McKenna, S L B; Ritter, C; Dohoo, I; Keefe, G P; Barkema, H W
2018-05-23
In herds with typical moderate to low within-herd prevalence, testing for Mycobacterium avium ssp. paratuberculosis (MAP), the infectious agent of Johne's disease, will be more cost-effective if individual fecal samples are cultured in composite pools. However, sensitivity to classify a pool containing 1 or more positive individual samples as positive may depend on pool size and number of individual positive samples within a pool. Fecal samples collected from 994 dairy cows sampled at slaughter were cultured to detect MAP. Culturing was done both individually and as composite pooled samples using the TREK ESP Culture System II broth medium (Thermo Fisher Scientific, Trek Diagnostic Systems Inc., Cleveland, OH). Composite samples consisted of pools containing feces from 3, 5, 8, 10, or 15 cows. The number of individual fecal culture-positive cows within each pool ranged from 0 to 4. Culture of individual fecal samples detected MAP in 36 (3.6%) of the 994 cows. Individual samples that were detected within the first 50 d by TREK ESP Culture System II were more likely to lead to a positive pool result. In total, 840 pooled fecal samples were examined for presence of MAP, and of those, 272 pools actually contained feces from fecal culture-positive cows. The crude sensitivity (proportion of pools that contained at least 1 fecal-positive cow that tested positive) for pools of 3, 5, 8, 10, and 15 was 47, 67, 44, 59, and 39%, respectively. Across pools, an increase of the number of fecal culture-positive samples from 1 to 2 enhanced overall crude sensitivity from 44 to 71%. However, sensitivity did not further increase for pools with 3 or 4 fecal culture-positive samples (63 and 60%, respectively). Additionally, a simulation analysis assessing probability of pooled fecal samples being positive in herds of 50 and 100 cows was conducted. The simulation assumed that 1, 2, or 5 cows per herd were MAP fecal culture-positive and that pools of 5 and 10 were used. This low-prevalence herd simulation indicated that weighted mean herd probabilities of detecting a positive herd ranged between 52 and 99.3%, with the lowest probability for pools of 10 with 1 positive cow in the herd and the highest probability for pools of 5 with 5 positive cows in the herd. However, overall, pools of 5 and 10 had similar diagnostic capabilities, enabling cost savings by utilizing pools of 10. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to estimate the prevalence of Salmonella for individual, pooled, and composite fecal samples and to compare culture results from each sample type for determining herd Salmonella infection status and identifying Salmonella serotype(s). The USDA’s National Animal Hea...
Abu Aboud, Omran A; Adaska, John M; Williams, Deniece R; Rossitto, Paul V; Champagne, John D; Lehenbauer, Terry W; Atwill, Robert; Li, Xunde; Aly, Sharif S
2016-01-01
The primary objective of this cross-sectional study was to estimate the crude, seasonal and cull-reason stratified prevalence of Salmonella fecal shedding in cull dairy cattle on seven California dairies. A secondary objective was to estimate and compare the relative sensitivity (Se) and specificity (Sp) for pools of 5 and 10 enriched broth cultures of fecal samples for Salmonella sp. detection. Seven dairy farms located in the San Joaquin Valley of California were identified and enrolled in the study as a convenience sample. Cull cows were identified for fecal sampling once during each season between 2014 and 2015, specifically during spring, summer, fall, and winter, and 10 cows were randomly selected for fecal sampling at the day of their sale. In addition, study personnel completed a survey based on responses of the herd manager to questions related to the previous four month's herd management. Fecal samples were frozen until testing for Salmonella. After overnight enrichment in liquid broth, pools of enrichment broth (EBP) were created for 5 and 10 samples. All individual and pooled broths were cultured on selective media with putative Salmonella colonies confirmed by biochemical testing before being serogrouped and serotyped. A total of 249 cull cows were enrolled into the study and their fecal samples tested for Salmonella. The survey-weighted period prevalence of fecal shedding of all Salmonella sp. in the cull cow samples across all study herds and the entire study period was 3.42% (N = 249; SE 1.07). The within herd prevalence of Salmonella shed in feces did not differ over the four study seasons (P = 0.074). The Se of culture of EBP of five samples was 62.5% (SE = 17.12), which was not statistically different from the Se of culture of EBP of 10 (37.5%, SE = 17.12, P = 0.48). The Sp of culture of EBP of five samples was 95.24% (SE = 3.29) and for pools of 10 samples was 100.00% (SE = 0). There was no statistical difference between the culture relative specificities of EBP of 5 and 10 (P > 0.99). Our study showed a numerically higher prevalence of Salmonella shedding in the summer, although the results were not significant, most likely due to a lack of power from the small sample size. A higher prevalence in summer months may be related to heat stress. To detect Salmonella, investigators may expect a 62.5% sensitivity for culture of EBP of five, relative to individual fecal sample enrichment and culture. In contrast, culture of EBP of 10 samples resulted in a numerically lower Se. Culture of EBP of size 5 or 10 samples, given similar prevalence and limit of detection, can be expected to yield specificities of 95 and 100%, respectively.
Abu Aboud, Omran A.; Adaska, John M.; Williams, Deniece R.; Rossitto, Paul V.; Champagne, John D.; Lehenbauer, Terry W.; Atwill, Robert; Li, Xunde
2016-01-01
Background The primary objective of this cross-sectional study was to estimate the crude, seasonal and cull-reason stratified prevalence of Salmonella fecal shedding in cull dairy cattle on seven California dairies. A secondary objective was to estimate and compare the relative sensitivity (Se) and specificity (Sp) for pools of 5 and 10 enriched broth cultures of fecal samples for Salmonella sp. detection. Methods Seven dairy farms located in the San Joaquin Valley of California were identified and enrolled in the study as a convenience sample. Cull cows were identified for fecal sampling once during each season between 2014 and 2015, specifically during spring, summer, fall, and winter, and 10 cows were randomly selected for fecal sampling at the day of their sale. In addition, study personnel completed a survey based on responses of the herd manager to questions related to the previous four month’s herd management. Fecal samples were frozen until testing for Salmonella. After overnight enrichment in liquid broth, pools of enrichment broth (EBP) were created for 5 and 10 samples. All individual and pooled broths were cultured on selective media with putative Salmonella colonies confirmed by biochemical testing before being serogrouped and serotyped. Results A total of 249 cull cows were enrolled into the study and their fecal samples tested for Salmonella. The survey-weighted period prevalence of fecal shedding of all Salmonella sp. in the cull cow samples across all study herds and the entire study period was 3.42% (N = 249; SE 1.07). The within herd prevalence of Salmonella shed in feces did not differ over the four study seasons (P = 0.074). The Se of culture of EBP of five samples was 62.5% (SE = 17.12), which was not statistically different from the Se of culture of EBP of 10 (37.5%, SE = 17.12, P = 0.48). The Sp of culture of EBP of five samples was 95.24% (SE = 3.29) and for pools of 10 samples was 100.00% (SE = 0). There was no statistical difference between the culture relative specificities of EBP of 5 and 10 (P > 0.99). Discussion Our study showed a numerically higher prevalence of Salmonella shedding in the summer, although the results were not significant, most likely due to a lack of power from the small sample size. A higher prevalence in summer months may be related to heat stress. To detect Salmonella, investigators may expect a 62.5% sensitivity for culture of EBP of five, relative to individual fecal sample enrichment and culture. In contrast, culture of EBP of 10 samples resulted in a numerically lower Se. Culture of EBP of size 5 or 10 samples, given similar prevalence and limit of detection, can be expected to yield specificities of 95 and 100%, respectively. PMID:27635350
Soiled-bedding Sentinel Detection of Murine Norovirus 4
Manuel, Christopher A; Hsu, Charlie C; Riley, Lela K; Livingston, Robert S
2008-01-01
According to serologic surveys, murine norovirus (MNV) is the most prevalent viral pathogen infecting mice used in biomedical research. However, the use of sentinel mice to detect MNV-infected mouse populations has not been evaluated thoroughly. To this end, an experimental method of soiled bedding transfer was created to mimic a quarterly sentinel monitoring program. Soiled bedding (15 or 30 cm3) from ICR mice experimentally infected with MNV4 was transferred weekly to cages of pair-housed 4-wk-old ICR mice. After 12 wk, both mice in 80% (4 of 5) of cages receiving either 15 or 30 cm3 of soiled bedding were seropositive for MNV and were shedding virus in feces. To evaluate the stability of MNV RNA in mouse feces, fecal pellets from MNV-infected sentinel mice were stored at room temperature for as long as 14 d. After storage, all fecal samples tested positive for MNV by RT-PCR. To determine whether fecal samples could be pooled for MNV detection, 1 MNV-positive fecal pellet was combined with either 9 or 19 MNV-negative fecal pellets. All pooled fecal samples were positive for MNV by RT-PCR at both dilutions. These data indicate that although MNV-infected mouse populations can be detected by exposing sentinel mice to MNV-contaminated bedding, detection failures can occur. In addition, there was high agreement in the MNV infection status of cohoused sentinel mice. These data also demonstrate that MNV is readily detectable in pooled fecal samples and in mouse feces stored at room temperature for 2 wk. PMID:18459710
2005-01-01
Abstract The objectives of this study were to estimate the prevalence of Mycobacterium avium subsp. paratuberculosis (MAP) among deer and rabbits surrounding infected and noninfected Minnesota dairy farms using fecal culture, and to describe the frequency that farm management practices were used that could potentially lead to transmission of infection between these species. Fecal samples from cows and the cow environment were collected from 108 Minnesota dairy herds, and fecal pellets from free-ranging white-tailed deer and eastern cottontail rabbits were collected from locations surrounding 114 farms; all samples were tested using bacterial culture. In addition, a questionnaire was administered to 114 herd owners. Sixty-two percent of the dairy herds had at least 1 positive fecal pool or environmental sample. A total of 218 rabbit samples were collected from 90% of the herds, and 309 deer samples were collected from 47% of the herds. On 2 (4%) of the farms sampled, 1 deer fecal sample was MAP positive. Both farms had samples from the cow fecal pool and cow environment that were positive by culture. On 2 (2%) other farms, 1 rabbit fecal sample was positive by culture to MAP, with one of these farms having positive cow fecal pools and cow environmental samples. Pasture was used on 79% of the study farms as a grazing area for cattle, mainly for dry cows (75%) and bred or prebred heifers (87%). Of the 114 farms, 88 (77%) provided access to drylot for their cattle, mainly for milking cows (77/88; 88%) and bred heifers (87%). Of all study farms, 90 (79%) used some solid manure broadcasting on their crop fields. Of all 114 farms, the estimated probability of daily physical contact between cattle manure and deer or rabbits was 20% and 25%, respectively. Possible contact between cattle manure and deer or rabbits was estimated to occur primarily from March through December. The frequency of pasture or drylot use and manure spreading on crop fields may be important risk factors for transmission of MAP among dairy cattle, deer, and rabbits. Although the MAP prevalence among rabbits and deer is low, their role as MAP reservoirs should be considered. PMID:15745220
Klaphake, Eric; Fecteau, Kellie; DeWit, Martine; Greenacre, Cheryl; Grizzle, Judith; Jones, Michael; Zagaya, Nancy; Abney, L Kim; Oliver, Jack
2009-12-01
The luteinizing hormone-releasing hormone agonist leuprolide acetate is used commonly to anage reproductive problems in pet birds. To determine the effect of leuprolide acetate on plas a and fecal hormone levels in a psittacine species, a single 800 microg/kg dose of the 30-day depot form of leuprolide acetate was administered IM in 11 healthy, nonbreeding adult Hispaniolan Amazon parrots (Amazona ventralis), and plasma and fecal hormone levels were measured before and after leuprolide administration. At pooled baseline to 21 days postleuprolide acetate administration, sample collection day was significantly associated with plasma 17beta-estradiol and androstenedione levels and fecal 17beta-estradiol levels (evaluated in females only). Both plasma androstenedione and plasma 17beta-estradiol levels decreased significantly from baseline to a nadir at 7 days postleuprolide acetate administration but did not differ significantly 14 days later from that nadir or from pooled baseline samples, suggesting that the effect of leuprolide on hormone levels remained about 2 weeks. Fecal 17beta-estradiol levels increased significantly from the nadir at 7 days postleuprolide to 21 days postleuprolide administration, with trends of the level at 21 days postleuprolide being higher than the pooled baseline level and of decreasing levels from pooled baseline to 7 days postleuprolide administration. Plasma luteinizing hormone and fecal testosterone levels did not change significantly from baseline levels after leuprolide administration over the 2-day period. No significant correlations were found between plasma hormone and fecal hormone levels. These results suggest that measurement of plasma androstenedione, plasma 17beta-estradiol, and fecal 17beta-estradiol levels might be useful in assessing the effects of 30-day depot leuprolide acetate in Hispaniolan Amazon parrots.
Noll, Lance W; Baumgartner, William C; Shridhar, Pragathi B; Cull, Charley A; Dewsbury, Diana M; Shi, Xiaorong; Cernicchiaro, Natalia; Renter, David G; Nagaraja, T G
2016-01-01
Shiga toxin-producing Escherichia coli (STEC) of the serogroups O26, O45, O103, O111, O121, and O145, often called non-O157 STEC, are foodborne pathogens. Cattle are asymptomatic reservoirs for STEC; the organisms reside in the hindgut and are shed in the feces, which serve as the source of food product contaminations. Culture-based detection of non-O157 STEC involves an immunomagnetic separation (IMS) step to capture the specific serogroups in complex matrices, such as feces. The IMS procedure is time consuming and labor intensive because of the need to subject each fecal sample to six individual beads. Therefore, our objective was to evaluate whether pooling of IMS beads affects sensitivity of non-O157 STEC detection compared with using individual IMS beads. The evaluation was done by comparing detection of serogroups in feces spiked with pure cultures (experiments 1 and 2) and from feces (n = 384) of naturally shedding cattle (experiment 3). In spiked fecal samples, detection with pools of three, four, six, or seven beads was similar to, or at times higher than, detection with individual IMS beads. In experiment 3, the proportions of fecal samples that tested positive for the six serogroups as detected by individual or pooled beads were similar. Based on noninferiority tests, detection with pooled beads was not substantially inferior to detection with individual beads (P > 0.05). In conclusion, the pooling of IMS beads is a better option for detection of STEC serogroups in fecal samples compared with individual beads because the procedure saves time and labor and has the prospect of a higher throughput.
Mekonnen, Zeleke; Meka, Selima; Ayana, Mio; Bogers, Johannes; Vercruysse, Jozef; Levecke, Bruno
2013-01-01
Background In veterinary parasitology samples are often pooled for a rapid assessment of infection intensity and drug efficacy. Currently, studies evaluating this strategy in large-scale drug administration programs to control human soil-transmitted helminths (STHs; Ascaris lumbricoides, Trichuris trichiura, and hookworm), are absent. Therefore, we developed and evaluated a pooling strategy to assess intensity of STH infections and drug efficacy. Methods/Principal Findings Stool samples from 840 children attending 14 primary schools in Jimma, Ethiopia were pooled (pool sizes of 10, 20, and 60) to evaluate the infection intensity of STHs. In addition, the efficacy of a single dose of mebendazole (500 mg) in terms of fecal egg count reduction (FECR; synonym of egg reduction rate) was evaluated in 600 children from two of these schools. Individual and pooled samples were examined with the McMaster egg counting method. For each of the three STHs, we found a significant positive correlation between mean fecal egg counts (FECs) of individual stool samples and FEC of pooled stool samples, ranging from 0.62 to 0.98. Only for A. lumbricoides was any significant difference in mean FEC of the individual and pooled samples found. For this STH species, pools of 60 samples resulted in significantly higher FECs. FECR for the different number of samples pooled was comparable in all pool sizes, except for hookworm. For this parasite, pools of 10 and 60 samples provided significantly higher FECR results. Conclusion/Significance This study highlights that pooling stool samples holds promise as a strategy for rapidly assessing infection intensity and efficacy of administered drugs in programs to control human STHs. However, further research is required to determine when and how pooling of stool samples can be cost-effectively applied along a control program, and to verify whether this approach is also applicable to other NTDs. PMID:23696905
Adamberg, Kaarel; Adamberg, Signe; Ernits, Karin; Larionova, Anneli; Voor, Tiia; Jaagura, Madis; Visnapuu, Triinu; Alamäe, Tiina
2018-06-20
The aim of the study was to investigate the metabolism of non-digestible oligo- and polysaccharides by fecal microbiota, using isothermal microcalorimetry. The five tested substrates were raffinose, melibiose, a mixture of oligo- and polysaccharides produced from raffinose by levansucrase, levan synthesized from raffinose, and levan from timothy grass. Two inocula were comprised of pooled fecal samples from overweight or normal-weight children, from healthy adult volunteers and a pure culture of Bacteroides thetaiotaomicron as a reference bacterium for colon microbiota. The growth was analyzed based on the heat evolution curves, and the production of organic acids and gases. Taxonomic profiles of the microbiota were assessed by 16S rDNA sequencing. Raffinose and melibiose promoted the growth of bifidobacteria in all fecal pools. Several pool-specific substrate-related responses to raffinose and melibiose were revealed. Lactate-producing bacteria (Streptococcus and Enterococcus) became enriched in the pool of overweight children resulting in lactic acid as the major fermentation product on short saccharides. Acetic and butyric acids were prevalent at fermentation in the normal-weight pool coinciding with the enrichment of Catenibacterium. In the adult pool, the specific promotion of Bacteroides and Lachnospiraceae by levans was disclosed. In the fecal pool of normal-weight children, levans stimulated the growth of Senegalimassilia and Lachnoclostridium and this particular pool also showed the highest maximum heat production rate at levan fermentation. Levans and raffinose-derived oligosaccharides, but not raffinose and melibiose were completely fermented by a pure culture of Bacteroides thetaiotaomicron. The main conclusion from the study is that fecal microbiota of normal and overweight children have different compositions and they respond in specific manners to non-digestible oligo- and polysaccharides: raffinose, melibiose, raffinose-derived oligosaccharides and levans. The potential of the tested saccharides to support a healthy balance of colon microbiota requires further studies. Copyright © 2018. Published by Elsevier Ltd.
Prevalence of parvovirus in Minnesota turkeys.
Sharafeldin, T A; Singh, A; Abdel-Glil, M Y; Mor, S K; Porter, R E; Goyal, S M
2017-02-01
Poult enteritis syndrome (PES) is characterized by enteritis and decreased body weight gain in growing turkey poults between one d and 7 wk of age. Another syndrome called light turkey syndrome (LTS) causes a decrease in body weight of adult tom turkeys in Minnesota leading to huge economic losses. Reovirus, rotavirus, and astrovirus have been found in LTS and PES flocks in Minnesota. We tested 80 fecal pools collected from four LTS flocks and 35 fecal pools from non-LTS flocks for the presence of parvovirus. In addition, 116 fecal and meconium samples from turkeys submitted to the Minnesota Veterinary Diagnostic Laboratory (MVDL) also were tested. The samples were tested by PCR using primers for the non-structural 1 (NS1) gene of parvovirus. Of the 80 samples from LTS flocks, 41 were positive for parvovirus while 20 of 35 samples from non-LTS flocks were positive. The prevalence of parvovirus in fecal samples submitted to MVDL was relatively low; only five of the 116 pools were positive. The partial NS1 gene sequences from LTS and non-LTS samples showed 98 to 100% nt identity except for one divergent turkey parvovirus (TuPV) strain that revealed 90% identity and clustered with chicken-like parvoviruses. The presence of this divergent strain suggests circulation of a recombinant strain of TuPV in Minnesota turkeys. Our results indicate that TuPVs are circulating in both LTS and non-LTS flocks of turkeys in Minnesota, and further experimental studies are indicated to study the role of TuPV in LTS. © 2016 Poultry Science Association Inc.
Luz María Chacón, J; Lizeth Taylor, C; Carmen Valiente, A; Irene Alvarado, P; Ximena Cortés, B
2012-01-01
The availability of a useful tool for simple and timely detection of the most important virulent varieties of Escherichia coli is indispensable. To this end, bacterial DNA pools which had previously been categorized were obtained from isolated colonies as well as selected in terms of utilized phenotype; the pools were assessed by two PCR Multiplex for the detection of virulent E. coli eaeA, bfpA, stx1, stx2, ipaH, ST, LT, and aatA genes, with the 16S gene used as DNA control. The system was validated with 66 fecal samples and 44 wastewater samples. At least one positive isolate was detected by a virulent gene among the 20 that were screened. The analysis of fecal samples from children younger than 6 years of age detected frequencies of 25% LT positive strains, 8.3% eae, 8.3% bfpA, 16.7% ipaH, as well as 12.5 % aatA and ST. On the other hand, wastewater samples revealed frequencies of 25.7% eaeA positive, 30.3% stx1, 15.1% LT and 19.7% aatA. This study is an initial step toward carrying out epidemiological field research that will reveal the presence of these bacterial varieties. PMID:24031959
Likavec, Tasha; Pires, Alda F.A.; Funk, Julie A.
2016-01-01
The objective of this study was to describe the association between thermal measures in the barn environment (pen temperature and humidity) and fecal shedding of Salmonella in dairy cattle. A repeated cross-sectional study was conducted within a commercial dairy herd located in the midwestern United States. Five pooled fecal samples were collected monthly from each pen for 9 mo and submitted for microbiological culture. Negative binomial regression methods were used to test the association [incidence rate ratio (IRR)] between Salmonella pen status (the count of Salmonella-positive pools) and thermal environmental parameters [average temperature and temperature humidity index (THI)] for 3 time periods (48 h, 72 h, and 1 wk) before fecal sampling. Salmonella was cultured from 10.8% [39/360; 95% confidence interval (CI): 7.8% to 14.5%] of pooled samples. The highest proportion of positive pools occurred in August. The IRR ranged from 1.26 (95% CI: 1.15 to 1.39, THI 1 wk) to 4.5 (95% CI: 2.13 to 9.51, heat exposure 1 wk) across all thermal parameters and lag time periods measured. For example, the incidence rate of Salmonella-positive pools increased by 54% for every 5°C increment in average temperature (IRR = 1.54; 95% CI: 1.29 to 1.85) and 29% for every 5-unit increase in THI (IRR = 1.29; 95% CI: 1.16 to 1.42) during the 72 h before sampling. The incidence rate ratio for pens exposed to higher temperatures (> 25°C) was 4.5 times (95% CI: 2.13 to 9.51) the incidence rate ratio for pens exposed to temperatures < 25°C in the 72 h before sampling. Likewise, the incidence rate ratio for pens exposed to THI > 70 was 4.23 times greater (95% CI: 2.1 to 8.28) than when the THI was < 70 in the 72 h before sampling. An association was found between the thermal environment and Salmonella shedding in dairy cattle. Further research is warranted in order to fully understand the component risks associated with the summer season and increased Salmonella shedding. PMID:27408330
Mellerup, Anders; Ståhl, Marie
2015-01-01
The aim of this article was to define the sampling level and method combination that captures antibiotic resistance at pig herd level utilizing qPCR antibiotic resistance gene quantification and culture-based quantification of antibiotic resistant coliform indicator bacteria. Fourteen qPCR assays for commonly detected antibiotic resistance genes were developed, and used to quantify antibiotic resistance genes in total DNA from swine fecal samples that were obtained using different sampling and pooling methods. In parallel, the number of antibiotic resistant coliform indicator bacteria was determined in the same swine fecal samples. The results showed that the qPCR assays were capable of detecting differences in antibiotic resistance levels in individual animals that the coliform bacteria colony forming units (CFU) could not. Also, the qPCR assays more accurately quantified antibiotic resistance genes when comparing individual sampling and pooling methods. qPCR on pooled samples was found to be a good representative for the general resistance level in a pig herd compared to the coliform CFU counts. It had significantly reduced relative standard deviations compared to coliform CFU counts in the same samples, and therefore differences in antibiotic resistance levels between samples were more readily detected. To our knowledge, this is the first study to describe sampling and pooling methods for qPCR quantification of antibiotic resistance genes in total DNA extracted from swine feces. PMID:26114765
Kylie, Jennifer; McEwen, Scott A; Boerlin, Patrick; Reid-Smith, Richard J; Weese, J Scott; Turner, Patricia V
2017-11-01
Antimicrobial resistance (AMR) in zoonotic (e.g. Salmonella spp.), pathogenic, and opportunistic (e.g. E. coli) bacteria in animals represents a potential reservoir of antimicrobial resistant bacteria and resistance genes to bacteria infecting humans and other animals. This study evaluated the prevalence of E. coli and Salmonella enterica, and the presence of associated AMR in commercial meat, companion, research, and shelter rabbits in Canada. Associations between antimicrobial usage and prevalence of AMR in bacterial isolates were also examined in commercial meat rabbits. Culture and susceptibility testing was conducted on pooled fecal samples from weanling and adult commercial meat rabbits taken during both summer and winter months (n=100, 27 farms), and from pooled laboratory (n=14, 8 laboratory facilities), companion (n=53), and shelter (n=15, 4 shelters) rabbit fecal samples. At the facility level, E. coli was identified in samples from each commercial rabbit farm, laboratory facility, and 3 of 4 shelters, and in 6 of 53 companion rabbit fecal samples. Seventy-nine of 314 (25.2%; CI: 20.7-30.2%) E. coli isolates demonstrated resistance to >1 antimicrobial agent. At least one E. coli isolate resistant to at least one antimicrobial agent was present in samples from 55.6% of commercial farms, and from 25% of each laboratory and shelter facilities, with resistance to tetracycline being most common; no resistance was identified in companion animal samples. Salmonella enterica subsp. was identified exclusively in pooled fecal samples from commercial rabbit farms; Salmonella enterica serovar London from one farm and Salmonella enterica serovar Kentucky from another. The S. Kentucky isolate was resistant to amoxicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, streptomycin, and tetracycline, whereas the S. London isolate was pansusceptible. Routine use of antimicrobials on commercial meat rabbit farms was not significantly associated with the presence of antimicrobial resistant E. coli or S. enterica on farms; trends towards resistance were present when resistance to specific antimicrobial classes was examined. E. coli was widely prevalent in many Canadian domestic rabbit populations, while S. enterica was rare. The prevalence of AMR in isolated bacteria was variable and most common in isolates from commercial meat rabbits (96% of the AMR isolates were from commercial meat rabbit fecal samples). Our results highlight that domestic rabbits, and particularly meat rabbits, may be carriers of phenotypically antimicrobial-resistant bacteria and AMR genes, possibly contributing to transmission of these bacteria and their genes to bacteria in humans through food or direct contact, as well as to other co-housed animal species. Copyright © 2017 Elsevier B.V. All rights reserved.
Xiao, Shumin; Yin, Pengna; Zhang, Yan; Hu, Sike
2017-04-01
A total of 60 samples were collected from 35 swimming pools in Beijing, China, and the presence of Cryptosporidium and Giardia were investigated. The results showed that 16.7% and 15.0% of samples were positive for Cryptosporidium oocyst and Giardia cysts, respectively, with a mean concentration of 0.30 oocysts/10 L and 0.27 cysts/10 L. The oocysts and cysts were found to have higher rates of occurrence in August than in May. Genotyping confirmed the presence of Cryptosporidium hominis, C. parvum , and Giardia assemblages A and B, all of which were associated with human infections. The predominant species/assemblages were C. hominis and Giardia assemblage A. Analyses of the relationships between parasite oocysts/cysts, indicator bacteria, and physical-chemical parameters revealed that there was no correlation between 2 parasites and fecal bacterial indicators, whilst there was a significant correlation between protozoa and urea concentration, which indicates that urea concentration rather than fecal bacterial indicators might be an appropriate index for chlorine-resistant protozoa in swimming pools. This study provides useful information to improve the safety of swimming pool water and deduce the risk of protozoan infections.
Erdman, Matthew M; Harris, Isabel T; Torremorell, Montserrat; Wilt, Vincil M; Harris, D L Hank
2005-08-01
To determine whether depopulation-repopulation could be used to eradicate Salmonella serotype Typhimurium DT104 from a commercial swine farm in the midwestern United States. Observational study A commercial swine farm undergoing depopulation-repopulation to eliminate porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. Pooled fecal samples, tissue samples, and serum samples were collected from pigs on the farm before and after depopulation-repopulation. When there were no pigs on the farm, environmental swab specimens were collected for bacterial culture. Serum was analyzed for anti-Salmonella antibodies with an indirect ELISA. Salmonella isolates obtained by bacterial culture of fecal, tissue, and environmental samples were characterized by means of serotyping, phage typing, pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility testing. 167 Salmonella isolates representing 9 serotypes were recovered from the farm. Results of PFGE and antimicrobial susceptibility testing suggested that S. Typhimurium DT104 strain was not eradicated from the farm. However, seroprevalence of anti-Salmonella antibodies and the percentage of pooled fecal samples positive for Salmonella spp were significantly decreased following repopulation. Results suggested that depopulation-repopulation in conjunction with stringent cleaning and disinfection, attention to biosecurity procedures, control of other diseases, and changes in feed management may reduce the occurrence of, but likely will not eliminate, Salmonella spp in commercial swine herds.
Kylie, Jennifer; Weese, J Scott; Turner, Patricia V
2018-04-27
Rabbits are cecotrophic, hindgut-fermenters that rely heavily on their gastrointestinal microbiota for optimal digestion of plant-based diets. Dysbiosis, caused by disruption of the gastrointestinal microbiota, is known to predispose rabbits to rabbit enteritis complex (REC), a major cause of morbidity and mortality. The objectives of this study were to describe the fecal microbiota of domestic rabbits from a variety of settings (commercial meat, companion, laboratory, and shelter) and to identify how factors such as age, season, and routine antimicrobial use affect the fecal microbiota composition. A total of 86 pooled commercial meat, 54 companion, 14 pooled laboratory, and 14 shelter rabbit fecal samples were evaluated using 16S rRNA gene sequencing of the V4 region. In all sample types, the predominant bacterial phylum was Firmicutes. Other commonly identified phyla (composing ≥ 1% of the total microbiota composition) were Verrucomicrobia, Proteobacteria, and Bacteroidetes. Significant differences in composition were noted between commercial, companion, laboratory, and shelter rabbit samples for proportions of Verrucomicrobia (P < 0.01), Proteobacteria (P < 0.01), and Lentisphaerae (P = 0.01) within the total microbiota. Within the commercial meat rabbit samples, significant differences between the microbiota composition of growers (n = 42) and does (n = 44) were limited to one unclassified Firmicutes (P = 0.03) and no differences were identified at the phylum level. Significant differences were present between fecal samples taken from rabbits during the summer (n = 44) compared to the winter (n = 42), with Firmicutes (P = 0.04), Verrucomicrobia (P = 0.03), Proteobacteria (P = 0.02), Deinococcus-Thermus (P = 0.04), Armatimonadates (P = 0.003), and Actinobacteria (P = 0.03) forming significantly different proportions of the microbiota. The only significant difference in composition between those farms that routinely reported antimicrobial use and those that did not was in one unclassified Bacteroidetes (P < 0.05) and no differences were identified at the phylum level. Rabbit husbandry and diet, in addition to season, significantly influence the fecal microbiota composition of domestic rabbits, while age of the rabbit post-weaning has minimal impact.
Detection of Bovine and Porcine Adenoviruses for Tracing the Source of Fecal Contamination
Maluquer de Motes, Carlos; Clemente-Casares, Pilar; Hundesa, Ayalkibet; Martín, Margarita; Girones, Rosina
2004-01-01
In this study, a molecular procedure for the detection of adenoviruses of animal origin was developed to evaluate the level of excretion of these viruses by swine and cattle and to design a test to facilitate the tracing of specific sources of environmental viral contamination. Two sets of oligonucleotides were designed, one to detect porcine adenoviruses and the other to detect bovine and ovine adenoviruses. The specificity of the assays was assessed in 31 fecal samples and 12 sewage samples that were collected monthly during a 1-year period. The data also provided information on the environmental prevalence of animal adenoviruses. Porcine adenoviruses were detected in 17 of 24 (70%) pools of swine samples studied, with most isolates being closely related to serotype 3. Bovine adenoviruses were present in 6 of 8 (75%) pools studied, with strains belonging to the genera Mastadenovirus and Atadenovirus and being similar to bovine adenoviruses of types 2, 4, and 7. These sets of primers produced negative results in nested PCR assays when human adenovirus controls and urban-sewage samples were tested. Likewise, the sets of primers previously designed for detection of human adenovirus also produced negative results with animal adenoviruses. These results indicate the importance of further studies to evaluate the usefulness of these tests to trace the source of fecal contamination in water and food and for environmental studies. PMID:15006765
Detection of bovine and porcine adenoviruses for tracing the source of fecal contamination.
