish harvest

    USDA-ARS?s Scientific Manuscript database

    Intensification of United States catfish aquaculture involves hybrid catfish ('channel catfish Ictalurus punctatus x ' blue catfish I. furcatus) grown in ponds with abundant aeration and high feeding rates. High feeding rates cause water quality deterioration because most of the nitrogen, phosphorus...

  12. The characterization of microorganisms in dairy wastewater storage ponds

    USDA-ARS?s Scientific Manuscript database

    Dairy wastewaters from storage ponds are commonly land applied to irrigate silage crops. Given that diverse microbial populations are associated with cattle feces, the objective of this study was to use a culture-independent approach to characterize Bacteria and Archaea in dairy wastewaters. Using d...

  13. How Universal Is the Big-Fish-Little-Pond Effect?

    ERIC Educational Resources Information Center

    Dai, David Yun

    2004-01-01

    Comments on the article by Marsh and Hau (see record 2003-06802-005), who tested the negative effects of attending academically selective schools; that is, a student will have lowered academic self-concept in a selective school than in a nonselective school, a big-fish-little-pond effect (BFLPE). The current author suggests that a major problem of…

  14. 21. DREDGING POND USED TO TEST THE ADAPTABILITY OF JET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DREDGING POND USED TO TEST THE ADAPTABILITY OF JET PUMPS FOR PUMPING SAND, AND WEAR RATES OF DIFFERENT TYPES OF DREDGING PIPE. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  15. Coleman Revisited: School Segregation, Peers, and Frog Ponds

    ERIC Educational Resources Information Center

    Goldsmith, Pat Rubio

    2011-01-01

    Students from minority segregated schools tend to achieve and attain less than similar students from White segregated schools. This study examines whether peer effects can explain this relationship using normative models and frog-pond models. Normative models (where peers become alike) suggest that minority schoolmates are a liability. Frog-pond…

  16. 57. View of the lily pond in the northern portion ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. View of the lily pond in the northern portion of the hillside garden, from the southeast. The view includes stone footbridges, a directed fall of water through rocks at center, and a tariki stoneware bench by Eric O'Leary (1992) at the top of the waterfall. - Marsh-Billings-Rockefeller National Historical Park, 54 Elm Street, Woodstock, Windsor County, VT

  17. Role of livestock effluent suspended particulate in sealing effluent ponds.

    PubMed

    Bennett, J McL; Warren, B R

    2015-05-01

    Intensive livestock feed-lots have become more prevalent in recent years to help in meeting the predicted food production targets based on expected population growth. Effluent from these is stored in ponds, representing a potential concern for seepage and contamination of groundwater. Whilst previous literature suggests that effluent particulate can limit seepage adequately in combination with a clay liner, this research addresses potential concerns for sealing of ponds with low concentration fine and then evaluates this against proposed filter-cake based methodologies to describe and predict hydraulic reduction. Short soil cores were compacted to 98% of the maximum dry density and subject to ponded head percolation with unfiltered-sediment-reduced effluent, effluent filtered to <3 μm, and chemically synthesized effluent. Reduction in hydraulic conductivity was observed to be primarily due to the colloidal fraction of the effluent, with larger particulate fractions providing minimal further reduction. Pond sealing was shown to follow mathematical models of filter-cake formation, but without the formation of a physical seal on top of the soil surface. Management considerations based on the results are presented.

  18. 25. VIEW OF MILL FROM UPPER TAILINGS POND. SHOWS ROASTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW OF MILL FROM UPPER TAILINGS POND. SHOWS ROASTER ON LEFT EDGE OF VIEW. THE SECONDARY THICKENER No. 7 IS OFF VIEW TO THE RIGHT. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  19. Lime enhanced chromium removal in advanced integrated wastewater pond system.

    PubMed

    Tadesse, I; Isoaho, S A; Green, F B; Puhakka, J A

    2006-03-01

    The removal of trivalent chromium from a combined tannery effluent in horizontal settling tanks and subsequent Advanced Integrated Wastewater Pond System (AIWPS) reactors was investigated. The raw combined effluent from Modjo tannery had pH in the range of 11.2-12. At this pH, a trivalent chromium removal of 46-72% was obtained in the horizontal settling tanks after a one-day detention time. Trivalent chromium precipitated as chromium hydroxide, Cr(OH)3. 58-95% Cr(III) was removed in the advanced facultative pond (AFP) where the water column pH of 7.2-8.4 was close to pH 8, which is the optimum precipitation pH for trivalent chromium. Chromium removals in the secondary facultative pond (SFP) and maturation pond (MP) were 30-50% and 6-16%, respectively. With Cr(III) concentration of 0.2-0.8 mg/l in the final treated effluent, the AIWPS preceded by horizontal settling tanks produced effluent that could easily meet most of the current Cr(III) discharge limits to receive water bodies.

  20. Coleman Revisited: School Segregation, Peers, and Frog Ponds

    ERIC Educational Resources Information Center

    Goldsmith, Pat Rubio

    2011-01-01

    Students from minority segregated schools tend to achieve and attain less than similar students from White segregated schools. This study examines whether peer effects can explain this relationship using normative models and frog-pond models. Normative models (where peers become alike) suggest that minority schoolmates are a liability. Frog-pond…