Sample records for pool fire test

  1. 49 CFR Appendix B to Part 179 - Procedures for Simulated Pool and Torch-Fire Testing

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... plate. (3) Before exposure to the pool-fire simulation, none of the thermocouples on the thermal... simulated pool fire. (5) A pool-fire simulation test must run for a minimum of 100 minutes. The thermal... three consecutive successful simulation fire tests must be performed for each thermal protection system...

  2. 49 CFR Appendix B to Part 179 - Procedures for Simulated Pool and Torch-Fire Testing

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... thermal response of the plate. (3) Before exposure to the pool-fire simulation, none of the thermocouples... exposed to the simulated pool fire. (5) A pool-fire simulation test must run for a minimum of 100 minutes...) A minimum of three consecutive successful simulation fire tests must be performed for each thermal...

  3. 49 CFR Appendix B to Part 179 - Procedures for Simulated Pool and Torch-Fire Testing

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... thermal response of the plate. (3) Before exposure to the pool-fire simulation, none of the thermocouples... exposed to the simulated pool fire. (5) A pool-fire simulation test must run for a minimum of 100 minutes...) A minimum of three consecutive successful simulation fire tests must be performed for each thermal...

  4. 49 CFR Appendix B to Part 179 - Procedures for Simulated Pool and Torch-Fire Testing

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... plate. (3) Before exposure to the pool-fire simulation, none of the thermocouples on the thermal... simulated pool fire. (5) A pool-fire simulation test must run for a minimum of 100 minutes. The thermal... three consecutive successful simulation fire tests must be performed for each thermal protection system...

  5. 49 CFR Appendix B to Part 179 - Procedures for Simulated Pool and Torch-Fire Testing

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... plate. (3) Before exposure to the pool-fire simulation, none of the thermocouples on the thermal... simulated pool fire. (5) A pool-fire simulation test must run for a minimum of 100 minutes. The thermal... three consecutive successful simulation fire tests must be performed for each thermal protection system...

  6. Model of large pool fires.

    PubMed

    Fay, J A

    2006-08-21

    A two zone entrainment model of pool fires is proposed to depict the fluid flow and flame properties of the fire. Consisting of combustion and plume zones, it provides a consistent scheme for developing non-dimensional scaling parameters for correlating and extrapolating pool fire visible flame length, flame tilt, surface emissive power, and fuel evaporation rate. The model is extended to include grey gas thermal radiation from soot particles in the flame zone, accounting for emission and absorption in both optically thin and thick regions. A model of convective heat transfer from the combustion zone to the liquid fuel pool, and from a water substrate to cryogenic fuel pools spreading on water, provides evaporation rates for both adiabatic and non-adiabatic fires. The model is tested against field measurements of large scale pool fires, principally of LNG, and is generally in agreement with experimental values of all variables.

  7. Measurement of the spatial dependence of temperature and gas and soot concentrations within large open hydrocarbon fuel fires

    NASA Technical Reports Server (NTRS)

    Johnson, H. T.; Linley, L. J.; Mansfield, J. A.

    1982-01-01

    A series of large-scale JP-4 fuel pool fire tests was conducted to refine existing mathematical models of large fires. Seven tests were conducted to make chemical concentration and temperature measurements in 7.5 and 15 meter-diameter pool fires. Measurements were made at heights of 0.7, 1.4, 2.9, 5.7, 11.4, and 21.3 meters above the fires. Temperatures were measured at up to 50 locations each second during the fires. Chemistry samples were taken at up to 23 locations within the fires and analyzed for combustion chemistry and soot concentration. Temperature and combustion chemistry profiles obtained during two 7.5 meter-diameter and two 15 meter-diameter fires are included.

  8. Operating Room Fires and Surgical Skin Preparation.

    PubMed

    Jones, Edward L; Overbey, Douglas M; Chapman, Brandon C; Jones, Teresa S; Hilton, Sarah A; Moore, John T; Robinson, Thomas N

    2017-07-01

    Operating room fires are "never events" that remain an under-reported source of devastating complications. One common set-up that promotes fires is the use of surgical skin preparations combined with electrosurgery and oxygen. Limited data exist examining the incidence of fires and surgical skin preparations. A standardized, ex vivo model was created with a 15 × 15 cm section of clipped porcine skin. An electrosurgical "Bovie" pencil was activated for 2 seconds on 30 Watts coagulation mode in 21% oxygen (room air), both immediately and 3 minutes after skin preparation application. Skin preparations with and without alcohol were tested, and were applied with and without pooling. Alcohol-based skin preparations included 70% isopropyl alcohol (IPA) with 2% chlorhexidine gluconate, 74% IPA with 0.7% iodine povacrylex, and plain 70% IPA. No fires occurred with nonalcohol-based preparations (p < 0.001 vs alcohol-based preparations). Alcohol-based preparations caused flash flames at 0 minutes in 22% (13 of 60) and at 3 minutes in 10% (6 of 60) of tests. When examining pooling of alcohol-based preparations, fires occurred in 38% (23 of 60) at 0 minutes and 27% (16 of 60) at 3 minutes. Alcohol-based skin preparations fuel operating room fires in common clinical scenarios. Following manufacturer guidelines and allowing 3 minutes for drying, surgical fires were still created in 1 in 10 cases without pooling and more than one-quarter of cases with pooling. Surgeons can decrease the risk of an operating room fire by using nonalcohol-based skin preparations or avoiding pooling of the preparation solution. Published by Elsevier Inc.

  9. Performance of concrete members subjected to large hydrocarbon pool fires

    DOE PAGES

    Zwiers, Renata I.; Morgan, Bruce J.

    1989-01-01

    The authors discuss an investigation to determine analytically if the performance of concrete beams and columns in a hydrocarbon pool test fire would differ significantly from their performance in a standard test fire. The investigation consisted of a finite element analysis to obtain temperature distributions in typical cross sections, a comparison of the resulting temperature distribution in the cross section, and a strength analysis of a beam based on temperature distribution data. Results of the investigation are reported.

  10. Measurements of the response of transport aircraft ceiling panels to fuel pool fires

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Back, L. H.

    1985-01-01

    Tests were performed to characterize the responses of various aircraft ceiling panel configurations to a simulated post-crash fire. Attention was given to one currently used and four new ceiling configurations exposed to a fuel pool fire in a circulated air enclosure. The tests were controlled to accurately represent conditions in a real fire. The panels were constructed of fiberglass-epoxy, graphite-phenolic resin, fiberglass-phenolic resin, Kevlar-epoxy, and Kevlar-phenolic resin materials. The phenolic resin-backed sheets performed the best under the circumstances, except when combined with Kevlar, which became porous when charred.

  11. Millennials in the Fire Service: The Effectiveness of Fire Service Recruiting, Testing, and Retention

    DTIC Science & Technology

    2017-12-01

    to effectively attract and retain millennials is in question. Stale marketing and static testing processes may be contributing to smaller hiring pools...ABSTRACT Modern-day fire service methods’ ability to effectively attract and retain millennials is in question. Stale marketing and static testing... Marketing of the Testing Process ..............................................................50  Table 6.  Type of Testing Process

  12. Development and Evaluation of a Prototype Wheeled Ultra-High Pressure Extinguisher System with Novec 1230

    DTIC Science & Technology

    2016-01-01

    Fire Tests Pool fire tests were conducted as outlined below, and consisted of a pretest phase, in which the F-100 engine nacelle was first...the nacelle during the test phase. Pretest Phase  Determine and record extinguisher full weight.  Initiate flow of jet fuel through the...extinguisher after test. 3.4.2. Rear Engine Fire Tests Rear engine fire tests were conducted as outlined below, and consisted of a pretest phase

  13. Fire extinguishing tests -80 with methyl alcohol gasoline

    NASA Astrophysics Data System (ADS)

    Holmstedt, G.; Ryderman, A.; Carlsson, B.; Lennmalm, B.

    1980-10-01

    Large scale tests and laboratory experiments were carried out for estimating the extinguishing effectiveness of three alcohol resistant aqueous film forming foams (AFFF), two alcohol resistant fluoroprotein foams and two detergent foams in various poolfires: gasoline, isopropyl alcohol, acetone, methyl-ethyl ketone, methyl alcohol and M15 (a gasoline, methyl alcohol, isobutene mixture). The scaling down of large scale tests for developing a reliable laboratory method was especially examined. The tests were performed with semidirect foam application, in pools of 50, 11, 4, 0.6, and 0.25 sq m. Burning time, temperature distribution in the liquid, and thermal radiation were determined. An M15 fire can be extinguished with a detergent foam, but it is impossible to extinguish fires in polar solvents, such as methyl alcohol, acetone, and isopropyl alcohol with detergent foams, AFFF give the best results; and performances with small pools can hardly be correlated with results from large scale fires.

  14. The effect of azeotropism on combustion characteristics of blended fuel pool fire.

    PubMed

    Ding, Yanming; Wang, Changjian; Lu, Shouxiang

    2014-04-30

    The effect of azeotropism on combustion characteristics of blended fuel pool fire was experimentally studied in an open fire test space of State Key Laboratory of Fire Science. A 30 cm × 30 cm square pool filled with n-heptane and ethanol blended fuel was employed. Flame images, burning rate and temperature distribution were collected and recorded in the whole combustion process. Results show that azeotropism obviously dominates the combustion behavior of n-heptane/ethanol blended fuel pool fire. The combustion process after ignition exhibits four typical stages: initial development, azeotropic burning, single-component burning and decay stage. Azeotropism appears when temperature of fuel surface reaches azeotropic point and blended fuel burns at azeotropic ratio. Compared with individual pure fuel, the effect of azeotropism on main fire parameters, such as flame height, burning rate, flame puffing frequency and centerline temperature were analyzed. Burning rate and centerline temperature of blended fuel are higher than that of individual pure fuel respectively at azeotropic burning stage, and flame puffing frequency follows the empirical formula between Strouhal and Froude number for pure fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Fire extinguishing tests -80 with methyl alcohol gasoline (in MIXED)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmstedt, G.; Ryderman, A.; Carlsson, B.

    1980-01-01

    Large scale tests and laboratory experiments were carried out for estimating the extinguishing effectiveness of three alcohol resistant aqueous film forming foams (AFFF), two alcohol resistant fluoroprotein foams and two detergent foams in various poolfires: gasoline, isopropyl alcohol, acetone, methyl-ethyl ketone, methyl alcohol and M15 (a gasoline, methyl alcohol, isobutene mixture). The scaling down of large scale tests for developing a reliable laboratory method was especially examined. The tests were performed with semidirect foam application, in pools of 50, 11, 4, 0.6, and 0.25 sq m. Burning time, temperature distribution in the liquid, and thermal radiation were determined. An M15more » fire can be extinguished with a detergent foam, but it is impossible to extinguish fires in polar solvents, such as methyl alcohol, acetone, and isopropyl alcohol with detergent foams, AFFF give the best results, and performances with small pools can hardly be correlated with results from large scale fires.« less

  16. Fire control method and analytical model for large liquid hydrocarbon pool fires

    NASA Technical Reports Server (NTRS)

    Fenton, D. L.

    1986-01-01

    The dominate parameter governing the behavior of a liquid hydrocarbon (JP-5) pool fire is wind speed. The most effective method of controlling wind speed in the vicinity of a large circular (10 m dia.) pool fire is a set of concentric screens located outside the perimeter. Because detailed behavior of the pool fire structure within one pool fire diameter is unknown, an analytical model supported by careful experiments is under development. As a first step toward this development, a regional pool fire model was constructed for the no-wind condition consisting of three zones -- liquid fuel, combustion, and plume -- where the predicted variables are mass burning rate and characteristic temperatures of the combustion and plume zones. This zone pool fire model can be modified to incorporate plume bending by wind, radiation absorption by soot particles, and a different ambient air flow entrainment rate. Results from the zone model are given for a pool diameter of 1.3 m and are found to reproduce values in the literature.

  17. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-1994. The expression of fuel consumption for oil-fired pool heaters shall be in Btu. 4.2Average annual fossil fuel energy for pool heaters. The average annual fuel energy for pool heater, EF, is defined as... of pool operating hours=4464 h QIN=rated fuel energy input as defined according to 2.9.1 or 2.9.2 of...

  18. Aviation Engine Test Facilities (AETF) fire protection study

    NASA Astrophysics Data System (ADS)

    Beller, R. C.; Burns, R. E.; Leonard, J. T.

    1989-07-01

    An analysis is presented to the effectiveness of various types of fire fighting agents in extinguishing the kinds of fires anticipated in Aviation Engine Test Facilities (AETF), otherwise known as Hush Houses. The agents considered include Aqueous Film-Forming Foam, Halon 1301, Halon 1211 and water. Previous test work has shown the rapidity with which aircraft, especially high performance aircraft, can be damaged by fire. Based on this, tentative criteria for this evaluation included a maximum time of 20 s from fire detection to extinguishment and a period of 30 min in which the agent would prevent reignition. Other issues examined included: toxicity, corrosivity, ease of personnel egress, system reliability, and cost effectiveness. The agents were evaluated for their performance in several fire scenarios, including: under frame fire, major engine fire, engine disintegration fire, high-volume pool fire with simultaneous spill fire, internal electrical fire, and runaway engine fire.

  19. Hydrocarbon characterization experiments in fully turbulent fires.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricks, Allen; Blanchat, Thomas K.

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuelmore » evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. A set of experiments are outlined in this report which will provide data for the development and validation of models for the fuel regression rates in liquid hydrocarbon fuel fires. The experiments will be performed on fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool will be investigated and the total heat flux to the pool surface will be measured. The importance of convection within the liquid fuel will be assessed by restricting large scale liquid motion in some tests. These data sets will provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.« less

  20. Potential release of fibers from burning carbon composites. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1980-01-01

    A comprehensive experimental carbon fiber source program was conducted to determine the potential for the release of conductive carbon fibers from burning composites. Laboratory testing determined the relative importance of several parameters influencing the amounts of single fibers released, while large-scale aviation jet fuel pool fires provided realistic confirmation of the laboratory data. The dimensions and size distributions of fire-released carbon fibers were determined, not only for those of concern in an electrical sense, but also for those of potential interest from a health and environmental standpoint. Fire plume and chemistry studies were performed with large pool fires to provide an experimental input into an analytical modelling of simulated aircraft crash fires. A study of a high voltage spark system resulted in a promising device for the detection, counting, and sizing of electrically conductive fibers, for both active and passive modes of operation.

  1. Linking tree demography to climate change feedbacks: fire, larch forests, and carbon pools of the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Alexander, H. D.; Loranty, M. M.; Natali, S.; Pena, H., III; Ludwig, S.; Spektor, V.; Davydov, S. P.; Zimov, N.; Mack, M. C.

    2017-12-01

    Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that (1) larch forest regrowth post-fire is largely determined by residual soil organic layer (SOL) depth because of the SOL's role as a seedbed and thermal regulator, and (2) changes in post-fire larch recruitment impact C accumulation through stand density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by (1) experimentally creating a soil burn severity gradient in a Cajander larch (Larix cajanderi Mayr.) forest near Cherskiy, Russia and (2) quantifying C pools across a stand density gradient within a 75-year old fire scar. From 2012-2015, we added larch seeds to plots burned at different severities and monitored recruitment along with permafrost and active layer (i.e., subject to annual freeze-thaw) conditions (SOL depth, temperature, moisture, and thaw depth). Across the density gradient, we inventoried larch trees and harvested ground-layer vegetation to estimate aboveground contribution to C pools. We quantified woody debris C pools and sampled belowground C pools (soil, fine roots, and coarse roots) in the organic + upper (0-10 cm) mineral soil. Larch recruits were rare in unburned and low severity plots, but a total of 6 new germinants m-2 were tallied in moderate and high severity plots during the study. Seedling survival for > 1 year was only 40 and 25% on moderate and high severity treatments, respectively, but yielded net larch recruitment of 2 seedlings m-2, compared to 0.3 seedlings m-2 on low severity plots. Density of both total and established recruits increased with decreasing residual SOL depth, which correlated with increased soil temperature, moisture, and thaw depth. At 75-year post-fire, total C pools increased with increased larch density, largely due to increased tree aboveground C pools and decreased ground-layer vegetation C pools, which corresponded to higher canopy cover, cooler soils, and shallower active layer depths. Our findings highlight the potential for a climate-driven increase in fire severity to alter tree recruitment, successional dynamics, and C cycling in Siberian larch forests.

  2. Fire safety distances for open pool fires

    NASA Astrophysics Data System (ADS)

    Sudheer, S.; Kumar, Lokendra; Manjunath, B. S.; Pasi, Amit; Meenakshi, G.; Prabhu, S. V.

    2013-11-01

    Fire accidents that carry huge loss with them have increased in the previous two decades than at any time in the history. Hence, there is a need for understanding the safety distances from different fires with different fuels. Fire safety distances are computed for different open pool fires. Diesel, gasoline and hexane are used as fuels for circular pool diameters of 0.5 m, 0.7 m and 1.0 m. A large square pool fire of 4 m × 4 m is also conducted with diesel as a fuel. All the prescribed distances in this study are purely based on the thermal analysis. IR camera is used to get the thermal images of pool fires and there by the irradiance at different locations is computed. The computed irradiance is presented with the threshold heat flux limits for human beings.

  3. Laser-induced incandescence measurements of soot in turbulent pool fires.

    PubMed

    Frederickson, Kraig; Kearney, Sean P; Grasser, Thomas W

    2011-02-01

    We present what we believe to be the first application of the laser-induced incandescence (LII) technique to large-scale fire testing. The construction of an LII instrument for fire measurements is presented in detail. Soot volume fraction imaging from 2 m diameter pool fires burning blended toluene/methanol liquid fuels is demonstrated along with a detailed report of measurement uncertainty in the challenging pool fire environment. Our LII instrument relies upon remotely located laser, optical, and detection systems and the insertion of water-cooled, fiber-bundle-coupled collection optics into the fire plume. Calibration of the instrument was performed using an ethylene/air laminar diffusion flame produced by a Santoro-type burner, which allowed for the extraction of absolute soot volume fractions from the LII images. Single-laser-shot two-dimensional images of the soot layer structure are presented with very high volumetric spatial resolution of the order of 10(-5) cm3. Probability density functions of the soot volume fraction fluctuations are constructed from the large LII image ensembles. The results illustrate a highly intermittent soot fluctuation field with potentially large macroscale soot structures and clipped soot probability densities.

  4. Hydrocarbon characterization experiments in fully turbulent fires : results and data analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo-Anttila, Jill Marie; Blanchat, Thomas K.

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuelmore » evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. This report describes a set of fuel regression rates experiments to provide data for the development and validation of models. The experiments were performed with fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool was investigated and the total heat flux to the pool surface was measured. The importance of convection within the liquid fuel was assessed by restricting large scale liquid motion in some tests. These data sets provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.« less

  5. Experimental study on burning rates of square/rectangular gasoline and methanol pool fires under longitudinal air flow in a wind tunnel.

    PubMed

    Hu, L H; Liu, S; Peng, W; Huo, R

    2009-09-30

    Square pool fires with length of 5, 7.5, 10, 15, 20, 25 and 30 cm and rectangular pool fires with dimensions of 10 cm x 20 cm and 10 cm x 40 cm were burned in a wind tunnel, under a longitudinal air flow ranged from 0 to 3m/s with incremental change of about 0.5m/s. Methanol and gasoline were burned and compared, with results indicated that their burning rates showed different response to the longitudinal air flow. With the increase of the longitudinal air flow speed, the burning rates of methanol pool fires, except the 5 cm square one, first decreased and then increased, but those of the 5 cm methanol square one and the gasoline pool fires increased monotonously. The burning rate of smaller square pool fires increased more significantly than that of the larger ones, as well as the enlargement of their flame attachment length along the ground. The burning rate of a rectangular pool fire with longer rim parallel to the longitudinal flow increased faster, but the flame attachment length seemed to increase more gradually, with the increase of the longitudinal air flow speed than that perpendicular to.

  6. Evaluation of the AMEREX Model 775 Wheeled Extinguisher with Novec 1230

    DTIC Science & Technology

    2014-11-18

    simulate different fire scenarios. The nacelle sits atop a concave concrete pad that can collect a pool of jet fuel as part of the fire scenario...Up Used for Rear Engine Testing and Access Panel Testing. In This Photo, Fuel is Flowing through the Nacelle in Preparation for a Rear Engine Test...Figure 8. Fuel Cups Positioned At 5-ft Intervals from the Amerex Extinguisher (Background) (left); Firefighter Discharges the Extinguisher into/over the

  7. Computational Flame Characterization of New Large Aircraft Immersed in Hydrocarbon Pool Fires

    DTIC Science & Technology

    2013-08-01

    hydrocarbon liquid pool fires, their interaction with engulfed bodies, along with a brief overview of pool fire modeling. An industry-accepted...two-dimensional (2-D) horizontal liquid , heavy hydrocarbon fuel surface. A heavy hydrocarbon is characterized by properties consistent with aviation... jet fuels representing common diesel derivatives, such as Jet A and JP-8. Pool diameters are assumed to be much greater than 1 m to coincide with

  8. Litter and dead wood dynamics in ponderosa pine forests along a 160-year chronosequence.

    PubMed

    Hall, S A; Burke, I C; Hobbs, N T

    2006-12-01

    Disturbances such as fire play a key role in controlling ecosystem structure. In fire-prone forests, organic detritus comprises a large pool of carbon and can control the frequency and intensity of fire. The ponderosa pine forests of the Colorado Front Range, USA, where fire has been suppressed for a century, provide an ideal system for studying the long-term dynamics of detrital pools. Our objectives were (1) to quantify the long-term temporal dynamics of detrital pools; and (2) to determine to what extent present stand structure, topography, and soils constrain these dynamics. We collected data on downed dead wood, litter, duff (partially decomposed litter on the forest floor), stand structure, topographic position, and soils for 31 sites along a 160-year chronosequence. We developed a compartment model and parameterized it to describe the temporal trends in the detrital pools. We then developed four sets of statistical models, quantifying the hypothesized relationship between pool size and (1) stand structure, (2) topography, (3) soils variables, and (4) time since fire. We contrasted how much support each hypothesis had in the data using Akaike's Information Criterion (AIC). Time since fire explained 39-80% of the variability in dead wood of different size classes. Pool size increased to a peak as material killed by the fire fell, then decomposed rapidly to a minimum (61-85 years after fire for the different pools). It then increased, presumably as new detritus was produced by the regenerating stand. Litter was most strongly related to canopy cover (r2 = 77%), suggesting that litter fall, rather than decomposition, controls its dynamics. The temporal dynamics of duff were the hardest to predict. Detrital pool sizes were more strongly related to time since fire than to environmental variables. Woody debris peak-to-minimum time was 46-67 years, overlapping the range of historical fire return intervals (1 to > 100 years). Fires may therefore have burned under a wide range of fuel conditions, supporting the hypothesis that this region's fire regime was mixed severity.

  9. Real-time radiography of Titan 4 Solid Rocket Motor Upgrade (SRMU) static firing test QM-2

    NASA Astrophysics Data System (ADS)

    Dolan, K. W.; Curnow, G. M.; Perkins, D. E.; Schneberk, D. J.; Costerus, B. W.; Lachapell, M. J.; Turner, D. E.; Wallace, P. W.

    1994-03-01

    Real-time radiography was successfully applied to the Titan-4 Solid Rocket Motor Upgrade (SRMU) static firing test QM-2 conducted February 22, 1993 at Phillips Laboratory, Edwards AFB, CA. The real-time video data obtained in this test gave the first incontrovertible evidence that the molten slag pool is low (less than 5 to 6 inches in depth referenced to the bottom of the aft dome cavity) before T + 55 seconds, builds fairly linearly from this point in time reaching a quasi-equilibrium depth of 16 to 17 inches at about T + 97 seconds, which is well below the top of the vectored nozzle, and maintains that level until T + 125 near the end motor burn. From T + 125 seconds to motor burn-out at T + 140 seconds the slag pool builds to a maximum depth of about 20 to 21 inches, still well below the top of the nozzle. The molten slag pool was observed to interact with motions of the vectored nozzle, and exhibit slosh and wave mode oscillations. A few slag ejection events were also observed.

  10. 26 CFR 1.528-4 - Substantiality test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... residence. Units which are used for purposes auxiliary to residential use (such as laundry areas, swimming... may be used for parking spaces, swimming pools, tennis courts, schools, fire stations, libraries...

  11. Nitrogen balance along a northern boreal forest fire chronosequence.

    PubMed

    Palviainen, Marjo; Pumpanen, Jukka; Berninger, Frank; Ritala, Kaisa; Duan, Baoli; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2017-01-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests.

  12. Nitrogen balance along a northern boreal forest fire chronosequence

    PubMed Central

    Pumpanen, Jukka; Berninger, Frank; Ritala, Kaisa; Duan, Baoli; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2017-01-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests. PMID:28358884

  13. Experimental study of heat and mass transfer in a buoyant countercurrent exchange flow

    NASA Astrophysics Data System (ADS)

    Conover, Timothy Allan

    Buoyant Countercurrent Exchange Flow occurs in a vertical vent through which two miscible fluids communicate, the higher-density fluid, residing above the lower-density fluid, separated by the vented partition. The buoyancy- driven zero net volumetric flow through the vent transports any passive scalars, such as heat and toxic fumes, between the two compartments as the fluids seek thermodynamic and gravitational equilibrium. The plume rising from the vent into the top compartment resembles a pool fire plume. In some circumstances both countercurrent flows and pool fires can ``puff'' periodically, with distinct frequencies. One experimental test section containing fresh water in the top compartment and brine (NaCl solution) in the bottom compartment provided a convenient, idealized flow for study. This brine flow decayed in time as the concentrations approached equilibrium. A second test section contained fresh water that was cooled by heat exchangers above and heated by electrical elements below and operated steadily, allowing more time for data acquisition. Brine transport was reduced to a buoyancy- scaled flow coefficient, Q*, and heat transfer was reduced to an analogous coefficient, H*. Results for vent diameter D = 5.08 cm were consistent between test sections and with the literature. Some results for D = 2.54 cm were inconsistent, suggesting viscosity and/or molecular diffusion of heat become important at smaller scales. Laser Doppler Velocimetry was used to measure velocity fields in both test sections, and in thermal flow a small thermocouple measured temperature simultaneously with velocity. Measurement fields were restricted to the plume base region, above the vent proper. In baseline periodic flow, instantaneous velocity and temperature were ensemble averaged, producing a movie of the average variation of each measure during a puffing flow cycle. The temperature movie revealed the previously unknown cold core of the puff during its early development. The renewal-length model for puffing frequency of pool fire plumes was extended to puffing countercurrent flows by estimating inflow dilution. Puffing frequencies at several conditions were reduced to Strouhal number based on dilute plume density. Results for D = 5.08 cm compared favorably to published measurements of puffing pool fires, suggesting that the two different flows obey the same periodic dynamic process.

  14. Effects of Fire on Understory Vegetation Communities in Siberian Boreal Forests and Alaskan Tundra

    NASA Astrophysics Data System (ADS)

    Pena, H., III; Alexander, H. D.; Natali, S.; Loranty, M. M.; Holmes, R. M.; Mack, M. C.; Schade, J. D.; Mann, P. J.; Davydov, S. P.; Frey, B.; Zimov, N.; Jardine, L. E.

    2017-12-01

    Fire is an important disturbance in Arctic ecosystems that is increasing in frequency and severity as a result of climate warming. Fire alters the landscape, changes soil conditions, and influences vegetation regrowth, favoring early-successional plants and those with well-established root systems capable of surviving fire. Post-fire vegetation establishment contributes to the recovery of the soil organic layer (SOL), which insulates the soil and protects soil and permafrost carbon pools. In order to better understand successional dynamics following fire in the Arctic we assessed the short-(years) and long-(decades) term effects of fire on vegetation communities, SOL depth, and thaw depth across fire-affected sites located in two regions of the Arctic- a 76-year old fire scar in a larch forest in Siberia near Cherskiy, Russia, and a 2-year old fire scar in tundra in the Yukon-Kuskokwim Delta, Alaska. We measured species diversity, plant carbon (C) pools, SOL conditions and NDVI at both study areas. As expected, there was a decline in vegetation C pools following fire in Alaskan tundra, and as a result of higher severity fire in Siberian boreal forests. Two years following fire in Alaskan tundra, vegetation C pools decreased six-fold from 600 g C m-2 at unburned areas, to 100 g C m-2 at the 2015 burn areas. In larch forests, understory C pools were three-times lower in stands with high intensity fires (135 g C m-2) compared to those with low intensity fires (415 g C m-2), due to the absence of dwarf birch (Betula nana). Our results illustrate how fire influences vegetation at both early and later stages of succession, which can have cascading effects on SOL development and permafrost integrity, with the potential for release of large C stocks that may further exacerbate climate warming.

  15. Fires in storages of LFO: Analysis of hazard of structural collapse of steel-aluminium containers.

    PubMed

    Rebec, A; Kolšek, J; Plešec, P

    2016-04-05

    Pool fires of light fuel oil (LFO) in above-ground storages with steel-aluminium containers are discussed. A model is developed for assessments of risks of between-tank fire spread. Radiative effects of the flame body are accounted for by a solid flame radiation model. Thermal profiles evolved due to fire in the adjacent tanks and their consequential structural response is pursued in an exact (materially and geometrically non-linear) manner. The model's derivation is demonstrated on the LFO tank storage located near the Port of Koper (Slovenia). In support of the model, data from literature are adopted where appropriate. Analytical expressions are derived correspondingly for calculations of emissive characteristics of LFO pool fires. Additional data are collected from experiments. Fire experiments conducted on 300cm diameter LFO pans and at different wind speeds and high-temperature uniaxial tension tests of the analysed aluminium alloys types 3xxx and 6xxx are presented. The model is of an immediate fire engineering practical value (risk analyses) or can be used for further research purposes (e.g. sensitivity and parametric studies). The latter use is demonstrated in the final part of the paper discussing possible effects of high-temperature creep of 3xxx aluminium. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Regulatory fire test requirements for plutonium air transport packages : JP-4 or JP-5 vs. JP-8 aviation fuel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, Victor G.; Lopez, Carlos; Nicolette, Vernon F.

    2010-10-01

    For certification, packages used for the transportation of plutonium by air must survive the hypothetical thermal environment specified in 10CFR71.74(a)(5). This regulation specifies that 'the package must be exposed to luminous flames from a pool fire of JP-4 or JP-5 aviation fuel for a period of at least 60 minutes.' This regulation was developed when jet propellant (JP) 4 and 5 were the standard jet fuels. However, JP-4 and JP-5 currently are of limited availability in the United States of America. JP-4 is very hard to obtain as it is not used much anymore. JP-5 may be easier to getmore » than JP-4, but only through a military supplier. The purpose of this paper is to illustrate that readily-available JP-8 fuel is a possible substitute for the aforementioned certification test. Comparisons between the properties of the three fuels are given. Results from computer simulations that compared large JP-4 to JP-8 pool fires using Sandia's VULCAN fire model are shown and discussed. Additionally, the Container Analysis Fire (CAFE) code was used to compare the thermal response of a large calorimeter exposed to engulfing fires fueled by these three jet propellants. The paper then recommends JP-8 as an alternate fuel that complies with the thermal environment implied in 10CFR71.74.« less

  17. The impact of traditional fire management on soil carbon and nitrogen pools in a montane forest, southern Ethiopia

    Treesearch

    Dong-Gill Kim; Habitamu Taddese; Abrham Belay; Randy Kolka

    2016-01-01

    We conducted studies to assess the impact of traditional fire management on soil organic carbon and total nitrogen pools. We compared organic carbon and total nitrogen pools in forest floor and mineral soil (0–100-cm depth) in three areas burned by local communities (B) with adjacent unburned areas (UB) (three paired sites; 1, 5 and 9 years since fire; hereafter B1-UB...

  18. Biophysical Interactions within Step-Pool Mountain Streams Following Wildfire

    NASA Astrophysics Data System (ADS)

    Parker, A.; Chin, A.; O'Dowd, A. P.

    2014-12-01

    Recovery of riverine ecosystems following disturbance is driven by a variety of interacting processes. Wildfires pose increasing disturbances to riverine landscapes, with rising frequencies and magnitudes owing to warming climates and increased fuel loads. The effects of wildfire include loss of vegetation, elevated runoff and flash floods, erosion and deposition, and changing biological habitats and communities. Understanding process interactions in post-fire landscapes is increasingly urgent for successful management and restoration of affected ecosystems. In steep channels, steps and pools provide prominent habitats for organisms and structural integrity in high energy environments. Step-pools are typically stable, responding to extreme events with recurrence intervals often exceeding 50 years. Once wildfire occurs, however, intensification of post-fire flood events can potentially overpower the inherent stability of these systems, with significant consequences for aquatic life and human well-being downstream. This study examined the short-term response of step-pool streams following the 2012 Waldo Canyon Fire in Colorado. We explored interacting feedbacks among geomorphology, hydrology, and ecology in the post-fire environment. At selected sites with varying burn severity, we established baseline conditions immediately after the fire with channel surveys, biological assessment using benthic macroinvertebrates, sediment analysis including pebble counts, and precipitation gauging. Repeat measurements after major storm events over several years enabled analysis of the interacting feedbacks among post-fire processes. We found that channels able to retain the step-pool structure changed less and facilitated recovery more readily. Step habitats maintained higher percentages of sensitive macroinvertebrate taxa compared to pools through post-fire floods. Sites burned with high severity experienced greater reduction in the percentage of sensitive taxa. The decimation of macroinvertebrates closely coincides with the physical destruction of the step-pool morphology. The role that step-pools play in enhancing the ecological quality of fluvial systems, therefore, provides a key focus for effective management and restoration of aquatic resources following wildfires.

  19. Experimental study on melting and flowing behavior of thermoplastics combustion based on a new setup with a T-shape trough.

    PubMed

    Xie, Qiyuan; Zhang, Heping; Ye, Ruibo

    2009-07-30

    The objective of this work is to quantitatively study the burning characteristics of thermoplastics. A new experimental setup with a T-shape trough is designed. Based on this setup, the loop mechanism between the wall fire and pool fires induced by the melting and dripping of thermoplastic can be well simulated and studied. Additionally, the flowing characteristics of pool fires can also be quantitatively analyzed. Experiments are conducted for PP and PE sheets with different thicknesses. The maximum distances of the induced flowing pool flame in the T-shape trough are recorded and analyzed. The typical fire parameters, such as heat release rates (HRRs), CO concentrations are also monitored. The results show that the softening and clinging of the thermoplastic sheets plays a considerable role for their vertical wall burning. It is illustrated that the clinging of burning thermoplastic sheet may be mainly related with the softening temperatures and the ignition temperatures of the thermoplastics, as well as their viscosity coefficients. Through comparing the maximum distances of flowing flame of induced pool fires in the T-shape trough for thermoplastic sheets with different thicknesses, it is indicated that the pool fires induced by PE materials are easier to flow away than that of PP materials. Therefore, PE materials may be more dangerous for their faster pool fire spread on the floor. These experimental results preliminarily illustrate that this new experimental setup is helpful for quantitatively studying the special burning feature of thermoplastics although further modifications is needed for this setup in the future.

  20. Carbon fiber plume sampling for large scale fire tests at Dugway Proving Ground. [fiber release during aircraft fires

    NASA Technical Reports Server (NTRS)

    Chovit, A. R.; Lieberman, P.; Freeman, D. E.; Beggs, W. C.; Millavec, W. A.

    1980-01-01

    Carbon fiber sampling instruments were developed: passive collectors made of sticky bridal veil mesh, and active instruments using a light emitting diode (LED) source. These instruments measured the number or number rate of carbon fibers released from carbon/graphite composite material when the material was burned in a 10.7 m (35 ft) dia JP-4 pool fire for approximately 20 minutes. The instruments were placed in an array suspended from a 305 m by 305 m (1000 ft by 1000 ft) Jacob's Ladder net held vertically aloft by balloons and oriented crosswind approximately 140 meters downwind of the pool fire. Three tests were conducted during which released carbon fiber data were acquired. These data were reduced and analyzed to obtain the characteristics of the released fibers including their spatial and size distributions and estimates of the number and total mass of fibers released. The results of the data analyses showed that 2.5 to 3.5 x 10 to the 8th power single carbon fibers were released during the 20 minute burn of 30 to 50 kg mass of initial, unburned carbon fiber material. The mass released as single carbon fibers was estimated to be between 0.1 and 0.2% of the initial, unburned fiber mass.

  1. An Experimental Study on Burning Characteristics of n-Heptane/Ethanol Mixture Pool Fires in a Reduced Scaled Tunnel

    NASA Astrophysics Data System (ADS)

    Yozgatligil, Ahmet; Shafee, Sina

    2016-11-01

    Fire accidents in recent decades have drawn attention to safety issues associated with the design, construction and maintenance of tunnels. A reduced scale tunnel model constructed based on Froude scaling technique is used in the current work. Mixtures of n-heptane and ethanol are burned with ethanol volumetric fraction up to 30 percent and the longitudinal ventilation velocity varying from 0.5 to 2.5 m/s. The burning rates of the pool fires are measured using a precision load cell. The heat release rates of the fires are calculated according to oxygen calorimetry method and the temperature distributions inside the tunnel are also measured. Results of the experiments show that the ventilation velocity variation has a significant effect on the pool fire burning rate, smoke temperature and the critical ventilation velocity. With increased oxygen depletion in case of increased ethanol content of blended pool fires, the quasi-steady heat release rate values tend to increase as well as the ceiling temperatures while the combustion duration decreases.

  2. Development of a MELCOR Sodium Chemistry (NAC) Package - FY17 Progress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, David; Humphries, Larry L.

    This report describes the status of the development of MELCOR Sodium Chemistry (NAC) package. This development is based on the CONTAIN-LMR sodium physics and chemistry models to be implemented in MELCOR. In the past three years, the sodium equation of state as a working fluid from the nuclear fusion safety research and from the SIMMER code has been implemented into MELCOR. The chemistry models from the CONTAIN-LMR code, such as the spray and pool fire mode ls, have also been implemented into MELCOR. This report describes the implemented models and the issues encountered. Model descriptions and input descriptions are provided.more » Development testing of the spray and pool fire models is described, including the code-to-code comparison with CONTAIN-LMR. The report ends with an expected timeline for the remaining models to be implemented, such as the atmosphere chemistry, sodium-concrete interactions, and experimental validation tests .« less

  3. Spread of large LNG pools on the sea.

    PubMed

    Fay, J A

    2007-02-20

    A review of the standard model of LNG pool spreading on water, comparing it with the model and experiments on oil pool spread from which the LNG model is extrapolated, raises questions about the validity of the former as applied to spills from marine tankers. These questions arise from the difference in fluid density ratios, in the multi-dimensional flow at the pool edge, in the effects of LNG pool boiling at the LNG-water interface, and in the model and experimental initial conditions compared with the inflow conditions from a marine tanker spill. An alternate supercritical flow model is proposed that avoids these difficulties; it predicts significant increase in the maximum pool radius compared with the standard model and is partially corroborated by tests of LNG pool fires on water. Wind driven ocean wave interaction has little effect on either spread model.

  4. Post-fire comparisons of forest floor and soil carbon, nitrogen, and mercury pools with fire severity indices

    Treesearch

    Randy Kolka; Brian Sturtevant; Philip Townsend; Jessica Miesel; Peter Wolter; Shawn Fraver; Tom DeSutter

    2014-01-01

    Forest fires are important contributors of C, N, and Hg to the atmosphere. In the fall of 2011, a large wildfire occurred in northern Minnesota and we were able to quickly access the area to sample the forest floor and mineral soil for C, N, and Hg pools. When compared with unburned reference soils, the mean loss of C resulting from fire in the forest floor and the...

  5. Soil carbon in Australian fire-prone forests determined by climate more than fire regimes.

    PubMed

    Sawyer, Robert; Bradstock, Ross; Bedward, Michael; Morrison, R John

    2018-10-15

    Knowledge of global C cycle implications from changes to fire regime and climate are of growing importance. Studies on the role of the fire regime in combination with climate change on soil C pools are lacking. We used Bayesian modelling to estimate the soil % total C (% C Tot ) and % recalcitrant pyrogenic C (% RPC) from field samples collected using a stratified sampling approach. These observations were derived from the following scenarios: 1. Three fire frequencies across three distinctive climate regions in a homogeneous dry sclerophyll forest in south-eastern Australia over four decades. 2. The effects of different fire intensity combinations from successive wildfires. We found climate had a stronger effect than fire frequency on the size of the estimated mineral soil C pool. The largest soil C pool was estimated to occur under a wet and cold (WC) climate, via presumed effects of high precipitation, an adequate growing season temperature (i.e. resulting in relatively high NPP) and winter conditions sufficiently cold to retard seasonal soil respiration rates. The smallest soil C pool was estimated in forests with lower precipitation but warmer mean annual temperature (MAT). The lower precipitation and higher temperature was likely to have retarded NPP and litter decomposition rates but may have had little effect on relative soil respiration. Small effects associated with fire frequency were found, but both their magnitude and direction were climate dependent. There was an increase in soil C associated with a low intensity fire being followed by a high intensity fire. For both fire frequency and intensity the response of % RPC mirrored that of % C Tot : i.e. it was effectively a constant across all combinations of climate and fire regimes sampled. Copyright © 2018. Published by Elsevier B.V.

  6. Spread Across Liquids: The World's First Microgravity Combustion Experiment on a Sounding Rocket

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Spread Across Liquids (SAL) experiment characterizes how flames spread over liquid pools in a low-gravity environment in comparison to test data at Earth's gravity and with numerical models. The modeling and experimental data provide a more complete understanding of flame spread, an area of textbook interest, and add to our knowledge about on-orbit and Earthbound fire behavior and fire hazards. The experiment was performed on a sounding rocket to obtain the necessary microgravity period. Such crewless sounding rockets provide a comparatively inexpensive means to fly very complex, and potentially hazardous, experiments and perform reflights at a very low additional cost. SAL was the first sounding-rocket-based, microgravity combustion experiment in the world. It was expected that gravity would affect ignition susceptibility and flame spread through buoyant convection in both the liquid pool and the gas above the pool. Prior to these sounding rocket tests, however, it was not clear whether the fuel would ignite readily and whether a flame would be sustained in microgravity. It also was not clear whether the flame spread rate would be faster or slower than in Earth's gravity.

  7. An infrared scattering by evaporating droplets at the initial stage of a pool fire suppression by water sprays

    NASA Astrophysics Data System (ADS)

    Dombrovsky, Leonid A.; Dembele, Siaka; Wen, Jennifer X.

    2018-06-01

    The computational analysis of downward motion and evaporation of water droplets used to suppress a typical transient pool fire shows local regions of a high volume fraction of relatively small droplets. These droplets are comparable in size with the infrared wavelength in the range of intense flame radiation. The estimated scattering of the radiation by these droplets is considerable throughout the entire spectrum except for a narrow region in the vicinity of the main absorption peak of water where the anomalous refraction takes place. The calculations of infrared radiation field in the model pool fire indicate the strong effect of scattering which can be observed experimentally to validate the fire computational model.

  8. A comparison of gray and non-gray modeling approaches to radiative transfer in pool fire simulations.

    PubMed

    Krishnamoorthy, Gautham

    2010-10-15

    Decoupled radiative heat transfer calculations of 30 cm-diameter toluene and heptane pool fires are performed employing the discrete ordinates method. The composition and temperature fields within the fires are created from detailed experimental measurements of soot volume fractions based on absorption and emission, temperature statistics and correlations found in the literature. The measured temperature variance data is utilized to compute the temperature self-correlation term for modeling turbulence-radiation interactions. In the toluene pool fire, the presence of cold soot near the fuel surface is found to suppress the average radiation feedback to the pool surface by 27%. The performances of four gray and three non-gray radiative property models for the gases are also compared. The average variations in radiative transfer predictions due to differences in the spectroscopic and experimental databases employed in the property model formulations are found to be between 10% and 20%. Clear differences between the gray and non-gray modeling strategies are seen when the mean beam length is computed based on traditionally employed geometric relations. Therefore, a correction to the mean beam length is proposed to improve the agreement between gray and non-gray modeling in simulations of open pool fires. 2010 Elsevier B.V. All rights reserved.

  9. LNG pool fire spectral data and calculation of emissive power.

    PubMed

    Raj, Phani K

    2007-04-11

    Spectral description of thermal emission from fires provides a fundamental basis on which the fire thermal radiation hazard assessment models can be developed. Several field experiments were conducted during the 1970s and 1980s to measure the thermal radiation field surrounding LNG fires. Most of these tests involved the measurement of fire thermal radiation to objects outside the fire envelope using either narrow-angle or wide-angle radiometers. Extrapolating the wide-angle radiometer data without understanding the nature of fire emission is prone to errors. Spectral emissions from LNG fires have been recorded in four test series conducted with LNG fires on different substrates and of different diameters. These include the AGA test series of LNG fires on land of diameters 1.8 and 6m, 35 m diameter fire on an insulated concrete dike in the Montoir tests conducted by Gaz de France, a 1976 test with 13 m diameter and the 1980 tests with 10 m diameter LNG fire on water carried out at China Lake, CA. The spectral data from the Montoir test series have not been published in technical journals; only recently has some data from this series have become available. This paper presents the details of the LNG fire spectral data from, primarily, the China Lake test series, their analysis and results. Available data from other test series are also discussed. China Lake data indicate that the thermal radiation emission from 13 m diameter LNG fire is made up of band emissions of about 50% of energy by water vapor (band emission), about 25% by carbon dioxide and the remainder constituting the continuum emission by luminous soot. The emissions from the H2O and CO2 bands are completely absorbed by the intervening atmosphere in less than about 200 m from the fire, even in the relatively dry desert air. The effective soot radiation constitutes only about 23% during the burning period of methane and increases slightly when other higher hydrocarbon species (ethane, propane, etc.) are burning in the LNG fire. The paper discusses the procedure by which the fire spectral data are used to predict the thermal emission from large LNG fires. Unfortunately, no direct measurements of the soot density or smoke characteristics were made in the tests. These parameters have significant effect on the thermal emission from large LNG fires.

  10. Initial fuel temperature effects on burning rate of pool fire.

    PubMed

    Chen, Bing; Lu, Shou-Xiang; Li, Chang-Hai; Kang, Quan-Sheng; Lecoustre, Vivien

    2011-04-15

    The influence of the initial fuel temperature on the burning behavior of n-heptane pool fire was experimentally studied at the State Key Laboratory of Fire Science (SKLFS) large test hall. Circular pool fires with diameters of 100mm, 141 mm, and 200 mm were considered with initial fuel temperatures ranging from 290 K to 363 K. Burning rate and temperature distributions in fuel and vessel wall were recorded during the combustion. The burning rate exhibited five typical stages: initial development, steady burning, transition, bulk boiling burning, and decay. The burning rate during the steady burning stage was observed to be relatively independent of the initial fuel temperature. In contrast, the burning rate of the bulk boiling burning stage increases with increased initial fuel temperature. It was also observed that increased initial fuel temperature decreases the duration of steady burning stage. When the initial temperature approaches the boiling point, the steady burning stage nearly disappears and the burning rate moves directly from the initial development stage to the transition stage. The fuel surface temperature increases to its boiling point at the steady burning stage, shortly after ignition, and the bulk liquid reaches boiling temperature at the bulk boiling burning stage. No distinguished cold zone is formed in the fuel bed. However, boiling zone is observed and the thickness increases to its maximum value when the bulk boiling phenomena occurs. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of Southeast Queensland, Australia.

    PubMed

    Muqaddas, Bushra; Zhou, Xiaoqi; Lewis, Tom; Wild, Clyde; Chen, Chengrong

    2015-12-01

    Prescribed fire is one of the most widely-used management tools for reducing fuel loads in managed forests. However the long-term effects of repeated prescribed fires on soil carbon (C) and nitrogen (N) pools are poorly understood. This study aimed to investigate how different fire frequency regimes influence C and N pools in the surface soils (0-10 cm). A prescribed fire field experiment in a wet sclerophyll forest established in 1972 in southeast Queensland was used in this study. The fire frequency regimes included long unburnt (NB), burnt every 2 years (2yrB) and burnt every 4 years (4yrB), with four replications. Compared with the NB treatment, the 2yrB treatment lowered soil total C by 44%, total N by 54%, HCl hydrolysable C and N by 48% and 59%, KMnO4 oxidizable C by 81%, microbial biomass C and N by 42% and 33%, cumulative CO2-C by 28%, NaOCl-non-oxidizable C and N by 41% and 51%, and charcoal-C by 17%, respectively. The 4yrB and NB treatments showed no significant differences for these soil C and N pools. All soil labile, biologically active and recalcitrant and total C and N pools were correlated positively with each other and with soil moisture content, but negatively correlated with soil pH. The C:N ratios of different C and N pools were greater in the burned treatments than in the NB treatments. This study has highlighted that the prescribed burning at four year interval is a more sustainable management practice for this subtropical forest ecosystem. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A 6 year longitudinal study of post-fire woody carbon dynamics in California's forests

    Treesearch

    Bianca N.I. Eskelson; Vicente J. Monleon; Jeremy S. Fried

    2016-01-01

    We examined the dynamics of aboveground forest woody carbon pools — live trees, standing dead trees, and down wood—during the first 6 years following wildfire across a wide range of conditions, which are characteristic of California forest fires. From repeated measurements of the same plots, we estimated change in woody carbon pools as a function of crown fire severity...

  13. A quantitative model and the experimental evaluation of the liquid fuel layer for the downward flame spread of XPS foam.

    PubMed

    Luo, Shengfeng; Xie, Qiyuan; Tang, Xinyi; Qiu, Rong; Yang, Yun

    2017-05-05

    The objective of this work is to investigate the distinctive mechanisms of downward flame spread for XPS foam. It was physically considered as a moving down of narrow pool fire instead of downward surface flame spread for normal solids. A method was developed to quantitatively analyze the accumulated liquid fuel based on the experimental measurement of locations of flame tips and burning rates. The results surprisingly showed that about 80% of the generated hot liquid fuel remained in the pool fire during a certain period. Most of the consumed solid XPS foam didn't really burn away but transformed as the liquid fuel in the downward moving pool fire, which might be an important promotion for the fast fire development. The results also indicated that the dripping propensity of the hot liquid fuel depends on the total amount of the hot liquid accumulated in the pool fire. The leading point of the flame front curve might be the breach of the accumulated hot liquid fuel if it is enough for dripping. Finally, it is suggested that horizontal noncombustible barriers for preventing the accumulation and dripping of liquid fuel are helpful for vertical confining of XPS fire. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Data reduction and analysis of graphite fiber release experiments

    NASA Technical Reports Server (NTRS)

    Lieberman, P.; Chovit, A. R.; Sussholz, B.; Korman, H. F.

    1979-01-01

    The burn and burn/explode effects on aircraft structures were examined in a series of fifteen outdoor tests conducted to verify the results obtained in previous burn and explode tests of carbon/graphite composite samples conducted in a closed chamber, and to simulate aircraft accident scenarios in which carbon/graphite fibers would be released. The primary effects that were to be investigaged in these tests were the amount and size distribution of the conductive fibers released from the composite structures, and how these various sizes of fibers transported downwind. The structures included plates, barrels, aircraft spoilers and a cockpit. The heat sources included a propane gas burner and 20 ft by 20 ft and 40 ft by 60 ft JP-5 pool fires. The larger pool fire was selected to simulate an aircraft accident incident. The passive instrumentation included sticky paper and sticky bridal veil over an area 6000 ft downwind and 3000 ft crosswind. The active instrumentation included instrumented meteorological towers, movies, infrared imaging cameras, LADAR, high voltage ball gages, light emitting diode gages, microwave gages and flame velocimeter.

  15. Fire effects on temperate forest soil C and N storage.

    PubMed

    Nave, Lucas E; Vance, Eric D; Swanston, Christopher W; Curtis, Peter S

    2011-06-01

    Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting on forest soil C and N storage and is also the subject of enormous management efforts. In the present article, we use meta-analysis to quantify fire effects on temperate forest soil C and N storage. Across a combined total of 468 soil C and N response ratios from 57 publications (concentrations and pool sizes), fire had significant overall effects on soil C (-26%) and soil N (-22%). The impacts of fire on forest floors were significantly different from its effects on mineral soils. Fires reduced forest floor C and N storage (pool sizes only) by an average of 59% and 50%, respectively, but the concentrations of these two elements did not change. Prescribed fires caused smaller reductions in forest floor C and N storage (-46% and -35%) than wildfires (-67% and -69%), and the presence of hardwoods also mitigated fire impacts. Burned forest floors recovered their C and N pools in an average of 128 and 103 years, respectively. Among mineral soils, there were no significant changes in C or N storage, but C and N concentrations declined significantly (-11% and -12%, respectively). Mineral soil C and N concentrations were significantly affected by fire type, with no change following prescribed burns, but significant reductions in response to wildfires. Geographic variation in fire effects on mineral soil C and N storage underscores the need for region-specific fire management plans, and the role of fire type in mediating C and N shifts (especially in the forest floor) indicates that averting wildfires through prescribed burning is desirable from a soils perspective.

  16. ZrP nanoplates based fire-fighting foams stabilizer

    NASA Astrophysics Data System (ADS)

    Zhang, Lecheng; Cheng, Zhengdong; Li, Hai

    2015-03-01

    Firefighting foam, as a significant innovation in fire protection, greatly facilitates extinguishments for liquid pool fire. Recently, with developments in LNG industry, high-expansion firefighting foams are also used for extinguishing LNG fire or mitigating LNG leakage. Foam stabilizer, an ingredient in fire-fighting foam, stabilizes foam bubbles and maintains desired foam volume. Conventional foam stabilizers are organic molecules. In this work, we developed a inorganic based ZrP (Zr(HPO4)2 .H2O, Zirconium phosphate) plates functionalized as firefighting foam stabilizer, improving firefighting foam performance under harsh conditions. Several tests were conducted to illustrate performance. The mechanism for the foam stabilization is also proposed. Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA. Mary Kay O'Connor Process Safety Center, Texas A&M University, College Station, TX, 77843-3122

  17. Warfighter Information Network-Tactical Increment 3 (WIN-T Inc 3)

    DTIC Science & Technology

    2013-12-01

    T vehicles employed at BCT, Fires, (Ch-1) WIN-T Inc 3 December 2013 SAR April 16, 2014 16:49:41 UNCLASSIFIED 13 AVN , BfSB, and select force...passengers and crew from small arms fire, mines, IED and other anti-vehicle/ personnel threats. AVN , BfSB, and select force pooled assets...small arms fire, mines, IED and other anti-vehicle/ personnel threats. AVN , BfSB, and select force pooled assets operating within the

  18. Ecosystem vs. community recovery 25 years after grass invasions and fire in a subtropical woodland

    USGS Publications Warehouse

    D'Antonio, Carla M.; Yelenik, Stephanie G.; Mack, Michelle C.

    2017-01-01

    Despite a large body of research documenting invasive plant impacts, few studies have followed individual invaded sites over decades to observe how they change, and none have contrasted how compositional impacts from invasion compare to ecosystem-process impacts over a multi-decadal time-scale. Using direct measurements of plant density and composition and of ecosystems processes, we evaluate how ecosystem structure, above-ground net primary production (ANPP), and above-ground and soil nutrient pools compare over 25 years since fire and C4 grass invasions disrupted seasonally dry Hawaiian woodlands. We compare structure and function between primary woodland that has never burned and is largely native species-dominated, with sites that had been the same woodland type but burned in alien-grass-fuelled fires in the 1970s and 1980s. The sites have not experienced fires since 1987. We report here that woody plant composition and structure continue to be dramatically changed by the initial invasions and fires that occurred 25 years ago and invaders continue to dominate in burned sites. This is reflected in continued low plant carbon pools in burned compared to unburned sites. Yet ANPP and N storage, which were dramatically lower in the initial decade after invasive-grass fuelled fires, have increased and are now indistinguishable from values measured in intact woodlands. Soil carbon pools were resilient to both invasion and fire initially and over time. Above-ground net primary production has recovered because of invasion of burned sites by a non-native N-fixing tree rather than because of recovery of native species. This invasive N-fixing tree is unlikely to return C storage of the invaded sites to those of unburned woodland because of its tissue and growth characteristics and its interactions with invasive grasses. It does not facilitate native species but rather promotes a persistent invasive grass/N-fixer savanna. Synthesis. We conclude that fire, an unusual disturbance in this system, has perpetuated the dominance of these sites by invasive species and that despite the dramatic recovery of above-ground net primary production and N pools, the ecosystem continues to be in a distinctly different state than the pre-fire, pre-Melinis community. Thus, despite the absence of further disturbance (fire), there is no evidence that succession towards the original ecosystem is occurring. The fact that N pools and above-ground net primary production recover because of a new invader (Morella faya), highlights the unpredictability of ecosystem trajectories in the face of altered regional species pools.

  19. Isotopic composition of carbon dioxide from a boreal forest fire: Inferring carbon loss from measurements and modeling

    USGS Publications Warehouse

    Schuur, E.A.G.; Trumbore, S.E.; Mack, M.C.; Harden, J.W.

    2003-01-01

    Fire is an important pathway for carbon (C) loss from boreal forest ecosystems and has a strong effect on ecosystem C balance. Fires can range widely in severity, defined as the amount of vegetation and forest floor consumed by fire, depending on local fuel and climatic conditions. Here we explore a novel method for estimating fire severity and loss of C from fire using the atmosphere to integrate ecosystem heterogeneity at the watershed scale. We measured the ??13C and ??14C isotopic values of CO2 emitted from an experimental forest fire at the Caribou-Poker Creek Research Watershed (CPCRW), near Fairbanks, Alaska. We used inverse modeling combined with dual isotope near measurements of C contained in aboveground black spruce biomass and soil organic horizons to estimate the amount of C released by this fire. The experimental burn was a medium to severe intensity fire that released, on average, about 2.5 kg Cm-2, more than half of the C contained in vegetation and soil organic horizon pools. For vegetation, the model predicted that approximately 70-75% of pools such as needles, fine branches, and bark were consumed by fire, whereas only 20-30% of pools such as coarse branches and cones were consumed. The fire was predicted to have almost completely consumed surface soil organic horizons and burned about half of the deepest humic horizon. The ability to estimate the amount of biomass combusted and C emission from fires at the watershed scale provides an extensive approach that can complement more limited intensive ground-based measurements.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, B.; Lu, S. X.; Li, C. H.

    In an atrium measured 120 m by 180 m by 36.5 m high, fire tests were conducted under 'natural filling' and 'mechanical exhaust' conditions by hot smoke test method. The fire size was 8 MW released by an ethanol pool of 3.6 m in diameter. The distribution of vertical temperature profiles above the fire source and the gas layer temperatures were measured. From these measurements, it was shown that the fans successfully exhausted hot smoke to control descending of hot smoke layer and temperature rising rate. The hot smoke layer can be maintained at about 30 m which was almostmore » 2 times of hot layer height in 'natural filling' condition. The temperature risings in both conditions were too low to cause thermal damage to the structure, only 18.6 K and 12 K. The centerline temperature above the fire source and the height of hot smoke layer were calculated using the plume models. The calculated results agreed well with the conclusions obtained from the experiment results.« less

  1. Water repellency and organic matter composition after a wildfire: new insights using thermal analysis

    NASA Astrophysics Data System (ADS)

    Neris, Jonay; Doerr, Stefan

    2014-05-01

    Water repellency, a key parameter in the hydrological and ecological behaviour of ecosystems, is one of the main soil properties affected by wildfire through its impact on organic matter (Shakesby and Doerr, 2006). This study examines the link between post-fire organic matter quantity and composition, soil water repellency and related hydrological properties in order to (i) examine the influence of different organic matter pools on soil hydrological properties and (ii) to explore the use of these links as a proxy for soil hydrological impacts of fire. Soil samples from five fire-affected burned and unburned control sites in Andisols terrain in Tenerife, previously studied for water repellency and hydrology-related properties (Neris et al., 2013), were selected and thermogravimetric analysis (TG) carried out to evaluate fire impacts on their organic matter composition. A decrease in the organic matter quantity as well as in the relative amount of the labile organic matter pool and an increase in the recalcitrant and/or refractory pool depending was observed in the burned soils. TG data, using 10 ºC temperature range steps, allowed reasonable prediction of soil properties evaluated, with R2 ranging from 0.4 to 0.8. The labile pool showed a broad and positive influence on most soil properties evaluated, whereas the refractory pool and the dehydration range affected the surface water holding capacity and water repellency. These results, in conjunction with the simplicity of the TG analysis suggest that, following a calibration step to link TG data to the site-specific post-fire soil properties, this method may be a useful tool for rapid and cost-effective soil hydrological response evaluation after the fire. References Neris, J., Tejedor, M., Fuentes, J., Jiménez, C., 2013. Infiltration, runoff and soil loss in Andisols affected by forest fire (Canary Islands, Spain). Hydrological Processes 27(19), 2814-2824. Shakesby, R.A., Doerr, S.H., 2006. Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews 74(3-4), 269-307.