Maluquer de Motes, Carlos; Clemente-Casares, Pilar; Hundesa, Ayalkibet; Martín, Margarita; Girones, Rosina
2004-03-01
In this study, a molecular procedure for the detection of adenoviruses of animal origin was developed to evaluate the level of excretion of these viruses by swine and cattle and to design a test to facilitate the tracing of specific sources of environmental viral contamination. Two sets of oligonucleotides were designed, one to detect porcine adenoviruses and the other to detect bovine and ovine adenoviruses. The specificity of the assays was assessed in 31 fecal samples and 12 sewage samples that were collected monthly during a 1-year period. The data also provided information on the environmental prevalence of animal adenoviruses. Porcine adenoviruses were detected in 17 of 24 (70%) pools of swine samples studied, with most isolates being closely related to serotype 3. Bovine adenoviruses were present in 6 of 8 (75%) pools studied, with strains belonging to the genera Mastadenovirus and Atadenovirus and being similar to bovine adenoviruses of types 2, 4, and 7. These sets of primers produced negative results in nested PCR assays when human adenovirus controls and urban-sewage samples were tested. Likewise, the sets of primers previously designed for detection of human adenovirus also produced negative results with animal adenoviruses. These results indicate the importance of further studies to evaluate the usefulness of these tests to trace the source of fecal contamination in water and food and for environmental studies.
Yedeme, Kokebe; Legese, Melese Hailu; Gonfa, Almaz; Girma, Somson
2017-01-01
Background: From swimming pools, bathers may acquire many potential pathogens or may be affected by the physicochemical characteristics of water used during bathing. Hence, this study aimed at assessing the physicochemical and microbiological quality of public swimming pools located at different hotels and recreation center in Addis Ababa, Ethiopia. Method: A cross sectional study was carried out from February to May, 2016. Nine hotels and one recreation center which recognized to have public swimming services were included. A total of 60 swimming pool water samples from 10 swimming pools were collected at deeper, shallow and intake point twice on a weekly basis using a 250 ml sterile bottle containing sodium thiosulphate. PH, residual chlorine and temperature of samples were recorded at the time of collection. Sample containing bottles were transported in ice box to microbiological laboratory and analyzed on the same day. Standard cultural and biochemical methods were used for isolation and characterization of the main microbial groups. Total viable count, total coliform count, fecal coliform count and E. coli were determined. Data was analyzed using SPSS Version 20. Results: Average PH and temperature of swimming pool water samples were 7.1 and 29oC respectively. Of all analyzed water samples, 58.4% (n=35/60) of them had PH range of 7.2-7.8, 58.3% (n=35/60) of samples had temperature in the range of 21oC-32oC and 25% (n=15/60) of water samples had residual chlorine in the range of 2-3mg/l. 73.3% (n=44/60) of the samples had a total viable count below 200 MPN/ml and 70% (n-42/60) of the samples had Total Coliform Count values less than 2 MPN/100 ml. Moreover, 66.7% (n=40/60) of the samples had fecal coliform counts falling below 1 MPN /100 ml. E. coli was absent in 70% (n=42/60) of the samples while it was present in 30% (n=18/60) of the samples. Conclusion: PH, residual chlorine and temperature value of majority of the swimming pools’ water samples were within the acceptable limit. Regarding microbial quality, most swimming pools’ water samples complied to the WHO standard. Swimming pools that did not comply to the standard both in physicochemical levels and microbial quality need improvement due to their significant health implication. PMID:28761562
Benjamin-Chung, Jade; Arnold, Benjamin F; Wade, Timothy J; Schiff, Kenneth; Griffith, John F; Dufour, Alfred P; Weisberg, Stephen B; Colford, John M
2017-09-01
Coliphages have been proposed as indicators of fecal contamination in recreational waters because they better mimic the persistence of pathogenic viruses in the environment and wastewater treatment than fecal indicator bacteria. We estimated the association between coliphages and gastrointestinal illness and compared it with the association with culturable enterococci. We pooled data from six prospective cohort studies that enrolled coastal beachgoers in California, Alabama, and Rhode Island. Water samples were collected and gastrointestinal illness within 10 days of the beach visit was recorded. Samples were tested for enterococci and male-specific and somatic coliphages. We estimated cumulative incidence ratios (CIR) for the association between swimming in water with detectable coliphage and gastrointestinal illness when human fecal pollution was likely present, not likely present, and under all conditions combined. The reference group was unexposed swimmers. We defined continuous and threshold-based exposures (coliphage present/absent, enterococci >35 vs. ≤35 CFU/100 ml). Under all conditions combined, there was no association between gastrointestinal illness and swimming in water with detectable coliphage or enterococci. When human fecal pollution was likely present, coliphage and enterococci were associated with increased gastrointestinal illness, and there was an association between male-specific coliphage level and illness that was somewhat stronger than the association between enterococci and illness. There were no substantial differences between male-specific and somatic coliphage. Somatic coliphage and enterococci had similar associations with gastrointestinal illness; there was some evidence that male-specific coliphage had a stronger association with illness than enterococci in marine waters with human fecal contamination.
Swyers, K L; Carlson, B A; Nightingale, K K; Belk, K E; Archibeque, S L
2011-06-01
Beef steers (n = 252) were used to evaluate the effects of dietary supplement on fecal shedding of Escherichia coli O157:H7. Seven pens of 9 steers (63 steers per treatment) were fed diets supplemented with or without yeast culture (YC) or monensin (MON) and their combination (YC × MON). YC and MON were offered at 2.8 g/kg and 33 mg/kg of dry matter intake, respectively. Environmental sponge samples (from each pen floor, feed bunk, and water trough) were collected on day 0. Rectal fecal grab samples were collected on days 0, 28, 56, 84, 110, and 125. Samples were collected and pooled by pen and analyzed for presumptive E. coli O157:H7 colonies, which were confirmed by a multiplex PCR assay and characterized by pulsed-field gel electrophoresis (PFGE) typing. On day 0, E. coli O157:H7 was detected in 7.0% of feed bunk samples and 14.3% of pen floor samples but in none of the water trough samples. The 71.4% prevalence of E. coli O157:H7 in fecal samples on day 0 decreased significantly (P < 0.05) over time. E. coli O157:H7 fecal shedding was not associated with dietary treatment (P > 0.05); however, in cattle fed YC and YC × MON fecal shedding was 0% by day 28. Eight Xba I PFGE subtypes were identified, and a predominant subtype and three closely related subtypes (differing by three or fewer bands) accounted for 78.7% of environmental and fecal isolates characterized. Results from this study indicate that feeding YC to cattle may numerically decrease but not eliminate fecal shedding of E. coli O157:H7 at the onset of treatment and that certain E. coli O157 subtypes found in the feedlot environment may persist in feedlot cattle.
Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks.
Hale, Vanessa L; Tan, Chia L; Knight, Rob; Amato, Katherine R
2015-06-01
Studies of the gut microbiome have become increasingly common with recent technological advances. Gut microbes play an important role in human and animal health, and gut microbiome analysis holds great potential for evaluating health in wildlife, as microbiota can be assessed from non-invasively collected fecal samples. However, many common fecal preservation protocols (e.g. freezing at -80 °C) are not suitable for field conditions, or have not been tested for long-term (greater than 2 weeks) storage. In this study, we collected fresh fecal samples from captive spider monkeys (Ateles geoffroyi) at the Columbian Park Zoo (Lafayette, IN, USA). The samples were pooled, homogenized, and preserved for up to 8 weeks prior to DNA extraction and sequencing. Preservation methods included: freezing at -20 °C, freezing at -80 °C, immersion in 100% ethanol, application to FTA cards, and immersion in RNAlater. At 0 (fresh), 1, 2, 4, and 8 weeks from fecal collection, DNA was extracted and microbial DNA was amplified and sequenced. DNA concentration, purity, microbial diversity, and microbial composition were compared across all methods and time points. DNA concentration and purity did not correlate with microbial diversity or composition. Microbial composition of frozen and ethanol samples were most similar to fresh samples. FTA card and RNAlater-preserved samples had the least similar microbial composition and abundance compared to fresh samples. Microbial composition and diversity were relatively stable over time within each preservation method. Based on these results, if freezers are not available, we recommend preserving fecal samples in ethanol (for up to 8weeks) prior to microbial extraction and analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Jablonski, Rita A; Winstead, Vicki; Azuero, Andres; Ptacek, Travis; Jones-Townsend, Corteza; Byrd, Elizabeth; Geisinger, Maria L; Morrow, Casey
2017-09-01
Individuals with dysphagia who reside in nursing homes often receive inadequate mouth care and experience poor oral health. From a policy perspective, the combination of absent evidence-based mouth care protocols coupled with insufficient dental coverage create a pool of individuals at great risk for preventable infectious illnesses that contribute to high health care costs. The purpose of the current study was to determine (a) the safety of a mouth care protocol tailored for individuals with dysphagia residing in nursing homes without access to suction equipment, and (b) the feasibility of collecting oral and fecal samples for microbiota analyses. The mouth care protocol resulted in improved oral hygiene without aspiration, and oral and fecal samples were safely collected from participants. Policies supporting ongoing testing of evidence-based mouth care protocols for individuals with dysphagia are important to improve quality, demonstrate efficacy, and save health care costs. [Journal of Gerontological Nursing, 43(9), 9-15.]. Copyright 2017, SLACK Incorporated.
Shridhar, Pragathi B; Noll, Lance W; Cull, Charley A; Shi, Xiaorong; Cernicchiaro, Natalia; Renter, David G; Bai, Jianfa; Nagaraja, T G
2017-04-17
Cattle are a major reservoir of the six major Shiga toxin-producing non-O157 Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) responsible for foodborne illnesses in humans. Besides prevalence in feces, the concentrations of STEC in cattle feces play a major role in their transmission dynamics. A subset of cattle, referred to as super shedders, shed E. coli O157 at high concentrations (≥4 log CFU/g of feces). It is not known whether a similar pattern of fecal shedding exists for non-O157. Our objectives were to initially validate the spiral plating method to quantify the six non-O157 E. coli serogroups with pure cultures and culture-spiked fecal samples and then determine the applicability of the method and compare it with multiplex quantitative PCR (mqPCR) assays for the quantification of the six non-O157 E. coli serogroups in cattle fecal samples collected from commercial feedlots. Quantification limits of the spiral plating method were 3 log, 3 to 4 log, and 3 to 5 log CFU/mL or CFU/g for individual cultures, pooled pure cultures, and cattle fecal samples spiked with pooled pure cultures, respectively. Of the 1,152 cattle fecal samples tested from eight commercial feedlots, 122 (10.6%) and 320 (27.8%) harbored concentrations ≥4 log CFU/g of one or more of the six serogroups of non-O157 by spiral plating and mqPCR methods, respectively. A majority of quantifiable samples, detected by either spiral plating (135 of 137, 98.5%) or mqPCR (239 of 320, 74.7%), were shedding only one serogroup. Only one of the quantifiable samples was positive for a serogroup carrying Shiga toxin (stx 1 ) and intimin (eae) genes; 38 samples were positive for serogroups carrying the intimin gene. In conclusion, the spiral plating method can be used to quantify non-O157 serogroups in cattle feces, and our study identified a subset of cattle that was super shedders of non-O157 E. coli . The method has the advantage of quantifying non-O157 STEC, unlike mqPCR that quantifies serogroups only.
Wilkins, Wendy; Rajić, Andrijana; Waldner, Cheryl; McFall, Margaret; Chow, Eva; Muckle, Anne; Rosengren, Leigh
2010-04-01
The study objectives were to investigate Salmonella prevalence, serovar distribution, and risk factors for shedding in 10 purposively selected farrow-to-finish farms in Saskatchewan and Alberta. Pooled fecal samples from the breeding and grow-finish phases and individual fecal samples from breeding, nursery, and grow-finish pigs were cultured for Salmonella; serotyping of isolates was performed. Pig and pen characteristics were recorded for each pig and pen sampled.Overall, 407/1143 (36%) of samples were Salmonella positive; within-farm prevalence ranged from 1% to 79%. Sows, nursery, and grow-finish pigs accounted for 43%, 29%, and 28% of positive samples, respectively. More Salmonella were detected in pooled pen than individual pig samples (P < 0.001). Among 418 Salmonella isolates, there were 19 distinct serovars; the most common were S. Derby (28.5%), S. Typhimurium, var. Copenhagen (19.1%), S. Putten (11.8%), S. Infantis (6.8%), and S. Mbandaka (6.1%). Sows were more likely to shed Salmonella than nursery or grow-finisher (OR 2.9, P < 0.001) pigs. Pelleted feed (OR 8.2, P < 0.001) and nose-to-nose pig contact through pens (OR 2.2, P = 0.005) were associated with increased Salmonella prevalence. Significant differences in serovar distribution were detected among production phases. The use of pooled pen samples is recommended as a more efficient means for accurate evaluation of Salmonella status in different phases of pig production. The breeding herd might be an important source of Salmonella persistence within farrow-to-finish farms and should be targeted in control efforts. The latter might also apply to the use of pelleted feed, which remains the most consistently reported significant risk factor for Salmonella shedding in pigs.
A reliable method of analyzing dietaries of mycophagous small mammals
W. Colgan; A.B. Carey; James M. Trappe
1997-01-01
Two methods of analyzing the dietaries of mycophagous small mammals were compared. Fecal pellets were collected from 11 northern flying squirrels and 12 Townsend's chipmunks, all caught live. In 1 method, pellets from each individual were examined microscopically; in the other, samples from 3 or 4 individuals from each species were pooled and the number of slides...
Potential of fecal microbiota for early-stage detection of colorectal cancer
Zeller, Georg; Tap, Julien; Voigt, Anita Y; Sunagawa, Shinichi; Kultima, Jens Roat; Costea, Paul I; Amiot, Aurélien; Böhm, Jürgen; Brunetti, Francesco; Habermann, Nina; Hercog, Rajna; Koch, Moritz; Luciani, Alain; Mende, Daniel R; Schneider, Martin A; Schrotz-King, Petra; Tournigand, Christophe; Tran Van Nhieu, Jeanne; Yamada, Takuji; Zimmermann, Jürgen; Benes, Vladimir; Kloor, Matthias; Ulrich, Cornelia M; von Knebel Doeberitz, Magnus; Sobhani, Iradj; Bork, Peer
2014-01-01
Several bacterial species have been implicated in the development of colorectal carcinoma (CRC), but CRC-associated changes of fecal microbiota and their potential for cancer screening remain to be explored. Here, we used metagenomic sequencing of fecal samples to identify taxonomic markers that distinguished CRC patients from tumor-free controls in a study population of 156 participants. Accuracy of metagenomic CRC detection was similar to the standard fecal occult blood test (FOBT) and when both approaches were combined, sensitivity improved > 45% relative to the FOBT, while maintaining its specificity. Accuracy of metagenomic CRC detection did not differ significantly between early- and late-stage cancer and could be validated in independent patient and control populations (N = 335) from different countries. CRC-associated changes in the fecal microbiome at least partially reflected microbial community composition at the tumor itself, indicating that observed gene pool differences may reveal tumor-related host–microbe interactions. Indeed, we deduced a metabolic shift from fiber degradation in controls to utilization of host carbohydrates and amino acids in CRC patients, accompanied by an increase of lipopolysaccharide metabolism. PMID:25432777
Paddock, Zac D; Renter, David G; Cull, Charley A; Shi, Xiarong; Bai, Jianfa; Nagaraja, Tiruvoor G
2014-03-01
Escherichia coli O26 is second only to O157 in causing foodborne, Shiga toxin-producing E. coli (STEC) infections. Our objectives were to determine fecal prevalence and characteristics of E. coli O26 in commercial feedlot cattle (17,148) that were enrolled in a study to evaluate an E. coli O157:H7 siderophore receptor and porin (SRP(®)) vaccine (VAC) and a direct-fed microbial (DFM; 10(6) colony-forming units [CFU]/animal/day of Lactobacillus acidophilus and 10(9) CFU/animal/day of Propionibacterium freudenreichii). Cattle were randomly allocated to 40 pens within 10 complete blocks; pens were randomly assigned to control, VAC, DFM, or VAC+DFM treatments. Vaccine was administered on days 0 and 21, and DFM was fed throughout the study. Pen-floor fecal samples (30/pen) were collected weekly for the last 4 study weeks. Samples were enriched in E. coli broth and subjected to a multiplex polymerase chain reaction (PCR) designed to detect O26-specific wzx gene and four major virulence genes (stx1, stx2, eae, and ehxA) and to a culture-based procedure that involved immunomagnetic separation and plating on MacConkey agar. Ten presumptive E. coli colonies were randomly picked, pooled, and tested by the multiplex PCR. Pooled colonies positive for O26 serogroup were streaked on sorbose MacConkey agar, and 10 randomly picked colonies per sample were tested individually by the multiplex PCR. The overall prevalence of E. coli O26 was higher (p<0.001) by the culture-based method compared to the PCR assay (22.7 versus 10.5%). The interventions (VAC and or DFM) had no impact on fecal shedding of O26. Serogroup O26 was recovered in pure culture from 23.9% (260 of 1089) of O26 PCR-positive pooled colonies. Only 7 of the 260 isolates were positive for the stx gene and 90.1% of the isolates possessed an eaeβ gene that codes for intimin subtype β, but not the bfpA gene, which codes for bundle-forming pilus. Therefore, the majority of the O26 recovered from feedlot cattle feces was atypical enteropathogenic E. coli, and not STEC.
Adams, Cynthia R.; Kohn, Joshua R.; Fisher, Robert N.; Brehme, Cheryl S.
2016-01-01
Understanding the diet of an endangered species illuminates the animal’s ecology, habitat requirements, and conservation needs. However, direct observation of diet can be difficult, particularly for small, nocturnal animals such as the Pacific pocket mouse (Heteromyidae: Perognathus longimembris pacificus). Very little is known of the dietary habits of this federally endangered rodent, hindering management and restoration efforts. We used a metabarcoding approach to identify source plants in fecal samples (N = 52) from the three remaining populations known. The internal transcribed spacers (ITS) of the nuclear ribosomal loci were sequenced following the Illumina MiSeq amplicon strategy and processed reads were mapped to reference databases. We evaluated a range of threshold mapping criteria and found the best-performing setting generally recovered two distinct mock communities in proportions similar to expectation. We tested our method on captive animals fed a known diet and recovered almost all plant sources, but found substantial heterogeneity among fecal pellets collected from the same individual at the same time. Observed richness did not increase with pooling of pellets from the same individual. In field-collected samples, we identified 4–14 plant genera in individual samples and 74 genera overall, but over 50 percent of reads mapped to just six species in five genera. We simulated the effects of sequencing error, variable read length, and chimera formation to infer taxon-specific rates of misassignment for the local flora, which were generally low with some exceptions. Richness at the species and genus levels did not reach a clear asymptote, suggesting that diet breadth remained underestimated in the current pool of samples. Large numbers of scat samples are therefore needed to make inferences about diet and resource selection in future studies of the Pacific pocket mouse. We conclude that our minimally invasive method is promising for determining herbivore diets given a library of sequences from local plants. PMID:27851756
Iwanowicz, Deborah D; Vandergast, Amy G; Cornman, Robert S; Adams, Cynthia R; Kohn, Joshua R; Fisher, Robert N; Brehme, Cheryl S
2016-01-01
Understanding the diet of an endangered species illuminates the animal's ecology, habitat requirements, and conservation needs. However, direct observation of diet can be difficult, particularly for small, nocturnal animals such as the Pacific pocket mouse (Heteromyidae: Perognathus longimembris pacificus). Very little is known of the dietary habits of this federally endangered rodent, hindering management and restoration efforts. We used a metabarcoding approach to identify source plants in fecal samples (N = 52) from the three remaining populations known. The internal transcribed spacers (ITS) of the nuclear ribosomal loci were sequenced following the Illumina MiSeq amplicon strategy and processed reads were mapped to reference databases. We evaluated a range of threshold mapping criteria and found the best-performing setting generally recovered two distinct mock communities in proportions similar to expectation. We tested our method on captive animals fed a known diet and recovered almost all plant sources, but found substantial heterogeneity among fecal pellets collected from the same individual at the same time. Observed richness did not increase with pooling of pellets from the same individual. In field-collected samples, we identified 4-14 plant genera in individual samples and 74 genera overall, but over 50 percent of reads mapped to just six species in five genera. We simulated the effects of sequencing error, variable read length, and chimera formation to infer taxon-specific rates of misassignment for the local flora, which were generally low with some exceptions. Richness at the species and genus levels did not reach a clear asymptote, suggesting that diet breadth remained underestimated in the current pool of samples. Large numbers of scat samples are therefore needed to make inferences about diet and resource selection in future studies of the Pacific pocket mouse. We conclude that our minimally invasive method is promising for determining herbivore diets given a library of sequences from local plants.
Iwanowicz, Deborah; Vandergast, Amy; Cornman, Robert S.; Adams, Cynthia; Kohn, Joshua R.; Fisher, Robert N.; Brehme, Cheryl S.
2016-01-01
Understanding the diet of an endangered species illuminates the animal’s ecology, habitat requirements, and conservation needs. However, direct observation of diet can be difficult, particularly for small, nocturnal animals such as the Pacific pocket mouse (Heteromyidae: Perognathus longimembris pacificus). Very little is known of the dietary habits of this federally endangered rodent, hindering management and restoration efforts. We used a metabarcoding approach to identify source plants in fecal samples (N = 52) from the three remaining populations known. The internal transcribed spacers (ITS) of the nuclear ribosomal loci were sequenced following the Illumina MiSeq amplicon strategy and processed reads were mapped to reference databases. We evaluated a range of threshold mapping criteria and found the best-performing setting generally recovered two distinct mock communities in proportions similar to expectation. We tested our method on captive animals fed a known diet and recovered almost all plant sources, but found substantial heterogeneity among fecal pellets collected from the same individual at the same time. Observed richness did not increase with pooling of pellets from the same individual. In field-collected samples, we identified 4–14 plant genera in individual samples and 74 genera overall, but over 50 percent of reads mapped to just six species in five genera. We simulated the effects of sequencing error, variable read length, and chimera formation to infer taxon-specific rates of misassignment for the local flora, which were generally low with some exceptions. Richness at the species and genus levels did not reach a clear asymptote, suggesting that diet breadth remained underestimated in the current pool of samples. Large numbers of scat samples are therefore needed to make inferences about diet and resource selection in future studies of the Pacific pocket mouse. We conclude that our minimally invasive method is promising for determining herbivore diets given a library of sequences from local plants.
Stromberg, Bert E; Gasbarre, Louis C; Ballweber, Lora R; Dargatz, David A; Rodriguez, Judith M; Kopral, Christine A; Zarlenga, Dante S
2015-10-01
During the United States Department of Agriculture (USDA) National Animal Health Monitoring System's (NAHMS) 2007-2008 beef study, 567 producers from 24 US States were offered the opportunity to collect fecal samples from weaned beef calves and have them evaluated for the presence of parasite eggs (Phase 1). Participating producers were provided with instructions and materials for sample collection. Up to 20 fresh fecal samples were collected from each of the 99 participating operations. Fresh fecal samples were submitted to one of 3 randomly assigned laboratories for evaluation. Upon arrival at the laboratories, all samples were processed for the enumeration of strongyle, Nematodirus, and Trichuris eggs using the modified Wisconsin technique. The presence or absence of coccidian oocysts and tapeworm eggs was also noted. In submissions where the strongyle eggs per gram exceeded 30, aliquots from 2 to 6 animals were pooled for DNA extraction. Extracted DNA was subjected to genus level polymerase chain reaction (PCR) identification for the presence of Ostertagia, Cooperia, Haemonchus, Oesophagostomum, and Trichostrongylus. In this study, 85.6% of the samples had strongyle type, Nematodirus, and Trichuris eggs. Among the samples evaluated, 91% had Cooperia, 79% Ostertagia, 53% Haemonchus, 38% Oesophagostomum, 18% Nematodirus, 7% Trichuris, and 3% Trichostrongylus. The prevalence of coccidia and tapeworm eggs was 59.9% and 13.7%, respectively.
Stromberg, Bert E.; Gasbarre, Louis C.; Ballweber, Lora R.; Dargatz, David A.; Rodriguez, Judith M.; Kopral, Christine A.; Zarlenga, Dante S.
2015-01-01
During the United States Department of Agriculture (USDA) National Animal Health Monitoring System’s (NAHMS) 2007–2008 beef study, 567 producers from 24 US States were offered the opportunity to collect fecal samples from weaned beef calves and have them evaluated for the presence of parasite eggs (Phase 1). Participating producers were provided with instructions and materials for sample collection. Up to 20 fresh fecal samples were collected from each of the 99 participating operations. Fresh fecal samples were submitted to one of 3 randomly assigned laboratories for evaluation. Upon arrival at the laboratories, all samples were processed for the enumeration of strongyle, Nematodirus, and Trichuris eggs using the modified Wisconsin technique. The presence or absence of coccidian oocysts and tapeworm eggs was also noted. In submissions where the strongyle eggs per gram exceeded 30, aliquots from 2 to 6 animals were pooled for DNA extraction. Extracted DNA was subjected to genus level polymerase chain reaction (PCR) identification for the presence of Ostertagia, Cooperia, Haemonchus, Oesophagostomum, and Trichostrongylus. In this study, 85.6% of the samples had strongyle type, Nematodirus, and Trichuris eggs. Among the samples evaluated, 91% had Cooperia, 79% Ostertagia, 53% Haemonchus, 38% Oesophagostomum, 18% Nematodirus, 7% Trichuris, and 3% Trichostrongylus. The prevalence of coccidia and tapeworm eggs was 59.9% and 13.7%, respectively. PMID:26424909
Sidhu, J. P. S.; Smith, K.; Beale, D. J.; Gyawali, P.; Toze, S.
2015-01-01
Recreational and potable water supplies polluted with human wastewater can pose a direct health risk to humans. Therefore, sensitive detection of human fecal pollution in environmental waters is very important to water quality authorities around the globe. Microbial source tracking (MST) utilizes human fecal markers (HFMs) to detect human wastewater pollution in environmental waters. The concentrations of these markers in raw wastewater are considered important because it is likely that a marker whose concentration is high in wastewater will be more frequently detected in polluted waters. In this study, quantitative PCR (qPCR) assays were used to determine the concentrations of fecal indicator bacteria (FIB) Escherichia coli and Enterococcus spp., HFMs Bacteroides HF183, human adenoviruses (HAdVs), and polyomaviruses (HPyVs) in raw municipal wastewater influent from various climatic zones in Australia. E. coli mean concentrations in pooled human wastewater data sets (from various climatic zones) were the highest (3.2 × 106 gene copies per ml), followed by those of HF183 (8.0 × 105 gene copies per ml) and Enterococcus spp. (3.6 × 105 gene copies per ml). HAdV and HPyV concentrations were 2 to 3 orders of magnitude lower than those of FIB and HF183. Strong positive and negative correlations were observed between the FIB and HFM concentrations within and across wastewater treatment plants (WWTPs). To identify the most sensitive marker of human fecal pollution, environmental water samples were seeded with raw human wastewater. The results from the seeding experiments indicated that Bacteroides HF183 was more sensitive for detecting human fecal pollution than HAdVs and HPyVs. Since the HF183 marker can occasionally be present in nontarget animal fecal samples, it is recommended that HF183 along with a viral marker (HAdVs or HPyVs) be used for tracking human fecal pollution in Australian environmental waters. PMID:26682850
Durso, Lisa M; Harhay, Gregory P; Bono, James L; Smith, Timothy P L
2011-02-01
The bovine fecal microbiota impacts human food safety as well as animal health. Although the bacteria of cattle feces have been well characterized using culture-based and culture-independent methods, techniques have been lacking to correlate total community composition with community function. We used high throughput sequencing of total DNA extracted from fecal material to characterize general community composition and examine the repertoire of microbial genes present in beef cattle feces, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that traditional 16S sequencing using "universal" primers to generate full-length sequence may under represent Acitinobacteria and Proteobacteria. Over eight percent (8.4%) of the sequences from our beef cattle fecal pool sample could be categorized as virulence genes, including a suite of genes associated with resistance to antibiotic and toxic compounds (RATC). This is a higher proportion of virulence genes found in Sargasso sea, chicken cecum, and cow rumen samples, but comparable to the proportion found in Antarctic marine derived lake, human fecal, and farm soil samples. The quantitative nature of metagenomic data, combined with the large number of RATC classes represented in samples from widely different habitats indicates that metagenomic data can be used to track relative amounts of antibiotic resistance genes in individual animals over time. Consequently, these data can be used to generate sample-specific and temporal antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats. Published by Elsevier B.V.
Distribution of Salmonella serovars and phage types on 80 Ontario swine farms in 2004
Farzan, Abdolvahab; Friendship, Robert M.; Dewey, Catherine E.; Muckle, Anne C.; Gray, Jeff T.; Funk, Julie
2008-01-01
The objective of this study was to describe the distribution of Salmonella spp. on Ontario grower–finisher pig farms. Eighty swine farms were visited from January through July 2004. On each farm, fecal samples were collected from 5 pens, 2 rectal samples and 1 pooled sample from fresh manure on the floor per pen. Salmonella was isolated from 91 (11%) of the 800 rectal samples and 73 (18%) of the 397 pooled samples. Overall, Salmonella was recovered from 37 (46%) of the 80 farms. On each positive farm, Salmonella was cultured from 1 to 7 pigs or 1 to 5 pens. Of the 37 farms, 18, 13, 5, and 1 yielded 1, 2, 3, and 4 serovars, respectively. The most common serovars were S. Typhimurium var. Copenhagen, S. Infantis, S. Typhimurium, S. Derby, S. Agona, S. Havana, and S. enterica subsp. I:Rough-O. The 3 most frequent phage types were PT 104, PT 104a, and PT 104b. There was a statistically fair agreement between samples collected directly from pigs and pooled pen samples in determining the Salmonella status at the pen and farm level (κ = 0.6, P < 0.0001). However, in 62 pens, Salmonella status, serovars, or phage types differed between the pig and pooled pen samples. The distribution of Salmonella on the swine farms in this study indicates that, in developing an intervention strategy, priority should be given to farms positive for S. Typhimurium var. Copenhagen. Also, the variation in Salmonella status between pig and pooled pen samples deserves consideration in a sampling strategy. PMID:18214155
Microbiological Analysis in Three Diverse Natural Geothermal Bathing Pools in Iceland
Thorolfsdottir, Berglind Osk Th.; Marteinsson, Viggo Thor
2013-01-01
Natural thermal bathing pools contain geothermal water that is very popular to bathe in but the water is not sterilized, irradiated or treated in any way. Increasing tourism in Iceland will lead to increasing numbers of bath guests, which can in turn affect the microbial flora in the pools and therefore user safety. Today, there is no legislation that applies to natural geothermal pools in Iceland, as the water is not used for consumption and the pools are not defined as public swimming pools. In this study, we conducted a microbiological analysis on three popular but different natural pools in Iceland, located at Lýsuhóll, Hveravellir and Landmannalaugar. Total bacterial counts were performed by flow cytometry, and with plate count at 22 °C, 37 °C and 50 °C. The presence of viable coliforms, Enterococcus spp. and pseudomonads were investigated by growth experiments on selective media. All samples were screened for noroviruses by real time PCR. The results indicate higher fecal contamination in the geothermal pools where the geothermal water flow was low and bathing guest count was high during the day. The number of cultivated Pseudomonas spp. was high (13,000–40,000 cfu/100 mL) in the natural pools, and several strains were isolated and classified as opportunistic pathogens. Norovirus was not detected in the three pools. DNA was extracted from one-liter samples in each pool and analyzed by partial 16S rRNA gene sequencing. Microbial diversity analysis revealed different microbial communities between the pools and they were primarily composed of alpha-, beta- and gammaproteobacteria. PMID:23493033
BACKGROUND: Coliphages have been proposed as indicators of fecal contamination in recreational waters because they better mimic the persistence of pathogenic viruses in the environment and wastewater treatment than fecal indicator bacteria. We estimated the association between co...
