Science.gov

Sample records for pool boiling system

  1. Pool boiling

    SciTech Connect

    Lallemand, M.

    1993-10-01

    Heat transfer between a wall and a stagnant boiling liquid is reviewed in this paper. The effect of different parameters on the boiling curve is pointed out on the basis of experimental data from the literature. Augmentation of heat transfer by enhanced surfaces is described briefly. The available correlations for prediction of heat transfer coefficients are given for the entire boiling curve, i.e., nucleate, transitional, and film boiling, and critical points. These correlations are useful for the design and operation of various heat-exchange systems.

  2. Design and test of a compact optics system for the pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Ling, Jerri S.; Laubenthal, James R.

    1990-01-01

    The experiment described seeks to improve the understanding of the fundamental mechanisms that constitute nucleate pool boiling. The vehicle for accomplishing this is an investigation, including tests to be conducted in microgravity and coupled with appropriate analyses, of the heat transfer and vapor bubble dynamics associated with nucleation, bubble growth/collapse and subsequent motion, considering the interrelations between buoyancy, momentum and surface tension which will govern the motion of the vapor and surrounding liquid, as a function of the heating rate at the heat transfer surface and the temperature level and distribution in the bulk liquid. The experiment is designed to be contained within the confines of a Get-Away-Special Canister (GAS Can) installed in the bay of the space shuttle. When the shuttle reaches orbit, the experiment will be turned on and testing will proceed automatically. In the proposed Pool Boiling Experiment a pool of liquid, initially at a precisely defined pressure and temperature, will be subjected to a step imposed heat flux from a semitransparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. Transient measurements of the heater surface and fluid temperatures near the surface will be made, noting especially the conditions at the onset of boiling, along with motion photography of the boiling process in two simultaneous views, from beneath the heating surface and from the side. The conduct of the experiment and the data acquisition will be completely automated and self-contained. For the initial flight, a total of nine tests are proposed, with three levels of heat flux and three levels of subcooling. The design process used in the development and check-out of the compact photographic/optics system for the Pool Boiling Experiment is documented.

  3. Pool Boiling Experiment Has Successful Flights

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many Earthbound applications, such as steam-generation power plants, petroleum, and other chemical plants. Also, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  4. Pool Boiling Experiment Has Five Successful Flights

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Fran

    1997-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  5. Conceptual design for spacelab pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Lienhard, J. H.; Peck, R. E.

    1978-01-01

    A pool boiling heat transfer experiment to be incorporated with a larger two-phase flow experiment on Spacelab was designed to confirm (or alter) the results of earth-normal gravity experiments which indicate that the hydrodynamic peak and minimum pool boiling heat fluxes vanish at very low gravity. Twelve small sealed test cells containing water, methanol or Freon 113 and cylindrical heaters of various sizes are to be built. Each cell will be subjected to one or more 45 sec tests in which the surface heat flux on the heaters is increased linearly until the surface temperature reaches a limiting value of 500 C. The entire boiling process will be photographed in slow-motion. Boiling curves will be constructed from thermocouple and electric input data, for comparison with the motion picture records. The conduct of the experiment will require no more than a few hours of operator time.

  6. Electrohydrodynamic Pool Boiling in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, Benjamin D.; Stahl, S. L.

    1996-01-01

    This research is concerned with studying the effects of applied electric fields on pool boiling in a reduced-gravity environment. Experiments are conducted at the NASA Lewis 2.2 sec Drop tower using a drop rig constructed at UC Davis. In the experiments, a platinum wire is heated while immersed in saturated liquid refrigerants (FC-72 and FC-87), or water, causing vapor formation at the wire surface. Electric fields are applied between the wire surface and an outer screen electrode that surrounds the wire. Preliminary normal-gravity experiments with water have demonstrated that applied electric fields generated by the rig electronics can influence boiling characteristics. Reduced-gravity experiments will be performed in the summer of 1996. The experiments will provide fundamental data on electric field strengths required to disrupt film boiling (for various wire heat generation input rates) in reduced gravity for a cylindrical geometry. The experiments should also shed light on the roles of characteristic bubble generation times and charge relaxation times in determining the effects of electric fields on pool boiling. Normal-gravity comparison experiments will also be performed.

  7. Pool Boiling Heat Transfer on structured Surfaces

    NASA Astrophysics Data System (ADS)

    Addy, J.; Olbricht, M.; Müller, B.; Luke, A.

    2016-09-01

    The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.

  8. Steady State Vapor Bubble in Pool Boiling

    PubMed Central

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  9. Steady State Vapor Bubble in Pool Boiling.

    PubMed

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-02-03

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  10. Water inventory management in condenser pool of boiling water reactor

    DOEpatents

    Gluntz, Douglas M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  11. Water inventory management in condenser pool of boiling water reactor

    DOEpatents

    Gluntz, D.M.

    1996-03-12

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  12. Nucleate Pool Boiling Experiments (NPBX) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Dhir, Vijay Kumar; Warrier, Gopinath R.; Aktinol, Eduardo; Chao, David; Eggers, Jeffery; Sheredy, William; Booth, Wendell

    2012-11-01

    During the period of March-May 2011, a series of boiling experiments was carried out in the Boiling Experimental Facility (BXF) located in the Microgravity Science Glovebox (MSG) of the International Space Station (ISS). The BXF Facility was carried to ISS on Space Shuttle Mission STS-133 on February 24, 2011. Nucleate Pool Boiling Experiment (NPBX) was one of the two experiments housed in the BXF. Results of experiments on single bubble dynamics (e.g., inception and growth), multiple bubble dynamics (lateral merger and departure, if any), nucleate pool boiling heat transfer, and critical heat flux are described. In the experiments Perfluoro-n-hexane was used as the test liquid. The system pressure was varied from 51 to 243 kPa, pool temperature was varied from 30° to 59°C, and test surface temperature was varied from 40° to 80°C. The test surface was a polished aluminum disc (1 mm thick, 89.5 mm in diameter) heated from below with strain gage heaters. Five cylindrical cavities were formed on the surface with four cavities located at the corners of a square and one in the middle. During experiments the magnitude of mean gravity level normal to the heater surface varied from 1.2 × 10 - 7g e to 6 × 10 - 7g e . The results of the experiments show that a single bubble continues to grow to occupy the size of the chamber without departing from the heater surface. During lateral merger of bubbles, at high superheats a large bubble may lift off from the surface but continues to hover near the surface. Neighboring bubbles are continuously pulled into the large bubble. At low superheats bubbles at neighboring sites simply merge to yield a larger bubble. The larger bubble mostly locates in the middle of the heated surface and serves as a vapor sink. The latter mode continues to persist when boiling is occurring all over the heater surface. Heat fluxes for steady state nucleate boiling and critical heat fluxes are found to be much lower than those obtained under earth

  13. Nucleate pool boiling of hydrocarbon mixtures

    SciTech Connect

    Sardesai, R.G.; Palen, J.W.; Thome, J.

    1986-01-01

    The Schlunder method can be correctly used to predict boiling heat transfer coefficient of multicomponent hydrocarbon mixtures. The method was tested against experimental mixtures containing up to five components. The Stephan-Abdelsalam correlation can be used to calculate a ''pseudo-single component'' boiling heat transfer coefficient for a mixture using weighted properties. The effective temperature driving force term and the high mass flux correction term in the Schlunder formulation are empirically adjusted to improve the accuracy of prediction. Predictions of the Schlunder method are sensitive to the VLE calculations. The UNIFAC method is used in this study for reasons discussed in the paper.

  14. A Fundamental Study of Nucleate Pool Boiling Under Microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1996-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal-resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- 1 experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, the bulk liquid temperatures. High speed photography (up to 1,000 frames per second) was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface, some observed here for the first time, are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels (on the order of 5 W/cm(exp 2)) is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  15. A fundamental study of nucleate pool boiling under microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1991-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, and the bulk liquid temperatures. High speed photography was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  16. Pool and flow boiling in variable and microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1994-01-01

    As is well known, boiling is an effective mode of heat transfer in that high heat flux levels are possible with relatively small temperature differences. Its optimal application requires that the process be adequately understood. A measure of the understanding of any physical event lies in the ability to predict its behavior in terms of the relevant parameters. Despite many years of research the predictability of boiling is currently possible only for quite specialized circumstances, e.g., the critical heat flux and film boiling for the pool boiling case, and then only with special geometries. Variable gravity down to microgravity provides the opportunity to test this understanding, but possibly more important, by changing the dimensional and time scales involved permits more detailed observations of elements involved in the boiling process, and perhaps discloses phenomena heretofore unknown. The focus here is on nucleate boiling although, as will be demonstrated below, under but certain circumstances in microgravity it can take place concurrently with the dryout process. In the presence of earth gravity or forced convection effects, the latter process is usually referred to as film boiling. However, no vapor film as such forms with pool boiling in microgravity, only dryout. Initial results are presented here for pool boiling in microgravity, and were made possible at such an early date by the availability of the Get-Away-Specials (GAS). Also presented here are some results of ground testing of a flow loop for the study of low velocity boiling, eventually to take place also in microgravity. In the interim, variable buoyancy normal to the heater surface is achieved by rotation of the entire loop relative to earth gravity. Of course, this is at the expense of varying the buoyancy parallel to the heater surface. Two questions which must be resolved early in the study of flow boiling in microgravity are (1) the lower limits of liquid flow velocity where buoyancy

  17. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  18. Electrical design of payload G-534: The Pool Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Francisco, David R.

    1992-01-01

    Payload G-534, the Pool Boiling Experiment (PBE), is a Get Away Special that is scheduled to fly on the shuttle in 1992. This paper will give a brief overall description of the experiment with the main discussion being the electrical design with a detailed description of the power system and interface to the GAS electronics. The batteries used and their interface to the experiment Power Control Unit (PCU) and GAS electronics will be examined. The design philosophy for the PCU will be discussed in detail. The criteria for selection of fuses, relays, power semiconductors and other electrical components along with grounding and shielding policy for the entire experiment will be presented. The intent of this paper is to discuss the use of military tested parts and basic design guidelines to build a quality experiment for minimal additional cost.

  19. A high-fidelity approach towards simulation of pool boiling

    SciTech Connect

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios; Alahyari, Abbas A.

    2016-01-15

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.

  20. A high-fidelity approach towards simulation of pool boiling

    NASA Astrophysics Data System (ADS)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios; Alahyari, Abbas A.

    2016-01-01

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.

  1. A new regime of nucleate boiling in microsphere mesostructures: Jumping pool boiling

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. S.; Makarov, P. G.; El Bouz, M. A.

    2015-03-01

    We have studied a new regime of nucleate boiling in distilled water on substrates representing mesostructures of monodisperse and/or polydisperse microspheres made of various materials. It is experimentally established that, under some conditions of nucleate boiling, there appear "jumping pool boiling" regimes in which bubbles do not reach the surface of underheated liquid. In addition, bubbles may capture a certain number of microspheres, lift them up to some height, and then sink together down to the vessel bottom. Alternatively, microspheres may trap a certain number of bubbles, float up toward the evaporating surface, and then (without reaching the surface) sink back to the bottom layer where the nucleate bubbling takes place. Subregimes of this boiling mechanism involving microspheres of various densities and dimensions have also been observed.

  2. Infrared thermometry study of nanofluid pool boiling phenomena

    PubMed Central

    2011-01-01

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754

  3. Infrared thermometry study of nanofluid pool boiling phenomena.

    PubMed

    Gerardi, Craig; Buongiorno, Jacopo; Hu, Lin-Wen; McKrell, Thomas

    2011-03-16

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement.

  4. Environmental qualification testing of the prototype pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Sexton, J. Andrew

    1992-01-01

    The prototype Pool Boiling Experiment (PBE) flew on the STS-47 mission in September 1992. This report describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the prototype hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave the project team a wider latitude in determining which shuttle thermal altitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the project's laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.

  5. Evaluation of commercial enhanced tubes in pool boiling: Topical report

    SciTech Connect

    Jung, C.; Bergles, A.E.

    1989-03-01

    In support of a study of shellside boiling with enhanced tubes, a pool boiling apparatus was developed and used to test single tubes with various structured boiling surfaces in R-113. The basic design of the tube-bundle test section was carried out and certain critical design features were tested experimentally. Copper tubes, 3/4 in. o.d. and 4 in. long, were selected with 1/4 in. diameter cartridge heaters. Four thermocouples were inserted in 3/32 in. diameter, 2 in. long holes. The pool boiling characteristics of a plain tube agree well with previous tests. Wolverine Turbo-B tubes with small, medium, and large features performed identically for a heat flux greater than 20 kW/m/sup 2/. For lower heat flux, however, the Turbo-B S was slightly superior. In general, the Wolverine Turbo-B tubes had more favorable boiling characteristics than the single Wieland Gewa-T tube that was tested. The test procedure is deemed entirely adequate for screening enhanced tubes to see which ones should be used in the tube-bundle test section. Three different ways of mounting the tubes were tested in R-113 at 65/degree/C and 5 bar gage pressure. As all three constructions sealed well, the simplest design is recommended in which a snap ring fixes the tube to the wall and an O-ring seals against the pressure. The general design features of the tube bundle test chamber are also presented. 14 refs.

  6. Nucleate pool boiling in the long duration low gravity environment of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.; Meserole, J. S.

    1993-01-01

    The results are presented of an experimental study of nucleate pool boiling performed in the low gravity environment of the space shuttle. Photographic observations of pool boiling in Freon 113 were obtained during the 'Tank Pressure Control Experiment,' flown on the Space Transportation System, STS-43 in August 1991. Nucleate boiling data from large (relative to bubble size) flat heating surfaces (0.1046 by 0.0742 m) was obtained at very low heat fluxes (0.22 to 1.19 kW/sq m). The system pressure and the bulk liquid subcooling varied in the range of 40 to 60 kPa and 3 to 5 C respectively. Thirty-eight boiling tests, each of 10-min duration for a given heat flux, were conducted. Measurements included the heater power, heater surface temperature, the liquid temperature and the system pressure as functions of heating time. Video data of the first 2 min of heating was recorded for each test. In some tests the video clearly shows the inception of boiling and the growth and departure of bubbles from the surface during the first 2 min of heating. In the absence of video data, the heater temperature variation during heating shows the inception of boiling and stable nucleate boiling. During the stable nucleate boiling, the wall superheat varied between 2.8 to 3.8 C for heat fluxes in the range of 0.95 to 1.19 kW/sq m. The wall superheat at the inception of boiling varied between 2 to 13 C.

  7. Microlayer formation characteristics in pool isolated bubble boiling of water

    NASA Astrophysics Data System (ADS)

    Yabuki, Tomohide; Nakabeppu, Osamu

    2016-10-01

    Investigation of microlayer formation characteristics is important for developing a reliable nucleate boiling heat transfer model based on accurate physical mechanisms. Although formation mechanisms of the thin liquid film in two-phase flow of confined spaces, such as micro-tubes and closely positioned parallel plates, have been thoroughly studied, microlayer formation mechanisms of pool boiling have been sparsely studied. In a previous study (Yabuki and Nakabeppu in Int J Heat Mass Transf 76:286-297, 2014; Int J Heat Mass Transf 100:851-860, 2016), the spatial distribution of initial microlayer thickness under pool boiling bubbles was calculated by transient heat conduction analysis using the local wall temperature measured with a MEMS sensor. In this study, the hydrodynamic characteristics of microlayer formation in pool boiling were investigated using the relationship between derived initial microlayer thickness and microlayer formation velocity determined by transient local heat flux data. The trend of microlayer thickness was found to change depending on the thickness of the velocity boundary layer outside the bubble foot. When the boundary layer thickness was thin, the initial microlayer thickness was determined by the boundary layer thickness, and the initial microlayer thickness proportionally increased with increasing boundary layer thickness. On the other hand, when the boundary layer was thick, the initial microlayer thickness decreased with increasing boundary layer thickness. In this thick boundary layer region, the momentum balance in the dynamic meniscus region became important, in addition to the boundary layer thickness, and the microlayer thickness, made dimensionless using boundary layer thickness, correlated with the Bond number.

  8. Effect of surface properties on nucleate pool boiling

    SciTech Connect

    Haze, Ikuya; Tomemori, Hideki; Motoya, Daiju; Osakabe, Masahiro

    1999-07-01

    A series of experiments on nucleate pool boiling was performed by use of an oxygen-free copper rod and platinum wires of different surface properties under both normal gravity condition and microgravity condition. As a result of the experiments, under normal gravity condition, the bubbling on thick cracked silicone-coated surfaces and that on scale surfaces were more vigorous than that on mirror-finished (copper) surfaces, that on bare (Pt) surfaces, that on thin silicone-coated surfaces and that on thick silicone-coated surfaces. The boiling curves on the mirror-finished surface, the bare surface, the thin silicone-coated surface and the thick cracked silicone-coated surface were equal to those predicted by the Rohsenow's correlation. The superheats on the thick silicone-coated surface and the scale surface were larger than those predicted by the Rohsenow's correlation. The boiling curves on the non-cracked silicone-coated surface and the scale surface corrected by those heat resistance were equal to those predicted by the Rohsenow's correlation. The superheat on the thick silicone-coated surface corrected by its heat resistance was smaller than that predicted by the Rohsenow's correlation. The thick cracked silicone-coated surface enhanced the nucleate boiling heat transfer. On the other hand, under microgravity condition, the bubbles stayed around heated surfaces except scale surfaces. The boiling curve on the bare surface under microgravity condition was equal to that under normal gravity condition. The effect of surface properties on the nucleate boiling heat transfer under microgravity condition was equal to that under normal gravity condition.

  9. A New Theory of Nucleate Pool Boiling in Arbitrary Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Y. A.; Webbon, Bruce W.

    1995-01-01

    Heat transfer rates specific to nucleate pool boiling under various conditions are determined by the dynamics of vapour bubbles that are originated and grow at nucleation sites of a superheated surface. A new dynamic theory of these bubbles has been recently developed on the basis of the thermodynamics of irreversible processes. In contrast to other existing models based on empirically postulated equations for bubble growth and motion, this theory does not contain unwarrantable assumptions, and both the equations are rigorously derived within the framework of a unified approach. The conclusions of the theory are drastically different from those of the conventional models. The bubbles are shown to detach themselves under combined action of buoyancy and a surface tension force that is proven to add to buoyancy in bubble detachment, but not the other way round as is commonly presumed. The theory ensures a sound understanding of a number of so far unexplained phenomena, such as effect caused by gravity level and surface tension on the bubble growth rate and dependence of the bubble characteristics at detachment on the liquid thermophysical parameters and relevant temperature differences. The theoretical predictions are shown to be in a satisfactory qualitative and quantitative agreement with observations. When being applied to heat transfer at nucleate pool boiling, this bubble dynamic theory offers an opportunity to considerably improve the main formulae that are generally used to correlate experimental findings and to design boiling heat removal in various industrial applications. Moreover, the theory makes possible to pose and study a great deal of new problems of essential impact in practice. Two such problems are considered in detail. One problem concerns the development of a principally novel physical model for the first crisis of boiling. This model allows for evaluating critical boiling heat fluxes under various conditions, and in particular at different

  10. HORIZONTAL BOILING REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  11. Pool boiling from rotating and stationary spheres in liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Cuan, Winston M.; Schwartz, Sidney H.

    1988-01-01

    Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.

  12. Characteristics of Pool Boiling on Graphite-Copper Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2002-01-01

    Nucleate pool boiling performance of different liquids on graphite-copper composite (Gr-Cu) surfaces has been experimentally studied and modeled. Both highly wetting fluids, such as freon-113 and pentane, and a moderately wetting fluid (water) were tested on the Gr-Cu surfaces with different graphite-fiber volume fractions to reveal the enhancement effects of the composite surfaces on the nucleate pool boiling. Results of the experiments show that the graphite-fiber volume fraction has an optimum value. The Gr-Cu composite surface with 25 percent graphite-fiber volume (f=0.25) has a maximum enhancement effect on the nucleate boiling heat transfer comparing to the pure copper surface. For the highly wetting fluid, the nucleate boiling heat transfer is generally enhanced on the Gr- Cu composite surfaces by 3 to 6 times shown. In the low heat flux region, the enhancement is over 6 times, but in the high heat flux region, the enhancement is reduced to about 40%. For the moderately wetting fluid (water), stronger enhancement of nucleate boiling heat transfer is achieved on the composite surface. It shown the experimental results in which one observes the nucleate boiling heat transfer enhancement of 5 to 10 times in the low heat flux region and an enhancement of 3 to 5 times in the high heat flux region. Photographs of bubble departure during the initial stage of nucleate boiling indicate that the bubbles detached from the composite surface are much smaller in diameter than those detached from the pure copper surface. Typical photographs are presented.It shows that the bubbles departed from the composite surface have diameters of only O(0.1) mm, while those departed from the pure copper surface have diameters of O(1) mm. It is also found that the bubbles depart from the composite surface at a much higher frequency, thus forming vapor columns. These two phenomena combined with high thermal conductivity of the graphite fiber are considered the mechanisms for such a

  13. Momentum effects in steady nucleate pool boiling during microgravity.

    PubMed

    Merte, Herman

    2004-11-01

    Pool boiling experiments were conducted in microgravity on five space shuttle flights, using a flat plate heater consisting of a semitransparent thin gold film deposited on a quartz substrate that also acted as a resistance thermometer. The test fluid was R-113, and the vapor bubble behavior at the heater surface was photographed from beneath as well as from the side. Each flight consisted of a matrix of three levels of heat flux and three levels of subcooling. In 26 of the total of 45 experiments conditions of steady-state pool boiling were achieved under certain combinations of heat flux and liquid subcooling. In many of the 26 cases, it was observed from the 16-mm movie films that a large vapor bubble formed, remaining slightly removed from the heater surface, and that subsequent vapor bubbles nucleate and grow on the heater surface. Coalescence occurs upon making contact with the large bubble, which thus acts as a vapor reservoir. Recently, measurements of the frequencies and sizes of the small vapor bubbles as they coalesced with the large bubble permitted computation of the associated momentum transfer. The transient forces obtained are presented here. Where these arise from the conversion of the surface energy in the small vapor bubble to kinetic energy acting away from the solid heater surface, they counter the Marangoni convection due to the temperature gradients normal to the heater surface. This Marangoni convection would otherwise impel the large vapor bubble toward the heater surface and result in dryout and unsteady heat transfer.

  14. A depletable micro-layer model for nucleate pool boiling

    NASA Astrophysics Data System (ADS)

    Sato, Yohei; Niceno, Bojan

    2015-11-01

    A depletable micro-layer model has been developed for the simulation of nucleate pool boiling within the framework of Computational Fluid Dynamics (CFD) modeling using an interface-tracking method. A micro-layer model is required for the CFD simulation to take into account vaporization from the thin liquid film - called the micro-layer - existing beneath a growing vapor bubble on a hot surface. In our model, the thickness of the micro-layer is a variable defined at each discretized fluid cell adjacent to the heat-transfer surface; the layer decreases due to vaporization, and can finally disappear. Compared to existing micro-region models, most of them based on the concept of contact-line evaporation, as originally proposed by Stephan and Busse, and by Lay and Dhir, our model incorporates simplified modeling ideas, but can nonetheless predict the temperature field beneath the growing bubble accurately. The model proposed in this paper has been validated against measurements of pool boiling in water at atmospheric pressure. Specifically, the bubble principal dimensions and the temperature distribution over the heat-transfer surface are in good agreement with experimental data.

  15. The Isolated Bubble Regime in Pool Nucleate Boiling

    NASA Technical Reports Server (NTRS)

    Buyevich, Y. A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)

    1995-01-01

    We consider an isolated bubble boiling regime in which vapour bubbles are intermittently produced at a prearranged set of nucleation site on an upward facing overheated wall plane. In this boiling regime, the bubbles depart from the wall and move as separate entities. Except in the matter of rise velocity, the bubbles do not interfere and are independent of one another. However, the rise velocity is dependent on bubble volume concentration in the bulk. Heat transfer properties specific to this regime cannot be described without bubble detachment size, and we apply our previously developed dynamic theory of vapour bubble growth and detachment to determine this size. Bubble growth is presumed to be thermally controlled. Two limiting cases of bubble evolution are considered: the one in which buoyancy prevails in promoting bubble detachment and the one in which surface tension prevails. We prove termination of the isolated regime of pool nucleate boiling to result from one of the four possible causes, depending on relevant parameters values. The first cause consists in the fact that the upward flow of rising bubbles hampers the downward liquid flow, and under certain conditions, prevents the liquid from coming to the wall in an amount that would be sufficient to compensate for vapour removal from the wall. The second cause is due to the lateral coalescence of growing bubbles that are attached to their corresponding nucleation sites, with ensuing generation of larger bubbles and extended vapour patches near the wall. The other two causes involve longitudinal coalescence either 1) immediately in the wall vicinity, accompanied by the establishment of the multiple bubble boiling regime, or 2) in the bulk, with the formation of vapour columns. The longitudinal coalescence in the bulk is shown to be the most important cause. The critical wall temperature and the heat flux density associated with isolated bubble regime termination are found to be functions of the physical and

  16. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, C.

    2000-01-01

    The research carried out in the Heat Transfer Laboratory of the Johns Hopkins University was motivated by previous studies indicating that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50 when compared to values obtained for the same system without electric fields. Imposing an external electric field holds the promise to improve pool boiling heat transfer in low gravity, since a phase separation force other than gravity is introduced. The influence of electric fields on bubble formation has been investigated both experimentally and theoretically.

  17. Enhanced pool boiling heat transfer on mini- and micro- structured surfaces

    NASA Astrophysics Data System (ADS)

    Pastuszko, Robert

    2016-03-01

    The surfaces used for investigating nucleate pool boiling for four working fluids had mini- and micro-fins of variable configurations, cross-sections and pitches, restrained by perforated foil or mesh cloth with various pore/opening diameters. Unique enhanced structures on these surfaces formed a system of interconnected horizontal and vertical tunnels. Four structured surfaces were proposed, each being a system of subsurface tunnels connected to 10 and 5 mm fins or 1 and 0.5 mm mini-fins. Measurement results for boiling water, ethanol, Fluorinert FC-72 and R-123 from more than 60 samples constituted the database used to verify the proposed theoretical models. These models were based on the results from the visualization studies, including internal visualization allowing observation of bubble nucleation, growth and displacement inside the tunnels, and on the analysis of existing boiling models for mini- and micro-structures.

  18. Nucleate pool boiling in microgravity: Recent progress and future prospects

    NASA Astrophysics Data System (ADS)

    Colin, Catherine; Kannengieser, Olivier; Bergez, Wladimir; Lebon, Michel; Sebilleau, Julien; Sagan, Michaël; Tanguy, Sébastien

    2017-01-01

    Pool boiling on flat plates in microgravity has been studied for more than 50 years. The results of recent experiments performed in sounding rocket are presented and compared to previous results. At low heat flux, the vertical oscillatory motion of the primary bubble is responsible for the increase in the heat transfer coefficient in microgravity compared to ground experiments. The effect of a non-condensable gas on the stabilisation of the large primary bubble on the heater is pointed out. Experiments on isolated bubbles are also performed on ground and in parabolic flight. The effect of a shear flow on the bubble detachment is highlighted. A force balance model allows determining an expression of the capillary force and of the drag force acting on the bubble.

  19. Experimental analysis of nanofluid pool boiling heat transfer in copper bead packed porous layers

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Ji

    2017-03-01

    Coupling the nanofluid as working fluid and the copper beads packed porous structure on heating surface were employed to enhance the pool boiling heat transfer by changing the fluid properties with the adjunction of nanoparticles in liquid and altering the heating surface with a bead porous layer. Due to the higher thermal conductivity, the copper beads served as an extended heating surface and the boiling nucleation sites rose, but the flow resistance increased. The CuO-water and SiO2-water nanofluids as well as the pure water were respectively employed as working fluids in the pool boiling experiments. Comparing with the base fluid of water, the higher thermal conductivity and lower surface tension occur in the nanofluids and those favor the boiling heat transfer, but the higher viscosity and density of nanofluids serve as deteriorative factors. So, the concentration region of the nanofluids should be chosen properly. The maximum relative error between the collected experimental data of the pure water on a flat surface and the theoretical prediction of pool boiling using the Rohsenow correlation was less than 12 %. The comparisons of the pool boiling heat transfer characteristics were also conducted between the pure water and the nanofluids respectively on the horizontal flat surface and on the heating surface packed with a copper bead porous layer. Besides, the boiling bubble generation, integration and departure have a great affect on the pool boiling and were recorded with a camera in the bead stacked porous structures at different heat flux.

  20. Numerical simulation of bubble departure in subcooled pool boiling based on non-empirical boiling and condensation model

    NASA Astrophysics Data System (ADS)

    Ose, Y.; Kunugi, T.

    2013-07-01

    In this study, in order to clarify the heat transfer characteristics of the subcooled boiling phenomena and to discuss on their mechanism, a non-empirical boiling and condensation model for numerical simulation has been adopted. This model consists of an improved phase-change model and a consideration of a relaxation time based on the quasithermal equilibrium hypothesis. The transient three-dimensional numerical simulations based on the MARS (Multiinterface Advection and Reconstruction Solver) with the non-empirical boiling and condensation model have been conducted for an isolated boiling bubble behavior in a subcooled pool. The subcooled bubble behaviors, such as the growth process of the nucleate bubble on the heating surface, the condensation process and the extinction behaviors after departing from the heating surface were investigated, respectively. In this paper, the bubble departing behavior from the heating surface was discussed in detail. The overall numerical results showed in very good agreement with the experimental results.

  1. Transition from Pool to Flow Boiling: The Effect of Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Dhir, Vijay K.

    2004-01-01

    Applications of boiling heat transfer in space can be found in the areas of thermal management, fluid handling and control, power systems, on-orbit storage and supply systems for cryogenic propellants and life support fluids, and for cooling of electronic packages for power systems associated with various instrumentation and control systems. Recent interest in exploration of Mars and other planets, and the concepts of in-situ resource utiliLation on Mars highlights the need to understand the effect of gravity on boiling heat transfer at gravity levels varying from 1>= g/g(sub e) >=10(exp -6). The objective of the proposed work was to develop a mechanistic understanding of nucleate boiling and critical heat flux under low and micro-gravity conditions when the velocity of the imposed flow is small. For pool boiling, the effect of reduced gravity is to stretch both the length scale as well as the time scale for the boiling process. At high flow velocities, the inertia of the liquid determines the time and the length scales and as such the gravitational acceleration plays little role. However, at low velocities and at low gravity levels both liquid inertia and buoyancy are of equal importance. At present, we have little understanding of the interacting roles of gravity and liquid inertia on the nucleate boiling process. Little data that has been reported in the literature does not have much practical value in that it can not serve as a basis for design of heat exchange components to be used in space. Both experimental and complete numerical simulations of the low velocity, low-gravity nucleate boiling process were carried out. A building block type of approach was used in that first the growth and detachment process of a single bubble and flow and heat transfer associated with the sliding motion of the bubble over the heater surface after detachment was studied. Liquid subcooling and flow velocity were varied parametrically. The experiments were conducted at 1 g(sub e

  2. Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes

    NASA Technical Reports Server (NTRS)

    Linehard, J. H.; Dhir, V. K.

    1973-01-01

    The hydrodynamic theory of the extreme pool boiling heat fluxes is expanded to embrace a variety of problems that have not previously been analyzed. These problems include the prediction of the peak heat flux on a variety of finite heaters, the influence of viscosity on the Taylor and Helmoltz instability mechanisms with application to film boiling and to the peak heat flux in viscous liquids, the formalization of the analogy between high-current-density electrolysis and boiling, and the description of boiling in the low-gravity limit. The predictions are verified with a large number of new data.

  3. Pool Boiling of Ethanol-Water mixture on Nano-Textured Surfaces

    NASA Astrophysics Data System (ADS)

    Yarin, Alexander; Sahu, Rakesh; Sinha-Ray, Sumit; Sinha-Ray, Suman

    2015-03-01

    An experimental and theoretical study of pool boiling of ethanol-water mixtures on nano-textured surfaces was studied. A comparison of pool boiling on bare copper surface with pool boiling on surfaces covered by copper-plated supersonically-blown nanofibers revealed a significant increase in the heat flux in the latter case. Namely, the heat flux on the nano-textured surfaces was about 3-8 times higher than that on the bare copper surfaces, while the surface temperature due to the nano-texture would be lower by about 10 °C at the same heat flux. The significant positive effect of the nano-texture is due to the fact that it facilitates bubble nucleation. Some preliminary results of numerical modeling of boiling process in the framework of the Cahn-Hilliard approach are discussed and several examples of the predictions are given. Supported by NASA, Grant No. NNX13AQ77G.

  4. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila

    1996-01-01

    compared to values obtained for the same system without electric fields. Imposing an external electric field holds the promise to improve pool boiling heat transfer in low gravity, since a phase separation force other than gravity is introduced. The goal of our research is to experimentally investigate the potential of EHD and the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions.

  5. Partial Nucleate Pool Boiling at Low Heat Flux: Preliminary Ground Test for SOBER-SJ10

    NASA Astrophysics Data System (ADS)

    Wu, Ke; Li, Zhen-Dong; Zhao, Jian-Fu; Li, Hui-Xiong; Li, Kai

    2016-05-01

    Focusing on partial nucleate pool boiling at low heat flux, SOBER-SJ10, one of 27 experiments of the program SJ-10, has been proposed to study local convection and heat transfer around an isolated growing vapor bubble during nucleate pool boiling on a well characterized flat surface in microgravity. An integrated micro heater has been developed. By using a local pulse overheating method in the experimental mode of single bubble boiling, a bubble nucleus can be excited with accurate spatial and temporal positioning on the top-side of a quartz glass substrate with a thickness of 2 mm and an effective heating area of 4.5 mm in diameter, and then grows under an approximate constant heat input provided by the main heater on the back-side of the substrate. Ten thin film micro-RTDs are used for local temperature measurements on the heating surface underneath the growing bubble. Normal pool boiling experiments can also be carried out with step-by-step increase of heating voltage. A series of ground test of the flight module of SOBER-SJ10 have been conducted. Good agreement of the measured data of single phase natural convection with the common-used empirical correlation warrants reasonable confidence in the data. It is found that the values of the incipience superheat of pool boiling at different subcooling are consistent with each others, verifying that the influence of subcooling on boiling incipience can be neglected. Pool boiling curves are also obtained, which shows great influence of subcooling on heat transfer of partial nucleate pool boiling, particularly in lower heat flux.

  6. An experimental apparatus to study nucleate pool boiling of R-114 and oil mixtures

    NASA Astrophysics Data System (ADS)

    Karasabun, M.

    1984-12-01

    In order to study the nucleate pool-boiling performance of R-114pen1 refrigerant and R-114-oil mixtures from enhanced evaporator tube surfaces, an experimental apparatus was designed, constructed and instrumented. The evaporator was made of a T-shaped Pyrex glass container. Boiling occurred from a smooth, hard-copper tube, 15.9 mm in outer diameter, 12.7 mm in inside diameter and 431.8 mm in length. The tube was heated using a cartridge heater, and was instrumented with 8 thermocouples to measure the wall temperature. A Hewlett-Packard 3497A data acquisition/control unit and a 9826A computer were used to collect and process data. The condenser was cooled by an ethylene glycol-water mixture, which was maintained at about -17 C by means of an R-12 refrigeration system. Nine data runs were completed to de-bug the experimental apparatus and to check for reproducibility. During all data runs, especially at higher heat fluxes (greater than 10 kW/sqm), large temperature variations were observed along and around the active boiling length of the test tube. The data were compared with data found in the literature and reasonable agreement was obtained.

  7. Critical heat flux in pool boiling on a vertical heater

    NASA Astrophysics Data System (ADS)

    Monde, M.; Inoue, T.; Mitsutake, Y.

    Critical heat flux during pool boiling on a vertical heater of wire or plate has been measured employing water and R113. The experiment was made for a wire of 0.5 to 2 mm in diameter and for a plate of 5, 7 and 30 mm in width and from 20 to 300 mm in height. The pressure was 1 and 2 bar for water and 1, 2, 3 and 4 bar for R113. The experiment shows that for the case of both wire and plate of 5, 7 mm, a large coalesced bubble entirely surrounds the vertical heater and rises surrounding it, while for the case of w = 30 mm, a large bubble cannot surround and rises along its surface. The characteristic of CHF can be divided into two regimes depending on the flow condition when CHF takes place. Correlations are proposed for the CHF of the wire and the plate of w = 5, and 7 mm, yielding good accuracy. The CHF for the plate of w = 30 mm has a similar tendency to that in one side headed surface and can be predicted reasonably by existing correlation for one side heated surface. Zusammenfassung Der kritische Wärmefluß beim Behältersieden an einem vertikalen Heizkörper (Draht oder Platte) wurde mit den Versuchsmedien Wasser und R113 gemessen. Die Experimente bezogen sich auf Drähte von 0,5 bis 2 mm Durchmesser und Platten von 5, 7 und 30 mm Breite und 20 bis 300 mm Höhe. Die Drücke betrugen 1 und 2 bar bei Wasser und 1, 2, 3 und 4 bar bei R113. In den Experimenten zeigte sich bei Drähten und Platten mit 5 und 7 mm Breite eine große zusammengewachsene Blase, die, den Heizkörper vollständig umschließend, an diesem aufstieg. Bei der 30 mm breiten Platte vermochte die große Blase den Heizkörper nicht mehr zu umschließen sie stieg an dessen Oberfläche auf. Die Charakteristik des kritischen Wärmeflusses läßt sich in zwei Bereiche unterteilen, und zwar in Abhängigkeit von den Strömungsbedingungen, unter welchen er auftrat. Vorgeschlagene Berechnungsgleichungen für den kritischen Wärmefluß liefern bezüglich der Drähte und der Platten mit 5 und 7 mm Breite

  8. A high-fidelity approach towards heat transfer prediction of pool boiling

    NASA Astrophysics Data System (ADS)

    Yazdani, Miad; Alahyari, Abbas; Radcliff, Thomas

    2014-11-01

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change with an unprecedented fidelity and cost. The particular focus is to predict the heat transfer coefficient of pool-boiling regime and its transition to critical heat flux on surfaces of arbitrary shape and roughness distribution. The large-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf methods for interface tracking and interphase mass and energy transfer. The small-scale of the microlayer which forms at early stage of bubble nucleation is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the surface roughness and its role in bubble nucleation and growth is represented based on thermodynamics of nucleation process which allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the model's prediction of pool-boiling heat transfer coefficient is verified against reputable correlations for various roughness distributions and different surface alignment. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement features on thermal and hydrodynamic characteristics of these surfaces.

  9. Pool boiling of distilled water over tube bundle with variable heat flux

    NASA Astrophysics Data System (ADS)

    Swain, Abhilas; Mohanty, Rajiva Lochan; Das, Mihir Kumar

    2017-02-01

    The experimental investigation of saturated pool boiling heat transfer of distilled water over plain tube bundle, under uniform and varying heat flux condition along the height are presented in this article. Experiments are carried out under various heat flux configurations applied to rows of tube bundles and pitch distance to diameter ratios of 1.25, 1.6 and 1.95. The wall superheats and pool boiling heat transfer coefficients over individual rows are determined. The pool boiling heat transfer coefficients for variable heat flux and uniform heat flux conditions are compared. The results indicate that the bundle effect is found to exist for uniform as well as variable heat flux under all operating conditions in the present investigation. The variable heat flux resulted in range of wall superheat being highest for decreasing heat flux from bottom to top and lowest for increasing heat flux from bottom to top.

  10. Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1988-01-01

    Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.

  11. Electrical design of Space Shuttle payload G-534: The pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Francisco, David R.

    1993-01-01

    Payload G-534, the Pool Boiling Experiment (PBE), is a Get Away Special (GAS) payload that flew on the Space Shuttle Spacelab Mission J (STS 47) on September 19-21, 1992. This paper will give a brief overall description of the experiment with the main discussion being the electrical design with a detailed description of the power system and interface to the GAS electronics. The batteries used and their interface to the experiment Power Control Unit (PCU) and GAS electronics will be examined. The design philosophy for the PCU will be discussed in detail. The criteria for selection of fuses, relays, power semiconductors, and other electrical components along with grounding and shielding policy for the entire experiment are presented. The intent of this paper is to discuss the use of military tested parts and basic design guidelines to build a quality experiment for minimal additional cost.

  12. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  13. A molecular dynamics study of phobic/philic nano-patterning on pool boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Diaz, Ricardo; Guo, Zhixiong

    2017-03-01

    Molecular dynamics (MD) simulations were employed to investigate the pool boiling heat transfer of a liquid argon thin film on a flat, horizontal copper wall structured with vertical nanoscale pillars. The efficacy of phobic/philic nano-patterning for enhancing boiling heat transfer was scrutinized. Both nucleate and explosive boiling modes were considered. An error analysis demonstrated that the typical 2.5σ cutoff in MD simulations could under-predict heat flux by about 8.7 %, and 6σ cutoff was chosen here in order to maintain high accuracy. A new coordination number criterion was also introduced to better quantify evaporation characteristics. Results indicate that the argon-phobic/philic patterning tends to either have no effect, or decrease overall boiling heat flux, while the argon-philic nano-pillar/argon-philic wall shows the best heat transfer performance.

  14. Visualization of pool boiling on plain micro-fins and micro- fins with sintered perforated foil

    NASA Astrophysics Data System (ADS)

    Pastuszko, R.; Kaniowski, R.

    2016-09-01

    The paper presents visualization investigations of boiling heat transfer over enhanced structures. The experiments were carried out for two kinds of enhanced surfaces: an array of 0.5 mm high micro-fins without covering (plain micro-fins designated as MF) and the surfaces made by sintering micro-fin tops with the copper perforated foil (MF+F). Pool boiling data at atmospheric pressure were obtained for saturated water, ethanol, FC-72 and Novec-649. Visualization studies aimed at identifying nucleation sites and determining the diameter and frequency of departing bubbles. Different pool boiling mechanisms were observed for the plain micro-fins and micro-fins covered with the porous structure.

  15. Heat Transfer Performances of Pool Boiling on Metal-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2000-01-01

    Nucleate boiling, especially near the critical heat flux (CHF), can provide excellent economy along with high efficiency of heat transfer. However, the performance of nucleate boiling may deteriorate in a reduced gravity environment and the nucleate boiling usually has a potentially dangerous characteristic in CHF regime. That is, any slight overload can result in burnout of the boiling surface because the heat transfer will suddenly move into the film-boiling regime. Therefore, enhancement of nucleate boiling heat transfer becomes more important in reduced gravity environments. Enhancing nucleate boiling and critical heat flux can be reached using micro-configured metal-graphite composites as the boiling surface. Thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix, which is independent of gravity, will play an important role in bubble detachment. Thus boiling heat transfer performance does not deteriorate in a reduced-gravity environment. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. Experimental studies were performed on nucleate pool boiling of pentane on cooper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composite surfaces with various fiber volume concentrations for heat fluxes up to 35 W per square centimeter. It is revealed that a significant enhancement in boiling heat transfer performance on the composite surfaces is achieved, due to the presence of micro-graphite fibers embedded in the matrix. The onset of nucleate boiling (the isolated bubble regime) occurs at wall superheat of about 10 C for the Cu-Gr surface and 15 C for the Al-Gr surface, much lower than their respective pure metal surfaces. Transition from an isolated bubble regime to a coalesced bubble regime in boiling occurs at a superheat of

  16. Pool boiling on surfaces with mini-fins and micro-cavities

    NASA Astrophysics Data System (ADS)

    Pastuszko, Robert; Piasecka, Magdalena

    2012-11-01

    The experimental studies presented here focused on pool boiling heat transfer on mini-fin arrays, mini-fins with perforated covering and surfaces with micro-cavities. The experiments were carried out for water and fluorinert FC-72 at atmospheric pressure. Mini-fins of 0.5 and 1 mm in height were uniformly spaced on the base surface. The copper foil with holes of 0.1 mm in diameter (pitch 0.2/0.4 mm), sintered with the fin tips, formed a system of connected perpendicular and horizontal tunnels. The micro-cavities were obtained through spark erosion. The maximal depth of the craters of these cavities was 15 - 30 μm and depended on the parameters of the branding-pen settings. At medium and small heat fluxes, structures with mini-fins showed the best boiling heat transfer performance both for water and FC-72. At medium and high heat fluxes (above 70 kW/m2 for water and 25 kW/m2 for FC-72), surfaces with mini-fins without porous covering and micro-cavities produced the highest heat transfer coefficients. The surfaces obtained with spark erosion require a proper selection of geometrical parameters for particular liquids - smaller diameters of cavities are suitable for liquids with lower surface tension (FC-72).

  17. Comparison of pool boiling heat transfer for different tunnel-pore surfaces

    NASA Astrophysics Data System (ADS)

    Pastuszko, Robert

    2014-03-01

    Complex experimental investigations of boiling heat transfer on structured surfaces covered with perforated foil were performed. Experimental data were discussed for three kinds of enhanced surfaces: tunnel structures (TS), narrow tunnel structures (NTS) and mini-fins with the copper wire net (NTS-L). The experiments were carried out with water, ethanol, R-123 and FC-72 at atmospheric pressure. The TS and NTS surfaces were manufactured out of perforated copper foil (hole diameters: 0.3, 0.4, 0.5 mm) sintered with the mini-fins, formed on the vertical side of the 5 and 10 mm high rectangular main fins and horizontal inter-fin surface. The NTS-L surfaces were formed by mini-fins of 0.5 and 1 mm height uniformly spaced on the base surface. The wire mesh with an aperture of 0.32, 0.4 and 0.5 mm sintered with the fin tips formed a system of connected perpendicular horizontal tunnels. The tunnel width was 0.6 - 1.0 - 1.5 mm and the depth was 0.5 or 1.0 mm. The effects of the Bond number and dimensionless parameters for three kinds of enhanced structures on heat transfer ratio at nucleate pool boiling were examined.

  18. Boils

    MedlinePlus

    A boil may begin as tender, pinkish-red, and swollen, on a firm area of the skin. Over time, it will feel like a water-filled balloon or cyst . Pain gets worse as it fills with pus and dead tissue. Pain lessens when the boil drains. A boil ...

  19. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila

    1999-01-01

    In boiling high heat fluxes are possible driven by relatively small temperature differences, which make its use increasingly attractive in aerospace applications. The objective of the research is to develop ways to overcome specific problems associated with boiling in the low gravity environment by substituting the buoyancy force with the electric force to enhance bubble removal from the heated surface. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50, as compared to values obtained for the same system without electric fields. The goal of our research is to experimentally explore the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions, by visualizing the temperature distributions in the vicinity of the heated surface and around the bubble during boiling using real-time holographic interferometry (HI) combined with high-speed cinematography. In the first phase of the project the influence of the electric field on a single bubble is investigated. Pool boiling is simulated by injecting a single bubble through a nozzle into the subcooled liquid or into the thermal boundary layer developed along the flat heater surface. Since the exact location of bubble formation is known, the optical equipment can be aligned and focused accurately, which is an essential requirement for precision measurements of bubble shape, size and deformation, as well as the visualization of temperature fields by HI. The size of the bubble and the frequency of bubble departure can be controlled by suitable selection of nozzle diameter and mass flow rate of vapor. In this approach effects due to the presence of the electric field can be separated from effects caused by the temperature gradients in the thermal boundary layer. The influence of the thermal boundary layer can be investigated after activating the heater at a later stage of the research. For the visualization experiments a

  20. Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor

    DOEpatents

    Gluntz, Douglas M.

    1996-01-01

    An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.

  1. Bubble Departure from Metal-Graphite Composite Surfaces and Its Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli

    2010-01-01

    The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.