  2. Evaluation of micron size carbon fibers released from burning graphite composites

    NASA Technical Reports Server (NTRS)

    Sussholz, B.

    1980-01-01

    Quantitative estimates were developed of micron carbon fibers released during the burning of graphite composites. Evidence was found of fibrillated particles which were the predominant source of the micron fiber data obtained from large pool fire tests. The fibrillation phenomena were attributed to fiber oxidation effects caused by the fire environment. Analysis of propane burn test records indicated that wind sources can cause considerable carbon fiber oxidation. Criteria estimates were determined for the number of micron carbon fibers released during an aircraft accident. An extreme case analysis indicated that the upper limit of the micron carbon fiber concentration level was only about half the permissible asbestos ceiling concentration level.

  3. Singular and combined effects of blowdown, salvage logging, and wildfire on forest floor and soil mercury pools.

    PubMed

    Mitchell, Carl P J; Kolka, Randall K; Fraver, Shawn

    2012-08-07

    A number of factors influence the amount of mercury (Hg) in forest floors and soils, including deposition, volatile emission, leaching, and disturbances such as fire. Currently the impact on soil Hg pools from other widespread forest disturbances such as blowdown and management practices like salvage logging are unknown. Moreover, ecological and biogeochemical responses to disturbances are generally investigated within a single-disturbance context, with little currently known about the impact of multiple disturbances occurring in rapid succession. In this study we capitalize on a combination of blowdown, salvage logging and fire events in the sub-boreal region of northern Minnesota to assess both the singular and combined effects of these disturbances on forest floor and soil total Hg concentrations and pools. Although none of the disturbance combinations affected Hg in mineral soil, we did observe significant effects on both Hg concentrations and pools in the forest floor. Blowdown increased the mean Hg pool in the forest floor by 0.76 mg Hg m(-2) (223%). Salvage logging following blowdown created conditions leading to a significantly more severe forest floor burn during wildfire, which significantly enhanced Hg emission. This sequence of combined events resulted in a mean loss of approximately 0.42 mg Hg m(-2) (68% of pool) from the forest floor, after conservatively accounting for potential losses via enhanced soil leaching and volatile emissions between the disturbance and sampling dates. Fire alone or blowdown followed by fire did not significantly affect the total Hg concentrations or pools in the forest floor. Overall, unexpected consequences for soil Hg accumulation and by extension, atmospheric Hg emission and risk to aquatic biota, may result when combined impacts are considered in addition to singular forest floor and soil disturbances.

  4. Cost estimate for a proposed GDF Suez LNG testing program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchat, Thomas K.; Brady, Patrick Dennis; Jernigan, Dann A.

    2014-02-01

    At the request of GDF Suez, a Rough Order of Magnitude (ROM) cost estimate was prepared for the design, construction, testing, and data analysis for an experimental series of large-scale (Liquefied Natural Gas) LNG spills on land and water that would result in the largest pool fires and vapor dispersion events ever conducted. Due to the expected cost of this large, multi-year program, the authors utilized Sandia's structured cost estimating methodology. This methodology insures that the efforts identified can be performed for the cost proposed at a plus or minus 30 percent confidence. The scale of the LNG spill, fire,more » and vapor dispersion tests proposed by GDF could produce hazard distances and testing safety issues that need to be fully explored. Based on our evaluations, Sandia can utilize much of our existing fire testing infrastructure for the large fire tests and some small dispersion tests (with some modifications) in Albuquerque, but we propose to develop a new dispersion testing site at our remote test area in Nevada because of the large hazard distances. While this might impact some testing logistics, the safety aspects warrant this approach. In addition, we have included a proposal to study cryogenic liquid spills on water and subsequent vaporization in the presence of waves. Sandia is working with DOE on applications that provide infrastructure pertinent to wave production. We present an approach to conduct repeatable wave/spill interaction testing that could utilize such infrastructure.« less

  5. Early direct-injection, low-temperature combustion of diesel fuel in an optical engine utilizing a 15-hole, dual-row, narrow-included-angle nozzle.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehrke, Christopher R.; Radovanovic, Michael S.; Milam, David M.

    2008-04-01

    Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes x 70/mD and 5 holes x 35/mD) with 103-/gmm-diameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70/mD before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around amore » 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load. High-speed movies of natural luminosity were acquired by viewing through a window in the cylinder wall and through a window in the piston to provide quasi-3D information about the combustion process. These movies revealed that advanced combustion phasing resulted in intense pool fires within the piston bowl, after the end of significant heat release. These pool fires are a result of fuel-films created when the injected fuel impinged on the piston surface. The emissions results showed a strong correlation with pool-fire activity. Smoke and NO/dx emissions rose steadily as pool-fire intensity increased, whereas HC and CO showed a dramatic increase with near-zero pool-fire activity.« less

  6. Chemical Safety Alert: Safe Storage and Handling of Swimming Pool Chemicals

    EPA Pesticide Factsheets

    Hazards of pool water treatment and maintenance chemicals (e.g., chlorine), and the protective measures pool owners should take to prevent fires, toxic vapor releases, and injuries. Triggered by improper wetting, mixing, or self-reactivity over time.

  7. From fire whirls to blue whirls and combustion with reduced pollution.

    PubMed

    Xiao, Huahua; Gollner, Michael J; Oran, Elaine S

    2016-08-23

    Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. Whereas fire whirls have been studied for fire-safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This article presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, suggesting the idea of exploiting the high efficiency of fire whirls for oil-spill remediation. We show the transition from a pool fire, to a fire whirl, and then to a previously unobserved state, a "blue whirl." A blue whirl is smaller, very stable, and burns completely blue as a hydrocarbon flame, indicating soot-free burning. The combination of fast mixing, intense swirl, and the water-surface boundary creates the conditions leading to nearly soot-free combustion. With the worldwide need to reduce emissions from both wanted and unwanted combustion, discovery of this state points to possible new pathways for reduced-emission combustion and fuel-spill cleanup. Because current methods to generate a stable vortex are difficult, we also propose that the blue whirl may serve as a research platform for fundamental studies of vortices and vortex breakdown in fluid mechanics.

  8. High Expansion Foam for Protecting Large Volume Mission Critical Shipboard Spaces

    DTIC Science & Technology

    2009-01-01

    aqueous film - forming foam ( AFFF ) sprinklers designed only to combat Class B two-dimensional pool fires.1 The...Validation Tests, Series 1 – An Evaluation of Aqueous Film Foaming Foam ( AFFF ) Suppression Systems for Protection of LHA(R) Well Deck and Vehicle... firefighting system design. NRL further recognized that employing a traditional high expansion foam generator would impact shipboard

  9. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest

    USGS Publications Warehouse

    Melvin, April M.; Mack, Michelle C.; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.

    2015-01-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is expanding deciduous forest cover in areas previously dominated by black spruce (Picea mariana). Needle-leaf conifer and broad-leaf deciduous species are commonly associated with differences in tree growth, carbon (C) and nutrient cycling, and C accumulation in soils. Although this suggests that changes in tree species composition in Alaska could impact C and nutrient pools and fluxes, few studies have measured these linkages. We quantified C, nitrogen, phosphorus, and base cation pools and fluxes in three stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a single fire event in 1958. Paper birch consistently displayed characteristics of more rapid C and nutrient cycling, including greater aboveground net primary productivity, higher live foliage and litter nutrient concentrations, and larger ammonium and nitrate pools in the soil organic layer (SOL). Ecosystem C stocks (aboveground + SOL + 0–10 cm mineral soil) were similar for the two species; however, in black spruce, 78% of measured C was found in soil pools, primarily in the SOL, whereas aboveground biomass dominated ecosystem C pools in birch forest. Radiocarbon analysis indicated that approximately one-quarter of the black spruce SOL C accumulated prior to the 1958 fire, whereas no pre-fire C was observed in birch soils. Our findings suggest that tree species exert a strong influence over C and nutrient cycling in boreal forest and forest compositional shifts may have long-term implications for ecosystem C and nutrient dynamics.

  10. From fire whirls to blue whirls and combustion with reduced pollution

    NASA Astrophysics Data System (ADS)

    Xiao, Huahua; Gollner, Michael J.; Oran, Elaine S.

    2016-08-01

    Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. Whereas fire whirls have been studied for fire-safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This article presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, suggesting the idea of exploiting the high efficiency of fire whirls for oil-spill remediation. We show the transition from a pool fire, to a fire whirl, and then to a previously unobserved state, a “blue whirl.” A blue whirl is smaller, very stable, and burns completely blue as a hydrocarbon flame, indicating soot-free burning. The combination of fast mixing, intense swirl, and the water-surface boundary creates the conditions leading to nearly soot-free combustion. With the worldwide need to reduce emissions from both wanted and unwanted combustion, discovery of this state points to possible new pathways for reduced-emission combustion and fuel-spill cleanup. Because current methods to generate a stable vortex are difficult, we also propose that the blue whirl may serve as a research platform for fundamental studies of vortices and vortex breakdown in fluid mechanics.

  11. From fire whirls to blue whirls and combustion with reduced pollution

    PubMed Central

    Xiao, Huahua; Oran, Elaine S.

    2016-01-01

    Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. Whereas fire whirls have been studied for fire-safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This article presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, suggesting the idea of exploiting the high efficiency of fire whirls for oil-spill remediation. We show the transition from a pool fire, to a fire whirl, and then to a previously unobserved state, a “blue whirl.” A blue whirl is smaller, very stable, and burns completely blue as a hydrocarbon flame, indicating soot-free burning. The combination of fast mixing, intense swirl, and the water–surface boundary creates the conditions leading to nearly soot-free combustion. With the worldwide need to reduce emissions from both wanted and unwanted combustion, discovery of this state points to possible new pathways for reduced-emission combustion and fuel-spill cleanup. Because current methods to generate a stable vortex are difficult, we also propose that the blue whirl may serve as a research platform for fundamental studies of vortices and vortex breakdown in fluid mechanics. PMID:27493219

  12. Effects of fire on composition, biomass, and nutrients in oak scrub vegetation on John F. Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Hinkle, C. Ross

    1987-01-01

    Four stands of oak scrub two, four, eight, and 25 years since fire were sampled with permanent 15 m line transects. Percent cover by species was determined. Plant samples were analyzed for a variety of substances. Transects were resurveyed in 1985 for vegetation parameters. Nutrient pools in biomass were calculated from biomass data and tissue nutrient concentrations. Soil nutrient pools were calculated from nutrient concentrations and bulk density. Species distribution and soil chemical properties were found to be closely related to water table depth. The following fire-related conclusions are reached: (1) major structural changes occur in scrub after fire in that shrub height is reduced and requires four to six years to exceed 1 m; (2) reduction in shrub height affects the suitability of scrub for the Florida scrub jay (3) live biomass increases with time since fire; (4) nutrient concentrations in live biomass do not change with time since fire; (5) species composition and richness are little changed after fire; and (6) imposition of a continued regime of burning on a three-year cycle may have adverse impacts not indicated by the recovery of scrub from a single fire.

  13. Predicting the emissive power of hydrocarbon pool fires.

    PubMed

    Muñoz, Miguel; Planas, Eulàlia; Ferrero, Fabio; Casal, Joaquim

    2007-06-18

    The emissive power (E) of a flame depends on the size of the fire and the type of fuel. In fact, it changes significantly over the flame surface: the zones of luminous flame have high emittance, while those covered by smoke have low E values. The emissive power of each zone (that is, the luminous or clear flame and the non-luminous or smoky flame) and the portion of total flame area they occupy must be assessed when a two-zone model is used. In this study, data obtained from an experimental set-up were used to estimate the emissive power of fires and its behaviour as a function of pool size. The experiments were performed using gasoline and diesel oil as fuel. Five concentric circular pools (1.5, 3, 4, 5 and 6m in diameter) were used. Appropriate instruments were employed to determine the main features of the fires. By superimposing IR and VHS images it was possible to accurately identify the luminous and non-luminous zones of the fire. Mathematical expressions were obtained that give a more accurate prediction of E(lum), E(soot) and the average emissive power of a fire as a function of its luminous and smoky zones. These expressions can be used in a two-zone model to obtain a better prediction of the thermal radiation. The value of the radiative fraction was determined from the thermal flux measured with radiometers. An expression is also proposed for estimating the radiative fraction.

  14. Quantifying changes in total and pyrogenic carbon stocks across fire severity gradients using active wildfire incidents

    NASA Astrophysics Data System (ADS)

    Miesel, Jessica; Reiner, Alicia; Ewell, Carol; Maestrini, Bernardo; Dickinson, Matthew

    2018-05-01

    Positive feedbacks between wildfire emissions and climate are expected to increase in strength in the future; however, fires not only release carbon (C) from terrestrial to atmospheric pools, they also produce pyrogenic C (PyC) which contributes to longer-term C stability. Our objective was to quantify wildfire impacts on total C and PyC stocks in California mixed-conifer forest, and to investigate relationships between C and PyC stocks and changes across gradients of fire severity, using metrics derived from remote sensing and field observations. Our unique study accessed active wildfires to establish and measure plots within days before and after fire, prior to substantial erosion. We measured pre- and post-fire aboveground forest structure and woody fuels to calculate aboveground biomass, C and PyC, and collected forest floor and 0-5 cm mineral soil samples. Tree mortality increased with severity, but overstory C loss was minimal and limited primarily to foliage. Fire released 85% of understory and herbaceous C (comprising <1.0% of total ecosystem C). The greatest C losses occurred from downed wood and forest floor pools (19.3±5.1 Mg ha-1 and 25.9±3.2 Mg ha-1, respectively). Tree bark and downed wood contributed the greatest PyC gains (1.5±0.3 Mg ha-1 and 1.9±0.8 Mg ha-1, respectively), and PyC in tree bark showed non-significant positive trends with increasing severity. Overall PyC losses of 1.9±0.3 Mg ha-1 and 0.5±0.1 Mg ha-1 occurred from forest floor and 0-5 cm mineral soil, with no clear patterns across severity. Fire resulted in a net ecosystem PyC gain (0.96±0.98 Mg ha-1) across aboveground and belowground components of these forests, and there were no differences among severity levels. Carbon emissions represented only 21.6% of total forest C; however, extensive conversion of C from live to dead pools will contribute to large downed wood C pools susceptible to release in a subsequent fire, indicating that there may be a delayed relationship between fire severity and C emissions. This research advances understanding of forest C loss and stabilization as PyC in wildfires; however, poor relationships between C and PyC gains or losses and fire severity highlight the complexity of fire impacts on forest C.

  15. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    USGS Publications Warehouse

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated with the fire had an OR of 1.091 (??0.003). Fire appears to be a major factor driving the soil C pool to higher oxidation states and lower OR values. Episodic fluxes caused by disturbances like fire may have substantially different ORs from ecosystem respiration fluxes and therefore should be better quantified to reduce uncertainties associated with our understanding of the global atmospheric carbon budget. Copyright 2009 by the American Geophysical Union.

  16. Carbon And Nitrogen Storage Of A Mediterranean-Type Shrubland In Response To Post-Fire Succession And Long-Term Experimental Nitrogen Deposition

    NASA Astrophysics Data System (ADS)

    Vourlitis, G. L.; Hentz, C. S.

    2015-12-01

    Mediterranean-type shublands are subject to periodic fire and high levels of atmospheric nitrogen (N) deposition. Little is known how N inputs interact with post-fire secondary succession to affect ecosystem carbon (C) and N storage and cycling. Thus, a field experiment was conducted in a chaparral stand located in NE San Diego County, USA that burned during a wildfire in July 2003 to test the hypotheses that rates of C and N storage would significantly increase in response to experimental N addition. The experimental layout consists of a randomized design where four-10 x 10 m plots received 5 gN m-2 (added N) in the fall of each year since 2003 and four-10 x 10 m plots served as un-manipulated controls. Aboveground biomass C and N pools and fluxes, including biomass and litter C and N pool size, litter production, net primary production (NPP), N uptake, and litter C and N mineralization were measured seasonally (every 3 months) for a period of 10 years. Belowground surface (0-10 cm) soil extractable N, pH, and total soil N and C pools and surface root biomass C and N pools were also measured seasonally for a period of 10 years, while N losses from leaching were measured over a shorted (8 year) period of time. Added N led to a rapid increase in soil extractable N and a decline in soil pH; however, total soil C and N storage have yet to be affected by N input. Added N plots initially had significantly lower C and N storage than control plots; however, rates of aboveground N and C storage became significantly higher added N plots after 4-5 years of exposure. N losses from leaching continue to be significantly higher in added N plots even with an increase in aboveground C and N storage. The impact of N enrichment on ecosystem C and N storage varied depending on the stage of succession, but the eventual N-induced increase in NPP has implications for fuel buildup and future fire intensity. While N enrichment acted to increase aboveground C and N storage, plots exposed to high N inputs lost substantially more N from leaching than control plots. These results indicate that post-fire chaparral shrublands tend to be "leaky" even though they are not yet "N-saturated." Recovering stands in high-N deposition areas will likely be large sources of N to groundwater and/or streams regardless of whether NPP is stimulated by N input.

  17. Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, Sean P.; Grasser, Thomas W.

    We present spatial profiles of temperature and soot-volume-fraction statistics from a sooting 2-m base diameter turbulent pool fire, burning a 10%-toluene / 90%-methanol fuel mixture. Dual-pump coherent anti-Stokes Raman scattering and laser-induced incandescence are utilized to obtain radial profiles of temperature and soot probability density functions (pdf) as well as estimates of temperature/soot joint statistics at three vertical heights above the surface of the methanol/toluene fuel pool. Results are presented both in the fuel vapor-dome region at ¼ base diameter and in the actively burning region at ½ and ¾ diameters above the fuel surface. The spatial evolution of themore » soot and temperature pdfs is discussed and profiles of the temperature and soot mean and rms statistics are provided. Joint temperature/soot statistics are presented as spatially resolved conditional averages across the fire plume, and in terms of a joint pdf obtained by including measurements from multiple spatial locations.« less

  18. Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire

    DOE PAGES

    Kearney, Sean P.; Grasser, Thomas W.

    2017-08-10

    We present spatial profiles of temperature and soot-volume-fraction statistics from a sooting 2-m base diameter turbulent pool fire, burning a 10%-toluene / 90%-methanol fuel mixture. Dual-pump coherent anti-Stokes Raman scattering and laser-induced incandescence are utilized to obtain radial profiles of temperature and soot probability density functions (pdf) as well as estimates of temperature/soot joint statistics at three vertical heights above the surface of the methanol/toluene fuel pool. Results are presented both in the fuel vapor-dome region at ¼ base diameter and in the actively burning region at ½ and ¾ diameters above the fuel surface. The spatial evolution of themore » soot and temperature pdfs is discussed and profiles of the temperature and soot mean and rms statistics are provided. Joint temperature/soot statistics are presented as spatially resolved conditional averages across the fire plume, and in terms of a joint pdf obtained by including measurements from multiple spatial locations.« less

  19. Fire as a Removal Mechanism of Pyrogenic Carbon in Soils: Effects of Fire Characteristics and Pyrogenic Carbon Properties

    NASA Astrophysics Data System (ADS)

    Santin, C.; Doerr, S.; Merino, A.

    2016-12-01

    Pyrogenic carbon (PyC) produced during vegetation fires represents one of the most degradation resistant organic carbon pools and has important implications for the global carbon cycle. Its long-term fate in the environment and the processes leading to its degradation are the subject of much debate. Its consumption in subsequent fires is usually highlighted in the literature as a possible major abiotic loss mechanism of PyC in soils. However, the only two studies that have empirically tested this hypothesis found only minor losses of existing PyC, suggesting that subsequent fire is not a major cause of PyC loss (Santin et al. 2013 median mass losses <15% in an experimental boreal forest fire and Saiz et al. 2014 average mass losses <8% in a prescribed fire in an open savannah woodland). Here we present new empirical data obtained in i) a high-intensity crown fire; ii) a surface low-intensity fire, and iii) a smouldering wildfire in boreal forests and show that the actual PyC combustion during subsequent fires is very variable and depends on both the characteristics of the fire and on the properties of the PyC. References- Saiz G, Goodrick I, Wurster C, Zimmermann MPN, Bird MI (2014) Charcoal recombustion efficiency in tropical savannas. Geoderma, 219, 40-45. - Santin C, Doerr SH, Preston C, Bryant R (2013) Consumption of residual pyrogenic carbon by wildfire. International Journal of Wildland Fire, 22, 1072-1077.

  20. Response Mechanism: Blast/Fire Interactions.

    DTIC Science & Technology

    1983-11-01

    A WORK UNIT NUMBERS University of Notre Dame Notre Dame, IN L FEMA WU No. 2564H ItI. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Fedqral...Fires 9 Class A Fires 10 Control by Physics or Chemistry? 11 Conments 14 EXTINCTION AND IGNITION 15 Pool Fire 15 Analysis 17 Charring Solid Fire 21...post-explosion time, although its magnitude may make the efforts to control appear futile in the wake of a nuclear attack. There is considerable

  1. Experimental study on flowing burning behaviors of a pool fire with dripping of melted thermoplastics.

    PubMed

    Xie, Qiyuan; Tu, Ran; Wang, Nan; Ma, Xin; Jiang, Xi

    2014-02-28

    The objective of this work is to quantitatively investigate the dripping-burning and flowing fire of thermoplastics. A new experimental setup is developed with a heating vessel and a T-trough. Hot thermoplastic liquids are generated in the vessel by electric heating. N2 gas is continuously injected into the vessel to avoid a sudden ignition of fuel in it. The detailed flowing burning behaviors of pool fire in the T-trough are analyzed through the measurements of the mass, heat flux and temperatures etc. The experimental results suggest that a continuous dripping of melted thermoplastic liquids in a nearly constant mass rate can be successfully made in the new setup. It also shows that the mass dripping rate of melted PS liquid is smaller than PP and PE since its large viscosity. In addition, the flame spread velocities of hot liquids of PS in the T-trough are also smaller than that of PP and PE because of its large viscosity. The mass burning rate of the PP and PE pool fire in T-trough are smaller than PS. Finally, considering the heating, melting, dripping and flowing burning behaviors of these polymers, it is suggested that the fire hazard of PE and PP are obviously higher than PS for their faster flowing burning. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. BLAZE, a novel Fire-Model for the CABLE Land-Surface Model applied to a Re-Assessment of the Australian Continental Carbon Budget

    NASA Astrophysics Data System (ADS)

    Nieradzik, L. P.; Haverd, V. E.; Briggs, P.; Meyer, C. P.; Canadell, J.

    2015-12-01

    Fires play a major role in the carbon-cycle and the development of global vegetation, especially on the continent of Australia, where vegetation is prone to frequent fire occurences and where regional composition and stand-age distribution is regulated by fire. Furthermore, the probable changes of fire behaviour under a changing climate are still poorly understood and require further investigation.In this presentation we introduce the fire-model BLAZE (BLAZe induced land-atmosphere flux Estimator), designed for a novel approach to simulate fire-frequencies, fire-intensities, fire related fluxes and the responses in vegetation. Fire frequencies are prescribed using SIMFIRE (Knorr et al., 2014) or GFED3 (e.g. Giglio et al., 2013). Fire-Line-Intensity (FLI) is computed from meteorological information and fuel loads which are state variables within the C-cycle component of CABLE (Community Atmosphere-Biosphere-Land Exchange model). This FLI is used as an input to the tree-demography model POP(Population-Order-Physiology; Haverd et al., 2014). Within POP the fire-mortality depends on FLI and tree height distribution. Intensity-dependent combustion factors (CF) are then generated for and applied to live and litter carbon pools as well as the transfers from live pools to litter caused by fire. Thus, both fire and stand characteristics are taken into account which has a legacy effect on future events. Gross C-CO2 emissions from Australian wild fires are larger than Australian territorial fossil fuel emissions. However, the net effect of fire on the Australian terrestrial carbon budget is unknown. We address this by applying the newly-developed fire module, integrated within the CABLE land surface model, and optimised for the Australian region, to a reassessment of the Australian Terrestrial Carbon Budget.

  3. Development of a Surrogate STANAG 4240 Fire Exposure

    DTIC Science & Technology

    2012-05-01

    26 Table 4. Gasoline fuel properties and calculated flame characteristics. .......................................26 Table...pool was enhanced using 3.8 L (1 gal) of gasoline , which was floated on the surface of the fuel. Applying the same calculations to the gasoline , an...additional 1 min of burn duration was added to the beginning of the test, with a slightly higher (9.5 MW vs. 9.0 MW) heat release rate. The gasoline

  4. Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the neotropics.

    PubMed

    Kauffman, J Boone; Hughes, R Flint; Heider, Chris

    2009-07-01

    Current rates of deforestation and the resulting C emissions in the tropics exceed those of secondary forest regrowth and C sequestration. Changing land-use strategies that would maintain standing forests may be among the least expensive of climate change mitigation options. Further, secondary tropical forests have been suggested to have great value for their potential to sequester atmospheric C. These options require an understanding of and capability to quantify C dynamics at landscape scales. Because of the diversity of physical and biotic features of tropical forests as well as approaches and intensities of land uses within the neotropics, there are tremendous differences in the capacity of different landscapes to store and sequester C. Major gaps in our current knowledge include quantification of C pools, rates and patterns of biomass loss following land-cover change, and quantification of the C storage potential of secondary forests following abandonment. In this paper we present a synthesis and further analyses from recent studies that describe C pools, patterns of C decline associated with land use, and rates of C accumulation following secondary-forest establishment--all information necessary for climate-change mitigation options. Ecosystem C pools of Neotropical primary forests minimally range from approximately 141 to 571 Mg/ha, demonstrating tremendous differences in the capacity of different forests to store C. Most of the losses in C and nutrient pools associated with conversion occur when fires are set to remove the slashed forest to prepare sites for crop or pasture establishment. Fires burning slashed primary forests have been found to result in C losses of 62-80% of prefire aboveground pools in dry (deciduous) forest landscapes and 29-57% in wet (evergreen) forest landscapes. Carbon emissions equivalent to the aboveground primary-forest pool arise from repeated fires occurring in the first 4 to 10 years following conversion. Feedbacks of climate change, land-cover change, and increasing habitat fragmentation may result in increases of both the area burned and the total quantity of biomass consumed per unit area by fire. These effects may well limit the capacity for future tropical forests to sequester C and nutrients.

  5. Responses of oak and other hardwood regeneration to prescribed fire: what we know as of 2005

    Treesearch

    Patrick H. Brose; Thomas M. Schuler; Jeffrey S. Ward

    2006-01-01

    An obstacle to using prescribed fire to manage mixed oak forests is the varied results of previous fire studies. It has been reported that fires enhanced, hindered, or had no effect on the competitive position of oak in the regeneration pool. We review a portion of the published literature and identify key factors that led to the relative competitiveness of oak...

  6. Fire, red squirrels, whitebark pine, and Yellowstone grizzly bears

    USGS Publications Warehouse

    Podruzny, Shannon; Reinhart, Daniel P.; Mattson, David J.

    1999-01-01

    Whitebark pine (Pinus albicaulis) habitats are important to Yellowstone grizzly bears (Ursus arctos) as refugia and sources of food. Ecological relationships between whitebark pine, red squirrels (Tamiasciurus hudsonicus), and grizzly bear use of pine seeds on Mt. Washburn in Yellowstone National Park, Wyoming, were examined during 1984-86. Following large-scale fires in 1988, we repeated the study in 1995-97 to examine the effects of fire on availability of whitebark pine seed in red squirrel middens and on bear use of middens. Half of the total length of the original line transects burned. We found no red squirrel middens in burned areas. Post-fire linear-abundance (no./km) of active squirrel middens that were pooled from burned and unburned areas decreased 27% compared to pre-fire abundance, but increased in unburned portions of some habitat types. Mean size of active middens decreased 54% post-fire. Use of pine seeds by bears (linear abundance of excavated middens) in pooled burned and unburned habitats decreased by 64%, likely due to the combined effects of reduced midden availability and smaller midden size. We discourage any further large-scale losses of seed producing trees from management-prescribed fires or timber harvesting until the effects of fire on ecological relationships in the whitebark pine zone are better understood.

  7. Increasing fire severity, alternate successional trajectories, and the carbon balance of Alaskan boreal forests

    NASA Astrophysics Data System (ADS)

    Mack, M. C.; Alexander, H. D.; Jean, M.; Melvin, A. M.; Johnstone, J. F.

    2016-12-01

    Climate-sensitive disturbances, such as wildfire, can feed back positively to climate warming via the carbon (C) cycle if C released by disturbance is not replaced over post-fire succession. In boreal forests, burning of carbon in deep organic soils is not only an important determinate of ecosystem element balance over the disturbance cycle, but also sets the conditions that control plant recruitment, species dominance and successional trajectory. Species dominance, in turn, has the potential to exert strong control over the plant-soil-microbial feedbacks that determine C and nutrient coupling, C storage, and ultimately, replacement of combusted C. We examined the consequences of increasing fire severity for C balance and C and nitrogen (N) coupling in Alaskan boreal forests. We estimated combustion losses in 90 black spruce (conifer) stands that burned in 2004. Over the next decade, we followed natural tree seedling establishment in these stands and used seedling species dominance identify conifer versus deciduous successional trajectories. We assembled data from 120 stands that varied in time after fire and successional trajectory, and estimated C and N dynamics across 150 years of post-fire succession for each trajectory. Conifer stands that burned with high severity transitioned to deciduous tree dominance after fire. These stands had smaller ecosystem pools of C and N before fire, lost a larger proportion of these pools during the fire, and began succession with smaller residual pools than stands that returned to conifer dominance after fire. Over secondary succession, deciduous stands accumulated about 10 times more carbon in aboveground biomass than conifer stands. Belowground biomass and soil carbon accumulation, by contrast, was about three times higher in the black spruce stands than in deciduous stands. As a result, net ecosystem C accumulation over the 100 year inter-fire interval was three times higher in deciduous stands than in coniferous stands. Nitrogen accumulation did not differ between the trajectories; high C:N ratio biomass accumulation in deciduous stands balanced low C:N ratio soil organic matter accumulation in conifer stands. The timing of N accumulation, however, differed substantially, supporting the idea that deciduous stands mine N from degrading permafrost after fire.

  8. Is fire a long term sink or source of atmospheric carbon? A comprehensive evaluation of a boreal forest fire

    NASA Astrophysics Data System (ADS)

    Santin, C.; Doerr, S. H.; Preston, C.; Bryant, R.

    2012-12-01

    Fires lead to a rapid release of carbon (C) from forest and other fire-prone ecosystems, emitting important quantities of C to the atmosphere. Every year 300-600 Mill. ha burn around the globe, generating CO2 emissions equivalent to half of the current annual global from fossil fuel combustion. Over the longer-term vegetation fires are widely considered as 'net zero Carbon (C) emission events', because C emissions from fires, excluding those associated with deforestation, are balanced by C uptake by regenerating vegetation. This 'zero C emission' scenario, however, may be flawed, as it does not consider the role of pyrogenic C (PyC). During fire, some of the fuel is transformed into PyC (i.e. charcoal, black C, soot), which is characterized by an enhanced recalcitrance and a longer mean residence time in the environment than its 'fresh' precursors. Therefore, after complete regeneration of the vegetation, the PyC generated represents an additional longer-term C pool and, hence, recurring fire-regrowth cycles could be considered as a 'net sink of atmospheric C'. To test the validity of this hypothesis, and to estimate how quantitatively important this PyC pool might be, accurate data on PyC production with respect to the fuel combusted are needed. Unfortunately, detailed quantification of fuel prior to fire is normally only available for prescribed and experimental fires, which are usually of low-intensity and therefore not representative of higher-intensity wildfires. Furthermore, what little data is available is usually based on only a specific fraction of the PyC present following burning rather than the whole range of PyC products and stores (i.e. PyC in soil, ash, downed wood and standing vegetation). The FireSmart project (Ft. Providence, NWT, Canada, June 2012) provided the ideal framework to address this research gap. This experimental fire reproduced wildfire conditions in boreal forest, i.e. stand-replacing crown fire and, at the same time, allowed i) pre-fire fuel assessment, ii) fire behaviour monitoring and iii) immediate post-fire fuel and PyC inventory. Before the fire, fuel characteristics were established and the site was instrumented with auto-logging thermocouples to provide temperature-duration profiles during burning. Also, different types of PyC were placed on the ground to determine PyC loss during the fire. Immediately after fire, the various post-burn PyC products and stores were sampled. Total PyC was quantified and the chemical recalcitrance of the different PyC forms found was determined. The results obtained will be discussed in the context of PyC production, and its different forms and quantities, with respect to (i) fire characteristics and fuel consumed, and (ii) the long term carbon balance in this boreal forest environment for recurring fire-regrowth cycles under current and predicted future climatic conditions.

  9. F-wave of single firing motor units: correct or misleading criterion of motoneuron excitability in humans?

    PubMed

    Kudina, Lydia P; Andreeva, Regina E

    2017-03-01

    Motoneuron excitability is a critical property for information processing during motor control. F-wave (a motoneuronal recurrent discharge evoked by a motor antidromic volley) is often used as a criterion of motoneuron pool excitability in normal and neuromuscular diseases. However, such using of F-wave calls in question. The present study was designed to explore excitability of single low-threshold motoneurons during their natural firing in healthy humans and to ascertain whether F-wave is a correct measure of motoneuronal excitability. Single motor units (MUs) were activated by gentle voluntary muscle contractions. MU peri-stimulus time histograms and motoneuron excitability changes within a target interspike interval were analysed during testing by motor antidromic and Ia-afferent volleys. It was found that F-waves could be occasionally recorded in some low-threshold MUs. However, during evoking F-wave, in contrast with the H-reflex, peri-stimulus time histograms revealed no statistically significant increase in MU discharge probability. Moreover, surprisingly, motoneurons appeared commonly incapable to fire a recurrent discharge within the most excitable part of a target interval. Thus, the F-wave, unlike the H-reflex, is the incorrect criterion of motoneuron excitability resulting in misleading conclusions. However, it does not exclude the validity of the F-wave as a clinical tool for other aims. It was concluded that the F-wave was first explored in low-threshold MUs during their natural firing. The findings may be useful at interpretations of changes in the motoneuron pool excitability in neuromuscular diseases.

  10. The influence of fire on the radiocarbon signature and character of soil organic matter in the Siskiyou national forest, Oregon, USA

    Treesearch

    Katherine Heckman; John L. Campbell; Heath Powers; Beverly E. Law; Chris Swanston

    2013-01-01

    Forest fires contribute a significant amount of CO2 to the atmosphere each year, and CO2 emissions from fires are likely to increase under projected conditions of global climate change. In addition to volatilizing aboveground biomass and litter layers, forest fires have a profound effect on belowground carbon (C) pools and the cycling of soil organic matter as a whole...

  11. Fire in the Brazilian Amazon : 3. Dynamics of biomass, C, and nutrient pools in regenerating forests.

    PubMed

    Hughes, R F; Kauffman, J B; Cummings, D L

    2000-09-01

    Regenerating forests have become a common land-cover type throughout the Brazilian Amazon. However, the potential for these systems to accumulate and store C and nutrients, and the fluxes resulting from them when they are cut, burned, and converted back to croplands and pastures have not been well quantified. In this study, we quantified pre- and post-fire pools of biomass, C, and nutrients, as well as the emissions of those elements, at a series of second- and third-growth forests located in the states of Pará and Rondônia, Brazil. Total aboveground biomass (TAGB) of second- and third-growth forests averaged 134 and 91 Mg ha -1 , respectively. Rates of aboveground biomass accumulation were rapid in these systems, but were not significantly different between second- and third-growth forests, ranging from 9 to 16 Mg ha -1 year -1 . Residual pools of biomass originating from primary forest vegetation accounted for large portions of TAGB in both forest types and were primarily responsible for TAGB differences between the two forest types. In second-growth forests this pool (82 Mg ha -1 ) represented 58% of TAGB, and in third-growth forests (40 Mg ha -1 ) it represented 40% of TAGB. Amounts of TAGB consumed by burning of second- and third-growth forests averaged 70 and 53 Mg ha -1 , respectively. Aboveground pre-fire pools in second- and third-growth forests averaged 67 and 45 Mg C ha -1 , 821 and 707 kg N ha -1 , 441 and 341 kg P ha -1 , and 46 and 27 kg Ca ha -1 , respectively. While pre-fire pools of C, N, S and K were not significantly different between second- and third-growth forests, pools of both P and Ca were significantly higher in second-growth forests. This suggests that increasing land use has a negative impact on these elemental pools. Site losses of elements resulting from slashing and burning these sites were highly variable: losses of C ranged from 20 to 47 Mg ha -1 ; N losses ranged from 306 to 709 kg ha -1 ; Ca losses ranged from 10 to 145 kg ha -1 ; and P losses ranged from 2 to 20 kg ha -1 . Elemental losses were controlled to a large extent by the relative distribution of elemental mass within biomass components of varying susceptibilities to combustion and the temperatures of volatilization of each element. Due to a relatively low temperature of volatilization and its concentration in highly combustible biomass pools, site losses of N averaged 70% of total pre-fire pools. In contrast, site losses of P and Ca resulting from burning were 33 and 20% of total pre-fire pools, respectively, as much of the mass of those elements was deposited on site as ash. Pre- and post-fire biomass and elemental pools of second- and third-growth forests, as well as the emissions from those systems, were intermediate between those of primary forests and pastures in the Brazilian Amazon. Overall, regenerating forests have the capacity to act as either large terrestrial sinks or sources of C and nutrients, depending on the course of land-use patterns within the Brazilian Amazon. Combining remote sensing techniques with field measures of aboveground C accumulation in regenerating forests and C fluxes from those forests when they are cut and burned, we estimate that during 1990-1991 roughly 104 Tg of C was accumulated by regenerating forests across the Brazilian Amazon. Further, we estimate that approximately 103 Tg of C was lost via the cutting and burning of regenerating forests across the Brazilian Amazon during this same period. Since average C accumulations (5.5 Mg ha -1 year -1 ) in regenerating forests were 19% of the C lost when such forests are cut and burned (29.3 Mg ha -1 ), our results suggest that when less than 19% of the total area accounted for by secondary forests is cut and burned in a given year, those forests will be net accumulators of C during that year. Conversely, when more than 19% of regenerating forests are burned, those forests will be a net source of C to the atmosphere.

  12. Stream nitrogen responses to fire in the Southeastern U.S.

    Treesearch

    James M. Vose; Stephanie H. Laseter; Steve G. McNulty

    2005-01-01

    Fire can play a significant role in runoff, sediment yield, and nitrate transport in aquatic and terrestrial ecosystems in the southeast US. The typical impact of fire is an immediate change in the physical properties of the soil and forest floor surface, followed by mid- and long-term changes in biological pools and cycling processes. Depending upon the severity of...

  13. Long-term effects of single prescribed fires on hardwood regeneration in oak shelterwood stands

    Treesearch

    Patrick H. Brose

    2010-01-01

    One of the arguments against using prescribed fire to regenerate oak (Quercus spp.) forests is that the improvement in species composition of the hardwood regeneration pool is temporary and multiple burns are necessary to achieve and maintain oak dominance. To explore this concern, I re-inventoried a prescribed fire study conducted in the mid-1990s...

  14. FIRE STUDIES IN MALLEE (EUCALYPTUS SPP.) COMMUNITIES OF WESTERN NEW SOUTH WALES: SPATIAL AND TEMPORAL FLUXES IN SOIL CHEMISTRY AND SOIL BIOLOGY FOLLOWING PRESCRIBED FIRE.

    EPA Science Inventory

    The effects of prescribed fires on nutrient pools, soil-organisms, and vegetation patch dynamics were studied in three semi-arid mallee shrublands in western New South Wales. Repeated sampling of surface soil strata (0-2 and 2-4 cm) was undertaken at strategic times (immediately ...

  15. Post-fire management regimes affect carbon sequestration and storage in a Sierra Nevada mixed conifer forest

    Treesearch

    Elizabeth M. Powers; John D. Marshall; Jianwei Zhang; Liang Wei

    2013-01-01

    Forests mitigate climate change by sequestering CO2 from the atmosphere and accumulating it in biomass storage pools. However, in dry conifer forests, fire occasionally returns large quantities of CO2 to the atmosphere. Both the total amount of carbon stored and its susceptibility to loss may be altered by post-fire land...

  16. In Situ Burning of Oil Spills

    PubMed Central

    Evans, David D.; Mulholland, George W.; Baum, Howard R.; Walton, William D.; McGrattan, Kevin B.

    2001-01-01

    For more than a decade NIST conducted research to understand, measure and predict the important features of burning oil on water. Results of that research have been included in nationally recognized guidelines for approval of intentional burning. NIST measurements and predictions have played a major role in establishing in situ burning as a primary oil spill response method. Data are given for pool fire burning rates, smoke yield, smoke particulate size distribution, smoke aging, and polycyclic aromatic hydrocarbon content of the smoke for crude and fuel oil fires with effective diameters up to 17.2 m. New user-friendly software, ALOFT, was developed to quantify the large-scale features and trajectory of wind blown smoke plumes in the atmosphere and estimate the ground level smoke particulate concentrations. Predictions using the model were tested successfully against data from large-scale tests. ALOFT software is being used by oil spill response teams to help assess the potential impact of intentional burning. PMID:27500022

  17. Exposure of a liquefied gas container to an external fire.

    PubMed

    Raj, Phani K

    2005-06-30

    In liquefied gas, bulk-storage facilities and plants, the separation distances between storage tanks and between a tank and a line of adjoining property that can be built are governed by local regulations and/or codes (e.g. National Fire Protection Association (NFPA) 58, 2004). Separation distance requirements have been in the NFPA 58 Code for over 60 years; however, no scientific foundations (either theoretical or experimental) are available for the specified distances. Even though the liquefied petroleum gas (LPG) industry has operated safely over the years, there is a question as to whether the code-specified distances provide sufficient safety to LPG-storage tanks, when they are exposed to large external fires. A radiation heat-transfer-based model is presented in this paper. The temporal variation of the vapor-wetted tank-wall temperature is calculated when exposed to thermal radiation from an external, non-impinging, large, 30.5 m (100 ft) diameter, highly radiative, hydrocarbon fuel (pool) fire located at a specified distance. Structural steel wall of a pressurized, liquefied gas container (such as the ASME LP-Gas tank) begins to lose its strength, when the wall temperature approaches a critical temperature, 810 K (1000 degrees F). LP-Gas tank walls reaching close to this temperature will be a cause for major concern because of increased potential for tank failure, which could result in catastrophic consequences. Results from the model for exposure of different size ASME (LP-Gas) containers to a hydrocarbon pool fire of 30.5 m (100 ft) in diameter, located with its base edge at the separation distances specified by NFPA 58 [NFPA 58, Liquefied Petroleum Gas Code, Table 6.3.1, 2004 ed., National Fire Protection Association, Quincy, MA, 2004] indicate that the vapor-wetted wall temperature of the containers never reach the critical temperature under common wind conditions (0, 5 and 10 m/s), with the flame tilting towards the tank. This indicates that the separation distances specified in the code are adequate for non-impingement type of fires. The model can be used to test the efficacy of other similar codes and regulations for other materials.

  18. The use of computer models to predict temperature and smoke movement in high bay spaces

    NASA Technical Reports Server (NTRS)

    Notarianni, Kathy A.; Davis, William D.

    1993-01-01

    The Building and Fire Research Laboratory (BFRL) was given the opportunity to make measurements during fire calibration tests of the heat detection system in an aircraft hangar with a nominal 30.4 (100 ft) ceiling height near Dallas, TX. Fire gas temperatures resulting from an approximately 8250 kW isopropyl alcohol pool fire were measured above the fire and along the ceiling. The results of the experiments were then compared to predictions from the computer fire models DETACT-QS, FPETOOL, and LAVENT. In section A of the analysis conducted, DETACT-QS AND FPETOOL significantly underpredicted the gas temperature. LAVENT at the position below the ceiling corresponding to maximum temperature and velocity provided better agreement with the data. For large spaces, hot gas transport time and an improved fire plume dynamics model should be incorporated into the computer fire model activation routines. A computational fluid dynamics (CFD) model, HARWELL FLOW3D, was then used to model the hot gas movement in the space. Reasonable agreement was found between the temperatures predicted from the CFD calculations and the temperatures measured in the aircraft hangar. In section B, an existing NASA high bay space was modeled using the CFD model. The NASA space was a clean room, 27.4 m (90 ft) high with forced horizontal laminar flow. The purpose of this analysis is to determine how the existing fire detection devices would respond to various size fires in the space. The analysis was conducted for 32 MW, 400 kW, and 40 kW fires.

  19. Fire testing and infrared thermography of oak barrels filled with distilled spirits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    de Vries, Jaap

    2017-05-01

    Adequate fire protection of distilled spirits stored in oak barrels requires understanding the failure mode of these barrels, including quantifying the leak rate. In this study, the use of a custom-calibrated, long-wave microbolometer camera is demonstrated to seek new protection methods for rack-stored distilled spirits. Individual oak barrels ranging between 200 L and 500 L filled with 75%/25% ethanol/water were exposed to both propane gas fires and pure ethanol pool fires. The IR camera was used to see through the smoke and flames showing the location of the leaks. The increase in HRR due to the leaked content was measured using gas calorimetry of the combustion products. This study showed that barrels leaked at a rate of approximately 4-8 lpm, resulting in heat release rates ranging between 1.2 and 2.4 MW. These numbers are confirmed by the quantitative measurements of gaseous H2O and CO¬2 in the exhaust. Surface temperature of the exposed oak could reach temperatures up to 750ºC.

  20. Forest restoration treatments have subtle long-term effects on soil C and N cycling in mixed conifer forests.

    PubMed

    Ganzlin, Peter W; Gundale, Michael J; Becknell, Rachel E; Cleveland, Cory C

    2016-07-01

    Decades of fire suppression following extensive timber harvesting have left much of the forest in the intermountain western United States exceedingly dense, and forest restoration techniques (i.e., thinning and prescribed fire) are increasingly being used in an attempt to mitigate the effects of severe wildfire, to enhance tree growth and regeneration, and to stimulate soil nutrient cycling. While many of the short-term effects of forest restoration have been established, the long-term effects on soil biogeochemical and ecosystem processes are largely unknown. We assessed the effects of commonly used forest restoration treatments (thinning, burning, and thinning + burning) on nutrient cycling and other ecosystem processes 11 yr after restoration treatments were implemented in a ponderosa pine (Pinus ponderosa var. scopulorum)/Douglas fir (Pseudotsuga menziesii var. glauca) forest at the Lubrecht Fire and Fire Surrogates Study (FFS) site in western Montana, USA. Despite short-term (<3 yr) increases in soil inorganic nitrogen (N) pools and N cycling rates following prescribed fire, long-term soil N pools and N mineralization rates showed only subtle differences from untreated control plots. Similarly, despite a persistent positive correlation between fuels consumed in prescribed burns and several metrics of N cycling, variability in inorganic N pools decreased significantly since treatments were implemented, indicating a decline in N spatial heterogeneity through time. However, rates of net nitrification remain significantly higher in a thin + burn treatment relative to other treatments. Short-term declines in forest floor carbon (C) pools have persisted in the thin + burn treatment, but there were no significant long-term differences among treatments in extractable soil phosphorus (P). Finally, despite some short-term differences, long-term foliar nutrient concentrations, litter decomposition rates, and rates of free-living N fixation in the experimental plots were not different from control plots, suggesting nutrient cycles and ecosystem processes in temperate coniferous forests are resilient to disturbance following long periods of fire suppression. Overall, this study provides forest managers and policymakers valuable information showing that the effects of these commonly used restoration prescriptions on soil nutrient cycling are ephemeral and that use of repeated treatments (i.e., frequent fire) will be necessary to ensure continued restoration success. © 2016 by the Ecological Society of America.

  1. Characterization of Emissions from Liquid Fuel and Propane Open Burns

    EPA Science Inventory

    The comparative combustion emissions of using jet propellant (JP-5) liquid fuel pools or a propane manifold grid to simulate the effects of accidental fires was investigated. A helium-filled tethered aerostat was used to maneuver an instrument package into the open fire plumes ...

  2. Using stand replacement fires to restore southern Appalachian pine-hardwood ecosystems: effects on mass, carbon, and nutrient pools

    Treesearch

    James M. Vose; Wayne T. Swank; Barton D. Clinton; Jennifer D. Knoepp; Lloyd W. Swift

    1999-01-01

    Pine-hardwood ecosystems in the Southern Appalachians are in serious decline due to fire exclusion and insect infestations. Fire has been advanced as a tool to restore these ecosystems, yet there are few studies evaluating overall ecosystem effects. The authors’ objectives were to evaluate the effects of stand restoration burning on forest floor nitrogen (N) and carbon...

  3. Initial Evaluation of Burn Characteristics of Phenolic Foam Runway Brake Arrestor Material

    DTIC Science & Technology

    1993-12-01

    foam immersed in a jet fuel fire when extinguished using 3-percent Aqueous Film Forming Foam ( AFFF ). Three pool...extinguishment time of phenolic foam immersed in a jet fuel fire, using 3-percent Aqueous Film Forming Foam ( AFFF ) extinguishing agent. The wind was negligible...percent Aqueous Film Forming Foam ( AFFF ) agent. This project is an initial assessment of the fire safety of phenolic foam

  4. 47 CFR 90.241 - Radio call box operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Safety Pool for operation of radio call boxes to be used by the public to request fire, police, ambulance... Public Safety Pool for highway call box systems subject to the following requirements: (1) Call box...) above the ground, the natural formation, or the existing man-made structure (other than an antenna...

  5. 47 CFR 90.241 - Radio call box operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Safety Pool for operation of radio call boxes to be used by the public to request fire, police, ambulance... Public Safety Pool for highway call box systems subject to the following requirements: (1) Call box...) above the ground, the natural formation, or the existing man-made structure (other than an antenna...

  6. Post-fire fluxes and sources of carbon in previously burnt tropical swamp peatlands, Brunei

    NASA Astrophysics Data System (ADS)

    Lupascu, M.; Akhtar, H.; Smith, T. E. L.; Sukmaria binti Hj Sukri, R.

    2017-12-01

    Tropical peatlands hold about 15-19% of the global organic carbon (C) pool of which 77% in Southeast Asia. Nonetheless Southeast Asian peatlands have been exploited for timber and land for agriculture leading to rapid deforestation, extensive drainage and frequent fires. Direct C-emissions through peat combustion must be quantified to examine the impact of peat fires on global and regional C-budgets, however it is also essential to evaluate oxidative decomposition of peat after fires for a complete understanding of ecosystem-scale fire impact. This kind of investigation is necessary also to understand the effect of peat burning on peat decomposition, because burning effects on the belowground environment are variable, depending on burnt frequency and fire severity. After a fire, ecosystems act as a C-source for months-to-years as ecosystem-respiration (Reco) exceeds photosynthesis. Furthermore during fires, the surface peat with a higher proportion of the more modern rapidly-cycled C burns preferentially. The loss of the surface peat possibly can reduce oxidative soil CO2 emissions, as the deeper, older peat, has more recalcitrant compounds. However, CO2emissions from this old C pool are a net flux to the atmosphere compared to the modern C. Within this context, we are quantifying the magnitudes and patterns of ecosystem-atmosphere fluxes of carbon dioxide (CO2) and methane (CH4) through cavity-ring spectroscopy in different transects of an intact tropical peat swamp forest and in two degraded forest areas affected by two and six fires over the last 40 years in Brunei, on the island of Borneo. We are using natural tracers such as δ13C and 14C to investigate the age and sources (auto- and heterotrophic) of C contributing to Reco and we are continuously monitoring soil temperature and water table level. Preliminary data show a similar magnitude of CO2 efflux between the intact (5.3 µmol CO2 m-2 s-1) and burnt areas (6.4 µmol CO2 m-2 s-1), with higher soil temperature in the latter. Our results will give a deeper insight into the vulnerability of the C pool in tropical peat swamp forest after fire events and aim at improving terrestrial soil C budget.

  7. Smouldering Subsurface Fires in the Earth System

    NASA Astrophysics Data System (ADS)

    Rein, Guillermo

    2010-05-01

    Smouldering fires, the slow, low-temperature, flameless form of combustion, are an important phenomena in the Earth system. These fires propagate slowly through organic layers of the forest ground and are responsible for 50% or more of the total biomass consumed during wildfires. Only after the 2002 study of the 1997 extreme haze event in South-East Asia, the scientific community recognised the environmental and economic threats posed by subsurface fires. This was caused by the spread of vast biomass fires in Indonesia, burning below the surface for months during the El Niño climate event. It has been calculated that these fires released between 0.81 and 2.57 Gton of carbon gases (13-40% of global emissions). Large smouldering fires are rare events at the local scale but occur regularly at a global scale. Once ignited, they are particularly difficult to extinguish despite extensive rains or fire-fighting attempts and can persist for long periods of time (months, years) spreading over very extensive areas of forest and deep into the soil. Indeed, these are the oldest continuously burning fires on Earth. Earth scientists are interested in smouldering fires because they destroy large amounts of biomass and cause greater damage to the soil ecosystem than flaming fires do. Moreover, these fires cannot be detected with current satellite remote sensing technologies causing inconsistencies between emission inventories and model predictions. Organic soils sustain smouldering fire (hummus, duff, peat and coal) which total carbon pool exceeds that of the world's forests or the atmosphere. This have important implications for climate change. Warmer temperatures at high latitudes are resulting in unprecedented permafrost thaw that is leaving large soil carbon pools exposed to fires. Because the CO2 flux from peat fires has been measured to be about 3000 times larger that the natural degradation flux, permafrost thaw is a risk for greater carbon release by fire and subsequently influence carbon-climate feedbacks. This presentation will revise the current knowledge on smouldering fires in the Earth system regarding ignition, spread patterns and emissions. It will explain the key differences between shallow and deep fires, and flaming fires.

  8. Metal fires and their implications for advanced reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowlen, Steven Patrick; Figueroa, Victor G.; Olivier, Tara Jean

    This report details the primary results of the Laboratory Directed Research and Development project (LDRD 08-0857) Metal Fires and Their Implications for Advance Reactors. Advanced reactors may employ liquid metal coolants, typically sodium, because of their many desirable qualities. This project addressed some of the significant challenges associated with the use of liquid metal coolants, primary among these being the extremely rapid oxidation (combustion) that occurs at the high operating temperatures in reactors. The project has identified a number of areas for which gaps existed in knowledge pertinent to reactor safety analyses. Experimental and analysis capabilities were developed in thesemore » areas to varying degrees. In conjunction with team participation in a DOE gap analysis panel, focus was on the oxidation of spilled sodium on thermally massive surfaces. These are spills onto surfaces that substantially cool the sodium during the oxidation process, and they are relevant because standard risk mitigation procedures seek to move spill environments into this regime through rapid draining of spilled sodium. While the spilled sodium is not quenched, the burning mode is different in that there is a transition to a smoldering mode that has not been comprehensively described previously. Prior work has described spilled sodium as a pool fire, but there is a crucial, experimentally-observed transition to a smoldering mode of oxidation. A series of experimental measurements have comprehensively described the thermal evolution of this type of sodium fire for the first time. A new physics-based model has been developed that also predicts the thermal evolution of this type of sodium fire for the first time. The model introduces smoldering oxidation through porous oxide layers to go beyond traditional pool fire analyses that have been carried out previously in order to predict experimentally observed trends. Combined, these developments add significantly to the safety analysis capabilities of the advanced-reactor community for directly relevant scenarios. Beyond the focus on the thermally-interacting and smoldering sodium pool fires, experimental and analysis capabilities for sodium spray fires have also been developed in this project.« less

  9. Planar measurements of soot volume fraction and OH in a JP-8 pool fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henriksen, Tara L.; Ring, Terry A.; Eddings, Eric G.

    2009-07-15

    The simultaneous measurement of soot volume fraction by laser induced incandescence (LII) and qualitative imaging of OH by laser induced fluorescence (LIF) was performed in a JP-8 pool fire contained in a 152 mm diameter pan. Line of sight extinction was used to calibrate the LII system in a laminar flame, and to provide an independent method of measuring average soot volume fraction in the turbulent flame. The presence of soot in the turbulent flame was found to be approximately 50% probable, resulting in high levels of optical extinction, which increased slightly through the flame from approximately 30% near themore » base, to approximately 50% at the tip. This high soot loading pushes both techniques toward their detection limit. Nevertheless, useful accuracy was obtained, with the LII measurement of apparent extinction in the turbulent flame being approximately 21% lower than a direct measurement, consistent with the influence of signal trapping. The axial and radial distributions of soot volume fraction are presented, along with PDFs of volume fraction, and new insight into the behavior of soot sheets in pool fires are sought from the simultaneous measurements of OH and LII. (author)« less

  10. Emissions of forest floor and mineral soil carbon, nitrogen and mercury pools and relationships with fire severity for the Pagami Creek Fire in the Boreal Forest of northern Minnesota

    Treesearch

    Randall K. Kolka; Brian R. Sturtevant; Jessica R. Miesel; Aditya Singh; Peter T. Wolter; Shawn Fraver; Thomas M. DeSutter; Phil A. Townsend

    2017-01-01

    Forest fires cause large emissions of C (carbon), N (nitrogen) and Hg (mercury) to the atmosphere and thus have important implications for global warming (e.g. via CO2 and N2O emissions), anthropogenic fertilisation of natural ecosystems (e.g. via N deposition), and bioaccumulation of harmful metals in aquatic and...

  11. Wildland fire emissions, carbon, and climate: Science overview and knowledge needs

    Treesearch

    William T. Sommers; Rachel A. Loehman; Colin C. Hardy

    2014-01-01

    Wildland fires have influenced the global carbon cycle for 420 million years of Earth history, interacting with climate to define vegetation characteristics and distributions, trigger abrupt ecosystem shifts, and move carbon among terrestrial and atmospheric pools. Carbon dioxide (CO2) is the dominant driver of ongoing climate change and the principal emissions...

  12. Oil Fires and Oil Slick, Kuwait

    NASA Image and Video Library

    1991-05-06

    STS039-87-012 (28 April-6 May 1991) --- A handheld 70mm camera onboard the Space Shuttle Discovery exposed this infrared frame showing oil fires near the Kuwait coast as well as south-bound oil slicks in the Gulf. Pools of oil on the land are recognized as white objects near the burning wells.

  13. Fire effects on temperate forest soil C and N storage

    Treesearch

    Lucas E. Nave; Eric D. Vance; Christopher W. Swanston; Peter S. Curtis

    2011-01-01

    Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting...

  14. Effects of seasonal prescribed fires on hardwood advance regeneration in shelterwood stands

    Treesearch

    Patrick Brose; David Van Lear

    1997-01-01

    Shelterwood harvesting of mature oak (Quercus spp. L.) stands on productive sites often fails because fast-growing intolerant and already established tolerant species outcompete oak reproduction for dominance of the advance regeneration pool. We hypothesized that prescribe fire would improve the competitive position of oak in the advance regeneration...

  15. The effect of fire on soil organic matter--a review.

    PubMed

    González-Pérez, José A; González-Vila, Francisco J; Almendros, Gonzalo; Knicker, Heike

    2004-08-01

    The extent of the soil organic carbon pool doubles that present in the atmosphere and is about two to three times greater than that accumulated in living organisms in all Earth's terrestrial ecosystems. In such a scenario, one of the several ecological and environmental impacts of fires is that biomass burning is a significant source of greenhouse gases responsible for global warming. Nevertheless, the oxidation of biomass is usually incomplete and a range of pyrolysis compounds and particulate organic matter (OM) in aerosols are produced simultaneously to the thermal modification of pre-existing C forms in soil. These changes lead to the evolution of the OM to "pyromorphic humus", composed by rearranged macromolecular substances of weak colloidal properties and an enhanced resistance against chemical and biological degradation. Hence the occurrence of fires in both undisturbed and agricultural ecosystems may produce long-lasting effects on soils' OM composition and dynamics. Due to the large extent of the C pool in soils, small deviations in the different C forms may also have a significant effect in the global C balance and consequently on climate change. This paper reviews the effect of forest fires on the quantity and quality of soils' OM. It is focused mainly on the most stable pool of soil C; i.e., that having a large residence time, composed of free lipids, colloidal fractions, including humic acids (HA) and fulvic acids (FA), and other resilient forms. The main transformations exerted by fire on soil humus include the accumulation of new particulate C forms highly resistant to oxidation and biological degradation including the so-called "black carbon" (BC). Controversial environmental implications of such processes, specifically in the stabilisation of C in soil and their bearing on the global C cycle are discussed.

  16. Importance of charcoal in determining the age and chemistry of organic carbon in surface soils

    NASA Astrophysics Data System (ADS)

    Krull, Evelyn S.; Swanston, Christopher W.; Skjemstad, Jan O.; McGowan, Janine A.