Coliphages and Gastrointestinal Illness in Recreational Waters
Benjamin-Chung, Jade; Arnold, Benjamin F.; Wade, Timothy J.; Schiff, Kenneth; Griffith, John F.; Dufour, Alfred P.; Weisberg, Stephen B.
2017-01-01
Background: Coliphages have been proposed as indicators of fecal contamination in recreational waters because they better mimic the persistence of pathogenic viruses in the environment and wastewater treatment than fecal indicator bacteria. We estimated the association between coliphages and gastrointestinal illness and compared it with the association with culturable enterococci. Methods: We pooled data from six prospective cohort studies that enrolled coastal beachgoers in California, Alabama, and Rhode Island. Water samples were collected and gastrointestinal illness within 10 days of the beach visit was recorded. Samples were tested for enterococci and male-specific and somatic coliphages. We estimated cumulative incidence ratios (CIR) for the association between swimming in water with detectable coliphage and gastrointestinal illness when human fecal pollution was likely present, not likely present, and under all conditions combined. The reference group was unexposed swimmers. We defined continuous and threshold-based exposures (coliphage present/absent, enterococci >35 vs. ≤35 CFU/100 ml). Results: Under all conditions combined, there was no association between gastrointestinal illness and swimming in water with detectable coliphage or enterococci. When human fecal pollution was likely present, coliphage and enterococci were associated with increased gastrointestinal illness, and there was an association between male-specific coliphage level and illness that was somewhat stronger than the association between enterococci and illness. There were no substantial differences between male-specific and somatic coliphage. Conclusions: Somatic coliphage and enterococci had similar associations with gastrointestinal illness; there was some evidence that male-specific coliphage had a stronger association with illness than enterococci in marine waters with human fecal contamination. PMID:28489717
Hasan, Badrul; Laurell, Karl; Rakib, Mufti Mahmud; Ahlstedt, Erik; Hernandez, Jorge; Caceres, Mercedes; Järhult, Josef D
2016-12-01
Antibiotic-resistant bacteria are a major concern in the healthcare of today, especially the increasing number of gram-negative bacteria producing β-lactamases such as extended-spectrum β-lactamases (ESBLs). However, little is known about the relationship of ESBL producers in humans and domestic and wild birds, especially in a low-income setting. Therefore, we studied the fecal carriage of ESBL-producing Escherichia coli and Klebsiella pneumoniae in healthy humans, poultry, and wild birds in the vicinity of León, Nicaragua. Three hundred fecal samples were collected during December 2012 from humans (n = 100), poultry (n = 100) and wild birds (n = 100). The samples were examined for ESBL-producing E. coli and K. pneumoniae, revealing the prevalence of 27% in humans, 13% in poultry, and 8% in wild birds. Further characterization of the ESBL-producing isolates was performed through polymerase chain reaction (PCR) (NDM, CTX-M), epidemiological typing (ERIC2-PCR), multilocus sequence typing, and sequencing. ESBL producers harbored bla CTX-M-2 , bla CTX-M-15 , bla CTX-M-22 , and bla CTX-M-3 genotypes. The bla CTX-M-15 constituted the absolute majority of ESBL genes among all samples. ERIC-PCR demonstrated highly related E. coli clones among humans, poultry, and wild birds. Clinically relevant E. coli clone ST648 was found in humans and poultry. There is a shared pool of bla CTX-M genes between humans and domesticated and wild birds in Nicaragua, and the results suggest shared clones of ESBL-producing E. coli. The study adds to the notion that wild birds and poultry can pick up antibiotic-resistant bacteria of human origin and function as a melting pot of resistance. Structured surveillance programs of antimicrobial resistance and a more regulated prescription of antibiotics are warranted in Nicaragua.
Human enteroviruses in oysters and their overlying waters.
Goyal, S M; Gerba, C P; Melnick, J L
1979-01-01
The presence of enteroviruses in oysters and oyster-harvesting waters of the Texas Gulf coast was monitored over a period of 10 months. Viruses were detected in water and oyster samples obtained from areas both open and closed to shellfish harvesting. Viruses were detected periodically in waters that met current bacteriological standards for shellfish harvesting. No significant statistical relationship was demonstrated between virus concentration in oysters and the bacteriological and physiochemical quality of water and shellfish. Viruses in water were, however, moderately correlated with total coliforms in water and oysters and with fecal coliforms in oysters. Total coliforms in water were realted to total coliforms in sediment were related only to total coliforms in sediment. Among the physiochemical characteristics of water, turbidity was related statistically to the organic matter content of water and to fecal coliforms in water. There was a marked effect of rainfall on the bacteriological quality of water. Of a total of 44 water samples, 26 yielded virus in concentrations from 4 to 167 plaque-forming units per 100-gallon (ca. 378.5-liter) sample. Of a total of 40 pools of 10 to 12 oysters each, virus was found in 14 pools at a concentration of 6 to 224 plaque-forming units per 100 g of oyster meat. On five occasions, virus was found in water samples when no virus could be detected in oysters harvested from the same sites. This study indicates that current bacteriological standards for determining the safety of shellfish and shellfish-growing waters do no reflect the occurrence of enteroviruses. PMID:222210
Human enteroviruses in oysters and their overlying waters.
Goyal, S M; Gerba, C P; Melnick, J L
1979-03-01
The presence of enteroviruses in oysters and oyster-harvesting waters of the Texas Gulf coast was monitored over a period of 10 months. Viruses were detected in water and oyster samples obtained from areas both open and closed to shellfish harvesting. Viruses were detected periodically in waters that met current bacteriological standards for shellfish harvesting. No significant statistical relationship was demonstrated between virus concentration in oysters and the bacteriological and physiochemical quality of water and shellfish. Viruses in water were, however, moderately correlated with total coliforms in water and oysters and with fecal coliforms in oysters. Total coliforms in water were realted to total coliforms in sediment were related only to total coliforms in sediment. Among the physiochemical characteristics of water, turbidity was related statistically to the organic matter content of water and to fecal coliforms in water. There was a marked effect of rainfall on the bacteriological quality of water. Of a total of 44 water samples, 26 yielded virus in concentrations from 4 to 167 plaque-forming units per 100-gallon (ca. 378.5-liter) sample. Of a total of 40 pools of 10 to 12 oysters each, virus was found in 14 pools at a concentration of 6 to 224 plaque-forming units per 100 g of oyster meat. On five occasions, virus was found in water samples when no virus could be detected in oysters harvested from the same sites. This study indicates that current bacteriological standards for determining the safety of shellfish and shellfish-growing waters do no reflect the occurrence of enteroviruses.
Background: Coliphages have been proposed as potential indicators of fecal contamination of marine recreational waters because they may better predict the presence of viruses than fecal indicator bacteria. We estimated the association between the presence of coliphages and self-r...
Metagenomic analysis of Sichuan takin fecal sample viromes reveals novel enterovirus and astrovirus.
Guan, Tian-Pei; Teng, Jade L L; Yeong, Kai-Yan; You, Zhang-Qiang; Liu, Hao; Wong, Samson S Y; Lau, Susanna K P; Woo, Patrick C Y
2018-06-07
The Sichuan takin inhabits the bamboo forests in the Eastern Himalayas and is considered as a national treasure of China with the highest legal protection and conservation status considered as vulnerable according to The IUCN Red List of Threatened Species. In this study, fecal samples of 71 Sichuan takins were pooled and deep sequenced. Among the 103,553 viral sequences, 21,961 were assigned to mammalian viruses. De novo assembly revealed genomes of an enterovirus and an astrovirus and contigs of circoviruses and genogroup I picobirnaviruses. Complete genome sequencing and phylogenetic analysis showed that Sichuan takin enterovirus is a novel serotype/genotype of the species Enterovirus G, with evidence of recombination. Sichuan takin astrovirus is a new subtype of bovine astrovirus, probably belonging to a new genogroup in the genus Mamastrovirus. Further studies will reveal whether these viruses can also be found in Mishmi takin and Shaanxi takin and their pathogenic potentials. Copyright © 2018 Elsevier Inc. All rights reserved.
Silva-Hidalgo, Gabriela; López-Moreno, Héctor Samuel; Ortiz-Navarrete, Vianney Francisco; Alpuche-Aranda, Celia; Rendón-Maldonado, José Guadalupe; López-Valenzuela, José Angel; López-Valenzuela, Martin; Juárez-Barranco, Felipe
2013-03-01
Salmonellosis is an important zoonotic disease but little is known about the role that free-living animals play as carriers of this pathogen. Moreover, the primary route of infection in the wild needs to be elucidated. The aim of this study was to determine the source and the route of transmission of Salmonella enterica serovar Albany (S. Albany) infection in captive zoo wild animals in the Culiacán Zoo. A total of 267 samples were analyzed including 220 fecal samples from zoo animals, 15 fecal samples from rodents, 5 pooled samples each of two insects (Musca domestica and Periplaneta americana), and 22 samples of animal feed. We detected S. Albany in 28 (10.5%) of the samples analyzed, including in samples from raw chicken meat. Characterization of isolates was performed by serotyping and pulsed-field gel electrophoresis. All isolates shared a single pulsed-field gel electrophoresis profile, indicating a possible common origin. These data suggest that the infected meat consumed by the wild felines was the primary source of infection in this zoo. It is likely that the pathogen was shed in the feces and disseminated by insects and rats to other locations in the zoo.
Lin, Xiaobo; Racette, Susan B; Ma, Lina; Wallendorf, Michael; Dávila-Román, Victor G; Ostlund, Richard E
2017-12-01
Epidemiological studies strongly suggest that lipid factors independent of low-density lipoprotein cholesterol contribute significantly to cardiovascular disease risk. Because circulating lipoproteins comprise only a small fraction of total body cholesterol, the mobilization and excretion of cholesterol from plasma and tissue pools may be an important determinant of cardiovascular disease risk. Our hypothesis is that fecal excretion of endogenous cholesterol is protective against atherosclerosis. Cholesterol metabolism and carotid intima-media thickness were quantitated in 86 nondiabetic adults. Plasma cholesterol was labeled by intravenous infusion of cholesterol-d 7 solubilized in a lipid emulsion and dietary cholesterol by cholesterol-d 5 and the nonabsorbable stool marker sitostanol-d 4 . Plasma and stool samples were collected while subjects consumed a cholesterol- and phytosterol-controlled metabolic kitchen diet and were analyzed by mass spectrometry. Carotid intima-media thickness was negatively correlated with fecal excretion of endogenous cholesterol ( r =-0.426; P <0.0001), total cholesterol ( r =-0.472; P ≤0.0001), and daily percent excretion of cholesterol from the rapidly mixing cholesterol pool ( r =-0.343; P =0.0012) and was positively correlated with percent cholesterol absorption ( r =+0.279; P =0.0092). In a linear regression model controlling for age, sex, systolic blood pressure, hemoglobin A1c, low-density lipoprotein, high-density lipoprotein cholesterol, and statin drug use, fecal excretion of endogenous cholesterol remained significant ( P =0.0008). Excretion of endogenous cholesterol is strongly, independently, and negatively associated with carotid intima-media thickness. The reverse cholesterol transport pathway comprising the intestine and the rapidly mixing plasma, and tissue cholesterol pool could be an unrecognized determinant of cardiovascular disease risk not reflected in circulating lipoproteins. Further work is needed to relate measures of reverse cholesterol transport to atherosclerotic disease. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01603758. © 2017 American Heart Association, Inc.
Ezetimibe Increases Endogenous Cholesterol Excretion in Humans
Lin, Xiaobo; Racette, Susan B; Ma, Lina; Wallendorf, Michael; Ostlund, Richard E
2017-01-01
Objective Ezetimibe improves cardiovascular outcomes when added to optimum statin treatment. It lowers LDL cholesterol and percent intestinal cholesterol absorption, but the exact cardioprotective mechanism is unknown. We tested the hypothesis that the dominant effect of ezetimibe is to increase the reverse transport of cholesterol from rapidly-mixing endogenous cholesterol pool into the stool. Approach and Results In a randomized, placebo-controlled, double-blind parallel trial in 24 healthy subjects with LDL cholesterol 100–200 mg/dL, we measured cholesterol metabolism before and after a 6-week treatment period with ezetimibe 10 mg/day or placebo. Plasma cholesterol was labeled by intravenous infusion of cholesterol-d7 in a lipid emulsion and dietary cholesterol with cholesterol-d5 and sitostanol-d4 solubilized in oil. Plasma and stool samples collected during a cholesterol- and phytosterol-controlled metabolic kitchen diet were analyzed by mass spectrometry. Ezetimibe reduced intestinal cholesterol absorption efficiency 30 ± 4.3% (SE, P < 0.0001) and LDL cholesterol 19.8 ± 1.9% (P = 0.0001). Body cholesterol pool size was unchanged, but fecal endogenous cholesterol excretion increased 66.6 ± 12.2% (P < 0.0001) and percent cholesterol excretion from body pools into the stool increased 74.7 ± 14.3% (P < 0.0001) while plasma cholesterol turnover rose 26.2 ± 3.6% (P = 0.0096). Fecal bile acids were unchanged. Conclusions Ezetimibe increased the efficiency of reverse cholesterol transport from rapidly-mixing plasma and tissue pools into the stool. Further work is needed to examine the potential relation of reverse cholesterol transport and whole body cholesterol metabolism to coronary events and the treatment of atherosclerosis. PMID:28279967
Ezetimibe Increases Endogenous Cholesterol Excretion in Humans.
Lin, Xiaobo; Racette, Susan B; Ma, Lina; Wallendorf, Michael; Ostlund, Richard E
2017-05-01
Ezetimibe improves cardiovascular outcomes when added to optimum statin treatment. It lowers low-density lipoprotein cholesterol and percent intestinal cholesterol absorption, but the exact cardioprotective mechanism is unknown. We tested the hypothesis that the dominant effect of ezetimibe is to increase the reverse transport of cholesterol from rapidly mixing endogenous cholesterol pool into the stool. In a randomized, placebo-controlled, double-blind parallel trial in 24 healthy subjects with low-density lipoprotein cholesterol 100 to 200 mg/dL, we measured cholesterol metabolism before and after a 6-week treatment period with ezetimibe 10 mg/d or placebo. Plasma cholesterol was labeled by intravenous infusion of cholesterol-d 7 in a lipid emulsion and dietary cholesterol with cholesterol-d 5 and sitostanol-d 4 solubilized in oil. Plasma and stool samples collected during a cholesterol- and phytosterol-controlled metabolic kitchen diet were analyzed by mass spectrometry. Ezetimibe reduced intestinal cholesterol absorption efficiency 30±4.3% (SE, P <0.0001) and low-density lipoprotein cholesterol 19.8±1.9% ( P =0.0001). Body cholesterol pool size was unchanged, but fecal endogenous cholesterol excretion increased 66.6±12.2% ( P <0.0001) and percent cholesterol excretion from body pools into the stool increased 74.7±14.3% ( P <0.0001), whereas plasma cholesterol turnover rose 26.2±3.6% ( P =0.0096). Fecal bile acids were unchanged. Ezetimibe increased the efficiency of reverse cholesterol transport from rapidly mixing plasma and tissue pools into the stool. Further work is needed to examine the potential relation of reverse cholesterol transport and whole body cholesterol metabolism to coronary events and the treatment of atherosclerosis. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01603758. © 2017 American Heart Association, Inc.
Schumacher, John G.
2003-01-01
Densities of fecal coliform bacteria along a 5.7-mi (mile) reach of Shoal Creek extending upstream from State Highway 97 (site 3) to State Highway W (site 2) and in two tributaries along this reach exceeded the Missouri Department of Natural Resources (MDNR) standard of 200 col/100 mL (colonies per 100 milliliters) for whole-body contact recreation. A combination of techniques was used in this report to provide information on the source, transport, and survival of fecal bacteria along this reach of Shoal Creek. Results of water-quality samples collected during dye-trace and seepage studies indicated that at summer low base-flow conditions, pastured cattle likely were a substantial source of fecal bacteria in Shoal Creek at the MDNR monitoring site (site 3) at State Highway 97. Using repeat element Polymerase Chain Reaction (rep-PCR), cattle were the presumptive source of about 50 percent of the Escherichia coli (E. coli) isolates in water samples from site 3. Cattle, horses, and humans were the most common presumptive source of E. coli isolates at sites further upstream. Poultry was identified by rep-PCR as a major source of E. coli in Pogue Creek, a tributary in the upper part of the study area. Results of the rep-PCR were in general agreement with the detection and distribution of trace concentrations of organic compounds commonly associated with human wastewater, such as caffeine, the antimicrobial agent triclosan, and the pharmaceutical compounds acetaminophen and thiabendazole (a common cattle anthelmintic). Significant inputs of fecal bacteria to Shoal Creek occurred along a 1.6-mi reach of Shoal Creek immediately upstream from site 3. During a 36-hour period in July 2001, average densities of fecal coliform and E. coli bacteria increased from less than or equal to 500 col/100 mL upstream from this stream reach (sample site 2c) to 2,100 and 1,400 col/100 mL, respectively, at the MDNR sampling site. Fecal bacteria densities exhibited diurnal variability at all five sampling sites along the 5.7-mi study reach of Shoal Creek, but the trends at successive downstream sites were out of phase and could not be explained by simple advection and dispersion. At base-flow conditions, the travel time of bacteria in Shoal Creek along the 5.7-mi reach between State Highway W (site 2) and the MDNR sampling site (site 3) was about 26 hours. Substantial dispersion and dilution occurs along the upper 4.1 mi of this reach because of inflows from a number of springs and tributaries and the presence of several long pools and channel meanders. Minimal dispersion and dilution occurs along the 1.6-mi reach immediately upstream from the MDNR sampling site. Measurements of fecal bacteria decay in Shoal Creek during July 2001 indicated that about 8 percent of fecal coliform and E. coli bacteria decay each hour with an average first-order decay constant of 0.084 h-1 (per hour). Results of field test plots indicated that substantial numbers of fecal bacteria present in poul try litter can survive in fields for as much as 8 weeks after the application of the litter to the land surface. Median densities of fecal coliform and E. coli in slurry-water samples collected from fields increased from less than 60 col/100 mL before the application of turkey and broiler litter, to as large as 420,000 and 290,000 col/100 mL after the application of litter. Bacteria densities in the test plots generally decreased in a exponential manner over time with decay rates ranging from 0.085 to 0.185 d-1 (per day) for fecal coliform to between 0.100 and 0.250 d-1 for E. coli. The apparent survival of significant numbers of fecal bacteria on fields where poultry litter has been applied indicates that runoff from these fields is a potential source of fecal bacteria to vicinity streams for many weeks following litter application.
Zhai, Rong-Lin; Xu, Fei; Zhang, Pei; Zhang, Wan-Li; Wang, Hui; Wang, Ji-Liang; Cai, Kai-Lin; Long, Yue-Ping; Lu, Xiao-Ming; Tao, Kai-Xiong; Wang, Guo-Bin
2016-02-01
This meta-analysis was designed to evaluate the diagnostic performance of stool DNA testing for colorectal cancer (CRC) and compare the performance between single-gene and multiple-gene tests.MEDLINE, Cochrane, EMBASE databases were searched using keywords colorectal cancers, stool/fecal, sensitivity, specificity, DNA, and screening. Sensitivity analysis, quality assessments, and performance bias were performed for the included studies.Fifty-three studies were included in the analysis with a total sample size of 7524 patients. The studies were heterogeneous with regard to the genes being analyzed for fecal genetic biomarkers of CRC, as well as the laboratory methods being used for each assay. The sensitivity of the different assays ranged from 2% to 100% and the specificity ranged from 81% to 100%. The meta-analysis found that the pooled sensitivities for single- and multigene assays were 48.0% and 77.8%, respectively, while the pooled specificities were 97.0% and 92.7%. Receiver operator curves and diagnostic odds ratios showed no significant difference between both tests with regard to sensitivity or specificity.This meta-analysis revealed that using assays that evaluated multiple genes compared with single-gene assays did not increase the sensitivity or specificity of stool DNA testing in detecting CRC.
Berkhout, Daniel J. C.; Benninga, Marc A.; van Stein, Ruby M.; Brinkman, Paul; Niemarkt, Hendrik J.; de Boer, Nanne K. H.; de Meij, Tim G. J.
2016-01-01
Prior to implementation of volatile organic compound (VOC) analysis in clinical practice, substantial challenges, including methodological, biological and analytical difficulties are faced. The aim of this study was to evaluate the influence of several sampling conditions and environmental factors on fecal VOC profiles, analyzed by an electronic nose (eNose). Effects of fecal sample mass, water content, duration of storage at room temperature, fecal sample temperature, number of freeze–thaw cycles and effect of sampling method (rectal swabs vs. fecal samples) on VOC profiles were assessed by analysis of totally 725 fecal samples by means of an eNose (Cyranose320®). Furthermore, fecal VOC profiles of totally 1285 fecal samples from 71 infants born at three different hospitals were compared to assess the influence of center of origin on VOC outcome. We observed that all analyzed variables significantly influenced fecal VOC composition. It was feasible to capture a VOC profile using rectal swabs, although this differed significantly from fecal VOC profiles of similar subjects. In addition, 1285 fecal VOC-profiles could significantly be discriminated based on center of birth. In conclusion, standardization of methodology is necessary before fecal VOC analysis can live up to its potential as diagnostic tool in clinical practice. PMID:27886068
Leknoi, Yuranan; Mongkolsuk, Skorn; Sirikanchana, Kwanrawee
2017-04-01
We assessed the occurrence and specificity of bacteriophages of Bacteroides fragilis in swine farms for their potential application in microbial source tracking. A local B. fragilis host strain, SP25 (DSM29413), was isolated from a pooled swine feces sample taken from a non-antibiotic farm. This strain was highly specific to swine fecal materials because it did not detect bacteriophages in any samples from human sewage, sheep, goats, cattle, dogs, and cats. The reference B. fragilis strain, RYC2056, could detect phages in swine samples but also detected phages in most human sewage and polluted urban canal samples. Phages of SP25 exist in the proximity of certain swine farms, regardless of their antibiotic use (p > 0.05). B. fragilis strain SP25 exhibited relatively high resistance to most of the veterinary antimicrobial agents tested. Interestingly, most farms that were positive for SP25 phages were also positive for RYC2056 phages. In conclusion, the swine-specific SP25 strain has the potential to indicate swine fecal contamination in certain bodies of water. Bacterial isolates with larger distributions are being studied and validated. This study highlights the importance of assessing the abundance of phages in local swine populations before determining their potential applicability for source tracking in local surface waters.
Comparison of Fecal Collection Methods for Microbiota Studies in Bangladesh
Chen, Jun; Kibriya, Muhammad G.; Chen, Yu; Islam, Tariqul; Eunes, Mahbubul; Ahmed, Alauddin; Naher, Jabun; Rahman, Anisur; Amir, Amnon; Shi, Jianxin; Abnet, Christian C.; Nelson, Heidi; Knight, Rob; Chia, Nicholas; Ahsan, Habibul; Sinha, Rashmi
2017-01-01
ABSTRACT To our knowledge, fecal microbiota collection methods have not been evaluated in low- and middle-income countries. Therefore, we evaluated five different fecal sample collection methods for technical reproducibility, stability, and accuracy within the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Fifty participants from the HEALS provided fecal samples in the clinic which were aliquoted into no solution, 95% ethanol, RNAlater, postdevelopment fecal occult blood test (FOBT) cards, and fecal immunochemical test (FIT) tubes. Half of the aliquots were frozen immediately at −80°C (day 0) and the remaining samples were left at ambient temperature for 96 h and then frozen (day 4). Intraclass correlation coefficients (ICC) were calculated for the relative abundances of the top three phyla, for two alpha diversity measures, and for four beta diversity measures. The duplicate samples had relatively high ICCs for technical reproducibility at day 0 and day 4 (range, 0.79 to 0.99). The FOBT card and samples preserved in RNAlater and 95% ethanol had the highest ICCs for stability over 4 days. The FIT tube had lower stability measures overall. In comparison to the “gold standard” method using immediately frozen fecal samples with no solution, the ICCs for many of the microbial metrics were low, but the rank order appeared to be preserved as seen by the Spearman correlation. The FOBT cards, 95% ethanol, and RNAlater were effective fecal preservatives. These fecal collection methods are optimal for future cohort studies, particularly in low- and middle-income countries. IMPORTANCE The collection of fecal samples in prospective cohort studies is essential to provide the opportunity to study the effect of the human microbiota on numerous health conditions. However, these collection methods have not been adequately tested in low- and middle-income countries. We present estimates of technical reproducibility, stability at ambient temperature for 4 days, and accuracy comparing a “gold standard” for fecal samples in no solution, 95% ethanol, RNAlater, postdevelopment fecal occult blood test cards, and fecal immunochemical test tubes in a study conducted in Bangladesh. Fecal occult blood test cards and fecal samples stored in 95% ethanol or RNAlater adequately preserve fecal samples in this setting. Therefore, new studies in low- and middle-income countries should include collection of fecal samples using fecal occult blood test cards, 95% ethanol, or RNAlater for prospective cohort studies. PMID:28258145
Chlorine disinfection of recreational water for Cryptosporidium parvum.
Carpenter, C.; Fayer, R.; Trout, J.; Beach, M. J.
1999-01-01
We examined the effects of chlorine on oocyst viability, under the conditions of controlled pH and elevated calcium concentrations required for most community swimming pools. We found that fecal material may alter the Ct values (chlorine concentration in mg/L, multiplied by time in minutes) needed to disinfect swimming pools or other recreational water for Cryptosporidium parvum. PMID:10458969
Influence of refrigeration and formalin on the floatability of Giardia duodenalis cysts.
Moitinho, M d; Bertoli, M; Guedes, T A; Ferreira, C S
1999-01-01
Giardia duodenalis cysts obtained from fresh fecal samples, fecal samples kept under refrigeration and fecal samples treated with formalin were studied as to their floatability on sucrose solutions with the following specific gravities: 1,040 kg/m3; 1,050 kg/m3; 1, 060 kg/m3; 1,070 kg/m3; 1,080 kg/m3; 1,090 kg/m3; 1,100 kgm3; 1,150 kg/m3; 1,200 kg/m3; and 1,250 kg/m3, contained within counting-chambers 0.17 mm high. Cysts that floated on and those settled down as sediments were counted, and had their percentages estimated. Sucrose solutions of 1,200 kg/m3 specific gravity (the average specific gravity of diluting liquids employed in floatation techniques) caused to float 77.7%, 78.4% and 6.6% of the G. duodenalis cysts obtained, respectively, from fresh fecal samples, fecal samples kept under refrigeration, and fecal samples treated with formalin. Cysts obtained both from fresh fecal samples and fecal samples kept under refrigeration presented similar results concerning floatability. It was observed, however, that the treatment of feces with formalin diminished the cysts floatability under the various specific gravities studied. This results should influence, the recommendations for transport and storage of fecal samples used for parasitological coproscopy.
Garcia-Mazcorro, Jose F; Castillo-Carranza, Stephany A; Guard, Blake; Gomez-Vazquez, Jose P; Dowd, Scot E; Brigthsmith, Donald J
2017-01-01
Birds and other animals live and evolve in close contact with millions of microorganisms (microbiota). While the avian microbiota has been well characterized in domestic poultry, the microbiota of other bird species has been less investigated. The aim of this study was to describe the fecal bacterial communities of pet birds. Pooled fecal samples from 22 flocks representing over 150 individual birds of three different species (Melopsittacus undulatus or budgerigars, Nymphicus hollandicus or cockatiels, and Serinus canaria or domestic canaries) were used for analysis using the 16S rRNA gene sequencing in the MiSeq platform (Illumina). Firmicutes was the most abundant phylum (median 88.4 %; range 12.9-98.4 %) followed by other low-abundant phyla such as Proteobacteria (median 2.3 %; 0.1-85.3 %) and Actinobacteria (median 1.7 %; 0-18.3 %). Lactobacillaceae (mostly Lactobacillus spp.) was the most abundant family (median 78.1 %; 1.4-97.5 %), especially in budgerigars and canaries, and it deserves attention because of the ascribed beneficial properties of lactic acid bacteria. Importantly, feces from birds contain intestinal, urinary, and reproductive-associated microbiota thus posing a serious problem to study one anatomical region at a time. Other groups of interest include the family Clostridiaceae that showed very low abundance (overall median <0.1 %) with the exception of two samples from cockatiels (14 and 45.9 %) and one sample from budgerigars (19.9 %). Analysis of UniFrac metrics showed that overall, the microbial communities from the 22 flocks tended to cluster together for each bird species, meaning each species shed distinctive bacterial communities in feces. This descriptive analysis provides insight into the fecal microbiota of pet birds.
Ekong, Pius S; Sanderson, Michael W; Cernicchiaro, Natalia
2015-09-01
Systematic review (SR) and meta-analyses (MA) methodologies were used to identify, critically evaluate and synthesize prevalence and concentration estimates for Escherichia coli O157 contamination along the beef production chain, and to illustrate differences based on cattle types and seasonality in North America from the scientific peer-reviewed literature. Four electronic databases were searched to identify relevant articles. Two independent reviewers performed all SR steps. Random effects MA models were used to estimate the pooled prevalence and concentration of E. coli O157 in feces, hides and carcasses of cattle processed in North America, including their seasonal estimates. The potential sources of between studies heterogeneity were identified using meta-regression and sub-group analysis. Results indicated differences in the fecal prevalence of E. coli O157 among cattle types: 10.68% (95% CI: 9.17-12.28%) in fed beef, 4.65% (95% CI: 3.37-6.10%) in adult beef, and 1.79% (95% CI: 1.20-2.48%) in adult dairy. Fed beef fecal prevalence was 10.65% (95% CI: 8.93-12.49%) during summer and 9.17% (95% CI: 5.24-13.98%) during the winter months. For adult beef, the fecal prevalence was 7.86% (95% CI: 5.43-10.66%) during summer, and 4.21% (95% CI: 1.95-7.13%) during winter. Among adult dairy, the fecal prevalence was 2.27% (95% CI: 1.5-3.18%) during summer, and 0.36% (95% CI: 0.09-0.74%) during winter. There was a significantly higher percentage of hides with E. coli O157 concentration ≥ 40 CFU/100 cm(2) on hides of fed beef sampled at the processing plant (23.81%; 95% CI: 14.79-34.15%) compared to those sampled at the feedlot (1.74%; 95% CI: 0.53-3.44%). Prevalence of E. coli O157 on carcass surfaces differed by season only at the post-evisceration stage, but decreased considerably through the subsequent processing stages. Country, study setting, detection method, hide swab area, and study design were identified as significant sources of heterogeneity among studies reporting prevalence of E. coli O157 along the beef production chain. The pooled prevalence and concentration estimates from this study provide a sound and reliable microbiological basis for risk assessment modeling of E. coli O157 and other pathogens in the food chain. Copyright © 2015 Elsevier B.V. All rights reserved.