  2. Transient Pool Boiling Critical Heat Flux of FC-72 Under Saturated Conditions

    SciTech Connect

    Fitri, Sutopo P.; Katsuya Fukuda; Qiusheng Liu; Jongdoc Park

    2006-07-01

    In this study, the steady-state and transient critical heat fluxes (CHFs) in pool boiling were measured on 1.0 mm diameter horizontal cylinders of gold and platinum heaters under saturated conditions due to transient heat inputs, Q{sub 0}exp(t/t), in a pool of Fluorinert FC-72. Heaters were heated by electric current with the periods, t, ranged from 10 ms to 20 s, and the pressures ranged from atmospheric up to around 1.2 MPa. The steady-state CHFs measured are dependent on pressure and almost agree with the values obtained by Kutateladze's correlation based on hydrodynamic instability (HI) model. It was considered that the boiling inception and the direct transition during the steady-state period occur by the pre-pressure of {approx}1.2 MPa. The trend of typical transient CHFs were clearly divided into the first, second, and third groups for long, short, and intermediate periods, respectively. The direct transition processes to film boiling without nucleate boiling for the short periods obtained from both heaters were confirmed due to the heterogeneous spontaneous nucleation (HSN) in flooded cavities on the cylinder surface. The empirical correlations to express each of corresponding CHFs measured on both heaters for the short periods are presented in this paper. (authors)

  3. Preliminary results of the US pool-boiling coils from the IFSMTF full-array tests

    SciTech Connect

    Lue, J.W.; Dresner, L.; Lubell, M.S.; Luton, J.N.; McManamy, T.J.; Shen, S.S.

    1986-01-01

    The Large Coil Task to develop superconducting magnets for fusion reactors, is now in the midst of full-array tests in the International Fusion Superconducting Magnet Test Facility at Oak Ridge National Laboratory. Included in the test array are two pool-boiling coils designed and fabricated by US manufacturers, General Dynamics/Convair Division and General Electric/Union Carbide Corporation. So far, both coils have been energized to full design currents in the single-coil tests, and the General Dynamics coil has reached the design point in the first Standard-I full-array test. Both coils performed well in the charging experiments. Extensive heating tests and the heavy instrumentation of these coils have, however, revealed some generic limitations of large pool-boiling superconducting coils. Details of these results and their analyses are reported.

  4. Effect of surfactant additive on pool boiling of concentrated lithium bromide solution

    SciTech Connect

    Wu, W.T.; Yang, Y.M.; Maa, J.R.

    1998-11-01

    The measurements of nucleate pool boiling heat transfer rate and surface tension were made for pure water and 50 wt.% lithium bromide solution with various amounts of n-octanol. Regardless of low concentration, n-octanol additive depresses considerably the surface tension of the liquids. The pool boiling data, however, reveal that the addition of surfactant results in insignificant enhancement of heat transfer for both pure water and the concentrated LiBr solution. With the results of this work, the performance improvement received from using n-octanol additive in working liquid of an absorption heat pump (AHP) is consequently due to the enhancement of heat and mass transfer in the absorber (but not generator) by the induced interfacial turbulence.

  5. Investigation of change in surface morphology of heated surfaces upon pool boiling of magnetic fluids under magnetic actuation

    NASA Astrophysics Data System (ADS)

    Shojaeian, Mostafa; Yildizhan, Melike-Mercan; Coşkun, Ömer; Ozkalay, Ebrar; Tekşen, Yiğit; Gulgun, Mehmet Ali; Funda Yagci Acar, Havva; Koşar, Ali

    2016-09-01

    Nanofluids are becoming a significant candidate for new generation coolants to be used in industrial applications. In order to reduce clustering and sedimentation of nanoparticles and improve the heat transfer performance simultaneously, magnetic fluids prepared with magnetic Fe3O4 nanoparticles dispersed in water, which were placed in a pool and were exposed to varying magnetic fields to actuate nanoparticles in the system. The effect of magnetic actuation on boiling heat transfer characteristics and on the surface morphology of the pool was examined. An average enhancement of 29% in boiling heat transfer was achieved via magnetic actuation with rather low magnetic field (magnetic flux densities up to 11 mT) densities. Furthermore, it was observed that magnetic actuation significantly prevented the deposition and sedimentation of the nanoparticles in the pool. Otherwise, significant destabilization of nanoparticles causing aggregation and heavy sedimentation was present as a result of the performed surface analysis. Even though magnetic actuation reduced the sedimentation on the macroscale, the deposition of a thick and porous film occurred onto the pool floor, increasing the surface roughness.

  6. Pool boiling heat transfer of deionized and degassed water in packed-perforated copper beads

    NASA Astrophysics Data System (ADS)

    Wen, Mao-Yu; Jang, Kuang-Jang; Ho, Ching-Yen

    2016-11-01

    Nucleate pool boiling with porous media made of perforated copper beads as the enhanced structure is conducted in saturated, deionized and degassed water. Data are taken at an atmospheric pressure (saturation temperature of 100 °C) and at heat fluxes from 4500 to 72,300 W/m2 while increasing the heat flux. The bead-packed structure is heated on the bottom. The layer of loose particles on the heated surface is free to move under the action of bulk liquid convection and vapor nucleation. The effects of the weight (number), size and layers of the free particles are experimentally explored using copper particles for different copper bead diameters which were 2, 3, 4 and 5 mm. The boiling enhancement is closely related to the particle weight, size and layers, and the heat flux applied. The results show that free particles are presented to have a distinct advantage in boiling heat transfer, resulting in an average increase in the heat transfer coefficient of 126 % relative to the flat plate without particles. In order to obtain insight into the fluid boiling phenomena, flow visualization is also made to observe the detailed fluid boiling characteristics of the copper particles present. The visualizations show that bubble nucleation preferentially occurs at the narrow corner cavities formed between the free particles and the heated surface.

  7. Environmental qualification testing of payload G-534, the Pool Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Sexton, J. Andrew

    1992-01-01

    Payload G-534, the prototype Pool Boiling Experiment (PBE), is scheduled to fly on the STS-47 mission in September 1992. This paper describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave wider latitude in determining which shuttle thermal attitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the hardware build laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.

  8. Effect of Oil on the Onset of Nucleate Pool Boiling of R-124 from a Single Horizontal Tube

    DTIC Science & Technology

    1993-06-01

    relative uncertainty. The uncertainty analysis method suggested by Kline and McClintock [Ref. 47] was used. for example: R R(x 1 Ix 2,x1 ...... x...Surfaces, Proceedings of the Engineering Foundation Conference On Pool and External Flow Boiling, Santa Barbara , CA, pp. 63- 71, 1992. 9. Bar-Cohen... Barbara , CA, pp. 1-13, 1992. 10. Thome, J. R., Enhanced Boiling of Mixtures, Enhanced Boiling Heat Transfer, Hemisphere Publishing Corp, pp.4-13, 1990

  9. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    SciTech Connect

    Mudawar, I.; Galloway, J.E.; Gersey, C.O.

    1995-12-31

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling. Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.

  10. Cryogenic Boil-Off Reduction System

    NASA Astrophysics Data System (ADS)

    Plachta, David W.; Guzik, Monica C.

    2014-03-01

    A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.

  11. Transition process leading to microbubble emission boiling on horizontal circular heated surface in subcooled pool

    NASA Astrophysics Data System (ADS)

    Ueno, Ichiro; Ando, Jun; Horiuchi, Kazuna; Saiki, Takahito; Kaneko, Toshihiro

    2016-11-01

    Microbubble emission boiling (MEB) produces a higher heat flux than critical heat flux (CHF) and therefore has been investigated in terms of its heat transfer characteristics as well as the conditions under which MEB occurs. Its physical mechanism, however, is not yet clearly understood. We carried out a series of experiments to examine boiling on horizontal circular heated surfaces of 5 mm and of 10 mm in diameter, in a subcooled pool, paying close attention to the transition process to MEB. High-speed observation results show that, in the MEB regime, the growth, condensation, and collapse of the vapor bubbles occur within a very short time. In addition, a number of fine bubbles are emitted from the collapse of the vapor bubbles. By tracking these tiny bubbles, we clearly visualize that the collapse of the vapor bubbles drives the liquid near the bubbles towards the heated surface, such that the convection field around the vapor bubbles under MEB significantly differs from that under nucleate boiling. Moreover, the axial temperature gradient in a heated block (quasi-heat flux) indicates a clear difference between nucleate boiling and MEB. A combination of quasi-heat flux and the measurement of the behavior of the vapor bubbles allows us to discuss the transition to MEB. This work was financially supported by the 45th Research Grant in Natural Sciences from The Mitsubishi Foundation (2014 - 2015), and by Research Grant for Boiler and Pressurized Vessels from The Japan Boiler Association (2016).

  12. Critical Heat Flux in Pool Boiling on Metal-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Yang, Wen-Jei; Chao, David F.; Chao, David F. (Technical Monitor)

    2000-01-01

    A study is conducted on high heat-flux pool boiling of pentane on micro-configured composite surfaces. The boiling surfaces are copper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composites with a fiber volume concentration of 50%. The micro-graphite fibers embedded in the matrix contribute to a substantial enhancement in boiling heat-transfer performance. Correlation equations are obtained for both the isolated and coalesced bubble regimes, utilizing a mathematical model based on a metal-graphite, two-tier configuration with the aid of experimental data. A new model to predict the critical heat flux (CHF) on the composites is proposed to explain the fundamental aspects of the boiling phenomena. Three different factors affecting the CHF are considered in the model. Two of them are expected to become the main agents driving vapor volume detachment under microgravity conditions, using the metal-graphite composite surfaces as the heating surface and using liquids with an unusual Marangoni effect as the working fluid.

  13. Single-bubble dynamics in pool boiling of one-component fluids.

    PubMed

    Xu, Xinpeng; Qian, Tiezheng

    2014-06-01

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  14. Numerical Simulation on Single Bubble Pool Boiling with Influence of Heater Thermal Capacity

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Fu; Zhang, Liang; Li, Zhen-Dong

    The model of single bubble pool boiling is used to simulate nucleate pool boiling phenomenon in the present paper. Local convection and heat transfer around a single vapour bubble which is growing from a nucleus bubble planted artificially on the surface of heaters with different thicknesses, as well as transient heat conduction inside the heater’s wall, are simulated numerically with sharp interface representation. Multi-cycle simulation is adopted to eliminate the effect of un-physical initial conditions. It’s found that the thermal response of wall is found to affect the bubble growth and boiling heat transfer. During the process of bubble growth, a sharp temperature drop inside the solid wall is evident near the contact line underneath the growing bubble because of the strong evaporation in micro-region. The temperature and heat flux profiles change with the move of the contact line, and twice sharp temperature drops at a certain location are observed, which correspond to the expanding and recoiling processes, respectively. During the waiting period after the bubble detached from the wall, the temperature field is recovered by heat conduction inside the solid wall. As a part of preparation of the SOBER project onboard the Chinese recoverable satellite SJ-10, which will be launched in the end of 2015, the gravity influence is also studied.

  15. Experimental study of multi-scale heat transfer characteristics at pool boiling

    NASA Astrophysics Data System (ADS)

    Serdyukov, V.; Surtaev, A.

    2017-01-01

    This study presents the results of the experimental investigation of local and integral characteristics of heat transfer at liquid pool boiling. Saturated ethanol and water were used as the working fluids. Thin, resistively heated indium-tin oxide films deposited onto the sapphire substrates were used as the heaters. The synchronized measurements of the heater surface temperature field and dynamics of vapor bubbles were performed by high-speed infrared thermography with the frame rate of 1000 fps and resolution of up to 0.13 μm/px and high-speed video recording. In this paper new data on major local boiling characteristics, such as nucleation site density, dynamics of vapor bubbles, temporal characteristics and nucleation frequency at different heat fluxes and superheating and their comparison with correlations are presented.

  16. Bubble dynamics and heat transfer for pool boiling on hydrophilic, superhydrophobic and biphilic surfaces

    NASA Astrophysics Data System (ADS)

    Teodori, E.; Palma, T.; Valente, T.; Moita, A. S.; Moreira, A. L. N.

    2016-09-01

    This paper proposes a detailed analysis of bubble dynamics to describe pool boiling heat transfer in extreme wetting scenarios (superhydrophobic vs hydrophilic). A mechanistic approach, based on extensive post-processing allows quantifying the relative advantage of the superhydrophobic surfaces to endorse the onset of boiling at very low superheats (1-2K) vs their worse heat transfer performance associated to the swift formation of an insulating vapour film. Based on this analysis, a simple biphilic surface is created. The results suggest that for high heat fluxes, bubble dynamics is dominated by the emission of very small bubbles, which seems to affect the interaction mechanisms, precluding the emission of the large bubbles from the surface, thus compromising the good performance of the biphilic surfaces.

  17. Wettability influence on the onset temperature of pool boiling: Experimental evidence onto ultra-smooth surfaces.

    PubMed

    Bourdon, B; Bertrand, E; Di Marco, P; Marengo, M; Rioboo, R; De Coninck, J

    2015-07-01

    In this article we study systematically the effect of wettability on the onset of boiling on the same nanometrically smooth surface. By grafting different monolayers of molecules, we were able to explore the wettability from the equilibrium static contact angle, θ0=0° to θ0=110°, without changing the surface topography. The superheat temperature at the onset of pool boiling was measured and eventually a non-classical trend of TONB as a function of wettability was observed. The nucleation site densities for the different grafting cases were also measured by image analysis. Moreover, we propose a novel theoretical interpretation to this phenomenon linking nucleation and the molecular diffusion coefficient. MD simulation results support this approach.

  18. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  19. The Influence of a Lower Heated Tube on Nucleate Pool Boiling from a Horizontal Tube

    DTIC Science & Technology

    1992-06-01

    AD-A256 833 NAVAL POSTGRADUATE SCHOOL Monterey, California (,-A So Ic THESIS TIlE INFLUENCE OF A LOWER IIEATED TUBE ON NUCLEATE POOL BOILING FROM A...HORIZONTAL TUBE by Lannic R. Lake June 1992 Thesis Advisor Paul J. Marto Co-Advisor Stephen B. Memory Approved for public rclcase; distribution is...day) 15 Page • nt Master’s Thesis From . To June 1992 16 Supplementary Notation The views expressed in this thesis are those of the author and do

  20. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffery

    2014-01-01

    The Cryogenic Boil-Off Reduction System was tested with LH2 and LOX in a vacuum chamber to simulate space vacuum and the temperatures of low Earth orbit. Testing was successful and results validated the scaling study model that predicts active cooling reduces upper stage cryogenic propulsion mass for loiter periods greater than 2 weeks.

  1. Pool film boiling experiments on a wire in low gravity: preliminary results.

    PubMed

    Di Marco, P; Grassi, W; Trentavizi, F

    2002-10-01

    This paper reports preliminary results for pool film boiling on a wire immersed in almost saturated FC72 recently obtained during an experimental campaign performed in low gravity on the European Space Agency Zero-G airplane, (reduced gravity level 10(-2)). This is part of a long-term research program on the effect of gravitational and electric forces on boiling. The reported data set refers to experiments performed under the following conditions: (1) Earth gravity without electric field, (2) Earth gravity with electric field, (3) low gravity without electric field, and (4) low gravity with electric field. Although a decrease of gravity causes a heat transfer degradation, the electric field markedly improves heat exchange. This improvement is so effective that, beyond a certain field value, the heat flux is no longer sensitive to gravity. Two main film boiling regimes have been identified, both in normal and in low gravity: one is affected by the electric field and the other is practically insensitive to the field influence.

  2. Enhancement of pool boiling heat transfer to lithium bromide aqueous solution

    NASA Astrophysics Data System (ADS)

    Kaji, Masuo; Furukawa, Masahiro; Suyama, Takayuki; Sekoguchi, Kotohiko

    1995-04-01

    An experimental study on enhancement of nucleate pool boiling heat transfer by placing a sponge metal, which had a three-dimensional mesh structure like sponge, close to a plain smooth heat transfer surface was conducted to improve the heat transfer performance of the high temperature generator of absorption chiller/heaters. Boiling curves of water and lithium bromide aqueous solution of mass concentration of 55 to 58% at the atmospheric pressure were presented. Heat transfer characteristics were improved by two to three times both for water and lithium bromide aqueous solution when the sponge metal was attached with an appropriate clearance. Three kinds of sponge metals were tested for lithium bromide aqueous solution under a reduced pressure (24 kPa). The sponge metal #6, which had the finest mesh among the three sponge metals, brought about excellent results at lower heat fluxes, but it caused deterioration of heat transfer at higher heat fluxes. For the wide range of heat flux (5 x 10(exp 4) approximately 2 x 10(exp 5) W/m(exp 2), it was found that the sponge metal #4 with the middle fineness was the most suitable and the optimal clearance was in the range of 0.1 approximately 0.5 mm. The employment of sponge metals for enhancing boiling heat transfer is practically excellent, since no special manufacturing is required to mount them on the heated surface.

  3. Enhancement of Pool Boiling Heat Transfer to Lithium Bromide Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Kaji, Masuo; Suyama, Takayuki; Sekoguchi, Kotohiko

    An experimental study on enhancement of nucleate pool boiling heat tranfer by placing a sponge metal close to a plain heated surface was conducted in order to improve the heat transfer performance of the high temperature generator of absorption chiller/heater. The sponge metal has three dimensional porous mesh framework like sponge. Boiling curves of water under the atmospheric pressure were compared with those of lithium bromide aqueous solution of mass concentration 55 to 58%. Heat transfer characteristics were improved by 2 to3 times both for water and lithium bromide aqueous solution when the sponge metal was placed on the heated surface with and without cleareance. Three kinds of sponge metals were used for lithium bromide aqueous solution under the reduced pressure (24 kPa). At lower heat fluxes,#6 sponge metal which has the finest mesh and the lowest porosity shows excellent results. At high heat fluxes, however,it causes deterioration of heat transfer. Over the wide range of heat fluxes,# 4 sponge metal was found to be most suitable and the optimal clearence was determined as 0.5 mm. The sponge metal is of good practical use as a device to enhance the boiling, since no special manufacturing is required for placing it on the heated surface.

  4. Cryogenic Propellant Boil-Off Reduction System

    NASA Astrophysics Data System (ADS)

    Plachta, D. W.; Christie, R. J.; Carlberg, E.; Feller, J. R.

    2008-03-01

    Lunar missions under consideration would benefit from incorporation of high specific impulse propellants such as LH2 and LO2, even with their accompanying boil-off losses necessary to maintain a steady tank pressure. This paper addresses a cryogenic propellant boil-off reduction system to minimize or eliminate boil-off. Concepts to do so were considered under the In-Space Cryogenic Propellant Depot Project. Specific to that was an investigation of cryocooler integration concepts for relatively large depot sized propellant tanks. One concept proved promising—it served to efficiently move heat to the cryocooler even over long distances via a compressed helium loop. The analyses and designs for this were incorporated into NASA Glenn Research Center's Cryogenic Analysis Tool. That design approach is explained and shown herein. Analysis shows that, when compared to passive only cryogenic storage, the boil-off reduction system begins to reduce system mass if durations are as low as 40 days for LH2, and 14 days for LO2. In addition, a method of cooling LH2 tanks is presented that precludes development issues associated with LH2 temperature cryocoolers.

  5. Pool boiling with high heat flux enabled by a porous artery structure

    NASA Astrophysics Data System (ADS)

    Bai, Lizhan; Zhang, Lianpei; Lin, Guiping; Peterson, G. P.

    2016-06-01

    A porous artery structure utilizing the concept of "phase separation and modulation" is proposed to enhance the critical heat flux of pool boiling. A series of experiments were conducted on a range of test articles in which multiple rectangular arteries were machined directly into the top surface of a 10.0 mm diameter copper rod. The arteries were then covered by a 2.0 mm thickness microporous copper plate through silver brazing. The pool wall was fabricated from transparent Pyrex glass to allow a visualization study, and water was used as the working fluid. Experimental results confirmed that the porous artery structure provided individual flow paths for the liquid supply and vapor venting, and avoided the detrimental effects of the liquid/vapor counter flow. As a result, a maximum heat flux of 610 W/cm2 over a heating area of 0.78 cm2 was achieved with no indication of dryout, prior to reaching the heater design temperature limit. Following the experimental tests, the mechanisms responsible for the boiling critical heat flux and performance enhancement of the porous artery structure were analyzed.

  6. Independent and collective roles of surface structures at different length scales on pool boiling heat transfer

    PubMed Central

    Li, Calvin H.; Rioux, Russell P.

    2016-01-01

    Spherical Cu nanocavity surfaces are synthesized to examine the individual role of contact angles in connecting lateral Rayleigh-Taylor wavelength to vertical Kevin-Helmholtz wavelength on hydrodynamic instability for the onset of pool boiling Critical Heat Flux (CHF). Solid and porous Cu pillar surfaces are sintered to investigate the individual role of pillar structure pitch at millimeter scale, named as module wavelength, on hydrodynamic instability at CHF. Last, spherical Cu nanocavities are coated on the porous Cu pillars to create a multiscale Cu structure, which is studied to examine the collective role and relative significance of contact angles and module wavelength on hydrodynamic instability at CHF, and the results indicate that module wavelength plays the dominant role on hydrodynamic instability at CHF when the height of surface structures is equal or above ¼ Kelvin-Helmholtz wavelength. Pool boiling Heat Transfer Coefficient (HTC) enhancements on spherical Cu nanocavity surfaces, solid and porous Cu pillar surfaces, and the integrated multiscale structure have been investigated, too. The experimental results reveal that the nanostructures and porous pillar structures can be combined together to achieve even higher enhancement of HTC than that of individual structures. PMID:27841322

  7. Independent and collective roles of surface structures at different length scales on pool boiling heat transfer.

    PubMed

    Li, Calvin H; Rioux, Russell P

    2016-11-14

    Spherical Cu nanocavity surfaces are synthesized to examine the individual role of contact angles in connecting lateral Rayleigh-Taylor wavelength to vertical Kevin-Helmholtz wavelength on hydrodynamic instability for the onset of pool boiling Critical Heat Flux (CHF). Solid and porous Cu pillar surfaces are sintered to investigate the individual role of pillar structure pitch at millimeter scale, named as module wavelength, on hydrodynamic instability at CHF. Last, spherical Cu nanocavities are coated on the porous Cu pillars to create a multiscale Cu structure, which is studied to examine the collective role and relative significance of contact angles and module wavelength on hydrodynamic instability at CHF, and the results indicate that module wavelength plays the dominant role on hydrodynamic instability at CHF when the height of surface structures is equal or above ¼ Kelvin-Helmholtz wavelength. Pool boiling Heat Transfer Coefficient (HTC) enhancements on spherical Cu nanocavity surfaces, solid and porous Cu pillar surfaces, and the integrated multiscale structure have been investigated, too. The experimental results reveal that the nanostructures and porous pillar structures can be combined together to achieve even higher enhancement of HTC than that of individual structures.

  8. Independent and collective roles of surface structures at different length scales on pool boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Li, Calvin H.; Rioux, Russell P.

    2016-11-01

    Spherical Cu nanocavity surfaces are synthesized to examine the individual role of contact angles in connecting lateral Rayleigh-Taylor wavelength to vertical Kevin-Helmholtz wavelength on hydrodynamic instability for the onset of pool boiling Critical Heat Flux (CHF). Solid and porous Cu pillar surfaces are sintered to investigate the individual role of pillar structure pitch at millimeter scale, named as module wavelength, on hydrodynamic instability at CHF. Last, spherical Cu nanocavities are coated on the porous Cu pillars to create a multiscale Cu structure, which is studied to examine the collective role and relative significance of contact angles and module wavelength on hydrodynamic instability at CHF, and the results indicate that module wavelength plays the dominant role on hydrodynamic instability at CHF when the height of surface structures is equal or above ¼ Kelvin-Helmholtz wavelength. Pool boiling Heat Transfer Coefficient (HTC) enhancements on spherical Cu nanocavity surfaces, solid and porous Cu pillar surfaces, and the integrated multiscale structure have been investigated, too. The experimental results reveal that the nanostructures and porous pillar structures can be combined together to achieve even higher enhancement of HTC than that of individual structures.

  9. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.

    2014-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to the high specific impulse that can be achieved using engines suitable for moving 10's to 100's of metric tons of payload mass to destinations outside of low earth orbit. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several days. The losses can be greatly reduced by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and by the integration of self-supporting multi-layer insulation. The active thermal control technology under development is the integration of the reverse turbo- Brayton cycle cryocooler to the propellant tank through a distributed cooling network of tubes coupled to a shield in the tank insulation and to the tank wall itself. Also, the self-supporting insulation technology was utilized under the shield to obtain needed tank applied LH2 performance. These elements were recently tested at NASA Glenn Research Center in a series of three tests, two that reduced LH2 boil-off and one to eliminate LO2 boil-off. This test series was conducted in a vacuum chamber that replicated the vacuum of space and the temperatures of low Earth orbit. The test results show that LH2 boil-off was reduced 60% by the cryocooler system operating at 90K and that robust LO2 zero boil-off storage, including full tank pressure control was achieved.

  10. Reduced Boil-Off System Sizing

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Plachta, David W.; Feller, Jeffrey R.

    2015-01-01

    NASA is currently developing cryogenic propellant storage and transfer systems for future space exploration and scientific discovery missions by addressing the need to raise the technology readiness level of cryogenic fluid management technologies. Cryogenic propellants are baselined in many propulsion systems due to their inherently high specific impulse; however, their low boiling points can cause substantial boil-off losses over time. Recent efforts such as the Reduced Boil-off Testing and the Active Thermal Control Scaling Study provide important information on the benefit of an active cooling system applied to LH2 propellant storage. Findings show that zero-boil off technologies can reduce overall mass in LH2 storage systems when low Earth orbit loiter periods extend beyond two months. A significant part of this mass reduction is realized by integrating two stages of cooling: a 20 K stage to intercept heat at the tank surface, and a 90 K stage to reduce the heat entering the less efficient 20 K stage. A missing element in previous studies, which is addressed in this paper, is the development of a direct method for sizing the 90 K cooling stage. Such a method requires calculation of the heat entering both the 90 K and 20 K stages as compared to the overall system masses, and is reliant upon the temperature distribution, performance, and unique design characteristics of the system in question. By utilizing the known conductance of a system without active thermal control, the heat being intercepted by a 90 K stage can be calculated to find the resultant lift and mass of each active thermal control stage. Integral to this is the thermal conductance of the cooling straps and the broad area cooling shield, key parts of the 90 K stage. Additionally, a trade study is performed to show the ability of the 90 K cooling stage to reduce the lift on the 20 K cryocooler stage, which is considerably less developed and efficient than 90 K cryocoolers.

  11. Visualization study of nucleate pool boiling of liquid nitrogen with quasi-steady heat input

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaobin; Chen, Jianye; Xiong, Wei; Jin, Tao

    2015-12-01

    A visualization experimental device has been built to investigate the bubble behaviors in the nucleate pool boiling of cryogenic fluids at atmospheric pressure. The general morphologies of the bubbles are analyzed based on the captured films using a high-speed camera. The bubble behaviors leaving the wall at different heat flux can be divided into three regimes (low heat flux regime, fully developed nucleate boiling regime and intermediate regime) according to the availability of bubble parameters. In the low heat flux regime, the bubble is discrete and the interactive effects are ignorable. In the fully developed nucleate boiling regime close to CHF, the bubbles depart in the form of bubble cluster with a neck. In the intermediate regime, the interactive effect between the bubbles is significant and the bubbles follow a random pattern neither discretely nor as cluster neck. The information about the bubble departure diameter, the detachment frequency and the number density of activated sites are specially investigated. These data are used to evaluate the existing semi-empirical correlations widely applied to either the room-temperature or cryogenic fluids. It is found that the Kim's correlation for the departure diameter predicts a satisfactory agreement with the experimental results in the isolated bubble regime. For the predictions of the detachment frequency, the correlation by Katto and Yokoya is recommended after comparison. The relation between the diameter and frequency can also be well determined by the correlation proposed by Mcfadden et al. The number density of active sites for liquid nitrogen still can be considered to be linearly proportional to ΔTm as it is for water, except that the exponent absolute m is much smaller.

  12. Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability.

    PubMed

    Taylor, M T; Qian, Tiezheng

    2016-03-01

    The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis.

  13. Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability

    NASA Astrophysics Data System (ADS)

    Taylor, M. T.; Qian, Tiezheng

    2016-03-01

    The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007), 10.1103/PhysRevE.75.036304] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis.

  14. Generalized multidemensional propagation velocity equations for pool-boiling superconducting windings

    SciTech Connect

    Christensen, E.H.; O'Loughlin, J.M.

    1984-09-01

    Several finite difference, finite element detailed analyses of propagation velocities in up to three dimensions in pool-boiling windings have been conducted for different electromagnetic and cryogenic environments. Likewise, a few full scale simulated winding and magnet tests have measured propagation velocities. These velocity data have been correlated in terms of winding thermophysical parameters. This analysis expresses longitudinal and transverse propagation velocities in the form of power function regression equations for a wide variety of windings and electromagnetic and thermohydraulic environments. The generalized velocity equations are considered applicable to well-ventilated, monolithic conductor windings. These design equations are used piecewise in a gross finite difference mode as functions of field to predict the rate of normal zone growth during quench conditions. A further check of the validity of these predictions is available through total predicted quench durations correlated with actual quench durations of large magnets.

  15. Pool Boiling with Non-condensable Gas in Microgravity: Results of a Sounding Rocket Experiment

    NASA Astrophysics Data System (ADS)

    Kannengieser, Olivier; Colin, Catherine; Bergez, Wladimir

    2010-09-01

    Pool boiling experiments in microgravity have been performed in the Sounding Rocket Maser 11. A heated plate of 1 cm 2 was located at the bottom of a small cylindrical tank partly filled with a refrigerant Novec HFE7000 pressurized with Nitrogen. Experiments were performed at different reservoir pressures and wall heat fluxes. The wall heat flux and wall temperature were simultaneously measured during the experiment and the behavior of the bubbles on the heater was filmed with a video camera through the transparent wall of the reservoir. The presence of Nitrogen dissolved inside the liquid led to a strong Marangoni convection around the bubble. The effect of Marangoni convection and evaporation on the wall heat transfer is analyzed in function of the relative values of the wall temperature and saturation temperature.

  16. Saturated pool-boiling heat transfer of toluene-solvent magnetic fluid on a horizontal surface

    SciTech Connect

    Takahashi, Minoru; Inoue, Akiro; Matsuzaki, Mitsuo; Ohkawa, Riichiro . Research Lab. for Nuclear Reactors)

    1994-07-01

    Saturated pool-boiling heat transfer of a toluene-solvent magnetic fluid containing magnetite particles of 0--36.5 wt% was investigated on a horizontal surface in a vertical magnetic field at pressures of 0.021--0.061 MPa. In the absence of a magnetic field gradient, the heat transfer was enhanced significantly using a magnetic fluid with dilute magnetite particles, while it was reduced for the case of dense particles. As the magnetic field gradient was increased up to 3.9 [times] 10[sup 5] A/m[sup 2], the heat transfer of the dense magnetic fluid was enhanced significantly in the heat flux region, although it slowly began to show a reduced heat-transfer curve again at a certain transition heat flux. The transition heat flux increased as the magnetic field gradient became larger, the magnetic concentration, lower, and the pressure, higher.

  17. Effect of subcooling and wall thickness on pool boiling from downward-facing curved surfaces in water

    SciTech Connect

    El-Genk, M.S.; Glebov, A.G.

    1995-09-01

    Quenching experiments were performed to investigate the effects of water subcooling and wall thickness on pool boiling from a downward-facing curved surface. Experiments used three copper sections of the same diameter (50.8 mm) and surface radius (148 mm), but different thickness (12.8, 20 and 30 mm). Local and average pool boiling curves were obtained at saturation and 5 K, 10 K, and 14 K subcooling. Water subcooling increased the maximum heat flux, but decreased the corresponding wall superheat. The minimum film boiling heat flux and the corresponding wall superheat, however, increased with increased subcooling. The maximum and minimum film boiling heat fluxes were independent of wall thickness above 20 mm and Biot Number > 0.8, indicating that boiling curves for the 20 and 30 thick sections were representative of quasi steady-state, but not those for the 12.8 mm thick section. When compared with that for a flat surface section of the same thickness, the data for the 12.8 mm thick section showed significant increases in both the maximum heat flux (from 0.21 to 0.41 MW/m{sup 2}) and the minimum film boiling heat flux (from 2 to 13 kW/m{sup 2}) and about 11.5 K and 60 K increase in the corresponding wall superheats, respectively.

  18. Improving heat transfer with pool boiling by covering of heating surface with metallic spheres

    SciTech Connect

    Matijevic, M.; Djuric, M.; Zavargo, Z.; Novakovic, M. )

    1992-01-01

    In this paper, boiling heat transfer (BHT) is investigated experimentally. Smooth copper walls were covered with single sphere layer and corresponding temperature difference and heat flux were measured. The results were compared with published data for several types of heating surfaces. Comparative analysis shows that surfaces covered with spheres have characteristics as good as the other systems, if not better. There are many ways to enhance boiling heat transfer. One of them is to cover the heating surface with a layer of solid particles, which either remain on the surface during the process or circulate through the boiling liquid, generating a porous two-component, three-phase system. Particles are made of various materials (glass, alumosilicate, corundum, sand, mullite some metals, etc.), which are shaped as spheres mostly, but sometimes are irregular bodies. Many different parameters were proposed to characterize the porous layer. The influence of particles can be expressed by introducing the effective thermal-physical properties of a complex medium. Also, if the working regime can be described as any kind of fluidization, then all quantities developed to be applied to this matter can be used in the case of heat fluidization.

  19. Zero Boil-Off System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryocooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  20. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    SciTech Connect

    Fukuda, K.; Shiotsu, M.; Sakurai, A.

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  1. Enhancement of Pool Boiling Heat Transfer and Control of Bubble Motion in Microgravity Using Electric Fields (BCOEL)

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave

    2001-01-01

    The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from the heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in spacebased applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curves for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental apparatus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.

  2. Enhancement of Pool Boiling Heat Transfer and Control of Bubble Motion in Microgravity Using Electric Fields - BCOEL

    NASA Technical Reports Server (NTRS)

    Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Sankaran, Subramanian; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave

    2001-01-01

    The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from thc heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in space-based applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curvcs for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental appararus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.

  3. Zero Boil-Off System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, D. W.; Johnson, W. L.; Feller, J. R.

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  4. Zero boil-off system testing

    NASA Astrophysics Data System (ADS)

    Plachta, D. W.; Johnson, W. L.; Feller, J. R.

    2016-03-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  5. Enhancement of Heat Transfer with Pool and Spray Impingement Boiling on Microporous and Nanowire Surface Coatings

    SciTech Connect

    Thiagarajan, S. J.; Wang, W.; Yang, R.; Narumanchi, S.; King, C.

    2010-09-01

    The DOE National Renewable Energy Laboratory (NREL) is leading a national effort to develop next-generation cooling technologies for hybrid vehicle electronics. The goal is to reduce the size, weight, and cost of power electronic modules that convert direct current from batteries to alternating current for the motor, and vice versa. Aggressive thermal management techniques help to increase power density and reduce weight and volume, while keeping chip temperatures within acceptable limits. The viability of aggressive cooling schemes such as spray and jet impingement in conjunction with enhanced surfaces is being explored. Here, we present results from a series of experiments with pool and spray boiling on enhanced surfaces, such as a microporous layer of copper and copper nanowires, using HFE-7100 as the working fluid. Spray impingement on the microporous coated surface showed an enhancement of 100%-300% in the heat transfer coefficient at a given wall superheat with respect to spray impingement on a plain surface under similar operating conditions. Critical heat flux also increased by 7%-20%, depending on flow rates.

  6. Experimental investigation and mechanism of critical heat flux enhancement in pool boiling heat transfer with nanofluids

    NASA Astrophysics Data System (ADS)

    Kamatchi, R.; Venkatachalapathy, S.; Nithya, C.

    2016-11-01

    In the present study, reduced graphene oxide (rGO) is synthesized from graphite using modified Hummer and chemical reduction methods. Various characterizations techniques are carried out to study the in-plane crystallite size, number of layers, presence of functional groups and surface morphology. Different concentrations of 0.01, 0.1, and 0.3 g/l of rGO/water nanofluids are prepared by dispersing the flakes in DI water. The colloidal stability of 0.3 g/l concentration is measured after 5 days using Zetasizer and found to be stable. The rGO/water nanofluids are then used to study the effect on the enhancement of critical heat flux (CHF) in pool boiling heat transfer. Results indicate an enhancement in CHF ranging from 145 to 245 % for the tested concentrations. The mechanisms of CHF enhancement are analyzed based on surface wettability, surface roughness, and porous layer thickness. The macrolayer dryout model sufficiently supports the mechanism of CHF enhancement of thin wire with rGO deposits, which is not reported yet.

  7. A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime

    NASA Astrophysics Data System (ADS)

    Alavi Fazel, S. Ali

    2017-03-01

    A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.

  8. Fundamental study of FC-72 pool boiling surface temperature fluctuations and bubble behavior

    NASA Astrophysics Data System (ADS)

    Griffin, Alison R.

    A heater designed to monitor surface temperature fluctuations during pool boiling experiments while the bubbles were simultaneously being observed has been fabricated and tested. The heat source was a transparent indium tin oxide (ITO) layer commercially deposited on a fused quartz substrate. Four copper-nickel thin film thermocouples (TFTCs) on the heater surface measured the surface temperature, while a thin layer of sapphire or fused silica provided electrical insulation between the TFTCs and the ITO. The TFTCs were micro-fabricated using the liftoff process to deposit the nickel and copper metal films. The TFTC elements were 50 mum wide and overlapped to form a 25 mum by 25 mum junction. TFTC voltages were recorded by a DAQ at a sampling rate of 50 kHz. A high-speed CCD camera recorded bubble images from below the heater at 2000 frames/second. A trigger sent to the camera by the DAQ synchronized the bubble images and the surface temperature data. As the bubbles and their contact rings grew over the TFTC junction, correlations between bubble behavior and surface temperature changes were demonstrated. On the heaters with fused silica insulation layers, 1--2°C temperature drops on the order of 1 ms occurred as the contact ring moved over the TFTC junction during bubble growth and as the contact ring moved back over the TFTC junction during bubble departure. These temperature drops during bubble growth and departure were due to microlayer evaporation and liquid rewetting the heated surface, respectively. Microlayer evaporation was not distinguished as the primary method of heat removal from the surface. Heaters with sapphire insulation layers did not display the measurable temperature drops observed with the fused silica heaters. The large thermal diffusivity of the sapphire compared to the fused silica was determined as the reason for the absence of these temperature drops. These findings were confirmed by a comparison of temperature drops in a 2-D simulation of

  9. Study of Nucleate Pool Boiling Performance of 2,2,2-Trifluoroethanol (TFE)/n-Methyl-2-Pyrrolidone(NMP)

    NASA Astrophysics Data System (ADS)

    Kojima, Hiroshi; Oka, Masahiro; Akisawa, Atsushi; Kashiwagi, Takao

    The absorption heat pump using water-LiBr solution as working fluid has widely been used for air-conditioning system in Japan. However, it is difficult to apply the system for various uses, such as the utilization of low temperature heat sources, refrigeration and air-source type heat pumps because of the properties of the working fluid. 2,2,2- Trifluoroethanol (TFE) /n-Methyl-2- Pyrrolidone(NMP)is expected to be one of the most useful working fluids for the absorption heat pump of such use. While a number of investigations are available for the heat transfer performal1ce of LiBr solution, no work has been carried out to find out the heat transfer coefficient of TFE/NMP mixtures although it is important to know the heat transfer performance of TFE/NMP mixtures to design each element of the heat pump.In this study, nucleate pool boiling heat transfer cofficients are measured for TFE/NMP mixtures in order to evaluate the heat transfer perfonnance in the generator which is one of the element of the heat pump.

  10. Acoustic field interaction with a boiling system under terrestrial gravity and microgravity.

    PubMed

    Sitter, J S; Snyder, T J; Chung, J N; Marston, P L

    1998-11-01

    Pool boiling experiments from a platinum wire heater in FC-72 liquid were conducted under terrestrial and microgravity conditions, both with and without the presence of a high-intensity acoustic standing wave within the fluid. The purpose of this research was to study the interaction between an acoustic field and a pool boiling system in normal gravity and microgravity. The absence of buoyancy in microgravity complicates the process of boiling. The acoustic force on a vapor bubble generated from a heated wire in a standing wave was shown to be able to play the role of buoyancy in microgravity. The microgravity environment was achieved with 0.6 and 2.1-s drop towers. The sound was transmitted through the fluid medium by means of a half wavelength sonic transducer driven at 10.18 kHz. At high enough acoustic pressure amplitudes cavitation and streaming began playing an important role in vapor bubble dynamics and heat transfer. Several different fixed heat fluxes were chosen for the microgravity experiment and the effects of acoustics on the surface temperature of the heater were recorded and the vapor bubble movement was filmed. Video images of the pool boiling processes and heat transfer data are presented.

  11. An experimental investigation of the effect of the addition of nano Aluminum oxide on pool boiling of refrigerant 134A

    NASA Astrophysics Data System (ADS)

    Eid, Eldesouki I.; Khalaf-Allah, Reda A.; Taher, Sherif H.; Al-Nagdy, Ahmed A.

    2017-03-01

    The pool boiling of R-134a has been experimentally investigated with an addition of nano particles of Aluminum oxide. The experiments were carried out using a cylindrical stainless-steel heater. The roughness of the heater surface was changed. Different concentrations of nano Aluminum oxide particles to the base R-134a were tested. Different heat fluxes as well as different boiling pressures were considered during the experimental tests. The results show that the suspension of Al2O3 nano particles enhances heat transfer coefficient in the nucleate pool boiling zone for concentrations ranging from 0.01 to 0.25% by volume. Higher heat flux and pressure result in enhancements of 37.6, 55.4, 90.2 and 167.7% corresponding to 0.042, 0.84, 1.54 and 2.35 μm surface roughness respectively. The more concentration of Al2O3 nano particles deteriorates the heat transfer coefficient. An empirical correlation was deduced to formulate the relation among heat transfer coefficient, heat flux, pressure, concentration, and surface roughness within a maximum deviation of about ±9%.

  12. Pool boiling of enhanced heat transfer surfaces in refrigerant-oil mixtures and aqueous calcium sulfate solutions

    SciTech Connect

    Curcio, L.A.; Somerscales, E.F.

    1994-08-01

    Pool boiling data of structured surfaces in R113/3GS oil mixtures show a general decrease in heat transfer with oil concentration, degradation in performance of all surfaces at 10% oil, no change in enhancement of the structured surfaces over plain surface, and restoration of performance of the enhanced surfaces upon cleaning in denatured alcohol. Fouling data of structured surfaces in pool boiling of sat. aq. CaSO{sub 4} solution show that effects of fouling (wall superheat changes, deposit weight) are more pronounced at 80 kW/m{sup 2} than at 10 kW/m{sup 2} heat flux; precipitation fouling show an effect within the first 2 h exposure. High flux surfaces have lower deposition weight than other surfaces; thus the deposition rate may depend strongly on wall superheat. The numerous nucleation sites of the enhanced surfaces provide more turbulent motion near the boiling surface than for the plain surface; thus the removal rate should be greater for an enhanced surface, although no removal of a deposit was ever observed.

  13. Nucleate pool boiling heat transfer characteristics of TiO{sub 2}-water nanofluids at very low concentrations

    SciTech Connect

    Suriyawong, Adirek; Wongwises, Somchai

    2010-11-15

    A study of nucleate pool boiling heat transfer of TiO{sub 2}-water nanofluids is experimentally conducted. Nanofluids with various concentrations of 0.00005, 0.0001, 0.0005, 0.005, and 0.01 vol.% are employed. Horizontal circular plates made from copper and aluminium with different roughness values of 0.2 and 4 {mu}m are used as heating surfaces. The experiments are performed to explore the effects of nanofluids concentration as well as heating surface material and roughness on nucleate pool boiling characteristics and the heat transfer coefficient under ambient pressure. The results show that based on the copper heated surface which is tested with a concentration of 0.0001 vol.%, higher nucleate pool boiling heat transfer coefficient is obtained when compared with the base fluid. A 15% increase is obtained for the surface roughness of 0.2 {mu}m and a 4% increase is obtained for roughness of 4 {mu}m. For concentrations higher than 0.0001 vol.%, however, the higher the concentration, the lower the heat transfer coefficient. In the case of aluminium heated surface, the corresponding heat transfer coefficients are larger than for the copper surface by around 30% with a roughness of 0.2 {mu}m and around 27% with a roughness of 4 {mu}m. Moreover, the results also indicate that the heat transfer coefficient obtained based on a roughness of 4 {mu}m is higher than that for a roughness of 0.2 {mu}m by around 12% for aluminium and by around 13% for copper. (author)

  14. Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes

    PubMed Central

    2011-01-01

    Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e., water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater. The experiments have been performed to establish the influence of nanofluids concentration as well as tube surface material on heat transfer characteristics at atmospheric pressure. The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube. It seems that heater material did not affect the boiling heat transfer in 0.1 wt.% water-Cu nanofluid, nevertheless independent of concentration, distinctly higher heat transfer coefficient was recorded for stainless steel tube than for copper tube for the same heat flux density. PMID:21711741

  15. Spatial and temporal variation of the surface temperature and heat flux for saturated pool nucleate boiling at lower heat fluxes

    SciTech Connect

    Unal, C.; Pasamehmetoglu, K.O.

    1993-10-01

    The spatial and temporal variations of local surface temperature and heat flux for saturated pool nucleate boiling are investigated parametrically using a numerical model. The numerical model consisted of solving the three-dimensional transient heat conduction equation within the heater subjected to nucleate boiling over its upper surface. The surface topography model to distribute the cavities over the boiling surface used a Monte Carlo scheme. All cavities were assumed to be conical in shape. The cavity radii are obtained using an exponential probability density function with a known mean value. Local surface temperatures showed significant spatial and temporal variations, depending upon the surface topography and the heater material and thickness. However, the surface-averaged temperature showed practically no temporal variation. The temporal variations in local temperatures caused the surface-averaged heat flux to vary significantly. The temporal variations in the surface-averaged heat flux were similar for smooth and rough and thick and thin copper and nickel plates. Results indicated that the use of a classical energy balance equation to evaluate the surface heat flux must consider the spatial variation of the temperature. Results also showed that any thermocouple embedded beneath the surface of the heater does not follow the temporal variations at the surface.

  16. Review of the influence of nanoparticles on thermal conductivity, nucleate pool boiling and critical heat flux

    NASA Astrophysics Data System (ADS)

    Kshirsagar, Jagdeep M.; Shrivastava, Ramakant

    2015-03-01

    Nanofluids, the fluid suspensions of nonmaterials, have shown many interesting properties and the unique features offer unprecedented potential for many applications. Research on nanofluids has progressed rapidly since its enhanced thermal conductivity was first noted, about a decade ago, though much debate and inconsistency have been reported. Insufficient understanding of the formulation, mechanism of nanofluids further limits their applications [1-34]. Inconsistent data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers [35-43] have noted an enhancement in the critical heat flux during nanofluid boiling. Some researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux augmentation. In the review, the future developments of these technologies are discussed. In order to be able to put the nanofluid heat transfer technologies into practice, fundamental of these studies are greatly needed to comprehend the physical mechanisms.