    2006-12-01

    Understanding the chemical character and turnover time of the oldest soil organic carbon (SOC) fraction is fundamental in deciphering soil carbon sequestration processes and the fate of soil-eroded carbon in aquatic sediments. Two main processes are thought to extend the turnover time of SOC: protection by the mineral matrix and chemical recalcitrance. Various oxidation methods have been proposed to isolate the oldest and most recalcitrant SOC fraction, which is often assumed to be black carbon (BC). However, few data have been published that confirm the chemical character of the isolated fractions. Using established and newly developed methods together with 13C-NMR spectroscopy and AMS dating, we show that protection by the mineral matrix prolonged the turnover time of SOC by tens of years, but long-term (hundreds of years) stabilization was controlled by the inherent recalcitrance of SOC, determined by the type of ecosystems. In ecosystem without significant fire occurrences, the older SOC pool was comparably small and was represented by alkyl carbon. In ecosystems with high fire frequency charcoal constituted the oldest SOC pool, and constituted up to 35% of the total SOC. By applying methods with different oxidative strengths, it was possible to isolate different age groups of charcoal with different degrees of weathering. Further substantiation of this finding could provide a much greater resolution of paleo-fire events. Our results demonstrate that fire frequency plays a dominant role in determining the chemical nature and 14C abundance of SOC and that the separation of age groups of charcoal provides a means to reconstruct detailed fire histories. Our results indicate that modeling SOC turnover, transport and sequestration for frequently burnt environments requires modification of existing models, specifying an input and decay function for the charcoal pool in different environments.

  17. The compensatory interaction between motor unit firing behavior and muscle force during fatigue

    PubMed Central

    De Luca, Carlo J.; Kline, Joshua C.

    2016-01-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. PMID:27385798

  18. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    PubMed

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  19. Restoring and managing low-severity fire in dry-forest landscapes of the western USA.

    PubMed

    Baker, William L

    2017-01-01

    Low-severity fires that killed few canopy trees played a significant historical role in dry forests of the western USA and warrant restoration and management, but historical rates of burning remain uncertain. Past reconstructions focused on on dating fire years, not measuring historical rates of burning. Past statistics, including mean composite fire interval (mean CFI) and individual-tree fire interval (mean ITFI) have biases and inaccuracies if used as estimators of rates. In this study, I used regression, with a calibration dataset of 96 cases, to test whether these statistics could accurately predict two equivalent historical rates, population mean fire interval (PMFI) and fire rotation (FR). The best model, using Weibull mean ITFI, had low prediction error and R2adj = 0.972. I used this model to predict historical PMFI/FR at 252 sites spanning dry forests. Historical PMFI/FR for a pool of 342 calibration and predicted sites had a mean of 39 years and median of 30 years. Short (< 25 years) mean PMFI/FRs were in Arizona and New Mexico and scattered in other states. Long (> 55 years) mean PMFI/FRs were mainly from northern New Mexico to South Dakota. Mountain sites often had a large range in PMFI/FR. Nearly all 342 estimates are for old forests with a history of primarily low-severity fire, found across only about 34% of historical dry-forest area. Frequent fire (PMFI/FR < 25 years) was found across only about 14% of historical dry-forest area, with 86% having multidecadal rates of low-severity fire. Historical fuels (e.g., understory shrubs and small trees) could fully recover between multidecadal fires, allowing some denser forests and some ecosystem processes and wildlife habitat to be less limited by fire. Lower historical rates mean less restoration treatment is needed before beginning managed fire for resource benefits, where feasible. Mimicking patterns of variability in historical low-severity fire regimes would likely benefit biological diversity and ecosystem functioning.

  20. Restoring and managing low-severity fire in dry-forest landscapes of the western USA

    PubMed Central

    2017-01-01

    Low-severity fires that killed few canopy trees played a significant historical role in dry forests of the western USA and warrant restoration and management, but historical rates of burning remain uncertain. Past reconstructions focused on on dating fire years, not measuring historical rates of burning. Past statistics, including mean composite fire interval (mean CFI) and individual-tree fire interval (mean ITFI) have biases and inaccuracies if used as estimators of rates. In this study, I used regression, with a calibration dataset of 96 cases, to test whether these statistics could accurately predict two equivalent historical rates, population mean fire interval (PMFI) and fire rotation (FR). The best model, using Weibull mean ITFI, had low prediction error and R2adj = 0.972. I used this model to predict historical PMFI/FR at 252 sites spanning dry forests. Historical PMFI/FR for a pool of 342 calibration and predicted sites had a mean of 39 years and median of 30 years. Short (< 25 years) mean PMFI/FRs were in Arizona and New Mexico and scattered in other states. Long (> 55 years) mean PMFI/FRs were mainly from northern New Mexico to South Dakota. Mountain sites often had a large range in PMFI/FR. Nearly all 342 estimates are for old forests with a history of primarily low-severity fire, found across only about 34% of historical dry-forest area. Frequent fire (PMFI/FR < 25 years) was found across only about 14% of historical dry-forest area, with 86% having multidecadal rates of low-severity fire. Historical fuels (e.g., understory shrubs and small trees) could fully recover between multidecadal fires, allowing some denser forests and some ecosystem processes and wildlife habitat to be less limited by fire. Lower historical rates mean less restoration treatment is needed before beginning managed fire for resource benefits, where feasible. Mimicking patterns of variability in historical low-severity fire regimes would likely benefit biological diversity and ecosystem functioning. PMID:28199416

  1. Long term effects of fire on carbon and nitrogen pools and fluxes in the arctic permafrost and subarctic forests (ARCTICFIRE)

    NASA Astrophysics Data System (ADS)

    Pumpanen, Jukka; Köster, Kajar; Aaltonen, Heidi; Köster, Egle; Zhou, Xuan; Zhang-Turpeinen, Huizhong; Heinonsalo, Jussi; Palviainen, Marjo; Sun, Hui; Biasi, Christina; Bruckman, Viktor; Prokushkin, Anatoly; Berninger, Frank

    2017-04-01

    Boreal forests, which are to a large extent located on permafrost soils, are a crucial part of the climate system because of their large soil carbon (C) pool. Even small change in this pool may change the terrestrial C sink in the arctic into a source with a consequent increase in CO2 concentrations. About 1% of boreal forests are exposed to fire annually, which affects the soil and permafrost under them. Thawing of permafrost increases the depth of the active layer containing large C and N stocks. In addition to temperature, the decomposition of soil organic matter depends on its chemical composition which may also be affected by fires. Part of the soil organic matter is turned into pyrogenic C and N resistant to decomposition. We studied the effect of forest fires on soil greenhouse gas fluxes (CO2, CH4 and N2O)and biogenic volatile organic compound fluxes using portable chambers. The amount of easily decomposable and recalcitrant fractions in soil organic matter were determined with water, ethanol and acid extraction, and the natural 13C and 15N abundances as well as chemical quality with Fourier Transform Infrared Spectroscopy (FTIR) were studied. Also, changes in microbial community structure and composition were analyzed with next generation pyrosequencing. Our preliminary results indicate that soil CO2 effluxes were significantly decreased immediately after the fire, and the recovery to pre-fire level took several decades. Soils were a small sink of CH4 and a source of N2O in all age classes, and the CH4 uptake was increased and N2O fluxes decreased still 20 years following the fire. A clear vertical distribution was observed in the amount of extractable soil organic matter the amount of extractable organic matter being highest in the soil surface layers and decreasing with depth. The natural 13C and 15N abundances and FTIR spectra and changes in microbial community composition are still under analysis.

  2. Boreal Forests Sequester Large Amounts of Mercury over Millennial Time Scales in the Absence of Wildfire.

    PubMed

    Giesler, Reiner; Clemmensen, Karina E; Wardle, David A; Klaminder, Jonatan; Bindler, Richard

    2017-03-07

    Alterations in fire activity due to climate change and fire suppression may have profound effects on the balance between storage and release of carbon (C) and associated volatile elements. Stored soil mercury (Hg) is known to volatilize due to wildfires and this could substantially affect the land-air exchange of Hg; conversely the absence of fires and human disturbance may increase the time period over which Hg is sequestered. Here we show for a wildfire chronosequence spanning over more than 5000 years in boreal forest in northern Sweden that belowground inventories of total Hg are strongly related to soil humus C accumulation (R 2 = 0.94, p < 0.001). Our data clearly show that northern boreal forest soils have a strong sink capacity for Hg, and indicate that the sequestered Hg is bound in soil organic matter pools accumulating over millennia. Our results also suggest that more than half of the Hg stock in the sites with the longest time since fire originates from deposition predating the onset of large-scale anthropogenic emissions. This study emphasizes the importance of boreal forest humus soils for Hg storage and reveals that this pool is likely to persist over millennial time scales in the prolonged absence of fire.

  3. A mathematical model of a large open fire

    NASA Technical Reports Server (NTRS)

    Harsha, P. T.; Bragg, W. N.; Edelman, R. B.

    1981-01-01

    A mathematical model capable of predicting the detailed characteristics of large, liquid fuel, axisymmetric, pool fires is described. The predicted characteristics include spatial distributions of flame gas velocity, soot concentration and chemical specie concentrations including carbon monoxide, carbon dioxide, water, unreacted oxygen, unreacted fuel and nitrogen. Comparisons of the predictions with experimental values are also given.

  4. Further studies of fuels from alternate sources - fire extinguishment experiments with JP-5 jet turbine fuel derived from shale. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazlett, R.N.; Affens, W.A.; McLaren, G.W.

    1978-05-01

    Fire extinguishment experiments with JP-5 jet fuels derived from shale crude oil and also from petroleum (for comparison) were conducted at NRL's Chesapeake Bay facility. The experiments were conducted in a 40-foot diameter circular pool using Aqueous Film Forming Foam (AFFF) as the fire extinguishing agent. The results with both types of fuel were similar, and it was concluded that the techniques and agents for AFFF application, which have been developed for petroleum fuel fires, can also be used for shale derived jet fuel.

  5. Overview of major hazards. Part 2: Source term; dispersion; combustion; blast, missiles, venting; fire; radiation; runaway reactions; toxic substances; dust explosions

    NASA Astrophysics Data System (ADS)

    Vilain, J.

    Approaches to major hazard assessment and prediction are reviewed. Source term: (phenomenology/modeling of release, influence on early stages of dispersion); dispersion (atmospheric advection, diffusion and deposition, emphasis on dense/cold gases); combustion (flammable clouds and mists covering flash fires, deflagration, transition to detonation; mostly unconfined/partly confined situations); blast formation, propagation, interaction with structures; catastrophic fires (pool fires, torches and fireballs; highly reactive substances) runaway reactions; features of more general interest; toxic substances, excluding toxicology; and dust explosions (phenomenology and protective measures) are discussed.

  6. Interactive effects of frequent burning and timber harvesting on above ground carbon biomass in temperate eucalypt forests

    NASA Astrophysics Data System (ADS)

    Collins, Luke; Penman, Trent; Ximenes, Fabiano; Bradstock, Ross

    2015-04-01

    The sequestration of carbon has been identified as an important strategy to mitigate the effects of climate change. Fuel reduction burning and timber harvesting are two common co-occurring management practices within forests. Frequent burning and timber harvesting may alter forest carbon pools through the removal and redistribution of biomass and demographic and structural changes to tree communities. Synergistic and antagonistic interactions between frequent burning and harvesting are likely to occur, adding further complexity to the management of forest carbon stocks. Research aimed at understanding the interactive effects of frequent fire and timber harvesting on carbon biomass is lacking. This study utilised data from two long term (25 - 30 years) manipulative burning experiments conducted in southern Australia in temperate eucalypt forests dominated by resprouting canopy species. Specifically we examined the effect of fire frequency and harvesting on (i) total biomass of above ground carbon pools and (ii) demographic and structural characteristics of live trees. We also investigated some of the mechanisms driving these changes. Frequent burning reduced carbon biomass by up to 20% in the live tree carbon pool. Significant interactions occurred between fire and harvesting, whereby the reduction in biomass of trees >20 cm diameter breast height (DBH) was amplified by increased fire frequency. The biomass of trees <20 cm DBH increased with harvesting intensity in frequently burnt areas, but was unaffected by harvesting intensity in areas experiencing low fire frequency. Biomass of standing and fallen coarse woody debris was relatively unaffected by logging and fire frequency. Fire and harvesting significantly altered stand structure over the study period. Comparison of pre-treatment conditions to current conditions revealed that logged sites had a significantly greater increase in the number of small trees (<40 cm DBH) than unlogged sites. Logged sites showed a significant decrease in the number of large trees (>60 cm DBH) over the study period, while unlogged sites showed an increase. Frequently burnt logged sites showed the greatest reduction in large trees, presumably due to increased fire related mortality and collapse. Analysis of tree survival and growth data suggest that mortality rate is increased and growth rate reduced in frequently burnt areas compared to unburnt areas. Our findings suggest that future shifts towards more frequent fire (both prescribed fire and wildfire) could potentially lead to broad scale reductions in carbon sequestration in temperate forests and woodlands dominated by resprouting canopy species. Reductions in carbon sequestration associated with frequent burning will potentially be amplified in intensively harvested landscapes.

  7. Credit PSR. View looking north northeast (12°) across surface remains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. View looking north northeast (12°) across surface remains of North Base swimming pool. The southeast edge of the pool appearing in the foreground may seem to be a sidewalk to the casual observer; the wavy inside edge of this walk matches the pool side visible in historic construction photos (See HAER photo CA-170-Q-2). The telephone pole in the midground of the view is inside the pool proper. Building 4312 (Liquid Oxygen Repair Facility) appears in left background, Building 4456 (Fire House No. 4) in middle background, and Building 4444 (Communications Building) in right background - Edwards Air Force Base, North Base, Swimming Pool, Second Street, Boron, Kern County, CA

  8. Aerosol spectral optical depths - Jet fuel and forest fire smokes

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Livingston, J. M.

    1990-01-01

    The Ames autotracking airborne sun photometer was used to investigate the spectral depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.

  9. Assessing fire impacts on the carbon stability of fire-tolerant forests.

    PubMed

    Bennett, Lauren T; Bruce, Matthew J; Machunter, Josephine; Kohout, Michele; Krishnaraj, Saravanan Jangammanaidu; Aponte, Cristina

    2017-12-01

    The carbon stability of fire-tolerant forests is often assumed but less frequently assessed, limiting the potential to anticipate threats to forest carbon posed by predicted increases in forest fire activity. Assessing the carbon stability of fire-tolerant forests requires multi-indicator approaches that recognize the myriad ways that fires influence the carbon balance, including combustion, deposition of pyrogenic material, and tree death, post-fire decomposition, recruitment, and growth. Five years after a large-scale wildfire in southeastern Australia, we assessed the impacts of low- and high-severity wildfire, with and without prescribed fire (≤10 yr before), on carbon stocks in multiple pools, and on carbon stability indicators (carbon stock percentages in live trees and in small trees, and carbon stocks in char and fuels) in fire-tolerant eucalypt forests. Relative to unburned forest, high-severity wildfire decreased short-term (five-year) carbon stability by significantly decreasing live tree carbon stocks and percentage stocks in live standing trees (reflecting elevated tree mortality), by increasing the percentage of live tree carbon in small trees (those vulnerable to the next fire), and by potentially increasing the probability of another fire through increased elevated fine fuel loads. In contrast, low-severity wildfire enhanced carbon stability by having negligible effects on aboveground stocks and indicators, and by significantly increasing carbon stocks in char and, in particular, soils, indicating pyrogenic carbon accumulation. Overall, recent preceding prescribed fire did not markedly influence wildfire effects on short-term carbon stability at stand scales. Despite wide confidence intervals around mean stock differences, indicating uncertainty about the magnitude of fire effects in these natural forests, our assessment highlights the need for active management of carbon assets in fire-tolerant eucalypt forests under contemporary fire regimes. Decreased live tree carbon and increased reliance on younger cohorts for carbon recovery after high-severity wildfire could increase vulnerabilities to imminent fires, leading to decisions about interventions to maintain the productivity of some stands. Our multi-indicator assessment also highlights the importance of considering all carbon pools, particularly pyrogenic reservoirs like soils, when evaluating the potential for prescribed fire regimes to mitigate the carbon costs of wildfires in fire-prone landscapes. © 2017 by the Ecological Society of America.

  10. Analyzing post-fire topography at the hillslope-channel interface with terrestrial LiDAR: contrasting geomorphic responses from the 2012 Waldo Canyon Fire of Colorado and the 2013 Springs Fire of California

    NASA Astrophysics Data System (ADS)

    Storesund, R.; Chin, A.; Florsheim, J. L.; O'Hirok, L.; Williams, K.; Austin, K. E.

    2014-12-01

    Mountains areas are increasingly susceptible to wildfires because of warming climates. Although knowledge of the hydro-geomorphological impacts of wildfire has advanced in recent years, much is still unknown regarding how environmental fluxes move through burned watersheds. Because of the loss of vegetation and hydrophobic soils, flash floods often accompany elevated runoff events from burned watersheds, making direct process measurements challenging. Direct measurements are also only partly successful at capturing the spatial variations of post-fire effects. Coupled with short temporal windows for observing such responses, opportunities are often missed for collecting data needed for developing predictive models. Terrestrial LiDAR scanning (TLS) of burned areas allows detailed documentation of the post-fire topography to cm-level accuracy, providing pictures of geomorphic responses not previously possible. This paper reports a comparative study of hillslope-channel interactions, using repeat TLS, in two contrasting environments. Burned by the 2012 Waldo Canyon Fire and 2013 Springs Fire, in Colorado and California respectively, the study sites share many similarities including steep erosive slopes, small drainage areas, and step-pool channel morphologies. TLS provided a tool to test the central hypothesis that, dry ravel, distinct in the California Mediterranean environment, would prompt a greater sedimentological response from the Springs Fire compared to the Waldo Canyon Fire. At selected sites in each area, TLS documented baseline conditions immediately following the fire. Repeat scanning after major storms allowed detection of changes in the landscape. Results show a tendency for sedimentation in river channels in the study sites interacting with dry ravel on hillslopes, whereas erosion dominated the response from the Waldo Canyon Fire with an absence of dry ravel. These data provide clues to developing generalizations for post-fire effects at regional scales, which could assist with managing hazards from wildfires. TLS provides a promising tool to expand the range of studies concerning environmental responses through burned landscapes.

  11. Singular and combined effects of blowdown, salvage logging, and wildfire on forest floor and soil mercury pools

    Treesearch

    Carl P.J. Mitchell; Randall K. Kolka; Shawn Fraver

    2012-01-01

    A number of factors influence the amount of mercury (Hg) in forest floors and soils, including deposition, volatile emission, leaching, and disturbances such as fire. Currently the impact on soil Hg pools from other widespread forest disturbances such as blowdown and management practices like salvage logging are unknown. Moreover, ecological and biogeochemical...

  12. Characterization of Emissions from Liquid Fuel and Propane Open Burns.

    PubMed

    Aurell, Johanna; Hubble, David; Gullett, Brian K; Holder, Amara; Washburn, Ephraim; Tabor, Dennis

    2017-11-07

    The effect of accidental fires are simulated to understand the response of items such as vehicles, fuel tanks, and military ordnance and to remediate the effects through re-design of the items or changes in operational procedures. The comparative combustion emissions of using jet propellant (JP-5) liquid fuel pools or a propane manifold grid to simulate the effects of accidental fires was investigated. A helium-filled tethered aerostat was used to maneuver an instrument package into the open fire plumes to measure CO, CO 2 , fine particulate matter (PM 2.5 ), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and elemental/organic/total carbon (EC/OC/TC). The results showed that all emissions except CO 2 were significantly higher from JP-5 burns than from propane. The major portion of the PM mass from fires of both fuels was less than 1 μm in diameter and differed in carbon content. The PM 2.5 emission factor from JP-5 burns (129 ± 23 g/kg Fuel c ) was approximately 150 times higher than the PM 2.5 emission factor from propane burns (0.89 ± 0.21 g/kg Fuel c ). The PAH emissions as well as some VOCs were more than one hundred times higher for the JP-5 burns than the propane burns. Using the propane test method to study flammability responses, the environmental impact of PM 2.5 , PAHs, and VOCs would be reduced by 2300, 700, and 100 times per test, respectively.

  13. Gas Fride Heat Pumps : The Present and Future

    NASA Astrophysics Data System (ADS)

    Kurosawa, Shigekichi; Ogura, Masao

    In japan techniques for saving energy is an important goal since energy resources such as oil and nuclear power are limited. Recently gas fired absorption heat pumps and gas engine driven heat pumps have been installed in facilifies such as hotels, swimming pools and offices.
    In this article recent techniques, applications and future aspects for gas fired heat pumps are explained.

  14. Prescribed fire effects on field-derived and simulated forest carbon stocks over time

    Treesearch

    Nicole M. Vaillant; Alicia L. Reiner; Erin K. Noonan-Wright

    2013-01-01

    To better understand the impact of prescribed fire on carbon stocks, we quantified aboveground and belowground carbon stocks within five pools (live trees and coarse roots, dead trees and coarse roots, live understory vegetation, down woody debris, and litter and duff) and potential carbon emissions from a simulated wildfire before and up to 8 years after prescribed...

  15. Radiocarbon of Respired CO2 Following Fire in Alaskan Boreal Forest: Can Disturbance Release Old Soil Carbon to the Atmosphere?

    NASA Astrophysics Data System (ADS)

    Schuur, E. A.; Randerson, J. A.; Fessenden, J.; Trumbore, S. E.

    2002-12-01

    Fire in the boreal forest releases carbon stored in vegetation and soil to the atmosphere. Following fire, microbial decomposition is stimulated by inputs of plant detritus and changes in soil microclimate, which can result in large losses of carbon. Furthermore, warmer summer soil temperatures and deeper thaw depths in burned ecosystems may make carbon that was previously climatically protected by low soil temperatures susceptible to decomposition. We used radiocarbon measurements to estimate the age of carbon released by soil respiration following fire in two black spruce (Picea mariana) forests in interior Alaska that burned during the summer of 1999. To isolate soil respiration, we established manipulated plots where vegetation was prevented from recolonizing, and paired control plots in nearby unburned forest. Soil respiration radiocarbon signatures in the burned manipulation ranged from +112\\permil to +192\\permil and differed significantly from the unburned controls that ranged from +100\\permil to +130\\permil. Burned plots appear to respire older carbon than unburned forest, which could either be due to the stimulation of decomposition of intermediate age soil organic matter pools, to the lack of plant respiration that reflects the atmospheric radiocarbon signature of +92\\permil, or both. At least during the initial phase following fire, these data suggest that carbon fluxes from soil are dominated by soil organic matter pools with decadal scale turnover times.

  16. Assessment of the non-Gaussianity and non-linearity levels of simulated sEMG signals on stationary segments.

    PubMed

    Messaoudi, Noureddine; Bekka, Raïs El'hadi; Ravier, Philippe; Harba, Rachid

    2017-02-01

    The purpose of this paper was to evaluate the effects of the longitudinal single differential (LSD), the longitudinal double differential (LDD) and the normal double differential (NDD) spatial filters, the electrode shape, the inter-electrode distance (IED) on non-Gaussianity and non-linearity levels of simulated surface EMG (sEMG) signals when the maximum voluntary contraction (MVC) varied from 10% to 100% by a step of 10%. The effects of recruitment range thresholds (RR), the firing rate (FR) strategy and the peak firing rate (PFR) of motor units were also considered. A cylindrical multilayer model of the volume conductor and a model of motor unit (MU) recruitment and firing rate were used to simulate sEMG signals in a pool of 120 MUs for 5s. Firstly, the stationarity of sEMG signals was tested by the runs, the reverse arrangements (RA) and the modified reverse arrangements (MRA) tests. Then the non-Gaussianity was characterised with bicoherence and kurtosis, and non-linearity levels was evaluated with linearity test. The kurtosis analysis showed that the sEMG signals detected by the LSD filter were the most Gaussian and those detected by the NDD filter were the least Gaussian. In addition, the sEMG signals detected by the LSD filter were the most linear. For a given filter, the sEMG signals detected by using rectangular electrodes were more Gaussian and more linear than that detected with circular electrodes. Moreover, the sEMG signals are less non-Gaussian and more linear with reverse onion-skin firing rate strategy than those with onion-skin strategy. The levels of sEMG signal Gaussianity and linearity increased with the increase of the IED, RR and PFR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Fire severity impacts trajectories of vegetative regrowth and δ13C in organic pools and fluxes in Siberian/Alaskan forests

    NASA Astrophysics Data System (ADS)

    Fessenden, J. E.; Randerson, J. T.; Schuur, E.; Zimov, S.

    2002-12-01

    Stable carbon isotope ratios of carbon dioxide and leaf organic matter were measured in boreal forests of varying age and fire severity in Siberia and Alaska. This study focused on moderate and extreme severity burn sites in neighboring Alaskan forests ranging from 2 years to 160 years and Siberian forests ranging from 1 year to 200 years. The Alaskan forests were composed primarily of black spruce (Picea Mariana) and quaking aspen (Populus tremuloides) with a shift in species dominance from aspen to spruce approximately 50 years after fire disturbance. The Siberian forests were composed of Dahurian larch (Larix gmelinii). The understory species are the same in both Siberia and Alaska: dwarf birch (Betula nana), willow (Salix alaxensis), blueberry (Vaccinium ovalifolium), cranberry (Vaccinium vitis-idaea), and various moss and lichen species. Our aim was to determine how disturbance influenced local and regional carbon isotopic ratios in organic pools and fluxes. Samples of organic δ13C in whole leaf tissue were collected from the dominant species of each forest. δ13CO2 and [CO2] were measured on soil cuvette- and canopy-CO2 to determine the isotopic ratio of soil and ecosystem respiration, respectively. Plant functional type primarily controlled the organic δ13C composition, and changes in abundance of different plant functional types with time since fire lead to patterns of 13C-enrichment with increased forest age. Successional stage and species composition trajectory dictated the composition of heterotrophic respiration with more 13C-enriched values found in dry/cold coniferous areas. Burn severity and successional state largely determined the distribution and abundance of plant functional types which dictated the δ13C values of organic pools and fluxes in the ecosystems. These results suggest that fire severity and frequency changes the carbon isotope composition of ecosystems and biosphere-atmosphere fluxes in ways that are predictable at local and regional scales by changing species composition and regrowth patterns.

  18. Influence of prescribed fire on ecosystem biomass, carbon, and nitrogen in a pinyon juniper woodland

    Treesearch

    Benjamin M. Rau; Robin Tausch; Alicia Reiner; Dale W. Johnson; Jeanne C. Chambers; Robert R. Blank; Annmarrie Lucchesi

    2010-01-01

    Increases in pinyon and juniper woodland cover associated with land-use history are suggested to provide offsets for carbon emissions in arid regions. However, the largest pools of carbon in arid landscapes are typically found in soils, and aboveground biomass cannot be considered long-term storage in fire-prone ecosystems. Also, the objectives of carbon storage may...

  19. Effects of prescribed fire on nutrient pools and losses from glades occurring within oak-hickory forests of central Kentucky

    Treesearch

    T. L. E. Trammell; Charles Rhoades; P. A. Bukaveckas

    2004-01-01

    Forest openings, also known as glades, arise through a variety of mechanisms including disturbance (fire and blow downs) and local variation in soil or bedrock geology. They are common in many forest types and are often dominated by locally rare herbaceous species. Prescribed burning is increasingly used as a management approach for maintaining glades although...

  20. Ia Afferent input alters the recruitment thresholds and firing rates of single human motor units.

    PubMed

    Grande, G; Cafarelli, E

    2003-06-01

    Vibration of the patellar tendon recruits motor units in the knee extensors via excitation of muscle spindles and subsequent Ia afferent input to the alpha-motoneuron pool. Our first purpose was to determine if the recruitment threshold and firing rate of the same motor unit differed when recruited involuntarily via reflex or voluntarily via descending spinal pathways. Although Ia input is excitatory to the alpha-motoneuron pool, it has also been shown paradoxically to inhibit itself. Our second purpose was to determine if vibration of the patellar tendon during a voluntary knee extension causes a change in the firing rate of already recruited motor units. In the first protocol, 10 subjects voluntarily reproduced the same isometric force profile of the knee extensors that was elicited by vibration of the patellar tendon. Single motor unit recordings from the vastus lateralis (VL) were obtained with tungsten microelectrodes and unitary behaviour was examined during both reflex and voluntary knee extensions. Recordings from 135 single motor units showed that both recruitment thresholds and firing rates were lower during reflex contractions. In the second protocol, 7 subjects maintained a voluntary knee extension at 30 N for approximately 40-45 s. Three bursts of patellar tendon vibration were superimposed at regular intervals throughout the contraction and changes in the firing rate of already recruited motor units were examined. A total of 35 motor units were recorded and each burst of superimposed vibration caused a momentary reduction in the firing rates and recruitment of additional units. Our data provide evidence that Ia input modulates the recruitment thresholds and firing rates of motor units providing more flexibility within the neuromuscular system to grade force at low levels of force production.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal /Fluid Team

    The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less

  2. The alpha-motoneuron pool as transmitter of rhythmicities in cortical motor drive.

    PubMed

    Stegeman, Dick F; van de Ven, Wendy J M; van Elswijk, Gijs A; Oostenveld, Robert; Kleine, Bert U

    2010-10-01

    Investigate the effectiveness and frequency dependence of central drive transmission via the alpha-motoneuron pool to the muscle. We describe a model for the simulation of alpha-motoneuron firing and the EMG signal as response to central drive input. The transfer in the frequency domain is investigated. Coherence between stochastical central input and EMG is also evaluated. The transmission of central rhythmicities to the EMG signal relates to the spectral content of the latter. Coherence between central input to the alpha-motoneuron pool and the EMG signal is significant whereby the coupling strength hardly depends on the frequency in a range from 1 to 100 Hz. Common central input to pairs of alpha-motoneurons strongly increases the coherence levels. The often-used rectification of the EMG signal introduces a clear frequency dependence. Oscillatory phenomena are strongly transmitted via the alpha-motoneuron pool. The motoneuron firing frequencies do play a role in the transmission gain, but do not influence the coherence levels. Rectification of the EMG signal enhances the transmission gain, but lowers coherence and introduces a strong frequency dependency. We think that it should be avoided. Our findings show that rhythmicities are translated into alpha-motoneuron activity without strong non-linearities. Copyright 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Numerical simulations of LNG vapor dispersion in Brayton Fire Training Field tests with ANSYS CFX.

    PubMed

    Qi, Ruifeng; Ng, Dedy; Cormier, Benjamin R; Mannan, M Sam

    2010-11-15

    Federal safety regulations require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. One tool that is being developed in industry for exclusion zone determination and LNG vapor dispersion modeling is computational fluid dynamics (CFD). This paper uses the ANSYS CFX CFD code to model LNG vapor dispersion in the atmosphere. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the atmospheric conditions, LNG evaporation rate and pool area, turbulence in the source term, ground surface temperature and roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate uncertainties in the simulation results arising from the mesh size and source term turbulence intensity. In addition, a set of medium-scale LNG spill tests were performed at the Brayton Fire Training Field to collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX was able to describe the dense gas behavior of LNG vapor cloud, and its prediction results of downwind gas concentrations close to ground level were in approximate agreement with the test data. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Increased Force Variability Is Associated with Altered Modulation of the Motorneuron Pool Activity in Autism Spectrum Disorder (ASD).

    PubMed

    Wang, Zheng; Kwon, Minhyuk; Mohanty, Suman; Schmitt, Lauren M; White, Stormi P; Christou, Evangelos A; Mosconi, Matthew W

    2017-03-25

    Force control deficits have been repeatedly documented in autism spectrum disorder (ASD). They are associated with worse social and daily living skill impairments in patients suggesting that developing a more mechanistic understanding of the central and peripheral processes that cause them may help guide the development of treatments that improve multiple outcomes in ASD. The neuromuscular mechanisms underlying force control deficits are not yet understood. Seventeen individuals with ASD and 14 matched healthy controls completed an isometric index finger abduction test at 60% of their maximum voluntary contraction (MVC) during recording of the first dorsal interosseous (FDI) muscle to determine the neuromuscular processes associated with sustained force variability. Central modulation of the motorneuron pool activation of the FDI muscle was evaluated at delta (0-4 Hz), alpha (4-10 Hz), beta (10-35 Hz) and gamma (35-60 Hz) frequency bands. ASD patients showed greater force variability than controls when attempting to maintain a constant force. Relative to controls, patients also showed increased central modulation of the motorneuron pool at beta and gamma bands. For controls, reduced force variability was associated with reduced delta frequency modulation of the motorneuron pool activity of the FDI muscle and increased modulation at beta and gamma bands. In contrast, delta, beta, and gamma frequency oscillations were not associated with force variability in ASD. These findings suggest that alterations of central mechanisms that control motorneuron pool firing may underlie the common and often impairing symptoms of ASD.

  5. 47 CFR 90.20 - Public Safety Pool.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... authorized by law to provide its own police protection; (iii) Persons or entities engaged in the provision of... organizations charged with specific fire protection activities; (ii) Persons or organizations charged with...

  6. Radiative Transfer Modeling of a Large Pool Fire by Discrete Ordinates, Discrete Transfer, Ray Tracing, Monte Carlo and Moment Methods

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.; Ripoll, J.-F.; Wray, A. A.; Joseph, D.; ElHafi, M.

    2004-01-01

    Five computational methods for solution of the radiative transfer equation in an absorbing-emitting and non-scattering gray medium were compared on a 2 m JP-8 pool fire. The temperature and absorption coefficient fields were taken from a synthetic fire due to the lack of a complete set of experimental data for fires of this size. These quantities were generated by a code that has been shown to agree well with the limited quantity of relevant data in the literature. Reference solutions to the governing equation were determined using the Monte Carlo method and a ray tracing scheme with high angular resolution. Solutions using the discrete transfer method, the discrete ordinate method (DOM) with both S(sub 4) and LC(sub 11) quadratures, and moment model using the M(sub 1) closure were compared to the reference solutions in both isotropic and anisotropic regions of the computational domain. DOM LC(sub 11) is shown to be the more accurate than the commonly used S(sub 4) quadrature technique, especially in anisotropic regions of the fire domain. This represents the first study where the M(sub 1) method was applied to a combustion problem occurring in a complex three-dimensional geometry. The M(sub 1) results agree well with other solution techniques, which is encouraging for future applications to similar problems since it is computationally the least expensive solution technique. Moreover, M(sub 1) results are comparable to DOM S(sub 4).

  7. Effects of oblique air flow on burning rates of square ethanol pool fires.

    PubMed

    Tao, Changfa; He, Yaping; Li, Yuan; Wang, Xishi

    2013-09-15

    The effects of downward airflow on the burning rate and/or burning intensity of square alcohol pool fires for different airflow speeds and directions have been studied experimentally in an inclined wind tunnel. An interesting flame-wrapping phenomenon, caused by impingement of air flow, was observed. The mass burning intensity was found to increase with the airflow speed and the impinging angle. The fuel pan rim temperatures were also measured to study the effect of wind direction and speed on heat transfer from the flame to the fuel source. A model based on heat transfer analysis was developed to correlate the burning intensity with the pan rim characteristic temperature. A good correlation was established between the model results and the experimental results. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Housing Interventions and Control of Injury-Related Structural Deficiencies: A Review of the Evidence

    PubMed Central

    DiGuiseppi, Carolyn; Jacobs, David E.; Phelan, Kieran J.; Mickalide, Angela; Ormandy, David

    2010-01-01

    Subject matter experts systematically reviewed evidence on the effectiveness of housing interventions that affect safety and injury outcomes, such as falls, fire-related injuries, burns and drowning, carbon monoxide poisoning, heat-related deaths, and noise-related harm, associated with structural housing deficiencies. Structural deficiencies were defined as those deficiencies for which a builder, landlord, or homeowner would take responsibility (ie, design, construction, installation, repair, monitoring). Three of the 17 interventions reviewed had sufficient evidence for implementation: installed, working smoke alarms; 4-sided isolation pool fencing; and preset safe hot water temperature. Five interventions needed more field evaluation, 8 needed formative research, and 1 was found to be ineffective. This evidence review shows that housing improvements are likely to help reduce burns and scalds, drowning in pools, and fire-related deaths and injuries. PMID:20689373

  9. Fire dynamics and implications for nitrogen cycling in boreal forests

    USGS Publications Warehouse

    Harden, J.W.; Mack, M.; Veldhuis, H.; Gower, S.T.

    2003-01-01

    We used a dynamic, long-term mass balance approach to track cumulative carbon (C) and nitrogen (N) losses to fire in boreal Manitoba over the 6500 years since deglaciation. Estimated C losses to decomposition and fire, combined with measurements of N pools in mature and burned forest floors, suggest that loss of N by combustion has likely resulted in a long-term loss that exceeds the amount of N stored in soil today by 2 to 3 times. These estimates imply that biological N fixation rates could be as high as 5 to 10 times atmospheric deposition rates in boreal regions. At the site scale, the amount of N lost is due to N content of fuels, which varies by stand type and fire severity, which in turn vary with climate and fire dynamics. The interplay of fire frequency, fire severity, and N partitioning during regrowth are important for understanding rates and sustainability of nutrient and carbon cycling over millenia and over broad regions.

  10. Characterization of soot properties in two-meter JP-8 pool fires.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo-Anttila, Jill Marie; Jensen, Kirk A.; Blevins, Linda Gail

    2005-02-01

    The thermal hazard posed by large hydrocarbon fires is dominated by the radiative emission from high temperature soot. Since the optical properties of soot, especially in the infrared region of the electromagnetic spectrum, as well as its morphological properties, are not well known, efforts are underway to characterize these properties. Measurements of these soot properties in large fires are important for heat transfer calculations, for interpretation of laser-based diagnostics, and for developing soot property models for fire field models. This research uses extractive measurement diagnostics to characterize soot optical properties, morphology, and composition in 2 m pool fires. For measurementmore » of the extinction coefficient, soot extracted from the flame zone is transported to a transmission cell where measurements are made using both visible and infrared lasers. Soot morphological properties are obtained by analysis via transmission electron microscopy of soot samples obtained thermophoretically within the flame zone, in the overfire region, and in the transmission cell. Soot composition, including carbon-to-hydrogen ratio and polycyclic aromatic hydrocarbon concentration, is obtained by analysis of soot collected on filters. Average dimensionless extinction coefficients of 8.4 {+-} 1.2 at 635 nm and 8.7 {+-} 1.1 at 1310 nm agree well with recent measurements in the overfire region of JP-8 and other fuels in lab-scale burners and fires. Average soot primary particle diameters, radius of gyration, and fractal dimensions agree with these recent studies. Rayleigh-Debye-Gans theory of scattering applied to the measured fractal parameters shows qualitative agreement with the trends in measured dimensionless extinction coefficients. Results of the density and chemistry are detailed in the report.« less

  11. Pipe Overpack Container Fire Testing: Phase I II & III.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, Victor G.; Ammerman, Douglas J.; Lopez, Carlos

    The Pipe Overpack Container (POC) was developed at Rocky Flats to transport plutonium residues with higher levels of plutonium than standard transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) for disposal. In 1996 Sandia National Laboratories (SNL) conducted a series of tests to determine the degree of protection POCs provided during storage accident events. One of these tests exposed four of the POCs to a 30-minute engulfing pool fire, resulting in one of the 7A drum overpacks generating sufficient internal pressure to pop off its lid and expose the top of the pipe container (PC) to the firemore » environment. The initial contents of the POCs were inert materials, which would not generate large internal pressure within the PC if heated. POCs are now being used to store combustible TRU waste at Department of Energy (DOE) sites. At the request of DOE’s Office of Environmental Management (EM) and National Nuclear Security Administration (NNSA), starting in 2015 SNL conducted a series of fire tests to examine whether PCs with combustibles would reach a temperature that would result in (1) decomposition of inner contents and (2) subsequent generation of sufficient gas to cause the PC to over-pressurize and release its inner content. Tests conducted during 2015 and 2016 were done in three phases. The goal of the first phase was to see if the PC would reach high enough temperatures to decompose typical combustible materials inside the PC. The goal of the second test phase was to determine under what heating loads (i.e., incident heat fluxes) the 7A drum lid pops off from the POC drum. The goal of the third phase was to see if surrogate aerosol gets released from the PC when the drum lid is off. This report will describe the various tests conducted in phase I, II, and III, present preliminary results from these tests, and discuss implications for the POCs.« less

  12. Pipe Overpack Container Fire Testing: Phase I & II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, Victor G.; Ammerman, Douglas J.; Lopez, Carlos

    The Pipe Overpack Container (POC) was developed at Rocky Flats to transport plutonium residues with higher levels of plutonium than standard transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) for disposal. In 1996 Sandia National Laboratories (SNL) conducted a series of tests to determine the degree of protection POCs provided during storage accident events. One of these tests exposed four of the POCs to a 30-minute engulfing pool fire, resulting in one of the 7A drum overpacks generating sufficient internal pressure to pop off its lid and expose the top of the pipe container (PC) to the firemore » environment. The initial contents of the POCs were inert materials, which would not generate large internal pressure within the PC if heated. However, POCs are now being used to store combustible TRU waste at Department of Energy (DOE) sites. At the request of DOE’s Office of Environmental Management (EM) and National Nuclear Security Administration (NNSA), starting in 2015 SNL conducted a new series of fire tests to examine whether PCs with combustibles would reach a temperature that would result in (1) decomposition of inner contents and (2) subsequent generation of sufficient gas to cause the PC to over-pressurize and release its inner content. Tests conducted during 2015 and 2016, and described herein, were done in two phases. The goal of the first phase was to see if the PC would reach high enough temperatures to decompose typical combustible materials inside the PC. The goal of the second test phase was to determine under what heating loads (i.e., incident heat fluxes) the 7A drum lid pops off from the POC drum. This report will describe the various tests conducted in phase I and II, present preliminary results from these tests, and discuss implications for the POCs.« less

  13. Liquid Fuels: Pyrolytic Degradation and Fire Spread Behavior as Influenced by Buoyancy

    NASA Technical Reports Server (NTRS)

    Yeboah, Yaw D.; Malbrue, Courtney; Savage, Melane; Liao, Bo; Ross, Howard D. (Technical Monitor)

    2001-01-01

    This work is being conducted by the Combustion and Emission Control Lab in the Engineering Department at Clark Atlanta University under NASA Grant No. NCC3-707. The work aims at providing data to supplement the ongoing NASA research activities on fire spread across liquid pools by providing flow visualization and velocity measurements especially in the gas phase and gas-liquid interface. The fabrication, installation, and testing were completed during this reporting period. The system shakedown and detailed quantitative measurements with High Speed Video and Particle Image Velocimetry (PIV) systems using butanol as fuel were performed. New and interesting results, not previously reported in the literature, were obtained from the experiments using a modified NASA tray and butanol as fuel. Three distinct flame spread regimes, as previously reported, were observed. These were the pseudo-uniform regime below 20 C, the pulsating regime between 22 and 30 C and the uniform regime above about 31 C. In the pulsating regime the jump velocity appeared to be independent of the pool temperature. However, the retreat velocity between jumps appeared to depend on the initial pool temperature. The flame retreated before surging forwards with increasing brightness. Previous literature reported this phenomenon only under microgravity conditions. However, we observed such behavior in our normal gravity experiments. Mini-pulsations behind the flame front were also observed. Two or three of these pulsations were observed within a single flame front pulsating time period. The velocity vector maps of the gas and liquid phases ahead, during, and behind the flame front were characterized. At least one recirculation cell was observed right below the flame front.The size of the liquid phase vortex (recirculation cell) below the flame front appeared to decrease with increasing initial pool temperature. The experiments also showed how multiple vortices developed in the liquid phase. A large recirculation cell, which generally spins counterclockwise as the flame spread from right to left, was observed ahead of and near the flame front in the gas phase. Detailed quantitative measurements will be undertaken with the LDV and PIV systems using the modified NASA tray and propanol.

  14. The impact of fire on nitrogen availability in the Yukon Kuskokwim Delta, Alaska

    NASA Astrophysics Data System (ADS)

    Jardine, L.; Natali, S.; Schade, J. D.; Holmes, R. M.; Mann, P. J.; Pena, H., III

    2017-12-01

    Rising temperatures and changing precipitation patterns in the Arctic are increasing the severity and frequency of fires, resulting in direct and indirect changes to permafrost ecosystems. Due to slow rates of decomposition, nitrogen (N) is a highly limiting resource in tundra. The availability of N can be substantially altered following fire as a direct result of combustion of organic matter and also due to long-term changes in ecosystem structure and function. It is critical to understand both the short- (years) and long (decades)-term effects of fire on N availability because of the role of N in arctic ecosystems. In order to better understand the availability of N following fire, we collected active layer and permafrost soil and vegetation samples from unburned, 2015 burn scars, and 1972 burn scars in peat plateau tundra in the Yukon Kuskokwim Delta, Alaska. We measured carbon (C) and nitrogen (N) concentrations and pools in plants and soils, and soil organic matter content, extractable inorganic N and potentially mineralizable N in active layer (0-30 cm) and surface permafrost (to 100 cm). We found that active layer N concentrations were significantly lower in the two-year burn, but N concentrations in the 45-year burn were comparable to that of unburned tundra. The levels of ammonium in the active layer were nearly three times higher in both the two- and in the 45-year-old burns, while extractable nitrate was low (<3 ug/L) at all sites. These results suggest that ammonium is retained for decades following its initial post-fire increase or that new pools of ammonium are becoming available as a result of fire-mediated permafrost thaw or microbial community changes. These results suggest that 45 years after disturbance by fire, there is still a large potential for N assimilation, nitrification, or nitrous oxide production in tundra ecosystems. These findings are especially relevant as fire regimes intensify across the Arctic, which may have long-term consequences for plant and soil communities and ecosystem C and N storage.

  15. Liquefied Natural Gas (LNG) Import Terminals: Siting, Safety and Regulation

    DTIC Science & Technology

    2004-05-27

    LNG Natural gas is combustible , so an uncontrolled release of LNG poses a hazard of fire or, in confined spaces, explosion. LNG also poses hazards...ignition source, the evaporating gas in a combustible gas-air concentration will burn above the LNG pool.8 The resulting “pool fire” would spread as the...serious LNG hazard.10 Other Safety Hazards. LNG spilled on water could (theoretically) regasify almost instantly in a “ flameless explosion,” but an Idaho

  16. Fire Protection Informational Exchange

    DTIC Science & Technology

    2016-07-01

    0.95 L/min concurrent spray & 274x521 mm pool (66°C) i. Persistent fuels; turbine fuel in spray/pool; lubricant, hydraulic fluid in spray ii...conjugate image plane La Vision sCMOS + Kl long- distance microscope with CF4 objective wire .. " " " " ... in-line hologram image plane La...distance microscope with CF4 objective wire I phase disrurbanc.e (f= 2000 nun) .. " " " " ... in-line hologram image plane La Vision sCNlOS

  17. Examination of motor unit control properties of the vastus lateralis in an individual that had acute paralytic poliomyelitis.

    PubMed

    Herda, Trent J; Cooper, Michael A

    2014-08-01

    The purpose of the study was to examine motor unit (MU) recruitment and derecruitment thresholds and firing rates of the vastus lateralis between 2 healthy (HE) individuals (women, ages = 19 and 23 years) and 1 individual (man, age = 22 years) who acquired acute poliomyelitis (PO). Each participant performed submaximal isometric trapezoid muscle actions of the leg extensors from 20% to 90% maximal voluntary contraction in 10% increments with a sensor placed on the vastus lateralis to record electromyography. Electromyographic signals were decomposed into the firing events of single MUs. Linear regressions were performed on the firing rates at recruitment and peak firing rates versus the recruitment thresholds and the derecruitment versus recruitment thresholds. In addition, data were pooled together from all contractions to examine differences between PO and HE with independent samples t-tests calculated for firing rates at recruitment, peak firing rates, recruitment thresholds, derecruitment thresholds, and duration of MU activity. The results demonstrated systematic differences in MU control strategies between the PO and HE. There were differences in the recruitment thresholds (P < 0.001; HE = 30.5% ± 22.2% maximal voluntary contraction; PO = 14.5% ± 5.0% maximal voluntary contraction), firing rates at recruitment (P < 0.001; HE = 7.4 ± 2.5 pulses per second; PO = 6.2 ± 1.7 pulses per second) and peak firing rates across the force spectrum (P = 0.001; HE = 22.2 ± 5.8 pulses per second; PO = 20.3 ± 2.3 pulses per second), altered derecruitment versus recruitment relationships (HE slope = 0.82 derec/rec, PO slope = 1.78 derec/rec), and duration of MU activity (P < 0.001) between the PO (18.6 ± 2.4 seconds) and HE (15.3 ± 3.0 seconds). Future research should examine the possible differences in MU behavior between PO and HE as a result of fatigue to further elucidate disease-related changes in MU properties.

  18. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss

    Treesearch

    Jonathan A. O' Donnell; Jennifer W. Harden; A. David McGuire; Mikhail Z. Kanevskiy; M. Torre Jorgenson; Xiaomei Xu

    2010-01-01

    High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how...

  19. Modelling thermal radiation from one-meter diameter methane pool fires

    NASA Astrophysics Data System (ADS)

    Consalvi, J. L.; Demarco, R.

    2012-06-01

    The first objective of this article is to implement a comprehensive radiation model in order to predict the radiant fractions and radiative fluxes on remote surfaces in large-scale methane pool fires. The second aim is to quantify the importance of Turbulence-Radiation Interactions (TRIs) in such buoyant flames. The fire-induced flow is modelled by using a buoyancy-modified k-ɛ model and the Steady Laminar Flamelet (SLF) model coupled with a presumed probability density function (pdf) approach. Spectral radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. TRIs are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA). The emission term and the mean absorption coefficient are closed by using a presumed pdf of the mixture fraction, scalar dissipation rate and enthalpy defect. Two 1m-diameter fires with Heat Release Rates (HRR) of 49 kW and 162 kW were simulated. Predicted radiant fractions and radiative heat fluxes are found in reasonable agreement with experimental data. The importance of TRIs is evidenced, computed radiant fractions and radiative heat fluxes being considerably higher than those obtained from calculations based on mean properties. Finally, model results show that the complete absorption coefficient-Planck function correlation should be considered in order to properly take into account the influence of TRIs on the emission term, whereas the absorption coefficient self-correlation in the absorption term reduces significantly the radiant fractions.

  20. The Burning of Surface and Deep Peat during Boreal Forest and Peatland Fires: Implications for Fire Behaviour and Global Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Turetsky, M. R.

    2015-12-01

    Fire is increasingly appreciated as a threat to peatlands and their carbon stocks. The global peatland carbon pool exceeds that of global vegetation and is similar to the current atmospheric carbon pool. Under pristine conditions, most of the peat carbon stock is protected from burning, and resistance to fire has increased peat carbon storage in high latitude regions over long time scales. This, in part, is due to the high porosity and storage coefficient of surface peat, which minimizes water table variability and maintains wet conditions even during drought. However, higher levels of disturbance associated with warming and increasing human activities are triggering state changes and the loss of resiliency in some peatland systems. This presentation will summarize information on burn area and severity in peatlands under undisturbed scenarios of hydrologic self-regulation, and will assess the consequences of warming and drying on peatland vegetation and wildfire behaviour. Our goal is to predict where and when peatlands will become more vulnerable to deep smouldering, given the importance of deep peat layers to global carbon cycling, permafrost stability, and a variety of other ecosystem services in northern regions. Results from two major wildfire seasons (2004 in Alaska and 2014 in the Northwest Territories) show that biomass burning in peatlands releases similar amounts of carbon to the atmosphere as patterns of burning in upland forests, but that peatlands are less vulnerable to severe burning that tends to occur in boreal forests during late season fire activity.

  1. Shifts in microbial communities and soil nutrients along a fire chronosequence in Alaskan boreal forest

    NASA Astrophysics Data System (ADS)

    Treseder, K. K.; Mack, M. C.; Cross, A.

    2002-12-01

    Fires are important pathways of carbon loss from boreal forests, while microbial communities form equally important mechanisms for carbon accumulation between fires. We used a chronosequence in Alaska to examine shifts in microbial abundance and community composition in the several decades following severe fire, and then related these responses to soil characteristics in the same sites. The sites are located in upland forests near Delta Junction, Alaska, and represent stages at 3-, 15-, 45-, and over 100-yr following fire. Plant communities shift from herbaceous species in the youngest site, to deciduous shrubs and trees (e.g. Populus tremuloides and Salix) in the intermediate sites, to black spruce (Picea mariana) forest in the oldest site. Soil organic matter accumulated 2.8-fold over time. Potential mineralization was highest in the intermediate-aged sites, as was nitrification and standing pools of inorganic nitrogen. In contrast, inorganic phosphorus pools were highest immediately following fire, and then decreased nine-fold with age. As measured with BiologTM plates, bacterial diversity and abundance were greatest in the oldest sites. Plant roots in the intermediate-aged sites displayed higher colonization by ecto- and arbuscular mycorrhizal fungi than those in the youngest and oldest sites. Likewise, glomalin, a glycoprotein produced by arbuscular mycorrhizal fungi, was most abundant in the 14-yr old site. Glomalin is believed to contribute to the formation of water-stable aggregates in the soil. However, water stable aggregates were most abundant in the younger sites and did not follow the pattern of glomalin or arbuscular mycorrhizal abundance. Our results indicate that fire may maintain landscape-level diversity of microbial functional groups, and that carbon sequestration in microbial tissues (e.g. glomalin and fungal biomass) may be greatest in areas that have burned several decades earlier. Changes in soil structure may not be directly attributable to microbial activity.

  2. Increased Force Variability Is Associated with Altered Modulation of the Motorneuron Pool Activity in Autism Spectrum Disorder (ASD)

    PubMed Central

    Wang, Zheng; Kwon, MinHyuk; Mohanty, Suman; Schmitt, Lauren M.; White, Stormi P.; Christou, Evangelos A.; Mosconi, Matthew W.

    2017-01-01

    Force control deficits have been repeatedly documented in autism spectrum disorder (ASD). They are associated with worse social and daily living skill impairments in patients suggesting that developing a more mechanistic understanding of the central and peripheral processes that cause them may help guide the development of treatments that improve multiple outcomes in ASD. The neuromuscular mechanisms underlying force control deficits are not yet understood. Seventeen individuals with ASD and 14 matched healthy controls completed an isometric index finger abduction test at 60% of their maximum voluntary contraction (MVC) during recording of the first dorsal interosseous (FDI) muscle to determine the neuromuscular processes associated with sustained force variability. Central modulation of the motorneuron pool activation of the FDI muscle was evaluated at delta (0–4 Hz), alpha (4–10 Hz), beta (10–35 Hz) and gamma (35–60 Hz) frequency bands. ASD patients showed greater force variability than controls when attempting to maintain a constant force. Relative to controls, patients also showed increased central modulation of the motorneuron pool at beta and gamma bands. For controls, reduced force variability was associated with reduced delta frequency modulation of the motorneuron pool activity of the FDI muscle and increased modulation at beta and gamma bands. In contrast, delta, beta, and gamma frequency oscillations were not associated with force variability in ASD. These findings suggest that alterations of central mechanisms that control motorneuron pool firing may underlie the common and often impairing symptoms of ASD. PMID:28346344

  3. SIERRA Low Mach Module: Fuego User Manual Version 4.46.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal/Fluid Team

    2017-09-01

    The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less

  4. SIERRA Low Mach Module: Fuego Theory Manual Version 4.44

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal /Fluid Team

    2017-04-01

    The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less

  5. SIERRA Low Mach Module: Fuego Theory Manual Version 4.46.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal/Fluid Team

    The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less

  6. Measurement of soot morphology, chemistry, and optical properties in the visible and near-infrared spectrum in the flame zone and overfire region of large JP-8 pool fires.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo-Anttila, Jill Marie; Jensen, Kirk A.; Blevins, Linda Gail

    2005-03-01

    The dimensionless extinction coefficient, K{sub e}, was measured for soot produced in 2 m JP-8 pool fires. Light extinction and gravimetric sampling measurements were performed simultaneously at 635 and 1310 nm wavelengths at three heights in the flame zone and in the overfire region. Measured average K{sub e} values of 8.4 {+-} 1.2 at 635 nm and 8.7 {+-} 1.1 at 1310 nm in the overfire region agree well with values from 8-10 recently reported for different fuels and flame conditions. The overfire K{sub e} values are also relatively independent of wavelength, in agreement with recent findings for JP-8 sootmore » in smaller flames. K{sub e} was nearly constant at 635 nm for all sampling locations in the large fires. However, at 1310 nm, the overfire K{sub e} was higher than in the flame zone. Chemical analysis of physically sampled soot shows variations in carbon-to-hydrogen (C/H) ratio and polycyclic aromatic hydrocarbon (PAH) concentration that may account for the smaller K{sub e} values measured in the flame zone. Rayleigh-Debye-Gans theory of scattering for polydisperse fractal aggregate (RDG-PFA) was applied to measured aggregate fractal dimensions and found to under-predict the extinction coefficient by 17-30% at 635 nm using commonly accepted refractive indices of soot, and agreed well with the experiments using the more recently published refractive index of 1.99-0.89i. This study represents the first measurements of soot chemistry, morphology, and optical properties in the flame zone of large, fully-turbulent pool fires, and emphasizes the importance of accurate measurements of optical properties both in the flame zone and overfire regions for models of radiative transport and interpretation of laser-based diagnostics of soot volume fraction and temperature.« less

  7. Modelling thermal radiation in buoyant turbulent diffusion flames

    NASA Astrophysics Data System (ADS)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  8. Oil Fires and Oil Slick, Kuwait

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In this color infrared view of the Kuwait oil fires and offshore oil slick, (29.0N, 48.0E), smoke from the burning oil fields both to the north and south of Kuwait City almost totally obliterates the image. Unburned pools of oil on the ground and oil offshore in the Persian Gulf are reflecting sunlight, much the same way as water does, and appear as white or light toned features. The water borne oil slicks drifted south toward the Arab Emirate States.

  9. Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem

    PubMed Central

    Turner, Monica G.; Smithwick, Erica A. H.; Metzger, Kristine L.; Tinker, Daniel B.; Romme, William H.

    2007-01-01

    Understanding ecosystem processes as they relate to wildfire and vegetation dynamics is of growing importance as fire frequency and extent increase throughout the western United States. However, the effects of severe, stand-replacing wildfires are poorly understood. We studied inorganic nitrogen pools and mineralization rates after stand-replacing wildfires in the Greater Yellowstone Ecosystem, Wyoming. After fires that burned in summer 2000, soil ammonium concentration peaked in 2001 (33 mg NH4-N· kgsoil−1); soil nitrate increased subsequently (2.7 mg NO3-N·kgsoil−1 in 2003) but was still low. However, annual net ammonification rates were largely negative from 2001 to 2004, indicating ammonium depletion. Thus, although net nitrification rates were positive, annual net nitrogen mineralization (net ammonification plus net nitrification) remained low. Aboveground net primary production (ANPP) increased from 0.25 to 1.6 Mg·ha−1·yr−1 from 2001 to 2004, but variation in ANPP among stands was not related to net nitrogen mineralization rates. Across a broader temporal gradient (stand age zero to >250 yr), negative rates of net annual ammonification were especially pronounced in the first postfire year. Laboratory incubations using 15N isotope pool dilution revealed that gross production of ammonium was reduced and ammonium consumption greatly exceeded gross production during the initial postfire years. Our results suggest a microbial nitrogen sink for several years after severe, stand-replacing fire, confirming earlier hypotheses about postdisturbance succession and nutrient cycling in cold, fire-dominated coniferous forests. Postfire forests in Yellowstone seem to be highly conservative for nitrogen, and microbial immobilization of ammonium plays a key role during early succession. PMID:17360349

  10. Effects of forest fire on soil nutrients in Turkish pine (Pinus brutia, Ten) ecosystems.

    PubMed

    Yildiz, Oktay; Esen, Derya; Sarginci, Murat; Toprak, Bulent

    2010-01-01

    Fire is a long-standing and poorly understood component of the Mediterranean forestlands in Turkey. Fire can alter plant composition, destroy biomass, alter soil physical and chemical properties and reduce soil nutrient pools. However fire can also promote productivity of certain ecosystems by mineralizing soil nutrients and promoting fast growing nitrogen fixing plant species. Fire effects on soils and ecosystems in Turkey and Mediterranean regions are not well understood. This study uses a retrospective space-for-time substitution to study soil macro-nutrient changes on sites which were burned at different times during the last 8 years. The study sites are in the Fethiye Forest Management Directorate in the western Mediterranean Sea region of Turkey. Our samples show 40% less Soil C, and cation exchange capacity (CEC) at 0-20 cm soil depth two weeks after the fire. Soil C and CEC appear to recover to pre-fire level in one year. Concentrations of Mg were significantly lower on new-burn sites, but returned to pre-fire levels in one year. Total soil N concentrations one and two years after fire were 90% higher than other sites, and total P was 9 times higher on new-burn site than averages from other sites. Some implications of these results for forest managers are discussed.