Comparison of Collection Methods for Fecal Samples in Microbiome Studies
Vogtmann, Emily; Chen, Jun; Amir, Amnon; Shi, Jianxin; Abnet, Christian C.; Nelson, Heidi; Knight, Rob; Chia, Nicholas; Sinha, Rashmi
2017-01-01
Prospective cohort studies are needed to assess the relationship between the fecal microbiome and human health and disease. To evaluate fecal collection methods, we determined technical reproducibility, stability at ambient temperature, and accuracy of 5 fecal collection methods (no additive, 95% ethanol, RNAlater Stabilization Solution, fecal occult blood test cards, and fecal immunochemical test tubes). Fifty-two healthy volunteers provided fecal samples at the Mayo Clinic in Rochester, Minnesota, in 2014. One set from each sample collection method was frozen immediately, and a second set was incubated at room temperature for 96 hours and then frozen. Intraclass correlation coefficients (ICCs) were calculated for the relative abundance of 3 phyla, 2 alpha diversity metrics, and 4 beta diversity metrics. Technical reproducibility was high, with ICCs for duplicate fecal samples between 0.64 and 1.00. Stability for most methods was generally high, although the ICCs were below 0.60 for 95% ethanol in metrics that were more sensitive to relative abundance. When compared with fecal samples that were frozen immediately, the ICCs were below 0.60 for the metrics that were sensitive to relative abundance; however, the remaining 2 alpha diversity and 3 beta diversity metrics were all relatively accurate, with ICCs above 0.60. In conclusion, all fecal sample collection methods appear relatively reproducible, stable, and accurate. Future studies could use these collection methods for microbiome analyses. PMID:27986704
Faubladier, C; Chaucheyras-Durand, F; da Veiga, L; Julliand, V
2013-04-01
This study evaluated the effect of transportation on fecal bacterial communities and activities in horses with or without supplementation of live yeast and attempted to link those effects with changes in blood stress markers. Four mature horses were assigned to a crossover design and fed a basal diet (60:40 forage to concentrate; 1.45% BW on a DM basis), with or without supplementation, of 2 × 10(10) cfu/d of Saccharomyces cerevisiae CNCM I-1077. After a 14-d adaptation to dietary treatments, the 5-d experiment started 1 d before transportation (d -1). At d 0, horses were simultaneously transported in a truck for 2 h. Feces were sampled 4 h after the morning meal of concentrate at d -1, 0 (immediately after transportation), and 3 for enumeration of the main functional bacterial groups and determination of fermentative variables. Within each dietary treatment, feces were pooled before DNA extraction and molecular analysis of the bacterial communities, using temporal temperature gradient electrophoreses (TTGE). Blood samples were collected at the same time for determination of white blood cells (WBC) counts and glucose and total protein concentrations. Regardless of dietary treatment, the neutrophil to lymphocyte ratio increased during transportation (P < 0.01), indicating that horses were stressed. In both treatments, TTGE profiles were clearly different before and 3 d after transportation, and the percentage of similarity between profiles at d -1 and 3 was greater in supplemented horses compared with the controls. From d 0 to 3, the molar percentage of propionate increased and total concentration of VFA and the acetate + butyrate to propionate ratio decreased, regardless of dietary treatment (P < 0.01, P = 0.02, and P < 0.01, respectively), whereas pH decreased only in control horses (P = 0.03). Regardless of day of sampling, fecal concentrations of lactate-utilizing bacteria and cellulolytic bacteria were greater in supplemented horses than in control horses (P = 0.04 and 0.08, respectively). Our results indicate that transportation for 2 h disturbed the fecal bacterial ecosystem in horses that could increase the risk of triggering microbial dysbiosis on a longer term in the equine large intestine. Supplementing Saccharomyces cerevisiae CNCM I-1077 could help reduce the negative impact of transportation on the fecal bacterial ecosystem.
Clark, Melanie L.; Gamper, Merry E.
2003-01-01
A synoptic study of fecal-indicator bacteria was conducted during June and July 2000 in the Wind River, Bighorn River, and Goose Creek Basins in Wyoming as part of the U.S. Geological Survey's National Water-Quality Assessment Program for the Yellowstone River Basin. Fecal-coliform concentrations ranged from 2 to 3,000 col/100 mL (colonies per 100 milliliters) for 100 samples, and Escherichia coli concentrations ranged from 1 to 2,800 col/100 mL for 97 samples. Fecal-coliform concentrations exceeded the U.S. Environmental Protection Agency's recommended limit for a single sample for recreational contact with water in 37.0 percent of the samples. Escherichia coli concentrations exceeded the U.S. Environmental Protection Agency's recommended limit for a single sample for moderate use, full-body recreational contact with water in 38.1 percent of the samples and the recommended limit for infrequent use, full-body recreational contact with water in 24.7 percent of the samples. Fecal-indicator-bacteria concentrations varied by basin. Samples from the Bighorn River Basin had the highest median concentrations for fecal coliform of 340 col/100 mL and for Escherichia coli of 300 col/100 mL. Samples from the Wind River Basin had the lowest median concentrations for fecal coliform of 50 col/100 mL and for Escherichia coli of 62 col/100 mL. Fecal-indicator-bacteria concentrations varied by land cover. Samples from sites with an urban land cover had the highest median concentrations for fecal coliform of 540 col/100 mL and for Escherichia coli of 420 col/100 mL. Maximum concentrations for fecal coliform of 3,000 col/100 mL and for Escherichia coli of 2,800 col/100 mL were in samples from sites with an agricultural land cover. The lowest median concentrations for fecal coliform of 130 col/100 mL and for Escherichia coli of 67 col/100 mL were for samples from sites with a forested land cover. A strong and positive relation existed between fecal coliform and Escherichia coli (Spearman's Rho value of 0.976). The majority of the fecal coliforms were Escherichia coli during the synoptic study. Fecal-indicator-bacteria concentrations were not correlated to streamflow, water temperature, dissolved oxygen, pH, specific conduc-tance, and alkalinity. Fecal-indicator-bacteria concentrations were moderately correlated with turbidity (Spearman's Rho values of 0.662 and 0.640 for fecal coliform and Escherichia coli, respectively) and sediment (Spearman's Rho values of 0.628 and 0.636 for fecal coliform and Escherichia coli, respectively). Escherichia coli isolates analyzed by discriminant analysis of ribotype patterns for samples from the Bighorn River at Basin, Wyoming, and Bitter Creek near Garland, Wyoming, in the Bighorn River Basin were determined to be from nonhuman and human sources. Using a confidence interval of 90 percent, more of the isolates from both sites were classified as being from nonhuman than human sources; however, both samples had additional isolates that were classified as unknown sources. --------------------------------------------------------------------------------
Kumar, Ranjit; Maynard, Craig L; Eipers, Peter; Goldsmith, Kelly T; Ptacek, Travis; Grubbs, J Aaron; Dixon, Paula; Howard, Donna; Crossman, David K; Crowley, Michael R; Benjamin, William H; Lefkowitz, Elliot J; Weaver, Casey T; Rodriguez, J Martin; Morrow, Casey D
2016-01-13
Fecal microbiota transplants (FMT) are an effective treatment for patients with gut microbe dysbiosis suffering from recurrent C. difficile infections. To further understand how FMT reconstitutes the patient's gut commensal microbiota, we have analyzed the colonization potential of the donor, recipient and recipient post transplant fecal samples using transplantation in gnotobiotic mice. A total of nine samples from three human donors, recipient's pre and post FMT were transplanted into gnotobiotic mice. Microbiome analysis of three donor fecal samples revealed the presence of a high relative abundance of commensal microbes from the family Bacteriodaceae and Lachnospiraceae that were almost absent in the three recipient pre FMT fecal samples (<0.01%). The microbe composition in gnotobiotic mice transplanted with the donor fecal samples was similar to the human samples. The recipient samples contained Enterobacteriaceae, Lactobacillaceae, Enterococcaceae in relative abundance of 43, 11, 8%, respectively. However, gnotobiotic mice transplanted with the recipient fecal samples had an average relative abundance of unclassified Clostridiales of 55%, approximately 7000 times the abundance in the recipient fecal samples prior to transplant. Microbiome analysis of fecal samples from the three patients early (2-4 weeks) after FMT revealed a microbe composition with the relative abundance of both Bacteriodaceae and Lachnospiraceae that was approximately 7% of that of the donor. In contrast, gnotobioitc mice transplanted with the fecal samples obtained from the three at early times post FMT revealed increases in the relative abundance of Bacteriodaceae and Lachnospiraceae microbe compositions to levels similar to the donor fecal samples. Furthermore, the unclassified Clostridiales in the recipient samples post FMT was reduced to an average of 10%. We have used transplantation into gnotobiotic mice to evaluate the colonization potential of microbiota in FMT patients early after transplant. The commensal microbes present at early times post FMT out competed non-commensal microbes (e.g. such as unclassified Clostridiales) for niche space. The selective advantage of these commensal microbes to occupy niches in the gastrointestinal tract helps to explain the success of FMT to reconstitute the gut microbe community of patients with recurrent C. difficile infections.
Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing
Hua, Xing; Zeller, Georg; Sunagawa, Shinichi; Voigt, Anita Y.; Hercog, Rajna; Goedert, James J.; Shi, Jianxin; Bork, Peer; Sinha, Rashmi
2016-01-01
Accumulating evidence indicates that the gut microbiota affects colorectal cancer development, but previous studies have varied in population, technical methods, and associations with cancer. Understanding these variations is needed for comparisons and for potential pooling across studies. Therefore, we performed whole-genome shotgun sequencing on fecal samples from 52 pre-treatment colorectal cancer cases and 52 matched controls from Washington, DC. We compared findings from a previously published 16S rRNA study to the metagenomics-derived taxonomy within the same population. In addition, metagenome-predicted genes, modules, and pathways in the Washington, DC cases and controls were compared to cases and controls recruited in France whose specimens were processed using the same platform. Associations between the presence of fecal Fusobacteria, Fusobacterium, and Porphyromonas with colorectal cancer detected by 16S rRNA were reproduced by metagenomics, whereas higher relative abundance of Clostridia in cancer cases based on 16S rRNA was merely borderline based on metagenomics. This demonstrated that within the same sample set, most, but not all taxonomic associations were seen with both methods. Considering significant cancer associations with the relative abundance of genes, modules, and pathways in a recently published French metagenomics dataset, statistically significant associations in the Washington, DC population were detected for four out of 10 genes, three out of nine modules, and seven out of 17 pathways. In total, colorectal cancer status in the Washington, DC study was associated with 39% of the metagenome-predicted genes, modules, and pathways identified in the French study. More within and between population comparisons are needed to identify sources of variation and disease associations that can be reproduced despite these variations. Future studies should have larger sample sizes or pool data across studies to have sufficient power to detect associations that are reproducible and significant after correction for multiple testing. PMID:27171425
Escherichia coli O104 in Feedlot Cattle Feces: Prevalence, Isolation and Characterization.
Shridhar, Pragathi B; Noll, Lance W; Shi, Xiaorong; Cernicchiaro, Natalia; Renter, David G; Bai, J; Nagaraja, T G
2016-01-01
Escherichia coli O104:H4, an hybrid pathotype of Shiga toxigenic and enteroaggregative E. coli, involved in a major foodborne outbreak in Germany in 2011, has not been detected in cattle feces. Serogroup O104 with H type other than H4 has been reported to cause human illnesses, but their prevalence and characteristics in cattle have not been reported. Our objectives were to determine the prevalence of E. coli O104 in feces of feedlot cattle, by culture and PCR detection methods, and characterize the isolated strains. Rectal fecal samples from a total of 757 cattle originating from 29 feedlots were collected at a Midwest commercial slaughter plant. Fecal samples, enriched in E. coli broth, were subjected to culture and PCR methods of detection. The culture method involved immunomagnetic separation with O104-specific beads and plating on a selective chromogenic medium, followed by serogroup confirmation of pooled colonies by PCR. If pooled colonies were positive for the wzxO104 gene, then colonies were tested individually to identify wzxO104-positive serogroup and associated genes of the hybrid strains. Extracted DNA from feces were also tested by a multiplex PCR to detect wzxO104-positive serogroup and associated major genes of the O104 hybrid pathotype. Because wzxO104 has been shown to be present in E. coli O8/O9/O9a, wzxO104-positive isolates and extracted DNA from fecal samples were also tested by a PCR targeting wbdDO8/O9/O9a, a gene specific for E. coli O8/O9/O9a serogroups. Model-adjusted prevalence estimates of E. coli O104 (positive for wzxO104 and negative for wbdDO8/O9/O9a) at the feedlot level were 5.7% and 21.2%, and at the sample level were 0.5% and 25.9% by culture and PCR, respectively. The McNemar's test indicated that there was a significant difference (P < 0.01) between the proportions of samples that tested positive for wzxO104 and samples that were positive for wzxO104, but negative for wbdDO8/O9/O9a by PCR and culture methods. A total of 143 isolates, positive for the wzxO104, were obtained in pure culture from 146 positive fecal samples. Ninety-two of the 143 isolates (64.3%) also tested positive for the wbdDO8/O9/O9a, indicating that only 51 (35.7%) isolates truly belonged to the O104 serogroup (positive for wzxO104 and negative for wbdDO8/O9/O9a). All 51 isolates tested negative for eae, and 16 tested positive for stx1 gene of the subtype 1c. Thirteen of the 16 stx1-positive O104 isolates were from one feedlot. The predominant serotype was O104:H7. Pulsed-field gel electrophoresis analysis indicated that stx1-positive O104:H7 isolates had 62.4% homology to the German outbreak strain and 67.9% to 77.5% homology to human diarrheagenic O104:H7 strains. The 13 isolates obtained from the same feedlot were of the same PFGE subtype with 100% Dice similarity. Although cattle do not harbor the O104:H4 pathotype, they do harbor and shed Shiga toxigenic O104 in the feces and the predominant serotype was O104:H7.
CDC Study Finds Fecal Contamination in Pools
... with soap after using the toilet or changing diapers. Check the chlorine level and pH before getting ... on bathroom breaks every 60 minutes or check diapers every 30–60 minutes. Change diapers in the ...
Quantitation of calcium metabolism in postmenopausal osteoporosis and in scoliosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronner, F.; Richelle, L. J.; Saville, P. D.
1963-06-01
By a combination of balance and isotope techniques, the following parameters of Ca metabolism were measured: pool size, rate of loss from pool, urinary excretion, fecal excretion, intake, endogenous fecal Ca, absorption, balance, bone formation, and bone resorption. The subjects were two normal women and five women with postmenopausal osteoporosis, aged 41 to 74 years, and four patients with scoliosis, aged 12 to 22 years. The latter were studied before, shortly after, and many months after immobilization in plaster casts. On the basis of observed relationships, it appeared that the negative Ca balance observed in the older women was duemore » to the low intensity of the various vectors of Ca metabolism, without clearcut distinction between the subjects with and without osteoporosis. Conversely, in the young patients with scoliosis, the negative balance incident to treatment by immobilization was associated with vectors of relatively high intensity whose relationships were altered temporarily.« less
Salgado, Miguel; Kruze, Juan; Collins, Michael T
2007-01-01
Fecal culture has been the primary method used to diagnose paratuberculosis in goats. It is laborious, slow, and expensive. Validation of enzyme-linked immunosorbent assays (ELISAs) on milk samples could make paratuberculosis testing more widely available for goat farmers. The aim of this study was to determine the accuracy of serum and milk ELISAs for paratuberculosis, relative to fecal culture, in Chilean dairy goats. Eight dairy goat herds were selected. Feces, blood, and milk samples were collected from all female goats >2 years old. Fecal samples were cultured using Herrold egg yolk medium with mycobactin J and antibiotics. Serum and milk samples were tested using a commercial ELISA kit for Mycobacterium avium subsp. paratuberculosis antibody detection. A total of 383 goats were tested by ELISA and fecal culture. The sensitivity of ELISA on serum and milk relative to fecal culture was 74.3% (95% CI: 59.8-88.8) and 60% (95% CI: 43.8-76.2), respectively. The corresponding values for ELISA specificity based on the percentage of non- M. avium subsp. paratuberculosis-infected goats testing ELISA-negative were 98.6% (95% CI: 96.6-100) and 99.3% (95% CI: 97.9-100) on serum and milk, respectively. Proportions of positive results for serum and fecal samples were significantly different, whereas the proportions of positive results for milk and fecal samples were not significantly different. The milk ELISA had a moderate level of agreement with fecal culture results (Kappa = 0.57). The paratuberculosis ELISA on goat milk samples may be a cost-effective, accurate alternative to fecal culture.
Escherichia coli and fecal-coliform bacteria as indicators of recreational water quality
Francy, D.S.; Myers, Donna N.; Metzker, K.D.
1993-01-01
In 1986, the U.S. Environmental Protection Agency (USEPA) recommended that Escherichia coli (E. coli) be used in place of fecal-coliform bacteria in State recreational water-quality standards as an indicator of fecal contamination. This announcement followed an epidemiological study in which E. coli concentration was shown to be a better predictor of swimming-associated gastrointestinal illness than fecal-coliform concentration. Water-resource managers from Ohio have decided to collect information specific to their waters and decide whether to use E. coli or fecal-coliform bacteria as the basis for State recreational water-quality standards. If one indicator is a better predictor of recreational water quality than the other and if the relation between the two indicators is variable, then the indicator providing the most accurate measure of recreational water quality should be used in water-quality standards. Water-quality studies of the variability of concentrations of E. coli to fecal-coliform bacteria have shown that (1) concentrations of the two indicators are positively correlated, (2) E. coli to fecal-coliform ratios differ considerably from site to site, and (3) the E. coli criteria recommended by USEPA may be more difficult to meet than current (1992) fecal-coliform standards. In this study, a statistical analysis was done on concentrations of E. coli and fecal-coliform bacteria in water samples collected by two government agencies in Ohio-- the U.S. Geological Survey (USGS) and the Ohio River Valley Water Sanitation Commission (ORSANCO). Data were organized initially into five data sets for statistical analysis: (1) Cuyahoga River, (2) Olentangy River, (3) Scioto River, (4) Ohio River at Anderson Ferry, and (5) Ohio River at Cincinnati Water Works and Tanners Creek. The USGS collected the data in sets 1, 2, and 3, whereas ORSANCO collected the data in sets 4 and 5. The relation of E. coli to fecal-coliform concentration was investigated by use of linear-regression analysis and analysis of covariance. Log-transformed E. coli and fecal-coliform concentrations were highly correlated in all data sets (r-values ranged from 0.929 to 0.984). Linear regression analysis on USGS and ORSANCO data sets showed that concentration of E. coli could be predicted from fecal-coliform concentration (coefficients of determination (R2) ranged from 0.863 to 0.970). Results of analysis of covariance (ANCOVA) indicated that the predictive equations among the three USGS data sets and two ORSANCO data sets were not significantly different and that the data could be pooled into two large data sets, one for USGS data and one for ORSANCO data. However, results of ANCOVA indicated that USGS and ORSANCO data could not be pooled into one large data set. Predictions of E. coli concentrations calculated for USGS And ORSANCO regression relations, based on fecal-coliform concentrations set to equal Ohio water-quality standards, further showed the differences in E. coli to fecal-coliform relations among data sets. For USGS data, a predicted geometric mean of 176 col/100 mL (number of colonies per 100 milliliters) was greater than the current geometric-mean E. coli standard for bathing water of 126 col/100mL. In contrast, for ORSANCO data, the predicted geometric mean of 101 col/100 mL was less than the current E. coli standard. The risk of illness associated with predicted E. coli concentrations for USGS and ORSANCO data was evaluated by use of the USEPA regression equation that predicts swimming-related gastroenteritis rates from E. coli concentrations.1 The predicted geometric-mean E. coli concentrations for bathing water of 176 col/100 mL for USGS data and 101 col/100 mL for ORSANCO data would allow 9.4 and 7.1 gastrointestinal illnesses per 1,000 swimmers, respectively. This prediction compares well with the illness rate of 8 individuals per 1,000 swimmers estimated by the USEPA for an E. coli concentration of 126 col/100 mL. Therefore, the
Carroll, Ian M; Ringel-Kulka, Tamar; Siddle, Jennica P; Klaenhammer, Todd R; Ringel, Yehuda
2012-01-01
The handling and treatment of biological samples is critical when characterizing the composition of the intestinal microbiota between different ecological niches or diseases. Specifically, exposure of fecal samples to room temperature or long term storage in deep freezing conditions may alter the composition of the microbiota. Thus, we stored fecal samples at room temperature and monitored the stability of the microbiota over twenty four hours. We also investigated the stability of the microbiota in fecal samples during a six month storage period at -80°C. As the stability of the fecal microbiota may be affected by intestinal disease, we analyzed two healthy controls and two patients with irritable bowel syndrome (IBS). We used high-throughput pyrosequencing of the 16S rRNA gene to characterize the microbiota in fecal samples stored at room temperature or -80°C at six and seven time points, respectively. The composition of microbial communities in IBS patients and healthy controls were determined and compared using the Quantitative Insights Into Microbial Ecology (QIIME) pipeline. The composition of the microbiota in fecal samples stored for different lengths of time at room temperature or -80°C clustered strongly based on the host each sample originated from. Our data demonstrates that fecal samples exposed to room or deep freezing temperatures for up to twenty four hours and six months, respectively, exhibit a microbial composition and diversity that shares more identity with its host of origin than any other sample.
Thöni, A; Mussner, K; Ploner, F
2010-06-01
The aim of this study was to document the practice of 2625 water births at Vipiteno over the period 1997-2009 and compare outcome and safety with normal vaginal delivery. The microbial load of the birth pool water was analyzed, and neonatal infection rates after water birth and after land delivery were compared. Methods. The variables analyzed in the 1152 primiparae were: length of labor; incidence of episiotomies and tears; arterial cord blood pH and base excess values; percentage of pH<7.10 and base excess values >/=12 mmol/L. In all 2625 water births, the variables were: analgesic requirements; shoulder dystocia/ neonatal complications; and deliveries after a previous caesarean section. Bacterial cultures of water samples obtained from the bath after filling (sample A) and after delivery (sample B) were analyzed in 300 cases. The pediatricians recorded signs of suspected neonatal infection after water birth and after conventional vaginal delivery. There was a marked reduction in labor duration in the primiparae who birthed in water; the episiotomy rate was 0.46%. Owing to the pain relieving effect of the warm birth pool water, pain relievers (opiates) were required in only 12.9% of water births. Arterial cord blood pH and base excess values were comparable in both groups. Shoulder dystocia/neonatal complications were managed in 4 water births; 105 women with a previous caesarean section had a water birth. In sample A, the isolated micro-organisms were Legionella spp. and Pseudomonas aeruginosa; in sample B, there was elevated colonization of birth pool water by total coliform bacilli and Escherichia coli. Despite microbial contamination of birth pool water during delivery, antibiotic prophylaxis, as indicated by clinical and laboratory suspicion of infection, was administered to only 0.98% of babies after water birth versus 1.64% of those after land delivery. Results suggest clear medical advantages of water birthing: significantly shorter labor duration among the primiparae; a net reduction in episiotomy rates; and a marked drop in requests for pain relievers. During expulsion of the fetus at delivery, fecal matter is released into the birth pool water, contaminating it with micro-organisms. Despite this, water birthing was found to be safe for the neonate and did not carry a higher risk of neonatal infection when compared with conventional vaginal delivery.
A proposal to standardize reporting units for fecal immunochemical tests for hemoglobin.
Fraser, Callum G; Allison, James E; Halloran, Stephen P; Young, Graeme P
2012-06-06
Fecal immunochemical tests for hemoglobin are replacing traditional guaiac fecal occult blood tests in population screening programs for many reasons. However, the many available fecal immunochemical test devices use a range of sampling methods, differ with regard to hemoglobin stability, and report hemoglobin concentrations in different ways. The methods for sampling, the mass of feces collected, and the volume and characteristics of the buffer used in the sampling device also vary among fecal immunochemical tests, making comparisons of test performance characteristics difficult. Fecal immunochemical test results may be expressed as the hemoglobin concentration in the sampling device buffer and, sometimes, albeit rarely, as the hemoglobin concentration per mass of feces. The current lack of consistency in units for reporting hemoglobin concentration is particularly problematic because apparently similar hemoglobin concentrations obtained with different devices can lead to very different clinical interpretations. Consistent adoption of an internationally accepted method for reporting results would facilitate comparisons of outcomes from these tests. We propose a simple strategy for reporting fecal hemoglobin concentration that will facilitate the comparison of results between fecal immunochemical test devices and across clinical studies. Such reporting is readily achieved by defining the mass of feces sampled and the volume of sample buffer (with confidence intervals) and expressing results as micrograms of hemoglobin per gram of feces. We propose that manufacturers of fecal immunochemical tests provide this information and that the authors of research articles, guidelines, and policy articles, as well as pathology services and regulatory bodies, adopt this metric when reporting fecal immunochemical test results.
Wasser, Samuel K; Hunt, Kathleen E
2005-06-01
There is an urgent need for noninvasive methods to study reproduction and environmental stress in at-risk species such as the northern spotted owl (Strix occidentalis caurina). Two related owl species (barred owl and great horned owl) were used as surrogates to validate hormone assays for fecal metabolites of progesterone, 17beta-estradiol, testosterone, and corticosterone. Infusions of radiolabeled hormones showed that the owls excreted most hormone within 6 h. Feces and urine contained roughly equal amounts of hormone, and most fecal hormone metabolites were quite polar. The testosterone and corticosterone assays in this study bound to the major excreted metabolites of these hormones, but two progesterone assays did not appreciably bind to the major progesterone metabolites. All assays showed excellent parallelism with hydrolyzed and unhydrolyzed samples and with previously dried or undried fecal samples. Thus, samples do not require hydrolysis or prior drying. Samples from a female barred owl had significantly higher fecal estrogen, lower fecal testosterone, and higher fecal estrogen/testosterone ratio than samples from two male barred owls. The fecal estrogen/testosterone ratio was the most accurate predictor of owl gender, particularly if two or more samples are available from the same individual. Fecal corticosterone metabolites also demonstrated considerable utility for wild northern spotted owls. Fecal glucocorticoid levels varied by gender and breeding stage, being highest in male northern spotted owls early in the breeding season and highest in females when nestlings were fledging. Collectively, these studies show that noninvasive fecal hormone measurements show great promise for noninvasive assessment of reproduction and stress in wild owls.
Converse, Reagan R; Blackwood, A Denene; Kirs, Marek; Griffith, John F; Noble, Rachel T
2009-11-01
Concentrations of fecal indicator bacteria (FIB; e.g. Escherichia coli, and Enterococcus sp.) can only be used in limited ways for determining the source of fecal contamination in recreational waters because they cannot distinguish human from non-human fecal contamination. Several Bacteroides spp. have been suggested as potential alternative indicators. We have developed a rapid, culture-independent method for quantifying fecal Bacteroides spp. using quantitative PCR (QPCR) targeting the 16S rRNA gene. The assay specifically targets and quantifies the most common human Bacteroides spp. The details of the method are presented, including analyses of a wide range of fecal samples from different organisms. Specificity and performance of the QPCR assay were also tested via a laboratory experiment where human sewage and gull guano were inoculated into a range of environmental water samples. Concentrations of fecal Bacteroides spp., total Enterococcus sp., Enterococcus faecium, Enterococcus faecalis, and Enterococcus casseliflavus were measured using QPCR, and total Enterococcus sp. and E. coli were quantified by membrane filtration (MF). Samples spiked with gull guano were highly concentrated with total Enterococcus sp., E. coli, E. faecalis, and E. casseliflavus, demonstrating that these indicators are prominent in animal feces. On the other hand, fecal Bacteroides spp. concentrations were high in samples containing sewage and were relatively low in samples spiked with gull guano. Sensitivity and specificity results suggest that the rapid fecal Bacteroides spp. QPCR assay may be a useful tool to effectively predict the presence and concentration of human-specific fecal pollution.
Gaffney, Patricia M; Kennedy, Melissa; Terio, Karen; Gardner, Ian; Lothamer, Chad; Coleman, Kathleen; Munson, Linda
2012-12-01
Cheetahs (Acinonyx jubatus) are a highly threatened species because of habitat loss, human conflict, and high prevalence of disease in captivity. An epidemic of feline infectious peritonitis and concern for spread of infectious disease resulted in decreased movement of cheetahs between U.S. zoological facilities for managed captive breeding. Identifying the true feline coronavirus (FCoV) infection status of cheetahs is challenging because of inconsistent correlation between seropositivity and fecal viral shedding. Because the pattern of fecal shedding of FCoV is unknown in cheetahs, this study aimed to assess the frequency of detectable fecal viral shedding in a 30-day period and to determine the most efficient fecal sampling strategy to identify cheetahs shedding FCoV. Fecal samples were collected from 16 cheetahs housed at seven zoological facilities for 30 to 46 consecutive days; the samples were evaluated for the presence of FCoV by reverse transcription-nested polymerase chain reaction (RT-nPCR). Forty-four percent (7/16) of cheetahs had detectable FCoV in feces, and the proportion of positive samples for individual animals ranged from 13 to 93%. Cheetahs shed virus persistently, intermittently, or rarely over 30-46 days. Fecal RT-nPCR results were used to calculate the probability of correctly identifying a cheetah known to shed virus given multiple hypothetical fecal collection schedules. The most efficient hypothetical fecal sample collection schedule was evaluation of five individual consecutive fecal samples, resulting in a 90% probability of identifying a known shedder. Demographic and management risk factors were not significantly associated (P < or = 0.05) with fecal viral shedding. Because some cheetahs shed virus intermittently to rarely, fecal sampling schedules meant to identify all known shedders would be impractical with current tests and eradication of virus from the population unreasonable. Managing the captive population as endemically infected with FCoV may be a more feasible approach.
Ionic liquid-based reagents improve the stability of midterm fecal sample storage.
Hao, Lilan; Xia, Zhongkui; Yang, Huanming; Wang, Jian; Han, Mo
2017-08-01
Fecal samples are widely used in metagenomic research, which aims to elucidate the relationship between human health and the intestinal microbiota. However, the best conditions for stable and reliable storage and transport of these samples at room temperature are still unknown, and whether samples stored at room temperature for several days will maintain their microbiota composition is still unknown. Here, we established and tested a preservation method using reagents containing imidazolium- or pyridinium-based ionic liquids. We stored human fecal samples in these reagents for up to 7 days at different temperatures. Subsequently, all samples were sequenced and compared with fresh samples and/or samples treated under other conditions. The 16S rRNA sequencing results suggested that ionic liquid-based reagents could stabilize the composition of the microbiota in fecal samples during a 7-day storage period, particularly when stored at room temperature. Thus, this method may have implications in the storage of fecal samples for metagenomic research. Copyright © 2017 Elsevier B.V. All rights reserved.
Tedjo, Danyta I.; Jonkers, Daisy M. A. E.; Savelkoul, Paul H.; Masclee, Ad A.; van Best, Niels; Pierik, Marieke J.; Penders, John
2015-01-01
Large-scale cohort studies are currently being designed to investigate the human microbiome in health and disease. Adequate sampling strategies are required to limit bias due to shifts in microbial communities during sampling and storage. Therefore, we examined the impact of different sampling and storage conditions on the stability of fecal microbial communities in healthy and diseased subjects. Fecal samples from 10 healthy controls, 10 irritable bowel syndrome and 8 inflammatory bowel disease patients were collected on site, aliquoted immediately after defecation and stored at -80°C, -20°C for 1 week, at +4°C or room temperature for 24 hours. Fecal transport swabs (FecalSwab, Copan) were collected and stored for 48-72 hours at room temperature. We used pyrosequencing of the 16S gene to investigate the stability of microbial communities. Alpha diversity did not differ between all storage methods and -80°C, except for the fecal swabs. UPGMA clustering and principal coordinate analysis showed significant clustering by test subject (p<0.001) but not by storage method. Bray-Curtis dissimilarity and (un)weighted UniFrac showed a significant higher distance between fecal swabs and -80°C versus the other methods and -80°C samples (p<0.009). The relative abundance of Ruminococcus and Enterobacteriaceae did not differ between the storage methods versus -80°C, but was higher in fecal swabs (p<0.05). Storage up to 24 hours (at +4°C or room temperature) or freezing at -20°C did not significantly alter the fecal microbial community structure compared to direct freezing of samples from healthy subjects and patients with gastrointestinal disorders. PMID:26024217
Gerwin, Philip M; Arbona, Rodolfo J Ricart; Riedel, Elyn R; Lepherd, Michelle L; Henderson, Ken S; Lipman, Neil S
2017-01-01
There is no consensus regarding the best practice for detecting murine pinworm infections. Initially, we evaluated 7 fecal concentration methods by using feces containing Aspiculuris tetraptera (AT) eggs (n = 20 samples per method). Sodium nitrate flotation, sodium nitrate centrifugation, Sheather sugar centrifugation, and zinc sulfate centrifugation detected eggs in 100% of samples; zinc sulfate flotation and water sedimentation detected eggs in 90%. All had better detection rates than Sheather sugar flotation (50%). To determine optimal detection methods, Swiss Webster mice were exposed to Syphacia obvelata (SO; n = 60) or AT (n = 60). We compared the following methods at days 0, 30, and 90, beginning 21 or 28 d after SO and AT exposure, respectively: fecal concentration (AT only), anal tape test (SO only), direct examination of intestinal contents (cecum and colon), Swiss roll histology (cecum and colon), and PCR analysis (pooled fur swab and feces). Detection rates for SO-exposed mice were: PCR analysis, 45%; Swiss roll histology, 30%; intestinal content exam, 27%; and tape test, 27%. The SO detection rate for PCR analysis was significantly greater than that for the tape test. Detection rates for AT-exposed mice were: intestinal content exam, 53%; PCR analysis, 33%; fecal flotation, 22%; and Swiss roll histology, 17%. The AT detection rate of PCR analysis combined with intestinal content examination was greater than for PCR analysis only and the AT detection rate of intestinal content examination was greater than for Swiss roll histology. Combining PCR analysis with intestinal content examination detected 100% of infected animals. No single test detected all positive animals. We recommend combining PCR analysis with intestinal content examination for optimal pinworm detection. PMID:28905712
Gasbarre, Louis C.; Ballweber, Lora R.; Stromberg, Bert E.; Dargatz, David A.; Rodriguez, Judy M.; Kopral, Christine A.; Zarlenga, Dante S.