  17. Review of nucleation and incipient boiling under pool and forced convection conditions

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1987-01-01

    An overview of liquid-vapor nucleation is given. The result of thermodynamic equilibrium across curved liquid-vapor interfaces is presented. The extension of this to include the interaction with idealizations of surface cavities is made to demonstrate how superheat requirements for nucleation will be affected by surface roughness, flow velocity and buoyancy. Experimental measurements of high liquid superheats and nucleation delay times are presented as examples of homogeneous nucleation. Examples of nucleation and boiling on smooth glass substrates and on metal surfaces with various surface roughnesses are presented.

  18. Subcooled Pool Boiling Heat Transfer Mechanisms in Microgravity: Terrier-improved Orion Sounding Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Benton, John; Kucner, Robert

    2000-01-01

    A microscale heater array was used to study boiling in earth gravity and microgravity. The heater array consisted of 96 serpentine heaters on a quartz substrate. Each heater was 0.27 square millimeters. Electronic feedback loops kept each heater's temperature at a specified value. The University of Maryland constructed an experiment for the Terrier-Improved Orion sounding rocket that was delivered to NASA Wallops and flown. About 200 s of high quality microgravity and heat transfer data were obtained. The VCR malfunctioned, and no video was acquired. Subsequently, the test package was redesigned to fly on the KC-135 to obtain both data and video. The pressure was held at atmospheric pressure and the bulk temperature was about 20 C. The wall temperature was varied from 85 to 65 C. Results show that gravity has little effect on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble was surrounded by smaller bubbles, which eventually merged with the primary bubble. This bubble was formed by smaller bubbles coalescing, but had a constant size for a given superheat, indicating a balance between evaporation at the base and condensation on the cap. Most of the heaters under the bubble indicated low heat transfer, suggesting dryout at those heaters. High heat transfer occurred at the contact line surrounding the primary bubble. Marangoni convection formed a "jet" of fluid into the bulk fluid that forced the bubble onto the heater.

  19. Radioisotope Power System Pool Concept

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Bolotin, Gary S.

    2015-01-01

    Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.

  20. Viscous hydrodynamic instability theory of the peak and minimum pool boiling heat fluxes

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.

    1972-01-01

    Liquid viscosity was included in the Bellman-Pennington theory of the Taylor wave in a liquid vapor interface. Predictions of the most susceptible wavelength, and of the wave frequency, were made as a function of a liquid viscosity parameter and the Bond number. The stability of a gas jet in a viscous liquid was studied and the result is used to predict the peak heat flux on large horizontal heaters. Experimental measurements of the dominant Taylor wave and its growth rate were made during the film boiling of cyclohexanol on cylindrical heaters. The results bear out the predictions quite well. The thickness of the vapor blanket surrounding a cylindrical heater was measured and a correlation suggested. The effect of large fluxes of vapor volume on the dominant wavelength was also noted. Theoretical results of the peak heat flux are compared with the experimental data, and the effect of finite geometry of flat plate heaters on the peak heat flux is also discussed.

  1. Dynamical Behavior of Discrete Bubble and Heat Transfer of Nucleate Pool Boiling in Short-Term Microgravity

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Fu

    2012-07-01

    Boiling in microgravity is an increasing significant subject of investigation. Motivation for the study comes not only from many potential space applications due to its high efficiency to transfer high heat flux with liquid-vapor phase change, but also from powerful platform of microgravity to reveal the mechanism of heat transfer underneath the phenomenon of boiling. In the present paper, the growth of a discrete bubble during nucleate pool boiling and heat transfer in short-term microgravity is studied experimentally utilizing the drop tower Beijing. A P-doped N-type square silicon chip with the dimensions of 10x10x0.5 mm ^{3} was used as the heater. Two 0.25-mm diameters copper wires for power supply was soldered to the side surfaces of the chip at the opposite ends. The normal resistant of the chip is 75 Ω. The chip was heated by using Joule effect. A D.C. power supply of constant current was used to input energy to the heater element. A 0.12-mm diameter, T-type thermocouple adhered on the centre of the backside of the chip was used for the measurement of wall temperature, while two other T-type thermocouples were used for the bulk liquid temperature. FC-72 was used as working fluid. The concentration of air was determined by using Henry law as 0.0046 moles gas/mole liquid. The pressure and the bulk liquid temperature in the boiling chamber were nominally 102.0 kPa and 12.0 °C, respectively. The shapes of the bubbles were recorded using a high speed camera at a speed of 250 fps with a shutter speed of 1/2000 s. Based on the image manipulation, the effective diameter of the discrete bubble is obtained. The experiments were conducted utilizing the drop tower Beijing, which can provide a short-term microgravity condition. The residual gravity of 10 ^{-2 ... -3} g _{0} can be maintained throughout the short duration of 3.6 s. To avoid the influence of natural convection in normal gravity environment, the heating switched on at the release of the drop capsule

  2. Phase relations and adiabats in boiling seafloor geothermal systems

    USGS Publications Warehouse

    Bischoff, J.L.; Pitzer, Kenneth S.

    1985-01-01

    Observations of large salinity variations and vent temperatures in the range of 380-400??C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385??C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415??C, 330 bar. A 400??C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500??C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor. ?? 1985.

  3. Evaluation of the Safety Systems in the Next Generation Boiling Water Reactor

    NASA Astrophysics Data System (ADS)

    Cheng, Ling

    The thesis evaluates the safety systems in the next generation boiling water reactor by analyzing the main steam line break loss of coolant accident performed in the Purdue university multi-dimensional test assembly (PUMA). RELAP5 code simulations, both for the PUMA main steam line break (MSLB) case and for the simplified boiling water reactor (SBWR) MSLB case have been utilized to compare with the experiment data. The comparison shows that RELAP5 is capable to perform the safety analysis for SBWR. The comparison also validates the three-level scaling methodology applied to the design of the PUMA facility. The PUMA suppression pool mixing and condensation test data have been studied to give the detailed understanding on this important local phenomenon. A simple one dimensional integral model, which can reasonably simulate the mixing process inside suppression pool have been developed and the comparison between the model prediction and the experiment data demonstrates the model can be utilized for analyzing the suppression pool mixing process.

  4. Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.

    1990-01-01

    Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  5. Control of the boiling crisis: analysis of a model system

    NASA Astrophysics Data System (ADS)

    Pumir, A.; Barelko, V. V.; Buryak, E. V.

    2007-11-01

    Controlling the transition between the low (nucleate) and high temperature (film) regimes of boiling is a serious challenge for a number of technological applications. Based on the theoretical analysis of a simplified reaction-diffusion model, it has recently been shown [A. Pumir, V.V. Barelko, Chaos 12, 610 (2002)] that the transition towards the dangerous situation where the high temperature phase tends to invade the whole system requires a higher power in a periodically spatially modulated system than in an homogeneous system. We show here that the transition mechanisms between the various boiling regimes depend on the ratio between the periodicity length along the wire and the characteristic thermal diffusion length. We analyse theoretically a simple experimental setup aimed at testing these ideas. The heater consists of a thin wire, with an applied electric current, with alternatively low resistance and high resistance sections. We determine the gain in stability for a set of realistic values of the parameters.

  6. Design of a pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.; Kesseli, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding a heat transport system to more uniformly supply heat to the heater head tubes. One heat transport system with favorable characteristics is an alkali metal pool boiler. An alkali metal pool boiler heat transport system was designed for a 25-kW advanced Stirling conversion system (ASCS). Solar energy concentrated on the absorber dome boils a eutectic mixture of sodium and potassium. The alkali metal vapors condense on the heater head tubes, supplying the Stirling engine with a uniform heat flux at a constant temperature. Boiling stability is achieved with the use of an enhanced boiling surface and noncondensible gas.

  7. The Effect of Coating Thickness and Roughness of Nucleate Pool Boiling Heat Transfer on Nanoparticle Coated Surface

    NASA Astrophysics Data System (ADS)

    Das, Sudev; Bhaumik, Swapan

    2016-04-01

    The influence of coating thickness and surface roughness on pool boiling heat transfer is experimentally studied over a range of surface roughness values with varied coating thickness with water at atmospheric pressure. Test surfaces used in this experiment are namely, untreated surface (Ra = 0.0899 µm), polished surface (Ra = 0.0493 µm), TiO2 nanoparticle coated surface with a roughness (Ra) ranging from 0.0338 to 0.289 µm. The surfaces were characterized with respect to contact angle, surface roughness and coating thickness. The contact angle, surface roughness and coating thickness were measured by sessile drop method, optical surface profiler and instrument thickness monitor respectively. Heat fluxes observed ranged from 52.63 to 144.73 W/cm2. Different trends were observed in the Heat Transfer Coefficient (HTC) with respect to the surface roughness and coating thickness values on the same set of heat flux. The HTC was found to increase with increasing the roughness values for untreated and polish surface but nanoparticle coated surfaces displayed different trend in HTCs. The HTC was found to increase with increasing coating thickness with all wall superheat.

  8. Cooling Enhancement by Drop Impact and Pool Boiling on Nano-textured Surfaces Under Normal Gravity Conditions and at Zero and Increased Gravity in Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Yarin, Alexander; Sinha-Ray, Suman; Jun, Seongchul

    2014-03-01

    The earth experiments with drop impact onto metal-plated electrospun nanofiber mats encompass a single drop, or drop trains or jets impacts. The results on drop cooling and pool boiling on nano-textured surface were obtained during the parabolic flights supported by NASA and ESA. Pool boiling on nano-textured surfaces was studied for ethanol and water as working fluids. The nano-textured surfaces were copper platelets covered with copper-plated electrospun nanofibers. The results revealed that the heat flux in boiling on the nano-textured surfaces was about 3-8 times higher than that on the bare copper. This stems from the fact that nano-textured surfaces promote bubble growth by increasing the average temperature of fluid surrounding growing bubbles. Nano-textured surfaces facilitated bubble growth rate and increase bubble detachment frequency. On the other hand, the critical heat flux (CHF) on the nano-textured surfaces was found to be very close to its counterpart on the bare copper surfaces. However, the heat flux on the nano-textured surfaces in transition boiling was significantly higher than on the bare copper ones, since the presence of nanofibers prevented bubble merging and delayed formation of vapor film.

  9. Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition

    NASA Astrophysics Data System (ADS)

    Salari, E.; Peyghambarzadeh, S. M.; Sarafraz, M. M.; Hormozi, F.; Nikkhah, V.

    2017-01-01

    This paper experimentally focuses on the pool boiling heat transfer characteristics of gamma Fe3O4 aqueous nano-fluids on a flat disc heater. The nano-fluid used in this research was prepared using two-step method and was stabilized using nonylphenol ethoxylate nonionic surfactant, pH setting, and sonication process as well. Influence of different operating parameters such as heat flux (0-1546 kW/m2), mass concentration of nano-fluids (weight concentration 0.1-0.3 %), bubble formation, critical heat flux (1170 kW/m2 for water, 1230 kW/m2 (wt% = 0.1), 1320 kW/m2 (wt% = 0.2), 1450 kW/m2 (wt% = 0.3) and fouling on pool boiling heat transfer coefficient of nano-fluid as a thermal performance index were experimentally investigated and briefly discussed. Results demonstrated that the pool boiling heat transfer coefficient increases with increasing the mass concentration and the applied heat flux. In addition, the rate of bubble formation is significantly intensified at higher heat fluxes and subsequently, larger bubbles detach the surface due to the intensification of bubble coalescence. In terms of fouling formation, it can be stated that fouling of nano-fluids is a strong function of time and rate of deposition is increased over the extended time while the pool boiling heat transfer coefficient was not decreased over the time, as porous deposited layer on the surface are detached from the surface by bubble interactions. In terms of critical heat flux, capillary action of the deposited layer was found to be the main reason responsible for increasing the critical heat flux as liquid is stored inside the porous deposited layer, which enhances the surface toleration against the critical heat flux crisis.

  10. EHD enhancement of pool and in-tube boiling of alternate refrigerants. Final report, 15 January 1993--15 June 1993

    SciTech Connect

    Ohadi, M.M.; Dessiatoun, S.; Singh, A.; Fanni, M.A.

    1993-08-01

    The Electrohydrodynamic (EHD) is an active heat transfer augmentation technique which utilizes the effect of secondary motions generated through the application of an electrostatic potential to a dielectric fluid. Net result is better momentum and heat transfer between the fluid and the heat transfer wall through destabilization of the thermal boundary layer and better mixing of the fluid adjacent to the heat transfer surface. EHD enhancement of refrigerant/refrigerant oil mixtures heat transfer using the Electrohydrodynamic (EHD) technique is the subject of a three-year experimental investigation in a project funded by the US Department of Energy, effective June 1, 1993. For the interim period between November 1992 and June 1993 when the DOE funds became available, the Air-Conditioning and Refrigeration Technology Institute (ARTI) provided partial funding for our EHD research program with the aim of accomplishing three major tasks: (1) conduct a comprehensive search of the literature on EHD-enhanced, in-tube and external boiling heat transfer enhancement of alternate refrigerants; (2) Design, fabricate, and instrument an in-tube, EHD-enhanced boiling/condensation test rig and perform preliminary testing of the setup; (3) conduct experiments and document new findings on EHD-enhanced external boiling of alternate refrigerants/refrigerant mixtures in an existing pool boiling test rig apparatus. Description of Tasks performed are described and results are discussed.

  11. The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems

    ERIC Educational Resources Information Center

    Smith, Norman O.

    2004-01-01

    An illustration of how excess Gibbs energies of the components in binary systems can be used to construct boiling point diagrams is given. The underlying causes of the various types of behavior of the systems in terms of intermolecular forces and the method of calculating the coexisting liquid and vapor compositions in boiling point diagrams with…

  12. Nucleate Pool Boiling Performance of Smooth and Finned Tube Bundles in R-113 and R-114/Oil Mixtures

    DTIC Science & Technology

    1989-06-01

    tube bundles. Empirical and semi- empiribal equations have been proposed. Payvar [Ref. 21] used a one dimensional model derived from basic conservation... Payvar , P., "Analysis of Performance of Full Bundle Submerged Boilers," ASME HTD, Vol. 44, pp. 11-18, 1985. 22. Hahne, E. and Muller, J., "Boiling on a

  13. Dryout and Rewetting in the Pool Boiling Experiment Flown on STS-72 (PBE-2 B) and STS-77 (PBE-2 A)

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.; Lee, Ho Sung; Keller, Robert B.

    1998-01-01

    Experiments were conducted in the microgravity of space in which a pool of liquid (R-113), initially at a precisely defined pressure and temperature, is subjected to a step imposed heat flux from a semi-transparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. A total of nine tests were conducted at three levels of heat flux and three levels of subcooling in each of the two space experiments in a GAS canister on the STS-77, -72, respectively. Three (3) modes of propagation of boiling across the heater surface and subsequent vapor bubble growths were observed, in addition to the two (2) modes observed in the previous microgravity pool boiling space flights on STS-47, -57, and -60. Of particular interest were the extremely dynamic or "explosive" growths, which were determined to be the consequence of the large increase in the liquid-vapor interface area associated with the appearance of a corrugated or rough interface. Predictions of circumstances for its onset have been carried out. Assumptions were necessary regarding the character of disturbances necessary for the instabilities to grow. Also, a new vapor bubble phenomena was observed in which small vapor bubbles migrated toward a larger bubble, eventually coalescing with this larger bubble. The heat transfer was enhanced approximately 30% as a result of these migrating bubbles, which is believed to be a vapor bubble manifestation of Marangoni convection and/or molecular momentum effects, sometimes referred to as vapor recoil. The circumstances of heat flux and liquid subcooling necessary to produce heater surface dryout for an initially stagnant liquid subjected to an imposed heat flux have been more closely identified.

  14. Aging study of boiling water reactor high pressure injection systems

    SciTech Connect

    Conley, D.A.; Edson, J.L.; Fineman, C.F.

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  15. Heat transfer partitioning model of film boiling of particle cluster in a liquid pool: implementation in a CFD code

    NASA Astrophysics Data System (ADS)

    Mahapatra, Pallab S.; Ghosh, Koushik; Manna, Nirmal K.

    2015-08-01

    In the present work an effective heat transfer partitioning model of three phase (particles, liquid and vapour) flow and thermal interaction have been developed by a multi-fluid approach under film boiling condition. The in-house multiphase flow code is based on finite volume method of discretization and SIMPLE-based pressure correction algorithm. From consideration of mass, momentum and energy balance across the liquid-vapour interface, the vapour bubble generated from the vapour film have been modeled and incorporated in the code. Different interaction terms between each phase are incorporated depending upon the flow regime. The code is validated with in-house and available experimental results. Finally the effect of relevant parameters on void generation under film boiling condition of particles is estimated.

  16. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    SciTech Connect

    S.T. Revankar; W. Zhou; Gavin Henderson

    2008-07-08

    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to : 1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, 2) assess the RELAP5 and TRACE computer code against the experimental data, and 3) develop mathematical model and ehat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal- hydraulic codes assessment.

  17. Development of a surface array of microscale heaters to measure wall heat transfer underneath single bubbles in nucleate pool boiling

    SciTech Connect

    Kim, J.; Kalkur, T.S.

    1995-12-31

    A novel array of microscale heaters has been developed to measure the heat transfer coefficient at many points underneath individual bubbles during boiling as a function of space and time. This heater array enables the local heat transfer from a surface during the bubble growth and departure process to be measured with very high temporal and spatial resolution, and should allow better understanding of the boiling heat transfer mechanisms by pinpointing when and where in the bubble departure cycle large amounts of wall heat transfer occur. Such information can provide much needed data regarding the important heat transfer mechanisms during the bubble departure cycle, and can serve as benchmarks to validate many of the analytical and numerical models used to simulate boiling. The current array has 148 heaters within a 3 mm diameter circle. Feedback loops similar to those used in hot-wire anemometry are used to keep each heater at a constant temperature, and the power required to do this is directly related to the heat transfer coefficient. A description of the heater performance and construction, the feedback loops, the computer control circuit, and the calibration rig are described.

  18. Pool power control in remelting systems

    DOEpatents

    Williamson, Rodney L [Albuquerque, NM; Melgaard, David K [Albuquerque, NM; Beaman, Joseph J [Austin, TX

    2011-12-13

    An apparatus for and method of controlling a remelting furnace comprising adjusting current supplied to an electrode based upon a predetermined pool power reference value and adjusting the electrode drive speed based upon the predetermined pool power reference value.

  19. Pressure gradients and boiling as mechanisms for localizing ore in porphyry systems

    USGS Publications Warehouse

    Cunningham, Charles G.

    1978-01-01

    Fluid inclusions in ore zones of porphyry systems indicate that extensive boiling of hydrothermal fluids accompanies deposition of ore and gangue minerals. The boiling commonly accompanied a change from a lithostatic to a hydrostatic environment during evolution of an epizonal stock. Pressure gradients near the margin of the stock can determine whether ore or only a diffuse zone of mineralization is formed. A sharp drop in pressure in an epizonal environment is more likely to cause extensive boiling than a comparable change in a deeper environment, as the slope of the boiling curve steepens with an increase 'in pressure. The drop in pressure causes the hydrothermal fluids to boil and creates a crackle (stockwork) breccia, which hosts the veinlets of gangue quartz and ore minerals. The boiling selectively partitions CO2, H2S, and HCl into the vapor phase, changing the pH, composition, ionic strength, and thus the solubility product of metal complexes in the remaining liquid and causing the ore and gangue to come out of solution. Fluid inclusions trapped from boiling solutions can exhibit several forms, depending on the physical and chemical conditions of the hydrothermal fluid from which they were trapped. In one case, inclusions when heated can homogenize to either liquid or vapor at the same temperature, which is the true boiling temperature. In another case, homogenization of various inclusions can occur through a range of temperatures. The latter case results from the trapping of mixture of liquid and vapor. Variations in salinity can result from boiling of the hydrothermal fluid, or intermittent incorporation of high-salinity fluids from the magma, or trapping of fluids of varying densities at pressure-temperature conditions above the critical point of the fluid. In places, paleopressure-temperature transition zones can be recognized by fluid-inclusion homogenization temperatures and phase relationships and by the presence of anhydrite daughter minerals

  20. Experience with solar systems for heating swimming pools in Germany

    SciTech Connect

    Croy, R.; Peuser, F.A. )

    1994-07-01

    The results of the demonstration programme [open quotes]Efficient Use of Energy in Swimming Pool Construction[close quotes] has had a positive effect on the dissipation of solar systems for swimming pools. Infrared measurements show how a homogeneous flow can be achieved in the absorber field. The fact that solar systems are acceptable can be clearly in evidence that the behaviour of visitors to purely solar-heated pools with variable water temperature does not differ in principle from conventionally-heated pools with constant temperature. Economic considerations of the operation show that swimming pool solar systems are competitive with conventional heating systems.

  1. Performance Study and Dynamic Optimization Design for Thread Pool Systems

    SciTech Connect

    Xu, Dongping

    2004-12-19

    Thread pools have been widely used by many multithreaded applications. However, the determination of the pool size according to the application behavior still remains problematic. To automate this process, in this thesis we have developed a set of performance metrics for quantitatively analyzing thread pool performance. For our experiments, we built a thread pool system which provides a general framework for thread pool research. Based on this simulation environment, we studied the performance impact brought by the thread pool on different multithreaded applications. Additionally, the correlations between internal characterizations of thread pools and their throughput were also examined. We then proposed and evaluated a heuristic algorithm to dynamically determine the optimal thread pool size. The simulation results show that this approach is effective in improving overall application performance.

  2. A Novel Role of Three Dimensional Graphene Foam to Prevent Heater Failure during Boiling

    PubMed Central

    Ahn, Ho Seon; Kim, Ji Min; Park, Chibeom; Jang, Ji-Wook; Lee, Jae Sung; Kim, Hyungdae; Kaviany, Massoud; Kim, Moo Hwan

    2013-01-01

    We report a novel boiling heat transfer (NBHT) in reduced graphene oxide (RGO) suspended in water (RGO colloid) near critical heat flux (CHF), which is traditionally the dangerous limitation of nucleate boiling heat transfer because of heater failure. When the heat flux reaches the maximum value (CHF) in RGO colloid pool boiling, the wall temperature increases gradually and slowly with an almost constant heat flux, contrary to the rapid wall temperature increase found during water pool boiling. The gained time by NBHT would provide the safer margin of the heat transfer and the amazing impact on the thermal system as the first report of graphene application. In addition, the CHF and boiling heat transfer performance also increase. This novel boiling phenomenon can effectively prevent heater failure because of the role played by the self-assembled three-dimensional foam-like graphene network (SFG). PMID:23743619

  3. A novel role of three dimensional graphene foam to prevent heater failure during boiling.

    PubMed

    Ahn, Ho Seon; Kim, Ji Min; Park, Chibeom; Jang, Ji-Wook; Lee, Jae Sung; Kim, Hyungdae; Kaviany, Massoud; Kim, Moo Hwan

    2013-01-01

    We report a novel boiling heat transfer (NBHT) in reduced graphene oxide (RGO) suspended in water (RGO colloid) near critical heat flux (CHF), which is traditionally the dangerous limitation of nucleate boiling heat transfer because of heater failure. When the heat flux reaches the maximum value (CHF) in RGO colloid pool boiling, the wall temperature increases gradually and slowly with an almost constant heat flux, contrary to the rapid wall temperature increase found during water pool boiling. The gained time by NBHT would provide the safer margin of the heat transfer and the amazing impact on the thermal system as the first report of graphene application. In addition, the CHF and boiling heat transfer performance also increase. This novel boiling phenomenon can effectively prevent heater failure because of the role played by the self-assembled three-dimensional foam-like graphene network (SFG).

  4. BOILING REACTORS

    DOEpatents

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  5. The Parable of the Boiled System Safety Professional: Drift to Failure

    NASA Technical Reports Server (NTRS)

    Shivers, C. Herbert

    2011-01-01

    Recall from the Parable of the Boiled Frog, that tossing a frog into boiling water causes the frog to jump out and hop away while placing a frog in suitable temperature water and slowly bringing the water to a boil results in the frog boiling due to not being aware of the slowly increasing danger, theoretically, of course. System safety professionals must guard against allowing dangers to creep unnoticed into their projects and be ever alert to notice signs of impending problems. People have used various phrases related to the idea, most notably, latent conditions, James Reason in Managing the Risks of Organizational Accidents (1, pp 10-11), Drift to Failure, Sydney Dekker (2, pp 82-86) in Resilience Engineering: Chronicling the Emergence of Confused Consensus in Resilience Engineering: Concepts and Precepts, Hollnagel, Woods and Leveson, and normalization of deviance, Diane Vaughan in The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA (3). Reason also said, If eternal vigilance is the price of liberty, then chronic unease is the price of safety (1, p 37). Our challenge as system safety professionals is to be aware of the emergence of signals that warn us of slowly eroding safety margins. This paper will discuss how system safety professionals might better perform in that regard.

  6. Experimental study of void behavior in a suppression pool of a boiling water reactor during the blowdown period of a loss of coolant accident

    NASA Astrophysics Data System (ADS)

    Rassame, Somboon

    The possible failure of an Emergency Core Cooling System (ECCS) train due to a large amount of entrained gas in the ECCS pump suction piping in a Loss of Coolant Accident (LOCA) is one of the potential engineering problems faced in a Boiling Water Reactor (BWR) power plant. To analyze potential gas intrusion into the ECCS pump suction piping, the study of void behavior in the Suppression Pool (SP) during the LOCA is necessary. The void fraction distribution and void penetration are considered as the key parameters in the problem analysis. Two sets of experiments, namely, steady-state tests and transient tests were conducted using the Purdue University Multi-Dimensional Integral Test Assembly for ESBWR application (PUMA-E) to study void behavior in the SP during the blowdown. The design of the test apparatus used is based on the scaling analysis from a prototypical BWR containment (MARK-I) with consideration of the downcomer size, the SP water level, and the downcomer water submergence depth. Several instruments were installed to obtain the required experimental data, such as inlet gas volumetric flow, void fraction, pressure, and temperature. For the steady-state tests, the air was injected through a downcomer pipe in the SP in order to simulate the physical phenomena in the SP during the initial blowdown of LOCA. Thirty tests were performed with two different downcomer sizes (0.076 and 0.102 m), various air volumetric flow rates or flux (0.003 to 0.153 m3/s or 0.5 to 24.7 m/s), initial downcomer void conditions (fully filled with water, partially void, and completely void) and air velocity ramp rates (one to two seconds). Two phases of the experiment were observed, namely, the initial phase and the quasi-steady phase. The initial phase produced the maximum void penetration depth; and the quasi-steady phase showed less void penetration with oscillation in the void penetration. The air volumetric flow rate was found to have a minor effect on the void fraction

  7. Zero Boil-Off System Design and Thermal Analysis of the Bimodal Thermal Nuclear Rocket

    NASA Astrophysics Data System (ADS)

    Christie, Robert J.; Plachta, David W.

    2006-01-01

    Mars exploration studies at NASA are evaluating vehicles that incorporate Bimodal Nuclear Thermal Rocket (BNTR) propulsion which use a high temperature nuclear fission reactor and hydrogen to produce thermal propulsion. The hydrogen propellant is to be stored in liquid state for periods up to 18 months. To prevent boil-off of the liquid hydrogen, a system of passive and active components are needed to prevent heat from entering the tanks and to remove any heat that does. This report describes the design of the system components used for the BNTR Crew Transfer Vehicle and the thermal analysis performed. The results show that Zero Boil-Off (ZBO) can be achieved with the electrical power allocated for the ZBO system.

  8. Zero Boil-Off System Design and Thermal Analysis of the Bimodal Thermal Nuclear Rocket

    SciTech Connect

    Christie, Robert J.; Plachta, David W.

    2006-01-20

    Mars exploration studies at NASA are evaluating vehicles that incorporate Bimodal Nuclear Thermal Rocket (BNTR) propulsion which use a high temperature nuclear fission reactor and hydrogen to produce thermal propulsion. The hydrogen propellant is to be stored in liquid state for periods up to 18 months. To prevent boil-off of the liquid hydrogen, a system of passive and active components are needed to prevent heat from entering the tanks and to remove any heat that does. This report describes the design of the system components used for the BNTR Crew Transfer Vehicle and the thermal analysis performed. The results show that Zero Boil-Off (ZBO) can be achieved with the electrical power allocated for the ZBO system.

  9. Fluid phase thermodynamics : I) nucleate pool boiling of oxygen under magnetically enhanced gravity and II) superconducting cavity resonators for high-stability frequency references and precision density measurements of helium-4 gas

    NASA Astrophysics Data System (ADS)

    Corcovilos, Theodore Allen

    Although fluids are typically the first systems studied in undergraduate thermodynamics classes, we still have only a rudimentary phenomenological understanding of these systems outside of the classical and equilibrium regimes. Two experiments will be presented. First, we present progress on precise measurements of helium-4 gas at low temperatures (1 K-5 K). We study helium because at low densities it is an approximately ideal gas but at high densities the thermodynamic properties can be predicted by numerical solutions of Schroedinger's equation. By utilizing the high resolution and stability in frequency of a superconducting microwave cavity resonator we can measure the dielectric constant of helium-4 to parts in 109, corresponding to an equivalent resolution in density. These data will be used to calculate the virial coefficients of the helium gas so that we may compare with numerical predictions from the literature. Additionally, our data may allow us to measure Boltzmann's constant to parts in 108, a factor of 100 improvement over previous measurements. This work contains a description of the nearly-completed apparatus and the methods of operation and data analysis for this experiment. Data will be taken by future researchers.The second experiment discussed is a study of nucleate pool boiling. To date, no adequate quantitative model exists of this everyday phenomenon. In our experiment, we vary one parameter inaccessible to most researchers, gravity, by applying a magnetic force to our test fluid, oxygen. Using this technique, we may apply effective gravities of 0-80 times Earth's gravitational acceleration (g). In this work we present heat transfer data for the boiling of oxygen at one atmosphere ambient pressure for effective gravity values between 1g and 16g . Our data describe two relationships between applied heat flux and temperature differential: at low heat flux the system obeys a power law and at high heat flux the behavior is linear. We find that the

  10. Boiling Fluids Behave Quite Differently in Space

    NASA Video Gallery

    The boiling process is really different in space, since the vapor phase of a boiling liquid does not rise via buoyancy. Spacecraft and Earth-based systems use boiling to efficiently remove large am...

  11. Pressure suppression containment system for boiling water reactor

    DOEpatents

    Gluntz, Douglas M.; Nesbitt, Loyd B.

    1997-01-01

    A system for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs.

  12. Pressure suppression containment system for boiling water reactor

    DOEpatents

    Gluntz, D.M.; Nesbitt, L.B.

    1997-01-21

    A system is disclosed for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs. 3 figs.

  13. The Boiling eXperiment Facility (BXF) for the Microgravity Science Glovebox (MSG)

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Chao, David; Vergilii, Frank

    2006-01-01

    Boiling is an effective means of cooling by removing heat from surfaces through vaporization of a working fluid. It is also affected by both the magnitude and direction of gravity. By conducting pool boiling tests in microgravity, the effect of buoyancy n the overall boiling process and the relative magnitude of other phenomena can be assessed. The Boiling eXperiment Facility (BXF) is being built for the Microgravity Science Glovebox. This facility will conduct two pool boiling studies. The first study the Microheater Array Boiling Experiment (MABE) uses two 96 element microheater arrays, 2.7 mm and 7.0 mm in size, to measure localized hear fluxes while operating at a constant temperature. The other experiment, the Nucleate Pool Boiling eXperiment (NPBX) uses a 85 mm diameter heater wafer that has been "seeded" with five individually-controlled nucleation sites to study bubble nucleation, growth, coalescence and departure. The BXF uses normal-perfluorohexane as the test fluid and will operate between pressures of 60 to 244 Pa. and temperatures of 35 to 60 C. Both sets of experimental heaters are highly instrumented. Pressure and bulk fluid temperature measurements will be made with standard rate video. A high speed video system will be used to visualize the boiling process through the bottom of the MABE heater arrays. The BXF is currently scheduled to fly on Utilization Flight-13A.1 to the ISS with facility integration into the MSG and operation during Increment 15

  14. The effects of aging on Boiling Water Reactor core isolation cooling system

    SciTech Connect

    Lee, Bom Soon

    1994-06-01

    A study was performed to assess the effects of aging on the Reactor Core Isolation Cooling system in commercial Boiling Water Reactors. This study is part of the Nuclear Plant Aging Research program sponsored by the US Nuclear Regulatory Commission. The failure data, from national databases, as well as plant specific data were reviewed and analyzed to understand the effects of aging on the RCIC system. This analysis identified important components that should receive the highest priority in terms of aging management. The aging characterization provided information on the effects of aging on component failure frequency, failure modes, and failure causes.

  15. Specifics of boiling and condensation in upward flow in minichannel systems

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. V.; Safonov, S. A.; Shamirzaev, A. S.

    2015-12-01

    The results of experimental and numerical studies focused on determining the mechanism of heat transfer during boiling and condensation in a single-row system of minichannels in upward flow conditions at a mass flux of 30 and 50 kg/(m2 s) are presented. Refrigerant R21, which models cryogenic liquids at low temperatures, was used as the working liquid. The determining influence of self-organization of the flow under the influence of capillary forces on the processes of heat transfer during a phase transition in the system of minichannels at low mass and heat fluxes was revealed.

  16. Numerical Simulations of Bubble Dynamics and Heat Transfer in Pool Boiling---Including the Effects of Conjugate Conduction, Level of Gravity, and Noncondensable Gas Dissolved in the Liquid

    NASA Astrophysics Data System (ADS)

    Aktinol, Eduardo

    Due to the complex nature of the subprocesses involved in nucleate boiling, it has not been possible to develop comprehensive models or correlations despite decades of accumulated data and analysis. Complications such as the presence of dissolved gas in the liquid further confound attempts at modeling nucleate boiling. Moreover, existing empirical correlations may not be suitable for new applications, especially with regards to varying gravity level. More recently, numerical simulations of the boiling process have proven to be capable of reliably predicting bubble dynamics and associated heat transfer by showing excellent agreement with experimental data. However, most simulations decouple the solid substrate by assuming constant wall temperature. In the present study complete numerical simulations of the boiling process are performed---including conjugate transient conduction in the solid substrate and the effects of dissolved gas in the liquid at different levels of gravity. Finite difference schemes are used to discretize the governing equations in the liquid, vapor, and solid phases. The interface between liquid and vapor phases is tracked by a level set method. An iterative procedure is used at the interface between the solid and fluid phases. Near the three-phase contact line, temperatures in the solid are observed to fluctuate significantly over short periods. The results show good agreement with the data available in the literature. The results also show that waiting and growth periods can be related directly to wall superheat. The functional relationship between waiting period and wall superheat is found to agree well with empirical correlations reported in the literature. For the case of a single bubble in subcooled nucleate boiling, the presence of dissolved gas in the liquid is found to cause noncondensables to accumulate at the top of the bubble where most condensation occurs. This results in reduced local saturation temperature and condensation rates

  17. Carbon dynamics in peatland pool systems: the role of light

    NASA Astrophysics Data System (ADS)

    Pickard, Amy; Heal, Kate; McLeod, Andy; Dinsmore, Kerry

    2016-04-01

    Open-water pools are widespread in peatlands and are considered to represent biogeochemical hotspots within the peatland landscape. However the contribution of pool systems to wider peatland C cycling has not been quantified fully and there is a lack of knowledge of the role of photochemical processes in such environments. In this study, light exposure experiments were conducted in two contrasting pools to test the reactivity of aquatic C. The first study site was located at Cross Lochs (CL), Forsinard, in the Flow Country of Northern Scotland, in a 412 m2 pool characterised by low dissolved organic carbon (DOC) concentrations (˜15 mg C L-1). The second site was located at Red Moss of Balerno (RM), a raised bog in central Scotland, in a 48 m2 pool with high DOC concentrations (˜35 mg C L-1). Experiments took place over 9 days in situ at each pool in mid-summer 2015, with 500 mL water samples contained in bags transparent to sunlight and in opaque control bags. After field exposure, optical, chemical and stable C isotope analyses were conducted on the samples. Significant differences in biogeochemical cycling of DOC were detected between the two systems, with DOC losses as a percentage of the total C pool 15% higher at RM than at CL after light exposure. The mean DOC concentration of light exposed samples at RM declined steeply initially, with 83% observed DOC degradation occurring by day 3 of the experiment. Total losses of 7.9 mg DOC L-1were observed in light exposed samples at RM, along with decreasing E4:E6 ratios, suggesting that material remaining at the end of the experiment was humified. Depletion of DOC was positively correlated with production of CO2 at both sites, with concentrations of up to 4.3 mg CO2-C L-1 recorded at RM. Stable C isotope signatures at both sites were altered under light treatment, as demonstrated by the production of enriched δ13C-DOC (+0.46 ‰ relative to opaque bags) and depleted δ13C-DIC (-0.97 ‰ relative to opaque bags) at

  18. A Low Cost, Self Acting, Liquid Hydrogen Boil-Off Recovery System

    NASA Technical Reports Server (NTRS)

    Pelfrey, Joy W.; Sharp, Kirk V. (Technical Monitor)

    2001-01-01

    The purpose of this research was to develop a prototype liquid hydrogen boll-off recovery system. Perform analyses to finalize recovery system cycle, design detail components, fabricate hardware, and conduct sub-component, component, and system level tests leading to the delivery of a prototype system. The design point and off-design analyses identified cycle improvements to increase the robustness of the system by adding a by-pass heat exchanger. Based on the design, analysis, and testing conducted, the recovery system will liquefy 31% of the gaseous boil off from a liquid hydrogen storage tank. All components, including a high speed, miniature turbocompressor, were designed and manufacturing drawings were created. All hardware was fabricated and tests were conducted in air, helium, and hydrogen. Testing validated the design, except for the turbocompressor. A rotor-to-stator clearance issue was discovered as a result of a concentricity tolerance stack-up.

  19. Aging assessment of the boiling-water reactor (BWR) standby liquid control system. Phase 1

    SciTech Connect

    Orton, R.D.; Johnson, A.B.; Buckley, G.D.; Larson, L.L.

    1992-10-01

    Pacific Northwest Laboratory conducted a Phase I aging assessment of the standby liquid control (SLC) system used in boiling-water reactors. The study was based on detailed reviews of SLC system component and operating experience information obtained from the Nuclear Plant Reliability Database System, the Nuclear Document System, Licensee Event Reports, and other databases. Sources dealing with sodium pentaborate, borates, boric acid, and the effects of environment and corrosion in the SLC system were reviewed to characterize chemical properties and corrosion characteristics of borated solutions. The leading aging degradation concern to date appears to be setpoint drift in relief valves, which has been discovered during routine surveillance and is thought to be caused by mechanical wear. Degradation was also observed in pump seals and internal valves. In general, however, the results of the Phase I study suggest that age-related degradation of SLC systems has not been serious.

  20. Aging assessment of the boiling-water reactor (BWR) standby liquid control system

    SciTech Connect

    Orton, R.D.; Johnson, A.B.; Buckley, G.D.; Larson, L.L.

    1992-10-01

    Pacific Northwest Laboratory conducted a Phase I aging assessment of the standby liquid control (SLC) system used in boiling-water reactors. The study was based on detailed reviews of SLC system component and operating experience information obtained from the Nuclear Plant Reliability Database System, the Nuclear Document System, Licensee Event Reports, and other databases. Sources dealing with sodium pentaborate, borates, boric acid, and the effects of environment and corrosion in the SLC system were reviewed to characterize chemical properties and corrosion characteristics of borated solutions. The leading aging degradation concern to date appears to be setpoint drift in relief valves, which has been discovered during routine surveillance and is thought to be caused by mechanical wear. Degradation was also observed in pump seals and internal valves. In general, however, the results of the Phase I study suggest that age-related degradation of SLC systems has not been serious.

  1. Thermoplastic fusion bonding using a pressure-assisted boiling point control system.

    PubMed

    Park, Taehyun; Song, In-Hyouk; Park, Daniel S; You, Byoung Hee; Murphy, Michael C

    2012-08-21

    A novel thermoplastic fusion bonding method using a pressure-assisted boiling point (PABP) control system was developed to apply precise temperatures and pressures during bonding. Hot embossed polymethyl methacrylate (PMMA) components containing microchannels were sealed using the PABP system. Very low aspect ratio structures (AR = 1/100, 10 μm in depth and 1000 μm in width) were successfully sealed without collapse or deformation. The integrity and strength of the bonds on the sealed PMMA devices were evaluated using leakage and rupture tests; no leaks were detected and failure during the rupture tests occurred at pressures greater than 496 kPa. The PABP system was used to seal 3D shaped flexible PMMA devices successfully.

  2. Experimental investigation into effects of ultrasonic vibration on pool boiling heat transfer performance of horizontal low-finned U-tube in TiO2/R141b nanofluid

    NASA Astrophysics Data System (ADS)

    Chang, Tong-Bou; Wang, Zi-Long

    2016-11-01

    An experimental investigation was performed into the pool boiling heat transfer performance of a low-finned U-tube immersed in TiO2/R141b nanofluid with four different nanoparticle loadings (0, 0.0001, 0.001, and 0.01 vol%). The energy-dispersive X-ray spectrometry results revealed that some of the TiO2 nanoparticles adhered to the heated surface during boiling, and therefore increased the thermal resistance. The heat transfer performance of the nanofluids with particle loadings of 0.0001, 0.001 and 0.01 vol% was thus found to be reduced by around 10, 20 and 50 %, respectively, compared to that of pure R141b refrigerant. Accordingly, an ultrasonic vibration crusher was used to inhibit the formation of the TiO2 nano-sorption layer on the U-tube surface. The ultrasonic vibration suppressed the deposition of TiO2 nanoparticles and improved the heat transfer performance of the nanofluids as a result. Of the four working fluids, the nanofluid with a particle loading of 0.0001 vol% yielded the optimal heat transfer performance (i.e., a heat transfer coefficient around 30 % higher than that of pure R141b refrigerant.)

  3. Tunable molten oxide pool assisted plasma-melter vitrification systems

    DOEpatents

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical

  4. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOEpatents

    Hill, P.R.

    1994-12-27

    A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.

  5. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOEpatents

    Hill, Paul R.

    1994-01-01

    A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.

  6. Microheater Array Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    By conducting pool boiling tests in microgravity, the effect of buoyancy on the overall boiling process and the relative magnitude of other phenomena can be assessed. Data from KC-135 and sounding rocket experiments indicate little effect of gravity on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble, surrounded by smaller satellite bubbles, moved over the surface, occasionally causing nucleation. Once formed, the primary bubble size remained constant for a given superheat, indicating evaporation at the bubble base is balanced with condensation on the bubble cap. The primary bubble's size increased with wall superheat. Most heaters under the primary bubble had low heat transfer rates, suggesting liquid dryout. Strong Marangoni convection developed in microgravity, forming a 'jet' into the bulk liquid that forced the bubble onto the heater. An experiment is being designed for the. Microgravity Science Glovebox. This experiment uses two 96 element microheater arrays, 2.7 and 7.0 mm in size. These heaters are individually controlled to operate at a constant temperature, measuring local heat fluxes as a function of time and space. Most boiling experiments operate at constant wall heat flux with larger heaters, allowing only time and space-averaged measurements. Each heater is about the bubble departure size in normal gravity, but significantly smaller than the bubble departure size in reduced gravity.

  7. The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems

    NASA Astrophysics Data System (ADS)

    Smith, Norman O.

    2004-03-01

    Following an earlier paper ( J. Chem. Educ. 1997, 74, 1080-1084 ) on binary melting point diagrams, a method of constructing boiling point diagrams for each of the kinds of behavior of binary miscible liquid pairs (those without an azeotrope, those with a maximum boiling azeotrope, and those with a minimum boiling azeotrope) is described and illustrated. Necessary data are the boiling points and enthalpies of vaporization of the components, and parameters relating the activity coefficients of the liquid components to their concentrations. The procedure requires the solution of pairs of simultaneous equations by the method of successive approximation. It is shown how the resulting diagram reflects the nature of the intermolecular forces and the proximity of the boiling points of the components to each other.

  8. Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Hasan, Mohammad M.

    2000-01-01

    Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced

  9. Boiling incipience and convective boiling of neon and nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of + or - 15 percent.

  10. MODULAR AND FULL SIZE SIMPLIFIED BOILING WATER REACTOR DESIGN WITH FULLY PASSIVE SAFETY SYSTEMS

    SciTech Connect

    M. Ishii; S. T. Revankar; T. Downar; Y. Xu, H. J. Yoon; D. Tinkler; U. S. Rohatgi

    2003-06-16

    OAK B204 The overall goal of this three-year research project was to develop a new scientific design of a compact modular 200 MWe and a full size 1200 MWe simplified boiling water reactors (SBWR). Specific objectives of this research were: (1) to perform scientific designs of the core neutronics and core thermal-hydraulics for a small capacity and full size simplified boiling water reactor, (2) to develop a passive safety system design, (3) improve and validate safety analysis code, (4) demonstrate experimentally and analytically all design functions of the safety systems for the design basis accidents (DBA) and (5) to develop the final scientific design of both SBWR systems, 200 MWe (SBWR-200) and 1200 MWe (SBWR-1200). The SBWR combines the advantages of design simplicity and completely passive safety systems. These advantages fit well within the objectives of NERI and the Department of Energy's focus on the development of Generation III and IV nuclear power. The 3-year research program was structured around seven tasks. Task 1 was to perform the preliminary thermal-hydraulic design. Task 2 was to perform the core neutronic design analysis. Task 3 was to perform a detailed scaling study and obtain corresponding PUMA conditions from an integral test. Task 4 was to perform integral tests and code evaluation for the DBA. Task 5 was to perform a safety analysis for the DBA. Task 6 was to perform a BWR stability analysis. Task 7 was to perform a final scientific design of the compact modular SBWR-200 and the full size SBWR-1200. A no cost extension for the third year was requested and the request was granted and all the project tasks were completed by April 2003. The design activities in tasks 1, 2, and 3 were completed as planned. The existing thermal-hydraulic information, core physics, and fuel lattice information was collected on the existing design of the simplified boiling water reactor. The thermal-hydraulic design were developed. Based on a detailed integral

  11. Fundamental study of molten pool depth measurement method using an ultrasonic phased array system

    NASA Astrophysics Data System (ADS)

    Mizota, Hirohisa; Nagashima, Yoshiaki; Obana, Takeshi

    2015-07-01

    The molten pool depth measurement method using an ultrasonic phased array system has been developed. The molten pool depth distribution is evaluated by comparing the times taken by the ultrasonic wave to propagate through a molten pool and a solid-phase and through only the solid-phase near the molten pool. Maximum molten pool depths on a flat type-304 stainless-steel plate, formed with a gas tungsten arc welding machine for different welding currents from 70 to 150 A, were derived within an error of ±0.5 mm.

  12. Human Adaptive Behavior in Common Pool Resource Systems

    PubMed Central

    Brandt, Gunnar; Merico, Agostino; Vollan, Björn; Schlüter, Achim

    2012-01-01

    Overexploitation of common-pool resources, resulting from uncooperative harvest behavior, is a major problem in many social-ecological systems. Feedbacks between user behavior and resource productivity induce non-linear dynamics in the harvest and the resource stock that complicate the understanding and the prediction of the co-evolutionary system. With an adaptive model constrained by data from a behavioral economic experiment, we show that users’ expectations of future pay-offs vary as a result of the previous harvest experience, the time-horizon, and the ability to communicate. In our model, harvest behavior is a trait that adjusts to continuously changing potential returns according to a trade-off between the users’ current harvest and the discounted future productivity of the resource. Given a maximum discount factor, which quantifies the users’ perception of future pay-offs, the temporal dynamics of harvest behavior and ecological resource can be predicted. Our results reveal a non-linear relation between the previous harvest and current discount rates, which is most sensitive around a reference harvest level. While higher than expected returns resulting from cooperative harvesting in the past increase the importance of future resource productivity and foster sustainability, harvests below the reference level lead to a downward spiral of increasing overexploitation and disappointing returns. PMID:23285180

  13. Pool Purification

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Caribbean Clear, Inc. used NASA's silver ion technology as a basis for its automatic pool purifier. System offers alternative approach to conventional purification chemicals. Caribbean Clear's principal markets are swimming pool owners who want to eliminate chlorine and bromine. Purifiers in Caribbean Clear System are same silver ions used in Apollo System to kill bacteria, plus copper ions to kill algae. They produce spa or pool water that exceeds EPA Standards for drinking water.