  11. Holding multiple items in short term memory: a neural mechanism.

    PubMed

    Rolls, Edmund T; Dempere-Marco, Laura; Deco, Gustavo

    2013-01-01

    Human short term memory has a capacity of several items maintained simultaneously. We show how the number of short term memory representations that an attractor network modeling a cortical local network can simultaneously maintain active is increased by using synaptic facilitation of the type found in the prefrontal cortex. We have been able to maintain 9 short term memories active simultaneously in integrate-and-fire simulations where the proportion of neurons in each population, the sparseness, is 0.1, and have confirmed the stability of such a system with mean field analyses. Without synaptic facilitation the system can maintain many fewer memories active in the same network. The system operates because of the effectively increased synaptic strengths formed by the synaptic facilitation just for those pools to which the cue is applied, and then maintenance of this synaptic facilitation in just those pools when the cue is removed by the continuing neuronal firing in those pools. The findings have implications for understanding how several items can be maintained simultaneously in short term memory, how this may be relevant to the implementation of language in the brain, and suggest new approaches to understanding and treating the decline in short term memory that can occur with normal aging.

  12. Holding Multiple Items in Short Term Memory: A Neural Mechanism

    PubMed Central

    Rolls, Edmund T.; Dempere-Marco, Laura; Deco, Gustavo

    2013-01-01

    Human short term memory has a capacity of several items maintained simultaneously. We show how the number of short term memory representations that an attractor network modeling a cortical local network can simultaneously maintain active is increased by using synaptic facilitation of the type found in the prefrontal cortex. We have been able to maintain 9 short term memories active simultaneously in integrate-and-fire simulations where the proportion of neurons in each population, the sparseness, is 0.1, and have confirmed the stability of such a system with mean field analyses. Without synaptic facilitation the system can maintain many fewer memories active in the same network. The system operates because of the effectively increased synaptic strengths formed by the synaptic facilitation just for those pools to which the cue is applied, and then maintenance of this synaptic facilitation in just those pools when the cue is removed by the continuing neuronal firing in those pools. The findings have implications for understanding how several items can be maintained simultaneously in short term memory, how this may be relevant to the implementation of language in the brain, and suggest new approaches to understanding and treating the decline in short term memory that can occur with normal aging. PMID:23613789

  13. Organization of the motor-unit pool for different directions of isometric contraction of the first dorsal interosseous muscle.

    PubMed

    Lei, Yuming; Suresh, Nina L; Rymer, William Z; Hu, Xiaogang

    2018-01-01

    Muscle force generation involves recruitment and firing rate modulation of motor units (MUs). The control of MUs in producing multidirectional forces remains unclear. We studied MU recruitment and firing properties, recorded from the first dorsal interosseous muscle, for 3 different directions of contraction: abduction; abduction/flexion combination; and flexion. MUs were recruited systematically at higher threshold force during flexion. Larger MUs were recruited and firing rates of MUs were lower during abduction. There was an orderly recruitment of MUs according to MU size regardless of contraction direction, obeying the "size principle." Firing rates of earlier-recruited MUs were consistently higher than later-recruited MUs, affirming the "onion-skin" property. Our findings suggest that the size principle and onion-skin organization together provide a general description of MU recruitment patterns and firing properties. The directional alternations of MU control properties likely reflect changes in neural drive to the muscle. Muscle Nerve 57: E85-E93, 2018. © 2017 Wiley Periodicals, Inc.

  14. Soils of postpyrogenic larch stands in Central Siberia: Morphology, physicochemical properties, and specificity of soil organic matter

    NASA Astrophysics Data System (ADS)

    Startsev, V. V.; Dymov, A. A.; Prokushkin, A. S.

    2017-08-01

    Morphological features, physicochemical properties, and specific characteristics of the organic matter of cryozems (Cryosols) under postpyrogenic larch forests affected by fires 2, 6, 22, 55, and 116 years ago are considered. The morphological changes in the soils affected by fires are manifested by the burning of the upper organic horizons with preservation of pyrogenic features in the soils for more than a century after the fire. In the first years (2 and 6 years) after the fire, the acidity of the organic horizons and their base saturation become lower. The postpyrogenic soils are characterized by the smaller contribution of the organic horizons to the total pools of soil organic carbon. In the studied cryozems, the organic carbon content is correlated with the contents of oxalate-extractable iron and aluminum. A decrease in the content of water-soluble organic compounds in the soils is observed after the fires; gradually, their content increases upon restoration of the ground cover.

  15. Recurrent fires and environment shape the vegetation in Quercus suber L. woodlands and maquis.

    PubMed

    Schaffhauser, Alice; Curt, Thomas; Véla, Errol; Tatoni, Thierry

    2012-06-01

    The effects of fire recurrence on vegetation patterns in Quercus suber L. and Erica-Cistus communities in Mediterranean fire-prone ecosystems of south-eastern France were examined on stands belonging to 5 fire classes, corresponding to different numbers of fires (from 0 to 4) and time intervals between fires since 1959. A common pool of species was identified among the plots, which was typical of both open and closed maquis. Fire recurrence reduced the abundance of trees and herbs, whereas it increased the abundance of small shrubs. Richness differed significantly between the most contrasting classes of fire recurrence, with maximal values found in control plots and minimal values in plots that had burned recurrently and recently. Equitability indices did not vary significantly, in contrast to Shannon's diversity index which mostly correlated with richness. Forest ecosystems that have burnt once or twice in the last 50 years were resilient; that is to say they recovered a biomass and composition similar to that of the pre-fire state. However, after more than 3-4 fires, shrubland communities displayed lower species richness and diversity indices than unburned plots. The time since the last fire and the number of fires were the most explanatory fire variables, governing the structure of post-fire plant communities. However, environmental factors, such as slope or exposure, also made a significant contribution. Higher rates of fire recurrence can affect the persistence or expansion of shrublands in the future, as observed in other Mediterranean areas. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. A review of land-based greenhouse gas flux estimates in Indonesia

    NASA Astrophysics Data System (ADS)

    Austin, Kemen G.; Harris, Nancy L.; Wijaya, Arief; Murdiyarso, Daniel; Harvey, Tom; Stolle, Fred; Kasibhatla, Prasad S.

    2018-05-01

    This study examines underlying reasons for differences among land-based greenhouse gas flux estimates in Indonesia, where six national inventories reported average emissions of between 0.4 and 1.1 Gt CO2e yr‑1 over the 2000–2012 period. The large range among estimates is only somewhat smaller than Indonesia’s GHG mitigation commitment. To determine the reasons for these differences, we compared input data and estimation methods, including the definitions and assumptions used for setting accounting boundaries, including emitting activities, incorporating fluxes from various carbon pools, and handling legacy fluxes. We also tested the sensitivity of methodological differences by generating our own reference emissions estimate and iteratively modifying individual components of the inventory. We found that the largest changes stem from the inclusion of legacy GHG emissions due to peat drainage (which increased emissions by at least +94% compared to the reference), methane emissions due to peat fires (+35%), and GHG emissions from belowground biomass and necromass carbon pools (+61%), modifications to assumptions of the mass of fuel burnt in peat fire events (+88%), and accounting for regrowth following a deforestation event (‑31%). These differences cumulatively explain more than half of the observed difference among inventory estimates. Understanding the various approaches to emissions estimation, and how these influence the magnitude of component GHG fluxes, is an important first step towards reconciling GHG inventories. The Indonesian government’s success in achieving its mitigation goal will depend on its ability to measure progress and evaluate the effectiveness of abatement actions, for which reliable harmonized greenhouse gas inventories are an essential foundation.

  17. Diesel oil pool fire characteristic under natural ventilation conditions in tunnels with roof openings.

    PubMed

    Wang, Yanfu; Jiang, Juncheng; Zhu, Dezhi

    2009-07-15

    In order to research the fire characteristic under natural ventilation conditions in tunnels with roof openings, full-scale experiment of tunnel fire is designed and conducted. All the experimental data presented in this paper can be further applied for validation of numerical simulation models and reduced-scale experimental results. The physical model of tunnel with roof openings and the mathematical model of tunnel fire are presented in this paper. The tunnel fire under the same conditions as experiment is simulated using CFD software. From the results, it can be seen that most smoke is discharged directly off the tunnel through roof openings, so roof openings are favorable for exhausting smoke. But along with the decrease of smoke temperatures, some smoke may backflow and mix with the smoke-free layer below, which leads to fall in visibility and is unfavorable for personnel evacuation. So it is necessary to research more efficient ways for improving the smoke removal efficiency, such as early fire detection systems, adequate warning signs and setting tunnel cap.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Preliminary Assessment/Site Inspection Report of Areas Of concern (AOC) A thru F at WK Kellogg, Battle Creek, MI. A Preliminary Assessment/Site Inspection was performed on 6 AOC`s at WK Kellogg to confirm or deny the presence of contamination a the AOC`s. The AOC`s involved in this investigation include. AOC A, Waste Accumulation Area; AOC B, Motor Pool Drainage Ditch; AOC C, Fire Training Area South; AOC D, Fire Training Area West; AOC E, Old Hanger (Building 6900); AOC F, New Hanger (Building 6901). The recommendation is for AOC`s A and B continue to the RI/FS stage.

  19. A Study of Aircraft Post-Crash Fuel Fire Mitigation

    DTIC Science & Technology

    1994-06-01

    AD-A282. 208 A STUDY OF AIRCRAFT POST-CRASH FUEL FIRE MITIGATION INTERIM REPORT BFLRF No. 292 By D.W. Naegeli B.R. Wright Belvoir Fuels and...DAAK7D-S7-C4.004; WD 36 6. AUTHOR(S) DA7-2C0.W Naegeli D"i N. and Wrigl* Bomnd L sed Zabne, David bi (Zalle. Assoiaes) 7. PERFORMING ORGANIZATION NAME...Proceedings, December 3-5, 1991. 6. Weatherford, W.D., Jr. and Naegeli , D,W., "Study of Pool Burning Self-Extinguishment Mechanisms in Aqueous Diesel

  20. Burning transformations: Fire history effects on organic matter processing from hillslopes to streams

    NASA Astrophysics Data System (ADS)

    Barnes, R. T.; Gilbertson, A.; Maxwell, K.

    2017-12-01

    Disturbance strongly regulates material and energy flows, changing ecosystem pattern and process. An increase in the size and severity of fire, particularly in the Intermountain West, over the last several decades is expected to continue due to a warming climate. Predicting how fire will alter the net ecosystem carbon balance requires us to understand how carbon is stored, processed, and transferred. Here we present results from paired watersheds focused on five 2002 severe fires in Colorado to examine how organic matter is processed along the hillslope and within the stream. Comparing soil samples and water extractable organic matter (WEOM) between burned and unburned sites illustrates the impact of fire: burned soils have 50% organic matter (OM) content as unburned soils, regardless of geomorphic position. While a smaller pool, soil OM (SOM) in burned sites is more susceptible to microbial degradation (p<0.001 for 4 of 6 sites), especially in systems with slower vegetative recovery. This is explained, in part, to the water extractable organic matter (WEOM) from unburned soils having a higher C:N than burned sites (p<0.02). This shift in SOM quality is likely due to differing OM inputs (e.g. grasses and forbes vs. trees in burned vs. unburned sites). Comparing results from intact soil column experiments to soil extractions and stream samples, suggests that the majority of this soil derived WEOM does not make it to the stream, potentially getting sorbed deeper in the mineral rich, organic poor, portion of the soil. Interestingly, the systematic shifts in OM amounts and quality (as measured by SUVA, E2:E3, and fluorescence) within the terrestrial system in response to fire, are not seen in stream exports. As such, while there are significant relationships (p<0.05) between stream DOM quality, DOM bioavailability, and stream metabolism, burned watersheds are not exporting DOM that is more bioavailable. In addition, despite different terrestrial OM pools, burned and unburned watersheds export statistically similar amounts of DOM per unit area, suggesting that a larger fraction of OM is transferred from the terrestrial to aquatic ecosystem within fire affected landscapes.

  1. Early thermal testing of type B radioactive material packages in USA to environments beyond regulatory package thermal test standards

    DOE PAGES

    Yoshimura, H. R.; Pope, R. B.; Kubo, M.

    2007-06-01

    Three separate fire test programmes exposing casks beyond the regulatory thermal test requirements were performed by Sandia National Laboratories during the late 1970s and mid 1980s. The results of these test programmes can be used to assist in addressing the adequacy of the regulatory thermal test of fully engulfing exposure at 800°C for 30 min and how that test might relate to real accident thermal environments. The test programmes were undertaken on obsolete and new casks on behalf of the US Department of Energy (DOE), the US Department of Transportation (DOT) and the Japanese Power Reactor and Nuclear Fuel Developmentmore » Corporation (PNC), currently known as the Japan Atomic Energy Agency. Two of the tests involved exposure of casks in damaged transport vehicles to fully engulfing fires for 72–125 min, and the other test involved four exposures of a cask to torch environments for 30 min. Much of the original documentation regarding these tests and their results is no longer readily available. The documents relating to these tests have been surveyed; this paper presents summaries from this survey of the tests and their results. Specifically, for the pool fire exposures, the temperatures measured in the flames of both exceeded the flame temperature required by the Transport Regulations; yet an obsolete 67 t cask endured 90 min of exposure before evidence of failure was detected, and a new cask endured the 72 min exposure while retaining its containment integrity. For the exposure of a modified obsolete cask to four different torch environments, the integrity of the cask was retained and the relative temperature increases within the cask were well within acceptable limits and well below the values that could be expected if the cask was exposed to the regulatory thermal test. In this paper, a review of these three thermal test programmes, establishes that the two older cask designs and one new cask design have the ability to survive environments that were different from (the torch environments) or more severe than the environment specified by the existing thermal test requirement in the Transport Regulations. Finally, these results can be extrapolated to apply to modern casks that generally have more robust designs as well as better quality assurance applied during the manufacturing process.« less

  2. Fires in Myanmar (2007)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In Southeast Asia, fires are common and widespread throughout the dry season, which roughly spans the northern hemisphere winter months. People set fires to clear crop stubble and brush and to prepare grazing land for a new flush of growth when the rainy season arrives. These intentional fires are too frequently accompanied by accidental fires that invade nearby forests and woodlands. The combination of fires produces a thick haze that alternately lingers and disperses, depending on the weather. This image from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite shows fire activity on March 19, 2007, across eastern India, Myanmar, Thailand, Laos, and China. Places where MODIS detected actively burning fires are marked in red on the image. The darker green areas are generally more wooded areas or forests, while the paler green and tan areas are agricultural land. Smoke pools over low-lying areas of the hilly terrain in gray pockets. The green tops of rolling hills in Thailand emerge from a cloud of low-lying smoke. According to news reports from Thailand, the smoke blanket created air quality conditions that were considered unhealthy for all groups, and it prompted the Thai Air Force to undertake cloud-seeding attempts in an effort to cleanse the skies with rain. Commercial air traffic was halted due to poor visibility.

  3. Smouldering Fires in the Earth System

    NASA Astrophysics Data System (ADS)

    Rein, G.

    2012-04-01

    Smouldering fires, the slow, low-temperature, flameless burning, represent the most persistent type of combustion phenomena and the longest continuously fires on Earth system. Indeed, smouldering mega-fires of peatlands occur with some frequency during the dry session in, for example, Indonesia, Canada, Russia, UK and USA. Smouldering fires propagate slowly through organic layers of the ground and can reach depth >5 m if large cracks, natural piping or channel systems exist. It threatens to release sequestered carbon deep into the soil. Once ignited, they are particularly difficult to extinguish despite extensive rains, weather changes or fire-fighting attempts, and can persist for long periods of time (months, years) spreading deep and over extensive areas. Recent figures at the global scale estimate that average annual greenhouse gas emissions from smouldering fires are equivalent to 15% of man-made emissions. These fires are difficult or impossible to detect with current remote sensing methods because the chemistry is significantly different, their thermal radiation signature is much smaller, and the plume is much less buoyant. These wildfires burn fossil fuels and thus are a carbon-positive fire phenomena. This creates feedbacks in the climate system because soil moisture deficit and self-heating are enchanted under warmer climate scenarios and lead to more frequent fires. Warmer temperatures at high latitudes are resulting in more frequent Artic fires. Unprecedented permafrost thaw is leaving large soil carbon pools exposed to smouldering fires for the fist time since millennia. Although interactions between flaming fires and the Earth system have been a central focus, smouldering fires are as important but have received very little attention. DBut differences with flaming fires are important. This paper reviews the current knowledge on smouldering fires in the Earth system regarding combustion dynamics, damage to the soil, emissions, remote sensing and feedbacks in the climate system.

  4. Carbon, fire, and fuels: The importance of fuels and fuel characterization and the status of wildland fire fuels data for the United States

    NASA Astrophysics Data System (ADS)

    French, N. H. F.; Prichard, S.; McKenzie, D.; Kennedy, M. C.; Billmire, M.; Ottmar, R. D.; Kasischke, E. S.

    2016-12-01

    Quantification of emissions of carbon during combustion relies on knowing three general variables: how much landscape is impacted by fire (burn area), how much carbon is in that landscape (fuel loading), and fuel properties that determine the fraction that is consumed (fuel condition). These variables also determine how much carbon remains at the site in the form of unburned organic material or char, and therefore drive post-fire carbon dynamics and pools. In this presentation we review the importance of understanding fuel type, fuel loading, and fuel condition for quantifying carbon dynamics properly during burning and for measuring and mapping fuels across landscapes, regions, and continents. Variability in fuels has been shown to be a major driver of uncertainty in fire emissions, but has had little attention until recently. We review the current state of fuel characterization for fire management and carbon accounting, and present a new approach to quantifying fuel loading for use in fire-emissions mapping and for improving fire-effects assessment. The latest results of a study funded by the Joint Fire Science Program (JFSP) are presented, where a fuel loading database is being built to quantify variation in fuel loadings, as represented in the Fuel Characteristic Classification System (FCCS), across the conterminous US and Alaska. Statistical assessments of these data at multiple spatial scales will improve tools used by fire managers and scientists to quantify fire's impact on the land, atmosphere, and carbon cycle.

  5. Soil physical, chemical and gas-flux characterization from Picea mariana stands near Erickson Creek, Alaska

    USGS Publications Warehouse

    O'Donnell, Jonathan A.; Harden, Jennifer W.; Manies, Kristen L.

    2011-01-01

    Fire is a particularly important control on the carbon (C) balance of the boreal forest, and fire-return intervals and fire severity appear to have increased since the late 1900s in North America. In addition to the immediate release of stored C to the atmosphere through organic-matter combustion, fire also modifies soil conditions, possibly affecting C exchange between terrestrial and atmospheric pools for decades after the burn. The effects of fire on ecosystem C dynamics vary across the landscape, with topographic position and soil drainage functioning as important controls. The data reported here contributed to a larger U.S. Geological Survey (USGS) study, published in the journal Ecosystems by O'Donnell and others (2009). To evaluate the effects of fire and drainage on ecosystem C dynamics, we selected sample sites within the 2003 Erickson Creek fire scar to measure CO2 fluxes and soil C inventories in burned and unburned (control) sites in both upland and lowland black spruce (Picea mariana) forests. The results of this study suggested that although fire can create soil climate conditions which are more conducive to rapid decomposition, rates of C release from soils may be constrained after fire by changes in moisture and (or) substrate quality that impede rates of decomposition. Here, we report detailed site information, methodology, and data (in spreadsheet files) from that study.

  6. Carbon emissions from decomposition of fire-killed trees following a large wildfire in Oregon, United States

    NASA Astrophysics Data System (ADS)

    Campbell, John L.; Fontaine, Joseph B.; Donato, Daniel C.

    2016-03-01

    A key uncertainty concerning the effect of wildfire on carbon dynamics is the rate at which fire-killed biomass (e.g., dead trees) decays and emits carbon to the atmosphere. We used a ground-based approach to compute decomposition of forest biomass killed, but not combusted, in the Biscuit Fire of 2002, an exceptionally large wildfire that burned over 200,000 ha of mixed conifer forest in southwestern Oregon, USA. A combination of federal inventory data and supplementary ground measurements afforded the estimation of fire-caused mortality and subsequent 10 year decomposition for several functionally distinct carbon pools at 180 independent locations in the burn area. Decomposition was highest for fire-killed leaves and fine roots and lowest for large-diameter wood. Decomposition rates varied somewhat among tree species and were only 35% lower for trees still standing than for trees fallen at the time of the fire. We estimate a total of 4.7 Tg C was killed but not combusted in the Biscuit Fire, 85% of which remains 10 years after. Biogenic carbon emissions from fire-killed necromass were estimated to be 1.0, 0.6, and 0.4 Mg C ha-1 yr-1 at 1, 10, and 50 years after the fire, respectively; compared to the one-time pyrogenic emission of nearly 17 Mg C ha-1.

  7. Physiological characterization, localization and synaptic inputs of bursting and nonbursting neurons in the trigeminal principal sensory nucleus of the rat.

    PubMed

    Athanassiadis, T; Westberg, K-G; Olsson, K A; Kolta, A

    2005-12-01

    A population of neurons in the trigeminal principal sensory nucleus (NVsnpr) fire rhythmically during fictive mastication induced in the in vivo rabbit. To elucidate whether these neurons form part of the central pattern generator (CPG) for mastication, we performed intracellular recordings in brainstem slices taken from young rats. Two cell types were defined, nonbursting (63%) and bursting (37%). In response to membrane depolarization, bursting cells, which dominated in the dorsal part of the NVsnpr, fired an initial burst followed by single spikes or recurring bursts. Non-bursting neurons, scattered throughout the nucleus, fired single action potentials. Microstimulation applied to the trigeminal motor nucleus (NVmt), the reticular border zone surrounding the NVmt, the parvocellular reticular formation or the nucleus reticularis pontis caudalis (NPontc) elicited a postsynaptic potential in 81% of the neurons tested for synaptic inputs. Responses obtained were predominately excitatory and sensitive to glutamatergic antagonists DNQX and/or APV. Some inhibitory and biphasic responses were also evoked. Bicuculline methiodide or strychnine blocked the IPSPs indicating that they were mediated by GABA(A) or glycinergic receptors. About one-third of the stimulations activated both types of neurons antidromically, mostly from the masseteric motoneuron pool of NVmt and dorsal part of NPontc. In conclusion, our new findings show that some neurons in the dorsal NVsnpr display both firing properties and axonal connections which support the hypothesis that they may participate in masticatory pattern generation. Thus, the present data provide an extended basis for further studies on the organization of the masticatory CPG network.

  8. Short term spatio-temporal variability of soil water-extractable calcium and magnesium after a low severity grassland fire in Lithuania.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Martin, David

    2014-05-01

    Fire has important impacts on soil nutrient spatio-temporal distribution (Outeiro et al., 2008). This impact depends on fire severity, topography of the burned area, type of soil and vegetation affected, and the meteorological conditions post-fire. Fire produces a complex mosaic of impacts in soil that can be extremely variable at small plot scale in the space and time. In order to assess and map such a heterogeneous distribution, the test of interpolation methods is fundamental to identify the best estimator and to have a better understanding of soil nutrients spatial distribution. The objective of this work is to identify the short-term spatial variability of water-extractable calcium and magnesium after a low severity grassland fire. The studied area is located near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. Four days after the fire, it was designed in a burned area a plot with 400 m2 (20 x 20 m with 5 m space between sampling points). Twenty five samples from top soil (0-5 cm) were collected immediately after the fire (IAF), 2, 5, 7 and 9 months after the fire (a total of 125 in all sampling dates). The original data of water-extractable calcium and magnesium did not respected the Gaussian distribution, thus a neperian logarithm (ln) was applied in order to normalize data. Significant differences of water-extractable calcium and magnesium among sampling dates were carried out with the Anova One-way test using the ln data. In order to assess the spatial variability of water-extractable calcium and magnesium, we tested several interpolation methods as Ordinary Kriging (OK), Inverse Distance to a Weight (IDW) with the power of 1, 2, 3 and 4, Radial Basis Functions (RBF) - Inverse Multiquadratic (IMT), Multilog (MTG), Multiquadratic (MTQ) Natural Cubic Spline (NCS) and Thin Plate Spline (TPS) - and Local Polynomial (LP) with the power of 1 and 2. Interpolation tests were carried out with Ln data. The best interpolation method was assessed using the cross validation method. Cross-validation was obtained by taking each observation in turn out of the sample pool and estimating from the remaining ones. The errors produced (observed-predicted) are used to evaluate the performance of each method. With these data, the mean error (ME) and root mean square error (RMSE) were calculated. The best method was the one which had the lower RMSE (Pereira et al. in press). The results shown significant differences among sampling dates in the water-extractable calcium (F= 138.78, p< 0.001) and extractable magnesium (F= 160.66; p< 0.001). Water-extractable calcium and magnesium was high IAF decreasing until 7 months after the fire, rising in the last sampling date. Among the tested methods, the most accurate to interpolate the water-extractable calcium were: IAF-IDW1; 2 Months-IDW1; 5 months-OK; 7 Months-IDW4 and 9 Months-IDW3. In relation to water-extractable magnesium the best interpolation techniques were: IAF-IDW2; 2 Months-IDW1; 5 months- IDW3; 7 Months-TPS and 9 Months-IDW1. These results suggested that the spatial variability of these water-extractable is variable with the time. The causes of this variability will be discussed during the presentation. References Outeiro, L., Aspero, F., Ubeda, X. (2008) Geostatistical methods to study spatial variability of soil cation after a prescribed fire and rainfall. Catena, 74: 310-320. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, (In Press), DOI: 10.1002/ldr.2195

  9. Full-scale aircraft cabin flammability tests of improved fire-resistant materials, test series 2

    NASA Technical Reports Server (NTRS)

    Stuckey, R. N.; Bricker, R. W.; Kuminecz, J. F.; Supkis, D. E.

    1976-01-01

    Full-scale aircraft flammability tests in which the effectiveness of new fire-resistant materials was evaluated by comparing their burning characteristics with those of other fire-resistant aircraft materials were described. New-fire-resistant materials that are more economical and better suited for aircraft use than the previously tested fire-resistant materials were tested. The fuel ignition source for one test was JP-4; a smokeless fuel was used for the other test. Test objectives, methods, materials, and results are presented and discussed. The results indicate that, similar to the fire-resistant materials tested previously, the new materials decompose rather than ignite and do not support fire propagation. Furthermore, the new materials did not produce a flash fire.

  10. Carbon sequestration in harvested wood products

    Treesearch

    K. Skog

    2013-01-01

    Carbon is continuously cycled among these storage pools and between forest ecosystems and the atmosphere as a result of biological processes in forests (e.g., photosynthesis, respiration, growth, mortality, decomposition, and disturbances such as fires or pest outbreaks) and anthropogenic activities (e.g., harvesting, thinning, clearing, and replanting). As trees...

  11. 10 CFR 36.53 - Operating and emergency procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Operating and emergency procedures. 36.53 Section 36.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation... the source storage pool; (6) A prolonged loss of electrical power; (7) A fire alarm or explosion in...

  12. 10 CFR 36.53 - Operating and emergency procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Operating and emergency procedures. 36.53 Section 36.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation... the source storage pool; (6) A prolonged loss of electrical power; (7) A fire alarm or explosion in...

  13. 10 CFR 36.53 - Operating and emergency procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Operating and emergency procedures. 36.53 Section 36.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation... the source storage pool; (6) A prolonged loss of electrical power; (7) A fire alarm or explosion in...

  14. 24 CFR 3280.209 - Fire testing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Fire testing. 3280.209 Section 3280... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.209 Fire testing. All fire testing conducted in accordance with this subpart shall be performed by nationally recognized testing...

  15. 24 CFR 3280.209 - Fire testing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Fire testing. 3280.209 Section 3280... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.209 Fire testing. All fire testing conducted in accordance with this subpart shall be performed by nationally recognized testing...

  16. 24 CFR 3280.209 - Fire testing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Fire testing. 3280.209 Section 3280... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.209 Fire testing. All fire testing conducted in accordance with this subpart shall be performed by nationally recognized testing...

  17. 24 CFR 3280.209 - Fire testing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Fire testing. 3280.209 Section 3280... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.209 Fire testing. All fire testing conducted in accordance with this subpart shall be performed by nationally recognized testing...

  18. Testing Method for External Cladding Systems - Incerc Romania

    NASA Astrophysics Data System (ADS)

    Simion, A.; Dragne, H.

    2017-06-01

    This research presents a new testing method in a natural scale for external cladding systems tested on buildings with minimum than 3 floors [1]. The testing method is unique in Romania and it is similar about many fire testing current methods from European Union states. Also, presents the fire propagation and the effect of fire smoke on the building façade composed of thermal insulation. Laboratory of testing and research for building fire safety from National Institute INCERC Bucharest, provides a test method for determining the fire performance characteristics of non-loadbearing external cladding systems and external wall insulation systems when applied to the face of a building and exposed to an external fire under controlled conditions [2]. The fire exposure is representative of an external fire source or a fully-developed (post-flashover) fire in a room, venting through an opening such as a window aperture that exposes the cladding to the effects of external flames, or an external fire source. On the future, fire tests will be experimented for answer demande a number of high-profile fires where the external facade of tall buildings provided a route for vertical fire spread.

  19. 30 CFR 75.1103-11 - Tests of fire hydrants and fire hose; record of tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of fire hydrants and fire hose; record of tests. 75.1103-11 Section 75.1103-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1103-11 Tests of fire hydrants and...

  20. 30 CFR 75.1103-11 - Tests of fire hydrants and fire hose; record of tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of fire hydrants and fire hose; record of tests. 75.1103-11 Section 75.1103-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1103-11 Tests of fire hydrants and...

  1. 30 CFR 75.1103-11 - Tests of fire hydrants and fire hose; record of tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of fire hydrants and fire hose; record of tests. 75.1103-11 Section 75.1103-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1103-11 Tests of fire hydrants and...

  2. 30 CFR 75.1103-11 - Tests of fire hydrants and fire hose; record of tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of fire hydrants and fire hose; record of tests. 75.1103-11 Section 75.1103-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1103-11 Tests of fire hydrants and...

  3. 30 CFR 75.1103-11 - Tests of fire hydrants and fire hose; record of tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of fire hydrants and fire hose; record of tests. 75.1103-11 Section 75.1103-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1103-11 Tests of fire hydrants and...

  4. Fire-induced Carbon Emissions and Regrowth Uptake in Western U.S. Forests: Documenting Variation Across Forest Types, Fire Severity, and Climate Regions

    NASA Technical Reports Server (NTRS)

    Ghimire, Bardan; Williams, Christopher A.; Collatz, George James; Vanderhoof, Melanie

    2012-01-01

    The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across low- to high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC/yr and biomass killed averaging 10.5 TgC/yr, with average burn area of 2723 sq km/yr across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC/yr in 2008, accounting for both direct fire emissions (9.5 TgC/yr) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr1) as well as contemporary regrowth sinks (3.3 TgC/yr). A sizeable trend exists toward increasing emissions as a larger area burns annually.

  5. Quantifying the Impact of Mountain Pine Beetle Disturbances on Forest Carbon Pools and Fluxes in the Western US using the NCAR Community Land Model

    NASA Astrophysics Data System (ADS)

    Edburg, S. L.; Hicke, J. A.; Lawrence, D. M.; Thornton, P. E.

    2009-12-01

    Forest disturbances, such as fire, insects, and land-use change, significantly alter carbon budgets by changing carbon pools and fluxes. The mountain pine beetle (MPB) kills millions of hectares of trees in the western US, similar to the area killed by fire. Mountain pine beetles kill host trees by consuming the inner bark tissue, and require host tree death for reproduction. Despite being a significant disturbance to forested ecosystems, insects such as MPB are typically not represented in biogeochemical models, thus little is known about their impact on the carbon cycle. We investigate the role of past MPB outbreaks on carbon cycling in the western US using the NCAR Community Land Model with Carbon and Nitrogen cycles (CLM-CN). CLM-CN serves as the land model to the Community Climate System Model (CCSM), providing exchanges of energy, momentum, water, carbon, and nitrogen between the land and atmosphere. We run CLM-CN over the western US extending to eastern Colorado with a spatial resolution of 0.5° and a half hour time step. The model is first spun-up with repeated NCEP forcing (1948-1972) until carbon stocks and fluxes reach equilibrium (~ 3000 years), and then run from 1850 to 2004 with NCEP forcing and a dynamic plant functional type (PFT) database. Carbon stocks from this simulation are compared with stocks from the Forest Inventory Analysis (FIA) program. We prescribe MPB mortality area, once per year, in CLM-CN using USFS Aerial Detection Surveys (ADS) from the last few decades. We simulate carbon impacts of tree mortality by MPB within a model grid cell by moving carbon from live vegetative pools (leaf, stem, and roots) to dead pools (woody debris, litter, and dead roots). We compare carbon pools and fluxes for two simulations, one without MPB outbreaks and one with MPB outbreaks.

  6. Carbon Accumulation and Nitrogen Pool Recovery during Transitions from Savanna to Forest in Central Brazil

    NASA Astrophysics Data System (ADS)

    Pellegrini, A.; Hoffmann, W. A.; Franco, A. C.

    2014-12-01

    The expansion of tropical forest into savanna may potentially be a large carbon sink, but little is known about the patterns of carbon sequestration during transitional forest formation. Moreover, it is unclear how nutrient limitation, due to extended exposure to firedriven nutrient losses, may constrain carbon accumulation. Here, we sampled plots that spanned a woody biomass gradient from savanna to transitional forest in response to differential fire protection in central Brazil. These plots were used to investigate how the process of transitional forest formation affects the size and distribution of carbon (C) and nitrogen (N) pools. This was paired with a detailed analysis of the nitrogen cycle to explore possible connections between carbon accumulation and nitrogen limitation. An analysis of carbon pools in the vegetation, upper soil, and litter shows that the transition from savanna to transitional forest can result in a fourfold increase in total carbon (from 43 to 179 Mg C/ha) with a doubling of carbon stocks in the litter and soil layers. Total nitrogen in the litter and soil layers increased with forest development in both the bulk (+68%) and plant-available (+150%) pools, with the most pronounced changes occurring in the upper layers. However, the analyses of nitrate concentrations, nitrate : ammonium ratios, plant stoichiometry of carbon and nitrogen, and soil and foliar nitrogen isotope ratios suggest that a conservative nitrogen cycle persists throughout forest development, indicating that nitrogen remains in low supply relative to demand. Furthermore, the lack of variation in underlying soil type (>20 cm depth) suggests that the biogeochemical trends across the gradient are driven by vegetation. Our results provide evidence for high carbon sequestration potential with forest encroachment on savanna, but nitrogen limitation may play a large and persistent role in governing carbon sequestration in savannas or other equally fire-disturbed tropical landscapes. In turn, the link between forest development and nitrogen pool recovery creates a framework for evaluating potential positive feedbacks on savanna-forest boundaries.

  7. ESA fire_cci product assessment

    NASA Astrophysics Data System (ADS)

    Heil, Angelika; Yue, Chao; Mouillot, Florent; Storm, Thomas; Chuvieco, Emilio; Ramo Sanchez, Ruben; Kaiser, Johannes W.

    2017-04-01

    Vegetation fires are a major disturbance in the Earth System. Fires change the biophysical properties and dynamics of ecosystems and alter terrestrial carbon pools. By altering the atmosphere's composition, fire emissions exert a significant climate forcing. To realistically model past and future changes of the Earth System, fire disturbances must be taken into account. Related modelling efforts require consistent global burned area observations covering at least 10 to 20 years. Guided by the specific requirements of a wide range of end users, the ESA fire_cci project has computed a new global burned area dataset. It applies a newly developed spectral change detection algorithm upon the ENVISAT-MERIS archive. The algorithm relies on MODIS active fire information as "seed". It comprises a pixel burned area product (spatial resolution of 333 m) with date detection information and a biweekly grid product at 0.25 degree spatial resolution. We compare fire_cci burned area with other global burned area products (MCD64 Collection 6, MCD45, GFED4, GFED4s and GEOLAND) and a set of active fires data (hotspots from MODIS, TRMM, AATSR and fire radiative power from GFAS). The analysis of patterns of agreement and disagreement between fire_cci and other products provides a better understanding of product characteristics and uncertainties. The intercomparison of the 2005-2011 fire_cci time series shows a close agreement with GFED4 data in terms of global burned area and the general spatial and temporal patterns. Pronounced differences, however, emerge for specific regions or fire events. Burned area mapped by fire_cci tends to be notably higher in regions where small agricultural fires predominate. The improved detection of small agricultural fires by fire_cci can be related to the increased spatial resolution of the MERIS sensor (333 m compared to 500 in MODIS). This is illustrated in detail using the example of the extreme 2006 spring fires in Eastern Europe.

  8. Soil data from fire and permafrost-thaw chronosequences in upland Picea mariana stands near Hess Creek and Tok, interior Alaska

    USGS Publications Warehouse

    O'Donnell, Jonathan A.; Harden, Jennifer W.; Manies, Kristen L.; Jorgenson, M. Torre; Kanevskiy, Mikhail; Xu, Xiaomei

    2013-01-01

    Soils of the Northern Circumpolar Permafrost region harbor 1,672 petagrams (Pg) (1 Pg = 1,000,000,000 kilograms) of organic carbon (OC), nearly 50 percent of the global belowground OC pool (Tarnocai and others, 2009). Of that soil OC, nearly 88 percent is presently stored in perennially frozen ground. Recent climate warming at northern latitudes has resulted in warming and thawing of permafrost in many regions (Osterkamp, 2007), which might mobilize OC stocks from associated soil reservoirs via decomposition, leaching, or erosion. Warming also has increased the magnitude and severity of wildfires in the boreal region (Turetsky and others, 2011), which might exacerbate rates of permafrost degradation relative to warming alone. Given the size and vulnerability of the soil OC pool in permafrost soils, permafrost thaw will likely function as a strong positive feedback to the climate system (Koven and others, 2011; Schaefer and others, 2011). In this report, we report soil OC inventories from two upland fire chronosequences located near Hess Creek and Tok in Interior Alaska. We sampled organic and mineral soils in the top 2 meters (m) across a range of stand ages to evaluate the effects of wildfire and permafrost thaw on soil C dynamics. These data were used to parameterize a simple process-based fire-permafrost-carbon model, which is described in detail by O’Donnell and others (2011a, b). Model simulations examine long-term changes in soil OC storage in response to fire, permafrost thaw, and climate change. These data also have been used in other papers, including Harden and others (2012), which examines C recovery post-fire, and Johnson and others (2011), which synthesizes data within the Alaska Soil Carbon Database. Findings from these studies highlight the importance of climate and disturbance (wildfire, permafrost thaw) on soil C storage, and loss of soil C from high-latitude ecosystems.

  9. Soil organic matter decomposition and temperature sensitivity after forest fire in permafrost regions in Canada

    NASA Astrophysics Data System (ADS)

    Aaltonen, Heidi; Palviainen, Marjo; Köster, Kajar; Berninger, Frank; Pumpanen, Jukka

    2017-04-01

    On the Northern Hemisphere, 24% of soils are underlain by permafrost. These soils contain 50% of the global soil carbon pool. The Northern Hemisphere is also the region which is predicted to be most affected by climate warming and this causes uncertainties over the future of the permafrost. It has been estimated that 25% of permafrost might thaw by 2100, exposing previously frozen carbon pools to decomposition. In addition, global warming is expected to cause increase in the frequency of wild fires, which further increase permafrost melting by removing the insulating organic surface layer. The amount of released soil carbon from permafrost soils after forest fire is affected by degradability and temperature sensitivity of the soil organic matter, as well as soil depth and the stage of succession. Yet the common effect of these factors remains unclear. We studied how soil respiration and its temperature sensitivity (Q10) vary in different depths and within time by taking soil samples from different fire chronosequence areas (burned 3, 25, 46 and 100 years ago) from permafrost region in Northern Canada (Yukon and Northwest Territories, along Dempster Highway). The samples from three different depths (5, 10 and 30 cm) were incubated in four different temperatures (1, 7, 13 and 19°C) over 24h. Our results showed that the CO2 fluxes followed the stages of succession, with recently burned sites having lowest rates. The organic matter at 5 cm depth proved to be more labile and temperature sensitive than in deeper depths. The Q10 values, however, did not differ between sites, excluding 30 cm at the most recently burned site that had a significantly higher Q10 value than the other sites. The results implicate that heterotrophic soil respiration decreases on permafrost regions during the first stages after forest fire. At the same time the temperature sensitivity in deeper soil layers may increase.

  10. Comparing the influence of wildfire and prescribed burns on watershed nitrogen biogeochemistry using 15N natural abundance in terrestrial and aquatic ecosystem components.

    PubMed

    Stephan, Kirsten; Kavanagh, Kathleen L; Koyama, Akihiro

    2015-01-01

    We evaluated differences in the effects of three low-severity spring prescribed burns and four wildfires on nitrogen (N) biogeochemistry in Rocky Mountain headwater watersheds. We compared paired (burned/unburned) watersheds of four wildfires and three spring prescribed burns for three growing seasons post-fire. To better understand fire effects on the entire watershed ecosystem, we measured N concentrations and δ15N in both the terrestrial and aquatic ecosystems components, i.e., soil, understory plants in upland and riparian areas, streamwater, and in-stream moss. In addition, we measured nitrate reductase activity in foliage of Spiraea betulifolia, a dominant understory species. We found increases of δ15N and N concentrations in both terrestrial and aquatic ecosystem N pools after wildfire, but responses were limited to terrestrial N pools after prescribed burns indicating that N transfer from terrestrial to aquatic ecosystem components did not occur in low-severity prescribed burns. Foliar δ15N differed between wildfire and prescribed burn sites; the δ15N of foliage of upland plants was enriched by 2.9 ‰ (difference between burned and unburned watersheds) in the first two years after wildfire, but only 1.3 ‰ after prescribed burns. In-stream moss δ15N in wildfire-burned watersheds was enriched by 1.3 ‰, but there was no response by moss in prescription-burned watersheds, mirroring patterns of streamwater nitrate concentrations. S. betulifolia showed significantly higher nitrate reductase activity two years after wildfires relative to corresponding unburned watersheds, but no such difference was found after prescribed burns. These responses are consistent with less altered N biogeochemistry after prescribed burns relative to wildfire. We concluded that δ15N values in terrestrial and aquatic plants and streamwater nitrate concentrations after fire can be useful indicators of the magnitude and duration of fire effects and the fate of post-fire available N.

  11. Comparing the Influence of Wildfire and Prescribed Burns on Watershed Nitrogen Biogeochemistry Using 15N Natural Abundance in Terrestrial and Aquatic Ecosystem Components

    PubMed Central

    Stephan, Kirsten; Kavanagh, Kathleen L.; Koyama, Akihiro

    2015-01-01

    We evaluated differences in the effects of three low-severity spring prescribed burns and four wildfires on nitrogen (N) biogeochemistry in Rocky Mountain headwater watersheds. We compared paired (burned/unburned) watersheds of four wildfires and three spring prescribed burns for three growing seasons post-fire. To better understand fire effects on the entire watershed ecosystem, we measured N concentrations and δ15N in both the terrestrial and aquatic ecosystems components, i.e., soil, understory plants in upland and riparian areas, streamwater, and in-stream moss. In addition, we measured nitrate reductase activity in foliage of Spiraea betulifolia, a dominant understory species. We found increases of δ15N and N concentrations in both terrestrial and aquatic ecosystem N pools after wildfire, but responses were limited to terrestrial N pools after prescribed burns indicating that N transfer from terrestrial to aquatic ecosystem components did not occur in low-severity prescribed burns. Foliar δ15N differed between wildfire and prescribed burn sites; the δ15N of foliage of upland plants was enriched by 2.9 ‰ (difference between burned and unburned watersheds) in the first two years after wildfire, but only 1.3 ‰ after prescribed burns. In-stream moss δ15N in wildfire-burned watersheds was enriched by 1.3 ‰, but there was no response by moss in prescription-burned watersheds, mirroring patterns of streamwater nitrate concentrations. S. betulifolia showed significantly higher nitrate reductase activity two years after wildfires relative to corresponding unburned watersheds, but no such difference was found after prescribed burns. These responses are consistent with less altered N biogeochemistry after prescribed burns relative to wildfire. We concluded that δ15N values in terrestrial and aquatic plants and streamwater nitrate concentrations after fire can be useful indicators of the magnitude and duration of fire effects and the fate of post-fire available N. PMID:25885257

  12. Fire tests for airplane interior materials

    NASA Technical Reports Server (NTRS)

    Tustin, E. A.

    1980-01-01

    Large scale, simulated fire tests of aircraft interior materials were carried out in salvaged airliner fuselage. Two "design" fire sources were selected: Jet A fuel ignited in fuselage midsection and trash bag fire. Comparison with six established laboratory fire tests show that some laboratory tests can rank materials according to heat and smoke production, but existing tests do not characterize toxic gas emissions accurately. Report includes test parameters and test details.

  13. PyrE, an interactive fire module within the NASA-GISS Earth System Model

    NASA Astrophysics Data System (ADS)

    Mezuman, K.; Bauer, S. E.; Tsigaridis, K.

    2017-12-01

    Fires directly affect the composition of the atmosphere and Earth's radiation balance by emitting a suite of reactive gases and particles. Having an interactive fire module in an Earth System Model allows us to study the natural and anthropogenic drivers, feedbacks, and interactions of biomass burning in different time periods. To do so we have developed PyrE, the NASA-GISS interactive fire emissions model. PyrE uses the flammability, ignition, and suppression parameterization proposed by Pechony and Shindell (2009), and is coupled to a burned area and surface recovery parameterization. The burned area calculation follows CLM's approach (Li et al., 2012), paired with an offline recovery scheme based on Ent's Terrestrial Biosphere Model (Ent TBM) carbon pool turnover time. PyrE is driven by environmental variables calculated by climate simulations, population density data, MODIS fire counts and LAI retrievals, as well as GFED4s emissions. Since the model development required extensive use of reference datasets, in addition to comparing it to GFED4s BA, we evaluate it by studying the effect of fires on atmospheric composition and climate. Our results show good agreement globally, with some regional differences. Finally, we quantify the present day fire radiative forcing. The development of PyrE allowed us for the first time to interactively simulate climate and fire activity with GISS-ModelE3

  14. Theta phase precession of grid and place cell firing in open environments

    PubMed Central

    Jeewajee, A.; Barry, C.; Douchamps, V.; Manson, D.; Lever, C.; Burgess, N.

    2014-01-01

    Place and grid cells in the rodent hippocampal formation tend to fire spikes at successively earlier phases relative to the local field potential theta rhythm as the animal runs through the cell's firing field on a linear track. However, this ‘phase precession’ effect is less well characterized during foraging in two-dimensional open field environments. Here, we mapped runs through the firing fields onto a unit circle to pool data from multiple runs. We asked which of seven behavioural and physiological variables show the best circular–linear correlation with the theta phase of spikes from place cells in hippocampal area CA1 and from grid cells from superficial layers of medial entorhinal cortex. The best correlate was the distance to the firing field peak projected onto the animal's current running direction. This was significantly stronger than other correlates, such as instantaneous firing rate and time-in-field, but similar in strength to correlates with other measures of distance travelled through the firing field. Phase precession was stronger in place cells than grid cells overall, and robust phase precession was seen in traversals through firing field peripheries (although somewhat less than in traversals through the centre), consistent with phase coding of displacement along the current direction. This type of phase coding, of place field distance ahead of or behind the animal, may be useful for allowing calculation of goal directions during navigation. PMID:24366140

  15. 24 CFR 3280.209 - Fire testing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Fire testing. 3280.209 Section 3280... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.209 Fire testing. Link to an amendment published at 78 FR 73982, Dec. 9, 2013. All fire testing conducted in accordance with...

  16. Full-scale aircraft cabin flammability tests of improved fire-resistant materials

    NASA Technical Reports Server (NTRS)

    Stuckey, R. N.; Surpkis, D. E.; Price, L. J.

    1974-01-01

    Full-scale aircraft cabin flammability tests to evaluate the effectiveness of new fire-resistant materials by comparing their burning characteristics with those of older aircraft materials are described. Three tests were conducted and are detailed. Test 1, using pre-1968 materials, was run to correlate the procedures and to compare the results with previous tests by other organizations. Test 2 included newer, improved fire-resistant materials. Test 3 was essentially a duplicate of test 2, but a smokeless fuel was used. Test objectives, methods, materials, and results are presented and discussed. Results indicate that the pre-1968 materials ignited easily, allowed the fire to spread, produced large amounts of smoke and toxic combustion products, and resulted in a flash fire and major fire damage. The newer fire-resistant materials did not allow the fire to spread. Furthermore, they produced less, lower concentrations of toxic combustion products, and lower temperatures. The newer materials did not produce a flash fire.

  17. The impact on accuracy and cost of ligase chain reaction testing by pooling urine specimens for the diagnosis of Chlamydia trachomatis infections.

    PubMed

    Krepel, J; Patel, J; Sproston, A; Hopkins, F; Jang, D; Mahony, J; Chernesky, M

    1999-10-01

    Nucleic acid amplification testing is the most accurate approach to diagnosing Chlamydia trachomatis infections. Our objective was to compare the accuracy and cost savings of pooling urines as opposed to individual testing. Strategies of pooling urine specimens into groups of four (4x pool) or eight (8x pool) followed by testing the positive pools individually were compared to individual specimen testing to determine if significant cost savingS could be realized without compromising the sensitivity and specificity of the LCx C. trachomatis Assay (Abbott Laboratories, Abbott Park, Chicago, IL) performed in a busy private medical laboratory. A total of 1,220 patient urine samples, 1,187 male (97%) and 33 female (3%), were tested using the normal LCx specimen to cutoff ratio (S/CO) of 1.0 and a decreased S/CO value of 0.2. Individual testing identified 98.2% (109/111) of positive urines. The 4x pooling maneuver identified 92.8% (103/111) of positive patients with the regular cutoff and 96.4% (107/111) when the cutoff was decreased. These values were 95.9% (47/49) and 97.9% (48/49), respectively, when eight urines were pooled. Both pooling and individual testing strategies identified all the negative samples accurately. Cost savings of pooling were calculated to be 44.5% for pools of four and 37.5% for pools of eight, applying the lowered cutoff. Pooling urine specimens for testing with the C. trachomatis LCx system is a simple, accurate, and cost-saving approach that can significantly reduce the cost of amplified nucleic acid testing with minimal sacrifice of testing accuracy.

  18. Fire Control Agent Effectiveness for Hazardous Chemical Fires: Carbon Disulfide.

    DTIC Science & Technology

    1981-01-01

    Fires..................................... 46 12. AFFF Fire Control Data for Carbon Disulfide Fires............................. 47 13. Extinguishment...Disulfide and Hexane Fires ....... 67 22. Comparison of AFFF Fire Control Times for Carbon Disulfide and Hexane Fires ................... 68 23. Comparison of...Data .............. 27 2. Summary of Fluoroprotein Foam Fire Test Data ....... 28 3. Summary of AFFF Fire Test Data ..................... 29 4. Summary

  19. Effect of tank diameter on thermal behavior of gasoline and diesel storage tanks fires.

    PubMed

    Leite, Ricardo Machado; Centeno, Felipe Roman

    2018-01-15

    Studies on fire behavior are extremely important as they contribute in a firefighting situation or even to avoid such hazard. Experimental studies of fire in real scale are unfeasible, implying that reduced-scale experiments must be performed, and results extrapolated to the range of interest. This research aims to experimentally study the fire behavior in tanks of 0.04m, 0.20m, 0.40m, 0.80m and 4.28m diameter, burning regular gasoline or diesel oil S-500. The following parameters were here obtained: burning rates, burning velocities, heat release rates, flame heights, and temperature distributions adjacent to the tank. Such parameters were obtained for each tank diameter with the purpose of correlating the results and understanding the relationship of each parameter for the different geometrical scale of the tanks. Asymptotic results for larger tanks were found as (regular gasoline and diesel oil S-500, respectively): burning rates 0.050kg/(m 2 s) and 0.031kg/(m 2 s), burning velocities 4.0mm/min and 2.5mm/min, heat release rates per unit area 2200kW/m 2 and 1500kW/m 2 , normalized averaged flame heights (H i /D, where H i is the average flame height, D is the tank diameter) 0.9 and 0.8. Maximum temperatures for gasoline pools were higher than for diesel oil pools, and temperature gradients close to the tanks were also higher for the former fuel. The behavior of the maximum temperature was correlated as a function of the tank diameter, the heat release rate of each fuel and the dimensionless distance from the tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Development of fire test methods for airplane interior materials

    NASA Technical Reports Server (NTRS)

    Tustin, E. A.

    1978-01-01

    Fire tests were conducted in a 737 airplane fuselage at NASA-JSC to characterize jet fuel fires in open steel pans (simulating post-crash fire sources and a ruptured airplane fuselage) and to characterize fires in some common combustibles (simulating in-flight fire sources). Design post-crash and in-flight fire source selections were based on these data. Large panels of airplane interior materials were exposed to closely-controlled large scale heating simulations of the two design fire sources in a Boeing fire test facility utilizing a surplused 707 fuselage section. Small samples of the same airplane materials were tested by several laboratory fire test methods. Large scale and laboratory scale data were examined for correlative factors. Published data for dangerous hazard levels in a fire environment were used as the basis for developing a method to select the most desirable material where trade-offs in heat, smoke and gaseous toxicant evolution must be considered.

  1. 47 CFR 90.241 - Radio call box operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Radio call box operations. 90.241 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.241 Radio call box... Safety Pool for operation of radio call boxes to be used by the public to request fire, police, ambulance...

  2. 47 CFR 90.241 - Radio call box operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Radio call box operations. 90.241 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.241 Radio call box... Safety Pool for operation of radio call boxes to be used by the public to request fire, police, ambulance...

  3. 47 CFR 90.241 - Radio call box operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Radio call box operations. 90.241 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.241 Radio call box... Safety Pool for operation of radio call boxes to be used by the public to request fire, police, ambulance...

  4. 36 CFR 28.12 - Development standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... significant harm to the natural resources of the Seashore. (c) Minimum lot size is 4,000 square feet. A.../FEMA shown on Flood Insurance Rate Maps for Fire Island communities. (g) A swimming pool is an... hazards and/or detract from the natural or cultural scene. (j) A zoning authority shall have in place...

  5. Pinon-juniper reduction increases soil water availability of the resouce growth pool

    USDA-ARS?s Scientific Manuscript database

    Managers reduce piñon (Pinus spp.) and juniper (Juniperus spp.) trees that are encroaching into (Artemisia spp.) communities to lower fuel loads and to increase cover and density of desirable understory species. A major concern for using prescribed fire or mechanical treatments to reduce trees is th...

  6. Influence of Prescribed Fire on Ecosystem Biomass, Carbon, and Nitrogen in a Pinyon Juniper Woodland

    USDA-ARS?s Scientific Manuscript database

    Pinyon and juniper woodland encroachment associated with climate change and land use history in the Great Basin is thought to provide offsets for carbon emissions. However, the largest pools of carbon in arid landscapes are typically found in soils, and aboveground biomass cannot be considered long ...

  7. Flash fire propensity of materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Flash fire test results on 86 materials, evaluated using the USF flash fire screening test, are presented. The materials which appear least prone to flash fires are PVC, polyphenylene oxide and sulfide, and polyether and polyaryl sulfone; these did not produce flash fires under these particular test conditions. The principal value of these screening tests at the present time is in identifying materials which appear prone to flash fires, and in identifying which formulations of a generic material are more or less prone to flash fires.

  8. Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Margle, Janice M. (Editor)

    1987-01-01

    Fire detection, fire standards and testing, fire extinguishment, inerting and atmospheres, fire-related medical science, aircraft fire safety, Space Station safety concerns, microgravity combustion, spacecraft material flammability testing, and metal combustion are among the topics considered.

  9. The effects of fire severity on black carbon additions to forest soils - 10 years post fire

    NASA Astrophysics Data System (ADS)

    Poore, R.; Wessman, C. A.; Buma, B.

    2013-12-01

    Wildfires play an active role in the global carbon cycle. While large amounts of carbon dioxide are released, a small fraction of the biomass consumed by the fire is only partially combusted, yielding soot and charcoal. These products, also called black carbon (BC) make up only 1-5% of the biomass burnt, yet they can have a disproportionate effect on both the atmosphere and fluxes in long-term carbon pools. This project specifically considers the fraction that is sequestered in forest soils. Black carbon is not a specific compound, and exists along a continuum ranging from partially burned biomass to pure carbon or graphite. Increasing aromaticity as the result of partial combustion means charcoal is highly resistant to oxidation. Although debated, most studies indicate a turnover time on the order of 500-1,000 years in warm, wet, aerobic soils. Charcoal may function as a long-term carbon sink, however its overall significance depends on its rate of formation and loss. At the landscape level, fire characteristics are one of the major factors controlling charcoal production. A few studies suggest that charcoal production increases with cooler, less-severe fires. However, there are many factors to tease apart, partly because of a lack of specificity in how fire severity is defined. Within this greater context, our lab has been working on a landscape-level study within Routt National Forest, north of Steamboat Springs, Colorado. In 2002, a large fire swept through a subalpine spruce, fir and lodgepole pine forest. In 2011-2013 we sampled BC pools in 44 plots across a range of fire severities from unburned to severe crown We hypothesized that charcoal stocks will be higher in areas of low severity fire as compared to high severity because of decreased re-combustion of charcoal in the organic soil and increased overall charcoal production due to lower temperatures. In each of our plots we measured charcoal on snags and coarse woody debris, sampled the entire organic horizon and the top 10cm mineral horizon. The soils were sieved to 2mm and their BC content measured using the Kurth-MacKenzie-DeLuca method of digesting labile carbon using nitric acid and hydrogen peroxide at 95C for 20hrs. We integrated both remotely sensed data and field observations. We used the Relative Difference Normalized Burn Ratio (RdNBR) calculated by Monitoring Trends in Burn Severity (MTBS). This index used Landsat images from July in the years before and after the fire and is based on differences in bands 4 and 7, with the aim of assessing coarse scale changes in soil and vegetation post fire. For each plot we also collected data on tree mortality and organic soil depth. These metrics were chosen from the Composite Burn Index as those that were most reliable even 10 years after the fire. We observed no significant differences in BC totals between high severity fire and unburned plots, although BC increased slightly on burned plots. Early results for low severity sites (analysis still in progress) suggest that BC increased in plots experiencing lower severity fires compared to unburned and high severity plots. Comparing carbon and BC totals on unburned and severely burned plots, and assuming no loss of BC from mineral soil during the fire, we observed a 1.2% conversion of burned biomass to BC, which corresponds with literature estimates of 1-4%.

  10. Mapping Soil Carbon in the Yukon Kuskokwim River Delta Alaska

    NASA Astrophysics Data System (ADS)

    Natali, S.; Fiske, G.; Schade, J. D.; Mann, P. J.; Holmes, R. M.; Ludwig, S.; Melton, S.; Sae-lim, N.; Jardine, L. E.; Navarro-Perez, E.

    2017-12-01

    Arctic river deltas are hotspots for carbon storage, occupying <1% of the pan-Arctic watershed but containing >10% of carbon stored in arctic permafrost. The Yukon Kuskokwim (YK) Delta, Alaska is located in the lower latitudinal range of the northern permafrost region in an area of relatively warm permafrost that is particularly vulnerable to warming climate. Active layer depths range from 50 cm on peat plateaus to >100 cm in wetland and aquatic ecosystems. The size of the soil organic carbon pool and vulnerability of the carbon in the YK Delta is a major unknown and is critically important as climate warming and increasing fire frequency may make this carbon vulnerable to transport to aquatic and marine systems and the atmosphere. To characterize the size and distribution of soil carbon pools in the YK Delta, we mapped the land cover of a 1910 km2 watershed located in a region of the YK Delta that was impacted by fire in 2015. The map product was the result of an unsupervised classification using the Weka K Means clustering algorithm implemented in Google's Earth Engine. Inputs to the classification were Worldview2 resolution optical imagery (1m), Arctic DEM (5m), and Sentinel 2 level 1C multispectral imagery, including NDVI, (10 m). We collected 100 soil cores (0-30 cm) from sites of different land cover and landscape position, including moist and dry peat plateaus, high and low intensity burned plateaus, fens, and drained lakes; 13 lake sediment cores (0-50 cm); and 20 surface permafrost cores (to 100 cm) from burned and unburned peat plateaus. Active layer and permafrost soils were analyzed for organic matter content, soil moisture content, and carbon and nitrogen pools (30 and 100 cm). Soil carbon content varied across the landscape; average carbon content values for lake sediments were 12% (5- 17% range), fens 26% (9-44%), unburned peat plateaus 41% (34-44%), burned peat plateaus 19% (7-34%). These values will be used to estimate soil carbon pools, which will be applied to the spatial extent of each landcover class in our map, yielding a watershed-wide and spatially explicit map of soil carbon in the YK Delta. This map will provide the basis for understanding where carbon is stored in the watershed and the vulnerability of that carbon to climate change and fire.