2015-01-01
During the United States Department of Agriculture (USDA) National Animal Health Monitoring System’s (NAHMS) 2007–2008 beef study, producers from 24 states were offered the opportunity to evaluate their animals for internal parasites and for overall responses to treatment with anthelmintics. A lapse of 45 d was required between initial sampling and any previous treatments. Choice of anthelmintic (oral benzimidazoles, and both injectable and pour-on endectocides) was at the discretion of the producer so as not to alter the local control programs. Fresh fecal samples were collected from 20 animals, or from the entire group if less than 20, then randomly assigned to 1 of 3 participating laboratories for examination. Analyses consisted of double centrifugation flotation followed by enumeration of strongyle, Nematodirus, and Trichuris eggs (the presence of coccidian oocysts and tapeworm eggs was also noted). Where strongyle eggs per gram (epg) exceeded 30, aliquots from 2 to 6 animals were pooled for egg isolation and polymerase chain reaction (PCR) analysis for the presence of Ostertagia, Cooperia, Haemonchus, Oesophagostomum, and Trichostrongylus. Results from 72 producers (19 States) indicated that fecal egg count reductions were < 90% in 1/3 of the operations. All operations exhibiting less than a 90% reduction had used pour-on macrocyclic lactones as the anthelmintic treatment. While some of these less than expected reductions could have been the result of improper drug application, PCR analyses of the parasite populations surviving treatment, coupled with follow-up studies at a limited number of sites, indicated that less than expected reductions were most likely due to anthelmintic resistance in Cooperia spp. and possibly Haemonchus spp. PMID:26424910
Rapid regrowth and detection of microbial contaminants in equine fecal microbiome samples
Beckers, Kalie F.; Childers, Gary W.
2017-01-01
Advances have been made to standardize 16S rRNA gene amplicon based studies for inter-study comparisons, yet there are many opportunities for systematic error that may render these comparisons improper and misleading. The fecal microbiome of horses has been examined previously, however, no universal horse fecal collection method and sample processing procedure has been established. This study was initialized in large part to ensure that samples collected by different individuals from different geographical areas (i.e., crowdsourced) were not contaminated due to less than optimal sampling or holding conditions. In this study, we examined the effect of sampling the surface of fecal pellets compared to homogenized fecal pellets, and also the effect of time of sampling after defecation on ‘bloom’ taxa (bloom taxa refers to microbial taxa that can grow rapidly in horse feces post-defecation) using v4 16S rRNA amplicon libraries. A total of 1,440,171 sequences were recovered from 65 horse fecal samples yielding a total of 3,422 OTUs at 97% similarity. Sampling from either surface or homogenized feces had no effect on diversity and little effect on microbial composition. Sampling at various time points (0, 2, 4, 6, 12 h) had a significant effect on both diversity and community composition of fecal samples. Alpha diversity (Shannon index) initially increased with time as regrowth taxa were detected in the amplicon libraries, but by 12 h the diversity sharply decreased as the community composition became dominated by a few bloom families, including Bacillaceae, Planococcaeae, and Enterococcaceae, and other families to a lesser extent. The results show that immediate sampling of horse feces must be done in order to ensure accurate representation of horse fecal samples. Also, several of the bloom taxa found in this study are known to occur in human and cattle feces post defecation. The dominance of these taxa in feces shortly after defecation suggests that the feces is an important habitat for these organisms, and horse fecal samples that were improperly stored can be identified by presence of bloom taxa. PMID:29091944
Evaluation of Porcelain Cup Soil Water Samplers for Bacteriological Sampling1
Dazzo, Frank B.; Rothwell, Donald F.
1974-01-01
The validity of obtaining soil water for fecal coliform analyses by porcelain cup soil water samplers was examined. Numbers from samples of manure slurry drawn through porcelain cups were reduced 100- to 10,000,000-fold compared to numbers obtained from the external manure slurry, and 65% of the cups yielded coliform-free samples. Fecal coliforms adsorbed to cups apparently were released, thus influencing the counts of subsequent samples. Fecal coliforms persisted in soil water samplers buried in soil and thus could significantly influence the coliform counts of water samples obtained a month later. These studies indicate that porcelain cup soil water samplers do not yield valid water samples for fecal coliform analyses. Images PMID:16349998
Liu, Chengfang; Lu, Louise; Zhang, Linxiu; Bai, Yu; Medina, Alexis; Rozelle, Scott; Smith, Darvin Scott; Zhou, Changhai; Zang, Wei
2017-09-01
Soil-transmitted helminths, or parasitic intestinal worms, are among the most prevalent and geographically widespread parasitic infections in the world. Accurate diagnosis and quantification of helminth infection are critical for informing and assessing deworming interventions. The Kato-Katz thick smear technique, the most widely used laboratory method to quantitatively assess infection prevalence and infection intensity of helminths, has often been compared with other methods. Only a few small-scale studies, however, have considered ways to improve its diagnostic sensitivity. This study, conducted among 4,985 school-age children in an area of rural China with moderate prevalence of helminth infection, examines the effect on diagnostic sensitivity of the Kato-Katz technique when two fecal samples collected over consecutive days are examined and compared with a single sample. A secondary aim was to consider cost-effectiveness by calculating an estimate of the marginal costs of obtaining an additional fecal sample. Our findings show that analysis of an additional fecal sample led to increases of 23%, 26%, and 100% for Ascaris lumbricoides, Trichuris trichiura , and hookworm prevalence, respectively. The cost of collecting a second fecal sample for our study population was approximately USD4.60 per fecal sample. Overall, the findings suggest that investing 31% more capital in fecal sample collection prevents an underestimation of prevalence by about 21%, and hence improves the diagnostic sensitivity of the Kato-Katz method. Especially in areas with light-intensity infections of soil-transmitted helminths and limited public health resources, more accurate epidemiological surveillance using multiple fecal samples will critically inform decisions regarding infection control and prevention.
Ahmed, W; Harwood, V J; Nguyen, K; Young, S; Hamilton, K; Toze, S
2016-01-01
Avian fecal droppings may negatively impact environmental water quality due to the presence of high concentrations of fecal indicator bacteria (FIB) and zoonotic pathogens. This study was aimed at evaluating the performance characteristics and utility of a Helicobacter spp. associated GFD marker by screening 265 fecal and wastewater samples from a range of avian and non-avian host groups from two continents (Brisbane, Australia and Florida, USA). The host-prevalence and -specificity of this marker among fecal and wastewater samples tested from Brisbane were 0.58 and 0.94 (maximum value of 1.00). These values for the Florida fecal samples were 0.30 (host-prevalence) and 1.00 (host-specificity). The concentrations of the GFD markers in avian and non-avian fecal nucleic acid samples were measured at a test concentration of 10 ng of nucleic acid at Brisbane and Florida laboratories using the quantitative PCR (qPCR) assay. The mean concentrations of the GFD marker in avian fecal nucleic acid samples (5.2 × 10(3) gene copies) were two orders of magnitude higher than non-avian fecal nucleic acid samples (8.6 × 10(1) gene copies). The utility of this marker was evaluated by testing water samples from the Brisbane River, Brisbane and a freshwater creek in Florida. Among the 18 water samples tested from the Brisbane River, 83% (n = 18) were positive for the GFD marker, and the concentrations ranged from 6.0 × 10(1)-3.2 × 10(2) gene copies per 100 mL water. In all, 92% (n = 25) water samples from the freshwater creek in Florida were also positive for the GFD marker with concentrations ranging from 2.8 × 10(1)-1.3 × 10(4) gene copies per 100 mL water. Based on the results, it can be concluded that the GFD marker is highly specific to avian host groups, and could be used as a reliable marker to detect the presence and amount of avian fecal pollution in environmental waters. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Effect of pH on fecal recovery of energy derived from volatile fatty acids.
Kien, C L; Liechty, E A
1987-01-01
We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry.
Koskey, Amber M.; Fisher, Jenny C.; Traudt, Mary F.; Newton, Ryan J.
2014-01-01
Gulls are prevalent in beach environments and can be a major source of fecal contamination. Gulls have been shown to harbor a high abundance of fecal indicator bacteria (FIB), such as Escherichia coli and enterococci, which can be readily detected as part of routine beach monitoring. Despite the ubiquitous presence of gull fecal material in beach environments, the associated microbial community is relatively poorly characterized. We generated comprehensive microbial community profiles of gull fecal samples using Roche 454 and Illumina MiSeq platforms to investigate the composition and variability of the gull fecal microbial community and to measure the proportion of FIB. Enterococcaceae and Enterobacteriaceae were the two most abundant families in our gull samples. Sequence comparisons between short-read data and nearly full-length 16S rRNA gene clones generated from the same samples revealed Catellicoccus marimammalium as the most numerous taxon among all samples. The identification of bacteria from gull fecal pellets cultured on membrane-Enterococcus indoxyl-β-d-glucoside (mEI) plates showed that the dominant sequences recovered in our sequence libraries did not represent organisms culturable on mEI. Based on 16S rRNA gene sequencing of gull fecal isolates cultured on mEI plates, 98.8% were identified as Enterococcus spp., 1.2% were identified as Streptococcus spp., and none were identified as C. marimammalium. Illumina deep sequencing indicated that gull fecal samples harbor significantly higher proportions of C. marimammalium 16S rRNA gene sequences (>50-fold) relative to typical mEI culturable Enterococcus spp. C. marimammalium therefore can be confidently utilized as a genetic marker to identify gull fecal pollution in the beach environment. PMID:24242244
Forrester, Donald J.; Carpenter, J.W.; Blankinship, D.R.
1978-01-01
Coccidial oocysts were observed in 6 of 19 fecal samples from free-ranging whooping cranes (Grus americana) and 4 of 16 samples from captive whooping cranes. Eimeria gruis occurred in four free-ranging whooping cranes and E. reichenowi in two free-ranging and two captive whooping cranes. Fecal samples from two captive cranes contained oocysts of Isospora lacazei which was considered a spurious parasite. Oocysts of both species of Eimeria were prevalent in fecal samples collected from three free-ranging Canadian sandhill cranes (G. canadensis rowani) from whooping crane wintering grounds in Texas. These coccidia were prevalent also in fecal samples from 14 sandhill cranes (of 4 subspecies) maintained in captivity at the Patuxent Wildlife Research Center in Maryland.
Weingarden, Alexa R; Chen, Chi; Bobr, Aleh; Yao, Dan; Lu, Yuwei; Nelson, Valerie M; Sadowsky, Michael J; Khoruts, Alexander
2014-02-15
Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for refractory, recurrent Clostridium difficile infection (CDI), which develops following antibiotic treatments. Intestinal microbiota play a critical role in the metabolism of bile acids in the colon, which in turn have major effects on the lifecycle of C. difficile bacteria. We hypothesized that fecal bile acid composition is altered in patients with recurrent CDI and that FMT results in its normalization. General metabolomics and targeted bile acid analyses were performed on fecal extracts from patients with recurrent CDI treated with FMT and their donors. In addition, 16S rRNA gene sequencing was used to determine the bacterial composition of pre- and post-FMT fecal samples. Taxonomic bacterial composition of fecal samples from FMT recipients showed rapid change and became similar to the donor after the procedure. Pre-FMT fecal samples contained high concentrations of primary bile acids and bile salts, while secondary bile acids were nearly undetectable. In contrast, post-FMT fecal samples contained mostly secondary bile acids, as did non-CDI donor samples. Therefore, our analysis showed that FMT resulted in normalization of fecal bacterial community structure and metabolic composition. Importantly, metabolism of bile salts and primary bile acids to secondary bile acids is disrupted in patients with recurrent CDI, and FMT corrects this abnormality. Since individual bile salts and bile acids have pro-germinant and inhibitory activities, the changes suggest that correction of bile acid metabolism is likely a major mechanism by which FMT results in a cure and prevents recurrence of CDI.
Kistler, Whitney M; Parlos, Julie A; Peper, Steven T; Dunham, Nicholas R; Kendall, Ronald J
2016-01-01
Oxyspirura petrowi is a parasitic nematode that infects wild birds. This parasite has a broad host range, but has recently been reported in high prevalences from native Galliformes species in the United States. In order to better understand the impact O. petrowi has on wild bird populations, we developed a quantitative PCR protocol to detect infections in wild northern bobwhites (Colinus virginianus). We used paired fecal and cloacal swab samples from wild caught and experimentally infected northern bobwhites and matching fecal float data from experimentally infected birds to validate our assay. Overall we detected more positive birds from fecal samples than the paired cloacal swabs and there was strong agreement between the qPCR results from fecal samples and from fecal flotation (84%; κ = 0.69 [0.53-0.84 95% CI]). We also detected O. petrowi DNA in ten replicates of samples spiked with one O. petrowi egg. This qPCR assay is an effective assay to detect O. petrowi infections in wild birds. Our results suggest that fecal samples are the most appropriate sample for detecting infections; although, cloacal swabs can be useful for determining if O. petrowi is circulating in a population.
Kistler, Whitney M.; Parlos, Julie A.; Peper, Steven T.; Dunham, Nicholas R.; Kendall, Ronald J.
2016-01-01
Oxyspirura petrowi is a parasitic nematode that infects wild birds. This parasite has a broad host range, but has recently been reported in high prevalences from native Galliformes species in the United States. In order to better understand the impact O. petrowi has on wild bird populations, we developed a quantitative PCR protocol to detect infections in wild northern bobwhites (Colinus virginianus). We used paired fecal and cloacal swab samples from wild caught and experimentally infected northern bobwhites and matching fecal float data from experimentally infected birds to validate our assay. Overall we detected more positive birds from fecal samples than the paired cloacal swabs and there was strong agreement between the qPCR results from fecal samples and from fecal flotation (84%; κ = 0.69 [0.53–0.84 95% CI]). We also detected O. petrowi DNA in ten replicates of samples spiked with one O. petrowi egg. This qPCR assay is an effective assay to detect O. petrowi infections in wild birds. Our results suggest that fecal samples are the most appropriate sample for detecting infections; although, cloacal swabs can be useful for determining if O. petrowi is circulating in a population. PMID:27893772
Stevenson, Erika T; Gese, Eric M; Neuman-Lee, Lorin A; French, Susannah S
2018-03-01
Knowledge of endocrine stress responses can be advantageous for understanding how animals respond to their environment. One tool in wildlife endocrinology is to measure the adrenocortical activity as a parameter of disturbance of animals. Fecal glucocorticoid metabolites (GCMs) provide a noninvasive assessment of adrenocortical activity. Using an adrenocorticotropic hormone (ACTH) challenge administered to 28 captive coyotes (Canis latrans), we measured the levels of plasma cortisol, and fecal cortisol and corticosterone metabolites (i.e., GCMs). Our goal was to determine the dose-response in the plasma and fecal samples following the injection and determine if there were effects of sex, age, and time of day. Specifically, animals were anesthetized for ~ 90 min with treatment animals intravenously injected with exogenous ACTH and control animals receiving saline. We collected blood samples prior to injection and at 4 different time points post-injection. We also collected fecal samples 2 days pre- and 2 days post-injection to measure fecal GCMs and determine if an endocrine stress response could be detected in fecal samples. We found a definite response in cortisol levels in the plasma for coyotes to the ACTH challenge. There was a response in fecal corticosterone 1 day post-injection, but the control males showed a similar response indicating a handling effect. Fecal cortisol levels did not indicate a response to the ACTH challenge, and were significantly lower than corticosterone concentrations. We also found significant sex, but not age or diurnal, differences in fecal GCMs. Radioimmunoassays for fecal corticosterone levels appeared to be a reliable indicator of physiological stress in coyotes.
Medalie, Laura; Matthews, Leslie J.; Stelzer, Erin A.
2011-01-01
The use of host-associated Bacteroidales-based 16S ribosomal ribonucleic acid genetic markers was investigated as a tool for providing information to managers on sources of bacterial impairment in Vermont streams. The study was conducted during 2009 in two watersheds on the U.S. Environmental Protection Agency's 303(d) List of Impaired Waters, the Huntington and the Mettawee Rivers. Streamwater samples collected during high-flow and base-flow conditions were analyzed for concentrations of Escherichia coli (E. coli) and Bacteroidales genetic markers (General AllBac, Human qHF183 and BacHum, Ruminant BoBac, and Canid BacCan) to identify humans, ruminants, and canids as likely or unlikely major sources of fecal contamination. Fecal reference samples from each of the potential source groups, as well as from common species of wildlife, were collected during the same season and from the same watersheds as water samples. The results were combined with data from other states to assess marker cross reaction and to relate marker results to E. coli, the regulated water-quality parameter, with a higher degree of statistical significance. Results from samples from the Huntington River collected under different flow conditions on three dates indicated that humans were unlikely to be a major source of fecal contamination, except for a single positive result at one station that indicated the potential for human sources. Ruminants (deer, moose, cow, or sheep) were potential sources of fecal contamination at all six stations on the Huntington River during one high-flow event and at all but two stations during the other high-flow event. Canids were potential sources of fecal contamination at some stations during two high-flow events, with genetic-marker concentrations in samples from two of the six stations showing consistent positive results for canids for both storm dates. A base-flow sample showed no evidence of major fecal contamination in the Huntington River from humans, ruminants, or canids. Results from samples from the Mettawee River watershed collected during high-flow conditions (12 storm samples on 2 dates at 6 stations) indicated that there was no evidence of fecal contamination from humans in seven samples and possible evidence in five samples. Results for humans were positive for only one station during both storm events. For two of the five samples with evidence for human fecal contamination, results for two different human genetic markers agreed, but results from three samples were inconsistent. In samples from five of the six Mettawee stations, ruminants were a potential source of fecal contamination on at least one of the three sampled dates, including three positive results for the base-flow sample. Yet samples from all of the stations that showed positive results for ruminants did so for only one or two of the three sampled dates. Samples from only one of the six stations gave consistent results, which were negative for ruminants for all three dates. In the Mettawee River base-flow sample, humans were an unlikely source of major fecal contamination. Factors that may influence results and conclusions include the timing of sample collection relative to the storm event; variability of E. coli and Bacteroidales concentrations in fecal reference samples and in water; sampling and analytical errors; the potential cross reactivity of host-associated genetic markers; and different persistence and survival rates of E. coli bacteria and Bacteroidales genetic markers on land, in water, and by season. These factors interfere with the ability to directly relate Bacteroidales concentrations to E. coli concentrations in river samples. It must be recognized that while use of Bacteroidales genetic markers as a source tracking tool coupled with the interpretive approach described in this report cannot be used quantitatively to pinpoint sources, it can be used to exclude potential sources as major contributors to fecal contamination.
Gómez, Marta; Moles, Laura; Espinosa-Martos, Irene; Bustos, Gerardo; de Vos, Willem M.; Rodríguez, Juan M.; Fuentes, Susana
2017-01-01
An abnormal colonization pattern of the preterm gut may affect immune maturation and exert a long-term influence on the intestinal bacterial composition and host health. However, follow-up studies assessing the evolution of the fecal microbiota of infants that were born preterm are very scarce. In this work, the bacterial compositions of fecal samples, obtained from sixteen 2-year-old infants were evaluated using a phylogenetic microarray; subsequently, the results were compared with those obtained in a previous study from samples of meconium and feces collected from the same infants while they stayed in the neonatal intensive care unit (NICU). In parallel, the concentration of a wide range of cytokines, chemokines, growth factors and immunoglobulins were determined in meconium and fecal samples. Globally, a higher bacterial diversity and a lower interindividual variability were observed in 2-year-olds’ feces, when compared to the samples obtained during their first days of life. Hospital-associated fecal bacteria, that were dominant during the NICU stay, seemed to be replaced, two years later, by genera, which are usually predominant in the healthy adult microbiome. The immune profile of the meconium and fecal samples differed, depending on the sampling time, showing different immune maturation statuses of the gut. PMID:29186903
Wilhelm, Lance J.; Maluk, Terry L.
1998-01-01
IntroductionHigh levels of fecal-indicator bacteria in rivers and streams can indicate the possible presence of pathogenic (disease-causing) microorganisms. Cholera, typhoid fever, bacterial dysentery, infectious hepatitis, and cryptosporidiosis are some of the well known waterborne diseases that spread through water contaminated and fecal matter. Eye, ear, nose, and throat infections also can result from contact with contaminated water. In general, methods are not routinely used to detect pathogens in water. Instead, bacteria such as total coliforms, fecal coliforms, fecal streptococci, Escherichia coli (E coli), and enterococci are used as indicators of sanitary water quality, because they are present in high numbers in fecal material and have been shown to be associated with some waterborne disease-causing organisms. Indicator bacteria usually are harmless, more plentiful, and easier to detect than pathogens. The concentration of bacteria in a sample of water is usually expressed as the number of bacterial colonies per 100 milliliters of water sample.As part of the U.S. Geological Survey National Water-Quality Assessment Program, 145 samples were collected and analyzed for selected water-quality constituents, fecal coliforms, and fecal streptococci at 17 sites in North and South Carolina from October 1995 through September 1996. Of the original 17 sites, 4 in South Carolina were sampled for E. coli and total coliforms from April through September 1997. At two sites, this sampling continued from October 1997 through April 1998.
Sources of Salmonellae in broiler chickens in Ontario.
Hacking, W C; Mitchell, W R; Carlson, H C
1978-01-01
Sources of Salmonellae infecting broiler chicken flocks in Ontario were investigated from July, 1975 to April, 1976. Three broiler flocks were investigated on each of four farms which received chicks from a common hatchery. Samples of feed and new litter were preenriched in nonselective broth subcultured to Salmonella-selective enrichment broth and plated on Salmonella-selective differential agar.Samples of used litter, water, culled chicks, insects, mice, wild birds and environmental swabs were not cultured initially in the nonselective broth. Fecal samples from principal and occasional flock attendants were examined for Samonellae. Salmonella infection, as judged by contaminated flock litter was detected in six flocks on two of the farms while the flocks on the other farms remained negative. Salmonellae were isolated from 23 of 412 feed samples (nine serotypes), six of 35 new wood shaving samples (four serotypes), one of 29 pools of culled chick viscera (one serotype) and 44 of 267 used litter samples (14 serotypes). These results indicate that broiler chicken flocks were infected with diverse Salmonellae introduced in day old chicks, pelleted feeds, wood shavings and residual contamination from the preceding flock. PMID:743597
Mugel, Douglas N.
2002-01-01
Forty-seven wells and 8 springs were sampled in May, October, and November 2000 in the upper Shoal Creek Basin, southwest Missouri, to determine if nutrient concentrations and fecal bacteria densities are increasing in the shallow aquifer as a result of poultry confined animal feeding operations (CAFOs). Most of the land use in the basin is agricultural, with cattle and hay production dominating; the number of poultry CAFOs has increased in recent years. Poultry waste (litter) is used as a source of nutrients on pasture land as much as several miles away from poultry barns.Most wells in the sample network were classified as ?P? wells, which were open only or mostly to the Springfield Plateau aquifer and where poultry litter was applied to a substantial acreage within 0.5 mile of the well both in spring 2000 and in several previous years; and ?Ag? wells, which were open only or mostly to the Springfield Plateau aquifer and which had limited or no association with poultry CAFOs. Water-quality data from wells and springs were grouped for statistical purposes as P1, Ag1, and Sp1 (May 2000 samples) and P2, Ag2, and Sp2 (October or November 2000 samples). The results of this study do not indicate that poultry CAFOs are affecting the shallow ground water in the upper Shoal Creek Basin with respect to nutrient concentrations and fecal bacteria densities. Statistical tests do not indicate that P wells sampled in spring 2000 have statistically larger concentrations of nitrite plus nitrate or fecal indicator bacteria densities than Ag wells sampled during the same time, at a 95-percent confidence level. Instead, the Ag wells had statistically larger concentrations of nitrite plus nitrate and fecal coliform bacteria densities than the P wells.The results of this study do not indicate seasonal variations from spring 2000 to fall 2000 in the concentrations of nutrients or fecal indicator bacteria densities from well samples. Statistical tests do not indicate statistically significant differences at a 95-percent confidence level for nitrite plus nitrate concentrations or fecal indicator bacteria densities between either P wells sampled in spring and fall 2000, or Ag wells sampled in spring and fall 2000. However, analysis of samples from springs shows that fecal streptococcus bacteria densities were statistically smaller in fall 2000 than in spring 2000 at a 95-percent confidence level.Nitrite plus nitrate concentrations in spring 2000 samples ranged from less than the detection level [0.02 mg/L (milligram per liter) as nitrogen] to 18 mg/L as nitrogen. Seven samples from three wells had nitrite plus nitrate concentrations at or larger than the maximum contaminant level (MCL) of 10 mg/L as nitrogen. The median nitrite plus nitrate concentrations were 0.28 mg/L as nitrogen for P1 samples, 4.6 mg/L as nitrogen for Ag1 samples, and 3.9 mg/L as nitrogen for Sp1 samples.Fecal coliform bacteria were detected in 1 of 25 P1 samples and 5 of 15 Ag1 samples. Escherichia coli (E. coli) bacteria were detected in 3 of 24 P1 samples and 1 of 13 Ag1 samples. Fecal streptococcus bacteria were detected in 8 of 25 P1 samples and 6 of 15 Ag1 samples. Bacteria densities in samples from wells ranged from less than 1 to 81 col/100 mL (colonies per 100 milliliters) of fecal coliform, less than 1 to 140 col/100 mL of E. coli, and less than 1 to 130 col/100 mL of fecal streptococcus. Fecal indicator bacteria densities in samples from springs were substantially larger than in samples from wells. In Sp1 samples, bacteria densities ranged from 12 to 3,300 col/100 mL of fecal coliform, 40 to 2,700 col/100 mL of E. coli, and 42 to 3,100 col/100 mL of fecal streptococcus.
Fulton, John W.; Buckwalter, Theodore F.
2004-01-01
This report presents the results of a study by the Allegheny County Health Department (ACHD) and the U.S. Geological Survey (USGS) to determine the concentrations of fecal-indicator bacteria in the Allegheny, Monongahela, and Ohio Rivers (Three Rivers) in Allegheny County, Pittsburgh, Pa. Water-quality samples and river-discharge measurements were collected from July to September 2001 during dry- (72-hour dry antecedent period), mixed-, and wet-weather (48-hour dry antecedent period and at least 0.3 inch of rain in a 6-hour period) conditions at five sampling sites on the Three Rivers in Allegheny County. Water samples were collected weekly to establish baseline conditions and during successive days after three wet-weather events. Water samples were analyzed for fecal-indicator organisms including fecal-coliform (FC) bacteria, Escherichia coli (E. coli), and enterococci bacteria. Water samples were collected by the USGS and analyzed by the ACHD Laboratory. At each site, left-bank and right-bank surface-water samples were collected in addition to a composite sample (discharge-weighted sample representative of the channel cross section as a whole) at each site. Fecal-indicator bacteria reported in bank and composite samples were used to evaluate the distribution and mixing of bacteria-source streams in receiving waters such as the Three Rivers. Single-event concentrations of enterococci, E. coli, and FC during dry-weather events were greater than State and Federal water-quality standards (WQS) in 11, 28, and 28 percent of the samples, respectively; during mixed-weather events, concentrations of fecal-indicator bacteria were greater than WQS in 28, 37, and 43 percent of the samples, respectively; and during wet-weather events, concentrations of fecal-indicator bacteria were greater than WQS in 56, 71, and 81 percent of samples, respectively. Single-event, wet-weather concentrations exceeded those during dry-weather events for all sites except the Allegheny River at Oakmont. For this site, dilution during wet-weather events or the lack of source streams upgradient of the site may have caused this anomaly. Additionally, single-event concentrations of E. coli and FC frequently exceeded the WQS reported during wet-weather events. It is difficult to establish a short-term trend in fecal-indicator bacteria concentrations as a function of time after a wet-weather event due to factors including the spatial variability of sources contributing fecal material, dry-weather discharges, resuspension of bottom sediments, and flow augmentation from reservoirs. Relative to E. coli and enterococci, FC concentrations appeared to decrease with time, which may be attributed to the greater die-off rate for FC bacteria. Fecal-indicator bacteria concentrations at a site are dependent on the spatial distribution of point sources upstream of the station, the time-of-travel, rate of decay, and the degree of mixing and resuspension. Therefore, it is difficult to evaluate whether the left, right, and composite concentrations reported at a particular site are significantly different. To evaluate the significance of the fecal-indicator bacteria concentrations and turbidity reported in grab and composite samples during dry-, mixed-, and wet-weather events, data sets were evaluated using Wilcoxon rank sum tests. Tests were conducted using the fecal-indicator bacteria colonies and turbidity reported for each station for a given weather event. For example, fecal coliform counts reported in the left-bank sample were compared against the right-bank and composite samples, respectively, for the Ohio River at Sewickley site during dry-, mixed-, and wet-weather events. The statistical analyses suggest that, depending on the sampling site, the fecal-bacteria concentrations measured at selected locations vary spatially within a channel (left bank compared to right, right bank compared to composite). The most significant differences occurred between feca
Myers, Donna N.
1992-01-01
This report presents the results of a study by the U.S. Geological Survey, in cooperation with the City of Columbus, Ohio, to determine the distribution and variability of fecal-indicator bacteria in Scioto and Olentangy Rivers. Fecal-indicator bacteria are among the contaminants of concern to recreational users of these rivers in the Columbus area. Samples were collected to be analyzed for fecal-coliform and Escherichia coli (E. coli) bacteria and selected water-quality constituents and physical properties at 10 sites-- 4 on the Olentangy River and 6 on the Scioto River during the recreational seasons in 1987, 1988, and 1989. Measurements of streamflow also were made at these sites at various frequencies during base flow and runoff. The concentrations of fecal-coliform and E. coli bacteria in the Scioto and Olentangy Rivers spanned a range of five orders of magnitude, from less than 20 to greater than 2,000,000 col/100 mL (colonies per 100 milliliters). In addition, the concentrations of fecal coliform and E. coli bacteria are well correlated (r=0.97) in the study area. At times, relatively high concentrations, for fecal-indicator bacteria (concentrations greater than 51,000 col/100 mL for fecal-coliform and E. coli ) were found in Olentangy River at Woody Hayes Drive and at Goodale Street, and in Scioto River at Greenlawn Avenue and at Columbus. Intermediate concentrations of fecal-indicator bacteria (from 5,100 to 50,000 col/100 mL for fecal coliform and (from 510 to 50,000 col/100 mL for E. coli ) were found in Scioto River at Town Street and below O'Shaughnessy Dam near Dublin, Ohio, and in Olentangy River at Henderson Road. The lowest (median) concentrations of fecal-indicator bacteria (from 20 to 5,000 col/100 mL for fecal coliform and from 20 to 500 col/100 mL for E. coli ) were found at Olentangy River near Worthington, Ohio, Scioto River at Dublin Road Water Treatment Plant and below Griggs Reservoir. Fecal-coliform concentrations exceeded the geometric mean and single-sample Ohio Water Quality Standards for recreation less frequently than E. coli concentrations. The E. coli numerical water-quality standards are more difficult to meet than the fecal coliform standards because they are as much as an order of magnitude lower in some instances. The geometric mean bathing-water and primary-contact standards for fecal-coliform and E. coli bacteria were exceeded in more samples for Olentangy River at Goodale Street than for any other site. The single-sample bathing-water standard for fecal-coliform bacteria was exceeded in 83 percent of all samples and for E. coli in 91 percent of samples for Olentangy River at Goodale Street. Compared to Olentangy River at Goodale Street, geometric means and single-samples exceeded the bathing-water standards somewhat less frequently for Scioto River at Town Street and far less frequently for Scioto River at Dublin Road Water Treatment Plant. In contrast to results for fecal-indicator bacteria, the differences between sites for pH and for concentrations for total alkalinity, total chloride, total nonfilterable residue, total nitrate plus nitrite as nitrogen, total phosphorus, and total organic carbon were small. The large contribution of streamflow and discharge of fecal-indicator bacteria from Olentangy River to Scioto River has a major effect on the Scioto River downstream from the confluence of Olentangy River during periods of rainfall and runoff. Fecal-indicator discharges were calculated for times before, during, and at 24-hour intervals for 48 to 72 hours after two runoff-producing storms. Fecal-coliform and E. coli concentrations were lower in samples collected before runoff and during receding streamflows at 24- to 48-hours after the storms than in samples collected during runoff. The fecal-indicator discharges entering Scioto River from Olentangy River ranged from 22.6 to nearly 100 percent of the total for two storms studied. Controlling nonpoint, unregulated,
Amanidaz, Nazak; Zafarzadeh, Ali; Mahvi, Amir Hossein
2015-12-01
This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms.