  14. Geysering in boiling channels

    SciTech Connect

    Aritomi, Masanori; Takemoto, Takatoshi; Chiang, Jing-Hsien

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  15. Flow Boiling and Condensation Experiment

    NASA Video Gallery

    The Flow Boiling and Condensation Experiment is another investigation that examines the flow of a mixture of liquids and the vapors they produce when in contact with hot space system equipment. Coo...

  16. A Study of Nucleate Boiling with Forced Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1999-01-01

    The ultimate objective of basic studies of flow boiling in microgravity is to improve the understanding of the processes involved, as manifested by the ability to predict its behavior. This is not yet the case for boiling heat transfer even in earth gravity, despite the considerable research activity over the past 30 years. The elements that constitute the nucleate boiling process - nucleation, growth, motion, and collapse of the vapor bubbles (if the bulk liquid is subcooled) - are common to both pool and flow boiling. It is well known that the imposition of bulk liquid motion affects the vapor bubble behavior relative to pool boiling, but does not appear to significantly influence the heat transfer. Indeed, it has been recommended in the past that empirical correlations or experimental data of pool boiling be used for design purposes with forced convection nucleate boiling. It is anticipated that such will most certainly not be possible for boiling in microgravity, based on observations made with pool boiling in microgravity. In earth gravity buoyancy will act to remove the vapor bubbles from the vicinity of the heater surface regardless of how much the imposed bulk velocity is reduced, depending, of course, on the geometry of the system. Vapor bubbles have been observed to dramatically increase in size in pool boiling in microgravity, and the heat flux at which dryout took place was reduced considerably below what is generally termed the critical heat flux (CHF) in earth gravity, depending on the bulk liquid subcooling. However, at heat flux levels below dryout, the nucleate pool boiling process was enhanced considerably over that in earth gravity, in spite of the large vapor bubbles formed in microgravity and perhaps as a consequence. These large vapor bubbles tended to remain in the vicinity of the heater surface, and the enhanced heat transfer appeared to be associated with the presence of what variously has been referred to as a liquid microlayer between the

  17. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    NASA Astrophysics Data System (ADS)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  18. Nucleate Pool Boiling Characteristics Of R-124

    DTIC Science & Technology

    1993-03-01

    Psat Tsump 3.25 2.14 2.14 2.18 1,.84 -13.3 Thetab Htube Qdo 1.663 6.475E+62 6.879E+02 Data Set Number - 2 Bulk Oil % - 3.6 TIME: 15:42:22 TC No: 1 2 3 4...S 6 7 Tep : 3.58 3.86 3.72 3.61 3.AS 3.64 -99.99 -95.99"Two TliQd TI&QdZ Tvapr Psa T sumo 3.63 2.22 2.24 2.2S 19.41 -13.2 Theteb Htube Qdo 1.377...Tliad TllqdZ Tvaor Pset Tsump 4.09 2.69 2.21 2.17 16.83 -13.1 Thetab Ntube Qdo 1.921 6.523E#92 1.2S3E+63 Data Set Number * 4 Bulk Oil % - 3.6 TIME: 15:47

  19. Fuzzy Pool Balance: An algorithm to achieve a two dimensional balance in distribute storage systems

    NASA Astrophysics Data System (ADS)

    Wu, Wenjing; Chen, Gang

    2014-06-01

    The limitation of scheduling modules and the gradual addition of disk pools in distributed storage systems often result in imbalances among their disk pools in terms of both disk usage and file count. This can cause various problems to the storage system such as single point of failure, low system throughput and imbalanced resource utilization and system loads. An algorithm named Fuzzy Pool Balance (FPB) is proposed here to solve this problem. The input of FPB is the current file distribution among disk pools and the output is a file migration plan indicating what files are to be migrated to which pools. FPB uses an array to classify the files by their sizes. The file classification array is dynamically calculated with a defined threshold named Tmax that defines the allowed pool disk usage deviations. File classification is the basis of file migration. FPB also defines the Immigration Pool (IP) and Emigration Pool (EP) according to the pool disk usage and File Quantity Ratio (FQR) that indicates the percentage of each category of files in each disk pool, so files with higher FQR in an EP will be migrated to IP(s) with a lower FQR of this file category. To verify this algorithm, we implemented FPB on an ATLAS Tier2 dCache production system. The results show that FPB can achieve a very good balance in both free space and file counts, and adjusting the threshold value Tmax and the correction factor to the average FQR can achieve a tradeoff between free space and file count.

  20. Comparison between reverse Brayton and Kapitza based LNG boil-off gas reliquefaction system using exergy analysis

    NASA Astrophysics Data System (ADS)

    Kochunni, Sarun Kumar; Chowdhury, Kanchan

    2017-02-01

    LNG boil-off gas (BOG) reliquefaction systems in LNG carrier ships uses refrigeration devices which are based on reverse Brayton, Claude, Kapitza (modified Claude) or Cascade cycles. Some of these refrigeration devices use nitrogen as the refrigerants and hence nitrogen storage vessels or nitrogen generators needs to be installed in LNG carrier ships which consume space and add weight to the carrier. In the present work, a new configuration based on Kapitza liquefaction cycle which uses BOG itself as working fluid is proposed and has been compared with Reverse Brayton Cycle (RBC) on sizes of heat exchangers and compressor operating parameters. Exergy analysis is done after simulating at steady state with Aspen Hysys 8.6® and the comparison between RBC and Kapitza may help designers to choose reliquefaction system with appropriate process parameters and sizes of equipment. With comparable exergetic efficiency as that of an RBC, a Kaptiza system needs only BOG compressor without any need of nitrogen gas.

  1. Boiling of the interface between two immiscible liquids below the bulk boiling temperatures of both components.

    PubMed

    Pimenova, Anastasiya V; Goldobin, Denis S

    2014-11-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.

  2. Multigene expression in stable CHO cell pools generated with the piggyBac transposon system.

    PubMed

    Balasubramanian, Sowmya; Wurm, Florian M; Hacker, David L

    2016-09-01

    Heterogenous populations of recombinant cells (cell pools) stably expressing 1-4 transgenes were generated from Chinese hamster overy (CHO) cells with the piggyBac (PB) transposon system. The cell pools produced different combinations of three model proteins-enhanced green fluorescent protein (EGFP), secreted alkaline phosphatase (SEAP), and a monoclonal IgG1 antibody. Each transgene was present on a separate PB donor plasmid with either the same or a different selection gene. In both cases, we obtained PB-derived cell pools with higher recombinant protein yields than from cell pools generated by conventional gene delivery. In PB-derived cell pools generated using a single selection agent, both protein production and the number of integrated copies of each transgene declined as the number of transfected transgenes increased. However, the total number of integrated transgenes was similar regardless of the number of different transgenes transfected. For PB-derived cell pools generated by selection of each transgene with a different selection agent, the total number of integrated transgenes increased with the number of transfected transgenes. The results suggest that the generation of cell pools producing multiple recombinant proteins is feasible and that the method is more efficient when each individual transgene is selected with a different marker. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1308-1317, 2016.

  3. In situ technique for measuring heat transfer from a power transistor to a boiling liquid

    NASA Astrophysics Data System (ADS)

    Struble, C. L.; Witte, L. C.

    1994-05-01

    A technique for in situ measurement of temperature and heat flux in boiling heat transfer from electronic chips is described. The method was used to obtain accurate partial boiling curves for jet impingement and pool boiling in R-113. While the characteristics of the heat transfer behavior agree with previous data, the data in general lie below data obtained with specialized test chips.

  4. How Does Water Boil?

    NASA Astrophysics Data System (ADS)

    Zahn, Dirk

    2004-11-01

    Insight into the boiling of water is obtained from molecular dynamics simulations. The process is initiated by the spontaneous formation of small vacuum cavities in liquid water. By themselves, these defects are very short lived. If, however, several cavities occur at close distances, they are likely to merge into larger vacuum holes. At the liquid-vapor interfaces, single or small groups of water molecules tend to leave the liquid surface. Once the system is propagated beyond the transition state, these evaporation events outnumber the competing reintegration into the hydrogen-bonded network.

  5. Design, Construction, and Qualification of a Microscale Heater Array for Use in Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Rule, T. D.; Kim, J.; Kalkur, T. S.

    1998-01-01

    Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of wall temperature and heat flux near the wall would add to the database of knowledge which is necessary to understand the mechanisms of nucleate boiling. A heater array has been developed which contains 96 heater elements within a 2.5 mm square area. The temperature of each heater element is held constant by an electronic control system similar to a hot-wire anemometer. The voltage that is being applied to each heater element can be measured and digitized using a high-speed A/D converter, and this digital information can be compiled into a series of heat-flux maps. Information for up to 10,000 heat flux maps can be obtained each second. The heater control system, the A/D system and the heater array construction are described in detail. Results are presented which show that this is an effective method of measuring the local heat flux during nucleate and transition boiling. Heat flux maps are obtained for pool boiling in FC-72 on a horizontal surface. Local heat flux variations are shown to be three to six times larger than variations in the spatially averaged heat flux.

  6. Boiling Experiment Facility for Heat Transfer Studies in Microgravity

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; McQuillen, John; Chao, David

    2008-01-01

    Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.

  7. A review on boiling heat transfer enhancement with nanofluids

    PubMed Central

    2011-01-01

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement. PMID:21711794

  8. A review on boiling heat transfer enhancement with nanofluids.

    PubMed

    Barber, Jacqueline; Brutin, David; Tadrist, Lounes

    2011-04-04

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

  9. Automatic Welding System of Aluminum Pipe by Monitoring Backside Image of Molten Pool Using Vision Sensor

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.

  10. An investigation of vapor concentration during boiling of liquid mixtures

    SciTech Connect

    Utaka, Yoshio; Takahashi, Katsuaki; Tsuboi, Takao

    1999-07-01

    The objective of the study is to clarify experimentally the variation of the vapor concentration of binary mixture generated during nucleate boiling in a saturated pool under various boiling conditions. The generated vapor concentrations in the bulk vapor layer were measured for the binary mixtures of water-ethanol and ethanol-acetone under various liquid concentrations, the heat fluxes and the liquid layer heights from the heated thin wires at the atmospheric pressure. The main experimental apparatus for measuring concentration of bulk vapor in the boiling and condensation system is shown. Two methods of measuring concentration, i.e., the dew point method and the laser absorption method were adopted. The dew point measurement was carried out by utilizing the copper heat transfer block installed in the central part of the vapor layer in the vessel. The commencement of the condensation was observed directly for determining the dew point by controlling its temperature. The laser light having wavelength of 3.39 micron meters was used for the laser light absorption method utilizing its absorptive property against ethanol vapor. The measured results by using both methods coincided well with each other. The measured concentrations of the bulk vapor for various superheatings of heated wires, the depth of liquid mixture layer and liquid concentrations were almost independent of those parameters and were almost in equilibrium with bulk liquid conditions even under the higher surface superheating and the lower liquid heights.

  11. Analysis of an open-air swimming pool solar heating system by using an experimentally validated TRNSYS model

    SciTech Connect

    Ruiz, Elisa; Martinez, Pedro J.

    2010-01-15

    In the case of private outdoor swimming pools, seldom larger than 100 m{sup 2}, conventional auxiliary heating systems are being installed less and less. Solar heating is an option to extend the swimming season. The temperature evolution of an open-air swimming pool highly depends on the wind speed directly on the water surface, which at the same time is influenced by the surroundings of the pool. In this paper, the TRNSYS model of a private open-air pool with a 50-m{sup 2} surface was validated by registering the water temperature evolution and the meteorological data at the pool site. Evaporation is the main component of energy loss in swimming pools. Six different sets of constants found in literature were considered to evaluate the evaporative heat transfer coefficient with the purpose of finding the most suitable one for the TRNSYS pool model. In order to do that, the evolution of the pool water temperature predicted by the TRNSYS pool model was compared with the experimentally registered one. The simulation with TRNSYS of the total system, including the swimming pool and the absorber circuit integrated into the existing filter circuit, provided information regarding the increase of the pool temperature for different collector areas during the swimming season. This knowledge, together with the economic costs, support the decision about the absorber field size. (author)

  12. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

    SciTech Connect

    Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard; Klug, Matthew T.; Hörantner, Maximilian T.; Johnston, Michael B.; Nicholas, Robin J.; Moore, David T.; Snaith, Henry J.

    2017-01-01

    Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aprotic solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.

  13. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  14. Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection

    NASA Astrophysics Data System (ADS)

    Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.

  15. Influence of the wettability on the boiling onset.

    PubMed

    Bourdon, B; Rioboo, R; Marengo, M; Gosselin, E; De Coninck, J

    2012-01-17

    Experimental investigation of pool boiling is conducted in stationary conditions over very smooth bronze surfaces covered by a very thin layer of gold presenting various surface treatments to isolate the role of wettability. We show that even with surfaces presenting mean roughness amplitudes below 10 nm the role of surface topography is of importance. The study shows also that wettability alone can trigger the boiling and that the boiling position on the surface can be controlled by chemical grafting using for instance alkanethiol. Moreover, boiling curves, that is, heat flux versus the surface superheat (which is the difference between the solid surface temperature and the liquid saturation temperature), are recorded and enabled to quantify, for this case, the significant reduction of the superheat at the onset of incipient boiling due to wettability.

  16. Aspects of subcooled boiling

    SciTech Connect

    Bankoff, S.G.

    1997-12-31

    Subcooled boiling boiling refers to boiling from a solid surface where the bulk liquid temperature is below the saturation temperature (subcooled). Two classes are considered: (1) nucleate boiling, where, for large subcoolings, individual bubbles grow and collapse while remaining attached to the solid wall, and (2) film boiling, where a continuous vapor film separates the solid from the bulk liquid. One mechanism by which subcooled nucleate boiling results in very large surface heat transfer coefficient is thought to be latent heat transport within the bubble, resulting from simultaneous evaporation from a thin residual liquid layer at the bubble base, and condensation at the polar bubble cap. Another is the increased liquid microconvection around the oscillating bubble. Two related problems have been attacked. One is the rupture of a thin liquid film subject to attractive and repulsive dispersion forces, leading to the formation of mesoscopic drops, which then coalesce and evaporate. Another is the liquid motion in the vicinity of an oscillating contact line, where the bubble wall is idealized as a wedge of constant angle sliding on the solid wall. The subcooled film boiling problem has been attacked by deriving a general long-range nonlinear evolution equation for the local thickness of the vapor layer. Linear and weakly-nonlinear stability results have been obtained. A number of other related problems have been attacked.

  17. Variable-Gravity Effects on A Single-Phase Partially-Confined Spray Cooling System (Postprint)

    DTIC Science & Technology

    2006-07-01

    one- component flow with heat transfer in microgravity is seen in many thermal management systems such as flow boiling systems , heat pipes, loop...of, and to design, prototypes for microgravity1,2. Variable gravity research on pool boiling with and without subcooling , concentrating on...showed that small bubbles will coalesce into a large bubble on the surface of the heater in reduced gravity. During subcooled boiling

  18. Gas chemistry, boiling and phase segregation in a geothermal system, Hellisheidi, Iceland

    NASA Astrophysics Data System (ADS)

    Scott, Samuel; Gunnarsson, Ingvi; Arnórsson, Stefán; Stefánsson, Andri

    2014-01-01

    The geochemistry of aquifer fluids of the Hellisheidi geothermal system, southwest Iceland, was studied. Based on samples of vapor and liquid from well discharge fluids, the aquifer fluid compositions at the depth of the geothermal system were reconstructed taking into account the highly variable degree of excess well discharge enthalpy, where the enthalpy of the discharge is significantly higher than that of vapor-saturated liquid at the measured aquifer temperature. Decreasing concentrations of non-volatile components such as Si in the total well discharge suggest that the main cause of elevated discharge enthalpies is liquid-vapor phase segregation, i.e. the retention of liquid in the aquifer rock due to its adhesion onto mineral surfaces. Moreover, the slightly lower than equilibrium calculated concentrations of H2 and H2S in some of the hottest and highest-enthalpy wells is considered to be caused by conductive heat transfer from the rocks to the fluids. Alternatively, the cause may lie in the selection of the phase segregation conditions. The calculated concentrations of volatile species in the aquifer fluid are very sensitive to the assumed phase segregation conditions while non-volatiles are not greatly affected by this model parameter. In general, the level of uncertainty does not contradict previous findings of a close approach to fluid-mineral equilibrium at aquifer temperatures above 250 °C. The CO2 concentrations were observed to fall below equilibrium with respect to the most likely mineral buffers, suggesting a possible source control. Elevated H2 concentrations indicate a small equilibrium vapor fraction in aquifer fluids (∼0.2% by mass or ∼3% by volume). Previous conceptual models of the Hengill volcanic area (e.g. Bödvarsson et al., 1990) have implied a central magmatic heat source underlying the Hengill central volcano. Instead, a new conceptual model of the Hellisheidi system is proposed that features two main regions of fluid upflow

  19. Swimming Pools.

    ERIC Educational Resources Information Center

    Ministry of Housing and Local Government, London (England).

    Technical and engineering data are set forth on the design and construction of swimming pools. Consideration is given to site selection, pool construction, the comparative merits of combining open air and enclosed pools, and alternative uses of the pool. Guidelines are presented regarding--(1) pool size and use, (2) locker and changing rooms, (3)…

  20. Analysis of boiling flat-plate collectors

    SciTech Connect

    Price, H.W.; Klein, S.A.; Beckman, W.A.

    1986-05-01

    A detailed model for use with TRNSYS, capable of modelling a wide range of boiling collector types, was used to analyze boiling flat-plate collector systems. This model can account for a subcooled liquid entering the collector, heat losses in the vapor and the liquid return line, pressure drops due to friction in the collector and piping, and pressure drops due to the hydrostatic head of the fluid. The model has been used to determine the yearly performance of boiling flat-plate solar collector systems. A simplified approach was also developed which can be used with the f-Chart method to predict yearly performance of boiling flat-plate collector systems.

  1. Energy-efficient heat recovery systems for air conditioning of indoor swimming pools

    SciTech Connect

    Elsayed, M.M.; El-Refaee, M.M.; Borhan, Y.A.

    1997-12-31

    Analysis of a conventional air-conditioning system for indoor swimming pools during the summer season is presented. The analysis showed that the cooling load is characterized by a large latent heat fraction. As a result, a reheating process must be used downstream of the cooling coil to achieve the proper design comfort condition in the pool area. This, in turn, increases the energy requirement per unit cooling load of the pool. Two heat recovery systems are proposed to reduce this energy. In the first system, ambient air is used for the reheating process in an air-to-air heat exchanger. In the second system, mixed air--recirculated and ambient air--is used for the reheating process. Heat recovery efficiency is defined as an index of the energy savings resulting from the use of the heat recovery system compared to that of a conventional air-conditioning system. At a wide range of ambient conditions it is found that the energy savings could be up to 70% of the energy required to operate a conventional air-conditioning system. A parametric study was carried out to size the air-to-air heat exchanger associated with these heat recovery systems, and the results showed that a heat exchanger having an effectiveness of 0.5 would give satisfactory results. The proposed heat recovery systems are also compared to the case of reheating using the heat rejection from the condenser of the refrigeration machine. The comparison showed that the proposed systems save more energy than reheating using the condenser heat. A typical case study is given to demonstrate the savings in energy consumption when these systems are used.

  2. Boiling histotripsy lesion characterization on a clinical magnetic resonance imaging-guided high intensity focused ultrasound system

    PubMed Central

    Eranki, Avinash; Farr, Navid; Partanen, Ari; V. Sharma, Karun; Chen, Hong; Rossi, Christopher T.; Kothapalli, Satya V. V. N.; Oetgen, Matthew; Kim, AeRang; H. Negussie, Ayele; Woods, David; J. Wood, Bradford; C. W. Kim, Peter; S. Yarmolenko, Pavel

    2017-01-01

    Purpose High intensity focused ultrasound (HIFU) is a non-invasive therapeutic technique that can thermally ablate tumors. Boiling histotripsy (BH) is a HIFU approach that can emulsify tissue in a few milliseconds. Lesion volume and temperature effects for different BH sonication parameters are currently not well characterized. In this work, lesion volume, temperature distribution, and area of lethal thermal dose were characterized for varying BH sonication parameters in tissue-mimicking phantoms (TMP) and demonstrated in ex vivo tissues. Methods The following BH sonication parameters were varied using a clinical MR-HIFU system (Sonalleve V2, Philips, Vantaa, Finland): acoustic power, number of cycles/pulse, total sonication time, and pulse repetition frequency (PRF). A 3×3×3 pattern was sonicated inside TMP’s and ex vivo tissues. Post sonication, lesion volumes were quantified using 3D ultrasonography and temperature and thermal dose distributions were analyzed offline. Ex vivo tissues were sectioned and stained with H&E post sonication to assess tissue damage. Results Significant increase in lesion volume was observed while increasing the number of cycles/pulse and PRF. Other sonication parameters had no significant effect on lesion volume. Temperature full width at half maximum at the end of sonication increased significantly with all parameters except total sonication time. Positive correlation was also found between lethal thermal dose and lesion volume for all parameters except number of cycles/pulse. Gross pathology of ex vivo tissues post sonication displayed either completely or partially damaged tissue at the focal region. Surrounding tissues presented sharp boundaries, with little or no structural damage to adjacent critical structures such as bile duct and nerves. Conclusion Our characterization of effects of HIFU sonication parameters on the resulting lesion demonstrates the ability to control lesion morphologic and thermal characteristics with a

  3. Sample distillation/graphitization system for carbon pool analysis by accelerator mass spectrometry (AMS)

    NASA Astrophysics Data System (ADS)

    Pohlman, J. W.; Knies, D. L.; Grabowski, K. S.; DeTurck, T. M.; Treacy, D. J.; Coffin, R. B.

    2000-10-01

    A facility at the Naval Research Laboratory (NRL), Washington, DC, has been developed to extract, trap, cryogenically distill and graphitize carbon from a suite of organic and inorganic carbon pools for analysis by accelerator mass spectrometry (AMS). The system was developed to investigate carbon pools associated with the formation and stability of methane hydrates. However, since the carbon compounds found in hydrate fields are ubiquitous in aquatic ecosystems, this apparatus is applicable to a number of oceanographic and environmental sample types. Targeted pools are dissolved methane, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), solid organic matrices (e.g., seston, tissue and sediments), biomarkers and short chained (C 1-C 5) hydrocarbons from methane hydrates. In most instances, the extraction, distillation and graphitization events are continuous within the system, thus, minimizing the possibility of fractionation or contamination during sample processing. A variety of methods are employed to extract carbon compounds and convert them to CO 2 for graphitization. Dissolved methane and DIC from the same sample are sparged and cryogenically separated before the methane is oxidized in a high temperature oxygen stream. DOC is oxidized to CO 2 by 1200 W ultraviolet photo-oxidation lamp, and solids oxidized in sealed, evacuated tubes. Hydrocarbons liberated from the disassociation of gas hydrates are cryogenically separated with a cryogenic temperature control unit, and biomarkers separated and concentrated by preparative capillary gas chromatography (PCGC). With this system, up to 20 samples, standards or blanks can be processed per day.

  4. System for reducing heat losses from indoor swimming pools by use of automatic covers. Report No. 3

    SciTech Connect

    Not Available

    1994-09-30

    This progress report covers the period July 1, 1994 through September 30, 1994, and summarizes continuing work on developing deloyable covers for indoor swimming pools. This work includes design and development of motor controllers to deploy and roll up pool covers, reels, cover material of polyethylene and foam filled laminates, and plans for field deployment of a system, where energy savings can be monitored.

  5. Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1998-01-01

    This report contains two independent sections. Part one is titled "Terrestrial and Microgravity Pool Boiling Heat Transfer and Critical heat flux phenomenon in an acoustic standing wave." Terrestrial and microgravity pool boiling heat transfer experiments were performed in the presence of a standing acoustic wave from a platinum wire resistance heater using degassed FC-72 Fluorinert liquid. The sound wave was created by driving a half wavelength resonator at a frequency of 10.15 kHz. Microgravity conditions were created using the 2.1 second drop tower on the campus of Washington State University. Burnout of the heater wire, often encountered with heat flux controlled systems, was avoided by using a constant temperature controller to regulate the heater wire temperature. The amplitude of the acoustic standing wave was increased from 28 kPa to over 70 kPa and these pressure measurements were made using a hydrophone fabricated with a small piezoelectric ceramic. Cavitation incurred during experiments at higher acoustic amplitudes contributed to the vapor bubble dynamics and heat transfer. The heater wire was positioned at three different locations within the acoustic field: the acoustic node, antinode, and halfway between these locations. Complete boiling curves are presented to show how the applied acoustic field enhanced boiling heat transfer and increased critical heat flux in microgravity and terrestrial environments. Video images provide information on the interaction between the vapor bubbles and the acoustic field. Part two is titled, "Design and qualification of a microscale heater array for use in boiling heat transfer." This part is summarized herein. Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of

  6. Odd-Boiled Eggs

    ERIC Educational Resources Information Center

    Kaminsky, Kenneth; Scheman, Naomi

    2010-01-01

    At a Shabbat lunch in Madrid not long ago, the conversation turned to the question of boiling eggs. One of the guests mentioned that a Dutch rabbi he knew had heard that in order to make it more likely that boiled eggs be kosher, you should add an egg to the pot if the number you began with was even. According to the laws of Kashruth, Jews may not…

  7. Enhanced Boiling on Micro-Configured Composite Surfaces Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chai, An-Ti

    1999-01-01

    In order to accommodate the growing thermal management needs of future space platforms, several two-phase active thermal control systems (ATCSs) have evolved and were included in the designs of space stations. Compared to the pumped single-phase liquid loops used in the conventional Space Transportation System and Spacelab, ATCSs offer significant benefits that may be realized by adopting a two-phase fluid-loop system. Alternately, dynamic power systems (DPSs), based on the Rankine cycle, seem inevitably to be required to supply the electrical power requirements of expanding space activities. Boiling heat transfer is one of the key technologies for both ATCSs and DPSs. Nucleate boiling near critical heat flux (CHF) can transport very large thermal loads with much smaller device size and much lower pumping power. However, boiling performance deteriorates in a reduced gravity environment and operation in the CHF regime is precarious because any slight overload will cause the heat transfer to suddenly move to the film boiling regime, which in turn, will result in burnout of the heat transfer surfaces. New materials, such as micro-configured metal-graphite composites, can provide a solution for boiling enhancement. It has been shown experimentally that this type of material manifests outstanding boiling heat transfer performance and their CHF is also extended to higher values. Due to the high thermal conductivity of graphite fiber (up to 1,200 W/m-K in the fiber direction), the composite surfaces are non-isothermal during the boiling process. The composite surfaces are believed to have a much wider safe operating region (a more uniform boiling curve in the CHF regime) because non-isothermal surfaces have been found to be less sensitive to variations of wall superheat in the CHF regime. The thermocapillary forces formed by the temperature difference between the fiber tips and the metal matrix play a more important role than the buoyancy in the bubble detachment, for the

  8. Thermohydrodynamics of boiling in a van der Waals fluid.

    PubMed

    Laurila, T; Carlson, A; Do-Quang, M; Ala-Nissila, T; Amberg, G

    2012-02-01

    We present a modeling approach that enables numerical simulations of a boiling Van der Waals fluid based on the diffuse interface description. A boundary condition is implemented that allows in and out flux of mass at constant external pressure. In addition, a boundary condition for controlled wetting properties of the boiling surface is also proposed. We present isothermal verification cases for each element of our modeling approach. By using these two boundary conditions we are able to numerically access a system that contains the essential physics of the boiling process at microscopic scales. Evolution of bubbles under film boiling and nucleate boiling conditions are observed by varying boiling surface wettability. We observe flow patters around the three-phase contact line where the phase change is greatest. For a hydrophilic boiling surface, a complex flow pattern consistent with vapor recoil theory is observed.

  9. Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.

    1993-01-01

    The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.

  10. Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions

    SciTech Connect

    Schultis, J., Kenneth; Fenton, Donald, L.

    2006-10-20

    Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm

  11. Summary Results of the Neptun Boil-Off Experiments to Investigate the Accuracy and Cooling Influence of LOFT Cladding-Surface Thermocouples (System 00)

    SciTech Connect

    E. L. Tolman S. N. Aksan

    1981-10-01

    Nine boil-off experiments were conducted in the Swiss NEPTUN Facility primarily to obtain experimental data for assessing the perturbation effects of LOFT thermocouples during simulated small-break core uncovery conditions. The data will also be useful in assessing computer model capability to predict thermal hydraulic response data for this type of experiment. System parameters that were varied for these experiments included heater rod power, system pressure, and initial coolant subcooling. The experiments showed that the LOFT thermocouples do not cause a significant cooling influence in the rods to which they are attached. Furthermore, the accuracy of the LOFT thermocouples is within 20 K at the peak cladding temperature zone.

  12. Mixing vs Boiling process in a shallow submarine hydrothermal system of Bahía Concepción, Mexico

    NASA Astrophysics Data System (ADS)

    Villanueva Estrada, R.; Prol-Ledesma, R.; Rodríguez, A.; Canet, C.; Torres, I.; González, E.

    2009-12-01

    In this paper we use geochemical modeling and fluid inclusions to support the hypothesis that the main process that undergoes the fluid discharged by submarine vents in Bahia Concepcion is mixing rather than boiling. Mixing modeling of two different fluids: a high salinity fluid that is mixed with a deep thermal fluid of meteoric origin indicate that the thermal water responsible for the formation of the thermal EM of Bahía Concepción is composed by 20-30% of a HDF and 70-80% of a hot DF of meteoric origin. Boiling would be an alternate process; however, fluid inclusions petrography and microthermometry reveal no boiling evidence present in the samples, as breccias, bladed calcite, or coexisting liquid-rich and vapor-rich inclusions. Furthermore, the salinity of pseudosecondary and secondary fluid inclusions is similar to seawater. The mixing model is consistent with fluid inclusion data, which provide evidence that two different hydrothermal fluids are involved in barite deposition at veins related to the submarine manifestations of Bahía Concepción: a low salinity fluid (139°C and 3.2 wt % NaCl eq) and HSF (129°C and 10.6 wt % NaCl eq.) The trend observed between high- to low-salinity fluids shows the occurrence of mixing processes between both hydrothermal fluids.

  13. Fundamental Boiling and RP-1 Freezing Experiments

    NASA Technical Reports Server (NTRS)

    Goode, Brian

    2002-01-01

    The prestart thermal conditioning of the hardware in LOX (liquid oxygen) systems involve heat transfer between LOX and metal where boiling plays a large role. Information is easily found on nucleate boiling, maximum heat flux, minimum heat flux and film boiling for common fluids like water. After looking at these standard correlations it was felt more data was needed for the cool down side transition boiling for the LN2 and LOX. In particular interest is the film boiling values, the temperature at which transition begins and the slope as peak heat flux is approached. The ultimate goal is an array of boiling heat transfer coefficient as a function of surface temperature which can be used in the chilldown model of the feed system, engine and bleed system for X-34. The first experiment consisted of an actual MC-1 LOX Impeller which had been machined backwards, that was instrumented with 17 surface thermocouples and submerged in liquid nitrogen. The thermocouples were installed on metal thicknesses varying from the thin inducer to the thick hub.

  14. Microlayer during boiling in narrow slot channels

    NASA Astrophysics Data System (ADS)

    Diev, Mikhail D.; Leontiev, Alexander I.

    1997-01-01

    An international space station Alpha will have a two-phase thermal control system. Boiling of a liquid ammonia will be a process of heat collection in evaporative heat exchangers. Unfortunately, only little data is available for boiling heat transfer in microgravity. Geometries of boiling channels working good in normal gravity are not appropriate in microgravity, and special means should be worked out to avoid some undesired events. From this point of view, the narrow slot channels may be assumed as a promising geometry for microgravity operation. During boiling in narrow slots, the vapor bubbles are flattened between the channel walls. The vapor phase and the channel wall are separated by a thin liquid film which is known as a microlayer. The paper presents the experimental results compared to the theoretical analysis, the paper also shows the narrow slot channels as a perspective configuration for microgravity applications.

  15. NaK pool-boiler bench-scale receiver durability test: Test results and materials analysis

    SciTech Connect

    Andraka, C.E.; Goods, S.H.; Bradshaw, R.W.; Moreno, J.B.; Moss, T.A.; Jones, S.A.

    1994-06-01

    Pool-boiler reflux receivers have been considered as an alternative to heat pipes for the input of concentrated solar energy to Stirling-cycle engines in dish-Stirling electric generation systems. Pool boilers offer simplicity in design and fabrication. The operation of a full-scale pool-boiler receiver has been demonstrated for short periods of time. However, to generate cost-effective electricity, the receiver must operate Without significant maintenance for the entire system life, as much as 20 to 30 years. Long-term liquid-metal boiling stability and materials compatibility with refluxing NaK-78 is not known and must be determined for the pool boiler receiver. No boiling system has been demonstrated for a significant duration with the current porous boiling enhancement surface and materials. Therefore, it is necessary to simulate the full-scale pool boiler design as much as possible, including flux levels, materials, and operating cycles. On-sun testing is impractical because of the limited test time available. A test vessel was constructed with a porous boiling enhancement surface. The boiling surface consisted of a brazed stainless steel powder with about 50% porosity. The vessel was heated with a quartz lamp array providing about go W/CM2 peak incident thermal flux. The vessel was charged with NaK-78. This allows the elimination of costly electric preheating, both on this test and on fullscale receivers. The vessel was fabricated from Haynes 230 alloy. The vessel operated at 750{degrees}C around the clock, with a 1/2-hour shutdown cycle to ambient every 8 hours. The test completed 7500 hours of lamp-on operation time, and over 1000 startups from ambient. The test was terminated when a small leak in an Inconel 600 thermowell was detected. The test design and data are presented here. Metallurgical analysis of virgin and tested materials has begun, and initial results are also presented.

  16. The Relationship Between the Color Characteristics of the RGB Colorimetric System and the Physicochemical Properties of Petroleums and high Boiling Hydrocarbon Distillates

    NASA Astrophysics Data System (ADS)

    Dolomatov, M. Yu.; Yarmuhametova, G. U.

    2016-09-01

    An interrelation was established between physicochemical properties of oils and high boiling hydrocarbon distillates and their solutions' color characteristics defi ned in the RGB colorimetric system using a standard radiation source CIE D65. It was shown that by using color characteristics of solutions of the specifi ed objects, it was possible to determine their relative density, molecular mass, activation energy of viscous fl ow, and the coking value. Research results were confi rmed by statistical data processing using the methods of multivariate regression and correlation analysis.

  17. Enhanced boiling heat transfer in horizontal test bundles

    SciTech Connect

    Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

    1994-08-01

    Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

  18. Pool impacts of Leidenfrost drop

    NASA Astrophysics Data System (ADS)

    Darbois Texier, Baptiste; Maquet, Laurent; Dorbolo, Stephane; Dehandschoewercker, Eline; Pan, Zhao; Truscott, Tadd

    2015-11-01

    This work concerns the impact of a droplet made of a volatile liquid (typically HFE) on a pool of an other liquid (typically silicone oil) which temperature is above the boiling point of the drop. Depending on the properties of the two liquids and the impacting conditions, four different regimes are observed. For low impacting speeds, the droplet bounces on the surface of the bath and finally levitates above it in a Leidenfrost state. Such a regime occurs as soon as the pool temperature exceeds the boiling point of the drop. This observation means that there is no threshold in temperature for a Leidenfrost effect on a liquid surface contrary to the case of a solid substrate. For intermediate impacting velocities, the pinch-off of the surface of the pool entraps the drop in the liquid bulk. The entrapped drop is separated from the pool by a layer of its own vapour in a similar way of antibulles. For increasing impacting speeds, the vapour layer between the drop and the pool does not hold during the pinch-off event. The contact of the drop with the hot liquid provokes a sudden and intense evaporation. At very large impacting speeds, the drop rapidely contacts the pool, spreads and finally induces a hemi-spherical cavity. In the end, these four different regimes are summarized in a Froud-Weber diagram which boundaries are discussed.

  19. Radiolysis of boiling water

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Katsumura, Yosuke; Yamashita, Shinichi; Matsuura, Chihiro; Hiroishi, Daisuke; Lertnaisat, Phantira; Taguchi, Mitsumasa

    2016-06-01

    γ-radiolysis of boiling water has been investigated. The G-value of H2 evolution was found to be very sensitive to the purity of water. In high-purity water, both H2 and O2 gases were formed in the stoichiometric ratio of 2:1; a negligible amount of H2O2 remained in the liquid phase. The G-values of H2 and O2 gas evolution depend on the dose rate: lower dose rates produce larger yields. To clarify the importance of the interface between liquid and gas phase for gas evolution, the gas evolution under Ar gas bubbling was measured. A large amount of H2 was detected, similar to the radiolysis of boiling water. The evolution of gas was enhanced in a 0.5 M NaCl aqueous solution. Deterministic chemical kinetics simulation elucidated the mechanism of radiolysis in boiling water.

  20. Cryptococcal meningitis in systemic lupus erythematosus patients: pooled analysis and systematic review.

    PubMed

    Fang, Wenjie; Chen, Min; Liu, Jia; Hagen, Ferry; Ms, Abdullah; Al-Hatmi; Zhang, Peilian; Guo, Yun; Boekhout, Teun; Deng, Danqi; Xu, Jianping; Pan, Weihua; Liao, Wanqing

    2016-09-07

    Cryptococcal meningitis is an important fungal infection among systemic lupus erythematosus patients. We conducted a pooled analysis and systematic review to describe the epidemiological and clinical profile of cryptococcal meningitis in systemic lupus erythematosus patients. From two hospitals in China and nine literature databases, cases and prevalence data were collected for pooled analysis and meta-analysis, respectively. Categorical variables of cases were compared using a χ(2)-test on the statistical program of SAS. A multiple regression analysis was performed to ascertain independent predictors significantly correlated with prognosis. Meta-analysis was conducted by the statistical program of R. The prevalence of cryptococcal meningitis in systemic lupus erythematosus patients was 0.5%. Patients were predominantly females and adults. A prednisone equivalent of more than 30 mg/day before infection was associated with higher mortality (odds ratio (OR)=9.69 (1.54, 60.73)). In all, 36.8-38.9% patients showed low lupus activity when they developed the crytococcal infection. Moreover, 38.2% of the patients were misdiagnosed. The estimated case-fatality rate was 23.6%. Our results suggest that more emphasis should be placed to further understand lupus-related cryptococcal meningitis and to develop better prophylaxis and management strategies to combat this condition.

  1. Cryptococcal meningitis in systemic lupus erythematosus patients: pooled analysis and systematic review

    PubMed Central

    Fang, Wenjie; Chen, Min; Liu, Jia; Hagen, Ferry; MS, Abdullah; Al-Hatmi; Zhang, Peilian; Guo, Yun; Boekhout, Teun; Deng, Danqi; Xu, Jianping; Pan, Weihua; Liao, Wanqing

    2016-01-01

    Cryptococcal meningitis is an important fungal infection among systemic lupus erythematosus patients. We conducted a pooled analysis and systematic review to describe the epidemiological and clinical profile of cryptococcal meningitis in systemic lupus erythematosus patients. From two hospitals in China and nine literature databases, cases and prevalence data were collected for pooled analysis and meta-analysis, respectively. Categorical variables of cases were compared using a χ2-test on the statistical program of SAS. A multiple regression analysis was performed to ascertain independent predictors significantly correlated with prognosis. Meta-analysis was conducted by the statistical program of R. The prevalence of cryptococcal meningitis in systemic lupus erythematosus patients was 0.5%. Patients were predominantly females and adults. A prednisone equivalent of more than 30 mg/day before infection was associated with higher mortality (odds ratio (OR)=9.69 (1.54, 60.73)). In all, 36.8–38.9% patients showed low lupus activity when they developed the crytococcal infection. Moreover, 38.2% of the patients were misdiagnosed. The estimated case-fatality rate was 23.6%. Our results suggest that more emphasis should be placed to further understand lupus-related cryptococcal meningitis and to develop better prophylaxis and management strategies to combat this condition. PMID:27599471

  2. Effect of boiling surface vibration on heat transfer

    NASA Astrophysics Data System (ADS)

    Alangar, Sathyabhama

    2017-01-01

    Experimental investigation of effect of forced vertical surface vibration on nucleate pool boiling heat transfer of saturated water at atmospheric pressure is presented in this paper. Vertical vibration was induced externally to the circular copper test surface on which boiling took place, using a vibration exciter. Frequency was varied in the range 0-25 Hz and amplitude of vibration was varied in the range 0-5 mm. Boiling takes place at much lower superheats for the same heat flux, slope of boiling curve decreases remarkably, when the surface is given external excitation. High frequency and high amplitude oscillations lead to more intensive heat transfer. There are some combinations of frequency and vibration amplitude, which cause up to two times increase in heat transfer coefficients.

  3. Nucleate boiling in drag-reducing polymer solutions

    SciTech Connect

    Jeun, G.

    1986-01-01

    Two types of experiment have been done to study the effects of polymer additives in nucleate boiling for plates and wires. Here, boiling on a flat surface is simulated by placing a flat unheated surface immediately underneath an electrically heated platinum wire. Saturated nucleate pool boiling curves were measured for water and solutions of six different polymers at various concentrations. For a bare wire and a simulated flat surface, the nucleate boiling curves are qualitatively similar. For equal heat fluxes, the temperature difference increases as the relative viscosity increases, although the temperature difference for the simulated flat surface is less than that for the bare wire. The observed changes in the nucleate boiling curves for polymer solutions are in qualitative agreement with those predicted using the Rohsenow correlation to account for change in the solution viscosity. These results show that for both wires and simulated flat surfaces, drag-reducing additives will reduce the heat transfer rate in nucleate boiling. Bubble dynamics on the heated wire and simulated flat surface were also measured using a high speed movie camera for water and Separan AP-30 at a relative viscosity of 1.16. The data were used to determine the relative contribution to the boiling heat flux of latent heat transport by bubbles, natural convection heat transfer, and enhanced convection heat transfer.

  4. Exciting Pools

    ERIC Educational Resources Information Center

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  5. Numerical Investigation of Boiling

    NASA Astrophysics Data System (ADS)

    Sagan, Michael; Tanguy, Sebastien; Colin, Catherine

    2012-11-01

    In this work, boiling is numerically investigated, using two phase flow direct numerical simulation based on a level set / Ghost Fluid method. Nucleate boiling implies both thermal issue and multiphase dynamics issues at different scales and at different stages of bubble growth. As a result, the different phenomena are investigated separately, considering their nature and the scale at which they occur. First, boiling of a static bubble immersed in an overheated liquid is analysed. Numerical simulations have been performed at different Jakob numbers in the case of strong density discontinuity through the interface. The results show a good agreement on bubble radius evolution between the theoretical evolution and numerical simulation. After the validation of the code for the Scriven test case, interaction of a bubble with a wall is studied. A numerical method taking into account contact angle is evaluated by comparing simulations of the spreading of a liquid droplet impacting on a plate, with experimental data. Then the heat transfer near the contact line is investigated, and simulations of nucleate boiling are performed considering different contact angles values. Finally, the relevance of including a model to take into account the evaporation of the micro layer is discussed.

  6. Sodium reflux pool-boiler solar receiver on-sun test results

    SciTech Connect

    Andraka, C E; Moreno, J B; Diver, R B; Moss, T A

    1992-06-01

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW{sub t} sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW{sub t} parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the form of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90% when operated at full power and 800{degree}C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.

  7. Sodium reflux pool-boiler solar receiver on-sun test results

    NASA Astrophysics Data System (ADS)

    Andraka, C. E.; Moreno, J. B.; Diver, R. B.; Moss, T. A.

    1992-06-01

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW(sub t) sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW(sub t) parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the form of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90 percent when operated at full power and 800 C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.

  8. A DNA pooling based system to detect Escherichia coli virulence factors in fecal and wastewater samples.

    PubMed

    Luz María Chacón, J; Lizeth Taylor, C; Carmen Valiente, A; Irene Alvarado, P; Ximena Cortés, B

    2012-10-01

    The availability of a useful tool for simple and timely detection of the most important virulent varieties of Escherichia coli is indispensable. To this end, bacterial DNA pools which had previously been categorized were obtained from isolated colonies as well as selected in terms of utilized phenotype; the pools were assessed by two PCR Multiplex for the detection of virulent E. coli eaeA, bfpA, stx1, stx2, ipaH, ST, LT, and aatA genes, with the 16S gene used as DNA control. The system was validated with 66 fecal samples and 44 wastewater samples. At least one positive isolate was detected by a virulent gene among the 20 that were screened. The analysis of fecal samples from children younger than 6 years of age detected frequencies of 25% LT positive strains, 8.3% eae, 8.3% bfpA, 16.7% ipaH, as well as 12.5 % aatA and ST. On the other hand, wastewater samples revealed frequencies of 25.7% eaeA positive, 30.3% stx1, 15.1% LT and 19.7% aatA. This study is an initial step toward carrying out epidemiological field research that will reveal the presence of these bacterial varieties.

  9. A DNA pooling based system to detect Escherichia coli virulence factors in fecal and wastewater samples

    PubMed Central

    Luz María Chacón, J; Lizeth Taylor, C; Carmen Valiente, A; Irene Alvarado, P; Ximena Cortés, B

    2012-01-01

    The availability of a useful tool for simple and timely detection of the most important virulent varieties of Escherichia coli is indispensable. To this end, bacterial DNA pools which had previously been categorized were obtained from isolated colonies as well as selected in terms of utilized phenotype; the pools were assessed by two PCR Multiplex for the detection of virulent E. coli eaeA, bfpA, stx1, stx2, ipaH, ST, LT, and aatA genes, with the 16S gene used as DNA control. The system was validated with 66 fecal samples and 44 wastewater samples. At least one positive isolate was detected by a virulent gene among the 20 that were screened. The analysis of fecal samples from children younger than 6 years of age detected frequencies of 25% LT positive strains, 8.3% eae, 8.3% bfpA, 16.7% ipaH, as well as 12.5 % aatA and ST. On the other hand, wastewater samples revealed frequencies of 25.7% eaeA positive, 30.3% stx1, 15.1% LT and 19.7% aatA. This study is an initial step toward carrying out epidemiological field research that will reveal the presence of these bacterial varieties. PMID:24031959

  10. Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP)

    SciTech Connect

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Jin, Chunlian; Nguyen, Tony B.; Elizondo, Marcelo A.; Viswanathan, Vilayanur V.; Guo, Xinxin; Tuffner, Francis K.

    2010-04-01

    Wind production, which has expanded rapidly in recent years, could be an important element in the future efficient management of the electric power system; however, wind energy generation is uncontrollable and intermittent in nature. Thus, while wind power represents a significant opportunity to the Bonneville Power Administration (BPA), integrating high levels of wind resources into the power system will bring great challenges to generation scheduling and in the provision of ancillary services. This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. More specifically, it addresses the following questions: a) how much total reserve or balancing requirements are necessary to accommodate the simulated expansion of intermittent renewable energy resources during the 2019 time horizon, and b) what are the most cost effective technological solutions for meeting load balancing requirements in the Northwest Power Pool (NWPP).