  11. 33 CFR 183.590 - Fire test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fire test. 183.590 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.590 Fire test. (a) A piece of equipment is... hull section. (b) Each fire test is conducted with free burning heptane and the component must be...

  12. A Model of Freely Burning Pool Fires

    DTIC Science & Technology

    1983-01-01

    NDUBIZU ef l. is the fuel surface radiosity and the view factor between the plume and surface is 0. 11 2_ (281 Furthermore, the radius of the top of the...pressure build-up are very im- portant. NOMENCLATURE A area (M 2 ) B radiosity C specific heat at constant pressure (W-secikg .K) d diameter of fuel

  13. Reburns and their Impact on carbon pools, site productivity, and recovery [Chapter 13

    Treesearch

    Deborah S. Page-Dumroese; Terrie Jain; Jonathan E. Sandquist; Joanne M. Tirocke; John Errecart; Martin F. Jurgensen

    2015-01-01

    Prior to fire suppression and exclusion, wildfires and other disturbances (e.g., insects, disease, and weather) sustained ecosystem processes in many landscapes of the Western United States. However, wildfires have been increasing in size, frequency, and intensity in recent years (Kellogg and others 2008). Recognizing the value of wildfire, scientists and land...

  14. Forecasting timber, biomass, and tree carbon pools with the output of state and transition models

    Treesearch

    Xiaoping Zhou; Miles A. Hemstrom

    2012-01-01

    The Integrated Landscape Assessment Project (ILAP) uses spatial vegetation data and state and transition models (STM) to forecast future vegetation conditions and the interacting effects of natural disturbances and management activities. Results from ILAP will help land managers, planners, and policymakers evaluate management strategies that reduce fire risk, improve...

  15. A Review of the Performance of AFFF Systems Serving Helicopter Decks on U.S. Navy Surface Combatants

    DTIC Science & Technology

    2001-04-23

    The AFFF systems serving the helo decks on surface combatants are designed for rapid control and extinguishment of JP-5 pool fires. Based on the...add 15-30 seconds to the above times. This estimate also assumes that the AFFF systems are adequately maintained and operationally ready and that

  16. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication

    PubMed Central

    Graindorge, Dany; Martineau, Sylvain; Machon, Christelle; Arnoux, Philippe; Guitton, Jérôme; Francesconi, Stefania; Frochot, Céline; Sage, Evelyne; Girard, Pierre-Marie

    2015-01-01

    UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen. PMID:26485711

  17. Contribution from motor unit firing adaptations and muscle co-activation during fatigue.

    PubMed

    Contessa, Paola; Letizi, John; De Luca, Gianluca; Kline, Joshua C

    2018-03-14

    The control of motor unit firing behavior during fatigue is still debated in the literature. Most studies agree that the central nervous system increases the excitation to the motoneuron pool to compensate for decreased force contributions of individual motor units and sustain muscle force output during fatigue. However, some studies claim that motor units may decrease their firing rates despite increased excitation, contradicting the direct relationship between firing rates and excitation that governs the voluntary control of motor units. To investigate whether the control of motor units in fact changes with fatigue, we measured motor unit firing behavior during repeated contractions of the first dorsal interosseous (FDI) muscle while concurrently monitoring the activation of surrounding muscles - including the flexor carpi radialis, extensor carpi radialis, and pronator teres. Across all subjects, we observed an overall increase in FDI activation and motor unit firing rates by the end of the fatigue task. However, in some subjects we observed increases in FDI activation and motor unit firing rates only during the initial phase of the fatigue task, followed by subsequent decreases during the late phase of the fatigue task while the co-activation of surrounding muscles increased. These findings indicate that the strategy for sustaining force output may occasionally change leading to increases in the relative activation of surrounding muscles while the excitation to the fatiguing muscle decreases. Importantly, irrespective of changes in the strategy for sustaining force output, the control properties regulating motor unit firing behavior remain unchanged during fatigue.

  18. Quantifying Fire's Impacts on Total and Pyrogenic Carbon Stocks in Mixed-Conifer Forests: Results from Pre- and Post-Fire Measurements in Active Wildfire Incidents

    NASA Astrophysics Data System (ADS)

    Miesel, J. R.; Reiner, A. L.; Ewell, C. M.; Sanderman, J.; Maestrini, B.; Adkins, J.

    2016-12-01

    Widespread US fire suppression policy has contributed to an accumulation of vegetation in many western forests relative to historic conditions, and these changes can exacerbate wildfire severity and carbon (C) emissions. Serious concern exists about positive feedbacks between wildfire emissions and global climate; however, fires not only release C from terrestrial to atmospheric pools, they also create "black" or pyrogenic C (PyC) which contributes to longer-term C stability. Our objective was to quantify wildfire impacts on aboveground and belowground total C and PyC stocks in California mixed-conifer forests. We worked with incident management teams to access five active wildfires to establish and measure plots within days before and after fire. We measured pre- and post-fire aboveground forest structure and woody fuels to calculate aboveground biomass, biomass C, and PyC, and we collected pre- and post-fire forest floor and 0-5 cm mineral soil samples to measure belowground C and PyC stocks. Our preliminary results show that fire had minimal impact on the number of trees per hectare, whereas C losses from the tree layer occurred via consumption of foliage, and PyC gain occurred in tree bark. Fire released 54% to 100% of surface fuel C. In the forest floor layer, we observed 33 to 100% C loss, whereas changes in PyC stocks ranged from 100% loss to 186% gain relative to pre-fire samples. In general, fire had minimal to no impact on 0-5 cm mineral soil C. We will present relationships between total C, PyC and post-fire C and N dynamics in one of the five wildfire sites. Our data are unique because they represent nearly immediate pre- and post-fire measurements in major wildfires in a widespread western U.S. forest type. This research advances understanding of the role of fire on forest C fluxes and C sequestration potential as PyC.

  19. 16 CFR 1633.5 - Prototype pooling and confirmation testing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Prototype pooling and confirmation testing... Prototype pooling and confirmation testing requirements. (a) Prototype pooling. One or more manufacturers may rely on a qualified prototype produced by another manufacturer or prototype developer provided...

  20. Pooling Cervical Swabs and Testing by Ligase Chain Reaction Are Accurate and Cost-Saving Strategies for Diagnosis of Chlamydia trachomatis

    PubMed Central

    Kapala, J.; Copes, D.; Sproston, A.; Patel, J.; Jang, D.; Petrich, A.; Mahony, J.; Biers, K.; Chernesky, M.

    2000-01-01

    Specimen pooling to achieve efficiency when testing urine specimens for Chlamydia trachomatis nucleic acids has been suggested. We pooled endocervical swabs from 1,288 women and also tested individual swabs by ligase chain reaction (LCR). Out of 53 positive specimens, pools of 4 or 8 specimens missed two positives, providing 96.2% accuracy compared to individual test results. Dilution and positive-control spiking experiments showed that negative specimens with inhibitors of LCR in the pool reduced the signal. Conversely, two extra positives, detected only through pooling, were negative by individual testing but became positive after storage, suggesting that fresh positive specimens with labile inhibitors may be positive in a pool because of dilution of inhibitors. For this population of women with a 4% prevalence of C. trachomatis infection, substantial savings in cost of reagents (55 to 63%) and technologist time (50 to 63%) made pooling strategies a desirable alternative to individual testing. PMID:10878029

  1. Fire Severity and Soil Carbon Combustion in Boreal and Tundra Ecosystems

    NASA Astrophysics Data System (ADS)

    Walker, X. J.; Mack, M. C.; Baltzer, J. L.; Cummings, S.; Day, N.; Goetz, S.; Johnstone, J. F.; Rogers, B. M.; Turetsky, M. R.

    2016-12-01

    Climate warming in northern latitudes has led to an intensification of wildfire disturbance. Increased fire frequency, extent, and severity is expected to strongly impact the structure and function of northern ecosystems. In this study, we examined 50 sites in a recently burned tundra ecosystem of Alaska, USA and 250 sites in recently burned boreal conifer forest ecosystems of Northwest Territories, Canada. The majority of organic carbon (C) in both boreal and tundra ecosystems resides in the soil organic layer (SOL) and combustion of this layer can lead to large C emissions. Through examining multiple fire scars in different regions, ranging in moisture, elevation, and pre-fire vegetation communities, we can determine the ecosystem, landscape, and regional controls on SOL combustion and the potential shift in C storage. In this research, we use scalable SOL consumption metrics to estimate depth of burn and the associated C emissions. Preliminary results from boreal conifer sites indicate that nearly 50% of the pre-fire soil C pool was combusted and that over 75% of the total C emitted from the extreme fire year of 2014 can be attributed to combustion of the SOL. Increased combustion of SOL associated with an intensifying fire regime could shift boreal and tundra ecosystems across a C cycle threshold: from net accumulation of C from the atmosphere over multiple fire cycles, to a net loss. Understanding changes in SOL combustion and C storage is essential for assessing the consequences of an altered fire regime on permafrost dynamics, vegetation regeneration, and the initiation of successional trajectories in tundra and boreal ecosystems.

  2. Carbon stocks and fluxes in fire disturbed landscapes of Colorado, U.S.A.

    NASA Astrophysics Data System (ADS)

    Barnes, R. T.; Wolf, K.; Whittinghill, K. A.; Gilbertson, A.; Buma, B.

    2016-12-01

    In terrestrial ecosystems, ecological disturbances can strongly regulate material and energy flows. This often results from the reduction in biomass and associated ecological relationships and physiological processes. Researchers have noted an increase in the size and severity of disturbances, such as wildfire, in recent decades. While there is significant research examining post-disturbance carbon stocks and recovery, there is less known about the fate and quality of post-disturbance carbon pools. In an effort to understand the recovery and resilience of forest carbon stocks to severe wildfire we examined the carbon and black carbon (pyrogenic) stocks (e.g. above ground biomass, coarse woody debris, charcoal, soils) and export fluxes (stream export, soil leachate, soil respiration) within the burn scars and nearby reference sites of five 2002 Colorado fires. The fires encompass large precipitation and ecosystem gradients (relatively dry montane Ponderosa forests to relatively wet subalpine Lodgepole forests), allowing us to control for various state factors in our analyses. With the exception of the Hinman fire (subalpine, Lodgepole dominated), there is little forest regrowth more than a decade later, with only a few saplings found in burned plots; instead forbes and grasses dominate. Fire also reduces soil C stocks (by 16 to 68%) across all sites. In addition, with the shifts in vegetation we hypothesize that there will be corresponding changes in soil organic matter (SOM), altering the residence time of C in soil. Soil incubation experiments reveal that organic matter bioavailability is significantly greater in three of the burned sites, suggesting that the new sources of SOM are more bioavailable. Stable isotopic analyses of SOM and the evolved CO2 from the incubation studies will allow us to test this hypothesis. Fire also affects the amount and nature of dissolved and particulate organic matter (DOM and POM, respectively) leaving the watershed. For example, the dissolved organic matter exported from burned watersheds is less aromatic and has lower C:N than DOM exported from reference watersheds. In addition to measuring these fluxes, we assessed the fate of leached DOM via laboratory bioassays to determine the likelihood of additional CO2 losses to the atmosphere.

  3. ESA Fire CCI product assessment

    NASA Astrophysics Data System (ADS)

    Heil, Angelika; Yue, Chao; Mouillot, Florent; Storm, Thomas; Chuvieco, Emilio; Kaiser, Johannes

    2016-04-01

    Vegetation fires are a major disturbance in the Earth System. Fires change the biophysical properties and dynamics of ecosystems and alter terrestrial carbon pools. By altering the atmosphere's composition, fire emissions exert a significant climate forcing. To realistically model past and future changes of the Earth System, fire disturbances must be taken into account. Related modelling efforts require consistent global burned area observations covering at least 10 to 20 years. Guided by the specific requirements of a wide range of end users, the ESA fire_cci project is currently computing a new global burned area dataset. It applies a newly developed spectral change detection algorithm upon the full ENVISAT-MERIS archive (2002 to 2012). The algorithm relies on MODIS active fire information as "seed". A first, formally validated version has been released for the period 2006 to 2008. It comprises a pixel burned area product (spatial resolution of 333 m) with date detection information and a biweekly grid product at 0.5 degree spatial resolution. We compare fire_cci burned area with other global burned area products (MCD64, GFED4(s), GEOLAND) and a set of active fires data (hotspots from MODIS, TRMM, AATSR and fire radiative power from GFAS). Output from the ongoing processing of the full MERIS timeseries will be incorporated into the study, as far as available. The analysis of patterns of agreement and disagreement between fire_cci and other products provides a better understanding of product characteristics and uncertainties. The intercomparison of the 2006-2008 fire_cci time series shows a close agreement with GFED4 data in terms of global burned area and the general spatial and temporal patterns. Pronounced differences, however, emerge for specific regions or fire events. Burned area mapped by fire_cci tends to be notably higher in regions where small agricultural fires predominate. The improved detection of small agricultural fires by fire_cci can be related to the increased spatial resolution of the MERIS sensor (333 m compared to 500 in MODIS). This is illustrated in detail using the example of the extreme 2006 spring fires in Eastern Europe.

  4. Fire-induced changes in boreal forest canopy volume and soil organic matter from multi-temporal airborne lidar

    NASA Astrophysics Data System (ADS)

    Alonzo, M.; Cook, B.; Andersen, H. E.; Babcock, C. R.; Morton, D. C.

    2016-12-01

    Fire in boreal forests initiates a cascade of biogeochemical and biophysical processes. Over typical fire return intervals, net radiative forcing from boreal forest fires depends on the offsetting impacts of greenhouse gas emissions and post-fire changes in land surface albedo. Whether boreal forest fires warm or cool the climate over these multi-decadal intervals depends on the magnitude of fire emissions and the time scales of decomposition, albedo changes, and forest regrowth. Our understanding of vegetation and surface organic matter (SOM) changes from boreal forest fires is shaped by field measurements and moderate resolution remote sensing data. Intensive field plot measurements offer detailed data on overstory, understory, and SOM changes from fire, but sparse plot data can be difficult to extend across the heterogeneous boreal forest landscape. Conversely, satellite measurements of burn severity are spatially extensive but only provide proxy measures of fire effects. In this research, we seek to bridge the scale gap between existing intensive and extensive methods using a combination of airborne lidar data and time series of Landsat data to evaluate pre- and post-fire conditions across Alaska's Kenai Peninsula. Lidar-based estimates of pre-fire stand structure and composition were essential to characterize the loss of canopy volume from fires between 2001 and 2014, quantify transitions from live to dead standing carbon pools, and isolate vegetation recovery following fire over 1 to 13 year time scales. Results from this study demonstrate the utility of lidar for estimating pre-fire structure and species composition at the scale of individual tree crowns. Multi-temporal airborne lidar data also provide essential insights regarding the heterogeneity of canopy and SOM losses at a sub-Landsat pixel scale. Fire effects are forest-structure and species dependent with variable temporal lags in carbon release due to delayed mortality (>5 years post fire) and standing dead trees. Establishing the spatial and temporal scales of canopy structural change will aid in constraining estimates of net radiative forcing from both carbon release and albedo in the years following fire.

  5. ATR prohibits replication catastrophe by preventing global exhaustion of RPA.

    PubMed

    Toledo, Luis Ignacio; Altmeyer, Matthias; Rask, Maj-Britt; Lukas, Claudia; Larsen, Dorthe Helena; Povlsen, Lou Klitgaard; Bekker-Jensen, Simon; Mailand, Niels; Bartek, Jiri; Lukas, Jiri

    2013-11-21

    ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Utilizing the ultrasensitive Schistosoma up-converting phosphor lateral flow circulating anodic antigen (UCP-LF CAA) assay for sample pooling-strategies.

    PubMed

    Corstjens, Paul L A M; Hoekstra, Pytsje T; de Dood, Claudia J; van Dam, Govert J

    2017-11-01

    Methodological applications of the high sensitivity genus-specific Schistosoma CAA strip test, allowing detection of single worm active infections (ultimate sensitivity), are discussed for efficient utilization in sample pooling strategies. Besides relevant cost reduction, pooling of samples rather than individual testing can provide valuable data for large scale mapping, surveillance, and monitoring. The laboratory-based CAA strip test utilizes luminescent quantitative up-converting phosphor (UCP) reporter particles and a rapid user-friendly lateral flow (LF) assay format. The test includes a sample preparation step that permits virtually unlimited sample concentration with urine, reaching ultimate sensitivity (single worm detection) at 100% specificity. This facilitates testing large urine pools from many individuals with minimal loss of sensitivity and specificity. The test determines the average CAA level of the individuals in the pool thus indicating overall worm burden and prevalence. When requiring test results at the individual level, smaller pools need to be analysed with the pool-size based on expected prevalence or when unknown, on the average CAA level of a larger group; CAA negative pools do not require individual test results and thus reduce the number of tests. Straightforward pooling strategies indicate that at sub-population level the CAA strip test is an efficient assay for general mapping, identification of hotspots, determination of stratified infection levels, and accurate monitoring of mass drug administrations (MDA). At the individual level, the number of tests can be reduced i.e. in low endemic settings as the pool size can be increased as opposed to prevalence decrease. At the sub-population level, average CAA concentrations determined in urine pools can be an appropriate measure indicating worm burden. Pooling strategies allowing this type of large scale testing are feasible with the various CAA strip test formats and do not affect sensitivity and specificity. It allows cost efficient stratified testing and monitoring of worm burden at the sub-population level, ideally for large-scale surveillance generating hard data for performance of MDA programs and strategic planning when moving towards transmission-stop and elimination.

  7. Ground-fire effects on the composition of dissolved and total organic matter in forest floor and soil solutions from Scots pine forests in Germany: new insights from solid state 13C NMR analysis

    NASA Astrophysics Data System (ADS)

    Näthe, Kerstin; Michalzik, Beate; Levia, Delphis; Steffens, Markus

    2016-04-01

    Fires represent an ecosystem disturbance and are recognized to seriously pertubate the nutrient budgets of forested ecosystems. While the effects of fires on chemical, biological, and physical soil properties have been intensively studied, especially in Mediterranean areas and North America, few investigations examined the effects of fire-induced alterations in the water-bound fluxes and the chemical composition of dissolved and particulate organic carbon and nitrogen (DOC, POC, DN, PN). The exclusion of the particulate organic matter fraction (0.45 μm < POM < 500 μm) potentially results in misleading inferences and budgeting gaps when studying the effects of fires on nutrient and energy fluxes. To our best knowledge, this is the first known study to present fire-induced changes on the composition of dissolved and total organic matter (DOM, TOM) in forest floor (FF) and soil solutions (A, B horizon) from Scots pine forests in Germany. In relation to control sites, we test the effects of low-severity fires on: (1) the composition of DOM and TOM in forest floor and soil solutions; and (2) the translocated amount of particulate in relation to DOC and DN into the subsoil. The project aims to uncover the mechanisms of water-bound organic matter transport along an ecosystem profile and its compositional changes following a fire disturbance. Forest floor and soil solutions were fortnightly sampled from March to December 2014 on fire-manipulated and control plots in a Scots pine forest in Central Germany. Shortly after the experimental duff fire in April 2014 pooled solutions samples were taken for solid-state 13C NMR spectroscopy to characterize DOM (filtered solution < 0.8μm pore size) and TOM in unfiltered solutions. Independent from fire manipulation, the composition of TOM was generally less aromatic (aromaticity index [%] according to Hatcher et al., 1981) with values between 18 (FF) - 25% (B horizon) than the DOM fraction with 23 (FF) - 27% (B horizon). For DOM in FF solution, fire manipulation caused an increase in aromaticity from 23 to 27% compared to the control, due to an increase of the aryl-C and a decrease of the O-alkyl-C and alkyl-C signal. Fire effects were leveled out in the mineral soil. For TOM, fire effects became notable only in the A horizon, exhibiting a decrease in aromaticity from 22 to 18% compared to the control, due to increased O-alkyl-C and diminished aryl-C proportions. Compared to the control, fire only caused minor DOC release rates (< 10%) in the FF and mineral soil, while DN in the FF was significantly mobilized (+ 40%) by fire exhibiting annual values of 33 at the control sites compared to 46 kg DN ha-1 at the fire treated sites. Compared to the control, fire events did not significantly enhance the proportion of POC and PN in the total C and N amounts exhibiting values between 10 and 20%. To fully understand the quality and amount of translocated organic C and N compounds within soils under both ambient as well as fire environments, dissolved and particulate size fractions need to be considered.

  8. Modeling the disturbance of vegetation by fire in the boreal forest

    NASA Astrophysics Data System (ADS)

    Crevoisier, C.; Shevliakova, E.; Gloor, M.; Wirth, C.

    2006-12-01

    Boreal regions are important for the global carbon cycle because it is the largest forested area on earth and there are large belowground carbon pools (~1000 PgC). It is also a region where largest warming trends on the globe over the last decades have been observed and changes of the land ecosystems have already started. A major factor that determines the structure and carbon dynamics of the boreal forest is fire. As fire frequency depends strongly on climate, increased fire occurrence and related losses to the atmosphere are likely, and have already been reported. In order to predict with more confidence the occurrence and effect of fire on forest ecosystems in the boreal region, we have developed a fire model that takes advantage of the large on-ground, remote sensing and climate data from Canada, Alaska and Siberia. This prognostic model estimates the monthly burned area in a grid cell of 2 by 2.5 degrees, from four climate (air temperature, air relative humidity, precipitation and soil water content) and one human-related (road density) variables. Parameters are estimated using a Markov Chain Monte Carlo method applied to a dataset of observed burned area for Canada. The model is able to reproduce the seasonality of fire, the interannual variability, as well as the location of fire events, not only for Canada (on which data the model is based), but also for Siberia and Alaska, for which the results compare well with remote sensing observation, and are in the range of various current estimations of burned area. The fire model is being implemented in LM3V, the new vegetation model of GFDL earth system model, in order to make prediction of future fire behavior in boreal regions, and the related disturbance of the vegetation and carbon emissions.

  9. Predicting the formation and the dispersion of toxic combustion products from the fires of dangerous substances

    NASA Astrophysics Data System (ADS)

    Nevrlý, V.; Bitala, P.; Danihelka, P.; Dobeš, P.; Dlabka, J.; Hejzlar, T.; Baudišová, B.; Míček, D.; Zelinger, Z.

    2012-04-01

    Natural events, such as wildfires, lightning or earthquakes represent a frequent trigger of industrial fires involving dangerous substances. Dispersion of smoke plume from such fires and the effects of toxic combustion products are one of the reference scenarios expected in the framework of major accident prevention. Nowadays, tools for impact assessment of these events are rather missing. Detailed knowledge of burning material composition, atmospheric conditions, and other factors are required in order to describe quantitatively the source term of toxic fire products and to evaluate the parameters of smoke plume. Nevertheless, an assessment of toxic emissions from large scale fires involves a high degree of uncertainty, because of the complex character of physical and chemical processes in the harsh environment of uncontrolled flame. Among the others, soot particle formation can be mentioned as still being one of the unresolved problems in combustion chemistry, as well as decomposition pathways of chemical substances. Therefore, simplified approach for estimating the emission factors from outdoor fires of dangerous chemicals, utilizable for major accident prevention and preparedness, was developed and the case study illustrating the application of the proposed method was performed. ALOFT-FT software tool based on large eddy simulation of buoyant fire plumes was employed for predicting the local toxic contamination in the down-wind vicinity of the fire. The database of model input parameters can be effectively modified enabling the simulation of the smoke plume from pool fires or jet fires of arbitrary flammable (or combustible) gas, liquid or solid. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic via the project LD11012 (in the frame of the COST CM0901 Action) and the Ministry of Environment of the Czech Republic (project no. SPII 1a10 45/70).

  10. Biogeochemical legacy of prescribed fire in a giant sequoia - Mixed conifer forest: A 16-year record of watershed balances

    USGS Publications Warehouse

    Engle, D.L.; Sickman, J.O.; Moore, C.M.; Esperanza, A.M.; Melack, J.M.; Keeley, J.E.

    2008-01-01

    The effects of prescription burning on watershed balances of major ions in mixed conifer forest were examined in a 16-year paired catchment study in Sequoia National Park, California. The objective was to determine whether fire-related changes in watershed balances persist as long as estimated low-end natural fire-return intervals (???10 years), and whether cumulative net export caused by fire could deplete nutrient stocks between successive fires. Inputs (wet + dry deposition) and outputs (stream export) of N, S, Cl-, HCO3-, Ca2+, Mg2+, Na+, K+, H+, and SiO2 were measured for 7 years preceding, and 9 years following, a prescribed burn of one of the catchments. After fire, runoff coefficients increased by 7% (in dry years) to 35% (in wet years). Inorganic N was elevated in stream water for 3 years after fire. Increased export of water, SO42-, Cl-,SiO2, and base cations continued through the end of the study. Pools and processes attributed to fire led to the cumulative loss, per hectare, of 1.2 kg N, 16 kg S, 25 kg Cl-, 130 kg Ca2+, 19 kg Mg2+, 71 kg Na+, 29 kg K+ and 192 kg Si, above that predicted by prefire regression equations relating export in the paired catchments. This additional export equaled <1% of the N, up to one-third of the Ca and Mg, and up to three-fourths of the K, contained in the forest floor prior to combustion. Changes in watershed balances indicated that low-end natural fire-return intervals may prevent complete reaccumulation of several elements between fires. Copyright 2008 by the American Geophysical Union.

  11. The impact of post-fire salvage logging on microbial nitrogen cyclers in Mediterranean forest soil.

    PubMed

    Pereg, Lily; Mataix-Solera, Jorge; McMillan, Mary; García-Orenes, Fuensanta

    2018-04-01

    Forest fires are a regular occurrence in the Mediterranean basin. High severity fires and post-fire management can affect biological, chemical and physical properties of soil, including the composition and abundance of soil microbial communities. Salvage logging is a post-fire management strategy, which involves the removal of burnt wood from land after a fire. The main objective of this work was to evaluate the impact of post-fire salvage logging and microaggregation on soil microbial communities, specifically on the abundance of nitrogen cyclers and, thus, the potential of the soil for microbial nitrogen cycling. The abundance of nitrogen cyclers was assessed by quantification of microbial nitrogen cycling genes in soil DNA, including nifH (involved in nitrogen fixation), nirS/K and nosZ (involved in denitrification), amoA-B and amoA-Arch (involved in bacterial and archaeal nitrification, respectively). It was demonstrated that salvage logging reduced bacterial load post-fire when compared to tree retention control and resulted in significant changes to the abundance of functional bacteria involved in nitrogen cycling. Microbial gene pools involved in various stages of the nitrogen cycle were larger in control soil than in soil subjected to post-fire salvage logging and were significantly correlated with organic matter, available phosphorous, nitrogen and aggregate stability. The microaggregate fraction of the soil, which has been associated with greater organic carbon, was shown to be a hotspot for nitrogen cyclers particularly under salvage logging. The impact of post-fire management strategies on soil microbial communities needs to be considered in relation to maintaining ecosystem productivity, resilience and potential impact on climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Accelerated weathering of fire-retardant-treated wood for fire testing

    Treesearch

    Robert H. White

    2009-01-01

    Fire-retardant-treated products for exterior applications must be subjected to actual or accelerated weathering prior to fire testing. For fire-retardant-treated wood, the two accelerated weathering methods have been Method A and B of ASTM D 2898. The rain test is Method A of ASTM D 2898. Method B includes exposures to ultraviolet (UV) sunlamps in addition to water...

  13. Wood crib fire free burning test in ISO room

    NASA Astrophysics Data System (ADS)

    Qiang, Xu; Griffin, Greg; Bradbury, Glenn; Dowling, Vince

    2006-04-01

    In the research of application potential of water mist fire suppression system for fire fighting in train luggage carriage, a series of experiments were conducted in ISO room on wood crib fire with and without water mist actuation. The results of free burn test without water mist suppression are used as reference in evaluating the efficiency of water mist suppression system. As part of the free burn test, several tests have been done under the hood of ISO room to calibrate the size of the crib fire and these tests can also be used in analyzing the wall effect in room fire hazard. In these free burning experiments, wood cribs of four sizes under the hood were tested. The temperature of crib fire, heat flux around the fire, gas concentration in hood of ISO room were measured in the experiments and two sets of thermal imaging system were used to get the temperature distribution and the typical shape of the free burning flames. From the experiments, the radiation intensity in specific positions around the fire, the effective heat of combustion, mass loss, oxygen consumption rate for different sizes of fire, typical structure of the flame and self extinguishment time was obtained for each crib size.

  14. Designing fire safe interiors.

    PubMed

    Belles, D W

    1992-01-01

    Any product that causes a fire to grow large is deficient in fire safety performance. A large fire in any building represents a serious hazard. Multiple-death fires almost always are linked to fires that grow quickly to a large size. Interior finishes have large, continuous surfaces over which fire can spread. They are regulated to slow initial fire growth, and must be qualified for use on the basis of fire tests. To obtain meaningful results, specimens must be representative of actual installation. Variables--such as the substrate, the adhesive, and product thickness and density--can affect product performance. The tunnel test may not adequately evaluate some products, such as foam plastics or textile wall coverings, thermoplastic materials, or materials of minimal mass. Where questions exist, products should be evaluated on a full-scale basis. Curtains and draperies are examples of products that ignite easily and spread flames readily. The present method for testing curtains and draperies evaluates one fabric at a time. Although a fabric tested alone may perform well, fabrics that meet test standards individually sometimes perform poorly when tested in combination. Contents and furnishings constitute the major fuels in many fires. Contents may involve paper products and other lightweight materials that are easily ignited and capable of fast fire growth. Similarly, a small source may ignite many items of furniture that are capable of sustained fire growth. Upholstered furniture can reach peak burning rates in less than 5 minutes. Furnishings have been associated with many multiple-death fires.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Use of polymerase chain reaction technique to confirm VecTest screening results in Plasmodium falciparum and Plasmodium vivax VK 210 laboratory-infected Anopheles stephensi mosquitoes.

    PubMed

    Santos-Ciminera, Patricia D; Acheé, Nicole L; Quinnan, Gerald V; Roberts, Donald R

    2004-09-01

    We evaluated polymerase chain reaction (PCR) to confirm immunoassays for malaria parasites in mosquito pools after a failure to detect malaria with PCR during an outbreak in which pools tested positive using VecTest and enzyme-linked immunosorbent assay (ELISA). We combined VecTest, ELISA, and PCR to detect Plasmodium falciparum and Plasmodium vivax VK 210. Each mosquito pool, prepared in triplicate, consisted of 1 exposed Anopheles stephensi and up to 9 unfed mosquitoes. The results of VecTest and ELISA were concordant. DNA from a subset of the pools, 1 representative of each ratio of infected to uninfected mosquitoes, was extracted and used as template in PCR. All P. vivax pools were PCR positive but some needed additional processing for removal of apparent inhibitors before positive results were obtained. One of the pools selected for P. falciparum was negative by PCR, probably because of losses or contamination during DNA extraction; 2 remaining pools at this ratio were PCR positive. Testing pools by VecTest, ELISA, and PCR is feasible, and PCR is useful for confirmation of immunoassays. An additional step might be needed to remove potential inhibitors from pools prior to PCR.

  16. Wall and corner fire tests on selected wood products

    Treesearch

    H. C. Tran; M. L. Janssens

    1991-01-01

    As part of a fire growth program to develop and validate a compartment fire model, several bench-scale and full-scale tests were conducted. This paper reports the full-scale wall and corner test results of step 2 of this study. A room fire test following the ASTM proposed standard specifications was used for these full-scale tests. In step 1, we investigated the...

  17. Decadal-Scale Reduction in Forest Net Ecosystem Production Following Insect Defoliation Contrasts with Short-Term Impacts of Prescribed Fires

    Treesearch

    Kenneth L. Clark; Heidi J. Renninger; Nicholas Skowronski; Michael Gallagher; Karina V.R.  Schäfer

    2018-01-01

    Understanding processes underlying forest carbon dynamics is essential for accurately predicting the outcomes of non-stand-replacing disturbance in intermediate-age forests. We quantified net ecosystem production (NEP), aboveground net primary production (ANPP), and the dynamics of major carbon (C) pools before and during the decade following invasive insect...

  18. Pyrogenic carbon emission from a large wildfire in Oregon, United States.

    Treesearch

    J. Campbell; D. Donato; D. Azuma; B. Law

    2007-01-01

    We used a ground-based approach to compute the pyrogenic carbon emissions from the Biscuit Fire, an exceptionally large wildfire, which in 2002 burned over 200,000 ha of mixed conifer forest in southwestern Oregon. A combination of federal inventory data and supplementary ground measurements afforded the estimation of preburn densities for 25 separate carbon pools at...

  19. The role of fire in Research Natural Areas in the Northern Rockies and Pacific Northwest

    Treesearch

    Sarah E. Greene; Angela Evenden

    1996-01-01

    Forest Service Research Natural Areas are established to preserve examples of all significant natural ecosystems for comparison with those influenced andlor managed by humans, to provide educational and research areas for ecological and environmental studies, and to preserve gene pools for typical and rare and endangered species. The Research Natural Area program in...

  20. 24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... include intensity of cavity fire (temperature-time) and post-test damage. (iii) Post-test damage... Technology Research Institute (IIT) Report, “Development of Mobile Home Fire Test Methods to Judge the Fire... Project J-6461, 1979” or other full-scale fire tests accepted by HUD, and it is installed in a manner...

  1. 24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... include intensity of cavity fire (temperature-time) and post-test damage. (iii) Post-test damage... Technology Research Institute (IIT) Report, “Development of Mobile Home Fire Test Methods to Judge the Fire... Project J-6461, 1979” or other full-scale fire tests accepted by HUD, and it is installed in a manner...

  2. 24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... include intensity of cavity fire (temperature-time) and post-test damage. (iii) Post-test damage... Technology Research Institute (IIT) Report, “Development of Mobile Home Fire Test Methods to Judge the Fire... Project J-6461, 1979” or other full-scale fire tests accepted by HUD, and it is installed in a manner...

  3. 24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... include intensity of cavity fire (temperature-time) and post-test damage. (iii) Post-test damage... Technology Research Institute (IIT) Report, “Development of Mobile Home Fire Test Methods to Judge the Fire... Project J-6461, 1979” or other full-scale fire tests accepted by HUD, and it is installed in a manner...

  4. 24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... include intensity of cavity fire (temperature-time) and post-test damage. (iii) Post-test damage... Technology Research Institute (IIT) Report, “Development of Mobile Home Fire Test Methods to Judge the Fire... Project J-6461, 1979” or other full-scale fire tests accepted by HUD, and it is installed in a manner...

  5. Battleship tank firing test of H-II launch vehicle - First stage

    NASA Astrophysics Data System (ADS)

    Watanabe, Atsutaro; Endo, Mamoru; Yamazaki, Isao; Maemura, Takashi; Namikawa, Tatsuo

    1991-06-01

    The H-II launch vehicle capable of placing 2-ton-class payloads on geostationary orbits is outlined, and focus is placed on its propulsion system. The development status of the project, including component development, preliminary battleship tank firing test (BFT-1), battleship tank firing test (BFT-2), and flight-type tank firing test (CFT) is discussed. The configuration and schematic diagram of BFT-2 are presented, and the firing test results of BFT-2 first series are analyzed, including engine performance, interface compatibility, and pressurization of subsystems.

  6. The optimization of aircraft seat cushion fire-blocking layers. Full Scale: Test description and results

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Duskin, F. E.

    1982-01-01

    Full-scale burn tests were conducted on thirteen different seat cushion configurations in a cabin fire simulator. The fire source used was a quartz lamp radiant energy panel with a propane pilot flame. During each test, data were recorded for cushion temperatures, radiant heat flux, rate of weight loss of test specimens, and cabin temperatures. When compared to existing passenger aircraft seat cushions, the test specimens incorporating a fire barrier and those fabricated from advance materials, using improved construction methods, exhibited significantly greater fire resistance.

  7. Hot-Fire Testing of a 1N AF-M315E Thruster

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher G.; Pedersen, Kevin; Pierce, Charles W.

    2015-01-01

    This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends. NASA completed a hot-fire test of a 1N AF-M315E monopropellant thruster at the Marshall Space Flight Center in the small altitude test stand located in building 4205. The thruster is a ground test article used for basic performance determination and catalyst studies. The purpose of the hot-fire testing was for performance determination of a 1N size thruster and form a baseline from which to study catalyst performance and life with follow-on testing to be conducted at a later date. The thruster performed as expected. The result of the hot-fire testing are presented in this paper and presentation.

  8. Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie

    NASA Astrophysics Data System (ADS)

    Shaw, E. Ashley; Denef, Karolien; Milano de Tomasel, Cecilia; Cotrufo, M. Francesca; Wall, Diana H.

    2016-05-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is common and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root-litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root-litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable but also significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition, which, in turn, is significantly affected by fire. Not only does fire affect the soil community and root decomposition, but the lower microbial abundance, greater root turnover, and the increased incorporation of root litter C by microbes and nematodes for AB suggests that annual burning increases root-litter-derived C flow through the soil food web of the tallgrass prairie.

  9. Management Impacts on Carbon Dynamics in a Sierra Nevada Mixed Conifer Forest

    PubMed Central

    Dore, Sabina; Fry, Danny L.; Collins, Brandon M.; Vargas, Rodrigo; York, Robert A.; Stephens, Scott L.

    2016-01-01

    Forest ecosystems can act as sinks of carbon and thus mitigate anthropogenic carbon emissions. When forests are actively managed, treatments can alter forests carbon dynamics, reducing their sink strength and switching them from sinks to sources of carbon. These effects are generally characterized by fast temporal dynamics. Hence this study monitored for over a decade the impacts of management practices commonly used to reduce fire hazards on the carbon dynamics of mixed-conifer forests in the Sierra Nevada, California, USA. Soil CO2 efflux, carbon pools (i.e. soil carbon, litter, fine roots, tree biomass), and radial tree growth were compared among un-manipulated controls, prescribed fire, thinning, thinning followed by fire, and two clear-cut harvested sites. Soil CO2 efflux was reduced by both fire and harvesting (ca. 15%). Soil carbon content (upper 15 cm) was not significantly changed by harvest or fire treatments. Fine root biomass was reduced by clear-cut harvest (60–70%) but not by fire, and the litter layer was reduced 80% by clear-cut harvest and 40% by fire. Thinning effects on tree growth and biomass were concentrated in the first year after treatments, whereas fire effects persisted over the seven-year post-treatment period. Over this period, tree radial growth was increased (25%) by thinning and reduced (12%) by fire. After seven years, tree biomass returned to pre-treatment levels in both fire and thinning treatments; however, biomass and productivity decreased 30%-40% compared to controls when thinning was combined with fire. The clear-cut treatment had the strongest impact, reducing ecosystem carbon stocks and delaying the capacity for carbon uptake. We conclude that post-treatment carbon dynamics and ecosystem recovery time varied with intensity and type of treatments. Consequently, management practices can be selected to minimize ecosystem carbon losses while increasing future carbon uptake, resilience to high severity fire, and climate related stresses. PMID:26918460

  10. Modelling a historic oil-tank fire allows an estimation of the sensitivity of the infrared receptors in pyrophilous Melanophila beetles.

    PubMed

    Schmitz, Helmut; Bousack, Herbert

    2012-01-01

    Pyrophilous jewel beetles of the genus Melanophila approach forest fires and there is considerable evidence that these beetles can detect fires from great distances of more than 60 km. Because Melanophila beetles are equipped with infrared receptors and are also attracted by hot surfaces it can be concluded that these infrared receptors are used for fire detection.The sensitivity of the IR receptors is still unknown. The lowest threshold published so far is 0.6 W/m(2) which, however, cannot explain the detection of forest fires by IR radiation from distances larger than approximately 10 km. To investigate the possible sensitivity of the IR receptors we assumed that beetles use IR radiation for remote fire detection and we made use of a historic report about a big oil-tank fire in Coalinga, California, in 1924. IR emission of an oil-tank fire can be calculated by "pool fire" simulations which now are used for fire safety and risk analysis. Assuming that beetles were lured to the fire from the nearest forests 25 and 130 km away, our results show that detection from a distance of 25 km requires a threshold of the IR receptors of at least 3×10(-2) W/m(2). According to our investigations most beetles became aware of the fire from a distance of 130 km. In this case the threshold has to be 1.3×10(-4) W/m(2). Because such low IR intensities are buried in thermal noise we suggest that the infrared sensory system of Melanophila beetles utilizes stochastic resonance for the detection of weak IR radiation. Our simulations also suggest that the biological IR receptors might be even more sensitive than uncooled technical IR sensors. Thus a closer look into the mode of operation of the Melanophila IR receptors seems promising for the development of novel IR sensors.

  11. Mobile Landing Platform with Core Capability Set (MLP w/CCS): Combined Initial Operational Test and Evaluation and Live Fire Test and Evaluation Report

    DTIC Science & Technology

    2015-07-01

    annex.   iii Self-defense testing was limited to structural test firing from each machine gun mount and an ammunition resupply drill. Robust self...provided in the classified annex. Self-   8 defense testing was limited to structural test firing from each machine gun mount and a single...Caliber Machine Gun Mount Structural Test Fire November 2014 San Diego, Offshore Ship Weapons Range Operating Independently       9 Section Three

  12. 46 CFR 107.251 - Testing of the fire main.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Testing of the fire main. 107.251 Section 107.251 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.251 Testing of the fire main. Each fire main...

  13. 46 CFR 107.251 - Testing of the fire main.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Testing of the fire main. 107.251 Section 107.251 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.251 Testing of the fire main. Each fire main...

  14. 46 CFR 107.251 - Testing of the fire main.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Testing of the fire main. 107.251 Section 107.251 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.251 Testing of the fire main. Each fire main...

  15. 46 CFR 107.251 - Testing of the fire main.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Testing of the fire main. 107.251 Section 107.251 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.251 Testing of the fire main. Each fire main...

  16. 46 CFR 107.251 - Testing of the fire main.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Testing of the fire main. 107.251 Section 107.251 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.251 Testing of the fire main. Each fire main...

  17. Physical characteristics, chemical composition and water contamination potential from Canadian wildfire ash

    NASA Astrophysics Data System (ADS)

    Santin, Cristina; Doerr, Stefan; Arcenegui, Vicky; Otero, Xose Luis

    2017-04-01

    Wildland fires leave a powdery residue on the ground: wildfire ash, which consists of mineral materials and charred organic components. Its quantities and characteristics depend mainly on the total amount and type of fuel burnt and the fire characteristics. Up to several tens of tons of ash per hectare have been quantified in different post-fire environments. As a new material present after a wildland fire, ash can have profound effects on ecosystems. It affects biogeochemical cycles, including the carbon cycle, stimulates microbial activity and helps the recovery of vegetation. Ash incorporated into the soil increases soil pH and nutrient pools temporarily and changes soil physical properties such as albedo, soil texture and hydraulic properties. Ash also modifies soil and landscape-scale hydrological behaviour. Its high porosity makes it very effective at absorbing rainfall, but it can also contribute to catastrophic debris flows when ash is mobilised by large storm events. Its 'fragile' nature makes ash very susceptible to wind and water erosion, facilitating its transfer to the hydrological system. Runoff containing ash from burnt areas carries soluble nutrients and pollutants, which can have detrimental impacts on aquatic ecosystems and the supply of potable water. In this presentation we will report for the first time on the physical characteristics, chemical composition and associated water pollution risk from ash produced in four typical Canadian boreal forest fires: two high-intensity fires in jack pine stands, and one high-intensity and one smouldering fire in black spruce stands.

  18. SNL/JAEA Collaborations on Sodium Fire Benchmarking.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Andrew Jordan; Denman, Matthew R; Takata, Takashi

    Two sodium spray fire experiments performed by Sandia National Laboratories (SNL) were used for a code - to - code comparison between CONTAIN - LMR and SPHINCS. Both computer codes are used for modeling sodium accidents in sodium fast reactors. The comparison between the two codes provides insights into the ability of both codes to model sodium spray fires. The SNL T3 and T4 experiments are 20 kg sodium spray fires with sodium spray temperature s of 200 deg C and 500 deg C, respe ctively. Given the relatively low sodium temperature in the SNL T3 experiment, the sodium spraymore » experienced a period of non - combustion. The vessel in the SNL T4 experiment experienced a rapid pressurization that caused of the instrumentation ports to fail during the sodium spray. Despite these unforeseen difficulties, both codes were shown in good agreement with the experiment s . The subsequent pool fire that develops from the unburned sodium spray is a significant characteristic of the T3 experiment. SPHIN CS showed better long - term agreement with the SNL T3 experiment than CONTAIN - LMR. The unexpected port failure during the SNL T4 experiment presented modelling challenges. The time at which the port failure occurred is unknown, but is believed to have occur red at about 11 seconds into the sodium spray fire. The sensitivity analysis for the SNL T4 experiment shows that with a port failure, the sodium spray fire can still maintain elevated pressures during the spray.« less

  19. Development of a Midscale Test for Flame Resistant Protection

    DTIC Science & Technology

    2016-08-01

    Evaluation of Flame Resistant Clothing for Protection against Fire Simulations Using an Instrumented Manikin, which provides both radiant and convective heat...TEST METHODS FIRE RESISTANT MATERIALS TORCHES SIMULATION TEST EQUIPMENT FLAME RESISTANT CLOTHING PERFORMANCE(ENGINEERING... fabric during a fire , and even after the fire has been extinguished. The best known full scale transmitted heat flux test is the "ASTM F1930

  20. Near-maximal ECG stress testing and coronary artery disease risk factor analysis in Los Angeles City fire fighters.

    PubMed

    Barnard, R J; Gardner, G W; Diaco, N V; Kattus, A A

    1975-11-01

    Near-maximal ECG stress testing and coronary artery disease risk factor analysis including blood pressure, serum cholesterol and smoking habits were conducted on a randomly selected group (N=90) of Los Angeles City Fire Fighters ranging in age from 40 to 59 yrs. The data obtained from the fire fighters were compared to data previously reported for a group of Los Angeles insurance underwriters of the same age range. Only 12% of the fire fighters had cholesterol values greater than 260 mg% while 18% of the insurance executives fell into this category. Only 2% of the fire fighters had blood pressure values greater than 160/90 mm Hg while 25% of the insurance executives were hypertensive. Thirty-two percent of the fire fighters were smokers at the time of testing as compared to 26% for the insurance executives. Only one fire fighter had all three risk factors elevated and only five had two risk factors elevated. Forty-seven of the fire fighters had no risk factors elevated. Ten percent of the fire fighters had ischemic stress tests as compared to 8% for the insurance executives. Of the nine fire fighters with ischemic stress tests one was hypertensive, one had elevated serum triglycerides, and three were smokers at the time of testing. Since the fire fighters are a medically-selected population with low risk factors for CHD, the observed incidence of ischemic stress tests is surprising and suggests that ischemic heart disease may be job associated.

  1. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie

    NASA Astrophysics Data System (ADS)

    Manning, George C.; Baer, Sara G.; Blair, John M.

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies ( P < 0.05). Available inorganic N, microbial biomass N, total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies ( P < 0.05). Microbial biomass C, total organic C, and total soil N were positively correlated with FQI ( P < 0.05). This study shows that floristic quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  2. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie.

    PubMed

    Manning, George C; Baer, Sara G; Blair, John M

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies (P < 0.05). Available inorganic N, microbial biomass N, total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies (P < 0.05). Microbial biomass C, total organic C, and total soil N were positively correlated with FQI (P < 0.05). This study shows that floristic quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  3. Experimental analysis of 7.62 mm hydrodynamic ram in containers

    NASA Astrophysics Data System (ADS)

    Deletombe, E.; Fabis, J.; Dupas, J.; Mortier, J. M.

    2013-02-01

    The design of fuel tanks with a reduced vulnerability with respect to hydrodynamic ram pressure (HRAM) effects is of an increasing need in the Civil (e.g. the Concorde accident), and Defence (military aircraft, unmanned vehicle systems) aircraft industries. The presented work concerns experimental research which aims at observing two hydraulic ram events - both induced by a 7.62 mm bullet shot in very different containers - throughout their various steps until the final collapse of the generated cavity, in order to study the nature of HRAM, the influence of the containers geometry, and to measure original dynamic data for numerical modelling developments and validation. For that purpose, test configurations and experimental results are described, documented and discussed. They concern two types of firing tests that were performed at ONERA using the NATO 7.62 mm projectile, respectively in the frame of ONERA (pool) and EUCLID (caisson) funded research projects. The authors concentrate on two topics: on the one hand, digital image analysis to measure the cavity geometry during its growth and collapse phases and, on the other hand, pressure measurements that catch the transient shock wave. The originality of the work consists in the fact that - compared with other published works - the phenomenon is studied up to tens of milliseconds in a very large pool for theoretical analysis of the bullet/liquid interactions only, and in a realistic fuel tank specimen to consider influence of boundary conditions onto the cavity characteristics (geometry, dynamics).

  4. 77 FR 37717 - Electrical Cable Test Results and Analysis During Fire Exposure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Fire Exposure AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for comment. SUMMARY...-2128, ``Electrical Cable Test Results and Analysis during Fire Exposure (ELECTRA-FIRE), A Consolidation of the Three Major Fire-Induced Circuit and Cable Failure Experiments Performed between 2001 and 2011...

  5. Reduced high-frequency motor neuron firing, EMG fractionation, and gait variability in awake walking ALS mice

    PubMed Central

    Hadzipasic, Muhamed; Ni, Weiming; Nagy, Maria; Steenrod, Natalie; McGinley, Matthew J.; Kaushal, Adi; Thomas, Eleanor; McCormick, David A.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease prominently featuring motor neuron (MN) loss and paralysis. A recent study using whole-cell patch clamp recording of MNs in acute spinal cord slices from symptomatic adult ALS mice showed that the fastest firing MNs are preferentially lost. To measure the in vivo effects of such loss, awake symptomatic-stage ALS mice performing self-initiated walking on a wheel were studied. Both single-unit extracellular recordings within spinal cord MN pools for lower leg flexor and extensor muscles and the electromyograms (EMGs) of the corresponding muscles were recorded. In the ALS mice, we observed absent or truncated high-frequency firing of MNs at the appropriate time in the step cycle and step-to-step variability of the EMG, as well as flexor-extensor coactivation. In turn, kinematic analysis of walking showed step-to-step variability of gait. At the MN level, the higher frequencies absent from recordings from mutant mice corresponded with the upper range of frequencies observed for fast-firing MNs in earlier slice measurements. These results suggest that, in SOD1-linked ALS mice, symptoms are a product of abnormal MN firing due at least in part to loss of neurons that fire at high frequency, associated with altered EMG patterns and hindlimb kinematics during gait. PMID:27821773

  6. The role of savannas in the terrestrial Si cycle: A case-study from Lamto, Ivory Coast

    NASA Astrophysics Data System (ADS)

    Alexandre, Anne; Bouvet, Mickael; Abbadie, Luc

    2011-08-01

    Savannas currently occupy a fifth of the earth's land surface and are predicted to expand in the next few centuries at the expense of tropical forests, mainly as a result of deforestation and human fires. Can such a vegetation trend impact, through changes in plant Si cycling, the lithogenic silicon (LSi) release into soils (through chemical weathering) and the net dissolved Si (DSi) outputs from soils to stream water (through chemical denudation)? The first step of an investigation requires quantifying the net Si fluxes involved in the plant/soil system. Here, a schematic steady-state Si cycle, established for a tropical humid savanna (Lamto, Ivory Coast) that developed on a ferruginous soil and is subjected to annual fires, is presented. Erosion was assumed to be insignificant. LSi and biogenic Si (BSi under the form of phytoliths) pools were measured, and Si fluxes were estimated from Si concentrations and mass balance calculation. Identification of plant and soil phytoliths indicated that the soil BSi pool is in equilibrium with the current BSi input by the savanna. In the soil column, mixing between a young rapidly recycled BSi pool and an old stable BSi pool is attested by a mixing line equation. Storage of the old BSi pool is assimilated as a BSi output from the plant/soil system. A BSi output additionally occurs after annual fires, when ashes are exported. Both BSi outputs decrease as much the BSi dissolution. In order to uptake constant DSi flux, the savanna increases by three to eight times the net LSi release, depending upon the post-fire ash exportation scenario. A comparison between savanna and rainforest Si cycles that maximizes the differences in plant/soil systems and minimizes differences in climate is presented. The comparison revealed that BSi storage is higher in the savanna soil than in the rainforest soil, mainly due to BSi production that is twice higher in the savanna (127 vs 67 kg/ha/yr). The resulting LSi release that is enhanced by plant uptake is more than 1.5 higher in the savanna than in the rainforest (from 33 to 85 kg/ha/yr in the savanna vs 21 kg/ha/yr in the rainforest). On the contrary, DSi output from soils to stream water, which is not controlled by plant Si cycling but more likely by the soil hydrological regime (or meteoric weathering), is close to twice as high in the rainforest/ferrallitic soil ecosystem (16 vs 9 kg/ha/yr). This case study suggests that the predicted expansion of savannas at the expense of forests should significantly increase DSi uptake by plants, BSi storage in soils, BSi output with ash exportation, and, hence, LSi release through chemical weathering, without direct impact on DSi outputs from soils to stream water. Tracks for further assessing the role of plant Si cycling on chemical weathering, Si and C cycles were suggested: 1) estimates of BSi fluxes that were wrongly based on the assumption that the amount of DSi leached out from soils is linked to the magnitude of plant Si cycling and/or to BSi concentration in soils should be reappraised and 2) changes in the magnitude of plant Si cycling should be accounted in geochemical carbon cycle models, for one of the plant-induced weathering mechanisms.

  7. The role of savannas in the terrestrial Si cycle: A case-study from Lamto, Ivory Coast

    NASA Astrophysics Data System (ADS)

    Alexandre, A. E.; Abbadie, L.

    2011-12-01

    Savannas currently occupy a fifth of the earth's land surface and are predicted to expand in the next few centuries at the expense of tropical forests, mainly as a result of deforestation and human fires. Can such a vegetation trend impact, through changes in plant Si cycling, the lithogenic silicon (LSi) release into soils (through chemical weathering) and the net dissolved Si (DSi) outputs from soils to stream water (through chemical denudation)? The first step of an investigation requires quantifying the net Si fluxes involved in the plant/soil system. Here, a schematic steady-state Si cycle, established for a tropical humid savanna (Lamto, Ivory Coast) that developed on a ferruginous soil and is subjected to annual fires, is presented. Erosion was assumed to be insignificant. LSi and biogenic Si (BSi under the form of phytoliths) pools were measured, and Si fluxes were estimated from Si concentrations and mass balance calculation. Identification of plant and soil phytoliths indicated that the soil BSi pool is in equilibrium with the current BSi input by the savanna. In the soil column, mixing between a young rapidly recycled BSi pool and an old stable BSi pool is attested by a mixing line equation. Storage of the old BSi pool is assimilated as a BSi output from the plant/soil system. A BSi output additionally occurs after annual fires, when ashes are exported. Both BSi outputs decrease as much the BSi dissolution. In order to uptake constant DSi flux, the savanna increases by three to eight times the net LSi release, depending upon the post-fire ash exportation scenario. A comparison between savanna and rainforest Si cycles that maximizes the differences in plant/soil systems and minimizes differences in climate is presented. The comparison revealed that BSi storage is higher in the savanna soil than in the rainforest soil, mainly due to BSi production that is twice higher in the savanna (127 vs 67 kg/ha/yr). The resulting LSi release that is enhanced by plant uptake is more than 1.5 higher in the savanna than in the rainforest (from 33 to 85 kg/ha/yr in the savanna vs 21 kg/ha/yr in the rainforest). On the contrary, DSi output from soils to stream water, which is not controlled by plant Si cycling but more likely by the soil hydrological regime (or meteoric weathering), is close to twice as high in the rainforest/ferrallitic soil ecosystem (16 vs 9 kg/ha/yr). This case study suggests that the predicted expansion of savannas at the expense of forests should significantly increase DSi uptake by plants, BSi storage in soils, BSi output with ash exportation, and, hence, LSi release through chemical weathering, without direct impact on DSi outputs from soils to stream water. Tracks for further assessing the role of plant Si cycling on chemical weathering, Si and C cycles were suggested: 1) estimates of BSi fluxes that were wrongly based on the assumption that the amount of DSi leached out from soils is linked to the magnitude of plant Si cycling and/or to BSi concentration in soils should be reappraised and 2) changes in the magnitude of plant Si cycling should be accounted in geochemical carbon cycle models, for one of the plant-induced weathering mechanisms.

  8. Field test of optical and electrical fire detectors in simulated fire scenes in a cable tunnel

    NASA Astrophysics Data System (ADS)

    Fan, Dian; Ding, Hongjun; Wang, Dorothy Y.; Jiang, Desheng

    2014-06-01

    This paper presents the testing results of three types of fire detectors: electrical heat sensing cable, optical fiber Raman temperature sensing detector, and optical fiber Bragg grating (FBG) temperature sensing detector, in two simulated fire scenes in a cable tunnel. In the small-scale fire with limited thermal radiation and no flame, the fire alarm only comes from the heat sensors which directly contact with the heat source. In the large-scale fire with about 5 °C/min temperature rising speed within a 3-m span, the fire alarm response time of the fiber Raman sensor and FBG sensors was about 30 seconds. The test results can be further used for formulating regulation for early fire detection in cable tunnels.

  9. 46 CFR 107.257 - Testing of fire hose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Testing of fire hose. 107.257 Section 107.257 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.257 Testing of fire hose. Each fire hose must be subjected to a...

  10. 46 CFR 107.257 - Testing of fire hose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Testing of fire hose. 107.257 Section 107.257 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.257 Testing of fire hose. Each fire hose must be subjected to a...

  11. 46 CFR 107.257 - Testing of fire hose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Testing of fire hose. 107.257 Section 107.257 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.257 Testing of fire hose. Each fire hose must be subjected to a...

  12. 46 CFR 107.257 - Testing of fire hose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Testing of fire hose. 107.257 Section 107.257 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.257 Testing of fire hose. Each fire hose must be subjected to a...

  13. 46 CFR 107.257 - Testing of fire hose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Testing of fire hose. 107.257 Section 107.257 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.257 Testing of fire hose. Each fire hose must be subjected to a...

  14. Evaluation of a Urine Pooling Strategy for the Rapid and Cost-Efficient Prevalence Classification of Schistosomiasis.

    PubMed

    Lo, Nathan C; Coulibaly, Jean T; Bendavid, Eran; N'Goran, Eliézer K; Utzinger, Jürg; Keiser, Jennifer; Bogoch, Isaac I; Andrews, Jason R

    2016-08-01

    A key epidemiologic feature of schistosomiasis is its focal distribution, which has important implications for the spatial targeting of preventive chemotherapy programs. We evaluated the diagnostic accuracy of a urine pooling strategy using a point-of-care circulating cathodic antigen (POC-CCA) cassette test for detection of Schistosoma mansoni, and employed simulation modeling to test the classification accuracy and efficiency of this strategy in determining where preventive chemotherapy is needed in low-endemicity settings. We performed a cross-sectional study involving 114 children aged 6-15 years in six neighborhoods in Azaguié Ahoua, south Côte d'Ivoire to characterize the sensitivity and specificity of the POC-CCA cassette test with urine samples that were tested individually and in pools of 4, 8, and 12. We used a Bayesian latent class model to estimate test characteristics for individual POC-CCA and quadruplicate Kato-Katz thick smears on stool samples. We then developed a microsimulation model and used lot quality assurance sampling to test the performance, number of tests, and total cost per school for each pooled testing strategy to predict the binary need for school-based preventive chemotherapy using a 10% prevalence threshold for treatment. The sensitivity of the urine pooling strategy for S. mansoni diagnosis using pool sizes of 4, 8, and 12 was 85.9%, 79.5%, and 65.4%, respectively, when POC-CCA trace results were considered positive, and 61.5%, 47.4%, and 30.8% when POC-CCA trace results were considered negative. The modeled specificity ranged from 94.0-97.7% for the urine pooling strategies (when POC-CCA trace results were considered negative). The urine pooling strategy, regardless of the pool size, gave comparable and often superior classification performance to stool microscopy for the same number of tests. The urine pooling strategy with a pool size of 4 reduced the number of tests and total cost compared to classical stool microscopy. This study introduces a method for rapid and efficient S. mansoni prevalence estimation through examining pooled urine samples with POC-CCA as an alternative to widely used stool microscopy.

  15. Evaluation of a Urine Pooling Strategy for the Rapid and Cost-Efficient Prevalence Classification of Schistosomiasis

    PubMed Central

    Coulibaly, Jean T.; Bendavid, Eran; N’Goran, Eliézer K.; Utzinger, Jürg; Keiser, Jennifer; Bogoch, Isaac I.; Andrews, Jason R.