AMANIDAZ, Nazak; ZAFARZADEH, Ali; MAHVI, Amir Hossein
2015-01-01
Background: This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. Methods: This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. Results: In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Conclusion: Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms. PMID:26811820
Pepper Mild Mottle Virus as an Indicator of Fecal Pollution ▿
Rosario, Karyna; Symonds, Erin M.; Sinigalliano, Christopher; Stewart, Jill; Breitbart, Mya
2009-01-01
Accurate indicators of fecal pollution are needed in order to minimize public health risks associated with wastewater contamination in recreational waters. However, the bacterial indicators currently used for monitoring water quality do not correlate with the presence of pathogens. Here we demonstrate that the plant pathogen Pepper mild mottle virus (PMMoV) is widespread and abundant in wastewater from the United States, suggesting the utility of this virus as an indicator of human fecal pollution. Quantitative PCR was used to determine the abundance of PMMoV in raw sewage, treated wastewater, seawater exposed to wastewater, and fecal samples and/or intestinal homogenates from a wide variety of animals. PMMoV was present in all wastewater samples at concentrations greater than 1 million copies per milliliter of raw sewage. Despite the ubiquity of PMMoV in human feces, this virus was not detected in the majority of animal fecal samples tested, with the exception of chicken and seagull samples. PMMoV was detected in four out of six seawater samples collected near point sources of secondary treated wastewater off southeastern Florida, where it co-occurred with several other pathogens and indicators of fecal pollution. Since PMMoV was not found in nonpolluted seawater samples and could be detected in surface seawater for approximately 1 week after its initial introduction, the presence of PMMoV in the marine environment reflects a recent contamination event. Together, these data demonstrate that PMMoV is a promising new indicator of fecal pollution in coastal environments. PMID:19767474
In this study, we examined the potential for detecting fecal bacteria and microbial source tracking markers in samples discarded during the concentration of Cryptosporidium and Giardia using USEPA Method 1623. Recovery rates for different fecal bacteria were determined using sp...
Robb, Katharine; Null, Clair; Teunis, Peter; Yakubu, Habib; Armah, George; Moe, Christine L.
2017-01-01
Abstract. Rapid urbanization has contributed to an urban sanitation crisis in low-income countries. Residents in low-income, urban neighborhoods often have poor sanitation infrastructure and services and may experience frequent exposure to fecal contamination through a range of pathways. There are little data to prioritize strategies to decrease exposure to fecal contamination in these complex and highly contaminated environments, and public health priorities are rarely considered when planning urban sanitation investments. The SaniPath Study addresses this need by characterizing pathways of exposure to fecal contamination. Over a 16 month period, an in-depth, interdisciplinary exposure assessment was conducted in both public and private domains of four neighborhoods in Accra, Ghana. Microbiological analyses of environmental samples and behavioral data collection techniques were used to quantify fecal contamination in the environment and characterize the behaviors of adults and children associated with exposure to fecal contamination. Environmental samples (n = 1,855) were collected and analyzed for fecal indicators and enteric pathogens. A household survey with 800 respondents and over 500 hours of structured observation of young children were conducted. Approximately 25% of environmental samples were collected in conjunction with structured observations (n = 441 samples). The results of the study highlight widespread and often high levels of fecal contamination in both public and private domains and the food supply. The dominant fecal exposure pathway for young children in the household was through consumption of uncooked produce. The SaniPath Study provides critical information on exposure to fecal contamination in low-income, urban environments and ultimately can inform investments and policies to reduce these public health risks. PMID:28722599
Influence of Coliform Source on Evaluation of Membrane Filters
Brodsky, M. H.; Schiemann, D. A.
1975-01-01
Four brands of membrane filters were examined for total and fecal coliform recovery performance by two experimental approaches. Using diluted EC broth cultures of water samples, Johns-Manville filters were superior to Sartorius filters for fecal coliform but equivalent for total coliform recovery. Using river water samples, Johns-Manville filters were superior to Sartorius filters for total coliform but equivalent for fecal coliform recovery. No differences were observed between Johns-Manville and Millipore or Millipore and Sartorius filters for total or fecal coliform recoveries using either approach, nor was any difference observed between Millipore and Gelman filters for fecal coliform recovery from river water samples. These results indicate that the source of the coliform bacteria has an important influence on the conclusions of membrane filter evaluation studies. PMID:1106318
Fecal corticosterone reflects serum corticosterone in Florida sandhill cranes.
Ludders, J W; Langenberg, J A; Czekala, N M; Erb, H N
2001-07-01
Florida sandhill cranes (Grus canadensis pratensis) were conditioned to confinement 6 hr/day for 7 days. On day 8, each bird's jugular vein was catheterized, blood samples were drawn, and each crane was confined for 6 hr. Using a randomized, restricted cross-over design, cranes were injected intravenously with either 0.9% NaCl solution or ACTH (cosyntropin; Cortrosyn; 0.25 mg). During the 6 hr of confinement, fecal samples (feces and urine) were collected from each of five cranes immediately after defecation. Individual fecal samples were collected approximately at hourly intervals and assayed for corticosterone. We showed previously that serum corticosterone did not vary significantly following saline injection, but peaked significantly 60 min after ACTH injection. Maximal fecal corticosterone concentrations (ng/g) were greater (P < 0.10; median 1087 ng/g) following ACTH stimulation compared to maximal fecal corticosterone concentrations at the end of acclimation (day 7; median 176) and following saline treatment (median 541). In cranes under controlled conditions, fecal corticosterone concentration reflects serum corticosterone levels, fecal corticosterone, Grus canadensis pratensis, sandhill cranes, serum corticosterone levels.
Zhang, Wenping; Yie, Shangmian; Yue, Bisong; Zhou, Jielong; An, Renxiong; Yang, Jiangdong; Chen, Wangli; Wang, Chengdong; Zhang, Liang; Shen, Fujun; Yang, Guangyou; Hou, Rong; Zhang, Zhihe
2012-01-01
It has been recognized that other than habitat loss, degradation and fragmentation, the infection of the roundworm Baylisascaris schroederi (B. schroederi) is one of the major causes of death in wild giant pandas. However, the prevalence and intensity of the parasite infection has been inconsistently reported through a method that uses sedimentation-floatation followed by a microscope examination. This method fails to accurately determine infection because there are many bamboo residues and/or few B. schroederi eggs in the examined fecal samples. In the present study, we adopted a method that uses PCR and capillary electrophoresis combined with a single-strand conformation polymorphism analysis (PCR/CE-SSCP) to detect B. schroederi infection in wild giant pandas at a nature reserve, and compared it to the traditional microscope approach. The PCR specifically amplified a single band of 279-bp from both fecal samples and positive controls, which was confirmed by sequence analysis to correspond to the mitochondrial COII gene of B. schroederi. Moreover, it was demonstrated that the amount of genomic DNA was linearly correlated with the peak area of the CE-SSCP analysis. Thus, our adopted method can reliably detect the infectious prevalence and intensity of B. schroederi in wild giant pandas. The prevalence of B. schroederi was found to be 54% in the 91 fecal samples examined, and 48% in the fecal samples of 31 identified individual giant pandas. Infectious intensities of the 91 fecal samples were detected to range from 2.8 to 959.2 units/gram, and from 4.8 to 959.2 units/gram in the fecal samples of the 31 identified giant pandas. For comparison, by using the traditional microscope method, the prevalence of B. schroederi was found to be only 33% in the 91 fecal samples, 32% in the fecal samples of the 31 identified giant pandas, and no reliable infectious intensity was observed. PMID:22911871
Zhang, Wenping; Yie, Shangmian; Yue, Bisong; Zhou, Jielong; An, Renxiong; Yang, Jiangdong; Chen, Wangli; Wang, Chengdong; Zhang, Liang; Shen, Fujun; Yang, Guangyou; Hou, Rong; Zhang, Zhihe
2012-01-01
It has been recognized that other than habitat loss, degradation and fragmentation, the infection of the roundworm Baylisascaris schroederi (B. schroederi) is one of the major causes of death in wild giant pandas. However, the prevalence and intensity of the parasite infection has been inconsistently reported through a method that uses sedimentation-floatation followed by a microscope examination. This method fails to accurately determine infection because there are many bamboo residues and/or few B. schroederi eggs in the examined fecal samples. In the present study, we adopted a method that uses PCR and capillary electrophoresis combined with a single-strand conformation polymorphism analysis (PCR/CE-SSCP) to detect B. schroederi infection in wild giant pandas at a nature reserve, and compared it to the traditional microscope approach. The PCR specifically amplified a single band of 279-bp from both fecal samples and positive controls, which was confirmed by sequence analysis to correspond to the mitochondrial COII gene of B. schroederi. Moreover, it was demonstrated that the amount of genomic DNA was linearly correlated with the peak area of the CE-SSCP analysis. Thus, our adopted method can reliably detect the infectious prevalence and intensity of B. schroederi in wild giant pandas. The prevalence of B. schroederi was found to be 54% in the 91 fecal samples examined, and 48% in the fecal samples of 31 identified individual giant pandas. Infectious intensities of the 91 fecal samples were detected to range from 2.8 to 959.2 units/gram, and from 4.8 to 959.2 units/gram in the fecal samples of the 31 identified giant pandas. For comparison, by using the traditional microscope method, the prevalence of B. schroederi was found to be only 33% in the 91 fecal samples, 32% in the fecal samples of the 31 identified giant pandas, and no reliable infectious intensity was observed.
Staley, C.; Sadowsky, M. J.; Gyawali, P.; Sidhu, J. P. S.; Palmer, A.; Beale, D. J.; Toze, S.
2015-01-01
In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways. PMID:26231650
Zavrelova, Alzbeta; Radocha, Jakub; Pliskova, Lenka; Paterova, Pavla; Vejrazkova, Eva; Cyrany, Jiri; Gabalec, Filip; Podhola, Miroslav; Zak, Pavel
2018-05-16
Cytomegalovirus enterocolitis is a rare but potentially life threatening complication after allogeneic stem cell transplantation. Its early diagnosis and treatment are essential for a successful outcome. To determine the potential benefit of fecal CMV DNA detection in the diagnosis of CMV colitis among stem cell transplant recipients. Biopsies from the lower gastrointestinal tract, taken during 69 episodes of diarrhea, were compared with fecal samples previously examined for CMV DNA in 45 patients after allogeneic stem cell transplantation. Six confirmed cases of CMV colitis were observed, with 16 out of 69 (23%) fecal samples proving positive for CMV DNA. Only one positive sample correlated with histologically confirmed CMV colitis, and 15 samples were evaluated as false positive. These results provide a 16.7% sensitivity and 76.2% specificity in the diagnosis of CMV enterocolitis. The examination of fecal samples for the presence of CMV DNA has very low potential in the diagnosis of CMV enterocolitis after allogeneic stem cell transplantation; therefore, a biopsy of the gastrointestinal mucosa is still warranted for correct diagnosis.
Loftfield, Erikka; Vogtmann, Emily; Sampson, Joshua N; Moore, Steven C; Nelson, Heidi; Knight, Rob; Chia, Nicholas; Sinha, Rashmi
2016-11-01
The gut metabolome may be associated with the incidence and progression of numerous diseases. The composition of the gut metabolome can be captured by measuring metabolite levels in the feces. However, there are little data describing the effect of fecal sample collection methods on metabolomic measures. We collected fecal samples from 18 volunteers using four methods: no solution, 95% ethanol, fecal occult blood test (FOBT) cards, and fecal immunochemical test (FIT). One set of samples was frozen after collection (day 0), and for 95% ethanol, FOBT, and FIT, a second set was frozen after 96 hours at room temperature. We evaluated (i) technical reproducibility within sample replicates, (ii) stability after 96 hours at room temperature for 95% ethanol, FOBT, and FIT, and (iii) concordance of metabolite measures with the putative "gold standard," day 0 samples without solution. Intraclass correlation coefficients (ICC) estimating technical reproducibility were high for replicate samples for each collection method. ICCs estimating stability at room temperature were high for 95% ethanol and FOBT (median ICC > 0.87) but not FIT (median ICC = 0.52). Similarly, Spearman correlation coefficients (r s ) estimating metabolite concordance with the "gold standard" were higher for 95% ethanol (median r s = 0.82) and FOBT (median r s = 0.70) than for FIT (median r s = 0.40). Metabolomic measurements appear reproducible and stable in fecal samples collected with 95% ethanol or FOBT. Concordance with the "gold standard" is highest with 95% ethanol and acceptable with FOBT. Future epidemiologic studies should collect feces using 95% ethanol or FOBT if interested in studying fecal metabolomics. Cancer Epidemiol Biomarkers Prev; 25(11); 1483-90. ©2016 AACR. ©2016 American Association for Cancer Research.
Ingala, Melissa R.; Simmons, Nancy B.; Wultsch, Claudia; Krampis, Konstantinos; Speer, Kelly A.; Perkins, Susan L.
2018-01-01
The gut microbiome is a community of host-associated symbiotic microbes that fulfills multiple key roles in host metabolism, immune function, and tissue development. Given the ability of the microbiome to impact host fitness, there is increasing interest in studying the microbiome of wild animals to better understand these communities in the context of host ecology and evolution. Human microbiome research protocols are well established, but wildlife microbiome research is still a developing field. Currently, there is no standardized set of best practices guiding the collection of microbiome samples from wildlife. Gut microflora are typically sampled either by fecal collection, rectal swabbing, or by destructively sampling the intestinal contents of the host animal. Studies rarely include more than one sampling technique and no comparison of these methods currently exists for a wild mammal. Although some studies have hypothesized that the fecal microbiome is a nested subset of the intestinal microbiome, this hypothesis has not been formally tested. To address these issues, we examined guano (feces) and distal intestinal mucosa from 19 species of free-ranging bats from Lamanai, Belize, using 16S rRNA amplicon sequencing to compare microbial communities across sample types. We found that the diversity and composition of intestine and guano samples differed substantially. In addition, we conclude that signatures of host evolution are retained by studying gut microbiomes based on mucosal tissue samples, but not fecal samples. Conversely, fecal samples retained more signal of host diet than intestinal samples. These results suggest that fecal and intestinal sampling methods are not interchangeable, and that these two microbiotas record different information about the host from which they are isolated. PMID:29765359
Ingala, Melissa R; Simmons, Nancy B; Wultsch, Claudia; Krampis, Konstantinos; Speer, Kelly A; Perkins, Susan L
2018-01-01
The gut microbiome is a community of host-associated symbiotic microbes that fulfills multiple key roles in host metabolism, immune function, and tissue development. Given the ability of the microbiome to impact host fitness, there is increasing interest in studying the microbiome of wild animals to better understand these communities in the context of host ecology and evolution. Human microbiome research protocols are well established, but wildlife microbiome research is still a developing field. Currently, there is no standardized set of best practices guiding the collection of microbiome samples from wildlife. Gut microflora are typically sampled either by fecal collection, rectal swabbing, or by destructively sampling the intestinal contents of the host animal. Studies rarely include more than one sampling technique and no comparison of these methods currently exists for a wild mammal. Although some studies have hypothesized that the fecal microbiome is a nested subset of the intestinal microbiome, this hypothesis has not been formally tested. To address these issues, we examined guano (feces) and distal intestinal mucosa from 19 species of free-ranging bats from Lamanai, Belize, using 16S rRNA amplicon sequencing to compare microbial communities across sample types. We found that the diversity and composition of intestine and guano samples differed substantially. In addition, we conclude that signatures of host evolution are retained by studying gut microbiomes based on mucosal tissue samples, but not fecal samples. Conversely, fecal samples retained more signal of host diet than intestinal samples. These results suggest that fecal and intestinal sampling methods are not interchangeable, and that these two microbiotas record different information about the host from which they are isolated.
Occurrence of fecal coliform bacteria in selected streams in Wyoming, 1990-99
Clark, Melanie L.; Norris, Jodi R.
2000-01-01
The U.S. Geological Survey (USGS), in cooperation with the Wyoming Department of Environmental Quality (WDEQ), is collecting water samples for analysis of fecal coliform bacteria at 18 stream sites as part of a statewide network. Contamination by bacteria of fecal origin in streams where contact recreation is a designated water use is a concern because of potential public-health risk from the presence of enteric pathogens. Fecal coliform concentrations are temporally and spatially variable in Wyoming streams-concentrations ranged from less than 1 to 45,000 colonies per 100 milliliters of water during 1990-99. Fecal coliform concentrations were less than the water-quality criterion of 400 colonies per 100 milliliters in 83 percent of the samples, indicating fecal coliform contamination is not a widespread problem in these Wyoming streams. However, 14 of the 18 monitoring sites had at least one sample in which the fecal coliform concentration exceeded 400 colonies per 100 milliliters at some time during the 10-year period. Fecal coliform concentrations generally are higher during April through September than during October through March. The higher concentrations coincide with the time period when the public-health risk is higher because summer months are when contact recreation use is more likely occurring. Fecal coliform concentrations were positively correlated with discharge and stream temperature and generally were negatively correlated with pH, specific conductance, and dissolved oxygen.
Diversity, abundance, and possible sources of fecal bacteria in the Yangtze River.
Sun, Haohao; He, Xiwei; Ye, Lin; Zhang, Xu-Xiang; Wu, Bing; Ren, Hongqiang
2017-03-01
The fecal bacteria in natural waters may pose serious risks on human health. Although many source tracking methods have been developed and used to determine the possible sources of the fecal pollution, little is known about the overall diversity and abundance of fecal bacterial community in natural waters. In this study, a method based on fecal bacterial sequence library was introduced to evaluate the fecal bacterial profile in the Yangtze River (Nanjing section). Our results suggested that the Yangtze River water harbors diverse fecal bacteria. Fifty-eight fecal operational taxonomic units (97% identity level) were detected in the Yangtze River water samples and the relative abundance of fecal bacteria in these samples ranged from 0.1 to 8%. It was also found that the relative abundances of the fecal bacteria in locations near to the downstream of wastewater treatment plants were obviously higher than those in other locations. However, the high abundance of fecal bacteria could decrease to the normal level in 2~4 km in the river due to degradation or dilution, and the overall fecal bacteria level changed little when the Yangtze River flew through the Nanjing City. Moreover, the fecal bacteria in the Yangtze River water were found to be highly associated (Spearman rho = 0.804, P < 0.001) with the potential pathogenic bacteria. Collectively, the findings in this study reveal the diversity, abundance, and possible sources of fecal bacteria in the Yangtze River and advance our understandings of the fecal bacteria community in the natural waters.
Diet composition and terrestrial prey selection of the Laysan teal on Laysan Island
Reynolds, M.H.; Slotterback, J.W.; Walters, J.R.
2006-01-01
The Laysan teal (Anas laysanensis) is an endangered dabbling duck endemic to the Hawaiian Archipelago but currently restricted to a single breeding population on Laysan Island. We studied its diet using fecal analysis and behavioral observations. Laysan teal fecal samples (N=118) contained prey items in 15 primary prey categories with a mean of 2.9 (range 0-7) taxa per sample. Sixty-two of these fecal samples were quantified with 2,270 prey items identified (mean items per sample 37; range 0-205). Based on fecal analysis and behavioral observations, we learned that the Laysan teal is not strictly a macroinsectivore as previously reported, but consumed seeds, succulent leaves, and algae, in addition to adult and larval diptera, ants, lepidoptera, coleoptera, and Artemia. We compared abundance of invertebrates from two terrestrial foraging substrates, soil and standing vegetation, to the abundance of invertebrate prey items counted in fecal samples collected from these habitats for the same period. In the soil substrate, Laysan teal selected two of the most abundant invertebrates, lepidoptera larvae and coleoptera. In the standing vegetation, Laysan teal selected the most abundant taxa: coleoptera. Amphipods were consumed in proportion to their abundance, and small gastropods (Tornatellides sp.), isopods, and arachnids were avoided or were identified in fecal matter in disproportion to their abundance in the foraging habitat. We compared fecal composition of samples collected in aquatic and terrestrial habitats and detected significant differences in samples' species compositions. The conservation implications of the adult Laysan teal's diet are positive, since results indicate that the Laysan teal are opportunistic insectivores, and exhibit dietary flexibility that includes seeds and other food. Dietary flexibility improves the possibility of successfully reestablishing populations on other predator-free islands.
Metabolism of bepridil in laboratory animals and humans.
Wu, W N; Hills, J F; Chang, S Y; Ng, K T
1988-01-01
The metabolism of bepridil was studied in the Swiss mouse, Sprague-Dawley rat, New Zealand rabbit, rhesus monkey, and healthy human. After oral administration of bepridil-14C-hydrochloride, recoveries of total radioactivity in urine and feces (7 days) were greater than or equal to 80% of the administered dose in all five species. Bepridil and 25 metabolites have been isolated by HPLC and TLC from representative plasma, urine, and fecal extract pools from all species and identified on the basis of TLC, HPLC, and mass spectrometry. The identified metabolites explained 60-99% of the total radioactivity in each sample for rabbit plasma, in which only 17% of the total radioactivity was characterized. Metabolic pathways involving oxidative reactions at seven sites on the bepridil molecule are proposed for each species. Metabolite formation in the five species is described by four interrelated pathways. The metabolic pathway involving aromatic hydroxylation followed by N-dealkylation, N-debenzylation, and N-acetylation was important in all species. Major metabolites produced by this pathway included 4-hydroxy(at N-phenyl)-bepridil (Ia), N-benzyl-4-amino-phenol (IV), and N-acetyl-4-aminophenol (Vy). Metabolite Ia was isolated in significant amounts (greater than or equal to 5% of sample) in all fecal and urine samples except rat urine. Metabolite IV was a major circulating metabolite in all species and a major urinary metabolite in humans. Metabolite Vy was present in significant quantities in urine in all species except rabbit. Other important pathways involved primary reactions such as iso-butyl hydroxylation, pyrrolidine ring oxidation, and N-debenzylation.(ABSTRACT TRUNCATED AT 250 WORDS)
Adell, A. D.; Shapiro, K.; Melli, A.; Conrad, P. A.
2014-01-01
Cryptosporidium and Giardia are of public health importance, with recognized transmission through recreational waters. Therefore, both can contaminate marine waters and shellfish, with potential to infect marine mammals in nearshore ecosystems. A 2-year study was conducted to evaluate the presence of Cryptosporidium and Giardia in mussels located at two distinct coastal areas in California, namely, (i) land runoff plume sites and (ii) locations near sea lion haul-out sites, as well as in feces of California sea lions (CSL) (Zalophus californianus) by the use of direct fluorescent antibody (DFA) detection methods and PCR with sequence analysis. In this study, 961 individual mussel hemolymph samples, 54 aliquots of pooled mussel tissue, and 303 CSL fecal samples were screened. Giardia duodenalis assemblages B and D were detected in hemolymph from mussels collected near two land runoff plume sites (Santa Rosa Creek and Carmel River), and assemblages C and D were detected in hemolymph from mussels collected near a sea lion haul-out site (White Rock). These results suggest that mussels are being contaminated by protozoa carried in terrestrial runoff and/or shed in the feces of CSL. Furthermore, low numbers of oocysts and cysts morphologically similar to Cryptosporidium and Giardia, respectively, were detected in CSL fecal samples, suggesting that CSL could be a source and a host of protozoan parasites in coastal environments. The results of this study showed that Cryptosporidium and Giardia spp. from the feces of terrestrial animals and CSL can contaminate mussels and coastal environments. PMID:25281384
Adell, A D; Smith, W A; Shapiro, K; Melli, A; Conrad, P A
2014-12-01
Cryptosporidium and Giardia are of public health importance, with recognized transmission through recreational waters. Therefore, both can contaminate marine waters and shellfish, with potential to infect marine mammals in nearshore ecosystems. A 2-year study was conducted to evaluate the presence of Cryptosporidium and Giardia in mussels located at two distinct coastal areas in California, namely, (i) land runoff plume sites and (ii) locations near sea lion haul-out sites, as well as in feces of California sea lions (CSL) (Zalophus californianus) by the use of direct fluorescent antibody (DFA) detection methods and PCR with sequence analysis. In this study, 961 individual mussel hemolymph samples, 54 aliquots of pooled mussel tissue, and 303 CSL fecal samples were screened. Giardia duodenalis assemblages B and D were detected in hemolymph from mussels collected near two land runoff plume sites (Santa Rosa Creek and Carmel River), and assemblages C and D were detected in hemolymph from mussels collected near a sea lion haul-out site (White Rock). These results suggest that mussels are being contaminated by protozoa carried in terrestrial runoff and/or shed in the feces of CSL. Furthermore, low numbers of oocysts and cysts morphologically similar to Cryptosporidium and Giardia, respectively, were detected in CSL fecal samples, suggesting that CSL could be a source and a host of protozoan parasites in coastal environments. The results of this study showed that Cryptosporidium and Giardia spp. from the feces of terrestrial animals and CSL can contaminate mussels and coastal environments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Layton, Blythe A.; Cao, Yiping; Ebentier, Darcy L.; Hanley, Kaitlyn; Ballesté, Elisenda; Brandão, João; Byappanahalli, Muruleedhara N.; Converse, Reagan; Farnleitner, Andreas H.; Gentry-Shields, Jennifer; Gourmelon, Michèle; Lee, Chang Soo; Lee, Jiyoung; Lozach, Solen; Madi, Tania; Meijer, Wim G.; Noble, Rachel; Peed, Lindsay; Reischer, Georg H.; Rodrigues, Raquel; Rose, Joan B.; Schriewer, Alexander; Sinigalliano, Chris; Srinivasan, Sangeetha; Stewart, Jill; ,; Laurie, C.; Wang, Dan; Whitman, Richard; Wuertz, Stefan; Jay, Jenny; Holden, Patricia A.; Boehm, Alexandria B.; Shanks, Orin; Griffith, John F.
2013-01-01
A number of PCR-based methods for detecting human fecal material in environmental waters have been developed over the past decade, but these methods have rarely received independent comparative testing in large multi-laboratory studies. Here, we evaluated ten of these methods (BacH, BacHum-UCD, Bacteroides thetaiotaomicron (BtH), BsteriF1, gyrB, HF183 endpoint, HF183 SYBR, HF183 Taqman®, HumM2, and Methanobrevibacter smithii nifH (Mnif)) using 64 blind samples prepared in one laboratory. The blind samples contained either one or two fecal sources from human, wastewater or non-human sources. The assay results were assessed for presence/absence of the human markers and also quantitatively while varying the following: 1) classification of samples that were detected but not quantifiable (DNQ) as positive or negative; 2) reference fecal sample concentration unit of measure (such as culturable indicator bacteria, wet mass, total DNA, etc); and 3) human fecal source type (stool, sewage or septage). Assay performance using presence/absence metrics was found to depend on the classification of DNQ samples. The assays that performed best quantitatively varied based on the fecal concentration unit of measure and laboratory protocol. All methods were consistently more sensitive to human stools compared to sewage or septage in both the presence/absence and quantitative analysis. Overall, HF183 Taqman® was found to be the most effective marker of human fecal contamination in this California-based study.
Lemos, Vanessa; Graczyk, Thaddeus K; Alves, Margarida; Lobo, Maria Luísa; Sousa, Maria C; Antunes, Francisco; Matos, Olga
2005-12-01
In the present study, fluorescent in situ hybridization (FISH) and monoclonal antibodies (MAbs) were evaluated for species-specific detection and viability determination of Giardia lamblia, Cryptosporidium parvum, and Cryptosporidium hominis in human fecal and water supply samples. A total of 50 fecal human samples positive for G. lamblia cysts, 38 positive for C. parvum, and 23 positive for C. hominis were studied. Also, 18 water supply samples positive for Giardia spp. and Cryptosporidium spp. by the United States Environmental Protection Agency (USEPA) Method 1623 were studied by FISH and fluorescein isothiocyanate (FITC)-conjugated MAbs. Eighteen percent of the fecal samples parasitologically positive for G. lamblia presented viable and nonviable cysts, and 5% of those positive for Cryptosporidium spp. presented viable and nonviable oocysts. Of the 18 water supply samples analyzed, 6 (33%) presented Giardia spp. viable and nonviable cysts and 2 (11%) presented viable and nonviable Cryptosporidium spp. oocysts. G. lamblia identification was confirmed by polymerase chain reaction (PCR) and sequencing of the beta-giardin gene in the fecal and water samples found positive by FISH and FITC-conjugated MAbs. C. parvum and Cryptosporidium muris were identified, by PCR and sequencing of the small subunit of ribosomal RNA gene, in seven and one water samples, respectively. Our results confirm that this technique enables simultaneous visualization, species-specific identification, and viability determination of the organisms present in human fecal and water supply samples.
Effects of a fire alarm strobe light on fecal corticosterone metabolite concentrations in mice.
Godfrey, Denice; Silverman, Jerald
2009-02-01
The type and location of fire alarms are important considerations in animal facility design. The Guide for the Care and Use of Laboratory Animals recommends minimizing animal exposure to such alarms. Nevertheless, it is often necessary to maintain fire alarms within animal housing or procedural areas. The authors exposed male mice to the flashing strobe light component of a standard fire alarm and evaluated mouse fecal corticosterone concentration, which is known to be an indicator of stress. Mice were exposed to the strobe light for 5 min during either the light or the dark phase of the light:dark cycle. The authors collected fecal samples every 6 h for 24 h before exposing mice to the alarm and every 6 h for 24 h after exposure. Fecal samples taken before exposure (baseline samples) showed a normal circadian pattern of corticosterone metabolite excretion. In fecal samples taken after mice were exposed to the fire alarm, metabolite concentrations did not significantly differ from baseline concentrations over time.
Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.
2009-01-01
The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL-1, human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Vester, Brittany M; Burke, Sarah L; Dikeman, Cheryl L; Simmons, Lee G; Swanson, Kelly S
2008-03-01
Nutrient digestibility has not been well characterized in exotic felids. The objective of this experiment was to evaluate differences in nutrient digestibility and fecal characteristics in five large exotic captive felid species, including bobcats, jaguars, cheetahs, Indochinese tigers, and Siberian tigers. All animals were individually housed and adapted to a beef-based raw diet (Nebraska Brand((R)) Special Beef Feline, North Platte, NE) for 16 d. Total fecal collections were conducted from days 17 to 20. Fecal samples were weighed and scored on collection. Diet and fecal samples were evaluated for dry matter, organic matter, protein, fat, and energy to determine total tract digestibility. Fresh fecal samples were collected to determine fecal pH, ammonia, phenol, indole, short-chain fatty acid, and branched-chain fatty acid concentrations. Fecal scores were greater (P<0.01) in Indochinese tigers when compared with all other species, and cheetahs had greater (P<0.01) fecal scores than jaguars and bobcats. Fat digestibility was greater (P<0.01) in Siberian tigers, Indochinese tigers, and bobcats (96%) compared with cheetahs and jaguars (94%). Digestible energy was greater (P<0.05) in bobcats and Indochinese tigers at 93.5 and 92.9%, respectively, compared with cheetahs and jaguars, 91.6%. Fecal pH was greater (P<0.01) in bobcats compared with all other species evaluated. Indole concentrations were greater (P<0.05) in cheetahs and jaguars compared with bobcats and Indochinese tigers. Fecal ammonia concentrations were increased (P<0.05) in cheetahs compared with all other species. The beef-based raw diet was highly digestible; however, differences in fat and digestible energy suggest that species should be considered when determining caloric needs of exotic felids. Zoo Biol 27:126-136, 2008. (c) 2008 Wiley-Liss, Inc.