  11. Research on Optimization of Pooling System and Its Application in Drug Supply Chain Based on Big Data Analysis.

    PubMed

    Wu, DengFeng; Mao, Hongyi

    2017-01-01

    Reform of drug procurement is being extensively implemented and expanded in China, especially in today's big data environment. However, the pattern of supply mode innovation lags behind procurement improvement. Problems in financial strain and supply break frequently occur, which affect the stability of drug supply. Drug Pooling System is proposed and applied in a few pilot cities to resolve these problems. From the perspective of supply chain, this study analyzes the process of setting important parameters and sets out the tasks of involved parties in a pooling system according to the issues identified in the pilot run. The approach is based on big data analysis and simulation using system dynamic theory and modeling of Vensim software to optimize system performance. This study proposes a theoretical framework to resolve problems and attempts to provide a valuable reference for future application of pooling systems.

  12. Research on Optimization of Pooling System and Its Application in Drug Supply Chain Based on Big Data Analysis

    PubMed Central

    2017-01-01

    Reform of drug procurement is being extensively implemented and expanded in China, especially in today's big data environment. However, the pattern of supply mode innovation lags behind procurement improvement. Problems in financial strain and supply break frequently occur, which affect the stability of drug supply. Drug Pooling System is proposed and applied in a few pilot cities to resolve these problems. From the perspective of supply chain, this study analyzes the process of setting important parameters and sets out the tasks of involved parties in a pooling system according to the issues identified in the pilot run. The approach is based on big data analysis and simulation using system dynamic theory and modeling of Vensim software to optimize system performance. This study proposes a theoretical framework to resolve problems and attempts to provide a valuable reference for future application of pooling systems. PMID:28293258

  13. Modelling Napl Dissolution from Lens and Pools Under Varying Flowfields in Heterogeneous Subsurface Systems

    NASA Astrophysics Data System (ADS)

    Prakash, P.; Nambi, I. M.

    2011-12-01

    Non- Aqueous Phase Liquids (NAPLs) such as chlorinated organic solvents are major sources of groundwater contamination throughout the world. The non-uniform distribution of these contaminants as NAPL pools and residual NAPL zones introduce additional spatial heterogeneity in the hydrological parameters such as porosity and permeability. Bench scale dissolution studies were carried out and a conceptual contaminant transport model was developed to predict the downstream NAPL concentrations in aqueous phase. The dissolution studies were carried out in a bench scale 2-D sand tank reactor for multiple NAPL configurations and various initial NAPL saturations. A complex heterogeneous subsurface system mimicking NAPL as residuals, NAPL as lens and NAPL as pools was created by embedding more than one NAPL contaminated zone of coarse sand within a clean NAPL free zone of fine sand. Dissolved NAPL concentrations were measured along the downstream of NAPL source zone. A 2-D conceptual contaminant transport model was developed and validated which successfully accounts for NAPL interphase mass transfer limitation under varying flow fields in a saturated heterogeneous subsurface systems. The analysis of multiple lens experimental data revealed that initial NAPL saturations and relative permeability have significant effect in altering mass transfer characteristics which affects the efficacy of any remedial effort to decontaminate groundwater. Non equilibrium concentrations of NAPL were observed near the source zone during dissolution from high initial NAPL saturations, whereas tailing concentrations with steep decline from equilibrium state were seen at later times. The rate limited conditions occurred much earlier under heterogeneous soil conditions when compared to those observed by researchers under homogeneous soil conditions. This behavior was attributed to the large changes in aqueous permeability fields occurring with the progress of dissolution process. Mathematical

  14. Boiling effect in liquid nitrogen directly cooled Yb³⁺:YAG laser.

    PubMed

    Sakurai, Toshimitsu; Chosrowjan, Haik; Furuse, Hiroaki; Taniguchi, Seiji; Kitamura, Toshiyuki; Fujita, Masayuki; Ishii, Shinya; Izawa, Yasukazu

    2016-02-20

    Liquid nitrogen (LN2) behavior on the surface of excited Yb(3+):YAG is investigated using fluorometry. From the time-resolved temperature variations and integrated fluorescence spectra intensity on this directly cooled Yb(3+):YAG surface, we observe a phase transition of LN2 from nucleate boiling to film boiling. As a result of this pool boiling, good beam quality should occur when the temperature and heat flux at an excited surface of Yb(3+):YAG are below 95 K and 15.8  W/cm2, respectively. That is, the LN2 should remain in a steady state of nucleate boiling to produce good beam quality using pool boiling.

  15. Liquid metal boiling inception

    NASA Technical Reports Server (NTRS)

    Sabin, C. M.; Poppendiek, H. F.; Mouritzen, G.; Meckel, P. T.; Cloakey, J. E.

    1972-01-01

    An experimental study of the inception of boiling in potassium in forced convection is reported. The boiler consisted of a 0.19-inch inside diameter, niobium-1% zirconium boiler tube approximately six feet long. Heating was accomplished by direct electrical tube wall conduction. Experiments were performed with both all-liquid fill and two-phase fill startup sequences and with a range of flow rates, saturation temperatures, inert gas levels, and fill liquid temperatures. Superheat of the liquid above the equilibrium saturation temperature was observed in all the experiments. Incipient boiling liquid superheat ranged from a few degrees to several hundred. Comparisons of these data with other data and with several analytical treatments are presented.

  16. Oscillate boiling from microheaters

    NASA Astrophysics Data System (ADS)

    Li, Fenfang; Gonzalez-Avila, S. Roberto; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2017-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about 10 μ m in diameter onto a 165-nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatedly at several 100 kHz albeit with constant laser power input. The microbubble's oscillations are accompanied with bubble pinch-off, leading to a stream of gaseous bubbles in the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by surface attachment and by the nonspherical collapses. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater, reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may overcome the heat transfer thresholds observed during the nucleate boiling crisis and offers a new pathway for heat transfer under microgravity conditions.

  17. Electrohydrodynamics of boiling on microstructured surfaces for space applications

    NASA Astrophysics Data System (ADS)

    Saccone, Giacomo; Moran, Jeffrey L.; Bucci, Matteo; Buongiorno, Jacopo; di Marco, Paolo; Mit-Nuclear Science; Engineering Team; University Of Pisa-Destec Dept. Team

    2016-11-01

    Surface wettability is a major parameter in boiling heat transfer. It affects the departure of bubbles from the boiling surface and consequently determines the maximum heat flux transferrable in safe conditions, known as critical heat flux (CHF). Surface wettability can be enhanced through passive techniques, including micro-engineered surfaces and coatings, or through active techniques, e.g. by applying a tunable electric field (electrowetting) that modifies the bubble shape in such a way as to drive bubble detachment. The latter technique is particularly interesting for space applications, where the electric field is used to create a body force that compensates for the absence of gravity. The present work is focused on boiling heat transfer on surfaces whose wettability has been modified by passive and active techniques. We have built a pool boiling apparatus composed of a micro-structured heater acting as boiling surface and an axisymmetric electrode High-speed optical and infrared imaging have been used to investigate the dynamics of boiling phenomena. The aims of this project are twofold: to achieve a superior understanding of wetting phenomena, and to improve the efficiency of cooling devices for space applications.

  18. Boiling on Microconfigured Composite Surfaces Enhanced

    NASA Technical Reports Server (NTRS)

    Chao, David F.

    2000-01-01

    Boiling heat transfer is one of the key technologies for the two-phase active thermal-control system used on space platforms, as well as for the dynamic power systems aboard the International Space Station. Because it is an effective heat transfer mode, boiling is integral to many space applications, such as heat exchangers and other cooling devices. Nucleate boiling near the critical heat flux (CHF) can transport very large thermal loads with a much smaller device and much lower pumping power than for single-phase heat exchangers. However, boiling performance sharply deteriorates in a reduced-gravity environment, and operation in the CHF regime is somewhat perilous because of the risk of burnout to the device surface. New materials called microconfigured metal-graphite composites can enhance boiling. The photomicrograph shows the microconfiguration (x3000) of the copper-graphite (Cu-Gr) surface as viewed by scanning electronic microscope. The graphite fiber tips appear as plateaus with rugged surfaces embedded in the copper matrix. It has been experimentally demonstrated that this type of material manifests excellent boiling heat transfer performance characteristics and an increased CHF. Nonisothermal surfaces were less sensitive to variations of wall superheat in the CHF regime. Because of the great difference in conductivity between the copper base and the graphite fiber, the composite surfaces have a nonisothermal surface characteristic and, therefore, will have a much larger "safe" operating region in the CHF regime. In addition, the thermocapillary forces induced by the temperature differences between the fiber tips and the metal matrix play an important role in bubble detachment, and may not be adversely affected in a reduced-gravity environment. All these factors indicate that microconfigured composites may improve the reliability and economy (dominant factors in all space applications) of various thermal components found on spacecraft during future

  19. Enhanced Boiling on Micro-Configured Composite Surfaces Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Two experimental setups: High Heat Flux Pool Boiling Setup and Optical system of Measuring Contact Angle and Spreading Parameters were established and a series of experiments was conducted. The experimental work on the nucleate boiling performance of both Freon-113 and water on the composite surfaces has been finished and the results show that the composite surface with 25% volume fraction of graphite fibers in the copper matrix has the best enhancing performance. Stronger enhancement was obtained for water compared to Freon-113. The wall superheat initiating boiling was reduced 40% and 35% and the heat flux of the nucleate boiling was augmented up to ten times and 6.7 times, respectively. A bubble departure model has been presented to explain the enhancement mechanism of the boiling heat transfer on the composite surfaces. A powerful optical method to measure contact angle and spreading parameters of liquids on solid surfaces, including both transparent and non-transparent substrates, has been developed and successfully used in the measurements for various liquid-solid systems. The experimental work on identification of profiles near three-phase line by laser shadowgraphy method has been finished and the characteristics of the three-phase line for different liquid-solid systems were unveiled, which is very important to understand the mechanism of boiling under microgravity conditions. The four basic patterns of sessile profile were discovered through caustics and caustic-diffraction analysis by applying wave theory in shadowgraphy technology, which contributes to clearly explain the different characteristics of wetting and spreading of various liquids on a solid surface, and therefore to further understand the bubble departure mechanisms. A new working pattern of heat pipes using working fluids with positive surface-tension gradient against temperature was discovered and analyzed, and then the new heat pipe systems using this kind of working fluids have been

  20. Microgravity experiments on boiling and applications: research activity of advanced high heat flux cooling technology for electronic devices in Japan.

    PubMed

    Suzuki, Koichi; Kawamura, Hiroshi

    2004-11-01

    Research and development on advanced high heat flux cooling technology for electronic devices has been carried out as the Project of Fundamental Technology Development for Energy Conservation, promoted by the New Energy and Industrial Technology Development Organization of Japan (NEDO). Based on the microgravity experiments on boiling heat transfer, the following useful results have obtained for the cooling of electronic devices. In subcooled flow boiling in a small channel, heat flux increases considerably more than the ordinary critical heat flux with microbubble emission in transition boiling, and dry out of the heating surface is disturbed. Successful enhancement of heat transfer is achieved by a capillary effect from grooved surface dual subchannels on the liquid supply. The critical heat flux increases 30-40 percent more than for ordinary subchannels. A self-wetting mechanism has been proposed, following investigation of bubble behavior in pool boiling of binary mixtures under microgravity. Ideas and a new concept have been proposed for the design of future cooling system in power electronics.

  1. System for reducing heat losses from indoor swimming pools by use of automatic covers. Report No. 1

    SciTech Connect

    Not Available

    1994-04-25

    This is a progress report for the period October 1, 1993 through March 31, 1994, for a project to develop cover systems for indoor swimming pools with the objective of reducing energy consumption. Effort has included evaluation of cover materials, development of brakes to tension deployment ropes, better limit of motion switches, reel systems, drive systems for the take up spool, and drive tensioning systems.

  2. Acoustic emission feedback control for control of boiling in a microwave oven

    SciTech Connect

    White, T.L.

    1991-02-26

    This patent describes an acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuously vary the power applied to the oven to control the boiling at a selected level.

  3. Acoustic emission feedback control for control of boiling in a microwave oven

    SciTech Connect

    White, T.L.

    1990-05-02

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuously vary the power applied to the oven to control the boiling at a selected level. 2 figs.

  4. Acoustic emission feedback control for control of boiling in a microwave oven

    DOEpatents

    White, Terry L.

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  5. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo boil-off as fuel: General. 154.705 Section 154.705... Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel system under § 154.703(c) must meet §§ 154.706 through 154.709. (b) The piping in the cargo boil-off...

  6. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo boil-off as fuel: General. 154.705 Section 154.705... Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel system under § 154.703(c) must meet §§ 154.706 through 154.709. (b) The piping in the cargo boil-off...

  7. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo boil-off as fuel: General. 154.705 Section 154.705... Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel system under § 154.703(c) must meet §§ 154.706 through 154.709. (b) The piping in the cargo boil-off...

  8. Lifeguard Training: Principles and Administration. A Manual for Developing and Administering Lifeguard Systems for Pools and Beaches. Second Edition, Revised.

    ERIC Educational Resources Information Center

    Howes, Gordon T., Ed.; Hill, Rolland, Ed.

    This manual for developing and administering lifeguard systems for pools and beaches is divided into three sections. Section 1, "Personnel," suggests prerequisites for lifeguard training, personal health, fitness and inservice training, and preventive lifeguarding. Section 2, "Operations," discusses the following: a) water…

  9. Thermal-hydraulic performance of convective boiling jet array impingement

    NASA Astrophysics Data System (ADS)

    Jenkins, R.; De Brún, C.; Kempers, R.; Lupoi, R.; Robinson, A. J.

    2016-09-01

    Jet impingement boiling is investigated with regard to heat transfer and pressure drop performance using a novel laser sintered 3D printed jet impingement manifold design. Water was the working fluid at atmospheric pressure with inlet subcooling of 7oC. The convective boiling performance of the impinging jet system was investigated for a flat copper target surface for 2700≤Re≤5400. The results indicate that the heat transfer performance of the impinging jet is independent of Reynolds number for fully developed boiling. Also, the investigation of nozzle to plate spacing shows that low spacing delays the onset of nucleate boiling causing a superheat overshoot that is not observed with larger gaps. However, no sensitivity to the gap spacing was measured once boiling was fully developed. The assessment of the pressure drop performance showed that the design effectively transfers heat with low pumping power requirements. In particular, owing to the insensitivity of the heat transfer to flow rate during fully developed boiling, the coefficient of performance of jet impingement boiling in the fully developed boiling regime deteriorates with increased flow rate due to the increase in pumping power flux.

  10. Electrically Driven Liquid Film Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.

  11. Initial fuel temperature effects on burning rate of pool fire.

    PubMed

    Chen, Bing; Lu, Shou-Xiang; Li, Chang-Hai; Kang, Quan-Sheng; Lecoustre, Vivien

    2011-04-15

    The influence of the initial fuel temperature on the burning behavior of n-heptane pool fire was experimentally studied at the State Key Laboratory of Fire Science (SKLFS) large test hall. Circular pool fires with diameters of 100mm, 141 mm, and 200 mm were considered with initial fuel temperatures ranging from 290 K to 363 K. Burning rate and temperature distributions in fuel and vessel wall were recorded during the combustion. The burning rate exhibited five typical stages: initial development, steady burning, transition, bulk boiling burning, and decay. The burning rate during the steady burning stage was observed to be relatively independent of the initial fuel temperature. In contrast, the burning rate of the bulk boiling burning stage increases with increased initial fuel temperature. It was also observed that increased initial fuel temperature decreases the duration of steady burning stage. When the initial temperature approaches the boiling point, the steady burning stage nearly disappears and the burning rate moves directly from the initial development stage to the transition stage. The fuel surface temperature increases to its boiling point at the steady burning stage, shortly after ignition, and the bulk liquid reaches boiling temperature at the bulk boiling burning stage. No distinguished cold zone is formed in the fuel bed. However, boiling zone is observed and the thickness increases to its maximum value when the bulk boiling phenomena occurs.

  12. Optimization of UA of heat exchangers and BOG compressor exit pressure of LNG boil-off gas reliquefaction system using exergy analysis

    NASA Astrophysics Data System (ADS)

    Kochunni, Sarun Kumar; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2015-12-01

    Boil-off gas (BOG) generation and its handling are important issues in Liquefied natural gas (LNG) value chain because of economic, environment and safety reasons. Several variants of reliquefaction systems of BOG have been proposed by researchers. Thermodynamic analyses help to configure them and size their components for improving performance. In this paper, exergy analysis of reliquefaction system based on nitrogen-driven reverse Brayton cycle is carried out through simulation using Aspen Hysys 8.6®, a process simulator and the effects of heat exchanger size with and without related pressure drop and BOG compressor exit pressure are evaluated. Nondimensionalization of parameters with respect to the BOG load allows one to scale up or down the design. The process heat exchanger (PHX) requires much higher surface area than that of BOG condenser and it helps to reduce the quantity of methane vented out to atmosphere. As pressure drop destroys exergy, optimum UA of PHX decreases for highest system performance if pressure drop is taken into account. Again, for fixed sizes of heat exchangers, as there is a range of discharge pressures of BOG compressor at which the loss of methane in vent minimizes, the designer should consider choosing the pressure at lower value.

  13. Microscale Heaters Detailed Boiling Behavior in Normal Gravity and Microgravity

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.

    2002-01-01

    Pool boiling in microgravity is an area of both scientific and practical interest. Conducting tests in microgravity, as well as lunar and Martian gravity, makes it possible to assess the effect of the density difference between the vapor and liquid phases on the overall boiling process and to assess the relative magnitude of these effects in comparison to other "forces" and phenomena, such as surface tension forces, liquid momentum forces, and microlayer evaporation. The microscale heater developed under a NASA Glenn Research Center grant serves as a unique tool to probe the fundamental mechanisms associated with pool boiling. An experimental package was designed and built by the University of Maryland and tested on the NASA Johnson Space Center KC-135 experimental aircraft and a NASA WFF Terrier Orion Sounding Rocket under NASA Grants NAG3-2228 and NCC3-783. A square array of 96 microscale heaters was constructed and installed into a special boiling chamber. A fluorinert, FC-72, was used as the test fluid. A variety of tests were conducted at different pressures, heater wall temperatures, bulk fluid temperatures, and gravity levels.

  14. Loss of spent fuel pool cooling PRA: Model and results

    SciTech Connect

    Siu, N.; Khericha, S.; Conroy, S.; Beck, S.; Blackman, H.

    1996-09-01

    This letter report documents models for quantifying the likelihood of loss of spent fuel pool cooling; models for identifying post-boiling scenarios that lead to core damage; qualitative and quantitative results generated for a selected plant that account for plant design and operational practices; a comparison of these results and those generated from earlier studies; and a review of available data on spent fuel pool accidents. The results of this study show that for a representative two-unit boiling water reactor, the annual probability of spent fuel pool boiling is 5 {times} 10{sup {minus}5} and the annual probability of flooding associated with loss of spent fuel pool cooling scenarios is 1 {times} 10{sup {minus}3}. Qualitative arguments are provided to show that the likelihood of core damage due to spent fuel pool boiling accidents is low for most US commercial nuclear power plants. It is also shown that, depending on the design characteristics of a given plant, the likelihood of either: (a) core damage due to spent fuel pool-associated flooding, or (b) spent fuel damage due to pool dryout, may not be negligible.

  15. Interactions Between the Nighttime Valley-Wind System and a Developing Cold-Air Pool

    NASA Astrophysics Data System (ADS)

    Arduini, Gabriele; Staquet, Chantal; Chemel, Charles

    2016-10-01

    The Weather Research and Forecast numerical model is used to characterize the influence of a thermally-driven down-valley flow on a developing cold-air pool in an idealized alpine valley decoupled from the atmosphere above. Results for a three-dimensional (3D) valley, which allows for the formation of a down-valley flow, and for a two-dimensional (2D) valley, where the formation of a down-valley flow is inhibited, are analyzed and compared. A key result is that advection leads to a net cooling in the 2D valley and to a warming in the 3D valley, once the down-valley flow is fully developed. This difference stems from the suppression of the slope-flow induced upward motions over the valley centre in the 3D valley. As a result, the downslope flows develop a cross-valley circulation within the cold-air pool, the growth of the cold-air pool is reduced and the valley atmosphere is generally warmer than in the 2D valley. A quasi-steady state is reached for which the divergence of the down-valley flow along the valley is balanced by the convergence of the downslope flows at the top of the cold-air pool, with no net contribution of subsiding motions far from the slope layer. More precisely, the inflow of air at the top of the cold-air pool is found to be driven by an interplay between the return flow from the plain region and subsidence over the plateaux. Finally, the mechanisms that control the structure of the cold-air pool and its evolution are found to be independent of the valley length as soon as the quasi-steady state is reached and the down-valley flow is fully developed.

  16. When water does not boil at the boiling point.

    PubMed

    Chang, Hasok

    2007-03-01

    Every schoolchild learns that, under standard pressure, pure water always boils at 100 degrees C. Except that it does not. By the late 18th century, pioneering scientists had already discovered great variations in the boiling temperature of water under fixed pressure. So, why have most of us been taught that the boiling point of water is constant? And, if it is not constant, how can it be used as a 'fixed point' for the calibration of thermometers? History of science has the answers.

  17. Fragment structure from vapor explosions during the impact of molten metal droplets into a liquid pool

    NASA Astrophysics Data System (ADS)

    Kouraytem, Nadia; Li, Er Qiang; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur

    2015-11-01

    High-speed video imaging is used in order to look at the impact of a molten metal drop falling into a liquid pool. The interaction regimes are three: film boiling, nucleate boiling or vapor explosion. Following the vapor explosion, the metal fragments and different textures are observed. It was seen that, using a tin alloy, a porous structure results whereas using a distinctive eutectic metal, Field's metal, micro beads are formed. Different parameters such as the metal type, molten metal temperature, pool surface tension and pool boiling temperature have been altered in order to assess the role they play on the explosion dynamics and the molten metal's by product.

  18. Computations of Boiling in Microgravity

    NASA Technical Reports Server (NTRS)

    Tryggvason, G.; Jacqmin, Dave

    2000-01-01

    The absence (or reduction) of gravity, can lead to major changes in boiling heat transfer. On Earth, convection has a major effect on the heat distribution ahead of an evaporation front, and buoyancy determines the motion of the growing bubbles. In microgravity, convection and buoyancy are absent or greatly reduced and the dynamics of the growing vapor bubbles can change in a fundamental way. In particular, the lack of redistribution of heat can lead to a large superheat and explosive growth of bubbles once they form. While considerable efforts have been devoted to examining boiling experimentally, including the effect of microgravity, theoretical and computational work have been limited. Here, the growth of boiling bubbles is studied by direct numerical simulations where the flow field is fully resolved and the effects of inertia, viscosity, surface deformation, heat conduction and convection, as well as the phase change, are fully accounted for. Boiling involves both fluid flow and heat transfer and thus requires the solution of the Navier-Stokes and the energy equations. The numerical method is based on writing one set of governing transport equations which is valid in both the liquid and vapor phases. This local, single-field formulation incorporates the effect of the interface in the governing equations as source terms acting only at the interface. These sources account for surface tension and latent heat in the equations for conservation of momentum and energy as well as mass transfer across the interface due to phase change. The single-field formulation naturally incorporates the correct mass, momentum and energy balances across the interface. Integration of the conservation equations across the interface directly yields the jump conditions derived in the local instant formulation for two-phase systems. In the numerical implementation, the conservation equations for the whole computational domain (both vapor and liquid) are solved using a stationary grid and

  19. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  20. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. For these data, diffusion from the upper surface of the drop is a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  1. The Physics of Boiling at Burnout

    NASA Technical Reports Server (NTRS)

    Theofanous, T. G.; Tu, J. P.; Dinh, T. N.; Salmassi, T.; Dinh, A. T.; Gasljevic, K.

    2000-01-01

    The basic elements of a new experimental approach for the investigation of burnout in pool boiling are presented. The approach consists of the combined use of ultrathin (nano-scale) heaters and high speed infrared imaging of the heater temperature pattern as a whole, in conjunction with highly detailed control and characterization of heater morphology at the nano and micron scales. It is shown that the burnout phenomenon can be resolved in both space and time. Ultrathin heaters capable of dissipating power levels, at steady-state, of over 1 MW/square m are demonstrated. A separation of scales is identified and it is used to transfer the focus of attention from the complexity of the two-phase mixing layer in the vicinity of the heater to a micron-scaled microlayer and nucleation and associated film-disruption processes within it.

  2. Cooling of hot bubbles by surface texture during the boiling crisis

    NASA Astrophysics Data System (ADS)

    Dhillon, Navdeep; Buongiorno, Jacopo; Varanasi, Kripa

    2015-11-01

    We report the existence of maxima in critical heat flux (CHF) enhancement for pool boiling on textured hydrophilic surfaces and reveal the interaction mechanism between bubbles and surface texture that governs the boiling crisis phenomenon. Boiling is a process of fundamental importance in many engineering and industrial applications but the maximum heat flux that can be absorbed by the boiling liquid (or CHF) is limited by the boiling crisis. Enhancing the CHF of industrial boilers by surface texturing can lead to substantial energy savings and reduction in greenhouse gas emissions on a global scale. However, the fundamental mechanisms behind this enhancement are not well understood, with some previous studies indicating that CHF should increase monotonically with increasing texture density. However, using pool boiling experiments on a parametrically designed set of plain and nano-textured micropillar surfaces, we show that there is an optimum intermediate texture density that maximizes CHF and further that the length scale of this texture is of fundamental significance. Using imbibition experiments and high-speed optical and infrared imaging, we reveal the fundamental mechanisms governing the CHF enhancement maxima in boiling crisis. We acknowledge funding from the Chevron corporation.

  3. Development of a water boil-off spent-fuel calorimeter system. [To measure decay heat generation rate

    SciTech Connect

    Creer, J.M.; Shupe, J.W. Jr.

    1981-05-01

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW.

  4. What can nuclear collisions teach us about the boiling of water or the formation of multi-star systems

    NASA Astrophysics Data System (ADS)

    Gross, D. H. E.

    2001-11-01

    Phase transitions in nuclei, small atomic clusters and self-gravitating systems demand the extension of thermo-statistics to "Small" systems. The main obstacle is the thermodynamic limit. It is shown how the original definition of the entropy by Boltzmann as the volume of the energy-manifold of the N-body phase space allows a geometrical definition of the entropy as function of the conserved quantities. Without invoking the thermodynamic limit the whole "zoo" of phase transitions and critical points/lines can be unambiguously defined. The relation to the Yang-Lee singularities of the grand-canonical partition sum is pointed out. It is shown that just phase transitions in non-extensive systems give the complete set of characteristic parameters of the transition including the surface tension. Nuclear heavy-ion collisions are an experimental playground to explore this extension of thermo-statistics

  5. Surface boiling - an "obvious" explanation for the observed limiting temperature of finite nuclei

    NASA Astrophysics Data System (ADS)

    Tõke, J.

    2012-07-01

    Limits of stability of nuclear systems are explored within the framework of a finite-range interacting Fermi gas model and microcanonical thermodynamics in Thomas-Fermi approximation. It is found that with increasing excitation energy, infinite systems become unstable against volume boiling, while finite systems become subject to surface boiling, providing a natural explanation for the observed saturationlike patterns, or limiting temperature, in caloric curves. Boiling patterns of iso-asymmetric matter are discussed.

  6. System for reducing heat losses from indoor swimming pools by use of automatic covers. Technical progress report No. 4, October 1, 1994--December 31, 1994

    SciTech Connect

    Not Available

    1995-01-15

    The principal developments during the fifth quarter of the project (October - December 1994) have been as follows. (1) Design fabrication and bench testing of new 24-v controller employing automatic photocell shut-off of motor. (2) Design, fabrication and bench testing of new 42-v controller employing automatic stop-ball and limit-switch shut-off of motor. (3) Design, fabrication, installation, operation and adjustment of prototype improved pool cover system in Denver. (4) Continued planning of installation, demonstration and evaluation of improved pool cover system at the Denver Skyland Recreation Center. (5) Improved mounting brackets. (6) Preparation of a comprehensive paper on swimming pool evaporation rates.

  7. Hydrologic Connection Between Geysers and Adjacent Thermal Pools, Two Examples: El Tatio, Chile and Yellowstone, USA

    NASA Astrophysics Data System (ADS)

    Munoz Saez, C.; Fauria, K.; Manga, M.; Hurwitz, S.; Namiki, A.

    2014-12-01

    Geyser eruption cycles can be influenced by adjacent and distant thermals sources, suggesting a hydraulic connection through permeable pathways. Diffusion of fluid pressure can be responsible for the communication between geysers. In this study we examine the processes linking two different geysers with adjacent thermal pools. The first was Vega Rinconada, located at El Tatio geyser field, Chile, where we measured temperature inside the conduit between the ground surface and a depth of seven meters, at one-meter intervals. The second was Lone Star Geyser in Yellowstone National Park, where we measured temperature of the overflow water at the base of the cone. Concurrently, we measured temperature and the water level in pools adjacent to both geysers. We found common elements in both geyser - pool systems: First, water temperature in both adjacent pools was below the boiling point and cooler than water in the geysers. Second, changes in pool water levels were correlated with eruptions of the geysers. During the quiescent period of the geysers, the water level increased in adjacent pools, while water level in the pools deceased during eruptions. Additionally, measurements inside of the conduit in Vega Rinconada Geyser showed that water temperature increased in the deepest part of the conduit during eruptions, while water temperature decreased in the shallow part of the geyser conduit (~1 to 2 m). These drops in temperature in the shallow conduit were coincident with the drop in water level in the adjacent pool. This suggests that after the initiation of an eruption, water may drain from the pool to the geyser. Furthermore, we observed a temperature drop of 3oC in the shallow conduit immediately preceding the end of an eruption. This suggests that flow from the pool to geyser contributes to eruption shut off. Our observations of geyser-pool systems indicate a hydrologic connection between the geysers and their adjacent pools. In the case of Vega Rinconada, cold water

  8. Wastewater treatment in a compact intensified wetland system at the Badboot: a floating swimming pool in Belgium.

    PubMed

    Van Oirschot, D; Wallace, S; Van Deun, R

    2015-09-01

    The Badboot (Dutch for swimming pool boat) is a floating swimming pool located in the city center of Antwerp in Belgium. The overall design consists of a recycled ferry boat that serves as a restaurant and next to that a newly built ship that harbours an Olympic size swimming pool, sun decks, locker rooms with showers, and a party space. A major design goal of the project was to make the ship as environmentally friendly as possible. To avoid discharge of contaminated waste water in the Antwerp docks, the ship includes onsite treatment of wastewater in a compact constructed wetland. The treatment wetland system was designed to treat wastewater from visitor locker rooms, showers, toilets, two bars, and the wastewater from the restaurant kitchen. Due to the limited space on board the ship, only 188 m(2) could be allocated to a wetland treatment system. As a result, part of the design included intensification of the wetland treatment process through the use of Forced Bed Aeration, which injects small quantities of air in a very uniform grid pattern throughout the wetland with a mechanical air compressor. The system was monitored between August 2012 and March 2013 (with additional sampling in the autumn of 2014). Flows and loads to the wetland were highly variable, but removal efficiency was extremely high; 99.5 % for chemical oxygen demand (COD), 88.6 % for total nitrogen and 97.2 % for ammonia. The treatment performance was assessed using a first-order, tanks-in-series model (the P-k-C* model) and found to be roughly equivalent to similar intensified wetlands operating in Germany. However, treatment performance was substantially better than data reported on passive wetlands, likely as a result of intensification. Even with mechanically assisted aeration, the total oxygen delivered to the treatment wetlands was insufficient to support conventional nitrification and denitrification, so it is likely that alternate nitrogen removal pathways, such as anammox, are

  9. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    NASA Astrophysics Data System (ADS)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  10. Experimental investigation of nucleate boiling and thin-film evaporation on enhanced silicon surfaces

    NASA Astrophysics Data System (ADS)

    Malla, Shailesh

    The present work consists of two major studies. The first study investigates the effects of surface energy or wettability on nucleate pool boiling and the second study investigates the thin-film evaporative cooling for near junction thermal management. For the first study, effects of surface energy or wettability on critical heat flux (CHF) and boiling heat transfer (BHT) of smooth heated surfaces was studied in saturated pool boiling of water at 1 atm. For this purpose hydrophilic and hydrophobic surfaces were created on one side of 1cm x 1cm double-side polished silicon substrates. A resistive heating layer was applied on the opposite side of each substrate. The surface energies of the created surfaces were characterized by measuring the static contact angles of water sessile drops. To provide a wide range of surface energies, surfaces were made of Teflon (hydrophobic), bare silicon (hydrophilic) and aluminum oxide (most hydrophilic). The measured contact angles on these surfaces were ˜108, ˜57 and ˜13 degrees respectively. The results of pool boiling tests on these surfaces clearly illustrate the connection between surface energy and CHF. CHF was shown to linearly decrease with contact angle increase, from ˜125 W/cm2 on aluminum oxide (most hydrophilic) to nearly one tenth of this value on Teflon (hydrophobic). The most hydrophilic surface also produced increasingly better BHT than plain silicon and Teflon as heat flux increased. However, below ˜5 W/cm2 the hydrophobic surface demonstrated better heat transfer due to earlier onset of nucleate boiling, reducing surface superheats by up to ˜5 degrees relative to the other two surfaces. Above ˜5 W/cm2 the BHT of the hydrophobic surface rapidly deteriorated as superheat increased towards the value at CHF. To further understand the effect of surface energy on pool boiling performance, the growth and departure of bubbles from single nucleating sites on each surface were analyzed from high-speed video recordings

  11. An Experimental Study of Boiling in Reduced and Zero Gravity Fields

    NASA Technical Reports Server (NTRS)

    Usiskin, C. M.; Siegel, R.

    1961-01-01

    A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.

  12. Enhanced Natural Convection in a Metal Layer Cooled by Boiling Water

    SciTech Connect

    Cho, Jae-Seon; Suh, Kune Y.; Chung, Chang-Hyun; Park, Rae-Joon; Kim, Sang-Baik

    2004-12-15

    An experimental study is performed to investigate the natural convection heat transfer characteristics and the solidification of the molten metal pool concurrently with forced convective boiling of the overlying coolant to simulate a severe accident in a nuclear power plant. The relationship between the Nusselt number (Nu) and the Rayleigh number (Ra) in the molten metal pool region is determined and compared with the correlations in the literature and experimental data with subcooled water. Given the same Ra condition, the present experimental results for Nu of the liquid metal pool with coolant boiling are found to be higher than those predicted by the existing correlations or measured from the experiment with subcooled boiling. To quantify the observed effect of the external cooling on the natural convection heat transfer rate from the molten pool, it is proposed to include an additional dimensionless group characterizing the temperature gradients in the molten pool and in the external coolant region. Starting from the Globe and Dropkin correlation, engineering correlations are developed for the enhancement of heat transfer in the molten metal pool when cooled by an overlying coolant. The new correlations for predicting natural convection heat transfer are applicable to low-Prandtl-number (Pr) materials that are heated from below and solidified by the external coolant above. Results from this study may be used to modify the current model in severe accident analysis codes.

  13. Carbon concentrations and transformations in peatland pools

    NASA Astrophysics Data System (ADS)

    Chapman, Pippa; Holden, Joseph; Baird, Andrew; Turner, Edward; Dooling, Gemma; Billett, Mike; McKenzie, Rebecca; Leith, Fraser; Dinsmore, Kerry

    2016-04-01

    Peatland pools may act as important features for aquatic and gaseous carbon production, transformation and release. Peatland restoration often results in new pools being created. Here we compare aquatic carbon concentrations in nearby natural and artificial pool systems monitored at three sites in northern Scotland over a three-year period. We found significant differences in pool water carbon concentrations between pool types with larger dissolved organic carbon (DOC) and dissolved carbon dioxide (CO2) in artificial pools. The differences were strong for all sites and occurred in all seasons. Importantly, the DOC outflows from natural pools were markedly lower than the DOC flowing into natural pools showing that processes in these pools were transforming and removing the DOC. These effects were not found in the artificial pools. Data on the composition of the DOC (absorbance ratios, specific ultraviolet absorbance) suggested that natural pools tended to have DOC that had been processed, and was older (radiocarbon dating) while the DOC in artificial pools was young and had not undergone much biochemical processing. Slope position was an important factor influencing pool DOC with those pools with a longer upslope contributing area and collecting water with a longer hillslope residence time having larger DOC concentrations. Dissolved methane (CH4) concentrations were not significantly different between pool types but the concentrations were always above atmospheric levels with values ˜ 200 times atmospheric concentrations not uncommon. Dissolved CO2 concentrations in the artificial pools were extremely large; typically ˜20 times atmospheric levels while those in natural pools were typically only just above atmospheric levels. The pools were strong sources of CH4 and CO2 evasion from the peat system. The smaller size of the artificial pools means that more of their CO2 is stored in the water until it reaches the stream system, while the larger natural pools have

  14. The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli.

    PubMed

    Morin, Manon; Ropers, Delphine; Letisse, Fabien; Laguerre, Sandrine; Portais, Jean-Charles; Cocaign-Bousquet, Muriel; Enjalbert, Brice

    2016-05-01

    Metabolic control in Escherichia coli is a complex process involving multilevel regulatory systems but the involvement of post-transcriptional regulation is uncertain. The post-transcriptional factor CsrA is stated as being the only regulator essential for the use of glycolytic substrates. A dozen enzymes in the central carbon metabolism (CCM) have been reported as potentially controlled by CsrA, but its impact on the CCM functioning has not been demonstrated. Here, a multiscale analysis was performed in a wild-type strain and its isogenic mutant attenuated for CsrA (including growth parameters, gene expression levels, metabolite pools, abundance of enzymes and fluxes). Data integration and regulation analysis showed a coordinated control of the expression of glycolytic enzymes. This also revealed the imbalance of metabolite pools in the csrA mutant upper glycolysis, before the phosphofructokinase PfkA step. This imbalance is associated with a glucose-phosphate stress. Restoring PfkA activity in the csrA mutant strain suppressed this stress and increased the mutant growth rate on glucose. Thus, the carbon storage regulator system is essential for the effective functioning of the upper glycolysis mainly through its control of PfkA. This work demonstrates the pivotal role of post-transcriptional regulation to shape the carbon metabolism.

  15. Subcooled forced convection boiling of trichlorotrifluoroethane

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Panian, D. J.

    1972-01-01

    Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.

  16. Boiling Temperature and Reversed Deliquescence Relative Humidity Measurements for Mineral Assemblages in the NaCl + NaNO3 + KNO3 + Ca(NO3)2 + H2O System

    SciTech Connect

    Rard, J A; Staggs, K J; Day, S D; Carroll, S A

    2005-12-01

    Boiling temperature measurements have been made at ambient pressure for saturated ternary solutions of NaCl + KNO{sub 3} + H{sub 2}O, NaNO{sub 3} + KNO{sub 3} + H{sub 2}O, and NaCl + Ca(NO{sub 3}){sub 2} + H{sub 2}O over the full composition range, along with those of the single salt systems. Boiling temperatures were also measured for the four component NaCl + NaNO{sub 3} + KNO{sub 3} + H{sub 2}O and five component NaCl + NaNO{sub 3} + KNO{sub 3} + Ca(NO{sub 3}){sub 2} + H{sub 2}O mixtures, where the solute mole fraction of Ca(NO{sub 3}){sub 2}, x(Ca(NO{sub 3}){sub 2}), was varied between 0 and 0.25. The maximum boiling temperature found for the NaCl + KNO{sub 3} + H{sub 2}O system is {approx} 134.9 C; for the NaNO{sub 3} + KNO{sub 3} + H{sub 2}O system is {approx} 165.1 C at x(NaNO{sub 3}) {approx} 0.46 and x(KNO{sub 3}) {approx} 0.54; and for the NaCl + Ca(NO{sub 3}){sub 2} + H{sub 2}O system is 164.7 {+-} 0.6 C at x(NaCl) {approx} 0.25 and x(Ca(NO{sub 3}){sub 2}) {approx} 0.75. The NaCl + NaNO{sub 3} + KNO{sub 3} + Ca(NO{sub 3}){sub 2} + H{sub 2}O system forms molten salts below their maximum boiling temperatures, and the temperatures corresponding to the cessation of boiling (dry out temperatures) of these liquid mixtures were determined. These dry out temperatures range from {approx} 300 C when x(Ca(NO{sub 3}){sub 2}) = 0 to {ge} 400 C when x(Ca(NO{sub 3}){sub 2}) = 0.20 and 0.25. Mutual deliquescence/efflorescence relative humidity (MDRH/MERH) measurements were also made for the NaNO{sub 3} + KNO{sub 3} and NaCl + NaNO{sub 3} + KNO{sub 3} salt mixture from 120 to 180 C at ambient pressure. The NaNO{sub 3} and NaCl + NaNO{sub 3} + KNO{sub 3} salt mixture has a MDRH of 26.4% at 120 C and 20.0% at 150 C. This salt mixture also absorbs water at 180 C, which is higher than expected from the boiling temperature experiments. The NaCl + NaNO{sub 3} + KNO{sub 3} salt mixture was found to have a MDRH of 25.9% at 120 C and 10.5% at 180 C. The investigated mixture

  17. 1. OVERVIEW OF POOLE POWERHOUSE COMPLEX SETTING. POOLE POWERHOUSE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERVIEW OF POOLE POWERHOUSE COMPLEX SETTING. POOLE POWERHOUSE AND TRIPLEX COTTAGE ARE VISIBLE AT PHOTO CENTER IN SMALL CLEARING AMONG TREES IN LEE VINING CREEK VALLEY. VIEW TO SOUTH EAST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  18. System for reducing heat losses from indoor swimming pools by use of automatic covers. Final report, October 1, 1993--September 30, 1995

    SciTech Connect

    1996-01-01

    This final report is an account of the principal activities of Lof Energy Systems, Inc. in a two-year project funded by the Energy Related Inventions Program (ERIP) of the U.S. Department of Energy. The primary objective has been the development of a fully practical and economical system for saving energy in indoor swimming pools by use of motorized covers. The goal is wide-spread use of a fully developed product, in institutional swimming pools. Four major tasks, depicted in the accompanying Performance Schedule, have been completed, and one other has been initiated and its completion committed. Principal accomplishments have been the selection and improvement of cover materials and designs, lengthening and strengthening of reels and improvements in motorized components and their control, design and installation of pool covers in full scale demonstration and evaluation of fully developed commercial system, preparation and dissemination of manuals and reports, finalization of arrangements for Underwriters Laboratory certification of products, and final report preparation and submission. Of greatest significance has been the successful demonstration of the fully developed system and the verification and reporting by an energy consultant of the large savings resulting from pool cover use. Probably the best evidence of success of the DOE-ERIP project in advancing this invention to a commercial stage is its acceptance for sale by the Lincoln Equipment Company, a national distributor of swimming pool supplies and equipment. A copy of the relevant page in the Lincoln catalog is included in this report as Annex A. Representatives of that company now offer Tof motorized pool cover systems to their pool owner customers. In addition to the plans for securing UL certification the company expects to continue making design improvements that can increase system reliability, durability, and cost-effectiveness.

  19. Investigation of Body Force Effects on Flow Boiling Critical Heat Flux

    NASA Technical Reports Server (NTRS)

    Zhang, Hui; Mudawar, Issam; Hasan, Mohammad M.

    2002-01-01

    The bubble coalescence and interfacial instabilities that are important to modeling critical heat flux (CHF) in reduced-gravity systems can be sensitive to even minute body forces. Understanding these complex phenomena is vital to the design and safe implementation of two-phase thermal management loops proposed for space and planetary-based thermal systems. While reduced gravity conditions cannot be accurately simulated in 1g ground-based experiments, such experiments can help isolate the effects of the various forces (body force, surface tension force and inertia) which influence flow boiling CHF. In this project, the effects of the component of body force perpendicular to a heated wall were examined by conducting 1g flow boiling experiments at different orientations. FC-72 liquid was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface at conditions approaching CHF. High-speed video imaging was employed to capture dominant CHF mechanisms. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed great sensitivity to orientation for flow velocities below 0.2 m/s, where very small CHF values where measured, especially with downflow and downward-facing heated wall orientations. High flow velocities dampened the effects of orientation considerably. Figure I shows representative images for the different CHF regimes. The Wavy Vapor Layer regime was dominant for all high velocities and most orientations, while all other regimes were encountered at low velocities, in the downflow and/or downward-facing heated wall orientations. The Interfacial Lift-off model was modified to predict the effects of orientation on CHF for the dominant Wavy Vapor Layer regime. The photographic study captured a fairly continuous wavy vapor layer travelling along the heated wall while permitting liquid

  20. The myth of the boiling point.

    PubMed

    Chang, Hasok

    2008-01-01

    Around 1800, many reputable scientists reported significant variations in the temperature of pure water boiling under normal atmospheric pressure. The reported variations included a difference of over 1 degree C between boiling in metallic and glass vessels (Gay-Lussac), and "superheating" up to 112 degrees C on extracting dissolved air out of water (De Luc). I have confirmed most of these observations in my own experiments, many of which are described in this paper. Water boils at the "boiling point" only under very particular circumstances. Our common-sense intuition about the fixedness of the boiling point is only sustained by our limited experience.

  1. Computations of Boiling in Microgravity

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Jacqmin, David

    1999-01-01

    The absence (or reduction) of gravity, can lead to major changes in boiling heat transfer. On Earth, convection has a major effect on the heat distribution ahead of an evaporation front, and buoyancy determines the motion of the growing bubbles. In microgravity, convection and buoyancy are absent or greatly reduced and the dynamics of the growing vapor bubbles can change in a fundamental way. In particular, the lack of redistribution of heat can lead to a large superheat and explosive growth of bubbles once they form. While considerable efforts have been devoted to examining boiling experimentally, including the effect of microgravity, theoretical and computational work is limited to very simple models. In this project, the growth of boiling bubbles is studied by direct numerical simulations where the flow field is fully resolved and the effects of inertia, viscosity, surface deformation, heat conduction and convection, as well as the phase change, are fully accounted for. The proposed work is based on previously funded NASA work that allowed us to develop a two-dimensional numerical method for boiling flows and to demonstrate the ability of the method to simulate film boiling. While numerical simulations of multi-fluid flows have been advanced in a major way during the last five years, or so, similar capability for flows with phase change are still in their infancy. Although the feasibility of the proposed approach has been demonstrated, it has yet to be extended and applied to fully three-dimensional simulations. Here, a fully three-dimensional, parallel, grid adaptive code will be developed. The numerical method will be used to study nucleate boiling in microgravity, with particular emphasis on two aspects of the problem: 1) Examination of the growth of bubbles at a wall nucleation site and the instabilities of rapidly growing bubbles. Particular emphasis will be put on accurately capturing the thin wall layer left behind as a bubble expands along a wall, on

  2. Flow injection analysis system based on amperometric thin-film transducers for free chlorine detection in swimming pool waters.

    PubMed

    Olivé-Monllau, Rosa; Orozco, Jahir; Fernández-Sánchez, César; Baeza, Mireia; Bartrolí, Jordi; Jimenez-Jorquera, Cecilia; Céspedes, Francisco

    2009-03-15

    This work reports on the performance of a user-friendly flow injection analysis (FIA) system for the monitoring of free chlorine. A methacrylate flow cell integrating a gold thin-film microelectrode, together with an on-chip gold counter electrode, both fabricated by microfabrication technology, provided robustness, low output impedance, rapid response and low cost to the proposed flow system. An external Ag/AgCl reference electrode placed downstream the chip completes the electrochemical cell. Amperometric detection of chlorine was carried out at a set potential of +350 mV, without oxygen interference. The proposed flow system responded linearly to chlorine concentrations in a range from 0.2 to 5 mgl(-1), with a sensitivity of 0.23 microAlmg(-1), the estimated limit of detection being 0.02 mgl(-1). In addition, the system response was kept stable for at least 10 days (+/-3sigma criterion), by keeping the flow system in an inert atmosphere when not in use. Fifteen samples of swimming pool waters were analyzed and no matrix effects were detected. Also, results were in good agreement with those obtained by a standard method. The excellent analytical performance of the system together with its good working stability would also enable its application for the detection of chlorine in other matrices such as tap water or chlorine stock solutions.