    2016-01-01

    Background A key epidemiologic feature of schistosomiasis is its focal distribution, which has important implications for the spatial targeting of preventive chemotherapy programs. We evaluated the diagnostic accuracy of a urine pooling strategy using a point-of-care circulating cathodic antigen (POC-CCA) cassette test for detection of Schistosoma mansoni, and employed simulation modeling to test the classification accuracy and efficiency of this strategy in determining where preventive chemotherapy is needed in low-endemicity settings. Methodology We performed a cross-sectional study involving 114 children aged 6–15 years in six neighborhoods in Azaguié Ahoua, south Côte d’Ivoire to characterize the sensitivity and specificity of the POC-CCA cassette test with urine samples that were tested individually and in pools of 4, 8, and 12. We used a Bayesian latent class model to estimate test characteristics for individual POC-CCA and quadruplicate Kato-Katz thick smears on stool samples. We then developed a microsimulation model and used lot quality assurance sampling to test the performance, number of tests, and total cost per school for each pooled testing strategy to predict the binary need for school-based preventive chemotherapy using a 10% prevalence threshold for treatment. Principal Findings The sensitivity of the urine pooling strategy for S. mansoni diagnosis using pool sizes of 4, 8, and 12 was 85.9%, 79.5%, and 65.4%, respectively, when POC-CCA trace results were considered positive, and 61.5%, 47.4%, and 30.8% when POC-CCA trace results were considered negative. The modeled specificity ranged from 94.0–97.7% for the urine pooling strategies (when POC-CCA trace results were considered negative). The urine pooling strategy, regardless of the pool size, gave comparable and often superior classification performance to stool microscopy for the same number of tests. The urine pooling strategy with a pool size of 4 reduced the number of tests and total cost compared to classical stool microscopy. Conclusions/Significance This study introduces a method for rapid and efficient S. mansoni prevalence estimation through examining pooled urine samples with POC-CCA as an alternative to widely used stool microscopy. PMID:27504954

  16. LPT. Shield test facility test building interior (TAN646). Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility test building interior (TAN-646). Camera facing south. Distant pool contained EBOR reactor; near pool was intended for fuel rod storage. Other post-1970 activity equipment remains in pool. INEEL negative no. HD-40-9-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  17. Site preparation burning to improve southern Appalachian pine-hardwood stands: aboveground biomass, forest floor mass, and nitrogen and carbon pools

    Treesearch

    J.M. Vose; W.T. Swank

    1993-01-01

    Prescribed fire is currently used as a site preparation treat-ment in mixed pine-hardwood ecosystems of the southern Appalachians.Stands receiving this treatment typically consist of mixtures of pitch pine (Pinus rigidu Mill.), scarlet oak (Quercus coccinea Muenchh.), chestnut oak (Quercus prinus L.), red maple (Acer rubrum L.), and dense under-stories dominated by...

  18. Sub-Scale Analysis of New Large Aircraft Pool Fire-Suppression

    DTIC Science & Technology

    2016-01-01

    discrete ordinates radiation and single step Khan and Greeves soot model provided radiation and soot interaction. Agent spray dynamics were...Notable differences observed showed a modeled increase in the mockup surface heat-up rate as well as a modeled decreased rate of soot production...488 K SUPPRESSION STARTED  Large deviation between sensors due to sensor alignment challenges and asymmetric fuel surface ignition  Unremarkable

  19. Fire Fighter Level I-II-III [and] Practical Skills Test. Wisconsin Fire Service Certification Series. Final Revision.

    ERIC Educational Resources Information Center

    Pribyl, Paul F.

    Practical skills tests are provided for fire fighter trainees in the Wisconsin Fire Service Certification Series, Fire Fighter Levels I, II, and III. A course introduction appears first and contains this information: recommended instructional sequence, required facilities, instructional methodology, requirements for certification, course…

  20. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor or...

  1. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor or...

  2. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor or...

  3. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor or...

  4. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor or...

  5. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Pellegrini, Adam F. A.; Ahlström, Anders; Hobbie, Sarah E.; Reich, Peter B.; Nieradzik, Lars P.; Staver, A. Carla; Scharenbroch, Bryant C.; Jumpponen, Ari; Anderegg, William R. L.; Randerson, James T.; Jackson, Robert B.

    2018-01-01

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  6. Modelling a Historic Oil-Tank Fire Allows an Estimation of the Sensitivity of the Infrared Receptors in Pyrophilous Melanophila Beetles

    PubMed Central

    Schmitz, Helmut; Bousack, Herbert

    2012-01-01

    Pyrophilous jewel beetles of the genus Melanophila approach forest fires and there is considerable evidence that these beetles can detect fires from great distances of more than 60 km. Because Melanophila beetles are equipped with infrared receptors and are also attracted by hot surfaces it can be concluded that these infrared receptors are used for fire detection. The sensitivity of the IR receptors is still unknown. The lowest threshold published so far is 0.6 W/m2 which, however, cannot explain the detection of forest fires by IR radiation from distances larger than approximately 10 km. To investigate the possible sensitivity of the IR receptors we assumed that beetles use IR radiation for remote fire detection and we made use of a historic report about a big oil-tank fire in Coalinga, California, in 1924. IR emission of an oil-tank fire can be calculated by “pool fire” simulations which now are used for fire safety and risk analysis. Assuming that beetles were lured to the fire from the nearest forests 25 and 130 km away, our results show that detection from a distance of 25 km requires a threshold of the IR receptors of at least 3×10−2 W/m2. According to our investigations most beetles became aware of the fire from a distance of 130 km. In this case the threshold has to be 1.3×10−4 W/m2. Because such low IR intensities are buried in thermal noise we suggest that the infrared sensory system of Melanophila beetles utilizes stochastic resonance for the detection of weak IR radiation. Our simulations also suggest that the biological IR receptors might be even more sensitive than uncooled technical IR sensors. Thus a closer look into the mode of operation of the Melanophila IR receptors seems promising for the development of novel IR sensors. PMID:22629433

  7. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity.

    PubMed

    Pellegrini, Adam F A; Ahlström, Anders; Hobbie, Sarah E; Reich, Peter B; Nieradzik, Lars P; Staver, A Carla; Scharenbroch, Bryant C; Jumpponen, Ari; Anderegg, William R L; Randerson, James T; Jackson, Robert B

    2018-01-11

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  8. Impacts: NIST Building and Fire Research Laboratory (technical and societal)

    NASA Astrophysics Data System (ADS)

    Raufaste, N. J.

    1993-08-01

    The Building and Fire Research Laboratory (BFRL) of the National Institute of Standards and Technology (NIST) is dedicated to the life cycle quality of constructed facilities. The report describes major effects of BFRL's program on building and fire research. Contents of the document include: structural reliability; nondestructive testing of concrete; structural failure investigations; seismic design and construction standards; rehabilitation codes and standards; alternative refrigerants research; HVAC simulation models; thermal insulation; residential equipment energy efficiency; residential plumbing standards; computer image evaluation of building materials; corrosion-protection for reinforcing steel; prediction of the service lives of building materials; quality of construction materials laboratory testing; roofing standards; simulating fires with computers; fire safety evaluation system; fire investigations; soot formation and evolution; cone calorimeter development; smoke detector standards; standard for the flammability of children's sleepwear; smoldering insulation fires; wood heating safety research; in-place testing of concrete; communication protocols for building automation and control systems; computer simulation of the properties of concrete and other porous materials; cigarette-induced furniture fires; carbon monoxide formation in enclosure fires; halon alternative fire extinguishing agents; turbulent mixing research; materials fire research; furniture flammability testing; standard for the cigarette ignition resistance of mattresses; support of navy firefighter trainer program; and using fire to clean up oil spills.

  9. 30 CFR 75.1103-8 - Automatic fire sensor and warning device systems; examination and test requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...

  10. 30 CFR 75.1103-8 - Automatic fire sensor and warning device systems; examination and test requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...

  11. 30 CFR 75.1103-8 - Automatic fire sensor and warning device systems; examination and test requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...

  12. 30 CFR 75.1103-8 - Automatic fire sensor and warning device systems; examination and test requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...

  13. 30 CFR 75.1103-8 - Automatic fire sensor and warning device systems; examination and test requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...

  14. Utility of pooled urine specimens for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in men attending public sexually transmitted infection clinics in Mumbai, India, by PCR.

    PubMed

    Lindan, Christina; Mathur, Meenakshi; Kumta, Sameer; Jerajani, Hermangi; Gogate, Alka; Schachter, Julius; Moncada, Jeanne

    2005-04-01

    Pooling urogenital specimens for the detection of Chlamydia trachomatis and Neisseria gonorrhoeae by nucleic acid amplification tests is an attractive alternative to individual testing. As pooling can reduce the costs of testing as well as labor, it has been advocated for use in resource-poor settings. However, it has neither been widely adopted nor evaluated for use in developing countries. We evaluated the practical use of pooling first-catch urine (FCU) specimens for the detection of C. trachomatis and N. gonorrhoeae from 690 men in Mumbai, India, by PCR. FCU, urethral smears, and swabs were collected from men seen at two sexually transmitted infection (STI) clinics. All laboratory testing was done at the Lokmanya Tilak General Hospital. Gram stain smears and culture isolation for N. gonorrhoeae were performed. Each FCU was tested individually and in pools using the Roche Amplicor PCR for C. trachomatis and N. gonorrhoeae with an internal control for inhibition. Specimen pools consisted of aliquots from five consecutively processed FCUs combined into an amplification tube. An optical density reading of > or =0.20 indicated a pool for which subsequent testing of individual samples was required. Prevalence by PCR on single specimens was 2.2% (15/690) for C. trachomatis and 5.4% (37/690) for N. gonorrhoeae. Compared to individual FCU results, pooling for C. trachomatis and N. gonorrhoeae had an overall sensitivity of 96.1% (50/52). Specificity was 96.5% (83/86) in that three pools required single testing that failed to identify a positive specimen. Pooling missed two positive specimens, decreased the inhibition rate, and saved 50.3% of reagent costs. In this resource-limited setting, the use of pooling to detect C. trachomatis and N. gonorrhoeae by PCR proved to be a simple, accurate, and cost-effective procedure compared to individual testing.

  15. Development of aircraft lavatory compartments with improved fire resistance characteristics, phase 1: Fire containment test of a wide body aircraft lavatory module

    NASA Technical Reports Server (NTRS)

    Anderson, R. A.; Arnold, D. B.; Johnson, G. A.; Tustin, E. A.

    1978-01-01

    A test was conducted to evaluate the fire containment characteristics of a Boeing 747 lavatory module. Results showed that the fire was contained within the lavatory during the 30-minute test period with the door closed. The resistance of the lavatory wall and ceiling panels and general lavatory construction to burn-through under the test conditions was demonstrated.

  16. Evaluation of three percent Aqueous Film Forming Foam (AFFF) concentrates as fire fighting agents

    NASA Astrophysics Data System (ADS)

    Jablonski, E. J.

    1981-04-01

    A large-scale fire test program involving 20,000-square foot JP-4 fuel fires was conducted to evaluate the fire suppression effectiveness and compatibility of 3 percent Aqueous Film Forming Foam (AFFF) agents in Air Force fire fighting vehicles. Three commercially available 3 percent AFFF concentrates were tested in accordance with military specification MIL-F-24385B. Test results are summarized in Appendix A. As a result of these tests, an updated Revision C to this MIL SPEC has been accomplished with new requirements for both 3 percent and 6 percent AFFF extinguishing agents.

  17. Test results: Halon 1301 versus water sprinkler fire protection for essential electronic equipment

    NASA Astrophysics Data System (ADS)

    Reichelt, E. F.; Walker, J. L.; Vickers, R. N.; Kwan, A. J.

    1982-07-01

    This report describes results of testing two contending extinguishants, Halon 1301 and water, for fire protection of essential electronic equipment. A series of controlled fires in a facility housing an operational electronic data processing system sought to establish immediate and long term effects of exposure of sensitive electronic equipment and stored data to fire extinguishment atmospheres. Test results lead to the conclusion that Halon 1301 is superior to water as an extinguishant for fires occurring in essential electronic equipment installations.

  18. Thermal Response of UHMWPE Materials in a Flash Flame Test Environment

    DTIC Science & Technology

    2014-11-13

    Evaluation of Flame Resistant Clothing for Protection Against Fire Simulations Using an Instrumented Manikin. Several UHMWPE fabrics were tested underneath...PROTECTIVE CLOTHING COTTON FLASH FLAMES UNDERGARMENTS TEST AND EVALUATION FABRICS FLAME TESTING FIRE ...PROTECTION FIRE RESISTANT TEXTILES UHMWPE(ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE

  19. Spacecraft Fire Suppression: Testing and Evaluation

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; McKinnon, J. Thomas; Delplanque, Jean-Pierre; Kailasanath, Kazhikathra; Gokoglu, Suleyman; Wu, Ming-Shin

    2004-01-01

    The objective of this project is the testing and evaluation of the effectiveness of a variety of fire suppressants and fire-response techniques that will be used in the next generation of spacecraft (Crew Exploration Vehicle, CEV) and planetary habitats. From the many lessons learned in the last 40 years of space travel, there is common agreement in the spacecraft fire safety community that a new fire suppression system will be needed for the various types of fire threats anticipated in new space vehicles and habitats. To date, there is no single fire extinguishing system that can address all possible fire situations in a spacecraft in an effective, reliable, clean, and safe way. The testing conducted under this investigation will not only validate the various numerical models that are currently being developed, but it will provide new design standards on fire suppression that can then be applied to the next generation of spacecraft extinguishment systems. The test program will provide validation of scaling methods by conducting small, medium, and large scale fires. A variety of suppression methods will be tested, such as water mist, carbon dioxide, and nitrogen with single and multiple injection points and direct or distributed agent deployment. These injection methods cover the current ISS fire suppression method of a portable hand-held fire extinguisher spraying through a port in a rack and also next generation spacecraft units that may have a multi-point suppression delivery system built into the design. Consideration will be given to the need of a crew to clean-up the agent and recharge the extinguishers in flight in a long-duration mission. The fire suppression methods mentioned above will be used to extinguish several fire scenarios that have been identified as the most relevant to spaceflight, such as overheated wires, cable bundles, and circuit boards, as well as burning cloth and paper. Further testing will be conducted in which obstructions and ventilation will be added to represent actual spacecraft conditions (e.g., a series of cards in a card rack).

  20. Study to develop improved fire resistant aircraft passenger seat materials

    NASA Technical Reports Server (NTRS)

    Duskin, F. E.; Schutter, K. J.; Sieth, H. H.; Trabold, E. L.

    1980-01-01

    The Phase 3 study of the NASA 'Improved Fire Resistant Aircraft Seat Materials' involved fire tests of improved materials in multilayered combinations representative of cushion configurations. Tests were conducted to determine their thermal, smoke, and fire resistance characteristics. Additionally, a 'Design Guideline' for Fire Resistant Passenger Seats was written outlining general seat design considerations. Finally, a three-abreast 'Tourist Class' passenger seat assembly fabricated from the most advanced fire-resistant materials was delivered.

  1. Fire severity alters the distribution of pyrogenic carbon stocks across ecosystem pools in a Californian mixed-conifer forest

    NASA Astrophysics Data System (ADS)

    Maestrini, Bernardo; Alvey, Erin C.; Hurteau, Matthew D.; Safford, Hugh; Miesel, Jessica R.

    2017-09-01

    Pyrogenic carbon (PyC) is hypothesized to play an important role in the carbon (C) cycle due to its resistance to decomposition; however, much uncertainty still exists regarding the stocks of PyC that persist on-site after the initial erosion in postfire forests. Therefore, understanding how fire characteristics influence PyC stocks is vital, particularly in the context of California forests for which an increase of high-severity fires is predicted over the next decades. We measured forest C and persistent PyC stocks in areas burned by low-to-moderate and high-severity fire, as well as in adjacent unburned areas in a California mixed-conifer forest, 2 to 3 years after wildfire. We measured C and PyC stocks in the following compartments: standing trees, downed wood, forest floor, and mineral soil (0-5 cm), and we identified PyC using the weak nitric acid digestion method. We found that the total stock of PyC did not differ among fire severity classes (overall mean 248 ± 30 g C m-2); however, fire severity influenced the distribution of PyC in the individual compartments. Areas burned by high-severity fire had 2.5 times more PyC stocked in the coarse woody debris (p < 0.05), 3.3 times more PyC stocked in standing trees (p < 0.05), and a lower PyC stock in the forest floor (-22%, p < 0.05) compared to low-to-moderate fire severity areas. These results have important implications for the permanence time of PyC, which is putatively higher in standing trees and coarse woody debris compared to the forest floor, where it is susceptible to rapid losses through erosion.

  2. Interactive effects of climate, hydrology and fire on nitrogen retention and export in coastal California chaparral

    NASA Astrophysics Data System (ADS)

    Hanan, E. J.; Schimel, J.; Tague, C.

    2012-12-01

    Fire is a major restructuring force in Mediterranean-type ecosystems, inducing nutrient redistribution that is frequently invoked as a driver of ecosystem recovery. Fire regimes are expected to change with climate warming and associated droughts. To study watershed responses to high severity landscape fire, we combined ground-based sampling of soil nitrogen dynamics with modeling in two burned, chaparral-dominated watersheds. These two watersheds, Mission Canyon and Rattlesnake Canyon, span the foothills of the Santa Ynez Mountains in Santa Barbara County, California, and large portions of both watersheds burned in November 2008 and/or May 2009. We established fifteen burned and three unburned plots in November 2009 and monitored them on a monthly basis through June 2011 for a variety of ecosystem properties including water content, soil and foliar carbon and nitrogen, soil pH, exchangeable inorganic nitrogen, and microbial biomass. We then used the GIS-based hydro-biogeochemical model, Regional Hydro-Ecologic Simulation System (RHESSys) to to evaluate the effects of fire season, climate and hydrology on biogeochemical fluxes across the fire-scarred watersheds. Fires were imposed at the beginning and end of the growing season under various climates. Soil samples collected prior to the onset of rain were relatively enriched in ammonium, presumably due to ash residue deposition. Storm events then stimulated nitrification and pulses of mineralization. Ephemeral herbs established quickly following the first post-fire rain events, thereby maintaining ecosystem nutrient capital as shrubs gradually returned. Nitrate production was significantly enhanced in burned chaparral perhaps because fires elevated soil pH, which can both raise the solubility of soil organic matter, and stimulate nitrification, or perhaps because fires released nitrifying bacteria from competition with vegetation for ammonium. Overall however, nitrogen retention and export varied among plots, highlighting the complexity of ecosystem response to fire. Modeling results suggest that chaparral nutrients pools recover more slowly when fires occur at the end of the growing season, prior to the hot, dry summer. Thus climate impacts on the timing of fire are likely to alter trajectories of ecosystem recovery.

  3. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography.

    PubMed

    Hu, Xiaogang; Suresh, Aneesha K; Rymer, William Z; Suresh, Nina L

    2016-08-01

    Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  4. Characterization of the Primary Metabolome of Brachystegia boehmii and Colophospermum mopane under Different Fire Regimes in Miombo and Mopane African Woodlands.

    PubMed

    Duvane, Jossias A; Jorge, Tiago F; Maquia, Ivete; Ribeiro, Natasha; Ribeiro-Barros, Ana I F; António, Carla

    2017-01-01

    Miombo and Mopane are ecological and economic important woodlands from Africa, highly affected by a combination of climate change factors, and anthropogenic fires. Although most species of these ecosystems are fire tolerant, the mechanisms that lead to adaptive responses (metabolic reconfiguration) are unknown. In this context, the aim of this study was to characterize the primary metabolite composition of typical legume trees from these ecosystems, namely, Brachystegia boehmii (Miombo) and Colophospermum mopane (Mopane) subjected to different fire regimes. Fresh leaves from each species were collected in management units and landscapes across varied fire frequencies in the Niassa National Reserve (NNR) and Limpopo National Park (LNP) in Mozambique. Primary metabolites were extracted and analyzed with a well-established gas chromatography time-of-flight mass spectrometry metabolomics platform (GC-TOF-MS). In B. boehmii , 39 primary metabolites were identified from which seven amino acids, two organic acids and two sugars increased significantly, whereas in C. mopane , 41 primary metabolites were identified from which eight amino acids, one sugar and two organic acids significantly increased with increasing fire frequency. The observed changes in the pool of metabolites of C. mopane might be related to high glycolytic and tricarboxylic acid (TCA) rate, which provided increased levels of amino acids and energy yield. In B. boehmii , the high levels of amino acids might be due to inhibition of protein biosynthesis. The osmoprotectant and reactive oxygen species (ROS) scavenging properties of accumulated metabolites in parallel with a high-energy yield might support plants survival under fire stress.

  5. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2016-08-01

    Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  6. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    PubMed Central

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  7. Delayed-rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells.

    PubMed

    Weick, Michael; Demb, Jonathan B

    2011-07-14

    Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. 46 CFR 176.810 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Inspection of each hand portable fire extinguisher, semiportable fire extinguisher, and fixed gas fire..., and valves, and the inspection and testing of alarms and ventilation shutdowns, for each fixed gas...) Checking of each cylinder containing compressed gas to ensure it has been tested and marked in accordance...

  9. Application of the relative energy release criteria to enclosure fire testing. [aircraft compartments

    NASA Technical Reports Server (NTRS)

    Roschke, E. J.; Coulbert, C. D.

    1979-01-01

    The five relative energy release criteria (RERC) which are a first step towards formulating a unified concept that can be applied to the development of fires in enclosures, place upper bounds on the rate and amount of energy released during a fire. They are independent, calculated readily, and may be applied generally to any enclosure regardless of size. They are useful in pretest planning and for interpreting experimental data. Data from several specific fire test programs were examined to evaluate the potential use of RERC to provide test planning guidelines. The RERC were compared with experimental data obtained in full-scale enclosures. These results confirm that in general the RERC do identify the proper limiting constraints on enclosure fire development and determine the bounds of the fire development envelope. Plotting actual fire data against the RERC reveals new valid insights into fire behavior and reveals the controlling constraints in fire development. The RERC were calculated and plotted for several descrpitions of full-scale fires in various aircraft compartments.

  10. Fire, Carbon and Climate Change in Boreal Forests

    NASA Astrophysics Data System (ADS)

    Flannigan, M. D.; Amiro, B. D.; Logan, K. A.

    2005-12-01

    Disturbances are the major stand-renewing agents for much of the circumboreal forest. In Canada, fire has received much of the attention in carbon cycle science because it affects about 3 million ha of Canadian forest annually, impacts air quality, and can threaten life, property and infrastructure. Fire affects the carbon balance through three processes. First, carbon and other greenhouse gases are emitted to the atmosphere during the combustion process. We estimate this to average about 27 Tg C/year in Canada over the past 40 years, which is close to 20% of industrial carbon emissions. However, in some years this can exceed 100 Tg C. Efforts are underway to estimate global fire activity and greenhouse gas emissions using observations, remote sensing and modelling. The second process is the decomposition of fire-killed vegetation. This forms a pool of coarse woody debris that can take decades to decompose, or can be quite rapid, depending on the post-fire environment. The third process is succession of vegetation following fire, a dynamic process that involves the interplay among species establishment and competition. Weather and climate affects all of these processes. Estimates of the future environment indicate that much of boreal Canada will experience warmer and drier conditions, although there will be regional differences and transient effects. The projections suggest that we may experience a doubling of area burned over the next century because of anthropogenic climate changes. This may have further implications to the global carbon budget by increasing atmospheric carbon dioxide concentrations. This increase in fire activity may lead to a positive feedback cycle with the increased release of greenhouse gases. A run-away scenario is unlikely because young successional boreal vegetation often does not burn as readily and would limit the positive feedback cycle. Also, changes to the forest composition following fire increases surface albedo and alters the energy balance; effects that may cause climate cooling. However, the impacts of landscape feedbacks and human intervention limiting future fire are not well known.

  11. Incorrectly Interpreting the Carbon Mass Balance Technique Leads to Biased Emissions Estimates from Global Vegetation Fires

    NASA Astrophysics Data System (ADS)

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Meyer, M.; Polglase, P. J.

    2016-12-01

    Vegetation fires are a complex phenomenon and have a range of global impacts including influences on climate. Even though fire is a necessary disturbance for the maintenance of some ecosystems, a range of anthropogenically deleterious consequences are associated with it, such as damage to assets and infrastructure, loss of life, as well as degradation to air quality leading to negative impacts on human health. Estimating carbon emissions from fire relies on a carbon mass balance technique which has evolved with two different interpretations in the fire emissions community. Databases reporting global fire emissions estimates use an approach based on `consumed biomass' which is an approximation to the biogeochemically correct `burnt carbon' approach. Disagreement between the two methods occurs because the `consumed biomass' accounting technique assumes that all burnt carbon is volatilized and emitted. By undertaking a global review of the fraction of burnt carbon emitted to the atmosphere, we show that the `consumed biomass' accounting approach overestimates global carbon emissions by 4.0%, or 100 Teragrams, annually. The required correction is significant and represents 9% of the net global forest carbon sink estimated annually. To correctly partition burnt carbon between that emitted to the atmosphere and that remaining as a post-fire residue requires the post-burn carbon content to be estimated, which is quite often not undertaken in atmospheric emissions studies. To broaden our understanding of ecosystem carbon fluxes, it is recommended that the change in carbon content associated with burnt residues be accounted for. Apart from correctly partitioning burnt carbon between the emitted and residue pools, it enables an accounting approach which can assess the efficacy of fire management operations targeted at sequestering carbon from fire. These findings are particularly relevant for the second commitment period for the Kyoto protocol, since improved landscape fire management can now be accounted for in the land use and forestry sector.

  12. Use of ordinary kriging to interpolate observations of fire radiative heat flux sampled with airborne imagery

    NASA Astrophysics Data System (ADS)

    Klauberg Silva, C.; Hudak, A. T.; Bright, B. C.; Dickinson, M. B.; Kremens, R.; Paugam, R.; Mell, W.

    2016-12-01

    Biomass burning has impacts on air pollution at local to regional scales and contributes to greenhouse gases and affects carbon balance at the global scale. Therefore, is important to accurately estimate and manage carbon pools (fuels) and fluxes (gases and particulate emissions having public health implications) associated with wildland fires. Fire radiative energy (FRE) has been shown to be linearly correlated with biomass burned in small-scale experimental fires but not at the landscape level. Characterization of FRE density (FRED) flux in J m-2 from a landscape-level fire presents an undersampling problem. Specifically, airborne acquisitions of long-wave infrared radiation (LWIR) from a nadir-viewing LWIR camera mounted on board fixed-wing aircraft provide only samples of FRED from a landscape-level fire, because of the time required to turn the plane around between passes, and a fire extent that is broader than the camera field of view. This undersampling in time and space produces apparent firelines in an image of observed FRED, capturing the fire spread only whenever and wherever the scene happened to be imaged. We applied ordinary kriging to images of observed FRED from five prescribed burns collected in forested and non-forested management units burned at Eglin Air Force Base in Florida USA in 2011 and 2012. The three objectives were to: 1. more realistically map FRED, 2. more accurately estimate total FRED as predicted from fuel consumption measurements, and 3. compare the sampled and kriged FRED maps to modeled estimates of fire rate of spread (ROS). Observed FRED was integrated from LWIR images calibrated to units of fire radiative flux density (FRFD) in W m-2. Iterating the kriging analysis 2-10 times (depending on the burn unit) led to more accurate FRED estimates, both in map form and in terms of total FRED, as corroborated by independent estimates of fuel consumption and ROS.

  13. 33 CFR 183.590 - Fire test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.590 Fire test. (a) A piece of equipment is tested under the following conditions and procedures: (1) Fuel stop valves, “USCG Type A1” or USCG Type... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fire test. 183.590 Section 183...

  14. 33 CFR 183.590 - Fire test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.590 Fire test. (a) A piece of equipment is tested under the following conditions and procedures: (1) Fuel stop valves, “USCG Type A1” or USCG Type... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fire test. 183.590 Section 183...

  15. 33 CFR 183.590 - Fire test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.590 Fire test. (a) A piece of equipment is tested under the following conditions and procedures: (1) Fuel stop valves, “USCG Type A1” or USCG Type... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fire test. 183.590 Section 183...

  16. 33 CFR 183.590 - Fire test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.590 Fire test. (a) A piece of equipment is tested under the following conditions and procedures: (1) Fuel stop valves, “USCG Type A1” or USCG Type... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fire test. 183.590 Section 183...

  17. Assembling a Computerized Adaptive Testing Item Pool as a Set of Linear Tests

    ERIC Educational Resources Information Center

    van der Linden, Wim J.; Ariel, Adelaide; Veldkamp, Bernard P.

    2006-01-01

    Test-item writing efforts typically results in item pools with an undesirable correlational structure between the content attributes of the items and their statistical information. If such pools are used in computerized adaptive testing (CAT), the algorithm may be forced to select items with less than optimal information, that violate the content…

  18. Examination of Wildland Fire Spread at Small Scales Using Direct Numerical Simulations and High-Speed Laser Diagnostics

    NASA Astrophysics Data System (ADS)

    Wimer, N. T.; Mackoweicki, A. S.; Poludnenko, A. Y.; Hoffman, C.; Daily, J. W.; Rieker, G. B.; Hamlington, P.

    2017-12-01

    Results are presented from a joint computational and experimental research effort focused on understanding and characterizing wildland fire spread at small scales (roughly 1m-1mm) using direct numerical simulations (DNS) with chemical kinetics mechanisms that have been calibrated using data from high-speed laser diagnostics. The simulations are intended to directly resolve, with high physical accuracy, all small-scale fluid dynamic and chemical processes relevant to wildland fire spread. The high fidelity of the simulations is enabled by the calibration and validation of DNS sub-models using data from high-speed laser diagnostics. These diagnostics have the capability to measure temperature and chemical species concentrations, and are used here to characterize evaporation and pyrolysis processes in wildland fuels subjected to an external radiation source. The chemical kinetics code CHEMKIN-PRO is used to study and reduce complex reaction mechanisms for water removal, pyrolysis, and gas phase combustion during solid biomass burning. Simulations are then presented for a gaseous pool fire coupled with the resulting multi-step chemical reaction mechanisms, and the results are connected to the fundamental structure and spread of wildland fires. It is anticipated that the combined computational and experimental approach of this research effort will provide unprecedented access to information about chemical species, temperature, and turbulence during the entire pyrolysis, evaporation, ignition, and combustion process, thereby permitting more complete understanding of the physics that must be represented by coarse-scale numerical models of wildland fire spread.

  19. 46 CFR 115.810 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... extinguisher, semiportable fire extinguisher, and fixed gas fire extinguishing system to check for excessive... testing of alarms and ventilation shutdowns, for each fixed gas fire extinguishing system and detecting... gas to ensure it has been tested and marked in accordance with § 147.60 in subchapter N of this...

  20. 46 CFR 115.810 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... extinguisher, semiportable fire extinguisher, and fixed gas fire extinguishing system to check for excessive... testing of alarms and ventilation shutdowns, for each fixed gas fire extinguishing system and detecting... gas to ensure it has been tested and marked in accordance with § 147.60 in subchapter N of this...

  1. Recovery of carbon pools a decade after wildfire in black spruce forests of interior Alaska: effects of soil texture and landscape position

    Treesearch

    Gregory P. Houle; Evan S. Kane; Eric S. Kasischke; Carolyn M. Gibson; Merritt R. Turetsky

    2017-01-01

    We measured organic-layer (OL) recovery and carbon stocks in dead woody debris a decade after wildfire in black spruce (Picea mariana (Mill.) B.S.P.) forests of interior Alaska. Previous study at these research plots has shown the strong role that landscape position plays in governing the proportion of OL consumed during fire and revegetation after...

  2. Carbon budget of Ontario's managed forests and harvested wood products, 2001–2100

    Treesearch

    Jiaxin Chen; Stephen J. Colombo; Michael T. Ter-Mikaelian; Linda S. Heath

    2010-01-01

    Forest and harvested wood products (HWP) carbon (C) stocks between 2001 and 2100 for Ontario's managed forests were projected using FORCARB-ON, an adaptation of the U.S. national forest C budget model known as FORCARB2. A fire disturbance module was introduced to FORCARB-ON to simulate the effects of wildfire on C, and some of the model's C pools were re-...

  3. Study on test of coal co-firing for 600MW ultra supercritical boiler with four walls tangential burning

    NASA Astrophysics Data System (ADS)

    Ying, Wu; Yong-lu, Zhong; Guo-mingi, Yin

    2018-06-01

    On account of nine commonly used coals in a Jiangxi Power Plant,two kinds of coal were selected to be applied in coal co-firing test through industrial analysis,elementary analysis and thermogravimetric analysis of coal.During the coal co-firing test,two load points were selected,three coal mixtures were prepared.Moreover,under each coal blending scheme, the optimal oxygen content was obtained by oxygen varying test. At last,by measuring the boiler efficiency and coal consumption of power supply in different coal co-firing schemes, the recommended coal co-firing scheme was obtained.

  4. Testing electroexplosive devices by programmed pulsing techniques

    NASA Technical Reports Server (NTRS)

    Rosenthal, L. A.; Menichelli, V. J.

    1976-01-01

    A novel method for testing electroexplosive devices is proposed wherein capacitor discharge pulses, with increasing energy in a step-wise fashion, are delivered to the device under test. The size of the energy increment can be programmed so that firing takes place after many, or after only a few, steps. The testing cycle is automatically terminated upon firing. An energy-firing contour relating the energy required to the programmed step size describes the single-pulse firing energy and the possible sensitization or desensitization of the explosive device.

  5. Determinants of maximal oxygen uptake (VO2 max) in fire fighter testing.

    PubMed

    Vandersmissen, G J M; Verhoogen, R A J R; Van Cauwenbergh, A F M; Godderis, L

    2014-07-01

    The aim of this study was to evaluate current daily practice of aerobic capacity testing in Belgian fire fighters. The impact of personal and test-related parameters on the outcome has been evaluated. Maximal oxygen uptake (VO2 max) results of 605 male fire fighters gathered between 1999 and 2010 were analysed. The maximal cardio respiratory exercise tests were performed at 22 different centres using different types of tests (tread mill or bicycle), different exercise protocols and measuring equipment. Mean VO2 max was 43.3 (SD = 9.8) ml/kg.min. Besides waist circumference and age, the type of test, the degree of performance of the test and the test centre were statistically significant determinants of maximal oxygen uptake. Test-related parameters have to be taken into account when interpreting and comparing maximal oxygen uptake tests of fire fighters. It highlights the need for standardization of aerobic capacity testing in the medical evaluation of fire fighters. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Analysis of NASA JP-4 fire tests data and development of a simple fire model

    NASA Technical Reports Server (NTRS)

    Raj, P.

    1980-01-01

    The temperature, velocity and species concentration data obtained during the NASA fire tests (3m, 7.5m and 15m diameter JP-4 fires) were analyzed. Utilizing the data analysis, a sample theoretical model was formulated to predict the temperature and velocity profiles in JP-4 fires. The theoretical model, which does not take into account the detailed chemistry of combustion, is capable of predicting the extent of necking of the fire near its base.

  7. Influence of logging on the effects of wildfire in Siberia

    NASA Astrophysics Data System (ADS)

    Kukavskaya, E. A.; Buryak, L. V.; Ivanova, G. A.; Conard, S. G.; Kalenskaya, O. P.; Zhila, S. V.; McRae, D. J.

    2013-12-01

    The Russian boreal zone supports a huge terrestrial carbon pool. Moreover, it is a tremendous reservoir of wood products concentrated mainly in Siberia. The main natural disturbance in these forests is wildfire, which modifies the carbon budget and has potentially important climate feedbacks. In addition, both legal and illegal logging increase landscape complexity and affect burning conditions and fuel consumption. We investigated 100 individual sites with different histories of logging and fire on a total of 23 study areas in three different regions of Siberia to evaluate the impacts of fire and logging on fuel loads, carbon emissions, and tree regeneration in pine and larch forests. We found large variations of fire and logging effects among regions depending on growing conditions and type of logging activity. Logged areas in the Angara region had the highest surface and ground fuel loads (up to 135 t ha-1), mainly due to logging debris. This resulted in high carbon emissions where fires occurred on logged sites (up to 41 tC ha-1). The Shushenskoe/Minusinsk and Zabaikal regions are characterized by better slash removal and a smaller amount of carbon emitted to the atmosphere during fires. Illegal logging, which is widespread in the Zabaikal region, resulted in an increase in fire hazard and higher carbon emissions than legal logging. The highest fuel loads (on average 108 t ha-1) and carbon emissions (18-28 tC ha-1) in the Zabaikal region are on repeatedly burned unlogged sites where trees fell on the ground following the first fire event. Partial logging in the Shushenskoe/Minusinsk region has insufficient impact on stand density, tree mortality, and other forest conditions to substantially increase fire hazard or affect carbon stocks. Repeated fires on logged sites resulted in insufficient tree regeneration and transformation of forest to grasslands. We conclude that negative impacts of fire and logging on air quality, the carbon cycle, and ecosystem sustainability could be decreased by better slash removal in the Angara region, removal of trees killed by fire in the Zabaikal region, and tree planting after fires in drier conditions where natural regeneration is hampered by soil overheating and grass proliferation.

  8. Item Pool Design for an Operational Variable-Length Computerized Adaptive Test

    ERIC Educational Resources Information Center

    He, Wei; Reckase, Mark D.

    2014-01-01

    For computerized adaptive tests (CATs) to work well, they must have an item pool with sufficient numbers of good quality items. Many researchers have pointed out that, in developing item pools for CATs, not only is the item pool size important but also the distribution of item parameters and practical considerations such as content distribution…

  9. Closure Report for Corrective Action Unit 342: Area 23 Mercury Fire Training Pit Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. M. Obi

    2000-04-01

    The purpose of this Closure Report (CR) is to provide documentation of the completed corrective action and to provide data confirming the corrective action. The corrective action was performed following the approved Corrective Action Plan (CAP) (U.S. Department of Energy [DOE], 1999b) and consisted of closure-in-place with partial excavation, disposal, backfilling, administrative controls, and post-closure monitoring. Soil with petroleum hydrocarbon concentrations above the Nevada Division of Environmental Protection (NDEP) Action Level of 100 milligrams per kilogram (mg/kg) (Nevada Administrative Code, 1996) was removed to a depth of 1.5 meters (m) (5 feet [ft]). The excavations were backfilled with clean fillmore » to restore the site and to prevent contact with deeper, closed-in-place soil that exceeded the NDEP Action Level. According to the Corrective Action Investigation Plan (CAIP) (DOE, 1998), the Mercury Fire Training Pit was used from approximately 1965 to the early 1990s to train fire-fighting and emergency response personnel at the NTS and encompasses an area approximately 85 by 115 m (280 by 380 ft). The location of the Mercury Fire Training Pit is shown in Figure 1 and a site plan is shown in Figure 2. The Mercury Fire Training Pit formerly included a bermed bum pit with four small bum tanks; four large above ground storage tanks (ASTS); an overturned bus, a telephone pole storage area; and several areas for burning sheds, pallets, and cables. During the active life of the Mercury Fire Training Pit, training events were conducted at least monthly and sometimes as often as weekly. Fuels burned during these events included off-specification or rust-contaminated gasoline, diesel, and aviation fuel (JP-4). Other items burned during these events included paint, tires, a pond liner, wood, paper, cloth, and copper cable. Approximately 570 liters (L) (150 gallons [gal]) of fuel were used for each training event resulting in an approximate total of 136,000 L (36,000 gal) of fuel used over the life of the Mercury Fire Training Pit. Unburned fuel was allowed to pool on the ground and was left to eventually volatilize or soak into the soil. In addition, fuels from the ASTS and fuels and fluids from the overturned bus leaked or spilled onto the ground. Approximately 19 L to 38 L (5 to 10 gal) of paint were also burned monthly until sometime in the 1970s.« less

  10. Oxidized charcoal contribution to the humic material of deeper soil horizons in selected soils of the Doñana National Park, Spain

    NASA Astrophysics Data System (ADS)

    Knicker, Heike; González-Vila, Fransisco; Clemente-Salas, Luis

    2017-04-01

    The Doñana National Park is located at the mouth of the river Guadalquivir in Southern Spain and represents one of the largest marshlands reserves of Europe. Although vegetation fires are now prevented as far as possible, some of the areas were formerly subjected to frequent prescribed fires since 1628 (approximately every 25-30 years). The so formed pyrogenic organic matter (PyOM) is supposed to compose a major proportion of the slow-cycling carbon pools in soils and as such it is expected to affect quality and quantity of the soil organic matter (SOM) in the present reclaimed soils. In order to test this, the SOM of three profiles (Humaquepts) within the protected center region were analyzed by solid state 13C NMR spectroscopy. The respective pyrogenic organic carbon (PyOC) content was elucidated, using the chemical oxidation method. Two of the selected profiles had experienced no fire since installation of the park in 1969. Here, no major quantities of PyOC were recovered in the O layer, but an increase of aromaticity correlating with PyOC contents was revealed with soil depth. At both sites, PyOC accounted for more than 15% of the Ctot in the A/C horizon (> 50 cm). This clearly evidences a downward translocation of charcoal within the soil profile. The third profile suffered a severe fire in 1985. The fire combusted all of the O layer (0-20 cm), but after 19 years, it recovered to approximately 15 cm, although only minor contributions of PyOC were revealed. Whereas directly after the fire, the soil at a depths of 55 cm contained only 3 mg g-1 organic C without any evidence of PyOC, after 16 and 19 years a clear increase of Ctot (10-15 mg g-1) with a considerable contribution of PyOC (12% of Ctot) was revealed. Although the absolute concentration of PyOC did not decrease in the lower depths, its relative contribution to Ctot declined. This may be explained by the constant input of fresh litter l, which on a long term masks the presence of char. Alternatively, a more efficient downwards transport and subsequent stabilization of PyOC may have occurred. In summary, the studied profiles clearly demonstrate that not only in tropical soils but also in fire-affected soils of the temperate climatic zones, PyOC has an important contribution to the chemical composition of humic material in deeper horizons.

  11. Simulating wall and corner fire tests on wood products with the OSU room fire model

    Treesearch

    H. C. Tran

    1994-01-01

    This work demonstrates the complexity of modeling wall and corner fires in a compartment. The model chosen for this purpose is the Ohio State University (OSU) room fire model. This model was designed to simulate fire growth on walls in a compartment and therefore lends itself to direct comparison with standard room test results. The model input were bench-scale data...

  12. Development and test of electromechanical actuators for thrust vector control

    NASA Technical Reports Server (NTRS)

    Weir, Rae A.; Cowan, John R.

    1993-01-01

    A road map of milestones toward the goal of a full scale Redesigned Solid Rocket Motor/Flight Support Motor (RSRM/FSM) hot fire test is discussed. These milestones include: component feasibility, full power system demonstration, SSME hot fire tests, and RSRM hot fire tests. The participation of the Marshall Space Flight Center is emphasized.

  13. Optimal Stratification of Item Pools in a-Stratified Computerized Adaptive Testing.

    ERIC Educational Resources Information Center

    Chang, Hua-Hua; van der Linden, Wim J.

    2003-01-01

    Developed a method based on 0-1 linear programming to stratify an item pool optimally for use in alpha-stratified adaptive testing. Applied the method to a previous item pool from the computerized adaptive test of the Graduate Record Examinations. Results show the new method performs well in practical situations. (SLD)

  14. Most Probable Fire Scenarios in Spacecraft and Extraterrestrial Habitats: Why NASA's Current Test 1 Might Not Always be Conservative

    NASA Technical Reports Server (NTRS)

    Olson, S. L.

    2004-01-01

    NASA's current method of material screening determines fire resistance under conditions representing a worst-case for normal gravity flammability - the Upward Flame Propagation Test (Test 1). Its simple pass-fail criteria eliminates materials that burn for more than 12 inches from a standardized ignition source. In addition, if a material drips burning pieces that ignite a flammable fabric below, it fails. The applicability of Test 1 to fires in microgravity and extraterrestrial environments, however, is uncertain because the relationship between this buoyancy-dominated test and actual extraterrestrial fire hazards is not understood. There is compelling evidence that the Test 1 may not be the worst case for spacecraft fires, and we don t have enough information to assess if it is adequate at Lunar or Martian gravity levels.

  15. Most Probable Fire Scenarios in Spacecraft and Extraterrestrial Habitats: Why NASA's Current Test 1 Might Not Always Be Conservative

    NASA Technical Reports Server (NTRS)

    Olson, S. L.

    2004-01-01

    NASA s current method of material screening determines fire resistance under conditions representing a worst-case for normal gravity flammability - the Upward Flame Propagation Test (Test 1[1]). Its simple pass-fail criteria eliminates materials that burn for more than 12 inches from a standardized ignition source. In addition, if a material drips burning pieces that ignite a flammable fabric below, it fails. The applicability of Test 1 to fires in microgravity and extraterrestrial environments, however, is uncertain because the relationship between this buoyancy-dominated test and actual extraterrestrial fire hazards is not understood. There is compelling evidence that the Test 1 may not be the worst case for spacecraft fires, and we don t have enough information to assess if it is adequate at Lunar or Martian gravity levels.

  16. Testing and Selection of Fire-Resistant Materials for Spacecraft Use

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Jackson, Brian; Olson, Sandra

    2000-01-01

    Spacecraft fire-safety strategy emphasizes prevention, mostly through the selection of onboard items classified accord- ing to their fire resistance. The principal NASA acceptance tests described in this paper assess the flammability of materials and components under "worst-case" normal-gravity conditions of upward flame spread in controlled-oxygen atmospheres. Tests conducted on the ground, however, cannot duplicate the unique fire characteristics in the nonbuoyant low-gravity environment of orbiting spacecraft. Research shows that flammability an fire-spread rates in low gravity are sensitive to forced convection (ventilation flows) and atmospheric-oxygen concentration. These research results are helping to define new material-screening test methods that will better evaluate material performance in spacecraft.

  17. Distribution of black carbon in ponderosa pine forest floor and soils following the High Park wildfire

    NASA Astrophysics Data System (ADS)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.

    2015-05-01

    Biomass burning produces black carbon (BC), effectively transferring a fraction of the biomass C from an actively cycling pool to a passive C pool, which may be stored in the soil. Yet the timescales and mechanisms for incorporation of BC into the soil profile are not well understood. The High Park fire (HPF), which occurred in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire severity and geomorphology on properties of carbon (C), nitrogen (N) and BC in the Cache La Poudre River drainage. We sampled montane ponderosa pine forest floor (litter plus O-horizon) and soils at 0-5 and 5-15 cm depth 4 months post-fire in order to examine the effects of slope and burn severity on %C, C stocks, %N and BC. We used the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes but that there was no difference in BPCA-C content or stocks. BC content was greatest in the forest floor at burned sites (19 g BPCA-C kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g BPCA-C m-2). At the time of sampling, unburned and burned soils had equivalent BC content, indicating none of the BC deposited on the land surface post-fire had been incorporated into either the 0-5 or 5-15 cm soil layers. The ratio of B6CA : total BPCAs, an index of the degree of aromatic C condensation, suggested that BC in the 5-15 cm soil layer may have been formed at higher temperatures or experienced selective degradation relative to the forest floor and 0-5 cm soils. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely lost, either through erosion events, degradation or translocation to deeper soils. Future work examining mechanisms for BC losses from forest soils will be required for understanding the role BC plays in the global carbon cycle.

  18. Flash-Fire Propensity and Heat-Release Rate Studies of Improved Fire Resistant Materials

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.

    1978-01-01

    Twenty-six improved fire resistant materials were tested for flash-fire propensity and heat release rate properties. The tests were conducted to obtain a descriptive index based on the production of ignitable gases during the thermal degradation process and on the response of the materials under a specific heat load.

  19. Fire containment tests of aircraft interior panels

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Leon, H. A.; Williamson, R. B.; Hasegawa, H.; Fisher, F.; Draemel, R.; Marcussen, W. H.; Hilado, C. J.

    1976-01-01

    The paper describes an experimental program carried out to evaluate a possible method for testing the fire-containment qualities of aircraft interior panels. The experimental apparatus consisted of a burner that simulates various fire loads under different ventilation conditions in an enclosure of approximately the same size as an aircraft lavatory module. Two fire-containment tests are discussed in which two adjoining walls of the enclosure were made from state-of-the-art composite panels; rats were exposed to the combustion products in order to evaluate the toxic threat posed by those products. The results show that the burner can be employed to represent various fire-load conditions and that the methodology developed for fire containment can be useful in evaluating the fire resistance of composite panels before conducting large-scale tests. It is concluded that elements of the fire-containment criteria include the temperature rise on the backface of the panels as a function of time, the flame burn-through by either decomposition or severe distortion of the material, and the toxicity of the combustion gases evolved.

  20. Wildfire Selectivity for Land Cover Type: Does Size Matter?

    PubMed Central

    Barros, Ana M. G.; Pereira, José M. C.

    2014-01-01

    Previous research has shown that fires burn certain land cover types disproportionally to their abundance. We used quantile regression to study land cover proneness to fire as a function of fire size, under the hypothesis that they are inversely related, for all land cover types. Using five years of fire perimeters, we estimated conditional quantile functions for lower (avoidance) and upper (preference) quantiles of fire selectivity for five land cover types - annual crops, evergreen oak woodlands, eucalypt forests, pine forests and shrublands. The slope of significant regression quantiles describes the rate of change in fire selectivity (avoidance or preference) as a function of fire size. We used Monte-Carlo methods to randomly permutate fires in order to obtain a distribution of fire selectivity due to chance. This distribution was used to test the null hypotheses that 1) mean fire selectivity does not differ from that obtained by randomly relocating observed fire perimeters; 2) that land cover proneness to fire does not vary with fire size. Our results show that land cover proneness to fire is higher for shrublands and pine forests than for annual crops and evergreen oak woodlands. As fire size increases, selectivity decreases for all land cover types tested. Moreover, the rate of change in selectivity with fire size is higher for preference than for avoidance. Comparison between observed and randomized data led us to reject both null hypotheses tested ( = 0.05) and to conclude it is very unlikely the observed values of fire selectivity and change in selectivity with fire size are due to chance. PMID:24454747

  1. Experiment plans to study preignition processes of a pool fire in low gravity. M.S. Thesis - 1988 Final Report

    NASA Technical Reports Server (NTRS)

    Schiller, David N.

    1989-01-01

    Science requirements are specified to guide experimental studies of transient heat transfer and fluid flow in an enclosure containing a two-layer gas-and-liquid system heated unevenly from above. Specifications are provided for experiments in three separate settings: (1) a normal gravity laboratory, (2) the NASA-LeRC Drop towers, and (3) a space-based laboratory (e.g., Shuttle, Space Station). A rationale is developed for both minimum and desired requirement levels. The principal objective of the experimental effort is to validate a computational model of the enclosed liquid fuel pool during the preignition phase and to determine via measurement the role of gravity on the behavior of the system. Preliminary results of single-phase normal gravity experiments and simulations are also presented.

  2. Effects of a drawdown on plant communities in a freshwater impoundment at Lacassine National Wildlife Refuge, Louisiana

    USGS Publications Warehouse

    Howard, Rebecca J.; Allain, Larry

    2012-01-01

    Disturbance is an important natural process in the creation and maintenance of wetlands. Water depth manipulation and prescribed fire are two types of disturbance commonly used by humans to influence vegetation succession and composition in wetlands with the intention of improving wildlife habitat value. A 6,475-hectare (ha) impoundment was constructed in 1943 on Lacassine National Wildlife Refuge in southwest Louisiana to create freshwater wetlands as wintering waterfowl habitat. Ten years after construction of the impoundment, called Lacassine pool, was completed, refuge staff began expressing concerns about increasing emergent vegetation cover, organic matter accumulation, and decreasing area of open water within the pool. Because the presence of permanent standing water impedes actions that can address these concerns, a small impoundment within the pool where it was possible to manipulate water depth was created. The 283-ha subimpoundment called Unit D was constructed in 1989. Water was pumped from Unit D in 1990, and the unit was permanently reflooded about 3 years later. Four prescribed fires were applied during the drawdown. A study was initiated in 1990 to investigate the effect of the experimental drawdown on vegetation and soils in Unit D. Four plant community types were described, and cores were collected to measure the depth of the soil organic layer. A second study of Unit D was conducted in 1997, 4 years after the unit was reflooded, by using the same plots and similar sampling methods. This report presents an analysis and synthesis of the data from the two studies and provides an evaluation of the impact of the management techniques applied. We found that plant community characteristics often differed among the four communities and varied with time. Species richness increased in two of the communities, and total aboveground biomass increased in all four during the drawdown. These changes, however, did not persist when Unit D was reflooded; by 1997, species richness and aboveground biomass were equivalent to values before the drawdown. The change in waterfowl food value of the plant communities during the drawdown varied; it did not change in two communities, increased in one, and decreased in one. A consistent pattern noted was that waterfowl food value was higher in communities that contained open water than in those dominated by emergent plants, both soon after the drawdown was initiated in Unit D and 4 years after reflooding. A reduction in depth of the soil organic layer became apparent 20 months after drawdown was initiated, and this reduction persisted in 1997, 4 years after reflooding. A separate 2003 study on soil characteristics in Lacassine pool found that the depth to the clay layer was lower in Unit D than in the rest of the pool. We were not able to establish a cause-and-effect relation between any changes noted and the fact water levels in the unit were drawn down because the initial study in 1990 did not include control plots. Changes in vegetation and soil organic layer depth identified in Unit D may have occurred in the surrounding Lacassine pool habitat as well. Similarly, we were unable to form any conclusions about the effect of the prescribed fire treatments because there was no information on which plots were burned. Because of the known relation between anaerobic soil conditions and reduced decomposition of organic matter, however, it is likely that the drawdown in Unit D resulted in an increased decomposition rate and a reduction in the depth of the soil organic layer.

  3. Grassland establishment under varying resource availability: a test of positive and negative feedback.

    PubMed

    Baer, Sara G; Blair, John M

    2008-07-01

    The traditional logic of carbon (C) and nitrogen (N) interactions in ecosystems predicts further increases or decreases in productivity (positive feedback) in response to high and low fertility in the soil, respectively; but the potential for development of feedback in ecosystems recovering from disturbance is less well understood. Furthermore, this logic has been challenged in grassland ecosystems where frequent fires or grazing may reduce the contribution of aboveground litter inputs to soil organic matter pools and nutrient supply for plant growth, relative to forest ecosystems. Further, if increases in plant productivity increase soil C content more than soil N content, negative feedback may result from increased microbial demand for N making less available for plant growth. We used a field experiment to test for feedback in an establishing grassland by comparing aboveground net primary productivity (ANPP) and belowground pools and fluxes of C and N in soil with enriched, ambient, and reduced N availability. For eight years annual N enrichment increased ANPP, root N, and root tissue quality, but root C:N ratios remained well above the threshold for net mineralization of N. There was no evidence that N enrichment increased root biomass, soil C or N accrual rates, or storage of C in total, microbial, or mineralizable pools within this time frame. However, the net nitrogen mineralization potential (NMP) rate was greater following eight years of N enrichment, and we attributed this to N saturation of the microbial biomass. Grassland developing under experimentally imposed N limitation through C addition to the soil exhibited ANPP, root biomass and quality, and net NMP rate similar to the ambient soil. Similarity in productivity and roots in the reduced and ambient N treatments was attributed to the potentially high nitrogen-use efficiency (NUE) of the dominant C4 grasses, and increasing cover of legumes over time in the C-amended soil. Thus, in a developing ecosystem, positive feedback between soil N supply and plant productivity may promote enhanced long-term N availability and override progressive N limitation as C accrues in plant and soil pools. However, experimentally imposed reduction in N availability did not feed back to reduce ANPP, possibly due to shifts in NUE and functional group composition.

  4. Vulnerability Methodology and Protective Measures for Aircraft Fire and Explosion Hazards. Volume 2. Aircraft Engine Nacelle Fire Test Programs. Part 1. Fire Detection, Fire Extinguishment and Surface Ignition Studies

    DTIC Science & Technology

    1986-01-01

    by sensors in the test cell and sampled, digitized, averaged, and calibrated by the facility computer system. The data included flowrates calculated ...before the next test could be started. This required about 2 minutes. 6.4 Combat Damage Testing Appendix C contains calculations and analysis...were comparable (Figure 7-5). Agent quantities required per MIL-E-22285 were again calculated using the equations noted in paragraph 7.1.1. The

  5. Extinguishing agent for magnesium fire, phases 5 and 6

    NASA Astrophysics Data System (ADS)

    Beeson, H. D.; Tapscott, R. E.; Mason, B. E.

    1987-07-01

    This report documents the validation testing of the extinguishing system for metal fires developed as part of Phases 1 to 4. The results of this validation testing form the basis of information from which draft military specifications necessary to procure the agent and the agent delivery system may be developed. The developed system was tested against a variety of large-scale metal fire scenarios and the capabilities of the system were assessed. In addition the response of the system to storage and to changes in ambient conditions was tested. Results of this testing revealed that the developed system represented a reliable metal fire extinguishing system that could control and extinguish very large metal fires. The specifications developed for the agent and for the delivery system are discussed in detail.

  6. Risk-informed selection of a highway trajectory in the neighborhood of an oil-refinery.

    PubMed

    Papazoglou, I A; Nivolianitou, Z; Aneziris, O; Christou, M D; Bonanos, G

    1999-06-11

    A methodology for characterizing alternative trajectories of a new highway in the neighborhood of an oil-refinery with respect to the risk to public health is presented. The approach is based on a quantitative assessment of the risk that the storage facilities of flammable materials of the refinery pose to the users of the highway. Physical phenomena with a potential for detrimental consequences to public health such as BLEVE (Boiling Liquid Expanding Vapor Explosion), Unconfined Vapor Cloud Explosion, flash fire and pool fire are considered. Methodological and procedural steps for assessing the individual risk around the tank farm of the oil-refinery are presented. Based on the individual risk, group risk for each alternative highway trajectory is determined. Copyright 1999 Elsevier Science B.V.

  7. Fuel Consumption and Fire Emissions Estimates in Siberia: Impact of Vegetation Types, Meteorological Conditions, Forestry Practices and Fire Regimes

    NASA Astrophysics Data System (ADS)

    Kukavskaya, Elena; Conard, Susan; Ivanova, Galina; Buryak, Ludmila; Soja, Amber; Zhila, Sergey

    2015-04-01

    Boreal forests play a crucial role in carbon budgets with Siberian carbon fluxes and pools making a major contribution to the regional and global carbon cycle. Wildfire is the main ecological disturbance in Siberia that leads to changes in forest species composition and structure and in carbon storage, as well as direct emissions of greenhouse gases and aerosols to the atmosphere. At present, the global scientific community is highly interested in quantitative and accurate estimates of fire emissions. Little research on wildland fuel consumption and carbon emission estimates has been carried out in Russia until recently. From 2000 to 2007 we conducted a series of experimental fires of varying fireline intensity in light-coniferous forest of central Siberia to obtain quantitative and qualitative data on fire behavior and carbon emissions due to fires of known behavior. From 2009 to 2013 we examined a number of burned logged areas to assess the potential impact of forest practices on fire emissions. In 2013-2014 burned areas in dark-coniferous and deciduous forests were examined to determine fuel consumption and carbon emissions. We have combined and analyzed the scarce data available in the literature with data obtained in the course of our long-term research to determine the impact of various factors on fuel consumption and to develop models of carbon emissions for different ecosystems of Siberia. Carbon emissions varied drastically (from 0.5 to 40.9 tC/ha) as a function of vegetation type, weather conditions, anthropogenic effects and fire behavior characteristics and periodicity. Our study provides a basis for better understanding of the feedbacks between wildland fire emissions and changing anthropogenic disturbance patterns and climate. The data obtained could be used by air quality agencies to calculate local emissions and by managers to develop strategies to mitigate negative smoke impacts on the environmentand human health.

  8. Motor unit firing rate patterns during voluntary muscle force generation: a simulation study

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.

    2014-04-01

    Objective. Muscle force is generated by a combination of motor unit (MU) recruitment and changes in the discharge rate of active MUs. There have been two basic MU recruitment and firing rate paradigms reported in the literature, which describe the control of the MUs during force generation. The first (termed the reverse ‘onion skin’ profile), exhibits lower firing rates for lower threshold units, with higher firing rates occurring in higher threshold units. The second (termed the ‘onion skin’ profile), exhibits an inverse arrangement, with lower threshold units reaching higher firing rates. Approach. Using a simulation of the MU activity in a hand muscle, this study examined the force generation capacity and the variability of the muscle force magnitude at different excitation levels of the MU pool under these two different MU control paradigms. We sought to determine which rate/recruitment scheme was more efficient for force generation, and which scheme gave rise to the lowest force variability. Main results. We found that the force output of both firing patterns leads to graded force output at low excitation levels, and that the force generation capacity of the two different paradigms diverged around 50% excitation. In the reverse ‘onion skin’ pattern, at 100% excitation, the force output reached up to 88% of maximum force, whereas for the ‘onion skin’ pattern, the force output only reached up to 54% of maximum force at 100% excitation. The force variability was lower at the low to moderate force levels under the ‘onion skin’ paradigm than with the reverse ‘onion skin’ firing patterns, but this effect was reversed at high force levels. Significance. This study captures the influence of MU recruitment and firing rate organization on muscle force properties, and our results suggest that the different firing organizations can be beneficial at different levels of voluntary muscle force generation and perhaps for different tasks.