Stringer, Lesley A; Jones, Geoff; Jewell, Chris P; Noble, Alasdair D; Heuer, Cord; Wilson, Peter R; Johnson, Wesley O
2013-11-01
A Bayesian latent class model was used to estimate the sensitivity and specificity of an immunoglobulin G1 serum enzyme-linked immunosorbent assay (Paralisa) and individual fecal culture to detect young deer infected with Mycobacterium avium subsp. paratuberculosis. Paired fecal and serum samples were collected, between July 2009 and April 2010, from 20 individual yearling (12-24-month-old) deer in each of 20 South Island and 18 North Island herds in New Zealand and subjected to culture and Paralisa, respectively. Two fecal samples and 16 serum samples from 356 North Island deer, and 55 fecal and 37 serum samples from 401 South Island deer, were positive. The estimate of individual fecal culture sensitivity was 77% (95% credible interval [CI] = 61-92%) with specificity of 99% (95% CI = 98-99.7%). The Paralisa sensitivity estimate was 19% (95% CI = 10-30%), with specificity of 94% (95% CI = 93-96%). All estimates were robust to variation of priors and assumptions tested in a sensitivity analysis. The data informs the use of the tests in determining infection status at the individual and herd level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C.H.; Sercu, B.; Van De Werhorst, L.C.
2010-03-01
Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomicmore » units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and a-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.« less
Wu, Cindy H.; Sercu, Bram; Van De Werfhorst, Laurie C.; Wong, Jakk; DeSantis, Todd Z.; Brodie, Eoin L.; Hazen, Terry C.; Holden, Patricia A.; Andersen, Gary L.
2010-01-01
Background Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Methodology/Principal Findings Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and α-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC∶A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. Conclusions/Significance This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health. PMID:20585654
Shahryari, A; Nikaeen, M; Khiadani Hajian, M; Nabavi, F; Hatamzadeh, M; Hassanzadeh, A
2014-11-01
Water quality monitoring is essential for the provision of safe drinking water. In this study, we compared a selection of fecal indicators with universal Bacteroidales genetic marker to identify fecal pollution of a variety of drinking water sources. A total of 60 samples were collected from water sources. The microbiological parameters included total coliforms, fecal coliforms, Escherichia coli and fecal streptococci as the fecal indicator bacteria (FIB), Clostridium perfringens and H2S bacteria as alternative indicators, universal Bacteroidales genetic marker as a promising alternative fecal indicator, and Salmonella spp., Shigella spp., and E. coli O157 as pathogenic bacteria. From 60 samples analyzed, Bacteroidales was the most frequently detected indicator followed by total coliforms. However, the Bacteroidales assay failed to detect the marker in nine samples positive for FIB and other alternative indicators. The results of our study showed that the absence of Bacteroidales is not necessarily an evidence of fecal and pathogenic bacteria absence and may be unable to ensure the safety of the water. Further research, however, is required for a better understanding of the use of a Bacteroidales genetic marker as an indicator in water quality monitoring programs.
Van Kessel, J S; Karns, J S; Wolfgang, D R; Hovingh, E; Jayarao, B M; Van Tassell, C P; Schukken, Y H
2008-10-01
Although dairy cattle are known reservoirs for salmonellae, cattle that are shedding this organism are often asymptomatic and difficult to identify. A dairy herd that was experiencing a sustained, subclinical outbreak of Salmonella enterica subsp. enterica Cerro was monitored for 2 years. Fecal samples from the lactating cows were collected every 6 to 8 weeks and tested for the presence of Salmonella. Fecal prevalence of Salmonella fluctuated throughout the observation period and ranged from 8 to 88%. Manure composites and water trough samples were collected along with the fecal samples, and bulk milk and milk filters were cultured for the presence of Salmonella on a weekly basis. Over 90% of the manure composites--representing high-animal-traffic areas-were positive at each sampling. Salmonella was detected in 11% of milk samples and in 66% of the milk filters. Results of weekly bulk milk quality testing (i.e., bulk tank somatic cell score, standard plate count, preliminary incubation count) were typically well within acceptable ranges. Milk quality variables had low correlations with herd Salmonella fecal prevalence. When observed over time, sampling period average prevalence of Salmonella in milk filters closely paralleled fecal prevalence of Salmonella in the herd. Based on results of this study, milk filters appear to be an effective method for monitoring shedding prevalence at the herd level. In-line filter testing is also a more sensitive measure of Salmonella, and perhaps other pathogens, in raw milk than testing the milk alone.
Impact of Native and Invasive Earthworm Activity on Forest Soil Organic Matter Dynamics
NASA Astrophysics Data System (ADS)
Top, Sara; Filley, Timothy
2010-05-01
Many northern North American forests are experiencing the introduction of exotic European lumbricid species earthworms with documented losses in litter layers, expansion of A-horizons, loss of the organic horizon, changes in fine root density, and shifts in microbial populations as a result. Some of these forests were previously devoid of these ecosystem engineers. We compare the soil isotope and molecular chemistry from two free air CO2 enrichment (FACE) forest experiments (aspen FACE at Rhinelander, Wisconsin and sweet gum FACE at Oak Ridge National Lab, Tennessee) that lie within the zones of earthworm invasion. These sites exhibit differences in amounts of exotic and native species as well as endogeic (predominantly mineral soil dwelling) and epigeic (litter and organic matter horizon dwelling) types. We investigated the impact of earthworm activity by tracking the relative abundance and stable carbon isotope compositions of lignin and substituted fatty acids extracted from isolated earthworms and their fecal pellets and from host soils. Additionally, 15N-labeled additions to the soil provide additional methods for tracking earthworm impacts. Indications of root vs leaf input to earthworm casts and fecal matter were derived from differences in the chemical composition of cutin, suberin, and lignin. The isotopically depleted CO2 used in FACE and the resulting isotopically depleted plant organic matter afford an excellent opportunity to assess biopolymer-specific turnover dynamics. We find that endogeic species are proportionately more responsible for fine root cycling while some epigeic species are responsible for microaggregation of foliar cutin. CSIA of fecal pellet lignin and SFA indicate how these biopolymer pools can be derived from variable sources, roots, background soil, foliar tissue within one earthworm. Additionally, CSIA indicates the distinct roles that different earthworm types have in "aging" surface soil biopolymer pools through encapsulation and upward transport of deeper soil carbon, and "freshening" deeper soil biopolymer pools through downward transport of surface carbon to deeper layers. Although, endogeic species burrow down below 30 cm in these systems, comparison of 13C and 15N in soil layers and fecal matter indicate their greatest impact is restricted to the upper 5 cm. As earthworm species abundance and activity are not is steady state in these forests, the role of these important invertebrates should be more considered when assessing the ability of forest soils to accumulate new plant input.
Imamovic, Lejla; Ballesté, Elisenda; Jofre, Juan; Muniesa, Maite
2010-01-01
Shiga toxin-converting bacteriophages (Stx phages) are involved in the pathogenicity of some enteric bacteria, such as Escherichia coli O157:H7. Stx phages are released from their bacterial hosts after lytic induction and remain free in the environment. Samples were analyzed for the presence of free Stx phages by an experimental approach based on the use of real-time quantitative PCR (qPCR), which enables stx to be detected in the DNA from the viral fraction of each sample. A total of 150 samples, including urban raw sewage samples, wastewater samples with fecal contamination from cattle, pigs, and poultry, and fecal samples from humans and diverse animals, were used in this study. Stx phages were detected in 70.0% of urban sewage samples (10 to 103 gene copies [GC] per ml) and in 94.0% of animal wastewater samples of several origins (10 to 1010 GC per ml). Eighty-nine percent of cattle fecal samples were positive for Stx phages (10 to 105 GC per g of sample), as were 31.8% of other fecal samples of various origins (10 to 104 GC per g of sample). The stx2 genes and stx2 variants were detected in the viral fraction of some of the samples after sequencing of stx2 fragments amplified by conventional PCR. The occurrence and abundance of Stx phages in the extraintestinal environment confirm the role of Stx phages as a reservoir of stx in the environment. PMID:20622134
Buckwalter, Theodore F.; Zimmerman, Tammy M.; Fulton, John W.
2006-01-01
Concentrations of fecal-indicator bacteria were determined in 1,027 water-quality samples collected from July 2001 through August 2005 during dry- (72-hour dry antecedent period) and wet-weather (48-hour dry antecedent period and at least 0.3 inch of rain in a 24-hour period) conditions in the Allegheny, Monongahela, and Ohio Rivers (locally referred to as the Three Rivers) and selected tributaries in Allegheny County. Samples were collected at five sampling sites on the Three Rivers and at eight sites on four tributaries to the Three Rivers having combined sewer overflows. Water samples were analyzed for three fecal-indicator organisms fecal coliform, Escherichia coli (E. coli), and enterococci bacteria. Left-bank and right-bank surface-water samples were collected in addition to a cross-section composite sample at each site. Concentrations of fecal coliform, E. coli, and enterococci were detected in 98.6, 98.5, and 87.7 percent of all samples, respectively. The maximum fecal-indicator bacteria concentrations were collected from Sawmill Run, a tributary to the Ohio River; Sawmill Run at Duquesne Heights had concentrations of fecal coliform, E. coli, and enterococci of 410,000, 510,000, and 180,000 col/100 mL, respectively, following a large storm. The samples collected in the Three Rivers and selected tributaries frequently exceeded established recreational standards and criteria for bacteria. Concentrations of fecal coliform exceeded the Pennsylvania water-quality standard (200 col/100 mL) in approximately 63 percent of the samples. Sample concentrations of E. coli and enterococci exceeded the U.S. Environmental Protection Agency (USEPA) water-quality criteria (235 and 61 col/100 mL, respectively) in about 53 and 47 percent, respectively, of the samples. Fecal-indicator bacteria were most strongly correlated with streamflow, specific conductance, and turbidity. These correlations most frequently were observed in samples collected from tributary sites. Fecal-indicator bacteria concentrations and turbidity were correlated to the location of sample collection in the cross section. Most differences were between bank and composite samples; differences between right-bank and left-bank samples were rarely observed. The Allegheny River sites had more significant correlations than the Monongahela or Ohio River sites. Comparisons were made between fecal-indicator bacteria in composite samples collected during dry-weather, wet-weather day-one, wet-weather day-two (tributary sites only), and wet-weather day-three (Three Rivers sites only) events in the Three Rivers and selected tributary sites. The lowest median bacteria concentrations generally were observed in the dry-weather composite samples. All median bacteria concentrations in dry-weather composite samples in the five Three Rivers sites were below water-quality standards and criteria; bacteria concentrations in the upstream tributary sites rarely met all standards or criteria. Only Turtle Creek, Thompson Run, and Chartiers Creek had at least one median bacteria concentration below water-quality standards or criteria. Median bacteria concentrations in the composite samples generally were higher the day after a wet-weather event compared to dry-weather composite samples and other wet-weather composite samples collected. In the five Three Rivers sites, median bacteria concentrations 3 days after a wet-weather event in composite samples tended to fall below the water-quality standards and criteria; in the eight tributary sites, median bacteria concentrations in the dry-weather and wet-weather composite samples generally were above the water-quality standards or criteria. Composite samples collected at the upstream sites on the Three Rivers and selected tributaries generally had lower median bacteria concentrations than composite samples collected at the downstream sites during dry- and wet-weather events. Higher concentrations downstream may be because o
Reibnitz, M G; Tavares, L B; García, J A
1998-01-01
Twenty cheese samples were collected at Blumenau (SC) and were submitted to analysis in order to verify the presence of fecal coliforms, Escherichia coli and Staphylococcus aureus. Among the 20 samples of cheese, analysis revealed that 70% and 20% respectively, were not within present legal specifications (Norma 001/87-DNVSA) for fecal coliforms and Escherichia coli. For Staphylococcus, 95% of the samples were not within present legal specifications.
Specificity of a Bacteroides thetaiotaomicron marker for human feces
Carson, C.A.; Christiansen, J.M.; Yampara-Iquise, H.; Benson, V.W.; Baffaut, C.; Davis, J.V.; Broz, R.R.; Kurtz, W.B.; Rogers, W.M.; Fales, W.H.
2005-01-01
A bacterial primer set, known to produce a 542-bp amplicon specific for Bacteroides thetaiotaomicron, generated this product in PCR with 1 ng of extracted DNA from 92% of 25 human fecal samples, 100% of 20 sewage samples, and 16% of 31 dog fecal samples. The marker was not detected in 1 ng of fecal DNA from 61 cows, 35 horses, 44 pigs, 24 chickens, 29 turkeys, and 17 geese. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.
Xu, Wei; Chen, Deying; Wang, Nan; Zhang, Ting; Zhou, Ruokun; Huan, Tao; Lu, Yingfeng; Su, Xiaoling; Xie, Qing; Li, Liang; Li, Lanjuan
2015-01-20
Human fecal samples contain endogenous human metabolites, gut microbiota metabolites, and other compounds. Profiling the fecal metabolome can produce metabolic information that may be used not only for disease biomarker discovery, but also for providing an insight about the relationship of the gut microbiome and human health. In this work, we report a chemical isotope labeling liquid chromatography-mass spectrometry (LC-MS) method for comprehensive and quantitative analysis of the amine- and phenol-containing metabolites in fecal samples. Differential (13)C2/(12)C2-dansyl labeling of the amines and phenols was used to improve LC separation efficiency and MS detection sensitivity. Water, methanol, and acetonitrile were examined as an extraction solvent, and a sequential water-acetonitrile extraction method was found to be optimal. A step-gradient LC-UV setup and a fast LC-MS method were evaluated for measuring the total concentration of dansyl labeled metabolites that could be used for normalizing the sample amounts of individual samples for quantitative metabolomics. Knowing the total concentration was also useful for optimizing the sample injection amount into LC-MS to maximize the number of metabolites detectable while avoiding sample overloading. For the first time, dansylation isotope labeling LC-MS was performed in a simple time-of-flight mass spectrometer, instead of high-end equipment, demonstrating the feasibility of using a low-cost instrument for chemical isotope labeling metabolomics. The developed method was applied for profiling the amine/phenol submetabolome of fecal samples collected from three families. An average of 1785 peak pairs or putative metabolites were found from a 30 min LC-MS run. From 243 LC-MS runs of all the fecal samples, a total of 6200 peak pairs were detected. Among them, 67 could be positively identified based on the mass and retention time match to a dansyl standard library, while 581 and 3197 peak pairs could be putatively identified based on mass match using MyCompoundID against a Human Metabolome Database and an Evidence-based Metabolome Library, respectively. This represents the most comprehensive profile of the amine/phenol submetabolome ever detected in human fecal samples. The quantitative metabolome profiles of individual samples were shown to be useful to separate different groups of samples, illustrating the possibility of using this method for fecal metabolomics studies.
Sewage Reflects the Microbiomes of Human Populations
Newton, Ryan J.; McLellan, Sandra L.; Dila, Deborah K.; Vineis, Joseph H.; Morrison, Hilary G.; Eren, A. Murat
2015-01-01
ABSTRACT Molecular characterizations of the gut microbiome from individual human stool samples have identified community patterns that correlate with age, disease, diet, and other human characteristics, but resources for marker gene studies that consider microbiome trends among human populations scale with the number of individuals sampled from each population. As an alternative strategy for sampling populations, we examined whether sewage accurately reflects the microbial community of a mixture of stool samples. We used oligotyping of high-throughput 16S rRNA gene sequence data to compare the bacterial distribution in a stool data set to a sewage influent data set from 71 U.S. cities. On average, only 15% of sewage sample sequence reads were attributed to human fecal origin, but sewage recaptured most (97%) human fecal oligotypes. The most common oligotypes in stool matched the most common and abundant in sewage. After informatically separating sequences of human fecal origin, sewage samples exhibited ~3× greater diversity than stool samples. Comparisons among municipal sewage communities revealed the ubiquitous and abundant occurrence of 27 human fecal oligotypes, representing an apparent core set of organisms in U.S. populations. The fecal community variability among U.S. populations was significantly lower than among individuals. It clustered into three primary community structures distinguished by oligotypes from either: Bacteroidaceae, Prevotellaceae, or Lachnospiraceae/Ruminococcaceae. These distribution patterns reflected human population variation and predicted whether samples represented lean or obese populations with 81 to 89% accuracy. Our findings demonstrate that sewage represents the fecal microbial community of human populations and captures population-level traits of the human microbiome. PMID:25714718
Potential of fecal waste for the production of biomethane, bioethanol and biodiesel.
Gomaa, Mohamed A; Abed, Raeid M M
2017-07-10
Fecal waste is an environmental burden that requires proper disposal, which ultimately becomes also an economic burden. Because fecal waste is nutrient-rich and contains a diverse methanogenic community, it has been utilized to produce biomethane via anaerobic digestion. Carbohydrates and lipids in fecal waste could reach up to 50% of the dry weight, which also suggests a potential as a feedstock for bioethanol and biodiesel production. We measured biomethane production from fecal waste of cows, chickens, goats and humans and compared the microbial community composition before and after anaerobic digestion. We also compared the fecal waste for cellulase production, saccharification and fermentation to produce bioethanol and for lipid content and fatty acid profiles to produce biodiesel. All fecal waste produced biomethane, with the highest yield of 433.4±77.1ml CH 4 /g VS from cow fecal waste. Production of bioethanol was achieved from all samples, with chicken fecal waste yielding as high as 1.6±0.25g/l. Sludge samples exhibited the highest extractable portion of lipids (20.9±0.08wt%) and conversion to fatty acid methyl esters (11.94wt%). Utilization of fecal waste for the production of biofuels is environmentally and economically beneficial. Copyright © 2017 Elsevier B.V. All rights reserved.
McMahan, Lanakila; Grunden, Amy M; Devine, Anthony A; Sobsey, Mark D
2012-04-15
The sensitivity and specificity of the H(2)S test to detect fecal bacteria in water has been variable and uncertain in previous studies, partly due to its presence-absence results. Furthermore, in groundwater samples false-positive results have been reported, with H(2)S-positive samples containing no fecal coliforms or Escherichia coli. False-negative results also have been reported in other studies, with H(2)S-negative samples found to contain E. coli. Using biochemical and molecular methods and a novel quantitative test format, this research identified the types and numbers of microbial community members present in natural water samples, including fecal indicators and pathogens as well as other bacteria. Representative water sources tested in this study included cistern rainwater, a protected lake, and wells in agricultural and forest settings. Samples from quantitative H(2)S tests of water were further cultured for fecal bacteria by spread plating onto the selective media for detection and isolation of Aeromonas spp., E. coli, Clostridium spp., H(2)S-producers, and species of Salmonella and Shigella. Isolates were then tested for H(2)S production, and identified to the genus and species level using biochemical methods. Terminal Restriction Fragment Length Polymorphisms (TRFLP) was the molecular method employed to quantitatively characterize microbial community diversity. Overall, it was shown that water samples testing positive for H(2)S bacteria also had bacteria of likely fecal origin and waters containing fecal pathogens also were positive for H(2)S bacteria. Of the microorganisms isolated from natural water, greater than 70 percent were identified using TRFLP analysis to reveal a relatively stable group of organisms whose community composition differed with water source and over time. These results further document the validity of the H(2)S test for detecting and quantifying fecal contamination of water. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ahmed, W; Staley, C; Sadowsky, M J; Gyawali, P; Sidhu, J P S; Palmer, A; Beale, D J; Toze, S
2015-10-01
In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Identification of fecal contamination sources in water using host-associated markers.
Krentz, Corinne A; Prystajecky, Natalie; Isaac-Renton, Judith
2013-03-01
In British Columbia, Canada, drinking water is tested for total coliforms and Escherichia coli, but there is currently no routine follow-up testing to investigate fecal contamination sources in samples that test positive for indicator bacteria. Reliable microbial source tracking (MST) tools to rapidly test water samples for multiple fecal contamination markers simultaneously are currently lacking. The objectives of this study were (i) to develop a qualitative MST tool to identify fecal contamination from different host groups, and (ii) to evaluate the MST tool using water samples with evidence of fecal contamination. Singleplex and multiplex polymerase chain reaction (PCR) were used to test (i) water from polluted sites and (ii) raw and drinking water samples for presence of bacterial genetic markers associated with feces from humans, cattle, seagulls, pigs, chickens, and geese. The multiplex MST assay correctly identified suspected contamination sources in contaminated waterways, demonstrating that this test may have utility for heavily contaminated sites. Most raw and drinking water samples analyzed using singleplex PCR contained at least one host-associated marker. Singleplex PCR was capable of detecting host-associated markers in small sample volumes and is therefore a promising tool to further analyze water samples submitted for routine testing and provide information useful for water quality management.
Jeong, Dana; Kim, Dong-Hyeon; Kang, Il-Byeong; Kim, Hyunsook; Song, Kwang-Young; Kim, Hong-Seok; Seo, Kun-Ho
2017-02-22
Lactobacillus kefiranofaciens is the key probiotic bacterium in kefir. In this study, we investigated the effects of oral consumption of L. kefiranofaciens on the fecal quality and intestinal microbiota of mice. Four-week-old Balb/c mice were divided into two groups (n = 8 each) and administered 0.2 mL of saline (control group) or saline containing 2 × 10 8 cfu L. kefiranofaciens DN1 (LKF_DN1 group) for two weeks. At the end of the experiment, their fecal samples were collected and the fecal quality and microbiota were assessed. The LKF_DN1 group exhibited higher total fecal weight and fecal weight per stool sample than the control group (p < 0.05). Interestingly, the fecal water content was significantly higher in the fecal samples of the LKF_DN1 group than in those of the control group (p < 0.05). The numbers of total bacteria, Firmicutes, Bacteroidetes, Lactobacillus, and Prevotella were significantly higher in the LKF_DN1 group than in the control group (p < 0.05). In contrast, the number of opportunistic pathogens, including Proteobacteria and Enterobacteriaceae, and the percentage of genus Clostridium among the total bacteria were significantly reduced in the LKF_DN1 group (p < 0.05). Our data suggest that regular L. kefiranofaciens DN1 administration could alleviate constipation and improve gut microbiota.
Peed, Lindsay A; Nietch, Christopher T; Kelty, Catherine A; Meckes, Mark; Mooney, Thomas; Sivaganesan, Mano; Shanks, Orin C
2011-07-01
Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between human and other animal sources of fecal pollution making it difficult to identify diffuse pollution sources. Human-associated quantitative real-time PCR (qPCR) methods in combination with low-order headwatershed sampling, precipitation information, and high-resolution geographic information system land use data can be useful for identifying diffuse source of human fecal pollution in receiving waters. To test this assertion, this study monitored nine headwatersheds over a two-year period potentially impacted by faulty septic systems and leaky sanitary sewer lines. Human fecal pollution was measured using three different human-associated qPCR methods and a positive significant correlation was seen between abundance of human-associated genetic markers and septic systems following wet weather events. In contrast, a negative correlation was observed with sanitary sewer line densities suggesting septic systems are the predominant diffuse source of human fecal pollution in the study area. These results demonstrate the advantages of combining water sampling, climate information, land-use computer-based modeling, and molecular biology disciplines to better characterize diffuse sources of human fecal pollution in environmental waters.
Williamson, Charles H. D.; Sanchez, Daniel E.; Sobek, Colin J.; Chambers, Carol L.
2016-01-01
Bat guano is a relatively untapped reservoir of information, having great utility as a DNA source because it is often available at roosts even when bats are not and is an easy type of sample to collect from a difficult-to-study mammalian order. Recent advances from microbial community studies in primer design, sequencing, and analysis enable fast, accurate, and cost-effective species identification. Here, we borrow from this discipline to develop an order-wide DNA mini-barcode assay (Species from Feces) based on a segment of the mitochondrial gene cytochrome c oxidase I (COI). The assay works effectively with fecal DNA and is conveniently transferable to low-cost, high-throughput Illumina MiSeq technology that also allows simultaneous pairing with other markers. Our PCR primers target a region of COI that is highly discriminatory among Chiroptera (92% species-level identification of barcoded species), and are sufficiently degenerate to allow hybridization across diverse bat taxa. We successfully validated our system with 54 bat species across both suborders. Despite abundant arthropod prey DNA in guano, our primers were highly specific to bats; no arthropod DNA was detected in thousands of feces run on Sanger and Illumina platforms. The assay is extendable to fecal pellets of unknown age as well as individual and pooled guano, to allow for individual (using singular fecal pellets) and community (using combined pellets collected from across long-term roost sites) analyses. We developed a searchable database (http://nau.edu/CEFNS/Forestry/Research/Bats/Search-Tool/) that allows users to determine the discriminatory capability of our markers for bat species of interest. Our assay has applications worldwide for examining disease impacts on vulnerable species, determining species assemblages within roosts, and assessing the presence of bat species that are vulnerable or facing extinction. The development and analytical pathways are rapid, reliable, and inexpensive, and can be applied to ecology and conservation studies of other taxa. PMID:27654850
Walker, Faith M; Williamson, Charles H D; Sanchez, Daniel E; Sobek, Colin J; Chambers, Carol L
Bat guano is a relatively untapped reservoir of information, having great utility as a DNA source because it is often available at roosts even when bats are not and is an easy type of sample to collect from a difficult-to-study mammalian order. Recent advances from microbial community studies in primer design, sequencing, and analysis enable fast, accurate, and cost-effective species identification. Here, we borrow from this discipline to develop an order-wide DNA mini-barcode assay (Species from Feces) based on a segment of the mitochondrial gene cytochrome c oxidase I (COI). The assay works effectively with fecal DNA and is conveniently transferable to low-cost, high-throughput Illumina MiSeq technology that also allows simultaneous pairing with other markers. Our PCR primers target a region of COI that is highly discriminatory among Chiroptera (92% species-level identification of barcoded species), and are sufficiently degenerate to allow hybridization across diverse bat taxa. We successfully validated our system with 54 bat species across both suborders. Despite abundant arthropod prey DNA in guano, our primers were highly specific to bats; no arthropod DNA was detected in thousands of feces run on Sanger and Illumina platforms. The assay is extendable to fecal pellets of unknown age as well as individual and pooled guano, to allow for individual (using singular fecal pellets) and community (using combined pellets collected from across long-term roost sites) analyses. We developed a searchable database (http://nau.edu/CEFNS/Forestry/Research/Bats/Search-Tool/) that allows users to determine the discriminatory capability of our markers for bat species of interest. Our assay has applications worldwide for examining disease impacts on vulnerable species, determining species assemblages within roosts, and assessing the presence of bat species that are vulnerable or facing extinction. The development and analytical pathways are rapid, reliable, and inexpensive, and can be applied to ecology and conservation studies of other taxa.
Rasmussen, Patrick P.; Ziegler, Andrew C.
2003-01-01
The sanitary quality of water and its use as a public-water supply and for recreational activities, such as swimming, wading, boating, and fishing, can be evaluated on the basis of fecal coliform and Escherichia coli (E. coli) bacteria densities. This report describes the overall sanitary quality of surface water in selected Kansas streams, the relation between fecal coliform and E. coli, the relation between turbidity and bacteria densities, and how continuous bacteria estimates can be used to evaluate the water-quality conditions in selected Kansas streams. Samples for fecal coliform and E. coli were collected at 28 surface-water sites in Kansas. Of the 318 samples collected, 18 percent exceeded the current Kansas Department of Health and Environment (KDHE) secondary contact recreational, single-sample criterion for fecal coliform (2,000 colonies per 100 milliliters of water). Of the 219 samples collected during the recreation months (April 1 through October 31), 21 percent exceeded the current (2003) KDHE single-sample fecal coliform criterion for secondary contact rec-reation (2,000 colonies per 100 milliliters of water) and 36 percent exceeded the U.S. Environmental Protection Agency (USEPA) recommended single-sample primary contact recreational criterion for E. coli (576 colonies per 100 milliliters of water). Comparisons of fecal coliform and E. coli criteria indicated that more than one-half of the streams sampled could exceed USEPA recommended E. coli criteria more frequently than the current KDHE fecal coliform criteria. In addition, the ratios of E. coli to fecal coliform (EC/FC) were smallest for sites with slightly saline water (specific conductance greater than 1,000 microsiemens per centimeter at 25 degrees Celsius), indicating that E. coli may not be a good indicator of sanitary quality for those streams. Enterococci bacteria may provide a more accurate assessment of the potential for swimming-related illnesses in these streams. Ratios of EC/FC and linear regression models were developed for estimating E. coli densities on the basis of measured fecal coliform densities for six individual and six groups of surface-water sites. Regression models developed for the six individual surface-water sites and six groups of sites explain at least 89 percent of the variability in E. coli densities. The EC/FC ratios and regression models are site specific and make it possible to convert historic fecal coliform bacteria data to estimated E. coli densities for the selected sites. The EC/FC ratios can be used to estimate E. coli for any range of historical fecal coliform densities, and in some cases with less error than the regression models. The basin- and statewide regression models explained at least 93 percent of the variance and best represent the sites where a majority of the data used to develop the models were collected (Kansas and Little Arkansas Basins). Comparison of the current (2003) KDHE geometric-mean primary contact criterion for fecal coliform bacteria of 200 col/100 mL to the 2002 USEPA recommended geometric-mean criterion of 126 col/100 mL for E. coli results in an EC/FC ratio of 0.63. The geometric-mean EC/FC ratio for all sites except Rattlesnake Creek (site 21) is 0.77, indicating that considerably more than 63 percent of the fecal coliform is E. coli. This potentially could lead to more exceedances of the recommended E. coli criterion, where the water now meets the current (2003) 200-col/100 mL fecal coliform criterion. In this report, turbidity was found to be a reliable estimator of bacteria densities. Regression models are provided for estimating fecal coliform and E. coli bacteria densities using continuous turbidity measurements. Prediction intervals also are provided to show the uncertainty associated with using the regression models. Eighty percent of all measured sample densities and individual turbidity-based estimates from the regression models were in agreement as exceedi
Lewis, Zachery T; Davis, Jasmine C C; Smilowitz, Jennifer T; German, J Bruce; Lebrilla, Carlito B; Mills, David A
2016-01-01
Infant fecal samples are commonly studied to investigate the impacts of breastfeeding on the development of the microbiota and subsequent health effects. Comparisons of infants living in different geographic regions and environmental contexts are needed to aid our understanding of evolutionarily-selected milk adaptations. However, the preservation of fecal samples from individuals in remote locales until they can be processed can be a challenge. Freeze-drying (lyophilization) offers a cost-effective way to preserve some biological samples for transport and analysis at a later date. Currently, it is unknown what, if any, biases are introduced into various analyses by the freeze-drying process. Here, we investigated how freeze-drying affected analysis of two relevant and intertwined aspects of infant fecal samples, marker gene amplicon sequencing of the bacterial community and the fecal oligosaccharide profile (undigested human milk oligosaccharides). No differences were discovered between the fecal oligosaccharide profiles of wet and freeze-dried samples. The marker gene sequencing data showed an increase in proportional representation of Bacteriodes and a decrease in detection of bifidobacteria and members of class Bacilli after freeze-drying. This sample treatment bias may possibly be related to the cell morphology of these different taxa (Gram status). However, these effects did not overwhelm the natural variation among individuals, as the community data still strongly grouped by subject and not by freeze-drying status. We also found that compensating for sample concentration during freeze-drying, while not necessary, was also not detrimental. Freeze-drying may therefore be an acceptable method of sample preservation and mass reduction for some studies of microbial ecology and milk glycan analysis.
Stelzer, Erin A.; Strickler, Kriston M.; Schill, William B.
2012-01-01
During summer and early fall 2010, 15 river samples and 6 fecal-source samples were collected in West Virginia. These samples were analyzed by three laboratories for three microbial source tracking (MST) markers: AllBac, a general fecal indicator; BacHum, a human-associated fecal indicator; and BoBac, a ruminant-associated fecal indicator. MST markers were analyzed by means of the quantitative polymerase chain reaction (qPCR) method. The aim was to assess interlaboratory precision when the three laboratories used the same MST marker and shared deoxyribonucleic acid (DNA) extracts of the samples, but different equipment, reagents, and analyst experience levels. The term assay refers to both the markers and the procedure differences listed above. Interlaboratory precision was best for all three MST assays when using the geometric mean absolute relative percent difference (ARPD) and Friedman's statistical test as a measure of interlaboratory precision. Adjustment factors (one for each MST assay) were calculated using results from fecal-source samples analyzed by all three laboratories and applied retrospectively to sample concentrations to account for differences in qPCR results among labs using different standards and procedures. Following the application of adjustment factors to qPCR results, ARPDs were lower; however, statistically significant differences between labs were still observed for the BacHum and BoBac assays. This was a small study and two of the MST assays had 52 percent of samples with concentrations at or below the limit of accurate quantification; hence, more testing could be done to determine if the adjustment factors would work better if the majority of sample concentrations were above the quantification limit.