  3. Spread of large LNG pools on the sea.

    PubMed

    Fay, J A

    2007-02-20

    A review of the standard model of LNG pool spreading on water, comparing it with the model and experiments on oil pool spread from which the LNG model is extrapolated, raises questions about the validity of the former as applied to spills from marine tankers. These questions arise from the difference in fluid density ratios, in the multi-dimensional flow at the pool edge, in the effects of LNG pool boiling at the LNG-water interface, and in the model and experimental initial conditions compared with the inflow conditions from a marine tanker spill. An alternate supercritical flow model is proposed that avoids these difficulties; it predicts significant increase in the maximum pool radius compared with the standard model and is partially corroborated by tests of LNG pool fires on water. Wind driven ocean wave interaction has little effect on either spread model.

  4. Simulating soil C stability with mechanistic systems models: a multisite comparison of measured fractions and modelled pools

    NASA Astrophysics Data System (ADS)

    Robertson, Andy; Schipanski, Meagan; Sherrod, Lucretia; Ma, Liwang; Ahuja, Lajpat; McNamara, Niall; Smith, Pete; Davies, Christian

    2016-04-01

    Agriculture, covering more than 30% of global land area, has an exciting opportunity to help combat climate change by effectively managing its soil to promote increased C sequestration. Further, newly sequestered soil carbon (C) through agriculture needs to be stored in more stable forms in order to have a lasting impact on reducing atmospheric CO2 concentrations. While land uses in different climates and soils require different management strategies, the fundamental mechanisms that regulate C sequestration and stabilisation remain the same. These mechanisms are used by a number of different systems models to simulate C dynamics, and thus assess the impacts of change in management or climate. To evaluate the accuracy of these model simulations, our research uses a multidirectional approach to compare C stocks of physicochemical soil fractions collected at two long-term agricultural sites. Carbon stocks for a number of soil fractions were measured at two sites (Lincoln, UK; Colorado, USA) over 8 and 12 years, respectively. Both sites represent managed agricultural land but have notably different climates and levels of disturbance. The measured soil fractions act as proxies for varying degrees of stability, with C contained within these fractions relatable to the C simulated within the soil pools of mechanistic systems models1. Using stable isotope techniques at the UK site, specific turnover times of C within the different fractions were determined and compared with those simulated in the pools of 3 different models of varying complexity (RothC, DayCent and RZWQM2). Further, C dynamics and N-mineralisation rates of the measured fractions at the US site were assessed and compared to results of the same three models. The UK site saw a significant increase in C stocks within the most stable fractions, with topsoil (0-30cm) sequestration rates of just over 0.3 tC ha-1 yr-1 after only 8 years. Further, the sum of all fractions reported C sequestration rates of nearly 1

  5. Flow Boiling Critical Heat Flux in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.

    2004-01-01

    This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met

  6. Early-Evaporation of Microlayer for Boiling Heat Transfer Enhancement.

    PubMed

    Zou, An; Singh, Dhirendra P; Maroo, Shalabh C

    2016-10-06

    For over five decades, enhancement in pool boiling heat transfer has been achieved by altering the surface wetting, wickability, roughness, nucleation site density and providing separate liquid/vapor pathways. In this work, a new enhancement mechanism based on the early-evaporation of the microlayer is discovered and validated. The microlayer is a thin liquid film present at the base of a vapor bubble. Presence of micro-ridges on the silicon-dioxide surface partitions the microlayer and disconnects it from bulk liquid causing it to evaporate sooner, thus leading to increase in bubble growth rate, heat transfer, departure frequency and critical heat flux (CHF). Compared to a plain surface, ~120% enhancement in CHF is obtained with only ~18% increase in surface area. A CHF enhancement map is developed based on ridge height and spacing, resulting in three regions of full, partial and no enhancement. The new mechanism is validated by comparing the growth rate of a laser created vapor bubble on ridge-structured surface and plain surface, and the corresponding prediction of CHF enhancement is found to be in good agreement with experimental boiling data. This discovery opens up a new field of CHF enhancement and can be coupled with existing techniques to further push the limits of boiling heat transfer.

  7. 76 FR 22444 - Privacy Act; System of Records: State-52, Parking Permit and Car Pool Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    .... Annual refresher training is mandatory. In addition, all Foreign Service and Civil Service employees and... computerized files is password-protected and under the direct supervision of the system manager. The...

  8. Hysteresis of boiling for different tunnel-pore surfaces

    NASA Astrophysics Data System (ADS)

    Pastuszko, Robert; Piasecka, Magdalena

    2015-05-01

    Analysis of boiling hysteresis on structured surfaces covered with perforated foil is proposed. Hysteresis is an adverse phenomenon, preventing high heat flux systems from thermal stabilization, characterized by a boiling curve variation at an increase and decrease of heat flux density. Experimental data were discussed for three kinds of enhanced surfaces: tunnel structures (TS), narrow tunnel structures (NTS) and mini-fins covered with the copper wire net (NTS-L). The experiments were carried out with water, R-123 and FC-72 at atmospheric pressure. A detailed analysis of the measurement results identified several cases of type I, II and III for TS, NTS and NTS-L surfaces.

  9. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; Konichi, Chris; Hyounsoon, Lee

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and

  10. Solvent dynamics in a reverse micellar water-pool: a spectroscopic investigation of DDAB-cyclohexane-water systems.

    PubMed

    Patra, Animesh; Luong, Trung Quan; Mitra, Rajib Kumar; Havenith, Martina

    2013-01-21

    We have measured the hydrogen bonded structure and sub-ns relaxation dynamics of water molecules encapsulated in the DDAB-cyclohexane (Cy)-water reverse micellar (RM) water-pool dependent on water concentration (w(0) = [water]/[DDAB]) and temperatures. The interfacial film of DDAB-Cy undergoes significant alteration upon addition of water as the microscopic phase changes from cylindrical aggregates to discrete droplets which is in contrast to the conventional RM systems. FTIR spectroscopy in mid-infrared (MIR) and far-infrared (FIR) regions suggests the encapsulated water molecules to undergo a transition with increasing w(0) towards a bulk-like behavior. Time resolved fluorescence spectroscopy using Coumarin-500 as the fluorophore reveals a decrease in solvation time constant with increasing w(0) as well as with increasing temperature, a behavior consistent with conventional RM systems. The temperature dependent relaxation dynamics is found to follow an Arrhenius type behavior with a value for E(act) in the range of 2.5-3 kcal mol(-1) for all the studied systems. Our results show that phase modification has a marginal effect on the relaxation dynamics.

  11. 10 CFR 36.63 - Pool water purity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain the conductivity of the pool water below 20 microsiemens per centimeter under normal circumstances. If pool water... 10 Energy 1 2010-01-01 2010-01-01 false Pool water purity. 36.63 Section 36.63 Energy...

  12. 10 CFR 36.63 - Pool water purity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain the conductivity of the pool water below 20 microsiemens per centimeter under normal circumstances. If pool water... 10 Energy 1 2014-01-01 2014-01-01 false Pool water purity. 36.63 Section 36.63 Energy...

  13. 10 CFR 36.63 - Pool water purity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain the conductivity of the pool water below 20 microsiemens per centimeter under normal circumstances. If pool water... 10 Energy 1 2012-01-01 2012-01-01 false Pool water purity. 36.63 Section 36.63 Energy...

  14. 10 CFR 36.63 - Pool water purity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Pool water purity. 36.63 Section 36.63 Energy NUCLEAR... § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain the conductivity of the pool water below 20 microsiemens per centimeter under normal circumstances. If pool...

  15. 10 CFR 36.63 - Pool water purity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Pool water purity. 36.63 Section 36.63 Energy NUCLEAR... § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain the conductivity of the pool water below 20 microsiemens per centimeter under normal circumstances. If pool...

  16. Experiments of ECCS strainer blockage and debris settling in suppression pools

    SciTech Connect

    Hecker, G.E.; Johnson, A.B.; Murthy, P.; Padmanabhan

    1996-03-01

    If a rupture occurs in a nuclear power station pipe that leads to or from the reactor pressure vessel, the resultant Loss of Coolant Accident (LOCA) would initiate a chain of events involving complex flow phenomena. In a Boiling Water Reactor (BWR), the steam or liquid pipe break pressurizes the dry well, forcing the inert containment gases and steam through downcomers into the suppression pool, thoroughly mixing any particulates and pipe insulation debris carried with the gas flow to the pool. As the steam flow decreases, its unsteady condensation at the end of the downcomers (Condensation Oscillation and Chugging) produces continued water motion in the suppression pool and downcomers. During the blowdown event, high pressure and then low pressure pumps automatically start injecting water from the suppression pool into the reactor to keep its temperature under control. Proper functioning of this Emergency Core Cooling System (ECCS) is critical for the first 30 minutes or so, before operators have time to consider and align alternative sources of cooling water. A major concern for proper operation of the ECCS is the effect of fragmented insulation and plant particulates on the head loss at pump suction strainers. Sufficient loss could exceed the NPSH margin, causing cavitation with a resultant loss of pump capacity and longevity. The bead loss increases with the mass of debris accumulated on the pump strainers, which in turn is dependent on the debris concentration versus time in the suppression pool. This paper describes two sets of experiments that quantified the strainer head loss. One set of experiments considered the mixing and settling of fibrous insulation debris and fine iron oxide particles in the suppression pool during and after chugging. These tests used a reduced scale facility which duplicated the kinetic energy per unit water volume to define the concentration of the actual materials in the pool versus time.

  17. Simulation of Thermal Stratification in BWR Suppression Pools with One Dimensional Modeling Method

    SciTech Connect

    Haihua Zhao; Ling Zou; Hongbin Zhang

    2014-01-01

    The suppression pool in a boiling water reactor (BWR) plant not only is the major heat sink within the containment system, but also provides the major emergency cooling water for the reactor core. In several accident scenarios, such as a loss-of-coolant accident and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; the pool temperature distribution also affects the NPSHa (available net positive suction head) and therefore the performance of the Emergency Core Cooling System and Reactor Core Isolation Cooling System pumps that draw cooling water back to the core. Current safety analysis codes use zero dimensional (0-D) lumped parameter models to calculate the energy and mass balance in the pool; therefore, they have large uncertainties in the prediction of scenarios in which stratification and mixing are important. While three-dimensional (3-D) computational fluid dynamics (CFD) methods can be used to analyze realistic 3-D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, resulting in a long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code (Berkeley mechanistic MIXing code in C++) has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by one-dimensional (1-D) transient partial differential equations and substructures (such as free or wall jets) are modeled with 1-D integral models. This allows very large reductions in computational effort compared to multi-dimensional CFD modeling. One heat-up experiment performed at the Finland POOLEX facility, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, is used for

  18. Eucalyptus tolerance mechanisms to lanthanum and cerium: subcellular distribution, antioxidant system and thiol pools.

    PubMed

    Shen, Yichang; Zhang, Shirong; Li, Sen; Xu, Xiaoxun; Jia, Yongxia; Gong, Guoshu

    2014-12-01

    Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis.

  19. Marangoni Effects in the Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Ahmed, Sayeed; Carey, Van P.; Motil, Brian

    1996-01-01

    Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.

  20. Boils

    MedlinePlus

    ... Resident Research Award Daniel Koprince Award Resident Research Paper Award Surgery in the Outback CME CME ATTESTATION ... which are usually due to Staph infections. The bacteria are picked up somewhere and then live on ...

  1. CHIMNEY FOR BOILING WATER REACTOR

    DOEpatents

    Petrick, M.

    1961-08-01

    A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

  2. 7 CFR 1001.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h)...

  3. 7 CFR 1001.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h)...

  4. 7 CFR 1124.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified...

  5. 7 CFR 1033.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of...

  6. 7 CFR 1032.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of...

  7. 7 CFR 1032.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of...

  8. 7 CFR 1124.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified...

  9. 7 CFR 1030.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h)...

  10. 7 CFR 1033.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of...

  11. 7 CFR 1030.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h)...

  12. 47 CFR 13.215 - Question pools.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Question pools. 13.215 Section 13.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL RADIO OPERATORS Examination System § 13.215 Question pools. The question pool for each written examination element will be composed of...

  13. 7 CFR 1033.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of...

  14. 7 CFR 1030.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h)...

  15. 7 CFR 1032.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of...

  16. 7 CFR 1032.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of...

  17. 7 CFR 1124.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified...

  18. 7 CFR 1001.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h)...

  19. 7 CFR 1001.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h)...

  20. 7 CFR 1033.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of...

  1. 7 CFR 1030.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h)...

  2. 7 CFR 1033.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of...

  3. 7 CFR 1030.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h)...

  4. 7 CFR 1124.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified...

  5. 7 CFR 1001.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h)...

  6. 7 CFR 1124.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified...

  7. 7 CFR 1032.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of...

  8. Boiling significantly promotes photodegradation of perfluorooctane sulfonate.

    PubMed

    Lyu, Xian-Jin; Li, Wen-Wei; Lam, Paul K S; Yu, Han-Qing

    2015-11-01

    The application of photochemical processes for perfluorooctane sulfonate (PFOS) degradation has been limited by a low treatment efficiency. This study reports a significant acceleration of PFOS photodegradation under boiling condition compared with the non-boiling control. The PFOS decomposition rate increased with the increasing boiling intensity, but declined at a higher hydronium level or under oxygenation. These results suggest that the boiling state of solution resulted in higher effective concentrations of reactants at the gas-liquid interface and enhanced the interfacial mass transfer, thereby accelerating the PFOS decomposition. This study broadens our knowledge of PFOS photodegradation process and may have implications for development of efficient photodegradation technologies.

  9. Swimming pools soak up the sun

    SciTech Connect

    Cuoghi, D.; Hesse, P.; Schiller, T.

    1996-05-01

    Solar pool heaters survived the boom and bust solar years of the 1970s and 1980s. Today they are even popular and cost-effective in parts of the country where many people think solar is impractical. This article discusses the following topics: how solar pool heaters work; types of solar pool heater collectors; collector and pump sizing; collector siting and mounting; systems costs and economics; pool covers. 3 figs.

  10. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    SciTech Connect

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.

  11. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    DOE PAGES

    Li, Q.; Kang, Q. J.; Francois, M. M.; ...

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less

  12. Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.

    PubMed

    Zhou, Zhanru; Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.

  13. Bubble dynamics, two-phase flow, and boiling heat transfer in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1994-01-01

    The two-phase bubbly flow and boiling heat transfer in microgravity represents a substantial challenge to scientists and engineers and yet there is an urgent need to seek fundamental understanding in this area for future spacecraft design and space missions. At Washington State University, we have successfully designed, built and tested a 2.1 second drop tower with an innovation airbag deceleration system. Microgravity boiling experiments performed in our 0.6 second Drop Tower produced data flow visualizations that agree with published results and also provide some new understanding concerning flow boiling and microgravity bubble behavior. On the analytical and numerical work, the edge effects of finite divergent electrode plates on the forces experienced by bubbles were investigated. Boiling in a concentric cylinder microgravity and an electric field was numerically predicted. We also completed a feasibility study for microgravity boiling in an acoustic field.

  14. Global identification of stochastic dynamical systems under different pseudo-static operating conditions: The functionally pooled ARMAX case

    NASA Astrophysics Data System (ADS)

    Sakellariou, J. S.; Fassois, S. D.

    2017-01-01

    The identification of a single global model for a stochastic dynamical system operating under various conditions is considered. Each operating condition is assumed to have a pseudo-static effect on the dynamics and be characterized by a single measurable scheduling variable. Identification is accomplished within a recently introduced Functionally Pooled (FP) framework, which offers a number of advantages over Linear Parameter Varying (LPV) identification techniques. The focus of the work is on the extension of the framework to include the important FP-ARMAX model case. Compared to their simpler FP-ARX counterparts, FP-ARMAX models are much more general and offer improved flexibility in describing various types of stochastic noise, but at the same time lead to a more complicated, non-quadratic, estimation problem. Prediction Error (PE), Maximum Likelihood (ML), and multi-stage estimation methods are postulated, and the PE estimator optimality, in terms of consistency and asymptotic efficiency, is analytically established. The postulated estimators are numerically assessed via Monte Carlo experiments, while the effectiveness of the approach and its superiority over its FP-ARX counterpart are demonstrated via an application case study pertaining to simulated railway vehicle suspension dynamics under various mass loading conditions.

  15. Direct Numerical Simulation of Boiling Multiphase Flows: State-of-the-Art, Modeling, Algorithmic and Computer Needs

    SciTech Connect

    Nourgaliev R.; Knoll D.; Mousseau V.; Berry R.

    2007-04-01

    The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling -- FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical boiling flows in LWR reactors, requiring high-fidelity treatment of interfacial dynamics, phase-change, hydrodynamics, compressibility, heat transfer, and non-equilibrium thermodynamics and chemistry of liquid/vapor and fluid/solid-wall interfaces. Finally, we outline the framework for the {\\sf Fervent} code, being developed at INL for DNS of reactor-relevant boiling multiphase flows, with the purpose of gaining insight into the physics of multiphase flow regimes, and generating a basis for effective-field modeling in terms of its formulation and closure laws.

  16. Experimental Study on Thermal-Hydraulics During Start-Up in the Natural Circulation Boiling Water Reactor Concept: Effects of System Pressure and Increasing Heat Flux on the Geysering and Density Wave Oscillation

    SciTech Connect

    Hadid Subki, M.; Masanori Aritomi; Noriyuki Watanabe; Chaiwat Muncharoen

    2002-07-01

    The feasibility study in thermal-hydraulics for the future light water reactor concept is carried out. One of the essential studies is the two-phase flow instability during start-up in the natural circulation boiling water reactor (BWR) concept. It is anticipated that the occurrence of the two-phase flow instabilities during start-up significantly affects the feasibility concept, since it would cause the complexity in raising and maneuvering the power output. The purpose of the current study is to experimentally investigate the driving mechanism of the geysering and density wave oscillation in the natural circulation loop, induced by a range of system operating pressure and increasing heat flux in vertical parallel channels. The pressure range of atmospheric up to about 4 bars, and the input heat flux range of 0 up to 577 kW/m{sup 2} are applied in these experiments. An experimental apparatus of twin boiling upflow channels to simulate natural circulation flow loop has been designed, constructed and operated. The natural circulation in the loop occurs due to the density difference between two-phase region in the channels and the single-phase liquid in the downcomer. The objective of the study is to propose a rational start-up procedure in which the geysering and density wave oscillation can be prevented during startup, according to its system pressure and heat flux. Previous studies have clarified that three (3) kinds of thermo-hydraulics instabilities may occur during start-up in the natural circulation BWR depending on its procedure and reactor configuration, which are (1) geysering induced by condensation, (2) natural circulation induced by hydrostatic head fluctuation in steam separator, and (3) density wave oscillation. (authors)

  17. Boiling water reactor licensing basis transient

    SciTech Connect

    Cheng, H. S.; Lu, M. S.; Shier, W. G.; Diamond, D. J.; Levine, M. M.; Odar, F.

    1980-01-01

    An analysis is presented of the licensing basis transient for a boiling water reactor where a turbine trip occurs without steam bypass. The analysis was performed by means of the two-dimensional (R,Z) core dynamics code BNL-TWIGL in conjunction with the system transient code RELAP-3B. Two plant models were used and produced similar results for the analysis of the Peach Bottom turbine trip tests. The models differed in the representation of the steam separator. The analysis of the licensing basis transient produced somewhat different results. The results of sensitivity studies to help explain the differences are presented as well as an analysis of the licensing basis transient with recirculation pump trip. 2 refs., 17 figs., 1 tab.

  18. Pooling techniques for bioassay screening

    SciTech Connect

    Sun, L.C.; Baum, J.W.; Kaplan, E; Moorthy, A.R.

    1996-03-01

    Pooling techniques commonly are used to increase the throughput of samples used for screening purposes. While the advantages of such techniques are increased analytical efficiency and cost savings, the sensitivity of measurements decreases because it is inversely proportional to the number of samples in the pools. Consequently, uncertainties in estimates of dose and risk which are based on the results of pooled samples increase as the number of samples in the pools increases in all applications. However, sensitivities may not be seriously degraded, for example, in urinalysis, if the samples in the pools are of known time duration, or if the fraction of some attribute of the grab urine samples to that in a 24-hour composite is known (e.g., mass, specific gravity, creatinine, or volume, per 24-h interval). This paper presents square and cube pooling schemes that greatly increase throughput and can considerably reduce analytical costs (on a sample basis). The benefit-cost ratios for 5{times}5 square and 5{times}5{times}5 cube pooling schemes are 2.5 and 8.3, respectively. Three-dimensional and higher arrayed pooling schemes would result in even greater economies; however, significant improvements in analytical sensitivity are required to achieve these advantages. These are various other considerations for designing a pooling scheme, where the number of dimensions and of samples in the optimum array are influenced by: (1) the minimal detectable amount (MDA) of the analytical processes, (2) the screening dose-rate requirements, (3) the maximum masses or volumes of the composite samples that can be analyzed, (4) the information already available from results of composite analysis, and (5) the ability of an analytical system to guard against both false negative and false positive results. Many of these are beyond the scope of this paper but are being evaluated.

  19. ECS DAAC Data Pools

    NASA Astrophysics Data System (ADS)

    Kiebuzinski, A. B.; Bories, C. M.; Kalluri, S.

    2002-12-01

    As part of its Earth Observing System (EOS), NASA supports operations for several satellites including Landsat 7, Terra, and Aqua. ECS (EOSDIS Core System) is a vast archival and distribution system and includes several Distributed Active Archive Centers (DAACs) located around the United States. EOSDIS reached a milestone in February when its data holdings exceeded one petabyte (1,000 terabytes) in size. It has been operational since 1999 and originally was intended to serve a large community of Earth Science researchers studying global climate change. The Synergy Program was initiated in 2000 with the purpose of exploring and expanding the use of remote sensing data beyond the traditional research community to the applications community including natural resource managers, disaster/emergency managers, urban planners and others. This included facilitating data access at the DAACs to enable non-researchers to exploit the data for their specific applications. The combined volume of data archived daily across the DAACs is of the order of three terabytes. These archived data are made available to the research community and to general users of ECS data. Currently, the average data volume distributed daily is two terabytes, which combined with an ever-increasing need for timely access to these data, taxes the ECS processing and archival resources for more real-time use than was previously intended for research purposes. As a result, the delivery of data sets to users was being delayed in many cases, to unacceptable limits. Raytheon, under the auspices of the Synergy Program, investigated methods at making data more accessible at a lower cost of resources (processing and archival) at the DAACs. Large on-line caches (as big as 70 Terabytes) of data were determined to be a solution that would allow users who require contemporary data to access them without having to pull it from the archive. These on-line caches are referred to as "Data Pools." In the Data Pool concept

  20. Flash boiling from carbon foams for high-heat-flux transient cooling

    NASA Astrophysics Data System (ADS)

    Engerer, J. D.; Fisher, T. S.

    2016-07-01

    Flash boiling of a liquid pool results in an event characterized by rapid phase change and, as a result, high rates of expansion and cooling. Because of the potential advantages of such characteristics for convective heat transfer, flash boiling is considered here for the purpose of cooling transient heat loads. The event has the positive characteristics mentioned as well as rapid response (˜10 ms) and high initial rates of phase change, and then quickly decays to a steady-state regime analogous to pool boiling. The performance of the cooling mechanism is evaluated using an objective function derived from the effect of temperature on the efficiency of optical transmission in a diode-pumped solid-state laser. Statistical surrogate models based on the experimental results are used to predict optimal run conditions. Experiments using these predicted parameters show that flash boiling can maintain device temperature to within ±6.1 °C through a pulsed 5 s heat flux of 68 W cm-2 and to within ±1.4 °C for a heat flux of 39 W cm-2.

  1. Compressible analysis of inlet plenum pressure rise due to sodium boiling in fuel subassemblies during pump coastdown of an LMFBR

    SciTech Connect

    Kalimullah; Hummel, H.H.

    1980-05-01

    The effect of sodium compressibility and steel elasticity on the rise in inlet plenum pressure occurring during boiling in a loss-of-flow accident in an LMFBR has been investigated using the require consideration in accident analysis. The pressure rise is less for pool than for loop designs. 3 refs., 1 fig., 9 tabs.

  2. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    PubMed Central

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung

    2016-01-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255

  3. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces.

    PubMed

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung

    2016-04-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.

  4. Thawing dog spermatozoa in just-boiled water: submersion time and effect on sperm quality compared to thawing in water at 70 degrees C.

    PubMed

    Nöthling, J O; Dolieslager, S M J; Fillekes, R; Colenbrander, B

    2007-09-01

    Dog spermatozoa have better quality after thawing in water at 70-75 degrees C instead of 35-38 degrees C. The aim of Experiment 1 was to determine the time needed to thaw 0.5 mL straws in just-boiled (98 degrees C) water and that of Experiment 2 to determine whether thawing frozen dog spermatozoa in just-boiled water will result in better quality than thawing in water at 70 degrees C. Prior to freezing the straws of Experiment 1, a Type J thermocouple with wire diameters of 0.08 mm (Osiris Technical Systems, Centurion, South Africa) was placed in the center of each of ninety-three 0.5 mL straws (IMV Technologies, L'Aigle, France) filled with extender (Biladyl* with 0.5%, v/v of Equex STM paste**) and 54 filled with extender plus 200 x 10(6)spermatozoa/mL (Minitüb, Germany (*) and Nova Chemical Sales, MA (**)). Thirty straws with extender were thawed in water at 70 degrees C and the others in just-boiled water. Temperatures inside straws were recorded 10 times/s during warming. Two ejaculates were then collected from each of eight dogs and one from each of three others. Extended ejaculates from the same dog were pooled, frozen 8 cm above liquid nitrogen, and 2 straws from each of the 11 batches thawed in water at 70 degrees C for 8s and 2 in just-boiled water for 6.5s. Sperm morphology and viability were assessed on eosin-nigrosin smears made after thawing and the percentage progressively motile spermatozoa was estimated immediately, 1, 2 and 3h after thawing. The optimal submersion time in just-boiled water was 6.5s for both sperm concentrations, resulting in average temperatures of 23.6+/-1.5 degrees C (+/-S.E.M.) and 24.9+/-1.6 degrees C inside straws with extender or extender plus spermatozoa (P=0.6). The temperature inside straws thawed in water at 70 degrees C was 13.6+/-1.7 degrees C after 8s. Apart from a 1.5% higher (P<0.05) mean percentage motile sperm 2h after thawing, thawing dog spermatozoa in just-boiled (98 degrees C) water holds no benefit over

  5. Suppression Pool Mixing and Condensation Tests in PUMA Facility

    SciTech Connect

    Ling Cheng; Kyoung Suk Woo; Mamoru Ishii; Jaehyok Lim; Han, James

    2006-07-01

    Condensation of steam with non-condensable in the form of jet flow or bubbly flow inside the suppression pool is an important phenomenon on determining the containment pressure of a passively safe boiling water reactor. 32 cases of pool mixing and condensation test have been performed in Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility under the sponsor of the U.S. Nuclear Regulatory Commission to investigate thermal stratification and pool mixing inside the suppression pool during the reactor blowdown period. The test boundary conditions, such as the steam flow rate, the noncondensable gas flow rate, the initial water temperature, the pool initial pressure and the vent opening submergence depth, which covers a wide range of prototype (SBWR-600) conditions during Loss of Coolant Accident (LOCA) were obtained from the RELAP5 calculation. The test results show that steam is quickly condensed at the exit of the vent opening. For pure steam injection or low noncondensable injection cases, only the portion above the vent opening in the suppression pool is heated up by buoyant plumes. The water below the vent opening can be heated up slowly through conduction. The test results also show that the degree of thermal stratification in suppression pool is affected by the vent opening submergence depth, the pool initial pressure and the steam injection rate. And it is slightly affected by the initial water temperature. From these tests it is concluded that the pool mixing is strongly affected by the noncondensable gas flow rate. (authors)

  6. Experiment poseidon: Elemental iodine retention in water pools

    SciTech Connect

    Guentay, S.

    1990-01-01

    Although gaseous fraction of iodine is expected to be small in quantity compared with its other forms such as CsI, because of its radiological consequence, removal of elemental iodine vapor from the gas bubbles in water pools defines an important boundary condition for the severe-accident scenarios that involve water pools. The Muehleberg nuclear power plant (a boiling water reactor Mark 1 type) in Switzerland has a unique feature, namely, a second suppression pool surrounding the reactor building in addition to the regular pressure suppression pool. For those hypothetical accident scenarios that involve the second pool, scrubbing in the second suppression pool would ultimately determine the magnitude and constitution of the release. An experimental program, pool scrubbing effect on iodine decontamination (POSEIDON), was initiated at Paul Scherrer Institute (PSI) in Switzerland in 1987 to provide a data base on gaseous iodine scrubbing. Bubbles containing elemental iodine vapor and nitrogen as the carrier gas are generated using certain sized orifices immersed in a water pool. Objectives of the experimental program are defined as (a) to understand the iodine removal phenomena from bubbles and (b) to provide a data base for iodine retention under controlled boundary conditions for the development and verification of the BUSCA-PSI pool scrubbing code.

  7. Swimming pool granuloma

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  8. Swimming Pool Safety

    MedlinePlus

    ... Prevention Listen Español Text Size Email Print Share Swimming Pool Safety Page Content ​What is the best way to keep my child safe around swimming pools? An adult should actively watch children at ...

  9. An Inexpensive Portable Pool System Useful for Temporary Housing, Medical Isolation, and Stranding Rehabilitation of Marine Mammals

    DTIC Science & Technology

    1996-03-01

    Trichloro-S-Triazinetrione tablets, soda ash, muriatic acid ) are available at most pool distributors or hardware suppliers. Aluminum piping, shade...build up of nitrogenous compounds, cyanuric acid and increased total dissolved solids (TDS). Coliform levels consistently stayed near zero owing to

  10. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  11. LOKET—a gamma-ray spectroscopy system for in-pool measurements of thermal power distribution in irradiated nuclear fuel

    NASA Astrophysics Data System (ADS)

    Matsson, Ingvar; Grapengiesser, Björn; Andersson, Björn

    2006-12-01

    An important issue in the operations of nuclear power plants is the independent validation of core physics codes like e.g. Westinghouse PHOENIX-4/POLCA-7. Such codes are used to predict the thermal power distribution down to single node level in the core. In this paper, a dedicated measurement system (LOKET) is described and experimental results are discussed. The system is based on a submergible housing, containing a high-resolution germanium detector, allowing for measurements in-pool. The system can be transported to virtually any nuclear power plant's fuel storage pool for measurements in-pool during outage. The methodology utilises gamma radiation specific for 140La, whose decay is governed by the parent 140Ba, reflecting a weighted average power distribution, representative for the last weeks of operation of the core. Good agreements between measured power distribution and core physics calculations (Ba distribution) have been obtained during a series of experiments at Leibstadt NPP in Switzerland and Cofrentes NPP in Spain (BWRs) for both fuel assemblies and single fuel rods. The system has proven as a very useful tool for the experimental validation of core calculations also for the most complex fuel designs and challenging core configurations. Experimental errors (on the 1- σ level), has been demonstrated below ±2% on nodal level for assembly measurements.

  12. The science of pooling

    SciTech Connect

    Gilbert, E.

    1995-10-01

    The pooling of data from radon studies is described. Pooling refers to the analysis of original data from several studies, not meta-analysis in which summary measures from published data are analyzed. A main objective for pooling is to reduce uncertainty and to obtain more precise estimates of risk than would be available from any single study.

  13. Criticality in the slowed-down boiling crisis at zero gravity.

    PubMed

    Charignon, T; Lloveras, P; Chatain, D; Truskinovsky, L; Vives, E; Beysens, D; Nikolayev, V S

    2015-05-01

    Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are carried out in the reduced gravity to preserve the conventional bubble geometry. Weightlessness is created artificially in two-phase hydrogen by compensating gravity with magnetic forces. We were able to reveal the fractal structure of the contour of the percolating cluster of the dry areas at the heater that precedes the boiling crisis. We provide a direct statistical analysis of dry spot areas that confirms the boiling crisis at zero gravity as a scale-free phenomenon. It was observed that, in agreement with theoretical predictions, saturated boiling CHF tends to zero (within the precision of our thermal control system) in zero gravity, which suggests that the boiling crisis may be observed at any heat flux provided the experiment lasts long enough.

  14. Zero Boil Off Cryogen Storage for Future Launchers

    NASA Technical Reports Server (NTRS)

    Valentian, D.; Plachta, D.; Kittel, P.; Hastings, L. J.; Salerno, Louis J.; Arnold, James O. (Technical Monitor)

    2001-01-01

    be to actively cool the shield in the hydrogen tank to reduce the parasitic losses. This would allow the use of less expensive, presently available coolers (80 K vs. 20 K) and potentially simplify the system by requiring only a single compressor on the pad amd a single disconnect line. The compressor could be a hefty commercial unit, with only the cold head requiring expensive flight development and qualification. While this is actually a reduced boil off configuration rather than a zero-boil off case, if the cryogen loss could be cut significantly, the increase in hold time and reduced need for draining and refilling the propellant tanks could meet the vehicle operations needs in the majority of instances.Bearing in mind the potential benefits of ZBO, NASA AMES and SNECMA Moteurs decided to exchange their technical views on the subject. This paper will present a preliminary analysis for a multi-mission module using a fairly low thrust cryogenic engine and ZBO during cruise. Initial mass is 5.5. tons (in ETO). The cryogenic engine will be used near each periapsis in order to minimize the AV requirement. The payload obtained by this propulsion system is compared to a classical storable bipropellant propulsion system for several cases (e. g. Mars lander, Jupiter orbiter, Saturn orbiter). For the Jupiter and Saturn cases, the power source could be an RTG or a large parabolic mirror illuminating a solar panel. It is shown -that - due to its much larger specific impulse - the cryogenic ZBO solution provides much higher payloads, especially for exploration missions involving landing on planets, asteroids, comets, or other celestial bodies.

  15. Why Is NASA Boiling Fluids in Space?

    NASA Video Gallery

    Convection and buoyancy work differently in space than on Earth. Learn how NASA uses this information and applies it to everyday life. Boiling fluids in space is easier than it is on Earth. Learn m...

  16. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  17. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  18. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  19. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  20. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  1. SUPERHEATING IN A BOILING WATER REACTOR

    DOEpatents

    Treshow, M.

    1960-05-31

    A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

  2. Camera Would Monitor Weld-Pool Contours

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S.; Gutow, David A.

    1990-01-01

    Weld pool illuminated and viewed coaxially along welding torch. Proposed monitoring subsystem for arc welder provides image in which horizontal portions of surface of weld pool highlighted. Monitoring and analyzing subsystems integrated into overall control system of robotic welder. Control system sets welding parameters to adapt to changing conditions, maintaining surface contour giving desired pattern of reflections.

  3. Influence of the heater material on the critical heat load at boiling of liquids on surfaces with different sizes

    NASA Astrophysics Data System (ADS)

    Anokhina, E. V.

    2010-05-01

    Data on critical heat loads q cr for the saturated and unsaturated pool boiling of water and ethanol under atmospheric pressure are reported. It is found experimentally that the critical heat load does not necessarily coincide with the heat load causing burnout of the heater, which should be taken into account. The absolute values of q cr for the boiling of water and ethanol on copper surfaces 65, 80, 100, 120, and 200 μm in diameter; tungsten surface 100 μm in diameter; and nichrome surface 100 μm in diameter are obtained experimentally.

  4. Bench-scale screening tests for a boiling sodium-potassium alloy solar receiver

    SciTech Connect

    Moreno, J.B.; Moss, T.A.

    1993-06-01

    Bench-scale tests were carried out in support of the design of a second-generation 75-kW{sub t} reflux pool-boiler solar receiver. The receiver will be made from Haynes Alloy 230 and will contain the sodium-potassium alloy NaK-78. The bench-scale tests used quartz-lamp-heated boilers to screen candidate boiling-stabilization materials and methods at temperatures up to 750{degree}C. Candidates that provided stable boiling were tested for hot-restart behavior. Poor stability was obtained with single 1/4-inch diameter patches of powdered metal hot-press-sintered onto the wetted side of the heat-input area. Laser-drilled and electric-discharge-machined cavities in the heated surface also performed poorly. Small additions of xenon, and heated-surface tilt out of the vertical dramatically improved poor boiling stability; additions of helium or oxygen did not. The most stable boiling was obtained when the entire heat-input area was covered by a powdered-metal coating. The effect of heated-area size was assessed for one coating: at low incident fluxes, when even this coating performed poorly, increasing the heated-area size markedly improved boiling stability. Good hot-restart behavior was not observed with any candidate, although results were significantly better with added xenon in a boiler shortened from 3 to 2 feet. In addition to the screening tests, flash-radiography imaging of metal-vapor bubbles during boiling was attempted. Contrary to the Cole-Rohsenow correlation, these bubble-size estimates did not vary with pressure; instead they were constant, consistent with the only other alkali metal measurements, but about 1/2 their size.

  5. Effect of Running Parameters on Flow Boiling Instabilities in Microchannels.

    PubMed

    Zong, Lu-Xiang; Xu, Jin-Liang; Liu, Guo-Hua

    2015-04-01

    Flow boiling instability (FBI) in microchannels is undesirable because they can induce the mechanical vibrations and disturb the heat transfer characteristics. In this study, the synchronous optical visualization experimental system was set up. The pure acetone liquid was used as the working fluid, and the parallel triangle silicon microchannel heat sink was designed as the experimental section. With the heat flux ranging from 0-450 kW/m2 the microchannel demand average pressure drop-heater length (Δp(ave)L) curve for constant low mass flux, and the demand pressure drop-mass flux (Δp(ave)G) curve for constant length on main heater surface were obtained and studied. The effect of heat flux (q = 188.28, 256.00, and 299.87 kW/m2), length of main heater surface (L = 4.5, 6.25, and 8.00 mm), and mass flux (G = 188.97, 283.45, and 377.94 kg/m2s) on pressure drops (Ap) and temperatures at the central point of the main heater surface (Twc) were experimentally studied. The results showed that, heat flux, length of the main heater surface, and mass flux were identified as the important parameters to the boiling instability process. The boiling incipience (TBI) and critical heat flux (CHF) were early induced for the lower mass flux or the main heater surface with longer length. With heat flux increasing, the pressure drops were linearly and slightly decreased in the single liquid region but increased sharply in the two phase flow region, in which the flow boiling instabilities with apparent amplitude and long period were more easily triggered at high heat flux. Moreover, the system pressure was increased with the increase of the heat flux.

  6. Experimental investigation on the boiling heat transfer of nanofluids on a flat plate in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Abdollahi, Ali; Reza Salimpour, Mohammad

    2016-11-01

    In this paper, the pool boiling heat transfer of Fe3O4 -deionized (DI) water as a magnetic nanofluid has been experimentally analyzed in the atmospheric pressure. The applied nanofluid within this research has been synthesized through a single step to retain a high stability. The repeatability and precision of the testing device with deionized water show a good agreement with the equations introduced in previous studies. Parametric studies on magnetic field, surface roughness, and magnetic nanofluid concentration are performed to reveal various aspects of the boiling heat transfer. In order to study the surface roughness, two surfaces with high average roughness (480nm) and low average roughness (7.3nm) were used. The obtained results indicate that the boiling heat transfer on the rough surface increases when raising the nanofluid concentration up to 0.1% volume concentration. In addition, it is observed that there is an optimum 0.1% volume concentration for the nanofluid which makes the boiling heat transfer coefficient increase up to 43%. Moreover, the heat transfer of a nanofluid with volume concentration of 0.1% is greater for the rough surface compared with the smooth one. The results of the experiments indicate that adding nanoparticles would not necessarily increase the boiling heat transfer coefficient. In fact, the surface roughness and the magnetic field gradient on the boiling surface were the main factors that could affect the boiling heat transfer coefficient significantly. The simultaneous analysis of magnetic field, surface roughness, and nanofluid concentration reveals that the boiling heat transfer coefficient of the magnetic nanofluid with 0.1% volume concentration in the presence of a magnetic field on the rough surface is higher than on the smooth surface. Our findings show that this increase is associated to the increase of nucleation sites concentration and bubble formation sites for the rough surface.

  7. Dynamics of Vapour Bubbles in Nucleate Boiling. 1; Basic Equations of Bubble Evolution

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)

    1995-01-01

    We consider the behaviour of a vapour bubble formed at a nucleation site on a heated horizontal wall. There is no forced convection of an ambient liquid, and the bubble is presumably separated from the wall by a thin liquid microlayer. The energy conservation law results in a variational equation for the mechanical energy of the whole system consisting of the bubble and liquid. It leads to a set of two strongly nonlinear equations which govern bubble expansion and motion of its centre of mass. A supplementary equation to find out the vapour temperature follows from consideration of heat transfer to the bubble, both from the bulk of surrounding liquid and through the microlayer. The average thickness of the microlayer is shown to increase monotonously with time as the bubble meniscus spreads along the wall. Bubble expansion is driven by the pressure head between vapour inside and liquid far away from the bubble, with due allowance for surface tension and gravity effects. It is resisted by inertia of liquid being placed into motion as the bubble grows. The inertia originates also a force that presses the bubble to the wall. This force is counteracted by the buoyancy and an effective surface tension force that tends to transform the bubble into a sphere. The analysis brings about quite a new formulation of the familiar problem of bubble growth and detachment under conditions of nucleate pool boiling.

  8. Boiling heat transfer enhancement of nanofluids on a smooth surface with agitation

    NASA Astrophysics Data System (ADS)

    Kong, Xin; Qi, Baojin; Wei, Jinjia; Li, Wei; Ding, Jie; Zhang, Yonghai

    2016-12-01

    The pool boiling heat transfer performance on a smooth silicon chip surface with agitation was experimentally investigated in this study. The nanofluids (Ag/alcohol) of 0.02 % volume concentration and ethyl alcohol with purification over 99.9 % were the two contrast working fluids. For each group, subcoolings of 40, 50 and 60 K were conducted under atmospheric pressure. To enhance the heat transfer performance, an agitating device was fixed above the top of the chip. The experimental results indicated that nanofluids could enhance the heat transfer performance especially in the nucleate boiling region. The heat transfer coefficient was significantly increased with nanofluids, while the critical heat flux (CHF) was nearly not changed. In the agitation Reynolds number of 20,300, the heat transfer performance of nanofluids was significantly enhanced in the convection region, and the CHF was increased by more than 25 % for all groups. This boiling phenomenon was observed for both nanofluids and alcohol groups. Meanwhile, the boiling curves of different liquid subcoolings in the nucleate region were quite similar to each other under agitation.

  9. Transient interaction of a boiling melt with a pulsed Nd:YAG-laser

    NASA Astrophysics Data System (ADS)

    Samarjy, R. S. M.; Kaplan, A. F. H.

    2017-01-01

    The boiling front induced by a pulsed Nd:YAG-laser at very slow translation speed was studied. The purpose is to understand fundamental melt movement mechanisms. The melt was observed by high speed imaging, with and without illumination. When switching on the laser beam a hole is drilled through a bulk of melt. The hole expands and the boiling pressure gradually opens the melt bridge, instead developing an interaction front similar to cutting. These conditions remain in quasi-steady state during the pulse. The ablation pressure from boiling shears waves down the front and keeps the melt downwards in a stable position. When switching off, the waves smoothen and in absence of boiling the surface tension drags the melt back upwards, to semi-torus-like Catenoid shape. Evidence on the large melt pool and its shape was achieved by three-dimensional reconstruction from cross section macrographs. The basic findings how melt can move with and without ablation pressure can enable controlled melt dynamics for various laser processing techniques, like remote cutting, ablation, keyhole welding or drilling.

  10. A microgravity boiling and convective condensation experiment

    NASA Technical Reports Server (NTRS)

    Kachnik, Leo; Lee, Doojeong; Best, Frederick; Faget, Nanette

    1987-01-01

    A boiling and condensing test article consisting of two straight tube boilers, one quartz and one stainless steel, and two 1.5 m long glass-in-glass heat exchangers, on 6 mm ID and one 10 mm ID, was flown on the NASA KC-135 0-G aircraft. Using water as the working fluid, the 5 kw boiler produces two phase mixtures of varying quality for mass flow rates between 0.005 and 0.1 kg/sec. The test section is instrumented at eight locations with absolute and differential pressure transducers and thermocouples. A gamma densitometer is used to measure void fraction, and high speed photography records the flow regimes. A three axis accelerometer provides aircraft acceleration data (+ or - 0.01G). Data are collected via an analog-to-digital conversion and data acquisition system. Bubbly, annular, and slug flow regimes were observed in the test section under microgravity conditions. Flow oscillations were observed for some operating conditions and the effect of the 2-G pullout prior to the 0-G period was observed by continuously recording data throughout the parabolas. A total fo 300 parabolas was flown.

  11. A microgravity boiling and convective condensation experiment

    NASA Astrophysics Data System (ADS)

    Kachnik, Leo; Lee, Doojeong; Best, Frederick; Faget, Nanette

    1987-12-01

    A boiling and condensing test article consisting of two straight tube boilers, one quartz and one stainless steel, and two 1.5 m long glass-in-glass heat exchangers, on 6 mm ID and one 10 mm ID, was flown on the NASA KC-135 0-G aircraft. Using water as the working fluid, the 5 kw boiler produces two phase mixtures of varying quality for mass flow rates between 0.005 and 0.1 kg/sec. The test section is instrumented at eight locations with absolute and differential pressure transducers and thermocouples. A gamma densitometer is used to measure void fraction, and high speed photography records the flow regimes. A three axis accelerometer provides aircraft acceleration data (+ or - 0.01G). Data are collected via an analog-to-digital conversion and data acquisition system. Bubbly, annular, and slug flow regimes were observed in the test section under microgravity conditions. Flow oscillations were observed for some operating conditions and the effect of the 2-G pullout prior to the 0-G period was observed by continuously recording data throughout the parabolas. A total fo 300 parabolas was flown.

  12. Enhancements of Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, W. J.

    2000-01-01

    This paper presents two means for enhancing nucleate boiling and critical heat flux under microgravity conditions: using micro-configured metal-graphite composites as the boiling surface and dilute aqueous solutions of long-chain alcohols as the working fluid. In the former, thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix plays an important role in bubble detachment. Thus boiling-heat transfer performance does not deteriorate in a reduced-gravity environment. In the latter cases, the surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. This feature is most favorable in microgravity. As a result, the bubble size of departure is substantially reduced at higher frequencies. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. In addition, performance equations for nucleate boiling and critical heat flux in dilute aqueous solutions of long-chain alcohols are obtained.

  13. Structural changes of malt proteins during boiling.

    PubMed

    Jin, Bei; Li, Lin; Liu, Guo-Qin; Li, Bing; Zhu, Yu-Kui; Liao, Liao-Ning

    2009-03-09

    Changes in the physicochemical properties and structure of proteins derived from two malt varieties (Baudin and Guangmai) during wort boiling were investigated by differential scanning calorimetry, SDS-PAGE, two-dimensional electrophoresis, gel filtration chromatography and circular dichroism spectroscopy. The results showed that both protein content and amino acid composition changed only slightly during boiling, and that boiling might cause a gradual unfolding of protein structures, as indicated by the decrease in surface hydrophobicity and free sulfhydryl content and enthalpy value, as well as reduced alpha-helix contents and markedly increased random coil contents. It was also found that major component of both worts was a boiling-resistant protein with a molecular mass of 40 kDa, and that according to the two-dimensional electrophoresis and SE-HPLC analyses, a small amount of soluble aggregates might be formed via hydrophobic interactions. It was thus concluded that changes of protein structure caused by boiling that might influence beer quality are largely independent of malt variety.