  9. Statistical model specification and power: recommendations on the use of test-qualified pooling in analysis of experimental data

    PubMed Central

    Colegrave, Nick

    2017-01-01

    A common approach to the analysis of experimental data across much of the biological sciences is test-qualified pooling. Here non-significant terms are dropped from a statistical model, effectively pooling the variation associated with each removed term with the error term used to test hypotheses (or estimate effect sizes). This pooling is only carried out if statistical testing on the basis of applying that data to a previous more complicated model provides motivation for this model simplification; hence the pooling is test-qualified. In pooling, the researcher increases the degrees of freedom of the error term with the aim of increasing statistical power to test their hypotheses of interest. Despite this approach being widely adopted and explicitly recommended by some of the most widely cited statistical textbooks aimed at biologists, here we argue that (except in highly specialized circumstances that we can identify) the hoped-for improvement in statistical power will be small or non-existent, and there is likely to be much reduced reliability of the statistical procedures through deviation of type I error rates from nominal levels. We thus call for greatly reduced use of test-qualified pooling across experimental biology, more careful justification of any use that continues, and a different philosophy for initial selection of statistical models in the light of this change in procedure. PMID:28330912

  10. Emissions from Coal Fires and Their Impact on the Environment

    USGS Publications Warehouse

    Kolker, Allan; Engle, Mark; Stracher, Glenn; Hower, James; Prakash, Anupma; Radke, Lawrence; ter Schure, Arnout; Heffern, Ed

    2009-01-01

    Self-ignited, naturally occurring coal fires and fires resulting from human activities persist for decades in underground coal mines, coal waste piles, and unmined coal beds. These uncontrolled coal fires occur in all coal-bearing parts of the world (Stracher, 2007) and pose multiple threats to the global environment because they emit greenhouse gases - carbon dioxide (CO2), and methane (CH4) - as well as mercury (Hg), carbon monoxide (CO), and other toxic substances (fig. 1). The contribution of coal fires to the global pool of atmospheric CO2 is little known but potentially significant. For China, the world's largest coal producer, it is estimated that anywhere between 10 million and 200 million metric tons (Mt) of coal reserves (about 0.5 to 10 percent of production) is consumed annually by coal fires or made inaccessible owing to fires that hinder mining operations (Rosema and others, 1999; Voigt and others, 2004). At this proportion of production, coal amounts lost to coal fires worldwide would be two to three times that for China. Assuming this coal has mercury concentrations similar to those in U.S. coals, a preliminary estimate of annual Hg emissions from coal fires worldwide is comparable in magnitude to the 48 tons of annual Hg emissions from all U.S. coal-fired power-generating stations combined (U.S. Environmental Protection Agency, 2002). In the United States, the combined cost of coal-fire remediation projects, completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Reclamation and Enforcement (OSM), exceeds $1 billion, with about 90% of that in two States - Pennsylvania and West Virginia (Office of Surface Mining Enforcement and Reclamation, 2008; fig. 2). Altogether, 15 States have combined cumulative OSM coal-fire project costs exceeding $1 million, with the greatest overall expense occurring in States where underground coal fires are predominant over surface fires, reflecting the greater cost of extinguishing underground fires (fig. 2) (see 'Controlling Coal Fires'). In this fact sheet we review how coal fires occur, how they can be detected by airborne and remote surveys, and, most importantly, the impact coal-fire emissions may have on the environment and human health. In addition, we describe recent efforts by the U.S. Geological Survey (USGS) and collaborators to measure fluxes of CO2, CO, CH4, and Hg, using groundbased portable detectors, and combining these approaches with airborne thermal imaging and CO2 measurements. The goal of this research is to develop approaches that can be extrapolated to large fires and to extrapolate results for individual fires in order to estimate the contribution of coal fires as a category of global emissions.

  11. Wet countdown demonstration and flight readiness firing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The prelaunch tests for the Space Transportation System 1 flight are briefly described. Testing is divided into two major sections: the wet countdown demonstration test/flight readiness firing, which includes a 20 second test firing of the orbiter's three main engines, and a mission verification test, which is centered on flight and landing operations. The functions of the countdown sequence are listed and end of mission and mission abort exercises are described.

  12. Data for Room Fire Model Comparisons

    PubMed Central

    Peacock, Richard D.; Davis, Sanford; Babrauskas, Vytenis

    1991-01-01

    With the development of models to predict fire growth and spread in buildings, there has been a concomitant evolution in the measurement and analysis of experimental data in real-scale fires. This report presents the types of analyses that can be used to examine large-scale room fire test data to prepare the data for comparison with zone-based fire models. Five sets of experimental data which can be used to test the limits of a typical two-zone fire model are detailed. A standard set of nomenclature describing the geometry of the building and the quantities measured in each experiment is presented. Availability of ancillary data (such as smaller-scale test results) is included. These descriptions, along with the data (available in computer-readable form) should allow comparisons between the experiment and model predictions. The base of experimental data ranges in complexity from one room tests with individual furniture items to a series of tests conducted in a multiple story hotel equipped with a zoned smoke control system. PMID:28184121

  13. Data for Room Fire Model Comparisons.

    PubMed

    Peacock, Richard D; Davis, Sanford; Babrauskas, Vytenis

    1991-01-01

    With the development of models to predict fire growth and spread in buildings, there has been a concomitant evolution in the measurement and analysis of experimental data in real-scale fires. This report presents the types of analyses that can be used to examine large-scale room fire test data to prepare the data for comparison with zone-based fire models. Five sets of experimental data which can be used to test the limits of a typical two-zone fire model are detailed. A standard set of nomenclature describing the geometry of the building and the quantities measured in each experiment is presented. Availability of ancillary data (such as smaller-scale test results) is included. These descriptions, along with the data (available in computer-readable form) should allow comparisons between the experiment and model predictions. The base of experimental data ranges in complexity from one room tests with individual furniture items to a series of tests conducted in a multiple story hotel equipped with a zoned smoke control system.

  14. Verification study of an emerging fire suppression system

    DOE PAGES

    Cournoyer, Michael E.; Waked, R. Ryan; Granzow, Howard N.; ...

    2016-01-01

    Self-contained fire extinguishers are a robust, reliable and minimally invasive means of fire suppression for gloveboxes. Moreover, plutonium gloveboxes present harsh environmental conditions for polymer materials; these include radiation damage and chemical exposure, both of which tend to degrade the lifetime of engineered polymer components. Several studies have been conducted to determine the robustness of selfcontained fire extinguishers in plutonium gloveboxes in a nuclear facility, verification tests must be performed. These tests include activation and mass loss calorimeter tests. In addition, compatibility issues with chemical components of the self-contained fire extinguishers need to be addressed. Our study presents activation andmore » mass loss calorimeter test results. After extensive studies, no critical areas of concern have been identified for the plutonium glovebox application of Fire Foe™, except for glovebox operations that use large quantities of bulk plutonium or uranium metal such as metal casting and pyro-chemistry operations.« less

  15. Verification study of an emerging fire suppression system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael E.; Waked, R. Ryan; Granzow, Howard N.

    Self-contained fire extinguishers are a robust, reliable and minimally invasive means of fire suppression for gloveboxes. Moreover, plutonium gloveboxes present harsh environmental conditions for polymer materials; these include radiation damage and chemical exposure, both of which tend to degrade the lifetime of engineered polymer components. Several studies have been conducted to determine the robustness of selfcontained fire extinguishers in plutonium gloveboxes in a nuclear facility, verification tests must be performed. These tests include activation and mass loss calorimeter tests. In addition, compatibility issues with chemical components of the self-contained fire extinguishers need to be addressed. Our study presents activation andmore » mass loss calorimeter test results. After extensive studies, no critical areas of concern have been identified for the plutonium glovebox application of Fire Foe™, except for glovebox operations that use large quantities of bulk plutonium or uranium metal such as metal casting and pyro-chemistry operations.« less

  16. Development and testing of advanced fire-resistant photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Sugimura, R. S.; Otth, D. H.; Ross, R. G., Jr.

    1985-01-01

    The evaluation of back-surface materials flammability in order to identify fire resistant module designs is examined. The fire test apparatus, burning-brand test sequence, and spread-of-flame test sequence are described. Video recordings and time-temperature profiles of module back surfaces are utilized to study the flammability failure mechanism and identify high-temperature materials. A table of flammability test results for various module designs is provided. The data reveals that 2-mil kapton, fiberglass cloth coated or impregnated with a material to plug pores, and metal foil back-surface materials achieve class A and B fire-resistance levels, and are applicable for photovoltaic module designs.

  17. Fire environmental test chamber: its design and development

    Treesearch

    Clifford J. Auvil

    1973-01-01

    The Fire Environmental Test Chamber at the Forest Fire Laboratory, Riverside, California, can duplicate under controlled conditions the key factors that affect the flammability of wildland fuels. Within certain limits, it can produce air flow, solar radiation, temperatures, and relative humidity. First developed in 1962, the test chamber has since then undergoneseveral...

  18. Operation and Development Status of the Spacecraft Fire Experiments (Saffire)

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David L.

    2016-01-01

    Since 2012, a series of Spacecraft Fire Experiments (Saffire) have been under development by the Spacecraft Fire Safety Demonstration (SFS Demo) project, funded by NASA's Advanced Exploration Systems Division. The overall objective of this project is to reduce the uncertainty and risk associated with the design of spacecraft fire safety systems for NASA's exploration missions. The approach to achieving this goal has been to define, develop, and conduct experiments that address gaps in spacecraft fire safety knowledge and capabilities identified by NASA's Fire Safety System Maturation Team. The Spacecraft Fire Experiments (Saffire-I, -II, and -III) are material flammability tests at length scales that are realistic for a spacecraft fire in low-gravity. The specific objectives of these three experiments are to (1) determine how rapidly a large scale fire grows in low-gravity and (2) investigate the low-g flammability limits compared to those obtained in NASA's normal gravity material flammability screening test. The experiments will be conducted in Orbital ATK's Cygnus vehicle after it has unberthed from the International Space Station. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the atmosphere. This paper discusses the status of the Saffire-I, II, and III experiments followed by a review of the fire safety technology gaps that are driving the development of objectives for the next series of experiments, Saffire-IV, V, and VI.

  19. Recent reflux receiver developments under the US DOE program

    NASA Astrophysics Data System (ADS)

    Andraka, C. E.; Diver, R. B.; Moreno, J. B.; Moss, T. A.; Adkins, D. R.

    The United States Department of Energy (DOE) Solar Thermal Program, through Sandia National Laboratories (SNL), is cooperating with industry to commercialize dish-Stirling technology. Sandia and the DOE have actively encouraged the use of liquid metal reflux receivers in these systems to improve efficiency and lower the levelized cost of electricity. The reflux receiver uses two-phase heat transfer as a 'thermal transformer' to transfer heat from a parabolic tracking-concentrator to the heater heads of the Stirling engine. The two-phase system leads to a higher available input temperature, lower thermal stresses, longer life, and independent design of the absorber and engine sections. Two embodiments of reflux receivers have been investigated: Pool boilers and heat pipes. Several pool-boiler reflux receivers have been successfully demonstrated on sun at up to 64 kWt throughput at SNL. In addition, a bench-scale device was operated for 7500 hours to investigate materials compatibility and boiling stability. Significant progress has also been made on heat pipe receiver technology. Sintered metal wick heat pipes have been investigated extensively for application to 7.5 kWe and 25 kWe systems. One test article has amassed over 1800 hours of on-sun operation. Another was limit tested at Sandia to 65 kWt throughput. These devices incorporate a nickel-powder thick wick structure with condensate return directly to the wick surface. Circumferential tubular arteries are optionally employed to improve the operating margin. In addition, DOE has begun a development program for advanced wick structures capable of supporting the Utility Scale Joint Venture Program, requiring up to 100 kWt throughput. Promising technologies include a brazed stainless steel powdered metal wick and a stainless steel metal felt wick. Bench-scale testing has been encouraging, and on-sun testing is expected this fall. Prototype gas-fired hybrid solar receivers have also been demonstrated.

  20. Recent reflux receiver developments under the US DOE program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andraka, C.E.; Diver, R.B.; Moreno, J.B.

    1994-10-01

    The United States Department of Energy (DOE) Solar Thermal Program, through Sandia National Laboratories (SNL), is cooperating with industry to commercialize dish-Stirling technology. Sandia and the DOE have actively encouraged the use of liquid metal reflux receivers in these systems to improve efficiency and lower the levelized cost of electricity. The reflux receiver uses two-phase heat transfer as a {open_quotes}thermal transformer{close_quotes} to transfer heat from a parabolic tracking-concentrator to the heater heads of the Stirling engine. The two-phase system leads to a higher available input temperature, lower thermal stresses, longer life, and independent design of the absorber and engine sections.more » Two embodiments of reflux receivers have been investigated: Pool boilers and heat pipes. Several pool-boiler reflux receivers have been successfully demonstrated on sun at up to 64 kWt throughput at SNL. In addition, a bench-scale device was operated for 7500 hours to investigate materials compatibility and boiling stability. Significant progress has also been made on heat pipe receiver technology. Sintered metal wick heat pipes have been investigated extensively for application to 7.5 kWe and 25 kWe systems. One test article has a massed over 1800 hours of on-sun operation. Another was limit tested at Sandia to 65 kWt throughput. These devices incorporate a nickel-powder thick wick structure with condensate return directly to the wick surface. Circumferential tubular arteries are optionally employed to improve the operating margin. In addition, DOE has begun a development program for advanced wick structures capable of supporting the Utility Scale Joint Venture Program, requiring up to 100 kWt throughput. Promising technologies include a brazed stainless steel powdered metal wick and a stainless steel metal felt wick. Bench-scale testing has been encouraging, and on-sun testing is expected this fall. Prototype gas-fired hybrid solar receivers have also been.« less

  1. Contribution of inter-muscular synchronization in the modulation of tremor intensity in Parkinson's disease.

    PubMed

    He, Xin; Hao, Man-Zhao; Wei, Ming; Xiao, Qin; Lan, Ning

    2015-12-01

    Involuntary central oscillations at single and double tremor frequencies drive the peripheral neuromechanical system of muscles and joints to cause tremor in Parkinson's disease (PD). The central signal of double tremor frequency was found to correlate more directly to individual muscle EMGs (Timmermann et al. 2003). This study is aimed at investigating what central components of oscillation contribute to inter-muscular synchronization in a group of upper extremity muscles during tremor in PD patients. 11 idiopathic, tremor dominant PD subjects participated in this study. Joint kinematics during tremor in the upper extremity was recorded along with EMGs of six upper arm muscles using a novel experimental apparatus. The apparatus provided support for the upper extremity on a horizontal surface with reduced friction, so that resting tremor in the arm can be recorded with a MotionMonitor II system. In each subject, the frequencies of rhythmic firings in upper arm muscles were determined using spectral analysis. Paired and pool-averaged coherence analyses of EMGs for the group of muscles were performed to correlate the level of inter-muscular synchronization to tremor amplitudes at shoulder and elbow. The phase shift between synchronized antagonistic muscle pairs was calculated to aid coherence analysis in the muscle pool. Recorded EMG revealed that rhythmic firings were present in most recorded muscles, which were either synchronized to form phase-locked bursting cycles at a subject specific frequency, or unsynchronized with a random phase distribution. Paired coherence showed a stronger synchronization among a subset of recorded arm muscles at tremor frequency than that at double tremor frequency. Furthermore, the number of synchronized muscles in the arm was positively correlated to tremor amplitudes at elbow and shoulder. Pool-averaged coherence at tremor frequency also showed a better correlation with the amplitude of resting tremor than that of double tremor frequency, indicating that the neuromechanical coupling in peripheral neuromuscular system was stronger at tremor frequency. Both paired and pool-averaged coherences are more consistent indexes to correlate to tremor intensity in a group of upper extremity muscles of PD patients. The central drive at tremor frequency contributes mainly to synchronize peripheral muscles in the modulation of tremor intensity.

  2. Testing of aircraft passenger seat cushion materials. Full scale, test description and results, volume 1

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Gaume, J. G.; Duskin, F. E.

    1981-01-01

    Eight different seat cushion configurations were subjected to full-scale burn tests. Each cushion configuration was tested twice for a total of sixteen tests. Two different fire sources were used. They consisted of one liter of Jet A fuel for eight tests and a radiant energy source with propane flame for eight tests. Both fire sources were ignited by a propane flame. During each test, data were recorded for smoke density, cushion temperatures, radiant heat flux, animal response to combustion products, rate of weight loss of test specimens, cabin temperature, and for the type and content of gas within the cabin atmosphere. When compared to existing passenger aircraft seat cushions, the test specimens incorporating a fire barrier and those fabricated from advanced materials, using improved construction methods, exhibited significantly greater fire resistance.

  3. Electro-Optic Fabrics for the Warrior of the 21st Century - Phase II

    DTIC Science & Technology

    2010-01-01

    46 28. Effect of 1000 cycles of hex- abrasion testing on Fire Wire cable .................................... 46 UNCLASSIFIED vi 29. Close...49 32. Effect of 2000 cycles of hex- abrasion testing on Fire Wire cable .................................... 49 33. Effect of 4000 cycles of...hex- abrasion testing on Fire Wire cable .................................... 50 34. Effect of 2000 cycles of hex- abrasion testing on USB v2 cable

  4. A Disease-Mediated Trophic Cascade in the Serengeti and its Implications for Ecosystem C

    PubMed Central

    Holdo, Ricardo M.; Sinclair, Anthony R. E.; Dobson, Andrew P.; Metzger, Kristine L.; Bolker, Benjamin M.; Ritchie, Mark E.; Holt, Robert D.

    2009-01-01

    Tree cover is a fundamental structural characteristic and driver of ecosystem processes in terrestrial ecosystems, and trees are a major global carbon (C) sink. Fire and herbivores have been hypothesized to play dominant roles in regulating trees in African savannas, but the evidence for this is conflicting. Moving up a trophic scale, the factors that regulate fire occurrence and herbivores, such as disease and predation, are poorly understood for any given ecosystem. We used a Bayesian state-space model to show that the wildebeest population irruption that followed disease (rinderpest) eradication in the Serengeti ecosystem of East Africa led to a widespread reduction in the extent of fire and an ongoing recovery of the tree population. This supports the hypothesis that disease has played a key role in the regulation of this ecosystem. We then link our state-space model with theoretical and empirical results quantifying the effects of grazing and fire on soil carbon to predict that this cascade may have led to important shifts in the size of pools of C stored in soil and biomass. Our results suggest that the dynamics of herbivores and fire are tightly coupled at landscape scales, that fire exerts clear top-down effects on tree density, and that disease outbreaks in dominant herbivores can lead to complex trophic cascades in savanna ecosystems. We propose that the long-term status of the Serengeti and other intensely grazed savannas as sources or sinks for C may be fundamentally linked to the control of disease outbreaks and poaching. PMID:19787022

  5. 36 CFR Appendix B to Part 1234 - Alternative Certified Fire-Safety Detection and Suppression System(s)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the system at the base of the main sprinkler riser. l. Fire hydrants must be located within 250 feet... Suppression System(s) 1. General. This Appendix B contains information on the Fire-safety Detection and Suppression System(s) tested by NARA through independent live fire testing that are certified to meet the...

  6. 36 CFR Appendix B to Part 1234 - Alternative Certified Fire-Safety Detection and Suppression System(s)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the system at the base of the main sprinkler riser. l. Fire hydrants must be located within 250 feet... Suppression System(s) 1. General. This Appendix B contains information on the Fire-safety Detection and Suppression System(s) tested by NARA through independent live fire testing that are certified to meet the...

  7. 36 CFR Appendix B to Part 1234 - Alternative Certified Fire-Safety Detection and Suppression System(s)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the system at the base of the main sprinkler riser. l. Fire hydrants must be located within 250 feet... Suppression System(s) 1. General. This Appendix B contains information on the Fire-safety Detection and Suppression System(s) tested by NARA through independent live fire testing that are certified to meet the...

  8. Integrating pH, substrate, and plant regrowth effects on soil nitrogen cycling after fire

    NASA Astrophysics Data System (ADS)

    Hanan, E. J.; Schimel, J.; Tague, C.; D'Antonio, C. M.

    2014-12-01

    Mediterranean-type ecosystems are structured by fire. In California chaparral, fires uncouple N production and consumption by enhancing nitrification and reducing plant uptake. NO3- that accumulates after fire is vulnerable to leaching. However, the extent to which fires decouple N fluxes can vary spatially and with timing of fire, and the specific mechanisms controlling N metabolism in recovering chaparral are not well understood. We combined empirical analysis and modeling in two chaparral watersheds to better understand how these systems recover from fire, and to explore their sensitivity to changing climate and fire regimes. To evaluate how pH, charcoal, and NH4+ supply influence N cycling, we measured mineralization and nitrification rates in chaparral soils that burned 1, 4, 20 and 40 years prior to sampling. We then experimentally adjusted pH, charcoal, and NH4+ concentrations for all soils in a factorial design, and incubated them for 8 weeks. Each week, we measured respiration, exchangeable NH4+ and NO3- content, nitrification potential, microbial biomass, and pH. Then to project the effects of altered precipitation patterns and fire timing on nitrogen dynamics and recovery, we used the hydro-biogeochemical model RHESSys. Fires were imposed at the beginning and end of the growing season under various climates. NO3- production was highest in soils collected from the most recently burned sites. Also, NO3- concentrations increased over the course of incubation in soils from all sites, especially at high pH, and with NH4+ addition. Charcoal slightly augmented the effects of elevated pH and NH4+ on NO3- production iduring the early stages of incubation in 1 and 4-year old sites, while it slightly dampened their effects by week 8. However, in 20 and 40-year old sites, charcoal had no effect. Overall, nitrification was most powerfully constrained by NH4+ supply. However, increases in pH that occur after fire may enhance nitrification rates when substrate is available. Also, charcoal might enhance N cycling immediately after fire, perhaps by supplying C to microbes, but impacts are short-lived. Modeling results suggest that soil acidity and rapid plant recovery reduce leaching. However, during drought and temperature extremes nutrients pools recover more slowly when fires occur prior to the hot, dry summer.

  9. Towards a global assessment of pyrogenic carbon from vegetation fires

    NASA Astrophysics Data System (ADS)

    Dittmar, Thorsten; Santín, Cristina; Doerr, Stefan; Kane, Evan; Masiello, Caroline; Ohlson, Mikael; De La Rosa, Jose Maria; Preston, Caroline

    2016-04-01

    The production of pyrogenic carbon (PyC; a continuum of organic carbon (C) ranging from partially charred biomass and charcoal to soot) is a widely acknowledged C sink, with the latest estimates indicating that ~50% of the PyC produced by vegetation fires potentially sequesters C over centuries. Nevertheless, the quantitative importance of PyC in the global C balance remains contentious, and therefore, PyC is rarely considered in global C cycle and climate studies. Here we examine the robustness of existing evidence and identify the main research gaps in the production, fluxes and fate of PyC from vegetation fires. Much of the previous work on PyC production has focused on selected components of total PyC generated in vegetation fires, likely leading to underestimates. We suggest that global PyC production could be in the range of 116-385 Tg C per year, that is ~0.2-0.6% of the annual terrestrial net primary production. According to our estimations, atmospheric emissions of soot/black C might be a smaller fraction of total PyC (<2%) than previously reported. Research on the fate of PyC in the environment has mainly focused on its degradation pathways, and its accumulation and resilience either in situ (surface soils) or in ultimate sinks (marine sediments). Off-site transport, transformation and PyC storage in intermediate pools are often overlooked, which could explain the fate of a substantial fraction of the PyC mobilized annually. Rivers carry about 25-28 Tg dissolved PyC per year into the ocean where it accumulates in dissolved form over ten-thousands of year to one of the largest PyC pool on Earth. The riverine flux of suspended (particulate) PyC is largely unconstrained to date. We propose new research directions addressing gaps in the global PyC cycle to fully understand the importance of the products of burning in global C cycle dynamics. This presentation is based largely on a recent review by the same group of authors (Santín et al., 2016, Global Change Biology 22, 76-91, doi: 10.1111/gcb.12985).

  10. Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape

    USGS Publications Warehouse

    Rapalee, G.; Trumbore, S.E.; Davidson, E.A.; Harden, J.W.; Veldhuis, H.

    1998-01-01

    Boreal forests and wetlands are thought to be significant carbon sinks, and they could become net C sources as the Earth warms. Most of the C of boreal forest ecosystems is stored in the moss layer and in the soil. The objective of this study was to estimate soil C stocks (including moss layers) and rates of accumulation and loss for a 733 km2 area of the BOReal Ecosystem-Atmosphere Study site in northern Manitoba, using data from smaller-scale intensive field studies. A simple process-based model developed from measurements of soil C inventories and radiocarbon was used to relate soil C storage and dynamics to soil drainage and forest stand age. Soil C stocks covary with soil drainage class, with the largest C stocks occurring in poorly drained sites. Estimated rates of soil C accumulation or loss are sensitive to the estimated decomposition constants for the large pool of deep soil C, and improved understanding of deep soil C decomposition is needed. While the upper moss layers regrow and accumulate C after fires, the deep C dynamics vary across the landscape, from a small net sink to a significant source. Estimated net soil C accumulation, averaged for the entire 733 km2 area, was 20 g C m-2 yr-1 (28 g C m-2 yr-1 accumulation in surface mosses offset by 8 g C m-2 yr-1 lost from deep C pools) in a year with no fire. Most of the C accumulated in poorly and very poorly drained soils (peatlands and wetlands). Burning of the moss layer in only 1% of uplands would offset the C stored in the remaining 99% of the area. Significant interannual variability in C storage is expected because of the irregular occurrence of fire in space and time. The effects of climate change and management on fire frequency and on decomposition of immense deep soil C stocks are key to understanding future C budgets in boreal forests.

  11. Fire resistivity and toxicity studies of candidate aircraft passenger seat materials

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Trabold, E. L.; Spieth, H.

    1978-01-01

    Fire resistivity studies were conducted on a wide range of candidate nonmetallic materials being considered for the construction of improved fire resistant aircraft passenger seats. These materials were evaluated on the basis of FAA airworthiness burn and smoke generation tests, colorfastness, limiting oxygen index, and animal toxicity tests. Physical, mechanical, and aesthetic properties were also assessed. Candidate seat materials that have significantly improved thermal response to various thermal loads corresponding to reasonable fire threats as they relate to in-flight fire situations, are identified.

  12. Ultraviolet Source For Testing Hydrogen-Fire Detectors

    NASA Technical Reports Server (NTRS)

    Hall, Gregory A.; Larson, William E.; Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Stout, Stephen J.; Strobel, James P.

    1995-01-01

    Hand-held portable unit emits ultraviolet light similar to that emitted by hydrogen burning in air. Developed for use in testing optoelectronic hydrogen-fire detectors, which respond to ultraviolet light at wavelengths from 180 to 240 nanometers. Wavelength range unique in that within it, hydrogen fires emit small but detectable amounts of radiation, light from incandescent lamps and Sun almost completely absent, and air sufficiently transmissive to enable detection of hydrogen fire from distance. Consequently, this spectral region favorable for detecting hydrogen fires while minimizing false alarms.

  13. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  14. Testing of aircraft passenger seat cushion material, full scale. Data, volume 2

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Gaume, J. G.; Duskin, F. E.

    1980-01-01

    Burn characteristics of presently used and proposed seat cushion materials and types of constructions were determined. Eight different seat cushion configurations were subjected to full scale burn tests. Each cushion configuration was tested twice for a total of 16 tests. Two different fire sources were used: Jet A-fuel for eight tests, and a radiant energy source with propane flame for eight tests. Data were recorded for smoke density, cushion temperatures, radiant heat flux, animal response to combustion products, rate of weight loss of test specimens, cabin temperature, and type and content of gas within the cabin. When compared to existing seat cushions, the test specimens incorporating a fire barrier and those fabricated from advanced materials, using improved construction methods, exhibited significantly greater fire resistance. Flammability comparison tests were conducted upon one fire blocking configuration and one polyimide configuration.

  15. 6. UNDERGROUND FIRING CONTROL ROOM, INTERIOR. Looking southeast to escape ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. UNDERGROUND FIRING CONTROL ROOM, INTERIOR. Looking southeast to escape tunnel. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  16. Synaptic control of the shape of the motoneuron pool input-output function

    PubMed Central

    Heckman, Charles J.

    2017-01-01

    Although motoneurons have often been considered to be fairly linear transducers of synaptic input, recent evidence suggests that strong persistent inward currents (PICs) in motoneurons allow neuromodulatory and inhibitory synaptic inputs to induce large nonlinearities in the relation between the level of excitatory input and motor output. To try to estimate the possible extent of this nonlinearity, we developed a pool of model motoneurons designed to replicate the characteristics of motoneuron input-output properties measured in medial gastrocnemius motoneurons in the decerebrate cat with voltage-clamp and current-clamp techniques. We drove the model pool with a range of synaptic inputs consisting of various mixtures of excitation, inhibition, and neuromodulation. We then looked at the relation between excitatory drive and total pool output. Our results revealed that the PICs not only enhance gain but also induce a strong nonlinearity in the relation between the average firing rate of the motoneuron pool and the level of excitatory input. The relation between the total simulated force output and input was somewhat more linear because of higher force outputs in later-recruited units. We also found that the nonlinearity can be increased by increasing neuromodulatory input and/or balanced inhibitory input and minimized by a reciprocal, push-pull pattern of inhibition. We consider the possibility that a flexible input-output function may allow motor output to be tuned to match the widely varying demands of the normal motor repertoire. NEW & NOTEWORTHY Motoneuron activity is generally considered to reflect the level of excitatory drive. However, the activation of voltage-dependent intrinsic conductances can distort the relation between excitatory drive and the total output of a pool of motoneurons. Using a pool of realistic motoneuron models, we show that pool output can be a highly nonlinear function of synaptic input but linearity can be achieved through adjusting the time course of excitatory and inhibitory synaptic inputs. PMID:28053245

  17. After the Burn: Forest Carbon Stocks and Fluxes across fire disturbed landscapes in Colorado, U.S.A.

    NASA Astrophysics Data System (ADS)

    Barnes, R. T.; Buma, B.; Wolf, K.; Elwood, K. K.; Fehsenfeld, T.; Kehlenbeck, M.

    2015-12-01

    In terrestrial ecosystems, ecological disturbances can strongly regulate material and energy flows. This often results from the reduction in biomass and associated ecological relationships and physiological processes. Researchers have noted an increase in the size and severity of disturbances, such as wildfire, in recent decades. While there is significant research examining post-disturbance carbon stocks and recovery, there is less known about the fate and quality of post-disturbance carbon pools. In an effort to understand the recovery and resilience of forest carbon stocks to severe wildfire we examined the carbon and black carbon (pyrogenic) stocks (e.g. above ground biomass, coarse woody debris, charcoal, soils) and export fluxes (stream export, soil respiration) within the burn scars of three Colorado fires (Hayman in 2002, Hinman in 2002, and Waldo Canyon in 2012) and compared them to nearby unburned forested ecosystems. The Hayman and Hinman fire comparison allows us to quantify differences between fire impacts in Ponderosa-Douglas Fir (montane) and Spruce-Fir (subalpine) ecosystems, while the Hayman and Waldo Canyon comparison gives us insights into how recovery time influences carbon biogeochemistry in these systems. We will present preliminary data comparing and relating terrestrial carbon and black carbon stocks, soil respiration rates, and watershed export fluxes.

  18. Improvement of sampling plans for Salmonella detection in pooled table eggs by use of real-time PCR.

    PubMed

    Pasquali, Frédérique; De Cesare, Alessandra; Valero, Antonio; Olsen, John Emerdhal; Manfreda, Gerardo

    2014-08-01

    Eggs and egg products have been described as the most critical food vehicles of salmonellosis. The prevalence and level of contamination of Salmonella on table eggs are low, which severely affects the sensitivity of sampling plans applied voluntarily in some European countries, where one to five pools of 10 eggs are tested by the culture based reference method ISO 6579:2004. In the current study we have compared the testing-sensitivity of the reference culture method ISO 6579:2004 and an alternative real-time PCR method on Salmonella contaminated egg-pool of different sizes (4-9 uninfected eggs mixed with one contaminated egg) and contamination levels (10°-10(1), 10(1)-10(2), 10(2)-10(3)CFU/eggshell). Two hundred and seventy samples corresponding to 15 replicates per pool size and inoculum level were tested. At the lowest contamination level real-time PCR detected Salmonella in 40% of contaminated pools vs 12% using ISO 6579. The results were used to estimate the lowest number of sample units needed to be tested in order to have a 95% certainty not falsely to accept a contaminated lot by Monte Carlo simulation. According to this simulation, at least 16 pools of 10 eggs each are needed to be tested by ISO 6579 in order to obtain this confidence level, while the minimum number of pools to be tested was reduced to 8 pools of 9 eggs each, when real-time PCR was applied as analytical method. This result underlines the importance of including analytical methods with higher sensitivity in order to improve the efficiency of sampling and reduce the number of samples to be tested. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Fire safety evaluation of aircraft lavatory and cargo compartments

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hilado, C. J.; Anderson, R. A.; Tustin, E.; Arnold, D. B.; Gaume, J. G.; Binding, A. T.; Mikeska, J. L.

    1976-01-01

    A program of experimental fires has been carried out to assess fire containment and other fire hazards in lavatory and cargo compartments of wide-body jet aircraft by evaluation of ignition time, burn-through time, fire spread rate, smoke density, evolution of selected combustible and toxic gases, heat flux, and detector response. Two tests were conducted: one involving a standard Boeing 747 lavatory and one involving a simulated DC-10 cargo compartment. A production lavatory module was furnished with conventional materials and was installed in an enclosure. The ignition load was four polyethylene bags containing paper and plastic waste materials representive of a maximum flight cabin waste load. Standard aircraft ventilation conditions were utilized and the lavatory door was closed during the test. Lavatory wall and ceiling panels contained the fire spread during the 30-minute test. Smoke was driven into the enclosure primarily through the ventilation grille in the door and through the gaps between the bifold door and the jamb where the door distorted from the heat earlier in the test. The interior of the lavatory was almost completely destroyed by the fire.

  20. The Pictorial Fire Stroop: A Measure of Processing Bias for Fire-Related Stimuli

    ERIC Educational Resources Information Center

    Gallagher-Duffy, Joanne; MacKay, Sherri; Duffy, Jim; Sullivan-Thomas, Meara; Peterson-Badali, Michele

    2009-01-01

    Fire interest is a risk factor for firesetting. This study tested whether a fire-specific emotional Stroop task can effectively measure an information-processing bias for fire-related stimuli. Clinic-referred and nonreferred adolescents (aged 13-16 years) completed a pictorial "Fire Stroop," as well as a self-report fire interest questionnaire and…

  1. Fire safety evaluation of aircraft lavatory and cargo compartments

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hilado, C. J.; Anderson, R. A.; Tustin, E.; Arnold, D. E.; Gaume, J. G.; Binding, A. T.; Mikeska, J. L.

    1975-01-01

    Large-scale aircraft lavatory and cargo compartment fire tests are described. Tests were conducted to evaluate the effectiveness of these compartments to contain fire and smoke. Two tests were conducted and are detailed. Test 1 involved a production Boeing 747 lavatory of the latest design installed in an enclosure outside the aircraft, to collect gases and expose animals to these gases. Results indicate that the interior of the lavatory was completely burned, evolving smoke and combustion products in the enclosure. Test 2 involved a simulated Douglas DC-10 cargo compartment retro-fitted with standard fiberglass liner. The fire caused excessive damage to the liner and burned through the ceiling in two areas. Test objectives, methods, materials, and results are presented and discussed.

  2. Validation and Verification (V and V) Testing on Midscale Flame Resistant (FR) Test Method

    DTIC Science & Technology

    2016-12-16

    Method for Evaluation of Flame Resistant Clothing for Protection against Fire Simulations Using an Instrumented Manikin. Validation and...complement (not replace) the capabilities of the ASTM F1930 Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Fire ...Engineering Center (NSRDEC) to complement the ASTM F1930 Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Fire

  3. 40 CFR Table 6 to Subpart IIIi of... - Optional 3-Mode Test Cycle for Stationary Fire Pump Engines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Optional 3-Mode Test Cycle for.... IIII, Table 6 Table 6 to Subpart IIII of Part 60—Optional 3-Mode Test Cycle for Stationary Fire Pump Engines [As stated in § 60.4210(g), manufacturers of fire pump engines may use the following test cycle...

  4. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections.

    PubMed

    Gilson, Matthieu; Burkitt, Anthony N; Grayden, David B; Thomas, Doreen A; van Hemmen, J Leo

    2009-12-01

    In neuronal networks, the changes of synaptic strength (or weight) performed by spike-timing-dependent plasticity (STDP) are hypothesized to give rise to functional network structure. This article investigates how this phenomenon occurs for the excitatory recurrent connections of a network with fixed input weights that is stimulated by external spike trains. We develop a theoretical framework based on the Poisson neuron model to analyze the interplay between the neuronal activity (firing rates and the spike-time correlations) and the learning dynamics, when the network is stimulated by correlated pools of homogeneous Poisson spike trains. STDP can lead to both a stabilization of all the neuron firing rates (homeostatic equilibrium) and a robust weight specialization. The pattern of specialization for the recurrent weights is determined by a relationship between the input firing-rate and correlation structures, the network topology, the STDP parameters and the synaptic response properties. We find conditions for feed-forward pathways or areas with strengthened self-feedback to emerge in an initially homogeneous recurrent network.

  5. Fire Technology Abstracts, volume 4, issue 1, August, 1981

    NASA Astrophysics Data System (ADS)

    Holtschlag, L. J.; Kuvshinoff, B. W.; Jernigan, J. B.

    This bibliography contains over 400 citations with abstracts addressing various aspects of fire technology. Subjects cover the dynamics of fire, behavior and properties of materials, fire modeling and test burns, fire protection, fire safety, fire service organization, apparatus and equipment, fire prevention, suppression, planning, human behavior, medical problems, codes and standards, hazard identification, safe handling of materials, insurance, economics of loss and prevention, and more.

  6. Study to develop improved fire resistant aircraft passenger seat materials, phase 2

    NASA Technical Reports Server (NTRS)

    Duskin, F. E.; Shook, W. H.; Trabold, E. L.; Spieth, H. H.

    1978-01-01

    Fire tests are reported of improved materials in multilayered combinations representative of cushion configurations. Tests were conducted to determine their thermal, smoke, and fire resistance characteristics. Additionally, a source fire consisting of one and one-half pounds of newspaper in a tented configuration was developed. Finally, a preliminary seat specification was written based upon materials data and general seat design criteria.

  7. Room fire test for fire growth modeling : a sensitivity study

    Treesearch

    H. C. Tran; M. L. Janssens

    1989-01-01

    A room test designed according to the ASTM draft standard was used to investigate the effect of various parameters on the contribution of wall and corner fires to compartment fire growth. Location of the burner (against a wall or in a corner), power program of the gas burner ignition source, and combination of wall linings were varied, An initial series of calibration...

  8. Fire tests to evaluate the potential fire threat and its effects on HEPA filter integrity in cell ventilation at the Oak Ridge National Laboratory, Building 7920

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, H.K.; Staggs, K.J.; Doughty, S.M.

    1992-12-01

    As a result of a DOE (Tiger Team) Technical Safety Appraisal (November 1990) of the Radiochemical Engineering Development Center (REDC), ORNL Building 7920, a number of fire protection concerns were identified. The primary concern was the perceived loss of ventilation system containment due to the thermal destruction and/or breaching of the prefilters and/or high-efficiency particulate air filters (HEPA `s) and the resultant radioactive release to the external environment. The following report describes the results of an extensive fire test program performed by the Fire Research Discipline (FRD) of the Special Projects Division of Lawrence Livermore National Lab (LLNL) and fundedmore » by ORNL to address these concerns. Full scale mock-ups of a REDC hot cell tank pit, adjacent cubicle pit, and associated ventilation system were constructed at LLNL and 13 fire experiments were conducted to specifically answer the questions raised by the Tiger Team. Our primary test plan was to characterize the burning of a catastrophic solvent spill (kerosene) of 40 liters and its effect on the containment ventilation system prefilters and HEPA filters. In conjunction with ORNL and Lockwood Greene we developed a test matrix that assessed the fire performance of the prefilters and HEPA filters; evaluated the fire response of the fiber reinforced plastic (FRP) epoxy ventilation duct work; the response and effectiveness of the fire protection system, the effect of fire in a cubicle on the vessel off-gas (VOG) elbow, and other fire safety questions.« less

  9. [Reference values for the blood coagulation tests in Mexico: usefulness of the pooled plasma from blood donors].

    PubMed

    Calzada-Contreras, Adriana; Moreno-Hernández, Manuel; Castillo-Torres, Noemi Patricia; Souto-Rosillo, Guadalupe; Hernández-Juárez, Jesús; Ricardo-Moreno, María Tania; Sánchez-Fernández, Maria Guadalupe de Jesús; García-González, América; Majluf-Cruz, Abraham

    2012-01-01

    The blood coagulation system maintains the blood in a liquid state and bleeding and thrombosis are the manifestations of its malfunction. Blood coagulation laboratory evaluates the physiology of this system. To establish both, the reference values for several tests performed at the blood coagulation laboratory as well as the utility of the pooled plasma to perform these assays. MATERIAL AND: In this descriptive, cross-sectional, randomized study, we collected plasma from Mexican Mestizos. Each pooled plasma was prepared with the plasma from at least 20 blood donors. We performed screening and special tests and the Levey-Jennings graphs were built and interpreted after each pass. Results of the tests were analyzed and their distribution was established using the Kolmogorov-Smirnov test. To establish the reference values we used 95% confidence intervals. We collected 72 pooled plasmas. The distribution for PT, APTT, and TT tests was abnormal. Although the PT test showed a bimodal distribution it was normal for factor VII. The reference values for the hemostatic, anticoagulant, and fibrinolytic factors were different from those suggested by the manufacturers. We established the reference values for the blood coagulation tests in the adult Mexican population. We have shown that the pooled plasma must be used for the screening tests. We suggest that each clinical laboratory should establish its own reference values (at least for the screening tests). To reach this objective, we encourage the use of the pooled plasma.

  10. Influence of wildfires on atmospheric composition and carbon uptake of forest ecosystems in Central Siberia: the establishing of a long-term post-fire monitoring system

    NASA Astrophysics Data System (ADS)

    Panov, Alexey; Chi, Xuguang; Winderlich, Jan; Prokushkin, Anatoly; Bryukhanov, Alexander; Korets, Mikhail; Ponomarev, Evgenii; Timokhina, Anastasya; Andreae, Meinrat O.; Heimann, Martin

    2014-05-01

    Calculations of direct emissions of greenhouse gases from boreal wildfires remain uncertain due to problems with emission factors, available carbon, and imprecise estimates of burned areas. Even more varied and sparse are accurate in situ calculations of temporal changes in boreal forest carbon dynamics following fire. Linking simultaneous instrumental atmospheric observations, GIS-based estimates of burned areas, and ecosystem carbon uptake calculations is vital to fill this knowledge gap. Since 2006 the Zotino Tall Tower Observatory (ZOTTO; www.zottoproject.org) a research platform for large-scale climatic observations is operational in Central Siberia (60°48'N, 89°21'E). The data of ongoing greenhouse gases measurements at the tower are used in atmospheric inversions studies to infer the distribution of carbon sinks and sources over central Northern Eurasia. We present our contribution to reducing uncertainties in estimates of fire influence on atmospheric composition and post-fire ecosystem carbon uptake deduced from the large-scale fires that happened in 2012 in the tall tower footprint area. The burned areas were estimated from Landsat ETM 5,8 satellite images, while fires were detected from Terra/Aqua MODIS satellite data. The magnitude of ecological change caused by fires ("burn severity") was measured and mapped with a Normalized Burn Ratio (NBR) index and further calibrated by a complementary field based Composite Burn Index (CBI). Measures of fire radiative power (FRP) index provided information on fire heat release intensity and on the amount and completeness of biomass combustion. Based on the analyzed GIS data, the system of study plots was established in the 5 dominating ecosystem types for a long-term post-fire monitoring. On the plots the comprehensive estimation of ecosystem parameters and carbon pools and their mapping was organized with a laser-based field instrumentation system. The work was supported financially by ISTC Project # 2757p, project of RFBR # 13-05-98053, and grant of president of RF for young scientists MK-1691.2014.5.

  11. 24. SATURN V Fl ENGINE TEST FIRING ON TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SATURN V F-l ENGINE TEST FIRING ON TEST STAND 1A. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  12. Development of the laboratory prototype "CavyPool" for assessing treatments and materials for swimming pools.

    PubMed

    Valeriani, F; Gianfranceschi, G; Vitali, M; Protano, C; Romano Spica, V

    2017-01-01

    Hygiene and surveillance in swimming pools are established by WHO Guidelines and national laws. Progress in water management and pool construction is revolutionizing the field, introducing new materials, systems, disinfection procedures or monitoring markers. Innovation advances challenge the upgrading of safety and quality in pools and the appropriate implementation of guidelines. In order to provide a device for laboratory test, a prototype was realized and applied to study and compare swimming pool materials and treatments. A pool scale-model was engineered and evaluated by computational fluid dynamics algorithms. An automated real time monitoring assured steady state. Critical control points along the water circuit were made accessible to allow the placing of different biocides or water sampling. Simulations were safely performed in a standard hood. Materials for pool surfaces and pipelines were evaluated for biofilm formation under different disinfection conditions. Adherent microorganisms were assayed by mfDNA analysis using real time PCR. The prototype reached the steady state within 5-25 hours under different conditions, showing chemical, physical and fluid-dynamic stability. A method was optimized for testing materials showing their different response to biofilm induction. Several innovative PVC samples displayed highest resistance to bacterial adhesion. A device and method was developed for testing swimming pool hygienic parameters in laboratory. It allowed to test materials for pools hygiene and maintenance, including biofilm formation. It can be applied to simulate contaminations under different water treatments or disinfection strategies. It may support technical decisions and help policymakers in acquiring evidences for comparing or validating innovative solutions.

  13. Mutagenicity in emissions from coal- and oil-fired boilers.

    PubMed Central

    Alfheim, I; Bergström, J G; Jenssen, D; Møller, M

    1983-01-01

    The mutagenicity of emission samples from three oil-fired and four coal-fired boilers have been compared by using the Salmonella/microsome assay. Very little or no mutagenic activity was observed in samples from five of these boilers. The sample from one oil-fired boiler showed mutagenic activity of about 500 revertants/MJ, and the sample from a coal-fired fluidized bed combustor had an activity of 58,000 revertants/MJ measured with strain TA 98 in the absence of metabolic activation. All samples contained substances that were cytotoxic to the test bacteria, thus making it difficult to obtain linear dose-response curves. Mutagenic activity at low levels may remain undetected due to this toxicity of the samples. Samples with mutagenic activity below the detection limit in the Salmonella test have also been tested for forward mutations at the HGPRT locus in V79 hamster cells. Weak mutagenic effects were detected in two of the samples, whereas the sample from one oil-fired boiler remained negative. In this test, as well as in the Salmonella test, a strong cytotoxic effect could be observed with all samples. PMID:6825617

  14. Acute toxicity of fire-retardant and foam-suppressant chemicals to yalella azteca (Saussure)

    USGS Publications Warehouse

    McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.

    1997-01-01

    Acute toxicity tests were conducted with Hyalella azteca Saussure (an amphipod) exposed in soft and hard waters to three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F) and two foam suppressants (Phos-Chek WD-881 and Silv-Ex). The chemicals were slightly to moderately toxic to amphipods. The most toxic chemical to amphipods in soft and hard water was Phos-Chek WD-881 (96-h mean lethal concentration [LC50] equal to 10 mg/L and 22 mg/L, respectively), and the least toxic chemical to amphipods in soft water was Fire-Trol GTS-R (96-h LC50 equal to 127 mg/L) and in hard water was Fire-Trol LCG-R (96-h LC50 equal to 535 mg/L). Concentrations of ammonia in tests with the three fire retardants and both water types were greater than reported LC50 values and probably were the major toxic component. Estimated un-ionized ammonia concentrations near the LC50 were frequently less than the reported LC50 ammonia concentrations for amphipods. The three fire retardants were more toxic in soft water than in hard water even though ammonia and un-ionized ammonia concentrations were higher in hard water tests than in soft water tests. The accidental entry of fire-fighting chemicals into aquatic environments could adversely affect aquatic invertebrates, thereby disrupting ecosystem function.

  15. 75 FR 10696 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0070 and 0100 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... form on actuators P/N 9409122 installed on fuel crossfeed valves and fuel fire shut-off valves. Tests... fuel crossfeed valves and fuel fire shut-off valves. Tests revealed that the ice can prevent the... Tests for Fuel Crossfeed Valves and Fuel Fire Shut-Off Valves (g) For airplanes with an actuator having...

  16. 33 CFR 334.650 - Gulf of Mexico, south of St. George Island, Fla.; test firing range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Gulf of Mexico, south of St. George Island, Fla.; test firing range. 334.650 Section 334.650 Navigation and Navigable Waters CORPS OF....650 Gulf of Mexico, south of St. George Island, Fla.; test firing range. (a) The danger zone. A fan...

  17. 33 CFR 334.650 - Gulf of Mexico, south of St. George Island, Fla.; test firing range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Gulf of Mexico, south of St. George Island, Fla.; test firing range. 334.650 Section 334.650 Navigation and Navigable Waters CORPS OF....650 Gulf of Mexico, south of St. George Island, Fla.; test firing range. (a) The danger zone. A fan...

  18. 33 CFR 334.650 - Gulf of Mexico, south of St. George Island, Fla.; test firing range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Gulf of Mexico, south of St. George Island, Fla.; test firing range. 334.650 Section 334.650 Navigation and Navigable Waters CORPS OF....650 Gulf of Mexico, south of St. George Island, Fla.; test firing range. (a) The danger zone. A fan...

  19. Engineering fire blight resistance into the apple cultivar 'Gala' using the FB_MR5 CC-NBS-LRR resistance gene of Malus × robusta 5.

    PubMed

    Broggini, Giovanni A L; Wöhner, Thomas; Fahrentrapp, Johannes; Kost, Thomas D; Flachowsky, Henryk; Peil, Andreas; Hanke, Maria-Viola; Richter, Klaus; Patocchi, Andrea; Gessler, Cesare

    2014-08-01

    The fire blight susceptible apple cultivar Malus × domestica Borkh. cv. 'Gala' was transformed with the candidate fire blight resistance gene FB_MR5 originating from the crab apple accession Malus × robusta 5 (Mr5). A total of five different transgenic lines were obtained. All transgenic lines were shown to be stably transformed and originate from different transgenic events. The transgenic lines express the FB_MR5 either driven by the constitutive CaMV 35S promoter and the ocs terminator or by its native promoter and terminator sequences. Phenotyping experiments were performed with Mr5-virulent and Mr5-avirulent strains of Erwinia amylovora, the causal agent of fire blight. Significantly less disease symptoms were detected on transgenic lines after inoculation with two different Mr5-avirulent E. amylovora strains, while significantly more shoot necrosis was observed after inoculation with the Mr5-virulent mutant strain ZYRKD3_1. The results of these experiments demonstrated the ability of a single gene isolated from the native gene pool of apple to protect a susceptible cultivar from fire blight. Furthermore, this gene is confirmed to be the resistance determinant of Mr5 as the transformed lines undergo the same gene-for-gene interaction in the host-pathogen relationship Mr5-E. amylovora. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Development and testing of dry chemicals in advanced extinguishing systems for jet engine nacelle fires

    NASA Technical Reports Server (NTRS)

    Altman, R. L.; Ling, A. C. (Editor); Mayer, L. A.; Myronik, D. J.

    1979-01-01

    The effectiveness of dry chemical in extinguishing and delaying reignition of fires resulting from hydrocarbon fuel leaking onto heated surfaces such as can occur in jet engine nacelles is studied. The commercial fire extinguishant dry chemical tried are sodium and potassium bicarbonate, carbonate, chloride, carbamate (Monnex), metal halogen, and metal hydroxycarbonate compounds. Synthetic and preparative procedures for new materials developed, a new concept of fire control by dry chemical agents, descriptions of experiment assemblages to test dry chemical fire extinguishant efficiencies in controlling fuel fires initiated by hot surfaces, comparative testing data for more than 25 chemical systems in a 'static' assemblage with no air flow across the heated surface, and similar comparative data for more than ten compounds in a dynamic system with air flows up to 350 ft/sec are presented.

  1. Burning behavior within a seat armrest cavity

    DOT National Transportation Integrated Search

    2002-09-01

    The purpose of this technical note is to document the results of fire tests conducted to examine the characteristics of fire that may occur in the cavity of an aircraft seat armrest and the fire-containment capacity of the cavity. In all the tests th...

  2. Behaviour of Passive Fire Protection K-Geopolymer under Successive Severe Fire Incidents.

    PubMed

    Sakkas, Konstantinos; Sofianos, Alexandros; Nomikos, Pavlos; Panias, Dimitrios

    2015-09-11

    The performance of a fire resistant coating for tunnel passive fire protection under successive severe thermal loading is presented. The material falls under the class of potassium based geopolymers (K-geopolymer) and was prepared by mixing ferronickel (FeNi) slag, doped with pure alumina, with a highly alkaline potassium hydroxide aqueous phase. Its performance was assessed by subjecting a concrete slab with a five cm thick K-geopolymer coating layer into successive RijksWaterStaat (RWS) fire incidents. During the first test, the maximum measured temperature in the K-geopolymer/concrete interface was 250 °C, which is 130 °C lower than the RWS test requirement, while, during the second fire test, the maximum temperature was almost 370 °C, which is still lower than the RWS requirement proving the effectiveness of the material as a thermal barrier. In addition, the material retained its structural integrity, during and after the two tests, without showing any mechanical or thermal damages.

  3. Behaviour of Passive Fire Protection K-Geopolymer under Successive Severe Fire Incidents

    PubMed Central

    Sakkas, Konstantinos; Sofianos, Alexandros; Nomikos, Pavlos; Panias, Dimitrios

    2015-01-01

    The performance of a fire resistant coating for tunnel passive fire protection under successive severe thermal loading is presented. The material falls under the class of potassium based geopolymers (K-geopolymer) and was prepared by mixing ferronickel (FeNi) slag, doped with pure alumina, with a highly alkaline potassium hydroxide aqueous phase. Its performance was assessed by subjecting a concrete slab with a five cm thick K-geopolymer coating layer into successive RijksWaterStaat (RWS) fire incidents. During the first test, the maximum measured temperature in the K-geopolymer/concrete interface was 250 °C, which is 130 °C lower than the RWS test requirement, while, during the second fire test, the maximum temperature was almost 370 °C, which is still lower than the RWS requirement proving the effectiveness of the material as a thermal barrier. In addition, the material retained its structural integrity, during and after the two tests, without showing any mechanical or thermal damages. PMID:28793554

  4. Swimming Pools. Managing School Facilities, Guide 2.

    ERIC Educational Resources Information Center

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide for schools with swimming pools offers advice concerning appropriate training for pool managers, the importance of water quality and testing, safety in the handling of chemicals, maintenance and cleaning requirements, pool security, and health concerns. The guide covers both indoor and outdoor pools, explains some technical terms,…

  5. The EX-SHADWELL-Full Scale Fire Research and Test Ship

    DTIC Science & Technology

    1988-01-20

    If shipboard testing is necessary after the large scale land tests at China Lake, the EX-SHADWELL has a helo pad and well deck available which makes...8217 *,~. *c ’q.. ~ I b. Data acquistion system started. c. Fire started d. Data is recorded until all fire activity has ceased. 3.0 THE TEST AREA 3.1 Test...timing clocks will be started at the instant the fuel is lighted. That instant will be time zero . The time the cables become involved will be recorded

  6. Weapon Simulator Test Methodology Investigation: Comparison of Live Fire and Weapon Simulator Test Methodologies and the Effects of Clothing and Individual Equipment on Marksmanship

    DTIC Science & Technology

    2016-09-15

    METHODOLOGY INVESTIGATION: COMPARISON OF LIVE FIRE AND WEAPON SIMULATOR TEST METHODOLOGIES AND THE EFFECTS OF CLOTHING AND INDIVIDUAL EQUIPMENT ON...2. REPORT TYPE Final 3. DATES COVERED (From - To) October 2014 – August 2015 4. TITLE AND SUBTITLE WEAPON SIMULATOR TEST METHODOLOGY INVESTIGATION...COMPARISON OF LIVE FIRE AND WEAPON SIMULATOR TEST METHODOLOGIES AND THE EFFECTS OF CLOTHING AND INDIVIDUAL EQUIPMENT ON MARKSMANSHIP 5a. CONTRACT

  7. AJ26 rocket engine test

    NASA Image and Video Library

    2010-11-10

    Fire and steam signal a successful test firing of Orbital Sciences Corporation's Aerojet AJ26 rocket engine at John C. Stennis Space Center. AJ26 engines will be used to power Orbital's Taurus II space vehicle on commercial cargo flights to the International Space Station. On Nov. 10, operators at Stennis' E-1 Test Stand conducted a 10-second test fire of the engine, the first of a series of three verification tests. Orbital has partnered with NASA to provide eight missions to the ISS by 2015.

  8. Rapid growing clay coatings to reduce the fire threat of furniture.

    PubMed

    Kim, Yeon Seok; Li, Yu-Chin; Pitts, William M; Werrel, Martin; Davis, Rick D

    2014-02-12

    Layer-by-layer (LbL) assembly coatings reduce the flammability of textiles and polyurethane foam but require extensive repetitive processing steps to produce the desired coating thickness and nanoparticle fire retardant content that translates into a fire retardant coating. Reported here is a new hybrid bi-layer (BL) approach to fabricate fire retardant coatings on polyurethane foam. Utilizing hydrogen bonding and electrostatic attraction along with the pH adjustment, a fast growing coating with significant fire retardant clay content was achieved. This hybrid BL coating exhibits significant fire performance improvement in both bench scale and real scale tests. Cone calorimetry bench scale tests show a 42% and 71% reduction in peak and average heat release rates, respectively. Real scale furniture mockups constructed using the hybrid LbL coating reduced the peak and average heat release rates by 53% and 63%, respectively. This is the first time that the fire safety in a real scale test has been reported for any LbL technology. This hybrid LbL coating is the fastest approach to develop an effective fire retardant coating for polyurethane foam.

  9. Large-scale fiber release and equipment exposure experiments. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1980-01-01

    Outdoor tests were conducted to determine the amount of fiber released in a full scale fire and trace its dissemination away from the fire. Equipment vulnerability to fire released fibers was assessed through shock tests. The greatest fiber release was observed in the shock tube where the composite was burned with a continuous agitation to total consumption. The largest average fiber length obtained outdoors was 5 mm.

  10. Fire Safety Tests for Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Sang; Peterson, Reid A.; Schweiger, Michael J.

    2012-07-30

    A draft safety evaluation of the scenario for spherical resorcinol-formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping, which may be overly bounding based on the fire performance data from the manufacturer of the ion exchange resin selected for use at the WTP. To resolve this question, the fire properties of the SRF resin were measuredmore » by Southwest Research Institute (SwRI), following the American Society for Testing and Materials (ASTM) standard procedures, through a subcontract managed by Pacific Northwest National Laboratory (PNNL). For some tests, the ASTM standard procedures were not entirely appropriate or practical for the SRF resin material, so the procedures were modified and deviations from the ASTM standard procedures were noted. This report summarizes the results of fire safety tests performed and reported by SwRI. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. All as-received SwRI reports are attached to this report in the Appendix. Where applicable, the precision and bias of each test method, as given by each ASTM standard procedure, are included and compared with the SwRI test results of the SRF resin.« less

  11. Fire Safety Tests for Cesium-Loaded Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Sang; Schweiger, Michael J.; Peterson, Reid A.

    2012-09-01

    A draft safety evaluation of the scenario for spherical resorcinol formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping. To resolve this question, the fire properties of the SRF resin were measured by Southwest Research Institute (SwRI) through a subcontract managed by Pacific Northwest National Laboratory (PNNL). The results of initial fire safety tests on themore » SRF resin were documented in a previous report (WTP-RPT-218). The present report summarizes the results of additional tests performed by SwRI on the cesium-loaded SRF resin. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. The as-received SwRI report is attached to this report in the Appendix A. Where applicable, the precision and bias of each test method, as given by each American Society for Testing and Materials (ASTM) standard procedure, are included and compared with the SwRI test results of the cesium-loaded SRF resin.« less

  12. Hot-Fire Testing of 5N and 22N HPGP Thrusters

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher G.; Pedersen, Kevin W.; Pierce, Charles W.

    2015-01-01

    This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends.NASA completed hot-fire testing of 5N and 22N HPGP thrusters at the Marshall Space Flight Center’s Component Development Area altitude test stand in April 2015. Both thrusters are ground test articles and not flight ready units, but are representative of potential flight hardware with a known path towards flight application. The purpose of the 5N testing was to perform facility check-outs and generate a small set of data for comparison to ECAPS and Orbital ATK data sets. The 5N thruster performed as expected with thrust and propellant flow-rate data generated that are similar to previous testing at Orbital ATK. Immediately following the 5N testing, and using the same facility, the 22N testing was conducted on the same test stand with the purpose of demonstrating the 22N performance. The results of 22N testing indicate it performed as expected.The results of the hot-fire testing are presented in this paper and presentation.

  13. The development of the residential Fire H.E.L.P. tool kit: a resource to protect homebound older adults.

    PubMed

    Diekman, Shane; Huitric, Michele; Netterville, Linda

    2010-01-01

    This article describes the development of the Fire H.E.L.P. tool kit for training selected Meals On Wheels (MOW) staff in Texas to implement a fire safety program for homebound older adults. We used a formative evaluation approach during the tool kit's development, testing, and initial implementation stages. The tool kit includes instructional curricula on how to implement Fire H.E.L.P., a home assessment tool to determine a residence's smoke alarm needs, and fire safety educational materials. During the tool kit's pilot test, MOW participants showed enhanced fire safety knowledge and high levels of confidence about applying their newfound training skills. After the pilot test, MOW staff used the tool kit to conduct local training sessions, provide fire safety education, and install smoke alarms in the homes of older adults. We believe the approach used to develop this tool kit can be applied to education efforts for other, related healthy home topics.

  14. ‘Fire hardening’ spear wood does slightly harden it, but makes it much weaker and more brittle

    PubMed Central

    Chan, Tak Lok

    2016-01-01

    It is usually assumed that ‘fire hardening’ the tips of spears, as practised by hunter–gatherers and early Homo spp., makes them harder and better suited for hunting. This suggestion was tested by subjecting coppiced poles of hazel to a fire-hardening process and comparing their mechanical properties to those of naturally seasoned poles. A Shore D hardness test showed that fire treatment slightly increased the hardness of the wood, but flexural and impact tests showed that it reduced the strength and work of fracture by 30% and 36%, respectively. These results suggest that though potentially slightly sharper and more durable, fire-hardened tips would actually be more likely to break off when used, as may have been the case with the earliest known wooden tool, the Clacton spear. Fire might first have been used to help sharpen the tips of spears, and fire-hardening would have been a mostly negative side effect, not its primary purpose. PMID:27194289

  15. Toxicity of fire retardant chemicals to aquatic organisms: Progress report

    USGS Publications Warehouse

    Hamilton, Steven J.; McDonald, Susan F.; Gaikowski, Mark P.; Buhl, Kevin J.; Ramsey, G.S.

    1996-01-01

    Fire retardants and suppressants used extensively in North America are often applied in environmentally sensitive areas that may contain endangered, threatened, or economically important plant and animal species. We conducted laboratory acute toxicity tests in both hard and soft waters with five commonly used fire control chemicals (Fire Trol LCG-R, Fire-Trol GTS-R, Phos-Chek D-75-F, Phos-Chek WD-881, and Silv-Ex). Organisms used in the tests included two fish (rainbow trout and fathead minnow), two aquatic invertebrates (Daphnia magna and Hyalella azteca), and a green algae (Selenastrum capricornutum). In general, the green algae was substantially more sensitive to the three non-foam fire chemicals than the animals, the Daphnia were the most sensitive test organism in exposures with foams. The two foams (Silv-Ex and Phos-Chek WD-881) had similar toxicity and were more toxic than the three non-foams. Water quality did not seem to modify the toxicity of the five fire chemicals in a consistent manner.

  16. Prevalence of residential smoke alarms and fire escape plans in the U.S.: results from the Second Injury Control and Risk Survey (ICARIS-2).

    PubMed

    Ballesteros, Michael F; Kresnow, Marcie-Jo

    2007-01-01

    This study was conducted to estimate (1) the proportion of U.S. homes with installed smoke alarms and fire escape plans, and (2) the frequency of testing home smoke alarms and of practicing the fire escape plans. The authors analyzed data on smoke alarms and fire escape plans from a national cross-sectional random-digit dialed telephone survey of 9,684 households. Ninety-five percent of surveyed households reported at least one installed smoke alarm and 52% had a fire escape plan. The prevalence of alarms varied by educational level, income, and the presence of a child in the home. Only 15% tested their alarms once a month and only 16% of homes with an escape plan reported practicing it every six months. While smoke alarm prevalence in U.S. homes is high, only half of homes have a fire escape plan. Additional emphasis is needed on testing of installed smoke alarms and on preparedness for fire escape plans.

  17. Fire recurrence effects on aboveground plant and soil carbon stocks in Mediterranean shrublands with Aleppo pine

    NASA Astrophysics Data System (ADS)

    Herman, J.; den Ouden, J.; Mohren, G. M. J.; Retana, J.; Serrasolses, I.

    2009-04-01

    Changes in fire regime due to intensification of human influence during the last decades led to changes in vegetation structure and composition, productivity and carbon sink strength of Mediterranean shrublands and forests. It is anticipated that further climate warming and lower precipitation will enhance fire frequency, having consequences for the carbon budget and carbon storage in Mediterranean ecosystems. The purpose of this study was to determine whether fire recurrence modifies aboveground plant and soil carbon stocks, soil organic carbon content and total soil nitrogen content in shrublands with Aleppo pine on the Garraf Massif in Catalonia (Spain). Stands differing in fire frequency (1, 2 and 3 fires since 1957) were examined 13 years after the stand-replacing fire of 1994 and compared with control stands which were free of fire since 1957. Recurrent fires led to a decrease in total ecosystem carbon stocks. Control sites stored 12203 g m-2C which was 3.5, 5.0 and 5.5 times more than sites that burned 1, 2 and 3 times respectively. Carbon stored in the aboveground biomass exceeded soil carbon stocks in control plots, while soils were the dominant carbon pool in burned plots. An increasing fire frequency from 1 to 2 fires decreased total soil carbon stock. Control soils stored 3551 g m-2C, of which 70 % was recovered over 13 years in once burned soils and approximately 50 % in soils that had 2 or 3 fires. The soil litter (LF) layer carbon stock decreased with increasing fire frequency from 1 to 2 fires, whereas humus (H) layer and upper mineral soil carbon stocks did not change consistently with fire frequency. Fire decreased the organic carbon content in LF and H horizons, however no significant effect of fire frequency was found. Increasing fire frequency from 1 to 2 fires caused a decrease in the organic carbon content in the upper mineral soil. Total soil N content and C/N ratios were not significantly impacted by fire frequency. Recurrent fires had the greatest impact on aboveground plant carbon stocks. Aboveground plants in control plots amounted to 8652 g m-2C, of which 93 % was stored in trees, while carbon storage in the most frequently burned sites was only 509 g m-2C. Shrub carbon varied barely between fire frequencies, corroborating the high resilience of resprouting shrub species to fire recurrence. The most striking result was the immense decrease in Aleppo pine carbon stock which varied between 7770 g m-2in control plots and 25.6 g m-2in 3-fires plots. Differences between control and burned plots are principally explained by the age of the plots. The decrease in Aleppo pine carbon stock within burned plots was not associated with a growth reduction, but was due to a decrease in stem density. The results indeed indicate that the recruitment of Aleppo pine on more frequently burned plots is obstructed due to cumulative effects of short fire return-intervals (

  18. Timing system for firing widely spaced test nuclear detonations

    NASA Technical Reports Server (NTRS)

    Partridge, Ralph E.

    1992-01-01

    The national weapons design laboratories (Los Alamos National Laboratory and Lawrence Livermore National Laboratory) test fire nuclear devices at the Nevada Test Site (NTS), which is spread over an area of over 1200 square miles. On each test there are hundreds of high time resolution recordings made of nuclear output waveforms and other phenomena. In order to synchronize these recordings with each other, with the nuclear device, and with offsite recordings, there is a requirement that the permanent command center and the outlying temporary firing sites be time tied to each other and to UTC to permit firing the shot at a predetermined time with an accuracy of about a microsecond. Various aspects of the test setup and timing system are discussed.

  19. 8. TEST STAND 15, INVERTED ENGINE FIRING TEST, CIRCA 1963. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. TEST STAND 1-5, INVERTED ENGINE FIRING TEST, CIRCA 1963. Original is a color print. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  20. Mathematical-Programming Approaches to Test Item Pool Design. Research Report.

    ERIC Educational Resources Information Center

    Veldkamp, Bernard P.; van der Linden, Wim J.; Ariel, Adelaide

    This paper presents an approach to item pool design that has the potential to improve on the quality of current item pools in educational and psychological testing and thus to increase both measurement precision and validity. The approach consists of the application of mathematical programming techniques to calculate optimal blueprints for item…

  1. Immersive virtual reality-based training improves response in a simulated operating room fire scenario.

    PubMed

    Sankaranarayanan, Ganesh; Wooley, Lizzy; Hogg, Deborah; Dorozhkin, Denis; Olasky, Jaisa; Chauhan, Sanket; Fleshman, James W; De, Suvranu; Scott, Daniel; Jones, Daniel B

    2018-01-25

    SAGES FUSE curriculum provides didactic knowledge on OR fire prevention. The objective of this study is to evaluate the impact of an immersive virtual reality (VR)-based OR fire training simulation system in combination with FUSE didactics. The study compared a control with a simulation group. After a pre-test questionnaire that assessed the baseline knowledge, both groups were given didactic material that consists of a 10-min presentation and reading materials about precautions and stopping an OR fire from the FUSE manual. The simulation group practiced on the OR fire simulation for one session that consisted of five trials within a week from the pre-test. One week later, both groups were reassessed using a questionnaire. A week after the post-test both groups also participated in a simulated OR fire scenario while their performance was videotaped for assessment. A total of 20 subjects (ten per group) participated in this IRB approved study. Median test scores for the control group increased from 5.5 to 9.00 (p = 0.011) and for the simulation group it increased from 5.0 to 8.5 (p = 0.005). Both groups started at the same baseline (pre-test, p = 0.529) and reached similar level in cognitive knowledge (post-test, p = 0.853). However, when tested in the mock OR fire scenario, 70% of the simulation group subjects were able to perform the correct sequence of steps in extinguishing the simulated fire whereas only 20% subjects in the control group were able to do so (p = 0.003). The simulation group was better than control group in correctly identifying the oxidizer (p = 0.03) and ignition source (p = 0.014). Interactive VR-based hands-on training was found to be a relatively inexpensive and effective mode for teaching OR fire prevention and management scenarios.

  2. Effects of dormant-season fire at three different fire frequencies in shortgrass steppe of the southern Great Plains

    Treesearch

    Paulette L. Ford; Carleton S. White

    2008-01-01

    Prior to proceeding with large-scale fire reintroduction as a grassland management option, appropriate fire frequencies need to be determined. This research experimentally tested the effects of dormant-season fire on ground cover and on plant and soil nutrient cycling in shortgrass steppe at three different fire frequencies. The objective was to determine if fire...

  3. Extinguishing Agent for Magnesium Fire: Phases 5 and 6.

    DTIC Science & Technology

    1987-07-01

    This report documents the validation testing of the extinguishing system for metal fires developed as part of Phases I-IV. The results of this...system represented a reliable metal fire extinguishing system that could control and extinguish very large metal fires . The specifications developed for...the agent and for the delivery system are discussed in detail. Keywords: Fire suppression, Metal fires , Fire extinguishers.

  4. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    NASA Technical Reports Server (NTRS)

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  5. Review of fire test methods and incident data for portable electric cables in underground coal mines

    NASA Astrophysics Data System (ADS)

    Braun, E.

    1981-06-01

    Electrically powered underground coal mining machinery is connected to a load center or distribution box by electric cables. The connecting cables used on mobile machines are required to meet fire performance requirements defined in the Code of Federal Regulations. This report reviews Mine Safety and Health Administration's (MSHA) current test method and compares it to British practices. Incident data for fires caused by trailing cable failures and splice failures were also reviewed. It was found that the MSHA test method is more severe than the British but that neither evaluated grouped cable fire performance. The incident data indicated that the grouped configuration of cables on a reel accounted for a majority of the fires since 1970.

  6. Using HFire for spatial modeling of fire in shrublands

    Treesearch

    Seth H. Peterson; Marco E. Morais; Jean M. Carlson; Philip E. Dennison; Dar A. Roberts; Max A. Moritz; David R. Weise

    2009-01-01

    An efficient raster fire-spread model named HFire is introduced. HFire can simulate single-fire events or long-term fire regimes, using the same fire-spread algorithm. This paper describes the HFire algorithm, benchmarks the model using a standard set of tests developed for FARSITE, and compares historical and predicted fire spread perimeters for three southern...

  7. Large-Scale Spacecraft Fire Safety Experiments in ISS Resupply Vehicles

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David

    2013-01-01

    Our understanding of the fire safety risk in manned spacecraft has been limited by the small scale of the testing we have been able to conduct in low-gravity. Fire growth and spread cannot be expected to scale linearly with sample size so we cannot make accurate predictions of the behavior of realistic scale fires in spacecraft based on the limited low-g testing to date. As a result, spacecraft fire safety protocols are necessarily very conservative and costly. Future crewed missions are expected to be longer in duration than previous exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this concern, a spacecraft fire safety research project is underway to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. This project is supported by the NASA Advanced Exploration Systems Program Office in the Human Exploration and Operations Mission Directorate. The activity of this project is supported by an international topical team of fire experts from other space agencies to maximize the utility of the data and to ensure the widest possible scrutiny of the concept. The large-scale space flight experiment will be conducted on three missions; each in an Orbital Sciences Corporation Cygnus vehicle after it has deberthed from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew allows the fire products to be released into the cabin. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the atmosphere. The international topical team is collaborating with the NASA team in the definition of the experiment requirements and performing supporting analysis, experimentation and technology development.

  8. 46 CFR 116.423 - Furniture and furnishings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ARRANGEMENT Fire Protection § 116.423 Furniture and furnishings. (a) For the purpose of this subpart, rooms containing “fire resistant furnishings” are considered to be those in which: (1) Furniture such as chairs, sofas, and similar items are tested and meet the requirements in UL 1056 “Fire Test of Upholstered...

  9. 46 CFR 116.423 - Furniture and furnishings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ARRANGEMENT Fire Protection § 116.423 Furniture and furnishings. (a) For the purpose of this subpart, rooms containing “fire resistant furnishings” are considered to be those in which: (1) Furniture such as chairs, sofas, and similar items are tested and meet the requirements in UL 1056 “Fire Test of Upholstered...

  10. Improving freight fire safety : experiment testing and computer modeling to further development of mist-controlling additives for fire mitigation.

    DOT National Transportation Integrated Search

    2012-08-01

    With the purpose to minimize or prevent crash-induced fires in road and rail transportation, the : current interest in bio-derived and blended transportation fuels is increasing. Based on two years : of preliminary testing and analysis, it appears to...

  11. Study of Fire Extinguishment of a Replacement Fluid for Use in Transformers in Lieu of Askarel

    DOT National Transportation Integrated Search

    1981-04-01

    A series of tests were performed at the Factory Mutual Test Center 1) to obtain information on the performance of various extinguishing agents used with hand-held fire extinguishers to control fire involving a Midel,a transformer fluid for replacem...

  12. Ride through SaFIRES : lessons learned from SaFIRES - an APTS operational test in Prince William County, Virginia.

    DOT National Transportation Integrated Search

    2002-06-01

    This interim report documents the lessons learned to date from the Smart Flex-route Integrated Real-time Enhancement System (SaFIRES) operational test in Prince William County, Virginia. This route deviation service has proven to be popular with Coun...

  13. 29 CFR 1926.155 - Definitions applicable to this subpart.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... part, fire resistance shall be determined by the Standard Methods of Fire Tests of Building... knowledgeable, trained, and skilled in the safe evacuation of employees during emergency situations and in assisting in fire fighting operations. (f) Fire resistance means so resistant to fire that, for specified...

  14. 29 CFR 1926.155 - Definitions applicable to this subpart.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... part, fire resistance shall be determined by the Standard Methods of Fire Tests of Building... knowledgeable, trained, and skilled in the safe evacuation of employees during emergency situations and in assisting in fire fighting operations. (f) Fire resistance means so resistant to fire that, for specified...

  15. 29 CFR 1926.155 - Definitions applicable to this subpart.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... part, fire resistance shall be determined by the Standard Methods of Fire Tests of Building... knowledgeable, trained, and skilled in the safe evacuation of employees during emergency situations and in assisting in fire fighting operations. (f) Fire resistance means so resistant to fire that, for specified...

  16. 29 CFR 1926.155 - Definitions applicable to this subpart.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... part, fire resistance shall be determined by the Standard Methods of Fire Tests of Building... knowledgeable, trained, and skilled in the safe evacuation of employees during emergency situations and in assisting in fire fighting operations. (f) Fire resistance means so resistant to fire that, for specified...

  17. 29 CFR 1926.155 - Definitions applicable to this subpart.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... part, fire resistance shall be determined by the Standard Methods of Fire Tests of Building... knowledgeable, trained, and skilled in the safe evacuation of employees during emergency situations and in assisting in fire fighting operations. (f) Fire resistance means so resistant to fire that, for specified...

  18. Field tests on human tolerance to (LNG) fire radiant heat exposure, and attenuation effects of clothing and other objects.

    PubMed

    Raj, Phani K

    2008-09-15

    A series of field tests exposing mannequins clothed with civilian clothing to a 3m x 3m square liquefied natural gas (LNG) pool fire was conducted. Both single layer clothing and double layer clothing were used. The radiant heat flux incident outside the clothing and incident on the skin covered by clothing were measured using wide-angle radiometers, for durations of 100-200 s (per test). The levels of heat flux incident on the clothing were close to 5 kW/m(2). The magnitude of the radiant heat attenuation factor (AF) across the thickness was determined. AF varies between 2 and higher for cotton and polyester clothing (thickness 0.286-1.347 mm); AF value of 6 was measured for 1.347 mm thickness. Single sheet newspaper held about 5 cm in front of mannequins and exposed to incident flux of 5 kW/m(2) resulted in AF of 5, and AF of 8 with double sheets. AF decreases linearly with increasing heat flux values and linearly increases with thickness. The author exposed himself, in normal civilian clothing (of full sleeve cotton/polyester shirt and jean pants), to radiant heat from a LNG fire. The exposure was for several tens of seconds to heat flux levels ranging from 3.5 kW/m(2) to 5(+) kW/m(2) (exposure times from 25s to 97 s at average heat flux values in the 4 kW/m(2) and 5 kW/m(2)range). Occasionally, he was exposed to (as high as) 7 kW/m(2) for durations of several seconds. He did not suffer any unbearable or even severe pain nor did he experience blisters or burns or any other injury on the unprotected skin of his body. The incident heat fluxes on the author were measured by a hand-held radiometer (with digital display) as well as by strapped on wide-angle radiometers connected to a computer. He could withstand the US regulatory criterion of 5 kW/m(2) (for 30 s) without suffering any damage or burns. Temperature measured on author's skin covered by clothing did not rise above the normal body temperature even after 200 s of exposure to 4 kW/m(2) average heat flux.

  19. Evaluation of the use of pooled serum, pooled muscle tissue fluid (meat juice) and pooled faeces for monitoring pig herds for Salmonella.

    PubMed

    Davies, R H; Heath, P J; Coxon, S M; Sayers, A R

    2003-01-01

    Monitoring for Salmonella in slaughter pigs is important to enable targeted control measures to be applied on problem farms and at the abattoir. The aim of this study was to determine whether pooled serum and meat juice could be used to identify finishing pig herds with a high prevalence of infection. Samples of meat juice, serum, caecal contents, carcase swabs and pooled faeces from pig pens were taken from 20 commercial pig finishing farms and comparisons were made between the results of Salmonella culture, individual ELISA tests on serum and meat juice and pooled samples of serum and meat juice. Salmonella was isolated from samples from 19 of 20 farms. None of the ELISA tests showed a statistically significant correlation with caecal carriage of Salmonella or contamination of carcases. Serum mean optical density (O.D.) from pools of five, 10 or 20 sera showed a significant correlation with the Salmonella status of farm pen faeces. All pooled serum O.D. and sample/positive control ratio results correlated significantly with the results of the conventional individual sample ELISA. There was a statistically significant correlation between the incidence of Salmonella in farm pen pooled faeces and the prevalence of Salmonella in caeca of slaughter pigs. The results show a generally poor correlation between serological and bacteriological results but pooled serum or meat juice samples could be used as a cheaper substitute for serological screening of farms for Salmonella than individual samples. The availability of a cheaper test should allow the costs of Salmonella monitoring of pig farms to be reduced or allow more regular testing to enhance the designation of farm Salmonella risk status.

  20. Wildfire and forest disease interaction lead to greater loss of soil nutrients and carbon.

    PubMed

    Cobb, Richard C; Meentemeyer, Ross K; Rizzo, David M

    2016-09-01

    Fire and forest disease have significant ecological impacts, but the interactions of these two disturbances are rarely studied. We measured soil C, N, Ca, P, and pH in forests of the Big Sur region of California impacted by the exotic pathogen Phytophthora ramorum, cause of sudden oak death, and the 2008 Basin wildfire complex. In Big Sur, overstory tree mortality following P. ramorum invasion has been extensive in redwood and mixed evergreen forests, where the pathogen kills true oaks and tanoak (Notholithocarpus densiflorus). Sampling was conducted across a full-factorial combination of disease/no disease and burned/unburned conditions in both forest types. Forest floor organic matter and associated nutrients were greater in unburned redwood compared to unburned mixed evergreen forests. Post-fire element pools were similar between forest types, but lower in burned-invaded compared to burned-uninvaded plots. We found evidence disease-generated fuels led to increased loss of forest floor C, N, Ca, and P. The same effects were associated with lower %C and higher PO4-P in the mineral soil. Fire-disease interactions were linear functions of pre-fire host mortality which was similar between the forest types. Our analysis suggests that these effects increased forest floor C loss by as much as 24.4 and 21.3 % in redwood and mixed evergreen forests, respectively, with similar maximum losses for the other forest floor elements. Accumulation of sudden oak death generated fuels has potential to increase fire-related loss of soil nutrients at the region-scale of this disease and similar patterns are likely in other forests, where fire and disease overlap.

  1. Fire extinguishing agents for oxygen-enriched atmospheres

    NASA Astrophysics Data System (ADS)

    Plugge, M. A.; Wilson, C. W.; Zallen, D. M.; Walker, J. L.

    1985-12-01

    Fire-suppression agent requirements for extinguishing fires in oxygen-enriched atmospheres were determined employing small-, medium-, large-, and full-scale test apparatuses. The small- and medium-scale tests showed that a doubling of the oxygen concentration required five times more HALON for extinguishment. For fires of similar size and intensity, the effect of oxygen enrichment of the diluent volume in the HC-131A was not as grate as in the smaller compartments of the B-52 which presented a higher damage scenario. The full-scale tests showed that damage to the airframe was as important a factor in extinguishment as oxygen enrichment.

  2. Video File - NASA Conducts 2nd RS-25 Engine Hot Fire of 2018 - 2018-02-01

    NASA Image and Video Library

    2018-02-01

    NASA Conducts 2nd RS-25 Engine Hot Fire of 2018. A 365-second hot fire test on Feb. 1, 2018, at NASA’s Stennis Space Center in Mississippi marks the completion of “green run” testing, or flight certification, for all new RS-25 engine flight controllers slated for Exploration Mission-2, the first Space Launch System mission with astronauts on board. In addition to the flight controller, the Feb. 1 hot fire also marked the third test of a 3D printed pogo accumulator assembly for the RS-25 engine.

  3. Soil carbon and nitrogen pools in mid- to late-successional forest stands of the northwestern United States: Potential impact of fire

    Treesearch

    Deborah S. Page-Dumroese; Martin F. Jurgensen

    2006-01-01

    When sampling woody residue (WR) and organic matter (OM) present in forest floor, soil wood, and surface mineral soil (0­30 cm) in 14 mid- to late-successional stands across a wide variety of soil types and climatic regimes in the northwestern USA, we found that 44%-84% of carbon (C) was in WR and surface OM, whereas >80% of nitrogen (N) was in the mineral soil. In...

  4. Consequence Assessment Methods for Incidents Involving Releases From Liquefied Natural Gas Carriers

    DTIC Science & Technology

    2004-05-13

    the downwind direction. The Thomas (1965) correlation is used to calculate flame length . Flame tilt is estimated using an empirical correlation from...follows: From TNO (1997) • Thomas (1963) correlation for flame length • For an experimental LNG pool fire of 16.8-m diameter, a mass burning flux of...m, flame length ranged from 50 to 78 m, and tilt angle from 27 to 35 degrees From Rew (1996) • Work included a review of recent developments in

  5. Optimal Test Design with Rule-Based Item Generation

    ERIC Educational Resources Information Center

    Geerlings, Hanneke; van der Linden, Wim J.; Glas, Cees A. W.

    2013-01-01

    Optimal test-design methods are applied to rule-based item generation. Three different cases of automated test design are presented: (a) test assembly from a pool of pregenerated, calibrated items; (b) test generation on the fly from a pool of calibrated item families; and (c) test generation on the fly directly from calibrated features defining…

  6. Fire technology abstracts, volume 4. Cumulative indexes

    NASA Astrophysics Data System (ADS)

    1982-03-01

    Cumulative subject, author, publisher, and report number indexes referencing articles, books, reports, and patents are provided. The dynamics of fire, behavior and properties of materials, fire modeling and test burns, fire protection, fire safety, fire service organization, apparatus and equipment, fire prevention suppression, planning, human behavior, medical problems, codes and standards, hazard identification, safe handling of materials, and insurance economics of loss and prevention are among the subjects covered.

  7. Comparison of the safety-related physical and combustion properties of liquid hydrogen and liquid natural gas in the context of the SF-BREEZE high-speed fuel-cell ferry

    DOE PAGES

    Klebanoff, L. E.; Pratt, J. W.; LaFleur, C. B.

    2016-11-25

    Here, we review liquid hydrogen (LH 2) as a maritime vessel fuel, from descriptions of its fundamental properties to its practical application and safety aspects, in the context of the San Francisco Bay Renewable Energy Electric Vessel with Zero Emissions (SF-BREEZE) high-speed fuel-cell ferry. Since marine regulations have been formulated to cover liquid natural gas (LNG) as a primary propulsion fuel, we frame our examination of LH 2 as a comparison to LNG, for both maritime use in general, and the SF-BREEZE in particular. Due to weaker attractions between molecules, LH 2 is colder than LNG, and evaporates more easily.more » We describe the consequences of these physical differences for the size and duration of spills of the two cryogenic fuels. The classical flammability ranges are reviewed, with a focus on how fuel buoyancy modifies these combustion limits. We examine the conditions for direct fuel explosion (detonation) and contrast them with initiation of normal (laminar) combustion. Direct fuel detonation is not a credible accident scenario for the SF-BREEZE. For both fuels, we review experiments and theory elucidating the deflagration to detonation transition (DDT). LH 2 fires have a shorter duration than energy-equivalent LNG fires, and produce significantly less thermal radiation. The thermal (infrared) radiation from hydrogen fires is also strongly absorbed by humidity in the air. Hydrogen permeability is not a leak issue for practical hydrogen plumbing. We describe the chemistry of hydrogen and methane at iron surfaces, clarifying their impact on steel-based hydrogen storage and transport materials. These physical, chemical and combustion properties are pulled together in a comparison of how a LH 2 or LNG pool fire on the Top Deck of the SF-BREEZE might influence the structural integrity of the aluminum deck. Neither pool fire scenario leads to net heating of the aluminum decking. Overall, LH 2 and LNG are very similar in their physical and combustion properties, thereby posing similar safety risks. For ships utilizing LH 2 or LNG, precautions are needed to avoid fuel leaks, minimize ignition sources, minimize confined spaces, provide ample ventilation for required confined spaces, and to monitor the enclosed spaces to ensure any fuel accumulation is detected far below the fuel/air mix threshold for any type of combustion.« less

  8. Comparison of the safety-related physical and combustion properties of liquid hydrogen and liquid natural gas in the context of the SF-BREEZE high-speed fuel-cell ferry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klebanoff, L. E.; Pratt, J. W.; LaFleur, C. B.

    Here, we review liquid hydrogen (LH 2) as a maritime vessel fuel, from descriptions of its fundamental properties to its practical application and safety aspects, in the context of the San Francisco Bay Renewable Energy Electric Vessel with Zero Emissions (SF-BREEZE) high-speed fuel-cell ferry. Since marine regulations have been formulated to cover liquid natural gas (LNG) as a primary propulsion fuel, we frame our examination of LH 2 as a comparison to LNG, for both maritime use in general, and the SF-BREEZE in particular. Due to weaker attractions between molecules, LH 2 is colder than LNG, and evaporates more easily.more » We describe the consequences of these physical differences for the size and duration of spills of the two cryogenic fuels. The classical flammability ranges are reviewed, with a focus on how fuel buoyancy modifies these combustion limits. We examine the conditions for direct fuel explosion (detonation) and contrast them with initiation of normal (laminar) combustion. Direct fuel detonation is not a credible accident scenario for the SF-BREEZE. For both fuels, we review experiments and theory elucidating the deflagration to detonation transition (DDT). LH 2 fires have a shorter duration than energy-equivalent LNG fires, and produce significantly less thermal radiation. The thermal (infrared) radiation from hydrogen fires is also strongly absorbed by humidity in the air. Hydrogen permeability is not a leak issue for practical hydrogen plumbing. We describe the chemistry of hydrogen and methane at iron surfaces, clarifying their impact on steel-based hydrogen storage and transport materials. These physical, chemical and combustion properties are pulled together in a comparison of how a LH 2 or LNG pool fire on the Top Deck of the SF-BREEZE might influence the structural integrity of the aluminum deck. Neither pool fire scenario leads to net heating of the aluminum decking. Overall, LH 2 and LNG are very similar in their physical and combustion properties, thereby posing similar safety risks. For ships utilizing LH 2 or LNG, precautions are needed to avoid fuel leaks, minimize ignition sources, minimize confined spaces, provide ample ventilation for required confined spaces, and to monitor the enclosed spaces to ensure any fuel accumulation is detected far below the fuel/air mix threshold for any type of combustion.« less

  9. Technical Evaluation Motor No. 10 (TEM-10)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Technical Evaluation Motor No. 10 (TEM-10) was static fired on 27 Apr. 1993 at the Thiokol Corporation full-scale motor static test bay, T-24. This final test report documents the procedures, performance, and results of the static test firing of TEM-10. All observations, discussions, conclusions, and recommendations contained are final. Included is a presentation and discussion of TEM-10 performance, anomalies, and test results in concurrence with the objectives outlined in CTP-0110, Revision D, Space Shuttle Technical Evaluation Motor No. 10 (TEM-10) Static Fire Test Plan.

  10. Design and analysis of the federal aviation administration next generation fire test burner

    NASA Astrophysics Data System (ADS)

    Ochs, Robert Ian

    The United States Federal Aviation Administration makes use of threat-based fire test methods for the certification of aircraft cabin materials to enhance the level of safety in the event of an in-flight or post-crash fire on a transport airplane. The global nature of the aviation industry results in these test methods being performed at hundreds of laboratories around the world; in some cases testing identical materials at multiple labs but yielding different results. Maintenance of this standard for an elevated level of safety requires that the test methods be as well defined as possible, necessitating a comprehensive understanding of critical test method parameters. The tests have evolved from simple Bunsen burner material tests to larger, more complicated apparatuses, requiring greater understanding of the device for proper application. The FAA specifies a modified home heating oil burner to simulate the effects of large, intense fires for testing of aircraft seat cushions, cargo compartment liners, power plant components, and thermal acoustic insulation. Recently, the FAA has developed a Next Generation (NexGen) Fire Test burner to replace the original oil burner that has become commercially unavailable. The NexGen burner design is based on the original oil burner but with more precise control of the air and fuel flow rates with the addition of a sonic nozzle and a pressurized fuel system. Knowledge of the fundamental flow properties created by various burner configurations is desired to develop an updated and standardized burner configuration for use around the world for aircraft materials fire testing and airplane certification. To that end, the NexGen fire test burner was analyzed with Particle Image Velocimetry (PIV) to resolve the non-reacting exit flow field and determine the influence of the configuration of burner components. The correlation between the measured flow fields and the standard burner performance metrics of flame temperature and burnthrough time was studied. Potential design improvements were also evaluated that could simplify burner set up and operation.

  11. Space Shuttle Flight Support Motor no. 1 (FSM-1)

    NASA Technical Reports Server (NTRS)

    Hughes, Phil D.

    1990-01-01

    Space Shuttle Flight Support Motor No. 1 (FSM-1) was static test fired on 15 Aug. 1990 at the Thiokol Corporation Static Test Bay T-24. FSM-1 was a full-scale, full-duration static test fire of a redesigned solid rocket motor. FSM-1 was the first of seven flight support motors which will be static test fired. The Flight Support Motor program validates components, materials, and manufacturing processes. In addition, FSM-1 was the full-scale motor for qualification of Western Electrochemical Corporation ammonium perchlorate. This motor was subjected to all controls and documentation requirements CTP-0171, Revision A. Inspection and instrumentation data indicate that the FSM-1 static test firing was successful. The ambient temperature during the test was 87 F and the propellant mean bulk temperature was 82 F. Ballistics performance values were within the specified requirements. The overall performance of the FSM-1 components and test equipment was nominal.

  12. Solid AFFF Technology Investigation

    DTIC Science & Technology

    2010-12-01

    Aqueous film forming foam, Solid AFFF, MIL - F - 24385 , Foam fire tests, Firefighting handlines, Shipboard fire protection 18. Distribution Statement...28 ft2) fire test in MIL - F -24385F was used as a screening method to determine the viability of the concept. It was determined during this program...military specification for AFFF, MIL - F -24385F, was used as a screening method to determine the viability of the concept. This test has been shown

  13. The Spacecraft Fire Experiment (Saffire) - Objectives, Development and Status

    NASA Technical Reports Server (NTRS)

    Schoren, William; Ruff, Gary A.; Urban, David L.

    2016-01-01

    Since 2012, the Spacecraft Fire Experiment (Saffire) has been under development by the Spacecraft Fire Safety Demonstration (SFS Demo) project that is funded by NASA's Advanced Exploration Systems Division in the Human Exploration and Operations Mission Directorate. The overall objective of this project is to reduce the uncertainty and risk associated with the design of spacecraft fire safety systems for NASA's exploration missions. This is accomplished by defining, developing, and conducting experiments that address gaps in spacecraft fire safety knowledge and capabilities identified by NASA's Fire Safety System Maturation Team. This paper describes the three Spacecraft Fire Experiments (Saffire-I, -II, and -III) that were developed at NASA-GRC and that will conduct a series of material flammability tests in low-gravity and at length scales that are realistic for a spacecraft fire. The experiments will be conducted in Orbital ATK's Cygnus vehicle after it has unberthed from the International Space Station. The tests will be fully automated with the data downlinked at the conclusion of the test and before the Cygnus vehicle reenters the atmosphere. The objectives of these experiments are to (1) determine how rapidly a large scale fire grows in low-gravity and (2) investigate the low-g flammability limits compared to those obtained in NASA's normal gravity material flammability screening test. The hardware for these experiments has been completed and is awaiting their respective launches, all planned for 2016. This paper will review the objectives of these experiments and how they address several of the knowledge gaps for NASA's exploration missions. The hardware development will be discussed including several novel approaches that were taken for testing and evaluation of these series payloads. The status of the missions and operational status will also be presented.

  14. Systems for animal exposure in full-scale fire tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    Two systems for exposing animals in full-scale fire tests are described. Both systems involve the simultaneous exposure of two animal species, mice and rats, in modular units; determination of mortality, morbidity, and behavioral response; and analysis of the blood for carboxyhemoglobin. The systems described represent two of many possible options for obtaining bioassay data from full-scale fire tests. In situations where the temperatures to which the test animals are exposed can not be controlled, analytical techniques may be more appropriate than bioassay techniques.

  15. Test Operations Procedure (TOP) 03-2-830A Stability Test of Indirect Fire Artillery Weapons

    DTIC Science & Technology

    2013-02-20

    0.01 degree 0 to 6400 mil; ± 1 mil Powder thermometer -55 to +40 °Celsius (C); ± 1 °C Muzzle velocity radar 42 to 1200 meters/second; ± 4...Gun crew 2 Geodetics personnel 1 Muzzle velocity radar operator 2 HS and regular videographer 2 Wiebel tracking radar operator 1...fire. d. Install the muzzle velocity radar at the test weapon. e. Verify test weapons boresight before and after firing each group. f

  16. Competitive effects of fire-resistant saplings on their fire-sensitive neighbors are greater than the reverse

    Treesearch

    J. Stephen Brewer

    2015-01-01

    Although repeated fires are generally thought to reduce competition, direct tests of this hypothesis are rare. Furthermore, recent theory predicts that fires can increase competitive effects of fireresistant species on fire-sensitive species and thus create stable assemblages dominated by the former. In this study, I quantified competition between saplings of fire-...

  17. Simulation of quaking aspen potential fire behavior in Northern Utah, USA

    Treesearch

    R. Justin DeRose; A. Joshua Leffler

    2014-01-01

    Current understanding of aspen fire ecology in western North America includes the paradoxical characterization that aspen-dominated stands, although often regenerated following fire, are “fire-proof”. We tested this idea by predicting potential fire behavior across a gradient of aspen dominance in northern Utah using the Forest Vegetation Simulator and the Fire and...

  18. Development, installation, and testing services for an automatic, point type thermal sensor, fire protection system on a mining dozer. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lease, W.D.

    1976-08-01

    Lease AFEX, Inc., modified its standard design of an automatic fire protection system used in the past on logging equipment, and long-term, in-mine tested system on a Fiat-Alli's HD-41B dozer at the Lemmons and Company coal mine, Boonville, Ind. The modification of the standard AFEX system involved improving the actuation device. The AFEX system is called a point-type thermal sensor, automatic fire protection system. The in-mine test took place in late 1975, and early 1976. The system was then tested by simulating a fire on the dozer. The system operated successfully after the 4 months of in-mine endurance testing. (Colormore » illustrations reproduced in black and white.)« less

  19. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    NASA Technical Reports Server (NTRS)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  20. Use of intumescent compounds in fire curtains

    NASA Astrophysics Data System (ADS)

    Nedryshkin, Oleg; Gravit, Marina; Mukhamedzhanova, Olga

    2017-10-01

    Automatic fire curtains are designed to divide sections of premises and structures into fire compartments for the purpose of localizing a fire, as well as filling openings in fire barriers. If a fire occurs due to a signal from a fire alarm sensor or a signal from a fire station, the blind automatically falls and locates the source of ignition. The paper presents the results of testing nine samples of fire curtains with an applied intumescent composition. Tests were conducted for 60 minutes before loss of sample integrity. The average temperature from the heated side of the sample reached 800 ∼ 1000 ° C. Depending on the sample, the temperature from the unheated side ranged from 70 ° C to 294 ° C. The best result was shown by a sample from a layer of needle-punched heat-insulating material with a thermal conductivity of 0.036 W/(m×K) placed between layers of foil and treated with water-based intumescent composition of silica material.

  1. 75 FR 66735 - National Fire Protection Association (NFPA): Request for Comments on NFPA's Codes and Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... Ignitibility of Exterior Wall Assemblies Using a Radiant Heat Energy Source. NFPA 269 Standard Test Method P... for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption... Plastic Insulation. NFPA 285 Standard Fire Test P Method for Evaluation of Fire Propagation...

  2. Do wire fences stop ground fires?

    Treesearch

    James L. Murphy; Harry E. Schimke

    1965-01-01

    Five meshes (1/8 to 1 inch) of 16-gauge steel wire fences, 3 feet high, were tested as possible ground fire barriers in 4 fuel types. The 1/8-inch mesh stopped only 1 test fire but retarded others; 1/4-inch mesh retarded some. The results suggest that further trials may be worthwhile.

  3. Stored Carbon Dynamics are Controlled by a Combination of Evolutionary, Physiological, and Ecological Pressures

    NASA Astrophysics Data System (ADS)

    Aubrey, D. P.; Mims, J. T.; Oswald, S. W.; Teskey, R. O.; Mitchell, R. J.

    2016-12-01

    Allocation of assimilated carbon to storage provides a critical carbohydrate buffer when metabolic demands exceed current photosynthetic supply; however, our process-level understanding of controls on carbon storage pools and fluxes remains relatively poor. Recent studies have shifted the paradigm from the concept that stored carbon pools are a sink of low priority that accumulate passively when photosynthetic inputs exceed demand toward the concept that these pools are active sinks of high priority. It follows that allocation toward storage—at the expense of growth—is a trait that would be under selective pressure since species that allocate toward storage should be more resilient to disturbance. Using fire-dependent longleaf pine in a series of manipulative and observational studies, we explore how stored carbon dynamics are controlled by a combination of evolutionary, physiological, and ecological pressures. Our manipulative studies revealed large stored carbon pools in roots that maintained belowground metabolism for a year after current photosynthetic supply was restricted. Likewise, the concentration of stored carbon in the smallest, most metabolically active roots was not influenced until nearly one year later. Our observational studies indicated that stored carbon pools differ among closely related species with overlapping natural distributions, but evolutionary histories of different disturbance frequencies and thus, different selective pressures on carbon storage. Our comparisons of stored carbon pools between longleaf trees growing under xeric or mesic soil moisture regimes indicated that allocation toward storage exhibits plasticity through space and time in response to both short- and long-term variations in resource availability. We expect a continuum of responses to disturbances related to ecological niche and evolutionary adaptation that influence the availability of carbohydrates for metabolic demands. We also expect a continuum in stored carbon pools and metabolic buffering capacity among species as well as spatially, temporally, and developmentally within individual species.

  4. Neural Spike Train Synchronisation Indices: Definitions, Interpretations and Applications.

    PubMed

    Halliday, D M; Rosenberg, J R

    2017-04-24

    A comparison of previously defined spike train syncrhonization indices is undertaken within a stochastic point process framework. The second order cumulant density (covariance density) is shown to be common to all the indices. Simulation studies were used to investigate the sampling variability of a single index based on the second order cumulant. The simulations used a paired motoneurone model and a paired regular spiking cortical neurone model. The sampling variability of spike trains generated under identical conditions from the paired motoneurone model varied from 50% { 160% of the estimated value. On theoretical grounds, and on the basis of simulated data a rate dependence is present in all synchronization indices. The application of coherence and pooled coherence estimates to the issue of synchronization indices is considered. This alternative frequency domain approach allows an arbitrary number of spike train pairs to be evaluated for statistically significant differences, and combined into a single population measure. The pooled coherence framework allows pooled time domain measures to be derived, application of this to the simulated data is illustrated. Data from the cortical neurone model is generated over a wide range of firing rates (1 - 250 spikes/sec). The pooled coherence framework correctly characterizes the sampling variability as not significant over this wide operating range. The broader applicability of this approach to multi electrode array data is briefly discussed.

  5. Is Fire Safety a Burning Issue for Your Home?

    ERIC Educational Resources Information Center

    Haines, Jamie E.

    1986-01-01

    Families can take an active role in protecting their homes and themselves from fire by: (1) keeping their homes free of fire hazards; (2) installing, testing, and maintaining smoke detectors; and (3) developing a fire escape plan. (DF)

  6. A cross-site comparison of factors controlling streamwater carbon flux in western North American catchments (Invited)

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Biederman, J. A.; Condon, K.; Chorover, J.; McIntosh, J. C.; Meixner, T.; Perdrial, J. N.

    2013-12-01

    Increasing variability in climate is expected to alter the amount and form of terrestrial carbon in stream water both directly, through changes in the magnitude and timing of discharge, and indirectly through changes in land cover following disturbance (e.g. drought, fire, or insect driven mortality). Predicting how these changes will impact individual stream-catchment ecosystems however, is hampered by a lack of concurrent observations on both dissolved and particulate carbon flux across a range of spatial, temporal, and discharge scales. Because carbon is strongly coupled to most biogeochemical reactions within both aquatic and terrestrial ecosystems, this represents a critical unknown in predicting the response of catchment-ecosystems to concurrent changes in climate and land cover. This presentation will address this issue using a meta-analysis of dissolved organic, dissolved inorganic, and particulate organic carbon fluxes from multiple locations, including undisturbed sites along a climate gradient from desert rivers to seasonally snow-covered, forested mountain catchments, and sites disturbed by both fire and extensive, insect driven mortality. Initial analyses suggest that dissolved (organic and inorganic) and particulate fluxes respond differently to various types of disturbance and depend on interactions between changes in size of mobile carbon pools and changes in hydrologic routing of carbon to streamwater. Anomalously large fluxes of both dissolved and particulate organic matter are associated with episodic changes in hydrologic routing (e.g. storm floods; snowmelt) that connect normally hydrologically isolated carbon pools (e.g. surficial hillslope soils) with surface water. These events are often of short duration as the supply of mobile carbon is exhausted in short term flushing response. In contrast, disturbances that increase the size of the mobile carbon pool (e.g. widespread vegetation mortality) result smaller proportional increases in concentrations, but these elevated concentrations persist for a longer period of time as increased solute sources are transported to surface water through persistent, subsurface flowpaths.

  7. Hitaveita Reykjavikur and the Nesjavellir geothermal co-generation power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, J.W.

    1996-11-01

    When Ingolfur Arnarson sighted land on the voyage which would make him the first settler in Iceland, he threw the pillars of his high seat overboard and relied on the gods to direct him to where he should settle. His slaves found them washed ashore in a bay where {open_quotes}smoke{close_quotes} rose out of the ground. Therefore, they call it Reykjavik, {open_quotes}Smoky Bay.{close_quotes} But the smoke after which Iceland`s capital is named was not the result of a fire, but was rather steam rising from hot springs. Ancient records only mention the use of geothermal springs for washing and bathing. Themore » best known examples are the Thvottalaugar (Washing pools) in what is now Laugardalur in Reykjavik, and the hot pool where saga writer Snorri Sturluson bathed at his farm in Reykholt in western Iceland.« less

  8. 49 CFR 173.58 - Assignment of class and division for new explosives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....4 explosives. In addition to the test prescribed in § 173.57 of this subchapter, a substance or... tests: Cap Sensitivity Test, Princess Incendiary Spark Test, DDT Test, and External Fire Test, each as... projection of fragments, occurs in the External Fire Test (Test Method 5(c), or (4) Ignition or explosion...

  9. 49 CFR 173.58 - Assignment of class and division for new explosives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....4 explosives. In addition to the test prescribed in § 173.57 of this subchapter, a substance or... tests: Cap Sensitivity Test, Princess Incendiary Spark Test, DDT Test, and External Fire Test, each as... projection of fragments, occurs in the External Fire Test (Test Method 5(c), or (4) Ignition or explosion...

  10. 49 CFR 173.58 - Assignment of class and division for new explosives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....4 explosives. In addition to the test prescribed in § 173.57 of this subchapter, a substance or... tests: Cap Sensitivity Test, Princess Incendiary Spark Test, DDT Test, and External Fire Test, each as... projection of fragments, occurs in the External Fire Test (Test Method 5(c), or (4) Ignition or explosion...

  11. 49 CFR 173.58 - Assignment of class and division for new explosives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....4 explosives. In addition to the test prescribed in § 173.57 of this subchapter, a substance or... tests: Cap Sensitivity Test, Princess Incendiary Spark Test, DDT Test, and External Fire Test, each as... projection of fragments, occurs in the External Fire Test (Test Method 5(c), or (4) Ignition or explosion...

  12. Tests on ticks from wild birds collected in the eastern United States for rickettsiae and viruses

    USGS Publications Warehouse

    Clifford, C.M.; Sonenshine, D.E.; Atwood, E.L.; Robbins, C.S.; Hughes, L.E.

    1969-01-01

    Results of tests for rickettsiae and viruses on 4,266 ticks taken from more than 10,000 birds, comprising 150 species, in the eastern United States indicated the presence of two agents: Rickettsia rickettsii and an agent of the typhus group. Infection with R. rickettsii was indicated in 24 pools of Haemaphysalis leporispalustris, five pools of Ixodes dentatus, one pool of Ixodes brunneus, and two pools that contained both I. dentatus and H. leporispalustris. The pools positive for R. rickettsii were from a variety of locations in the eastern U. S. The typhus-group agent was demonstrated only once, in a single pool of H. leporispalustris taken at Kent Point, Maryland. A strain of R. rickettsii was isolated from a pool of 21 larval H. leporispalustris collected at Ocean City, Maryland. This agent possessed several characteristics of other strains of low virulence isolated previously in this region by various authors.

  13. Rift Valley Fever Virus Epidemic in Kenya, 2006/2007: The Entomologic Investigations

    PubMed Central

    Sang, Rosemary; Kioko, Elizabeth; Lutomiah, Joel; Warigia, Marion; Ochieng, Caroline; O'Guinn, Monica; Lee, John S.; Koka, Hellen; Godsey, Marvin; Hoel, David; Hanafi, Hanafi; Miller, Barry; Schnabel, David; Breiman, Robert F.; Richardson, Jason

    2010-01-01

    In December 2006, Rift Valley fever (RVF) was diagnosed in humans in Garissa Hospital, Kenya and an outbreak reported affecting 11 districts. Entomologic surveillance was performed in four districts to determine the epidemic/epizootic vectors of RVF virus (RVFV). Approximately 297,000 mosquitoes were collected, 164,626 identified to species, 72,058 sorted into 3,003 pools and tested for RVFV by reverse transcription-polymerase chain reaction. Seventy-seven pools representing 10 species tested positive for RVFV, including Aedes mcintoshi/circumluteolus (26 pools), Aedes ochraceus (23 pools), Mansonia uniformis (15 pools); Culex poicilipes, Culex bitaeniorhynchus (3 pools each); Anopheles squamosus, Mansonia africana (2 pools each); Culex quinquefasciatus, Culex univittatus, Aedes pembaensis (1 pool each). Positive Ae. pembaensis, Cx. univittatus, and Cx. bitaeniorhynchus was a first time observation. Species composition, densities, and infection varied among districts supporting hypothesis that different mosquito species serve as epizootic/epidemic vectors of RVFV in diverse ecologies, creating a complex epidemiologic pattern in East Africa. PMID:20682903

  14. Rift Valley fever virus epidemic in Kenya, 2006/2007: the entomologic investigations.

    PubMed

    Sang, Rosemary; Kioko, Elizabeth; Lutomiah, Joel; Warigia, Marion; Ochieng, Caroline; O'Guinn, Monica; Lee, John S; Koka, Hellen; Godsey, Marvin; Hoel, David; Hanafi, Hanafi; Miller, Barry; Schnabel, David; Breiman, Robert F; Richardson, Jason

    2010-08-01

    In December 2006, Rift Valley fever (RVF) was diagnosed in humans in Garissa Hospital, Kenya and an outbreak reported affecting 11 districts. Entomologic surveillance was performed in four districts to determine the epidemic/epizootic vectors of RVF virus (RVFV). Approximately 297,000 mosquitoes were collected, 164,626 identified to species, 72,058 sorted into 3,003 pools and tested for RVFV by reverse transcription-polymerase chain reaction. Seventy-seven pools representing 10 species tested positive for RVFV, including Aedes mcintoshi/circumluteolus (26 pools), Aedes ochraceus (23 pools), Mansonia uniformis (15 pools); Culex poicilipes, Culex bitaeniorhynchus (3 pools each); Anopheles squamosus, Mansonia africana (2 pools each); Culex quinquefasciatus, Culex univittatus, Aedes pembaensis (1 pool each). Positive Ae. pembaensis, Cx. univittatus, and Cx. bitaeniorhynchus was a first time observation. Species composition, densities, and infection varied among districts supporting hypothesis that different mosquito species serve as epizootic/epidemic vectors of RVFV in diverse ecologies, creating a complex epidemiologic pattern in East Africa.

  15. Acute toxicity of fire control chemicals to Daphnia magna(Straus) and Selenastrum capricornutum(Printz)

    USGS Publications Warehouse

    McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.

    1996-01-01

    Acute toxicity tests were conducted exposingDaphnia magnaStraus (daphnid) in soft and hard reconstituted waters (hardness 42 and 162 mg/liter as CaCO3, respectively), andSelenastrum capricornutumPrintz (algae) in ASTM algal assay medium (hardness 15 mg/liter as CaCO3) to fire retardants Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F, and foam suppressants Phos-Chek WD-881 and Silv-Ex. The chemicals were slightly toxic to practically harmless to daphnids and moderately toxic to algae. Water quality did not consistently alter the toxicity of the test chemicals to daphnids. The most toxic chemical to daphnids was Silv-Ex (48-hr EC507 mg/liter in soft and hard waters), whereas the least toxic chemical to daphnids was Fire-Trol LCG-R (48-hr EC50848 mg/liter in soft water, 813 mg/liter in hard water). The most toxic chemical to algae was Fire-Trol LCG-R (96-hr IC5010 mg/liter), and the least toxic chemical was Phos-Chek D75-F (96-hr IC5079 mg/liter). Un-ionized ammonia concentrations near the EC50or IC50value in tests with the Fire-Trol compounds were frequently equal to or above reported LC50un-ionized ammonia concentrations. Un-ionized ammonia concentrations in tests with Phos-Chek D75-F were low, thus other toxic components present in the compounds probably contributed to the toxicity. When compared to the daphnids tested in ASTM soft water, the Fire-Trol compounds were most toxic to algae, whereas Phos-Chek D75-F and the foam suppressants were most toxic to daphnids. The results of these tests are comparable to those obtained from research conducted in other laboratories with the same species and similar chemicals. Accidental entry of fire-fighting chemicals into aquatic environments could adversely affect algae and aquatic invertebrates, thus disrupting ecosystem function.

  16. Liquid Fuels: Pyrolytic Degradation and Fire Spread Behavior as Influenced by Buoyancy

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Technical Monitor); Yeboah, Yaw D.

    2003-01-01

    This project was conducted by the Combustion and Emission Control Lab in the Engineering Department at Clark Atlanta University under NASA Grant No. NCC3-707. The work aimed at providing data to supplement the ongoing NASA research activities on flame spread across liquid pools by providing flow visualization and velocity measurements especially in the gas phase and gas-liquid interface. During this investigation, the detailed physics of flame spread across liquid pools was revealed using particle image velocimetry (PIV), 3-dimensional Laser Doppler velocimetry (LDV) and high-speed video imaging system (HSVS). Flow fields (front and side views) of both the liquid and gas phases were visually investigated for the three subflash regimes of flame spread behavior. Some interesting findings obtained from the front and side views on flame spread across butanol pools are presented. PIV results showed the size of the transient vortex in the liquid phase near the flame front varied with the initial pool temperature. The transient vortex ahead of the flame front in the gas phase was, for the first time, clearly observed located just within 0-3 mm above the liquid surface and its size was dependent on the initial pool temperature. We calculated the flow velocity at 1 mm below the liquid surface near the flame front and inferred the generation mechanism of the vortex in the gas phase. Finally, after comparison of the flow velocity of the liquid surface and the flame spread rate, a reasonable explanation to the formation mechanism of the pulsating characteristic was proposed. This explanation is compatible with the previous numerical calculations and deductions.

  17. Whole-tree distribution and temporal variation of non-structural carbohydrates in broadleaf evergreen trees.

    PubMed

    Smith, Merryn G; Miller, Rebecca E; Arndt, Stefan K; Kasel, Sabine; Bennett, Lauren T

    2018-04-01

    Non-structural carbohydrates (NSCs) form a fundamental yet poorly quantified carbon pool in trees. Studies of NSC seasonality in forest trees have seldom measured whole-tree NSC stocks and allocation among organs, and are not representative of all tree functional types. Non-structural carbohydrate research has primarily focussed on broadleaf deciduous and coniferous evergreen trees with distinct growing seasons, while broadleaf evergreen trees remain under-studied despite their different growth phenology. We measured whole-tree NSC allocation and temporal variation in Eucalyptus obliqua L'Hér., a broadleaf evergreen tree species typically occurring in mixed-age temperate forests, which has year-round growth and the capacity to resprout after fire. Our overarching objective was to improve the empirical basis for understanding the functional importance of NSC allocation and stock changes at the tree- and organ-level in this tree functional type. Starch was the principal storage carbohydrate and was primarily stored in the stem and roots of young (14-year-old) trees rather than the lignotuber, which did not appear to be a specialized starch storage organ. Whole-tree NSC stocks were depleted during spring and summer due to significant decreases in starch mass in the roots and stem, seemingly to support root and crown growth but potentially exacerbated by water stress in summer. Seasonality of stem NSCs differed between young and mature trees, and was not synchronized with stem basal area increments in mature trees. Our results suggest that the relative magnitude of seasonal NSC stock changes could vary with tree growth stage, and that the main drivers of NSC fluctuations in broadleaf evergreen trees in temperate biomes could be periodic disturbances such as summer drought and fire, rather than growth phenology. These results have implications for understanding post-fire tree recovery via resprouting, and for incorporating NSC pools into carbon models of mixed-age forests.

  18. An inventory-based analysis of Canada's managed forest carbon dynamics, 1990 to 2008

    PubMed Central

    Stinson, G; Kurz, W A; Smyth, C E; Neilson, E T; Dymond, C C; Metsaranta, J M; Boisvenue, C; Rampley, G J; Li, Q; White, T M; Blain, D

    2011-01-01

    Canada's forests play an important role in the global carbon (C) cycle because of their large and dynamic C stocks. Detailed monitoring of C exchange between forests and the atmosphere and improved understanding of the processes that affect the net ecosystem exchange of C are needed to improve our understanding of the terrestrial C budget. We estimated the C budget of Canada's 2.3 × 106 km2 managed forests from 1990 to 2008 using an empirical modelling approach driven by detailed forestry datasets. We estimated that average net primary production (NPP) during this period was 809 ± 5 Tg C yr−1 (352 g C m−2 yr−1) and net ecosystem production (NEP) was 71 ± 9 Tg C yr−1 (31 g C m−2 yr−1). Harvesting transferred 45 ± 4 Tg C yr−1 out of the ecosystem and 45 ± 4 Tg C yr−1 within the ecosystem (from living biomass to dead organic matter pools). Fires released 23 ± 16 Tg C yr−1 directly to the atmosphere, and fires, insects and other natural disturbances transferred 52 ± 41 Tg C yr−1 from biomass to dead organic matter pools, from where C will gradually be released through decomposition. Net biome production (NBP) was only 2 ± 20 Tg C yr−1 (1 g C m−2 yr−1); the low C sequestration ratio (NBP/NPP=0.3%) is attributed to the high average age of Canada's managed forests and the impact of natural disturbances. Although net losses of ecosystem C occurred during several years due to large fires and widespread bark beetle outbreak, Canada's managed forests were a sink for atmospheric CO2 in all years, with an uptake of 50 ± 18 Tg C yr−1 [net ecosystem exchange (NEE) of CO2=−22 g C m−2 yr−1].

  19. A large-scale field assessment of carbon stocks in human-modified tropical forests.

    PubMed

    Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos

    2014-12-01

    Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively avoid degradation as well as deforestation. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  20. Determination of Survivable Fires

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Niehaus, J. E.; Ruff, G. A.; Urban, D. L.; Takahashi, F.; Easton, J. W.; Abbott, A. A.; Graf, J. C.

    2012-01-01

    At NASA, there exists no standardized design or testing protocol for spacecraft fire suppression systems (either handheld or total flooding designs). An extinguisher's efficacy in safely suppressing any reasonable or conceivable fire is the primary benchmark. That concept, however, leads to the question of what a reasonable or conceivable fire is. While there exists the temptation to over-size' the fire extinguisher, weight and volume considerations on spacecraft will always (justifiably) push for the minimum size extinguisher required. This paper attempts to address the question of extinguisher size by examining how large a fire a crew member could successfully survive and extinguish in the confines of a spacecraft. The hazards to the crew and equipment during an accidental fire include excessive pressure rise resulting in a catastrophic rupture of the vehicle skin, excessive temperatures that burn or incapacitate the crew (due to hyperthermia), carbon dioxide build-up or other accumulation of other combustion products (e.g. carbon monoxide). Estimates of these quantities are determined as a function of fire size and mass of material burned. This then becomes the basis for determining the maximum size of a target fire for future fire extinguisher testing.

Top