  14. 47 CFR 97.523 - Question pools.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Question pools. 97.523 Section 97.523 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Qualifying Examination Systems § 97.523 Question pools. All VECs must cooperate in maintaining...

  15. 47 CFR 97.523 - Question pools.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Question pools. 97.523 Section 97.523 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Qualifying Examination Systems § 97.523 Question pools. All VECs must cooperate in maintaining...

  16. 47 CFR 97.523 - Question pools.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Question pools. 97.523 Section 97.523 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Qualifying Examination Systems § 97.523 Question pools. All VECs must cooperate in maintaining...

  17. 47 CFR 97.523 - Question pools.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Question pools. 97.523 Section 97.523 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Qualifying Examination Systems § 97.523 Question pools. All VECs must cooperate in maintaining...

  18. 47 CFR 97.523 - Question pools.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Question pools. 97.523 Section 97.523 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Qualifying Examination Systems § 97.523 Question pools. All VECs must cooperate in maintaining...

  19. 10 CFR 36.33 - Irradiator pools.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... purification system designed to be capable of maintaining the water during normal operation at a conductivity..., irradiator pools must either: (1) Have a water-tight stainless steel liner or a liner metallurgically... water level that could allow water to drain out of the pool. Pipes that have intakes more than 0.5...

  20. 10 CFR 36.33 - Irradiator pools.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... purification system designed to be capable of maintaining the water during normal operation at a conductivity..., irradiator pools must either: (1) Have a water-tight stainless steel liner or a liner metallurgically... water level that could allow water to drain out of the pool. Pipes that have intakes more than 0.5...

  1. 10 CFR 36.33 - Irradiator pools.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... purification system designed to be capable of maintaining the water during normal operation at a conductivity..., irradiator pools must either: (1) Have a water-tight stainless steel liner or a liner metallurgically... water level that could allow water to drain out of the pool. Pipes that have intakes more than 0.5...

  2. 10 CFR 36.33 - Irradiator pools.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... purification system designed to be capable of maintaining the water during normal operation at a conductivity..., irradiator pools must either: (1) Have a water-tight stainless steel liner or a liner metallurgically... water level that could allow water to drain out of the pool. Pipes that have intakes more than 0.5...

  3. 10 CFR 36.33 - Irradiator pools.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... purification system designed to be capable of maintaining the water during normal operation at a conductivity..., irradiator pools must either: (1) Have a water-tight stainless steel liner or a liner metallurgically... water level that could allow water to drain out of the pool. Pipes that have intakes more than 0.5...

  4. NUCLEAR SUPERHEATER FOR BOILING WATER REACTOR

    DOEpatents

    Holl, R.J.; Klecker, R.W.; Graham, C.B.

    1962-05-15

    A description is given of a boiling water reactor having a superheating region integral with the core. The core consists essentially of an annular boiling region surrounding an inner superheating region. Both regions contain fuel elements and are separated by a cylindrical wall, perforations being provided in the lower portion of the cylindrical wall to permit circulation of a common water moderator between the two regions. The superheater region comprises a plurality of tubular fuel assemblies through which the steam emanating from the boiling region passes to the steam outlet. Each superheater fuel assembly has an outer double-walled cylinder, the double walls being concentrically spaced and connected together at their upper ends but open at the bottom to provide for differential thermal expansion of the inner and outer walls. Gas is entrapped in the annulus between the walls which acts as an insulating space between the fissionable material inside and the moderator outside. (AEC)

  5. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    PubMed

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment.

  6. 13 CFR 120.611 - Pools backing Pool Certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Pools backing Pool Certificates. 120.611 Section 120.611 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Secondary Market Certificates § 120.611 Pools backing Pool Certificates. (a) Pool characteristics. As...

  7. Boiling as household water treatment in Cambodia: a longitudinal study of boiling practice and microbiological effectiveness.

    PubMed

    Brown, Joseph; Sobsey, Mark D

    2012-09-01

    This paper focuses on the consistency of use and microbiological effectiveness of boiling as it is practiced in one study site in peri-urban Cambodia. We followed 60 randomly selected households in Kandal Province over 6 months to collect longitudinal data on water boiling practices and effectiveness in reducing Escherichia coli in household drinking water. Despite > 90% of households reporting that they used boiling as a means of drinking water treatment, an average of only 31% of households had boiled water on hand at follow-up visits, suggesting that actual use may be lower than self-reported use. We collected 369 matched untreated and boiled water samples. Mean reduction of E. coli was 98.5%; 162 samples (44%) of boiled samples were free of E. coli (< 1 colony-forming unit [cfu]/100 mL), and 270 samples (73%) had < 10 cfu/100 mL. Storing boiled water in a covered container was associated with safer product water than storage in an uncovered container.

  8. Results from Boiling Temperature Measurements for Saturated Solutions in the Systems NaCl + KNO{sub 3} + H{sub 2}O, NaNO{sub 3} + KNO{sub 3} + H{sub 2}O, and NaCl + NaNO{sub 3} + KNO{sub 3} + H{sub 2}O

    SciTech Connect

    Rard, J A

    2004-10-04

    Boiling temperature measurements have been made for saturated ternary solutions of NaCl + KNO{sub 3} + H{sub 2}O and NaNO{sub 3} + KNO{sub 3} + H{sub 2}O over the full solute mole fraction range, along with the limiting binary solutions NaCl + H{sub 2}O, NaNO{sub 3} + H{sub 2}O, and KNO{sub 3} + H{sub 2}O. Boiling temperatures have also been measured for the quaternary NaCl + NaNO{sub 3} + KNO{sub 3} + H{sub 2}O mixtures with KNO{sub 3}:NaNO{sub 3} mole ratios of 1.01 and 1.19, which corresponding to the eutectic ratio and a near-eutectic ratio for the NaNO{sub 3} + KNO{sub 3} + H{sub 2}O subsystem. The maximum boiling temperature found for the NaCl + KNO{sub 3} + H{sub 2}O system is 134 C and for the NaNO{sub 3} + KNO{sub 3} + H{sub 2}O system is 160 C, but boiling temperatures as high as 196 C were measured the NaCl + NaNO{sub 3} + KNO{sub 3} + H{sub 2}O system. These mixture compositions correspond to the major mineral assemblages that are predicted to control the deliquescence relative humidity of salts found by leaching dust samples from the proposed nuclear repository at Yucca Mountain, Nevada.

  9. Advances in shell side boiling of refrigerants

    NASA Astrophysics Data System (ADS)

    Webb, Ralph L.

    The design of shell and tube evaporators used in air conditioning and refrigeration applications is discussed. The heat exchanger geometry of interest involves evaporation or condensation on the shell side of a horizontal tube bundle. Enhanced heat transfer geometries are typically used for shell side evaporation and for forced convection to water on the tube side. Refrigerant boiling data and forced convection refrigerant boiling correlations are described. The refrigerants of interest include R-11, 12, 22, 123, and 134a. Thermal design methods for sizing of the evaporator and condenser are outlined. A computer model for prediction of the evaporator performance is described.

  10. CONTINUOUS ANALYZER UTILIZING BOILING POINT DETERMINATION

    DOEpatents

    Pappas, W.S.

    1963-03-19

    A device is designed for continuously determining the boiling point of a mixture of liquids. The device comprises a distillation chamber for boiling a liquid; outlet conduit means for maintaining the liquid contents of said chamber at a constant level; a reflux condenser mounted above said distillation chamber; means for continuously introducing an incoming liquid sample into said reflux condenser and into intimate contact with vapors refluxing within said condenser; and means for measuring the temperature of the liquid flowing through said distillation chamber. (AEC)

  11. The boiling point of stratospheric aerosols.

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  12. BOILING SLURRY REACTOR AND METHOD FO CONTROL

    DOEpatents

    Petrick, M.; Marchaterre, J.F.

    1963-05-01

    The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)

  13. A model for calculation of RCS pressure during reflux boiling under reduced inventory conditions and its assessment against PKL data. [Reactor Cooling Systems (RCS)

    SciTech Connect

    Palmrose, D.E. ); Mandl, R.M. )

    1991-01-01

    There has been recent interest in the United States concerning the loss of residual heat removal system (RHRS) under reduced coolant inventory conditions for pressurized water reactors. This issue is also of interest in the Federal Republic of Germany and an experiment was performed in the integral PKL-HI experimental facility at Siemens-KWU to supply applicable data. Recently, an NRC-sponsored effort has been undertaken at the Idaho-National Engineering Laboratory to identify and analyze the important thermal-hydraulic phenomena in pressurized water reactors following the long term loss-of-RHRS during reduced inventory operation. The thermal-hydraulic response of a closed reactor coolant system during such a transient is investigated in this report. Some of the specific processes investigated include: reflux condensation in the steam generators, the corresponding pressure increase in the reactor coolant system, and void fraction distributions on the primary side of the system. Mathematical models of these and other physical processes Experiment B4.5.

  14. Swimming pool. View of aisle between swimming pool and seating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Swimming pool. View of aisle between swimming pool and seating area. Non-original spa pool is partially visible on right. - Jewish Community Center of San Francisco, 3200 California Street, San Francisco, San Francisco County, CA

  15. 1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, AND FROM SANTA ANA RIVER THROUGH TUNNEL #0 AT RIGHT. VIEW TO NORTHEAST. - Santa Ana River Hydroelectric System, Bear Creek Diversion Dam & Confluence Pool, Redlands, San Bernardino County, CA

  16. 3. POOL, DAM, AND INTAKE TO PIPELINE LEADING TO FISH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. POOL, DAM, AND INTAKE TO PIPELINE LEADING TO FISH WHEEL, LOOKING WEST-NORTHWEST. - Santa Ana River Hydroelectric System, Bear Creek Diversion Dam & Confluence Pool, Redlands, San Bernardino County, CA

  17. Boiling Heat Transfer Measurements on Highly Conductive Surfaces Using Microscale Heater and Temperature Arrays

    NASA Technical Reports Server (NTRS)

    Kim, J.; Bae, S. W.; Whitten, M. W.; Mullen, J. D.; Quine, R. W.; Kalkur, T. S.

    1999-01-01

    Two systems have been developed to study boiling heat transfer on the microscale. The first system utilizes a 32 x 32 array of diodes to measure the local temperature fluctuations during boiling on a silicon wafer heated from below. The second system utilizes an array of 96 microscale heaters each maintained at constant surface temperature using electronic feedback loops. The power required to keep each heater at constant temperature is measured, enabling the local heat transfer coefficient to be determined. Both of these systems as well as some preliminary results are discussed.

  18. An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.

    ERIC Educational Resources Information Center

    Goodwin, Alan; Orlik, Yuri

    2000-01-01

    Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)

  19. Rhizobins, a Group of Peptides in the Free-Amino-Acid Pool of the Soybean-Rhizobium System

    PubMed Central

    Garay, Andrew S.; Ahlgren, Joy A.; Gonzalez, Mark A.; Stasney, Mark A.; Madtes, Paul C.

    1986-01-01

    Free-living Rhizobium (according to Bergey's Manual of Systematic Bacteriology, [1984, The Williams & Wilkins Co., Baltimore], Bradyrhizobium) japonicum was found to release a peptide into the nutrient media. Soybean nodules contained this peptide and exuded it into the soil. The name “rhizobin A” is suggested for this peptide. Nodules also contained another peptide, rhizobin B, as well as an unidentified, ninhydrin-positive compound, rhizobin C. The three peptides were confined to the free-amino-acid pool of the soluble fraction and eluted consecutively from a cation-exchange column. Rhizobin A was isolated in a highly purified form; its molecular mass was approximately 1,600 daltons as determined by Sephadex gel filtration and mass spectrometry. The amino-acid composition could be determined only approximately, because a long time was necessary for acid hydrolysis, possibly due to unusual linkages. The rhizobin concentration in soybean nodules continually increased during 50 days of growth, from 2 to approximately 400 μg/g (fresh weight). When combined nitrogen was added to nodulated soybean and subsequently removed, nitrogenase activity, nodulation, and nodule growth first decreased and then recovered. The relative amount of rhizobin A followed a similar pattern. Rhizobins were not detected in the roots, stems, and leaves of nodulated soybean plants. They were present in Lupinus nodules, but absent in alder nodules. PMID:16347004

  20. The Plausibility of Boiling Geysers on Triton

    NASA Technical Reports Server (NTRS)

    Duxbury, N. S.; Brown, R. H.

    1995-01-01

    A mechanism is suggested and modeled whereby there may be boiling geysers on Triton. The geysers would be of nitrogen considering that Voyager detected cryovolcanic activity, that solid nitrogen conducts heat much less than water ice, and that there is internal heat on Triton.

  1. Boiling heat transfer characteristics of liquid xenon

    NASA Astrophysics Data System (ADS)

    Haruyama, T.

    2002-05-01

    Liquid xenon is one of the excellent media for high-energy particle calorimeter. In order to detect a scintillation light effectively, a large number of photo-multipliers (PMTs) will be immersed in liquid xenon. Many chip-resistors equipped with the PMTs dissipate heat into liquid and possibly generate thermal turbulence, such as bubbles, convection flow under a certain operating condition. There is, however, no heat transfer curve (q-ΔT curve) in the literature. Boiling heat transfer characteristics of liquid xenon were measured at a saturated pressure of 0.1 MPa for the first time by using a small pulse tube refrigerator. The heat transfer surface is a thin platinum wire of 0.1 mm diameter and 25 mm long. The measured results were in good agreement with the calculated values both in natural convection and nucleate boiling condition. The film boiling state was difficult to obtain due to its poor reproducibility, and only one data was obtained. The relationship between the heat flux q and temperature difference ΔT was in good agreement with the Morgan's empirical equation in the natural convection region, and with the Kutateladze's equation in the nucleate boiling region.

  2. Big Bubbles in Boiling Liquids: Students' Views

    ERIC Educational Resources Information Center

    Costu, Bayram

    2008-01-01

    The aim of this study was to elicit students' conceptions about big bubbles in boiling liquids (water, ethanol and aqueous CuSO[subscript 4] solution). The study is based on twenty-four students at different ages and grades. The clinical interviews technique was conducted to solicit students' conceptions and the interviews were analyzed to…

  3. Pools for the Handicapped.

    ERIC Educational Resources Information Center

    American School and University, 1979

    1979-01-01

    Three institutions in Ohio now stress hydrotherapy and water recreation as important parts of individual educational programs for the handicapped. Specially designed and adapted pools provide freedom of movement and ego building as well as physical education and recreation. (Author)

  4. Vitamin D Pooling Project

    Cancer.gov

    The Vitamin D Pooling Project of Rarer Cancers brought together investigators from 10 cohorts to conduct a large prospective epidemiologic study of the association between vitamin D status and seven rarer cancers.

  5. Swimming Pool Chemistry Teaching.

    ERIC Educational Resources Information Center

    Harding, Jennifer

    1994-01-01

    Outlines a strategy for the teaching of equilibrium in a poolside atmosphere. Illustrates the practical application of knowledge about equilibrium as demonstrated by pool staff as they satisfy the needs of both the swimmers and local health inspectors. (DDR)

  6. Weld pool phenomena

    SciTech Connect

    David, S.A.; Vitek, J.M.; Zacharia, T.; DebRoy, T.

    1994-09-01

    During welding, the composition, structure and properties of the welded structure are affected by the interaction of the heat source with the metal. The interaction affects the fluid flow, heat transfer and mass transfer in the weld pool, and the solidification behavior of the weld metal. In recent years, there has been a growing recognition of the importance of the weld pool transport processes and the solid state transformation reactions in determining the composition, structure and properties of the welded structure. The relation between the weld pool transport processes and the composition and structure is reviewed. Recent applications of various solidification theories to welding are examined to understand the special problems of weld metal solidification. The discussion is focussed on the important problems and issues related to weld pool transport phenomena and solidification. Resolution of these problems would be an important step towards a science based control of composition, structure and properties of the weld metal.

  7. Numerical Analysis of Nucleate Boiling on High Heat-Flux and High Subcooling Condition for Reactivity Initiation Accident

    SciTech Connect

    Heo, S.; Koshizuka, S.; Oka, Y.

    2002-07-01

    This paper shows the numerical simulation study on the growth of the bubble in the transient pool boiling using MPS-MAFL method. The growth process of a bubble with the different initial radii is calculated in a high heat-flux and high subcooling condition expected in nuclear reactor core during RIA. The smaller initial radius is, the earlier the growth starts. The initial bubble radius has little effect on the growth initiation time and the bubble departure radius. (authors)

  8. A simplified model of decontamination by BWR steam suppression pools

    SciTech Connect

    Powers, D.A.

    1997-05-01

    Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, d{sub p}, and the standard deviation of the emerging aerosol size distribution, {sigma}, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs.

  9. Numerical Modeling of Propellant Boil-Off in a Cryogenic Storage Tank

    NASA Astrophysics Data System (ADS)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.; Sass, J. P.; Fesmire, J. E.

    2008-03-01

    A numerical model to predict boil-off of stored propellant in large spherical cryogenic tanks has been developed. Accurate prediction of tank boil-off rates for different thermal insulation systems was the goal of this collaborative effort. The Generalized Fluid System Simulation Program, which integrates flow analysis and conjugate heat transfer for solving complex fluid system problems, was used to create the model. Calculation of tank boil-off rate requires simultaneous simulation of heat transfer processes among liquid propellant, vapor ullage space, and tank structure. The reference tank for the boil-off model was the 850,000 gallon liquid hydrogen tank at Launch Complex 39B (LC-39B) at Kennedy Space Center, which is under study for future infrastructure improvements to support the Constellation program. The methodology employed in the numerical model was validated using a sub-scale model and tank. Experimental test data from a 1/15th scale version of the LC-39B tank using both liquid hydrogen and liquid nitrogen were used to anchor the analytical predictions of the sub-scale model. Favorable correlations between sub-scale model and experimental test data have provided confidence in full-scale tank boil-off predictions. These methods are now being used in the preliminary design for other cases including future launch vehicles.

  10. Modeling and numerical simulation of oscillatory two-phase flows, with application to boiling water nuclear reactors

    SciTech Connect

    Rosa, M.P.; Podowski, M.Z.

    1995-09-01

    This paper is concerned with the analysis of dynamics and stability of boiling channels and systems. The specific objectives are two-fold. One of them is to present the results of a study aimed at analyzing the effects of various modeling concepts and numerical approaches on the transient response and stability of parallel boiling channels. The other objective is to investigate the effect of closed-loop feedback on stability of a boiling water reactor (BWR). Various modeling and computational issues for parallel boiling channels are discussed, such as: the impact of the numerical discretization scheme for the node containing the moving boiling boundary on the convergence and accuracy of computations, and the effects of subcooled boiling and other two-phase flow phenomena on the predictions of marginal stability conditions. Furthermore, the effects are analyzed of local loss coefficients around the recirculation loop of a boiling water reactor on stability of the reactor system. An apparent paradox is explained concerning the impact of changing single-phase losses on loop stability. The calculations have been performed using the DYNOBOSS computer code. The results of DYNOBOSS validation against other computer codes and experimental data are shown.

  11. Boiling Water at Hot Creek - The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    USGS Publications Warehouse

    Farrar, Christopher D.; Evans, William C.; Venezky, Dina Y.; Hurwitz, Shaul; Oliver, Lynn K.

    2007-01-01

    The beautiful blue pools and impressive boiling fountains along Hot Creek in east-central California have provided enjoyment to generations of visitors, but they have also been the cause of injury or death to some who disregarded warnings and fences. The springs and geysers in the stream bed and along its banks change location, temperature, and flow rates frequently and unpredictably. The hot springs and geysers of Hot Creek are visible signs of dynamic geologic processes in this volcanic region, where underground heat drives thermal spring activity.

  12. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool.

    PubMed

    Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M Sam

    2014-09-15

    With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect.

  13. Flow-Boiling Critical Heat Flux Experiments Performed in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Mudawar, Issam

    2005-01-01

    Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.

  14. Modeling of thermohydraulic transients in a boiling helium natural circulation loop

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.

    2016-12-01

    Boiling helium natural circulation loops are a cooling option for superconducting magnets. Previous studies on the field have provided a thorough understanding of their steady state behavior in all boiling regimes. Recent experimental research has lead to the understanding of their transient behavior. In particular, it highlights the impact of the thermohydraulic evolution of the circuit on the onset of transient boiling crisis, which represents a limitation of the cooling system. Hence, the need of modeling this aspect of these systems. In this work we present modeling options of two-phase helium loops departing from the homogeneous equilibrium two-phase flow model. Reasonable additional assumptions are introduced to obtain a simplified model and the effect of these assumptions is evaluated by comparison with the solution of the non-simplified equations system. These methods are compared to experimental data to analyze their success and limitations.

  15. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D.

    1991-01-01

    Future space exploration and commercialization will require more efficient heat rejection systems. For the required heat transfer rates, such systems must use advanced heat transfer techniques. Forced two phase flow boiling heat transfer with enhancements falls in this category. However, moderate to high quality two phase systems tend to require higher pressure losses. This report is divided into two major parts: (1) Multidimensional wall temperature measurement and heat transfer enhancement for top heated horizontal channels with flow boiling; and (2) Improved analytical heat transfer data reduction for a single side heated coolant channel. Part 1 summarizes over forty experiments which involve both single phase convection and flow boiling in a horizontal channel heated externally from the top side. Part 2 contains parametric dimensionless curves with parameters such as the coolant channel radius ratio, the Biot number, and the circumferential coordinate.

  16. A geometric view of adaptive optics control: boiling atmosphere model

    NASA Astrophysics Data System (ADS)

    Wiberg, Donald M.; Max, Claire E.; Gavel, Donald T.

    2004-10-01

    The separation principle of optimal adaptive optics control is derived, and definitions of controllability and observability are introduced. An exact finite dimensional state space representation of the control system dynamics is obtained without the need for truncation in modes such as Zernikes. The uncertainty of sensing uncontrollable modes confuses present adaptive optics controllers. This uncertainty can be modeled by a Kalman filter. Reducing this uncertainty permits increased gain, increasing the Strehl, which is done by an optimal control law derived here. A general model of the atmosphere is considered, including boiling.

  17. Combined shared and distributed memory ab-initio computations of molecular-hydrogen systems in the correlated state: Process pool solution and two-level parallelism

    NASA Astrophysics Data System (ADS)

    Biborski, Andrzej; Kądzielawa, Andrzej P.; Spałek, Józef

    2015-12-01

    An efficient computational scheme devised for investigations of ground state properties of the electronically correlated systems is presented. As an example, (H2)n chain is considered with the long-range electron-electron interactions taken into account. The implemented procedure covers: (i) single-particle Wannier wave-function basis construction in the correlated state, (ii) microscopic parameters calculation, and (iii) ground state energy optimization. The optimization loop is based on highly effective process-pool solution - specific root-workers approach. The hierarchical, two-level parallelism was applied: both shared (by use of Open Multi-Processing) and distributed (by use of Message Passing Interface) memory models were utilized. We discuss in detail the feature that such approach results in a substantial increase of the calculation speed reaching factor of 300 for the fully parallelized solution. The scheme elaborated in detail reflects the situation in which the most demanding task is the single-particle basis optimization.

  18. Dissolved organic C and N pools in soils amended with composted and thermally-dried sludge as affected by soil tillage systems and sampling depth

    NASA Astrophysics Data System (ADS)

    García-Gil, Juan Carlos; Soler-Rovira, Pedro Angel; García López de Sa, Esther; Polo, Alfredo

    2013-04-01

    Soil tillage practices exert a significant influence on the dynamic of soluble organic C and N pools, affecting nutrient cycling in agricultural systems by enhancing its mineralization through microbial activities or stabilization in soil microaggregates, which contribute to mitigate greenhouse gases emissions. The objective of the present research was to determine the influence of three different soil management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) obtained from wastewater treatment processes on dissolved organic C (water-soluble organic C -WSOC-, carbohydrates, phenolic compounds) and soluble N (total-N, NH4+, NO3-) pools in a long-term field experiment (27 years) conducted on a sandy-loam soil at the experimental station "La Higueruela" (40° 03'N, 4° 24'W) under semi-arid conditions. Both organic amendments were applied at a rate of 30 tonnes per hectare prior to tillage practices. Unamended soils were used as control for each tillage system. Soil sampling was performed two months after tillage practices at the following depths for each treatment: 0-10 cm, 10-20 cm and 20-30 cm. Results obtained for unamended soils showed that no-tillage management increased total-N, NH4+ and NO3- contents at the 0-10 cm depth samples, meanwhile WSC and carbohydrates contents were larger at 20-30 cm depth samples in both moldboard and no-tillage plots. CS and TSS-amended soils presented a general increase in soluble C and N compounds, being significantly higher in TSS-amended soils, as TSS contains a great amount of labile organic C and N substrates due to the lack of stabilization treatment. TSS-amended soils under no-tillage and chisel plowing showed larger N, NH4+ and NO3- content at the 0-10 cm samples, meanwhile moldboard management exhibited larger NH4+ and NO3- content at 10-20 and 20-30 cm samples, possibly due to the incorporation of TSS at deeper depths (20-40 cm). CS

  19. Vernal Pool Lessons and Activities.

    ERIC Educational Resources Information Center

    Childs, Nancy; Colburn, Betsy

    This curriculum guide accompanies Certified: A Citizen's Step-by-Step Guide to Protecting Vernal Pools which is designed to train volunteers in the process of identifying vernal pool habitat so that as many of these pools as possible can be certified by the Massachusetts Natural Heritage and Endangered Species Program. Vernal pools are a kind of…

  20. Unorthodox bubbles when boiling in cold water

    NASA Astrophysics Data System (ADS)

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  1. Unorthodox bubbles when boiling in cold water.

    PubMed

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  2. Enhanced Droplet Control by Transition Boiling

    NASA Astrophysics Data System (ADS)

    Grounds, Alex; Still, Richard; Takashina, Kei

    2012-10-01

    A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer.

  3. Fundamental Study of Local Heat Transfer in Forced Convective Boiling of Ammonia on Vertical Flat Plate

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hun; Arima, Hirofumi; Ikegami, Yasuyuki

    In the present study, the fundamental experiments that investigate characteristics of local heat transfer in forced convective boiling on vertical flat plate with 2-mm channel height are taken to realize plate type compact evaporator for OTEC or STEC. The experiments are performed with ammonia as the working fluid. The experiments are also carried out with the following test conditions; saturated pressure = 0.7, 0.8, 0.9 MPa, mass flux = 7.5, 10, 15 kg/(m2•s), heat flux = 15, 20, 25 kW/m2 and inlet quality = 0.1 ~ 0.4 [-]. The result shows that the wall superheated temperature of forced convective boiling is lower than that of pool boiling. And the heat transfer coefficient increases with an increase in quality and the decrease in the local heat flux and saturated pressure for prescribed experimental conditions. However, local heat transfer coefficients are not affected by mass fluxes in the prescribed experimental conditions. An empirical correlation that can predict the local heat transfer coefficient on vertical flat plate within experimental conditions is also proposed.

  4. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies.

    PubMed

    Ponce-Robles, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S

    2016-08-12

    Industrial preparation of cork consists of its immersion for approximately 1 hour in boiling water. The use of herbicides and pesticides in oak tree forests leads to absorption of these compounds by cork; thus, after boiling process, they are present in wastewater. Cork boiling wastewater shows low biodegradability and high acute toxicity involving partial inhibition of their biodegradation when conventional biological treatment is applied. In this work, a treatment line strategy based on the combination of advanced physicochemical technologies is proposed. The final objective is the reuse of wastewater in the cork boiling process; thus, reducing consumption of fresh water in the industrial process itself. Coagulation pre-treatment with 0.5 g/L of FeCl3 attained the highest turbidity elimination (86 %) and 29 % of DOC elimination. Similar DOC removal was attained when using 1 g/L of ECOTAN BIO (selected for ozonation tests), accompanied of 64 % of turbidity removal. Ozonation treatments showed less efficiency in the complete oxidation of cork boiling wastewater, compared to solar photo-Fenton process, under the studied conditions. Nanofiltration system was successfully employed as a final purification step with the aim of obtaining a high-quality reusable permeate stream. Monitoring of unknown compounds by LC-QTOF-MS allowed the qualitative evaluation of the whole process. Acute and chronic toxicity as well as biodegradability assays were performed throughout the whole proposed treatment line.

  5. Boiling heat transfer of nanofluids--special emphasis on critical heat flux.

    PubMed

    Kim, Sung Joong; Kim, Hyungdae

    2013-11-01

    As innovative nanotechnology-based heat-transfer media, nanofluids have evoked considerable interest among researchers owing to their improved thermal properties as well as their extendable applications to various high-power thermal systems. This paper presents a comprehensive review of recent research developments and patents pertaining to nanofluid boiling heat transfer. Nanofluids definitely offer a wide range of potential improvements in boiling heat-transfer performance. However, experimental data available from different studies are currently beset by numerous contradictions, suggesting that the fundamental mechanisms of nanofluid boiling heat transfer are not yet well understood. Consequently application of these technologies has been limited in some aspects. Only a small number of patents related to nanofluid boiling heat transfer have thus far been reported in the literature. Based on the present review, future technological development and research requirements in this area are outlined in line with technical challenges. To utilize nanofluid boiling heat-transfer technologies for practical applications, more systematic and fundamental studies are required to understand the physical mechanisms involved.

  6. Fundamental Boiling and RP-1 Freezing Experiments

    NASA Technical Reports Server (NTRS)

    Goode, Brian; Turner, Larry D. (Technical Monitor)

    2001-01-01

    This paper describes results from experiments performed to help understand certain aspects of the MC-1 engine prestart thermal conditioning procedure. The procedure was constrained by the fact that the engine must chill long enough to get quality LOX at the LOX pump inlet but must be short enough to prevent freezing of RP-1 in the fuel pump. A chill test of an MC-1 LOX impeller was performed in LN2 to obtain data on film boiling, transition boiling and impeller temperature histories. The transition boiling data was important to the chill time so a subsequent experiment was performed chilling simple steel plates in LOX to obtain similar data for LOX. To address the fuel freezing concern, two experiments were performed. First, fuel was frozen in a tray and its physical characteristics were observed and temperatures of the fuel were measured. The result was physical characteristics as a function of temperature. Second was an attempt to measure the frozen thickness of RP-1 on a cold wall submerged in warm RP-1 and to develop a method for calculating that thickness for other conditions.

  7. Flow boiling test of GDP replacement coolants

    SciTech Connect

    Park, S.H.

    1995-08-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C{sub 4}F{sub 10} and C{sub 4}F{sub 8}, were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C{sub 4}F{sub 10} mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C{sub 4}F{sub 10} weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd.

  8. Parametric study of boiling heat transfer in porous media

    SciTech Connect

    Shi, B.; Jones, B.G.; Pan, C.

    1996-04-01

    Detailed numerical modeling and parametric variation studies were conducted on boiling heat transfer processes in porous deposits with emphasis on applications associated with light water nuclear power reactor systems. The processes of boiling heat transfer in the porous corrosion deposits typically involve phase changes in finite volumetric regions in the porous media. The study examined such processes in two porous media configurations, without chimneys (homogeneous porous structures) and with chimneys (heterogeneous porous structures). A 1-D model and a 2-D model were developed to simulate two-phase flows with phase changes, without dry-out, inside the porous media for both structural configurations. For closure of the governing equations, an empirical correlation of the evaporation rate for phase changes inside the porous media was introduced. In addition, numerical algorithms were developed to solve the coupled nonlinear equations of mass, momentum, energy, capillary pressure, and evaporation rate. The distributions of temperature, thermodynamic saturation, liquid pressure, vapor pressure, liquid velocity, and vapor velocity were predicted. Furthermore, the effects of heat flux, system pressure, porosity, particle diameter, chimney population density, chimney radius, and crud thickness on the all superheat, critical heat flux, and minimum saturation were examined. The predictions were found to be in good agreement with the available experimental results.

  9. Nucleate Pool Boiling of R-114/Oil Mixtures in a Small Enhanced Tube Bundle

    DTIC Science & Technology

    1992-06-01

    for public release; distribution is unlimited. 4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) 6a. NAME OF... PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Naval Postgraduate School (If applicable) Naval Postgraduate School 69 6c...Experimentation 37 Figure 12. Performance of Test One For Preliminary Experiments 59 Figure 13. Performance of Test One at Various Tube Positions for

  10. RapidChek SELECT Salmonella enteritidis test system for the detection of Salmonella enteritidis in poultry house drag swabs, shell egg pools, and chicken carcass rinsates.

    PubMed

    Muldoon, Mark T; Gonzalez, Verapaz; Sutzko, Meredith I; Allen, Ann-Christine Olsson; Creamer, Samantha; Onisk, Dale V; Lindpaintner, Klaus

    2011-01-01

    The RapidChek SELECT Salmonella Enteritidis Test System was validated for the detection of Salmonella Enteritidis (SE) in poultry house drag swabs, shell egg pools, and chicken carcass rinsates. The method utilizes RapidChek SELECT Salmonella (AOAC PTM License No. 080601) proprietary primary and secondary enrichment media. Following enrichment, an immunochromatographic test strip is inserted into the tube containing the secondary enrichment broth, developed for 10 min, and interpreted. Salmonella Enteritidis-inoculated samples (1-5 CFU SE/analytical unit) were tested by the test method as well as the appropriate cultural reference method U.S. Food and Drug Administration-Bacteriological Analytical Manual (drag swabs and egg pools) or U.S. Department of Agriculture-Food Safety and Inspection Service (chicken carcass rinsates). A total of 80 samples were tested by both methods in the study. Fifty-two samples were positive by the RapidChek SELECT Salmonella Enteritidis method and 38 were found positive by the respective reference method. The sensitivity of the method was 100% and the specificity was 100%. The accuracy of the test method was 137%, indicating that the method was more sensitive than the reference method. The RapidChek SELECT Salmonella Enteritidis method was tested with 82 Salmonella Group D1 strains including 63 Salmonella Enteritidis strains as well as 32 non-Salmonella Group D1 strains representing 10 bacteria genera. The test method detected all 82 Group D1 strains (100% sensitivity). None of the non-Salmonella Group D1 or other genera of bacteria were detected, indicating a specificity of 100%. The method was shown to be highly robust and stable under control and accelerated stability conditions.

  11. A study of flow boiling phenomena using real time neutron radiography

    NASA Astrophysics Data System (ADS)

    Novog, David Raymond

    The operation and safety of both fossil-fuel and nuclear power stations depend on adequate cooling of the thermal source involved. This is usually accomplished using liquid coolants that are forced through the high temperature regions by a pumping system; this fluid then transports the thermal energy to another section of the power station. However, fluids that undergo boiling during this process create vapor that can be detrimental, and influence safe operation of other system components. The behavior of this vapor, or void, as it is generated and transported through the system is critical in predicting the operational and safety performance. This study uses two advanced penetrating radiation techniques, Real Time Neutron Radiography (RTNR), and High Speed X-Ray Tomography (HS-XCT), to examine void generation and transport behavior in a flow boiling system. The geometries studied were tube side flow boiling in a cylindrical configuration, and a similar flow channel with an internal twisted tape swirl flow generator. The heat transfer performance and pressure drop characteristics were monitored in addition to void distribution measurements, so that the impact of void distribution could be determined. The RTNR and heat transfer pipe flow studies were conducted using boiling Refrigerant 134a at pressures from 500 to 700 kPa, inlet subcooling from 3 to 12°C and mass fluxes from 55 to 170kg/m 2-s with heat fluxes up to 40 kW/m2. RTNR and HS-XCT were used to measure the distribution and size of the vapor phases in the channel for cylindrical tube-side flow boiling and swirl-flow boiling geometries. The results clearly show that the averaged void is similar for both geometries, but that there is a significant difference in the void distribution, velocity and transport behavior from one configuration to the next. Specifically, the void distribution during flow boiling in a cylindrical-tube test section showed that the void fraction was largest near the tube center and

  12. Swimming Pools for Schools.

    ERIC Educational Resources Information Center

    Neilson, Donald W.; Nixon, John E.

    The increasing interest in swimming instruction and recreation for elementary and secondary school children has resulted in the development of this guide for swimming pool use, design, and construction. Introductory material discussed the need for swimming in the educational program and the organization of swimming programs in the school. Design…

  13. The Future of Pooling.

    ERIC Educational Resources Information Center

    Young, Peter C.; Fone, Martin

    1997-01-01

    Discusses seven propositions underlying the strategies that insurance pools can, will, and must pursue: (1) risk management versus risk financing; (2) elimination of windfall advantages; (3) the maintenance of market-dominant status; (4) cost leadership; (5) client focus; (6) innovation and diversification; and (7) leadership challenges. A sidebar…

  14. NEW APPROACHES: Pool table

    NASA Astrophysics Data System (ADS)

    Parry, Malcolm

    1998-05-01

    This article explains a novel way of demonstrating the principle of conservation of energy. This can be difficult to demonstrate in the laboratory, but if students have been convinced of the conservation of momentum, two-dimensional collisions on a pool table may be used.

  15. Thread Pool Interface (TPI)

    SciTech Connect

    Edwards, H. Carter

    2008-04-01

    Thread Pool Interface (TpI) provides a simple interface for running functions written in C or C++ in a thread-parallel mode. Application or library codes may need to perform operations thread-parallel on machines with multicore processors. the TPI library provides a simple mechanism for managing thread activation, deactivation, and thread-parallel execution of application-provided subprograms.

  16. On-sun test results from second-generation and advanced-concepts alkali-metal pool-boiler receivers

    SciTech Connect

    Moreno, J.B.; Andraka, C.E.; Moss, T.A.; Cordeiro, P.G.; Dudley, V.E.; Rawlinson, K.S.

    1994-05-01

    Two 75-kW{sub t} alkali-metal pool-boiler solar receivers have been successfully tested at Sandia National Laboratories` National Solar Thermal Test Facility. The first one, Sandia`s `` second-generation pool-boiler receiver,`` was designed to address commercialization issues identified during post-test assessment of Sandia`s first-generation pool-boiler receiver. It was constructed from Haynes alloy 230 and contained the alkali-metal alloy NaK-78. The absorber`s wetted side had a brazed-on powder-metal coating to stabilize boiling. This receiver was evaluated for boiling stability, hot- and warm-restart behavior, and thermal efficiency. Boiling was stable under all conditions. All of the hot restarts were successful. Mild transient hot spots observed during some hot restarts were eliminated by the addition of 1/3 torr of xenon to the vapor space. All of the warm restarts were also successful. The heat-transfer crisis that damaged the first receiver did not recur. Thermal efficiency was 92.3% at 750{degrees}C with 69.6 kW{sub t} solar input. The second receiver tested, Sandia`s ``advanced-concepts receiver,`` was a replica of the first-generation receiver except that the cavities, which were electric-discharge-machined in the absorber for boiling stability, were eliminated. This step was motivated by bench-scale test results that showed that boiling stability improved with increased heated-surface area, tilt of the heated surface from vertical, and added xenon. The bench-scale results suggested that stable boiling might be possible without heated-surface modification in a 75-kW{sub t} receiver. Boiling in the advanced-concepts receiver with 1/3 torr of xenon added has been stable under all conditions, confirming the bench-scale tests.

  17. Boiling radial flow in fractures of varying wall porosity

    SciTech Connect

    Barnitt, Robb Allan

    2000-06-01

    The focus of this report is the coupling of conductive heat transfer and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient. The experimental study involved boiling radial flow in a simulated fracture, bounded by a variety of materials. Nonporous and impermeable aluminum, highly porous and permeable Berea sandstone, and minimally porous and permeable graywacke from The Geysers geothermal field. On nonporous surfaces, the heat flux was not strongly coupled to injection rate into the fracture. However, for porous surfaces, heat flux, and associated values of excess temperature and a boiling convection coefficient exhibited variation with injection rate. Nucleation was shown to occur not upon the visible surface of porous materials, but a distance below the surface, within the matrix. The depth of boiling was a function of injection rate, thermal power supplied to the fracture, and the porosity and permeability of the rock. Although matrix boiling beyond fracture wall may apply only to a finite radius around the point of injection, higher values of heat flux and a boiling convection coefficient may be realized with boiling in a porous, rather than nonporous surface bounded fracture.

  18. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review

    PubMed Central

    2011-01-01

    Nanofluids (suspensions of nanometer-sized particles in base fluids) have recently been shown to have nucleate boiling critical heat flux (CHF) far superior to that of the pure base fluid. Over the past decade, numerous experimental and analytical studies on the nucleate boiling CHF of nanofluids have been conducted. The purpose of this article is to provide an exhaustive review of these studies. The characteristics of CHF enhancement in nanofluids are systemically presented according to the effects of the primary boiling parameters. Research efforts to identify the effects of nanoparticles underlying irregular enhancement phenomena of CHF in nanofluids are then presented. Also, attempts to explain the physical mechanism based on available CHF theories are described. Finally, future research needs are identified. PMID:21711949

  19. Low-boiling-point solvent additives can also enable morphological control in polymer solar cells

    SciTech Connect

    Mahadevapuram, Rakesh C.; Carr, John A.; Chen, Yuqing; Bose, Sayantan; Nalwa, Kanwar S.; Petrich, Jacob W.; Chaudhary, Sumit

    2013-11-02

    Processing organic photovoltaic (OPV) blend solutions with high-boiling-point solvent additives has recently been used for morphological control in bulk-heterojunction OPV cells. Here we show that even low-boiling-point solvents can be effective additives. When P3HT:PCBM OPV cells were processed with a low-boiling-point solvent tetrahydrafuran as an additive in parent solvent o-dichlorobenzene, charge extraction increased leading to fill factors as high as 69.5%, without low work-function cathodes, electrode buffer layers or thermal treatment. This was attributed to PCBM demixing from P3HT domains and better vertical phase separation, as indicated by photoluminescence lifetimes, hole mobilities, and shunt leakage currents. Dependence on solvent parameters and applicability beyond P3HT system was also investigated. (C) 2013 Elsevier B.V. All rights reserved.

  20. Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires.

    PubMed

    Li, D; Wu, G S; Wang, W; Wang, Y D; Liu, Dong; Zhang, D C; Chen, Y F; Peterson, G P; Yang, Ronggui

    2012-07-11

    Thermal management has become a critical issue for high heat flux electronics and energy systems. Integrated two-phase microchannel liquid-cooling technology has been envisioned as a promising solution, but with great challenges in flow instability. In this work, silicon nanowires were synthesized in situ in parallel silicon microchannel arrays for the first time to suppress the flow instability and to augment flow boiling heat transfer. Significant enhancement in flow boiling heat transfer performance was demonstrated for the nanowire-coated microchannel heat sink, such as an early onset of nucleate boiling, a delayed onset of flow oscillation, suppressed oscillating amplitudes of temperature and pressure drop, and an increased heat transfer coefficient.

  1. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review.

    PubMed

    Kim, Hyungdae

    2011-06-09

    Nanofluids (suspensions of nanometer-sized particles in base fluids) have recently been shown to have nucleate boiling critical heat flux (CHF) far superior to that of the pure base fluid. Over the past decade, numerous experimental and analytical studies on the nucleate boiling CHF of nanofluids have been conducted. The purpose of this article is to provide an exhaustive review of these studies. The characteristics of CHF enhancement in nanofluids are systemically presented according to the effects of the primary boiling parameters. Research efforts to identify the effects of nanoparticles underlying irregular enhancement phenomena of CHF in nanofluids are then presented. Also, attempts to explain the physical mechanism based on available CHF theories are described. Finally, future research needs are identified.

  2. Soil respiration, labile carbon pools, and enzyme activities as affected by tillage practices in a tropical rice-maize-cowpea cropping system.

    PubMed

    Neogi, S; Bhattacharyya, P; Roy, K S; Panda, B B; Nayak, A K; Rao, K S; Manna, M C

    2014-07-01

    In order to identify the viable option of tillage practices in rice-maize-cowpea cropping system that could cut down soil carbon dioxide (CO2) emission, sustain grain yield, and maintain better soil quality in tropical low land rice ecology soil respiration in terms of CO2 emission, labile carbon (C) pools, water-stable aggregate C fractions, and enzymatic activities were investigated in a sandy clay loam soil. Soil respiration is the major pathway of gaseous C efflux from terrestrial systems and acts as an important index of ecosystem functioning. The CO2-C emissions were quantified in between plants and rows throughout the year in rice-maize-cowpea cropping sequence both under conventional tillage (CT) and minimum tillage (MT) practices along with soil moisture and temperature. The CO2-C emissions, as a whole, were 24 % higher in between plants than in rows, and were in the range of 23.4-78.1, 37.1-128.1, and 28.6-101.2 mg m(-2) h(-1) under CT and 10.7-60.3, 17.3-99.1, and 17.2-79.1 mg m(-2) h(-1) under MT in rice, maize, and cowpea, respectively. The CO2-C emission was found highest under maize (44 %) followed by rice (33 %) and cowpea (23 %) irrespective of CT and MT practices. In CT system, the CO2-C emission increased significantly by 37.1 % with respect to MT on cumulative annual basis including fallow. The CO2-C emission per unit yield was at par in rice and cowpea signifying the beneficial effect of MT in maintaining soil quality and reduction of CO2 emission. The microbial biomass C (MBC), readily mineralizable C (RMC), water-soluble C (WSC), and permanganate-oxidizable C (PMOC) were 19.4, 20.4, 39.5, and 15.1 % higher under MT than CT. The C contents in soil aggregate fraction were significantly higher in MT than CT. Soil enzymatic activities like, dehydrogenase, fluorescein diacetate, and β-glucosidase were significantly higher by 13.8, 15.4, and 27.4 % under MT compared to CT. The soil labile C pools, enzymatic activities, and

  3. Influence of forage sorghum systems under different tillage practices on microbial biomass and soil C/N pools

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum has become a popular annual forage and silage crop in the Southern Great Plains. Most sorghum hybrids require higher nitrogen fertilization for sustainable biomass production and subsequent removal for grazing or hay. Higher nitrogen application and monoculture sorghum systems can negatively...

  4. Design and Testing of Vacuum Breaker Check Valve for Simplified Boiling Water Reactor

    SciTech Connect

    Ishii, M.; Xu, Y.; Revankar, S.T.

    2002-07-01

    A new design of the vacuum breaker check valve was developed to replace the mechanical valve in a simplified boiling water reactor. Scaling and design calculations were performed to obtain the geometry of new passive hydraulic vacuum breaker check valve. In order to check the valve performance, a RELAP5 model of the simplified boiling water reactor system with the new valve was developed. The valve was implemented in an integral facility, PUMA and was tested for large break loss of coolant accident. (authors)

  5. Apparatus to measure liquid helium boil-off from low-loss superconducting current leads

    SciTech Connect

    Cha, Y.S.; Niemann, R.C.; Hull, J.R.

    1995-06-01

    A low-loss liquid helium dewar was constructed to measure the liquid helium boil-off rate from high-temperature superconducting current leads. The dewar has a measured background heat leakage rate of 12 mW. Equations calculating the heat leakage rate from the measured vapor mass flow rate in liquid helium boil-off experiments are derived. Parameters that affect the experiments, such as density ratio, absolute pressure, and rate of pressure variation, are discussed. This study is important as superconducting current leads may be used in superconducting magnetic energy storage systems.

  6. Numerical and experimental investigation of subcooled film boiling on a horizontal plate

    NASA Astrophysics Data System (ADS)

    Banerjee, Debjyoti

    for subcooled film boiling under pool boiling conditions on a horizontal a copper plate. Experimental results for interfacial hydrodynamics were in agreement with the numerical results to within 10--15%. The steady state experimental results for heat transfer measurements were underpredicted by the a numerical model by about 25%. 2-D PTV measurements were in good agreement with numerical predictions.

  7. Welding pool measurement using thermal array sensor

    NASA Astrophysics Data System (ADS)

    Cho, Chia-Hung; Hsieh, Yi-Chen; Chen, Hsin-Yi

    2015-08-01

    Selective laser melting (SLM) is an additive manufacturing (AM) technology that uses a high-power laser beam to melt metal powder in chamber of inert gas. The process starts by slicing the 3D CAD data as a digital information source into layers to create a 2D image of each layer. Melting pool was formed by using laser irradiation on metal powders which then solidified to consolidated structure. In a selective laser melting process, the variation of melt pool affects the yield of a printed three-dimensional product. For three dimensional parts, the border conditions of the conductive heat transport have a very large influence on the melt pool dimensions. Therefore, melting pool is an important behavior that affects the final quality of the 3D object. To meet the temperature and geometry of the melting pool for monitoring in additive manufacturing technology. In this paper, we proposed the temperature sensing system which is composed of infrared photodiode, high speed camera, band-pass filter, dichroic beam splitter and focus lens. Since the infrared photodiode and high speed camera look at the process through the 2D galvanometer scanner and f-theta lens, the temperature sensing system can be used to observe the melting pool at any time, regardless of the movement of the laser spot. In order to obtain a wide temperature detecting range, 500 °C to 2500 °C, the radiation from the melting pool to be measured is filtered into a plurality of radiation portions, and since the intensity ratio distribution of the radiation portions is calculated by using black-body radiation. The experimental result shows that the system is suitable for melting pool to measure temperature.

  8. Improved access to histopathology using a digital system could increase the organ donor pool and improve allocation.

    PubMed

    Neil, Desley A H; Roberts, Ian S D; Bellamy, Christopher O C; Wigmore, Stephen J; Neuberger, James M

    2014-08-01

    Improvements in digital slide scanners have reached a stage that digital whole slide images (WSIs) can be used for diagnostic purposes. A digital system for histopathology, analogous to the systems used in radiology, would allow the establishment of networks of subspecialist histopathologists to provide a regional, national or even international rota to support out of hours histopathology for emergency frozen sections, urgent paraffin sections and to generally improve efficiencies with the provision of histopathology services. Such a system would promote appropriate organ utilization by allowing rapid characterization of unexpected lesions in the donor to determine whether donation should occur and further characterization of the organ, such as the degree of fibrosis in the kidney or steatosis in the liver, to determine whether the organ should be used. If introduced across Europe, this would promote safe and effective exchange of organs and support a cost efficient use of pathologist expertise. This review article outlines current issues with the provision of an urgent out of hours histopathology service and focuses on how such a service has the potential to increase organ donors, improve allocation, sharing and the use of available donor organs.

  9. Development and Capabilities of ISS Flow Boiling and Condensation Experiment

    NASA Technical Reports Server (NTRS)

    Nahra, Henry; Hasan, Mohammad; Balasubramaniam, R.; Patania, Michelle; Hall, Nancy; Wagner, James; Mackey, Jeffrey; Frankenfield, Bruce; Hauser, Daniel; Harpster, George; Nawrocki, David; Clapper, Randy; Kolacz, John; Butcher, Robert; May, Rochelle; Chao, David; Mudawar, Issam; Kharangate, Chirag R.; O'Neill, Lucas E.

    2015-01-01

    An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.

  10. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  11. Water boiling inside carbon nanotubes: toward efficient drug release.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2011-07-26

    We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNTs) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting transition into an unusual phase, where pressure is gas-like and grows linearly with temperature, while the diffusion constant is temperature-independent. Precise control over boiling by CNT diameter, together with the rapid growth of inside pressure above the boiling point, suggests a novel drug delivery protocol. Polar drug molecules are packaged inside CNTs; the latter are delivered into living tissues and heated by laser. Solvent boiling facilitates drug release.

  12. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  13. Explosive boiling of metals upon irradiation by a nanosecond laser pulse

    SciTech Connect

    Mazhukin, V I; Demin, M M; Shapranov, A V; Samokhin, A A

    2014-04-28

    A repeated effect of explosive boiling has been found in metals exposed to a nanosecond laser pulse in the framework of molecular dynamic simulations combined with a continuum description of a conduction band electrons system. This effect can be used, in particular, as a marker of approaching critical parameters of the region in the irradiated matter. (letters)

  14. 46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... atmospheric pressure. Continuous gas detection must be installed to detect leaks in the ventilated space. The... Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel... must be a double-walled piping system with the annular space containing an inert gas at a...

  15. 46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... atmospheric pressure. Continuous gas detection must be installed to detect leaks in the ventilated space. The... Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel... must be a double-walled piping system with the annular space containing an inert gas at a...

  16. 46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... atmospheric pressure. Continuous gas detection must be installed to detect leaks in the ventilated space. The... Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel... must be a double-walled piping system with the annular space containing an inert gas at a...

  17. 46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... atmospheric pressure. Continuous gas detection must be installed to detect leaks in the ventilated space. The... Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel... must be a double-walled piping system with the annular space containing an inert gas at a...

  18. 46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... atmospheric pressure. Continuous gas detection must be installed to detect leaks in the ventilated space. The... Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel... must be a double-walled piping system with the annular space containing an inert gas at a...

  19. Contamination of Groundwater Systems in the US and Canada by Enteric Pathogens, 1990–2013: A Review and Pooled-Analysis

    PubMed Central

    Hynds, Paul Dylan; Thomas, M. Kate; Pintar, Katarina Dorothy Milena

    2014-01-01

    Background Up to 150 million North Americans currently use a groundwater system as their principal drinking water source. These systems are a potential source of exposure to enteric pathogens, contributing to the burden of waterborne disease. Waterborne disease outbreaks have been associated with US and Canadian groundwater systems over the past two decades. However, to date, this literature has not been reviewed in a comprehensive manner. Methods and Principal Findings A combined review and pooled-analysis approach was used to investigate groundwater contamination in Canada and the US from 1990 to 2013; fifty-five studies met eligibility criteria. Four study types were identified. It was found that study location affects study design, sample rate and studied pathogen category. Approximately 15% (316/2210) of samples from Canadian and US groundwater sources were positive for enteric pathogens, with no difference observed based on system type. Knowledge gaps exist, particularly in exposure assessment for attributing disease to groundwater supplies. Furthermore, there is a lack of consistency in risk factor reporting (local hydrogeology, well type, well use, etc). The widespread use of fecal indicator organisms in reported studies does not inform the assessment of human health risks associated with groundwater supplies. Conclusions This review illustrates how groundwater study design and location are critical for subsequent data interpretation and use. Knowledge gaps exist related to data on bacterial, viral and protozoan pathogen prevalence in Canadian and US groundwater systems, as well as a need for standardized approaches for reporting study design and results. Fecal indicators are examined as a surrogate for health risk assessments; caution is advised in their widespread use. Study findings may be useful during suspected waterborne outbreaks linked with a groundwater supply to identify the likely etiological agent and potential transport pathway. PMID:24806545

  20. Effect of boiling in water of barley and buckwheat groats on the antioxidant properties and dietary fiber composition.

    PubMed

    Hęś, Marzanna; Dziedzic, Krzysztof; Górecka, Danuta; Drożdżyńska, Agnieszka; Gujska, Elżbieta

    2014-09-01

    In recent years, there has been an ever-increasing interest in the research of polyphenols obtained from dietary sources, and their antioxidative properties. The purpose of this study was to determine the effect of boiling buckwheat and barley groats on the antioxidant properties and dietary fiber composition. Antioxidative properties were investigated using methyl linoleate model system, by assessing the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity and metal chelating activity. The results were compared with butylated hydroxytoluene (BHT). Raw barley and buckwheat groats extracts showed higher DPPH scavenging ability compared to boiled barley and buckwheat groats extracts. Raw barley groats extract exhibited higher antioxidant activity than boiled groats extract in the methyl linoleate emulsion. Higher chelating ability in relation to Fe (II) ions was observed for boiled groats extracts as compared to raw groats extracts. BHT showed small antiradical activity and metal chelating activity, while showing higher antioxidative activity in emulsion system. The analysis of groats extracts using HPLC method showed the presence of rutin, catechin, quercetin, gallic, p-hydroxybenzoic, p-coumaric, o-coumaric, vanillic, sinapic, and ferulic acids. Differences in the content of dietary fiber and its fractions were observed in the examined products. The highest total dietary fiber content was detected in boiled buckwheat groats, while the lowest - in boiled barley groats. The scientific achievements of this research could help consumers to choose those cereal products available on the market, such as barley and buckwheat groats, which are a rich source of antioxidative compounds and dietary fiber.

  1. Allergic to Pool Water

    PubMed Central

    2012-01-01

    To identify the allergy problem of a 36-year old swimming instructor, who experiences heavy itching and rashes whenever she comes in contact with pool water. Patch tests were performed with European standard series and materials from the work floor. A positive patch test to aluminum chloride and flocculant was observed. Occupational dermatitis is, based on a contact allergy to aluminum chloride in the flocculant. PMID:22993713

  2. Boil-off experiments with the EIR-NEPTUN Facility: Analysis and code assessment overview report

    SciTech Connect

    Aksan, S.N.; Stierli, F.; Analytis, G.T.

    1992-03-01

    The NEPTUN data discussed in this report are from core uncovery (boil-off) experiments designed to investigate the mixture level decrease and the heat up of the fuel rod simulators above the mixture level for conditions simulating core boil-off for a nuclear reactor under small break loss-of-coolant accident conditions. The first series of experiments performed in the NEPTUN test facility consisted of ten boil-off (uncovery) and one adiabatic heat-up tests. In these tests three parameters were varied: rod power, system pressure and initial coolant subcooling. The NEPTUN experiments showed that the external surface thermocouples do not cause a significant cooling influence in the rods to which they are attached under boil-off conditions. The reflooding tests performed later on indicated that the external surface thermocouples have some effect during reflooding for NEPTUN electrically heated rod bundle. Peak cladding temperatures are reduced by about 30--40C and quench times occur 20--70 seconds earlier than rods with embedded thermocouples. Additionally, the external surface-thermocouples give readings up to 20 K lower than those obtained with internal surface thermocouples (in the absence of external thermocouples) in the peak cladding temperature zone. Some of the boil-off data obtained from the NEPTUN test facility are used for the assessment of the thermal-hydraulic transient computer codes. These calculations were performed extensively using the frozen version of TRAC-BD1/MOD1 (version 22). A limited number of assessment calculations were done with RELAP5/MOD2 (version 36.02). In this report the main results and conclusions of these calculations are presented with the identification of problem areas in relation to models relevant to boil-off phenomena. On the basis of further analysis and calculations done, changing some of the models such as the bubbly/slug flow interfacial friction correlation which eliminate some of the problems are recommended.

  3. The effect of vapor polarity and boiling point on breakthrough for binary mixtures on respirator carbon.

    PubMed

    Robbins, C A; Breysse, P N

    1996-08-01

    This research evaluated the effect of the polarity of a second vapor on the adsorption of a polar and a nonpolar vapor using the Wheeler model. To examine the effect of polarity, it was also necessary to observe the effect of component boiling point. The 1% breakthrough time (1% tb), kinetic adsorption capacity (W(e)), and rate constant (kv) of the Wheeler model were determined for vapor challenges on carbon beds for both p-xylene and pyrrole (referred to as test vapors) individually, and in equimolar binary mixtures with the polar and nonpolar vapors toluene, p-fluorotoluene, o-dichlorobenzene, and p-dichlorobenzene (referred to as probe vapors). Probe vapor polarity (0 to 2.5 Debye) did not systematically alter the 1% tb, W(e), or kv of the test vapors. The 1% tb and W(e) for test vapors in binary mixtures can be estimated reasonably well, using the Wheeler model, from single-vapor data (1% tb +/- 30%, W(e) +/- 20%). The test vapor 1% tb depended mainly on total vapor concentration in both single and binary systems. W(e) was proportional to test vapor fractional molar concentration (mole fraction) in mixtures. The kv for p-xylene was significantly different (p < or = 0.001) when compared according to probe boiling point; however, these differences were apparently of limited importance in estimating 1% tb for the range of boiling points tested (111 to 180 degrees C). Although the polarity and boiling point of chemicals in the range tested are not practically important in predicting 1% tb with the Wheeler model, an effect due to probe boiling point is suggested, and tests with chemicals of more widely ranging boiling point are warranted. Since the 1% tb, and thus, respirator service life, depends mainly on total vapor concentration, these data underscore the importance of taking into account the presence of other vapors when estimating respirator service life for a vapor in a mixture.

  4. Results from Boiling Temperature Measurements for Saturated Solutions in the Systems NaCl + Ca(NO3)2 + H2O, NaNO3 + KNO3 + H2O, and NaCl + KNO3 + H2O, and Dry Out Temperatures for NaCl + NaNO3 + KNO3 + Ca(NO3)2 + H2O

    SciTech Connect

    Rard, J A

    2005-11-29

    Boiling temperature measurements have been made for saturated ternary solutions of NaCl + KNO{sub 3} + H{sub 2}O and NaNO{sub 3} + KNO{sub 3} + H{sub 2}O at three selected salt ratios and for NaCl + Ca(NO{sub 3}){sub 2} + H{sub 2}O over the full composition range. The maximum boiling temperature found for the NaCl + Ca(NO{sub 3}){sub 2} + H{sub 2}O system is 164.7 {+-} 0.6 C, and the composition is estimated to occur at x(Ca(NO{sub 3}){sub 2}) {approx} 0.25. Experiments were also performed for the five component NaCl + NaNO{sub 3} + KNO{sub 3} + Ca(NO{sub 3}){sub 2} + H{sub 2}O mixtures with the molar ratio of NaCl:NaNO{sub 3}:KNO{sub 3} held essentially constant at 1:0.9780:1.1468 as the solute mole fraction of Ca(NO{sub 3}){sub 2}, x(Ca(NO{sub 3}){sub 2}), was varied between 0 and 0.25. The NaCl + NaNO{sub 3} + KNO{sub 3} + Ca(NO{sub 3}){sub 2} + H{sub 2}O system forms low melting mixtures and thus boiling temperatures for saturated were not determined. Instead, the temperatures corresponding to the cessation of boiling (i.e., dry out temperatures) of these liquid mixtures were determined. These dry out temperatures range from {approx} 300 C when x(Ca(NO{sub 3}){sub 2}) = 0 to {ge} 400 C when x(Ca(NO{sub 3}){sub 2}) = 0.20 and 0.25. The investigated mixture compositions correspond to some of the major mineral assemblages that are predicted to control the deliquescence relative humidity of salts formed by leaching dust samples from the proposed nuclear repository at Yucca Mountain, Nevada.

  5. Optimizing the Combination of Smoking and Boiling on Quality of Korean Traditional Boiled Loin (M. longissimus dorsi).

    PubMed

    Choi, Yun-Sang; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Jung, Tae-Jun; Kim, Young-Boong; Kim, Cheon-Jei

    2015-01-01

    The combined effects of smoking and boiling on the proximate composition, technological quality traits, shear force, and sensory characteristics of the Korean traditional boiled loin were studied. Cooking loss, processing loss, and shear force were lower in the smoked/boiled samples than those in the control (without smoking treatment) (p<0.05). The results showed that the boiled loin samples between the control and treatment did not differ significantly in protein, fat, or ash contents, or pH values (p>0.05). The treated samples had higher score for overall acceptability than the control (p<0.05). Thus, these results show that the Korean traditional boiled loin treated with smoking for 60 min before boiling had improved physicochemical properties and sensory characteristics.

  6. Swimming Pools and Molluscum Contagiosum

    MedlinePlus

    ... Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections Poxvirus Swimming Pools Recommend on Facebook Tweet Share Compartir The ... often ask if molluscum virus can spread in swimming pools. There is also concern that it can ...

  7. A Mechanistic Study of Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.; Warrier, G. R.; Hasan, M. M.

    2002-01-01

    The overall objective of this work is to study nucleate boiling heat transfer under microgravity conditions in such a way that while providing basic knowledge of the phenomena, it also leads to development of simulation models and correlations that can be used as design tools for a wide range of gravity levels. In the study a building block type of approach is used and both pool and low velocity flow boiling are investigated. Starting with experiments using a single bubble, the complexity of the experiments is increased to two or three inline bubbles, to five bubbles placed on a two-dimensional grid. Finally, experiments are conducted where a large number of prescribed cavities nucleate on the heater and when a commercial surface is used. So far experiments have been conducted at earth normal gravity and in the reduced gravity environment of the KC-135 aircraft whereas experiments on the space station are planned. Modeling/complete numerical simulation of the boiling process is an integral part of the total effort. Experiments conducted with single bubbles formed on a nucleation site microfabricated on a polished silicon wafer show that for gravity levels (g) varying from 1.5g(sub e) to 0.01g(sub e), the bubble diameter at departure varies approximately as (g(sub e)/g)(exp 1/2) and the growth period as (g(sub e)/g). When bubbles merge either inline or in a plane, the bubble diameter at departure is found to be smaller than that obtained for a single bubble and shows a weaker dependence on the level of gravity. The possible reason is that as the bubbles merge they create fluid circulation around the bubbles, which in turn induces a lift force that is responsible for the earlier departure of the bubbles. The verification of this proposition is being sought through numerical simulations. There is a merger of two inline, three inline, and several bubbles in a plane in the low gravity environment of the KC-135 aircraft. After merger and before departure, a mushroom type

  8. System for reducing heat losses from indoor swimming pools by use of automatic covers. [Quarterly] report No. 5, January 1, 1995--March 31, 1995

    SciTech Connect

    1995-05-01

    To maintain comfortable and healthful temperatures in an indoor swimming pool, heat must be continually supplied to the pool water and to fresh air-that must be brought in for ventilation. Nearly all the heat added to the water is lost by evaporation into the air above the water surface. That very moist air must then be removed and replaced with relatively dry outdoor air that requires heating during most of the year. The cost of natural gas for supplying heat in a typical institutional pool is $10,000 to $25,000 Per Year. When the pool is not being used, typically half to two-thirds of the time, evaporation and the resulting heat demands can be eliminated by placing impervious covers on the water surface. On a schedule of use such as at Skyland, the pool can be covered and evaporation suppressed about two-thirds of the time, thereby saving about ten thousand dollars per year. Determination of the actual savings achieved by use of pool covers is the principal objective of this project. The program goal is the development of the technology and tools for achieving major reductions in the nation`s waste of energy.

  9. Characterisation of the Permafrost Carbon Pool

    USGS Publications Warehouse

    Kuhry, P.; Grosse, G.; Harden, J.W.; Hugelius, G.; Koven, C.D.; Ping, C.-L.; Schirrmeister, L.; Tarnocai, C.

    2013-01-01

    The current estimate of the soil organic carbon (SOC) pool in the northern permafrost region of 1672 Petagrams (Pg) C is much larger than previously reported and needs to be incorporated in global soil carbon (C) inventories. The Northern Circumpolar Soil Carbon Database (NCSCD), extended to include the range 0–300 cm, is now available online for wider use by the scientific community. An important future aim is to provide quantitative uncertainty ranges for C pool estimates. Recent studies have greatly improved understanding of the regional patterns, landscape distribution and vertical (soil horizon) partitioning of the permafrost C pool in the upper 3 m of soils. However, the deeper C pools in unconsolidated Quaternary deposits need to be better constrained. A general lability classification of the permafrost C pool should be developed to address potential C release upon thaw. The permafrost C pool and its dynamics are beginning to be incorporated into Earth System models, although key periglacial processes such as thermokarst still need to be properly represented to obtain a better quantification of the full permafrost C feedback on global climate change.

  10. Effects of soaking, boiling and autoclaving on the phenolic contents and antioxidant activities of faba beans (Vicia faba L.) differing in seed coat colours.

    PubMed

    Siah, Siem; Wood, Jennifer A; Agboola, Samson; Konczak, Izabela; Blanchard, Christopher L

    2014-01-01

    The Australian grown faba beans of different seed coat colours were either soaked, boiled or autoclaved, and analysed for phenolic contents and antioxidant activity using an array of reagent-based assays. Soaking, boiling and autoclaving were shown to lower the level of active compounds in faba beans. A significant amount of active compounds was leached to the soaking and cooking medium. Boiling was a better method in retaining active compounds in beans than autoclaving. The boiled beans had more active compounds than those of resulting cooking broths, which was the opposite observation when autoclaving. The buff-genotypes had a similar level of active compounds to red- and green-genotypes. The high performance liquid chromatography-post column derivatisation (HPLC-PCD) system detected a dense collection of high antioxidant HPLC peaks ('humps') in extracts of raw, soaked and boiled beans. The present findings encouraged consumption of faba beans together with cooking broth for the maximum potential health benefits.

  11. (Boiling water reactor (BWR) CORA experiments)

    SciTech Connect

    Ott, L.J.

    1990-10-16

    To participate in the 1990 CORA Workshop at Kernforschungszentrum Karlsruhe (KfK) GmbH, Karlsruhe, FRG, on October 1--4, and to participate in detailed discussions on October 5 with the KfK CORA Boiling Water Reactor (BWR) experiments. The traveler attended the 1990 CORA Workshop at KfK, FRG. Participation included the presentation of a paper on work performed by the Boiling Water Reactor Core Melt Progression Phenomena Program at Oak Ridge National Laboratory (ORNL) on posttest analyses of CORA BWR experiments. The Statement of Work (November 1989) for the BWR Core Melt Progression Phenomena Program provides for pretest and posttest analyses of the BWR CORA experiments performed at KfK. Additionally, it is intended that ORNL personnel participate in the planning process for future CORA BWR experiments. For these purposes, meetings were held with KfK staff to discuss such topics as (1) experimental test schedule, (2) BWR test conduct, (3) perceived BWR experimental needs, and (4) KfK operational staff needs with respect to ORNL support. 19 refs.

  12. Zero Boil-Off Tank (ZBOT) Experiment

    NASA Technical Reports Server (NTRS)

    Mcquillen, John

    2016-01-01

    The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.

  13. Effect of boiling regime on melt stream breakup in water

    SciTech Connect

    Spencer, B.W.; Gabor, J.D.; Cassulo, J.C.

    1986-01-01

    A study has been performed examining the breakup and mixing behavior of an initially coherent stream of high-density melt as it flows downward through water. This work has application to the quenching of molten core materials as they drain downward during a postulated severe reactor accident. The study has included examination of various models of breakup distances based upon interfacial instabilities dominated either by liquid-liquid contact or by liquid-vapor contact. A series of experiments was performed to provide a data base for assessment of the various modeling approaches. The experiments involved Wood's metal (T/sub m/ = 73/sup 0/C, rho = 9.2 g/cm/sup 3/, d/sub j/ = 20 mm) poured into a deep pool of water. The temperature of the water and wood's metal were varied to span the range from single-phase, liquid-liquid contact to the film boiling regime. Experiment results showed that breakup occurred largely as a result of the spreading and entrainment from the leading edge of the jet. However, for streams of sufficient lengths a breakup length could be discerned at which there was no longer a coherent central core of the jet to feed the leading edge region. The erosion of the vertical trailing column is by Kelvin-Helmoltz instabilities and related disengagement of droplets from the jet into the surrounding fluid. For conditions of liquid-liquid contact, the breakup length has been found to be about 20 jet diameters; when substantial vapor is produced at the interface due to heat transfer from the jet to the water, the breakup distance was found to range to as high as 50 jet diameters. The former values are close to the analytical prediction of Taylor, whereas the latter values are better predicted by the model of Epstein and Fauske.

  14. Contractor's case study: the Petaluma pool

    SciTech Connect

    Livingston, J.

    1983-11-01

    The design of a solar heating system for a swim center is discussed. The heating system for the 12,000 ft/sup 2/ municipal pool employs a massive array of solar collectors along with the necessary piping, pumps, and sensors.

  15. Nucleate boiling of water in twisted-tape swirled flow

    SciTech Connect

    Kudryavtsev, I.S.; Lekakh, B.M.; Paskar, B.L.; Fedorovich, Y.D. )

    1990-01-01

    This paper analyzes nucleate boiling in twisted-tape swirled water flow. The transverse flow velocity in the wall region, generated by the density gradient and acceleration, is estimated. It is concluded that the turbulence has a significant effect on the growth of vapor bubbles, decreasing the rate of nucleate boiling without simultaneously increasing the convective component to compensate for this effect.

  16. Boiling treatment of ABS and PS plastics for flotation separation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Wu, Bao-xin; Liu, Qun

    2014-07-01

    A new physical method, namely boiling treatment, was developed to aid flotation separation of acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS) plastics. Boiling treatment was shown to be effective in producing a hydrophilic surface on ABS plastic. Fourier Transform Infrared analysis was conducted to investigate the mechanism of boiling treatment of ABS. Surface rearrangement of polymer may be responsible for surface change of boiling treated ABS, and the selective influence of boiling treatment on the floatability of boiling treated plastics may be attributed to the difference in the molecular mobility of polymer chains. The effects of flotation time, frother concentration and particle size on flotation behavior of simple plastic were investigated. Based on flotation behavior of simple plastic, flotation separation of boiling treatment ABS and PS with different particle sizes was achieved efficiently. The purity of ABS and PS was up to 99.78% and 95.80%, respectively; the recovery of ABS and PS was up to 95.81% and 99.82%, respectively. Boiling treatment promotes the industrial application of plastics flotation and facilitates plastic recycling.

  17. 18. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Detail of floor with molasses pits below floor level. The remaining floor boards indicate the structure of the floor covering the entire inside of the boiling house. In the left background the base of the centrifugals are in view. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  18. 17. RW Meyer Sugar Mill: 18761889. Boiling House, 1878. View: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. RW Meyer Sugar Mill: 1876-1889. Boiling House, 1878. View: Southwest corner of boiling house. The amimal-powered cane mill is located in the undergrowth in the right foreground, - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  19. Influence of Pressure on Stable Film Boiling of Subcooled Liquid

    NASA Astrophysics Data System (ADS)

    Zabirov, A. R.; Yagov, V. V.; Kaban'kov, O. N.; Leksin, M. A.; Kanin, P. K.

    2016-11-01

    Film boiling of subcooled liquids is an integral part of the hardening process. Understanding of the mechanisms underlying film boiling is important for modeling processes in atomic power engineering and cryogenic technology. Stationary processes of film boiling of subcooled liquids under conditions of their free motion near cylindrical heaters, just as subcooled liquid turbulent flow past high-temperature surfaces, represent quite a different type of process. In cooling metal spheres heated to a high temperature by a subcooled water, a special regime of film boiling is observed (microbubble boiling) distinguished by high intensity of heat transfer. Such a regime has not been revealed up to now for nonaqueous liquids. The paper presents new experimental data on heat transfer regimes in cooling nickel spheres in subcooled isopropanol and perfluorohexane at pressures of up to 1 MPa. It has been established that stable film boiling is the main regime of heat transfer that accounts for the larger part of the total time of cooling. The regimes of highly intensive film boiling heat transfer were not observed in the entire range of operational parameters even in the case of extreme subcoolings of liquid below their saturation temperature (to 170 K). The intensity of heat transfer in stable film boiling increases noticeably with subcooling of a chilling liquid.

  20. Prospective Primary School Teachers' Perceptions on Boiling and Freezing

    ERIC Educational Resources Information Center

    Senocak, Erdal

    2009-01-01

    The aim of this study was to investigate the perceptions of prospective primary school teachers on the physical state of water during the processes of boiling and freezing. There were three stages in the investigation: First, open-ended questions concerning the boiling and freezing of water were given to two groups of prospective primary school…

  1. Leidenfrost drops on a heated liquid pool

    NASA Astrophysics Data System (ADS)

    Maquet, L.; Sobac, B.; Darbois-Texier, B.; Duchesne, A.; Brandenbourger, M.; Rednikov, A.; Colinet, P.; Dorbolo, S.

    2016-09-01

    We show that a volatile liquid drop placed at the surface of a nonvolatile liquid pool warmer than the boiling point of the drop can be held in a Leidenfrost state even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014), 10.1103/PhysRevE.90.053011] is developed in order to rationalize the experimental data. The shapes of the drop and of the liquid substrate are analyzed. The model notably provides scalings for the vapor film thickness profile. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different, and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrease linearly with time whatever the drop size, which differs from the case of a Leidenfrost drop on a solid substrate. For high superheats, the characteristic lifetime of the drops versus the superheat follows a scaling law that is derived from the model, but, at low superheats, it deviates from this scaling by rather saturating.

  2. Enhancement of critical heat flux in subcooled flow boiling of water by use of a volatile additive

    SciTech Connect

    Pabisz, R.A. Jr.; Bergles, A.E.

    1996-12-31

    The present investigation considers the effect of a 1-pentanol additive in water on the critical heat flux (CHF) and pressure drop in forced subcooled boiling. A small quantity of 1-pentanol was added to distilled water with the objective of getting an approximate 2% by weight mixture, which had been found to give superior performance in previous studies of pool and flow boiling. Experiments were performed using stainless steel tubes with internal diameters of 4.4 and 6.1 mm. Tests were conducted with mass fluxes of 4,400 kg/m{sup 2}s, exit pressures of 9 bar, length-to-diameter ratios of 25, and exit subcoolings from 65 to 90 C. Test sections were heated directly by DC power, and critical heat flux data were inferred from test-section burnout. The alcohol concentration was periodically checked by draining off a sample and performing a Proton Nuclear Magnetic Resonance scan on the mixture. At high subcoolings, the mixture exhibited an increase in the critical heat flux over that of pure water. However at low subcoolings there is a decrease in the critical heat flux. The increases in critical heat flux noted with the 1-pentanol mixture in this experiment were not as large as would be expected from saturated pool boiling results published by Van Stralen (1959). Pressure drop data for both the mixture and the pure water also were recorded. The 1-pentanol mixture, in general, exhibited larger pressure drops for the same conditions. Subcooled flow boiling has a wide array of commercial cooling applications, including blades in gas turbines, high power laser optics, plasma-facing components in fusion reactors, supercomputers, etc.

  3. Bubble transport in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Owoeye, Eyitayo James

    Understanding the behavior of bubbles in subcooled flow boiling is important for optimum design and safety in several industrial applications. Bubble dynamics involve a complex combination of multiphase flow, heat transfer, and turbulence. When a vapor bubble is nucleated on a vertical heated wall, it typically slides and grows along the wall until it detaches into the bulk liquid. The bubble transfers heat from the wall into the subcooled liquid during this process. Effective control of this transport phenomenon is important for nuclear reactor cooling and requires the study of interfacial heat and mass transfer in a turbulent flow. Three approaches are commonly used in computational analysis of two-phase flow: Eulerian-Lagrangian, Eulerian-Eulerian, and interface tracking methods. The Eulerian- Lagrangian model assumes a spherical non-deformable bubble in a homogeneous domain. The Eulerian-Eulerian model solves separate conservation equations for each phase using averaging and closure laws. The interface tracking method solves a single set of conservation equations with the interfacial properties computed from the properties of both phases. It is less computationally expensive and does not require empirical relations at the fluid interface. Among the most established interface tracking techniques is the volume-of-fluid (VOF) method. VOF is accurate, conserves mass, captures topology changes, and permits sharp interfaces. This work involves the behavior of vapor bubbles in upward subcooled flow boiling. Both laminar and turbulent flow conditions are considered with corresponding pipe Reynolds number of 0 -- 410,000 using a large eddy simulation (LES) turbulence model and VOF interface tracking method. The study was performed at operating conditions that cover those of boiling water reactors (BWR) and pressurized water reactors (PWR). The analysis focused on the life cycle of vapor bubble after departing from its nucleation site, i.e. growth, slide, lift-off, rise

  4. Conversion of direct process high-boiling residue to monosilanes

    DOEpatents

    Brinson, Jonathan Ashley; Crum, Bruce Robert; Jarvis, Jr., Robert Frank

    2000-01-01

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  5. Turning bubbles on and off during boiling using charged surfactants

    NASA Astrophysics Data System (ADS)

    Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.

    2015-10-01

    Boiling--a process that has powered industries since the steam age--is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles `on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications.

  6. Microbiological effectiveness of disinfecting water by boiling in rural Guatemala.

    PubMed

    Rosa, Ghislaine; Miller, Laura; Clasen, Thomas

    2010-03-01

    Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1-10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations.

  7. Turning bubbles on and off during boiling using charged surfactants.

    PubMed

    Cho, H Jeremy; Mizerak, Jordan P; Wang, Evelyn N

    2015-10-21

    Boiling--a process that has powered industries since the steam age--is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles 'on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications.

  8. Modeling of convective subcooled boiling in microtubes for high heat fluxes

    NASA Astrophysics Data System (ADS)

    Hoffman, Myron A.; Stetson, James D., IV

    1993-02-01

    Cooling systems for very compact electronic components and computer chips are being miniaturized to meet the need for smaller overall packaging. One of the important present directions has been to use laminar flow in very small channels with hydraulic diameters in the sub-millimeter range to get high heat transfer coefficients with low pressure drops. It has been speculated that there might be some advantage to having convective subcooled boiling (SCB) occur in the micro-channels. As a first step in the evaluation of the utility of subcooled boiling in these micro-channels, a model has been developed for subcooled boiling in sub-millimeter diameter microtubes subject to uniform heat flux. This model builds on a previously well-validated computer code for convective subcooled boiling in tubes down to 1.57 mm inner diameter. The basic features of the new microtube model are described and some predictions using this model for 0.3 mm and 0.1 mm microtubes subject to a high heat flux of 10 MW/m2 are given.

  9. Boiling Heat Transfer in High Temperature Generator of Absorption Chiller/Heater

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Enomoto, Eiichi; Sekoguchi, Kotohiko

    Heat transfer performance of forced convective boiling in high temperature generator was experimentally studied using an actual absorption chiller/heater. Measurements were made at six locations, three different levels on a couple of laterally separated lines, for the fluid rising along the rear wall of the high temperature generator furnace. Fluids tested were water and lithium bromide aqueous solution. System pressures were maintained at 96 and 24 kPa, and firing rates were changed from 100 to 40 % of the full load of the machine. Through the experiments, thermodynamic states of both of the fluids were in subcooled region at the lower and middle locations and in saturated region at the upper location. It can be suggested that saturated boiling occurs at comparatively narrow area, located at the upper zone of heat transfer surface of the generator, while forced convective heat transfer and subcooled boiling appear at the remaining broad area. Enhancement of heat transfer due to saturated boiling was not pronounced for lithium bromide aqueous solution than for water.

  10. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    PubMed

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination.

  11. Enceladus Plumes: A Boiling Liquid Model

    NASA Astrophysics Data System (ADS)

    Nakajima, Miki; Ingersoll, A. P.

    2012-10-01

    Following the discovery of H2O vapor and particle plumes from the tiger stripes at the south pole of Enceladus (Porco et al., 2006), observational and theoretical studies have been conducted to understand the plume mechanism (e.g., Schmidt et al., 2008; Kieffer et al., 2009; Ingersoll and Pankine, 2010). Although the “Ice Chamber Model”, which assumes that ice sublimation under the stripes causes the plumes, has successfully explained the plume mass flux (e.g., Nimmo et al., 2007; Ingersoll and Pankine, 2010), it cannot explain the high salinity in the plume (Postberg et al., 2009). Ice particles condensing from a vapor are relatively salt free, but ice particles derived from a salty liquid can have high salinity. Therefore we have investigated the “Boiling Liquid Model”, which assumes that liquid H2O under the stripes causes the plumes. With conservation of mass, momentum and energy, we built a simple atmospheric model that includes controlled boiling and gas-ice wall interaction. We first assumed that the heat radiated to space comes entirely from the heat generated by condensation of the gas onto the ice wall. We varied the width (0.1-1 m) and the height (5-4000 m) of the crack as parameters. We find that the escaping vapor flux can be relatively close to the observed value (250±100 kg/s, Hansen et al., 2006, 2008) but the radiated heat flux is only 1 GW, which is much less than the observed value (15.8 GW, Howett et al., 2011). Other models (Nimmo et al., 2007; Abramov and Spencer, 2009) also have the same difficulty accounting for the observed value. We then investigated the additional heat radiated by the particles after they come out of the crack. We built a simple model to estimate the size distributions of these condensed ice particles and their radiative properties.

  12. Terrestrial Applications of Zero Boil-Off Cryogen Storage

    NASA Technical Reports Server (NTRS)

    Salerno, L. J.; Gaby, J.; Hastings, L.; Johnson, R.; Kittel, P.; Marquardt, E.; Plachta, D.; Arnold, James O. (Technical Monitor)

    2000-01-01

    Storing cryogenic propellants with zero boil off (ZBO) using a combination of active (cryocoolers) and passive technologies has recently received a great deal of attention for applications such as future long-term space missions. This paper will examine a variety of potential near-term terrestrial applications for ZBO and, where appropriate, provide a rough order of magnitude cost benefit of implementing ZBO technology. NASA's Space Shuttle power system uses supercritical propellant tanks, which are filled several days before launch. If the launch does not occur within 48-96 hours, the tanks must be drained and refilled, further delaying the launch. By implementing ZBO, boil off could be eliminated and pad hold time extended. At the launch site, vented liquid hydrogen (LH2) storage dewars lose 1200-1600 gal/day through boiloff. Implementing ZBO would eliminate this, saving $300,000-$400,000 per year. Similarly, overland trucking of LH2 from the supplier to the launch site via roadable dewars results in a cryogen loss of ten percent per tanker (1500 gal/tanker). Providing a cryocooler on board the rig would prevent this loss. Previous work investigating variable density insulation found that a 50% reduction in evaporation from a 6000 gallon dewar would save $5000 per year. For a 20 year dewar lifetime, the payback period would be less than two years. Similar benefits could be realized at other storage facilities across the nation. Within the superconductivity community, there is skepticism about using coolers, based upon reliability concerns. By providing a cooler on the dewar, lifetime could be extended while retaining fail-safe capability. If the cooler failed, it would merely lower the storage life of the dewar.

  13. Safety Investigation of Liquid-Metal-Cooled Nuclear Systems with Heat Exchanger in the Risers of Simple Flow-Path Pool Design

    SciTech Connect

    Carlsson, Johan; Wider, Hartmut U.

    2005-12-15

    Safety investigations were performed on 600- and 1426-MW(thermal) liquid-metal-cooled reactors with the heat exchangers (HXs) located in the risers of simple flow-path pool designs. This includes both critical reactors and accelerator-driven systems (ADSs) using liquid-metal coolants. For the 600-MW(thermal) ADS, the safety implications were examined for vessel sizes of two heights (11 and 15 m) and two diameters (6 and 10 m). Then, the reference design of 11-m height and 6-m diameter was compared with a similar design, but with the HXs located in the downcomers. The transients investigated were total-loss-of-power (TLOP), unprotected-loss-of-flow (ULOF), protected-loss-of-flow, and unprotected loss-of-heat-sink accidents. The 600-MW(thermal) ADS of 11-m height and 6-m diameter peaks at 1041 K after 29 h during a TLOP accident. If the diameter is increased to 10 m, it will peak after 55 h at a 178 K lower temperature thanks to its larger thermal inertia. The difference between locating the HXs in the risers and the downcomers is insignificant for this accident type. With the HXs in the risers, the temperature peaks at 1045 K after 28 h. During a ULOF accident in an ADS at full power, the core outlet temperature stabilizes at 1010 K, which is 337 K above the nominal outlet temperature. When the vessel height is increased to 15 m, the natural convection is improved, and the core outlet temperature stabilizes at 911 K. A Pb-cooled 1426-MW(thermal) reactor of 11-m height and 12-m diameter is also shown to be sufficiently coolable during a TLOP accident; i.e., it peaks at 1093 K after 49 h. In a pool-type design with a simple flow path, the use of HXs in the risers and flaps at their inlets that prevent a flow reversal will have significant safety advantages in case of HX tube failures. Steam or gas bubbles exiting from the secondary circuit cannot be dragged into the core region by the liquid-metal coolant. Instead, they would rise with the coolant and exit through the

  14. Letter Report: Progress in developing EQ3/6 for modeling boiling processes

    SciTech Connect

    Wolery, T. J., LLNL

    1995-08-28

    EQ3/6 is a software package for geochemical modeling of aqueous systems, such as water/rock or waste/water rock. It is being developed for a variety of applications in geochemical studies for the Yucca Mountain Site Characterization Project. The present focus is on development of capabilities to be used in studies of geochemical processes which will take place in the near-field environment and the altered zone of the potential repository. We have completed the first year of a planned two-year effort to develop capabilities for modeling boiling processes. These capabilities will interface with other existing and future modeling capabilities to provide a means of integrating the effects of various kinds of geochemical processes in complex systems. This year, the software has been modified to allow the formation of a generalized gas phase in a closed system for which the temperature and pressure are known (but not necessarily constant). The gas phase forms when its formation is thermodynamically favored; that is, when the system pressure is equal to the sum of the partial pressures of the gas species as computed from their equilibrium fugacities. It disappears when this sum falls below that pressure. `Boiling` is the special case in which the gas phase which forms consists mostly of water vapor. The reverse process is then `condensation.` To support calculations of boiling and condensation, we have added a capability to calculate the fugacity coefficients of gas species in the system H{sub 2}O-CO{sub 2}-CH{sub 4}-H{sub 2},-Awe{sub 2}-N{sub 2},-H{sub 2}S-NH3. This capability at present is accurate only at relatively low pressures, but is adequate for all likely repository boiling conditions. We have also modified the software to calculate changes in enthalpy (heat) and volume functions. Next year we will be extending the boiling capability to calculate the pressure or the temperature at known enthalpy. We will also add an option for open system boiling.

  15. IPFR: Integrated Pool Fusion Reactor concept

    SciTech Connect

    Sze, D.K.

    1986-01-01

    The IPFR (Integrated Pool Fusion Reactor) concept is to place a fusion reactor into a pool of molten Flibe. The Flibe will serve the multiple functions of breeding, cooling, shielding, and moderating. Therefore, the only structural material between the superconducting magnets and the plasma is the first wall. The first wall is a stand-alone structure with no coolant connection and is cooled by Flibe at the atmospheric pressure. There is also no need of the primary coolant loop. The design is expected to improve the safety, reliability, and maintainability aspects of the fusion system.

  16. Transition boiling heat transfer and the film transition regime

    NASA Technical Reports Server (NTRS)

    Ramilison, J. M.; Lienhard, J. H.

    1987-01-01

    The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.

  17. An experimental investigation of critical heat flux performance of hypervapotron in subcooled boiling

    NASA Astrophysics Data System (ADS)

    Chen, Peipei

    The successful use of subcooled flow boiling for high heat flux components requires that the critical heat flux (CHF), i.e., a fast reduction in the boiling heat transfer, must be avoided. Among the many techniques available to enhance CHF, particular attention has been focused on the hypervapotron concept. In this study, the CHF characteristics of the hypervapotron were experimentally investigated using a simulant fluid, R134a, which has been found to be an effective modeling fluid to simulate CHF in water-cooled environments. An experimental and modeling study of the subcooled boiling heat transfer on plain surface and hypervapotron has been conduced. A test facility was designed and constructed to perform required boiling heat transfer experiments. A high speed visualization system was utilized to give details of bubble formation and departure and of nucleation site density. Surface measurements of various specimens were performed to investigate the relationship between nucleation sites and surface microstructure. Full characterization of the hypervapotron effect as a function of fluid thermal hydraulic conditions was accomplished. A non-dimensional CHF correlation for smooth rectangular channels and the hypervapotron channel was developed and compared with experimental data in this work. In addition, a hot-spot model was developed to give predictions of critical heat flux on both plain and hypervapotron surfaces. It was developed on observations of bubble formation, departure and coalescence, and on the confirmation of nucleation structure on the heating surface. Finally, a numerical code was successfully developed to give CHF predictions for hypervapotron configurations. The simulation indicates that the better performance of CHF in hypervapotron configurations is a result of high conductivity material with augmented heating surfaces in subcooled boiling environment. Different fin dimensions were also tested numerically to compare the experimental results, and

  18. Morphology of drying blood pools

    NASA Astrophysics Data System (ADS)

    Laan, Nick; Smith, Fiona; Nicloux, Celine; Brutin, David; D-Blood project Collaboration

    2016-11-01

    Often blood pools are found on crime scenes providing information concerning the events and sequence of events that took place on the scene. However, there is a lack of knowledge concerning the drying dynamics of blood pools. This study focuses on the drying process of blood pools to determine what relevant information can be obtained for the forensic application. We recorded the drying process of blood pools with a camera and measured the weight. We found that the drying process can be separated into five different: coagulation, gelation, rim desiccation, centre desiccation, and final desiccation. Moreover, we found that the weight of the blood pool diminishes similarly and in a reproducible way for blood pools created in various conditions. In addition, we verify that the size of the blood pools is directly related to its volume and the wettability of the surface. Our study clearly shows that blood pools dry in a reproducible fashion. This preliminary work highlights the difficult task that represents blood pool analysis in forensic investigations, and how internal and external parameters influence its dynamics. We conclude that understanding the drying process dynamics would be advancement in timeline reconstitution of events. ANR funded project: D-Blood Project.

  19. Saturated nucleate boiling to binary and ternary mixtures on horizontal cylinder

    SciTech Connect

    Peyghambarzadeh, S.M.; Alavi Fazel, S.A.; Azizi, S.; Jamialahmadi, M.

    2009-07-15

    In this investigation, a large number of experiments have been performed to determine saturated nucleate pool boiling heat transfer coefficients of MEA/water and DEA/water binary mixtures and that of water/MEA/DEA ternary mixtures. These heat transfer coefficients have been measured at atmospheric pressure and over a wide range of heat fluxes and solution concentrations. The heat flux has been varied in 14 different levels from 7 to about 230 kW/m{sup 2} and amines concentration has been changed in 10 different levels from zero to 84 wt%. Results show that strong reduction of heat transfer coefficient occurs as a result of mass transfer interference in this phenomenon. Furthermore, in this study, all the correlations proposed during the last years for the prediction of nucleate boiling heat transfer coefficient of mixtures have been categorized in three groups. Some experimental results have been compared with the most accurate representatives of these three groups and the corresponding RMS errors have been calculated. Also, impacts of important existing parameters in these correlations like ideal heat transfer coefficient (h{sub id.}) on the prediction have been discussed. (author)

  20. Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling

    NASA Astrophysics Data System (ADS)

    Ahn, Ho Seon; Kim, Jin Man; Kim, Taejoo; Park, Su Cheong; Kim, Ji Min; Park, Youngjae; Yu, Dong In; Hwang, Kyoung Won; Jo, Hangjin; Park, Hyun Sun; Kim, Hyungdae; Kim, Moo Hwan

    2014-09-01

    Boiling heat transfer (BHT) is a particularly efficient heat transport method because of the latent heat associated with the process. However, the efficiency of BHT decreases significantly with increasing wall temperature when the critical heat flux (CHF) is reached. Graphene has received much recent research attention for applications in thermal engineering due to its large thermal conductivity. In this study, graphene films of various thicknesses were deposited on a heated surface, and enhancements of BHT and CHF were investigated via pool-boiling experiments. In contrast to the well-known surface effects, including improved wettability and liquid spreading due to micron- and nanometer-scale structures, nanometer-scale folded edges of graphene films provided a clue of BHT improvement and only the thermal conductivity of the graphene layer could explain the dependence of the CHF on the thickness. The large thermal conductivity of the graphene films inhibited the formation of hot spots, thereby increasing the CHF. Finally, the provided empirical model could be suitable for prediction of CHF.