Characterizing the fecal microbiota of infants with botulism.
Shirey, T Brian; Dykes, Janet K; Lúquez, Carolina; Maslanka, Susan E; Raphael, Brian H
2015-11-23
Infant botulism is the most prevalent form of botulism in the USA, representing 68.5 % of cases reported from 2001-2012. Infant botulism results when botulinum toxin-producing clostridia (BTPC) colonize the infant gut with concomitant in vivo production of the highly potent botulinum neurotoxin (BoNT). The gut microbiota of infants with botulism is largely uncharacterized; therefore, it remains unclear whether the microbiota profile of these patients are distinct in composition, abundance, or diversity. To address this uncertainty, we employed 16S rRNA gene profiling to characterize the fecal microbiota in 14 stool samples among laboratory-confirmed and non-confirmed infant botulism cases. Seven bacterial phyla were identified among all 14 infant stool samples examined. Compared to samples from non-confirmed cases, the fecal microbiota of infant botulism patients displayed significantly higher Proteobacteria abundance. Of the 20 bacterial families identified, Enterobacteriaceae was significantly more abundant in samples from infants with botulism. Firmicutes abundance and the abundance ratio of Firmicutes/Proteobacteria was significantly lower in samples from infants with botulism. Lactobacillus spp. abundance was notably reduced in 12 of the 14 samples. Clostridium botulinum and Clostridium baratii were identified in low relative abundances in confirmed and non-confirmed samples based on their 16S rRNA gene profiles, although their toxigenicity remained undetermined. No significant differences were observed in the number of operational taxonomic units (OTUs) observed or in fecal microbiota diversity between laboratory-confirmed and non-confirmed samples. Correlations between individual phylum abundances and infant age were variable, and no significant differences were shown in number of OTUs observed or in fecal microbiota diversity between samples delineated by overall mean age. Significant differences in Proteobacteria, Firmicutes, and Enterobacteriaceae abundances were identified in the fecal microbiota of infants with botulism when compared to samples from non-confirmed cases. Fecal microbiota diversity was not significantly altered in infants with botulism, and a limited presence of BTPC was shown. It could not be determined whether the fecal microbiota profiles shown here were comparable prior to patient illness, or whether they were the direct result of infant botulism. The results of this study do, however, provide a detailed and descriptive observation into the infant gut microbiota after intestinal colonization by BTPC.
Schunk, Mirjam; Kebede Mekonnen, Seleshi; Wondafrash, Beyene; Mengele, Carolin; Fleischmann, Erna; Herbinger, Karl-Heinz; Verweij, Jaco J.; Geldmacher, Christof; Bretzel, Gisela; Löscher, Thomas; Zeynudin, Ahmed
2015-01-01
Background In Schistosoma mansoni infection, diagnosis and control after treatment mainly rely on parasitological stool investigations which are laborious and have limited sensitivity. PCR methods have shown equal or superior sensitivity but preservation and storage methods limit their use in the field. Therefore, the use of occult blood detection cards (fecal cards) for easy sampling and storage of fecal samples for further PCR testing was evaluated in a pilot study. Methodology Stool specimens were collected in a highly endemic area for S. mansoni in Ethiopia and submitted in an investigator-blinded fashion to microscopic examination by Kato-Katz thick smear as well as to real-time PCR using either fresh frozen stool samples or stool smears on fecal cards which have been stored at ambient temperature for up to ten months. Principal Findings Out of 55 stool samples, 35 were positive by microscopy, 33 and 32 were positive by PCR of frozen samples and of fecal card samples, respectively. When microscopy was used as diagnostic “gold standard”, the sensitivity of PCR on fresh stool was 94.3% (95%-CI: 86.6; 100) and on fecal cards 91.4% (95%-CI: 82.2; 100). Conclusions The use of fecal cards proved to be a simple and useful method for stool collection and prolonged storage prior to PCR based diagnosis of S. mansoni infection. This technique may be a valuable approach for large scale surveillance and post treatment assessments PMID:26360049
Schunk, Mirjam; Kebede Mekonnen, Seleshi; Wondafrash, Beyene; Mengele, Carolin; Fleischmann, Erna; Herbinger, Karl-Heinz; Verweij, Jaco J; Geldmacher, Christof; Bretzel, Gisela; Löscher, Thomas; Zeynudin, Ahmed
2015-01-01
In Schistosoma mansoni infection, diagnosis and control after treatment mainly rely on parasitological stool investigations which are laborious and have limited sensitivity. PCR methods have shown equal or superior sensitivity but preservation and storage methods limit their use in the field. Therefore, the use of occult blood detection cards (fecal cards) for easy sampling and storage of fecal samples for further PCR testing was evaluated in a pilot study. Stool specimens were collected in a highly endemic area for S. mansoni in Ethiopia and submitted in an investigator-blinded fashion to microscopic examination by Kato-Katz thick smear as well as to real-time PCR using either fresh frozen stool samples or stool smears on fecal cards which have been stored at ambient temperature for up to ten months. Out of 55 stool samples, 35 were positive by microscopy, 33 and 32 were positive by PCR of frozen samples and of fecal card samples, respectively. When microscopy was used as diagnostic "gold standard", the sensitivity of PCR on fresh stool was 94.3% (95%-CI: 86.6; 100) and on fecal cards 91.4% (95%-CI: 82.2; 100). The use of fecal cards proved to be a simple and useful method for stool collection and prolonged storage prior to PCR based diagnosis of S. mansoni infection. This technique may be a valuable approach for large scale surveillance and post treatment assessments.
Kruze, J; Monti, G; Schulze, F; Mella, A; Leiva, S
2013-09-01
Paratuberculosis, an infectious disease of domestic and wild ruminants caused by Mycobacterium avium subsp. paratuberculosis (Map), is an economically important disease in dairy herds worldwide. In Chile the disease has been reported in domestic and wildlife animals. However, accurate and updated estimations of the herd-prevalence in cattle at national or regional level are not available. The objectives of this study were to determine the herd-level prevalence of dairy herds with Map infected animals of Southern Chile, based on two diagnostic tests: culture of environmental fecal samples and bulk-tank milk qPCR. Two composite environmental fecal samples and one bulk-tank milk sample were collected during September 2010 and September 2011 from 150 dairy farms in Southern Chile. Isolation of Map from environmental fecal samples was done by culture of decontaminated samples on a commercial Herrold's Egg Yolk Medium (HEYM) with and without mycobactin J. Suspicious colonies were confirmed to be Map by conventional IS900 PCR. Map detection in bulk-tank milk samples was done by real time IS900 PCR assay. PCR-confirmed Map was isolated from 58 (19.3%) of 300 environmental fecal samples. Holding pens and manure storage lagoons were the two more frequent sites found positive for Map, representing 35% and 33% of total positive samples, respectively. However, parlor exits and cow alleyways were the two sites with the highest proportion of positive samples (40% and 32%, respectively). Herd prevalence based on environmental fecal culture was 27% (true prevalence 44%) compared to 49% (true prevalence 87%) based on bulk-tank milk real time IS900 PC. In both cases herd prevalence was higher in large herds (>200 cows). These results confirm that Map infection is wide spread in dairy herds in Southern Chile with a rough herd-level prevalence of 28-100% depending on the herd size, and that IS900 PCR on bulk-tank milk samples is more sensitive than environmental fecal culture to detect Map-infected dairy herds. Copyright © 2013 Elsevier B.V. All rights reserved.
Fecal-indicator bacteria in streams alonga gradient of residential development
Frenzel, Steven A.; Couvillion, Charles S.
2002-01-01
Fecal-indicator bacteria were sampled at 14 stream sites in Anchorage, Alaska, USA, as part of a study to determine the effects of urbanization on water quality. Population density in the subbasins sampled ranged from zero to 1,750 persons per square kilometer. Higher concentrations of fecal-coliform, E. coli, and enterococci bacteria were measured at the most urbanized sites. Although fecal-indicator bacteria concentrations were higher in summer than in winter, seasonal differences in bacteria concentrations generally were not significant. Areas served by sewer systems had significantly higher fecal-indicator bacteria concentrations than did areas served by septic systems. The areas served by sewer systems also had storm drains that discharged directly to the streams, whereas storm sewers were not present in the areas served by septic systems. Fecal-indicator bacteria concentrations were highly variable over a two-day period of stable streamflow, which may have implications for testing of compliance to water-quality standards.
Ahmed, W; Hodgers, L; Sidhu, J P S; Toze, S
2012-01-01
In this study, the microbiological quality of household tap water samples fed from rainwater tanks was assessed by monitoring the numbers of Escherichia coli bacteria and enterococci from 24 households in Southeast Queensland (SEQ), Australia. Quantitative PCR (qPCR) was also used for the quantitative detection of zoonotic pathogens in water samples from rainwater tanks and connected household taps. The numbers of zoonotic pathogens were also estimated in fecal samples from possums and various species of birds by using qPCR, as possums and birds are considered to be the potential sources of fecal contamination in roof-harvested rainwater (RHRW). Among the 24 households, 63% of rainwater tank and 58% of connected household tap water (CHTW) samples contained E. coli and exceeded Australian drinking water guidelines of <1 CFU E. coli per 100 ml water. Similarly, 92% of rainwater tanks and 83% of CHTW samples also contained enterococci. In all, 21%, 4%, and 13% of rainwater tank samples contained Campylobacter spp., Salmonella spp., and Giardia lamblia, respectively. Similarly, 21% of rainwater tank and 13% of CHTW samples contained Campylobacter spp. and G. lamblia, respectively. The number of E. coli (P = 0.78), Enterococcus (P = 0.64), Campylobacter (P = 0.44), and G. lamblia (P = 0.50) cells in rainwater tanks did not differ significantly from the numbers observed in the CHTW samples. Among the 40 possum fecal samples tested, Campylobacter spp., Cryptosporidium parvum, and G. lamblia were detected in 60%, 13%, and 30% of samples, respectively. Among the 38 bird fecal samples tested, Campylobacter spp., Salmonella spp., C. parvum, and G. lamblia were detected in 24%, 11%, 5%, and 13% of the samples, respectively. Household tap water samples fed from rainwater tanks tested in the study appeared to be highly variable. Regular cleaning of roofs and gutters, along with pruning of overhanging tree branches, might also prove effective in reducing animal fecal contamination of rainwater tanks.
Hodgers, L.; Sidhu, J. P. S.; Toze, S.
2012-01-01
In this study, the microbiological quality of household tap water samples fed from rainwater tanks was assessed by monitoring the numbers of Escherichia coli bacteria and enterococci from 24 households in Southeast Queensland (SEQ), Australia. Quantitative PCR (qPCR) was also used for the quantitative detection of zoonotic pathogens in water samples from rainwater tanks and connected household taps. The numbers of zoonotic pathogens were also estimated in fecal samples from possums and various species of birds by using qPCR, as possums and birds are considered to be the potential sources of fecal contamination in roof-harvested rainwater (RHRW). Among the 24 households, 63% of rainwater tank and 58% of connected household tap water (CHTW) samples contained E. coli and exceeded Australian drinking water guidelines of <1 CFU E. coli per 100 ml water. Similarly, 92% of rainwater tanks and 83% of CHTW samples also contained enterococci. In all, 21%, 4%, and 13% of rainwater tank samples contained Campylobacter spp., Salmonella spp., and Giardia lamblia, respectively. Similarly, 21% of rainwater tank and 13% of CHTW samples contained Campylobacter spp. and G. lamblia, respectively. The number of E. coli (P = 0.78), Enterococcus (P = 0.64), Campylobacter (P = 0.44), and G. lamblia (P = 0.50) cells in rainwater tanks did not differ significantly from the numbers observed in the CHTW samples. Among the 40 possum fecal samples tested, Campylobacter spp., Cryptosporidium parvum, and G. lamblia were detected in 60%, 13%, and 30% of samples, respectively. Among the 38 bird fecal samples tested, Campylobacter spp., Salmonella spp., C. parvum, and G. lamblia were detected in 24%, 11%, 5%, and 13% of the samples, respectively. Household tap water samples fed from rainwater tanks tested in the study appeared to be highly variable. Regular cleaning of roofs and gutters, along with pruning of overhanging tree branches, might also prove effective in reducing animal fecal contamination of rainwater tanks. PMID:22020514
NASA Astrophysics Data System (ADS)
Wong, K.; Shaw, T. I.; Oladeinde, A.; Molina, M.
2013-12-01
Fecal pollution of environmental waters is a major concern for the general public because exposure to fecal-associated pathogens can have severe impacts on human health. Stream and river impairment due to fecal pollution is largely the result of agricultural activities in the United States. In the last few years, numerous metagenomic studies utilized next generation sequencing to develop microbial community profiles by massively sequencing the 16sRNA hypervariable region. This technology supports the application of water quality assessment such as pathogen detection and fecal source tracking. The bacteria communities of samples in these studies were determined when they were freshly collected; therefore, little is known about how feces age or how environmental stress influences the microbial ecology of fecal materials. In this study we monitored bacteria community changes in cattle feces for 57 days after excretion (day 0, 2, 4 8, 15, 22, 29, 43, 57) by sequencing the 16s variable region 4, using Illumnia MiSeq. Twelve cattle feces were studied; half of the samples were directly exposed to sunlight (unshaded) and half were shaded. Results indicate that the relative abundance (RA) profile in both shaded and unshaded samples rapidly changed from day 0 to 15, but stabilized from day 22 to 57. Firmcutes were the most abundant phylum (~40%) at day 0, but were reduced to <10% by day 57. The RA of Proteobacteria was only 1% at day 0, but increased to ~50% by day 57in both shaded and unshaded samples. By the end of the study, shaded and unshaded samples had a similar RA of Firmcutes and Proteobacteria but the RA of Bacteroidetes and Actinobacteria was, respectively, about 7% lower and 10% higher for unshaded samples. UV intensity, moisture, and temperature were significantly different between shaded and unshaded plots, indicating that these environmental stresses could influence the structure of fecal bacteria community in the natural environment. According to the rarefaction curve analysis, richness of bacteria diversity in feces decreased as time progressed. Some pathogens such as Campylobacter were detected only at the beginning, meaning they substantially decayed during the course of our study. Overall, this study indicated: (1) sunlight can influence the community structure and (2) after excretion the fecal bacteria diversity can be significantly changed over time. Future studies should therefore use not only the microbial signature of fresh but also moderately aged fecal samples to develop more accurate community profiles for fecal source tracking.
Numerous watersheds throughout the United States are impaired due to fecal contamination. Fecal Bacteroidetes is a group of anaerobic bacteria present in high concentrations in animal feces that has shown promise as a microbial source tracking indicator of human and othe...
Cao, Yanru; Jiang, Yi; Li, Youlong; Chen, Xiu; Jin, Rongxian; He, Wenxiang
2012-07-04
We studied the isolation methods and diversity of culturable fecal actinobacteria associated with Panthera tigris tigris by using culture-dependent approaches. Fresh fecal samples of healthy Panthera tigris tigris were collected from Yunnan Safari Park. Pretreatment of the samples, isolation media and inhibitors were tested for actinobacteria isolation. 16S rRNA genes of actinobacteria were sequenced and subjected to phylogenetic analysis. The abundance of culturable actinobacteria was 1.10 x 10(8) cfu/g colony forming units (CFU) per gram of feces (wet weight). We obtained 110 purified cultural actinobacterium strains. The analysis based on 16S rRNA gene sequences showed that these strains were distributed in 10 different families and 12 genera of actinobacteria at least, and most of them were non-filamentous, such as Arthrobacter, Dietzia, Kocuria, Corynebacterium and Microbacterium. Streptomyces was the mainly classical filamentous actinobacteria, and up to 64% of total. Drying and heating up the fecal samples can greatly increase the rate of the actinobacteria. Many kinds of inhibitors and chemical defined media are suitable for isolation of fecal actinobacteria. The culturable actinobacteria are abundant in Panthera tigris tigris feces. Our study found an effective method to isolate animals' fecal actinobacteria and it's useful for studying and exploiting animals' fecal actinobacteria.
Moles, Laura; Escribano, Esperanza; de Andrés, Javier; Montes, María Teresa; Rodríguez, Juan M; Jiménez, Esther; Sáenz de Pipaón, Miguel; Espinosa-Martos, Irene
2015-01-01
The preterm infant gut has been described as immature and colonized by an aberrant microbiota. Therefore, the use of probiotics is an attractive practice in hospitals to try to reduce morbidity and mortality in this population. The objective of this pilot study was to elucidate if administration of two probiotic strains isolated from human milk to preterm infants led to their presence in feces. In addition, the evolution of a wide spectrum of immunological compounds, including the inflammatory biomarker calprotectin, in both blood and fecal samples was also assessed. For this purpose, five preterm infants received two daily doses (~10(9) CFU) of a 1:1 mixture of Bifidobacterium breve PS12929 and Lactobacillus salivarius PS12934. Bacterial growth was detected by culture-dependent techniques in all the fecal samples. The phylum Firmicutes dominated in nearly all fecal samples while L. salivarius PS12934 was detected in all the infants at numerous sample collection points and B. breve PS12929 appeared in five fecal samples. Finally, a noticeable decrease in the fecal calprotectin levels was observed along time.
Effects of preservation method on canine (Canis lupus familiaris) fecal microbiota.
Horng, Katti R; Ganz, Holly H; Eisen, Jonathan A; Marks, Stanley L
2018-01-01
Studies involving gut microbiome analysis play an increasing role in the evaluation of health and disease in humans and animals alike. Fecal sampling methods for DNA preservation in laboratory, clinical, and field settings can greatly influence inferences of microbial composition and diversity, but are often inconsistent and under-investigated between studies. Many laboratories have utilized either temperature control or preservation buffers for optimization of DNA preservation, but few studies have evaluated the effects of combining both methods to preserve fecal microbiota. To determine the optimal method for fecal DNA preservation, we collected fecal samples from one canine donor and stored aliquots in RNAlater, 70% ethanol, 50:50 glycerol:PBS, or without buffer at 25 °C, 4 °C, and -80 °C. Fecal DNA was extracted, quantified, and 16S rRNA gene analysis performed on Days 0, 7, 14, and 56 to evaluate changes in DNA concentration, purity, and bacterial diversity and composition over time. We detected overall effects on bacterial community of storage buffer ( F -value = 6.87, DF = 3, P < 0.001), storage temperature ( F -value=1.77, DF = 3, P = 0.037), and duration of sample storage ( F -value = 3.68, DF = 3, P < 0.001). Changes in bacterial composition were observed in samples stored in -80 °C without buffer, a commonly used method for fecal DNA storage, suggesting that simply freezing samples may be suboptimal for bacterial analysis. Fecal preservation with 70% ethanol and RNAlater closely resembled that of fresh samples, though RNAlater yielded significantly lower DNA concentrations ( DF = 8.57, P < 0.001). Although bacterial composition varied with temperature and buffer storage, 70% ethanol was the best method for preserving bacterial DNA in canine feces, yielding the highest DNA concentration and minimal changes in bacterial diversity and composition. The differences observed between samples highlight the need to consider optimized post-collection methods in microbiome research.
Ground-water-quality data for selected wells in the Beaver Creek watershed, West Tennessee
Williams, S.D.
1996-01-01
In 1993 the U.S. Geological Survey, in cooperation with the Tennessee Department of Environment and Conservation (TDEC), began an investigation of the quality of ground water in the Beaver Creek watershed in West Tennessee. A total of 408 water samples were collected from 91 wells during 5 sampling periods in 1994. Water samples were analyzed for selected water-quality properties, fecal coliform and streptococci bacteria, nutrients, and major inorganic constituents. Selected well- construction data and information on potential sources of contamination were also collected for the 91 wells sampled. Nitrate concentrations (measured as NO
Ryu, Hodon; Griffith, John F.; Khan, Izhar U. H.; Hill, Stephen; Edge, Thomas A.; Toledo-Hernandez, Carlos; Gonzalez-Nieves, Joel
2012-01-01
Two novel gull-specific quantitative PCR (qPCR) assays were developed using 16S rRNA gene sequences from gull fecal clone libraries: a SYBR green assay targeting Streptococcus spp. (gull3) and a hydrolysis TaqMan assay targeting Catellicoccus marimammalium (gull4). The objectives of this study were to compare the host specificity of a previous C. marimammalium qPCR assay (gull2) with that of the new markers and to examine the presence of the three gull markers in environmental water samples from different geographic locations. Most of the gull fecal samples tested (n = 255) generated positive signals with the gull2 and gull4 assays (i.e., >86%), whereas only 28% were positive with gull3. Low prevalence and abundance of tested gull markers (0.6 to 15%) were observed in fecal samples from six nonavian species (n = 180 fecal samples), whereas the assays cross-reacted to some extent (13 to 31%) with other (nongull) avian fecal samples. The gull3 assay was positive against fecal samples from 11 of 15 avian species, including gull. Of the presumed gull-impacted water samples (n = 349), 86%, 59%, and 91% were positive with the gull2, the gull3, and the gull4 assays, respectively. Approximately 5% of 239 non-gull-impacted water samples were positive with the gull2 and the gull4 assays, whereas 21% were positive witg the gull3 assay. While the relatively high occurrence of gull2 and gull4 markers in waters impacted by gull feces suggests that these assays could be used in environmental monitoring studies, the data also suggest that multiple avian-specific assays will be needed to accurately assess the contribution of different avian sources in recreational waters. PMID:22226950
Durant, Jean-Francois; Irenge, Leonid M; Fogt-Wyrwas, Renata; Dumont, Catherine; Doucet, Jean-Pierre; Mignon, Bernard; Losson, Bertrand; Gala, Jean-Luc
2012-12-07
Toxocarosis is a zoonotic disease caused by Toxocara canis (T. canis) and/or Toxocara cati (T. cati), two worldwide distributed roundworms which are parasites of canids and felids, respectively. Infections of humans occur through ingestion of embryonated eggs of T. canis or T. cati, when playing with soils contaminated with dogs or cats feces. Accordingly, the assessment of potential contamination of these areas with these roundworms eggs is paramount. A duplex quantitative real-time PCR (2qPCR) targeting the ribosomal RNA gene internal transcribed spacer (ITS2) has been developed and used for rapid and specific identification of T. canis and T. cati eggs in fecal and soil samples. The assay was set up on DNA samples extracted from 53 adult worms including T. canis, T. cati, T. leonina, Ascaris suum (A. suum) and Parascaris equorum (P. equorum). The assay was used to assess the presence of T. cati eggs in several samples, including 12 clean soil samples spiked with eggs of either T. cati or A. suum, 10 actual soil samples randomly collected from playgrounds in Brussels, and fecal samples from cats, dogs, and other animals. 2qPCR results on dogs and cats fecal samples were compared with results from microscopic examination. 2qPCR assay allowed specific detection of T. canis and T. cati, whether adult worms, eggs spiked in soil or fecal samples. The 2qPCR limit of detection (LOD) in spiked soil samples was 2 eggs per g of soil for a turnaround time of 3 hours. A perfect concordance was observed between 2qPCR assay and microscopic examination on dogs and cats feces. The newly developed 2qPCR assay can be useful for high throughput prospective or retrospective detection of T.canis and/or T. cati eggs in fecal samples as well as in soil samples from playgrounds, parks and sandpits.
National Risk Management Research Laboratory (NRMRL) Microbial Research
Experimental design: Three host-specific PCR assays were tested against fecal and water samples. Host-specificity assays were performed against targeted and nontargeted fecal sources. Detection limits were performed against diluted fecal and water DNA extracts. Groundwater an...
Heilmann, Romy M; Grellet, Aurélien; Grützner, Niels; Cranford, Shannon M; Suchodolski, Jan S; Chastant-Maillard, Sylvie; Steiner, Jörg M
2018-04-17
Previous data suggest that fecal S100A12 has clinical utility as a biomarker of chronic gastrointestinal inflammation (idiopathic inflammatory bowel disease) in both people and dogs, but the effect of gastrointestinal pathogens on fecal S100A12 concentrations is largely unknown. The role of S100A12 in parasite and viral infections is also difficult to study in traditional animal models due to the lack of S100A12 expression in rodents. Thus, the aim of this study was to evaluate fecal S100A12 concentrations in a cohort of puppies with intestinal parasites (Cystoisospora spp., Toxocara canis, Giardia sp.) and viral agents that are frequently encountered and known to cause gastrointestinal signs in dogs (coronavirus, parvovirus) as a comparative model. Spot fecal samples were collected from 307 puppies [median age (range): 7 (4-13) weeks; 29 different breeds] in French breeding kennels, and fecal scores (semiquantitative system; scores 1-13) were assigned. Fecal samples were tested for Cystoisospora spp. (C. canis and C. ohioensis), Toxocara canis, Giardia sp., as well as canine coronavirus (CCV) and parvovirus (CPV). S100A12 concentrations were measured in all fecal samples using an in-house radioimmunoassay. Statistical analyses were performed using non-parametric 2-group or multiple-group comparisons, non-parametric correlation analysis, association testing between nominal variables, and construction of a multivariate mixed model. Fecal S100A12 concentrations ranged from < 24-14,363 ng/g. Univariate analysis only showed increased fecal S100A12 concentrations in dogs shedding Cystoisospora spp. (P = 0.0384) and in dogs infected with parvovirus (P = 0.0277), whereas dogs infected with coronavirus had decreased fecal S100A12 concentrations (P = 0.0345). However, shedding of any single enteropathogen did not affect fecal S100A12 concentrations in multivariate analysis (all P > 0.05) in this study. Only fecal score and breed size had an effect on fecal S100A12 concentrations in multivariate analysis (P < 0.0001). An infection with any single enteropathogen tested in this study is unlikely to alter fecal S100A12 concentrations, and these preliminary data are important for further studies evaluating fecal S100A12 concentrations in dogs or when using fecal S100A12 concentrations as a biomarker in patients with chronic idiopathic gastrointestinal inflammation.
Fisher, Jenny C.; Eren, A. Murat; Green, Hyatt C.; Shanks, Orin C.; Morrison, Hilary G.; Vineis, Joseph H.; Sogin, Mitchell L.
2015-01-01
Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but the gut microbiota of humans and other animals contain organisms from an array of other taxonomic groups that might provide indicators of fecal pollution sources. To discern between human and nonhuman fecal sources, we compared the V6 regions of the 16S rRNA genes detected in fecal samples from six animal hosts to those found in sewage (as a proxy for humans). We focused on 10 abundant genera and used oligotyping, which can detect subtle differences between rRNA gene sequences from ecologically distinct organisms. Our analysis showed clear patterns of differential oligotype distributions between sewage and animal samples. Over 100 oligotypes of human origin occurred preferentially in sewage samples, and 99 human oligotypes were sewage specific. Sequences represented by the sewage-specific oligotypes can be used individually for development of PCR-based assays or together with the oligotypes preferentially associated with sewage to implement a signature-based approach. Analysis of sewage from Spain and Brazil showed that the sewage-specific oligotypes identified in U.S. sewage have the potential to be used as global alternative indicators of human fecal pollution. Environmental samples with evidence of prior human fecal contamination had consistent ratios of sewage signature oligotypes that corresponded to the trends observed for sewage. Our methodology represents a promising approach to identifying new bacterial taxa for MST applications and further highlights the potential of the family Lachnospiraceae to provide human-specific markers. In addition to source tracking applications, the patterns of the fine-scale population structure within fecal taxa suggest a fundamental relationship between bacteria and their hosts. PMID:26231648
Arfken, Ann M; Song, Bongkeun; Mallin, Michael A
2015-09-01
Hog lagoons can be major sources of waste and nutrient contamination to watersheds adjacent to pig farms. Fecal source tracking methods targeting Bacteroidetes 16S rRNA genes in pig fecal matter may underestimate or fail to detect hog lagoon contamination in riverine environments. In order to detect hog lagoon wastewater contamination in the Cape Fear Watershed, where a large number of hog farms are present, we conducted pyrosequencing analyses of Bacteroidetes 16S rRNA genes in hog lagoon waste and identified new hog lagoon-specific marker sequences. Additional pyrosequencing analyses of Bacteroidetes 16S rRNA genes were conducted with surface water samples collected at 4 sites during 5 months in the Cape Fear Watershed. Using an operational taxonomic unit (OTU) identity cutoff value of 97 %, these newly identified hog lagoon markers were found in 3 of the river samples, while only 1 sample contained the pig fecal marker. In the sample containing the pig fecal marker, there was a relatively high percentage (14.1 %) of the hog lagoon markers and a low pig fecal marker relative abundance of 0.4 % in the Bacteroidetes 16S rRNA gene sequences. This suggests that hog lagoon contamination must be somewhat significant in order for pig fecal markers to be detected, and low levels of hog lagoon contamination cannot be detected targeting only pig-specific fecal markers. Thus, new hog lagoon markers have a better detection capacity for lagoon waste contamination, and in conjunction with a pig fecal marker, provide a more comprehensive and accurate detection of hog lagoon waste contamination in susceptible watersheds.
Use of Ronidazole and Limited Culling To Eliminate Tritrichomonas muris from Laboratory Mice.
Steiner, Jörg M; Schwamberger, Sabine; Pantchev, Nikola; Balzer, Hans-Jörg; Vrhovec, Majda Globokar; Lesina, Marina; Algül, Hana
2016-01-01
Tritrichomonas muris is occasionally identified during routine fecal screening of laboratory mice. Frequently, entire racks are affected, and because no effective treatment is available, culling of affected mice and rederivation by embryo transfer have been suggested. The current study evaluated whether treatment with ronidazole, a nitroimidazole efficacious against T. fetus infections in cats, combined with limited culling was effective against T. muris in laboratory mice (Mus musculus). A subset (n = 39) of mice were treated with ronidazole (400 mg/L in drinking water) for 15 d, after which 6 of the mice still shed T. muris. Consequently all mice in the affected rack received ronidazole (500 mg /L in drinking water) for 25 d. All mice were retested by using pooled samples, and those positive for T. muris (except for a valuable breeding pair) were culled. The remaining mice continued to receive ronidazole for another 17 d. At the end of the treatment period, all mice were tested (days 60 and 81) and were shown to be negative for T. muris. Over the following year, sentinel mice from the rack were tested every 3 mo and remained negative for tritrichomonads by fecal smear. Thus, a combination of limited culling and treatment with ronidazole in the drinking water successfully cleared research mice of infection with T. muris.
Atidégla, Séraphin C.; Huat, Joël; Agbossou, Euloge K.; Saint-Macary, Hervé; Glèlè Kakai, Romain
2016-01-01
A study was conducted in southern Benin to assess the contamination of vegetables by fecal coliforms, Escherichia coli, and fecal streptococci as one consequence of the intensification of vegetable cropping through fertilization with poultry manure. For this purpose, on-farm trials were conducted in 2009 and 2010 at Yodo-Condji and Ayi-Guinnou with three replications and four fertilization treatments including poultry manure and three vegetable crops (leafy eggplant, tomato, and carrot). Sampling, laboratory analyses, and counts of fecal bacteria in the samples were performed in different cropping seasons. Whatever the fertilization treatment, the logs of mean fecal bacteria count per g of fresh vegetables were variable but higher than AFNOR criteria. The counts ranged from 8 to 10 fecal coliforms, from 5 to 8 fecal streptococci, and from 2 to 6 Escherichia coli, whereas AFNOR criteria are, respectively, 0, 1, and 0. The long traditional use of poultry manure and its use during the study helped obtain this high population of fecal pathogens. Results confirmed that the contamination of vegetables by fecal bacteria is mainly due to the use of poultry manure. The use of properly composted poultry manure with innovative cropping techniques should help reduce the number and incidence of pathogens. PMID:27069914
Simmering, Rainer; Kleessen, Brigitta; Blaut, Michael
1999-01-01
To investigate the occurrence of the flavonoid-degrading bacterium Eubacterium ramulus in the human intestinal tract, an oligonucleotide probe designated S-S-E.ram-0997-a-A-18 was designed and validated, with over 90 bacterial strains representing the dominant described human fecal flora. Application of S-S-E.ram-0997-a-A-18 to fecal samples from 20 subjects indicated the presence of E. ramulus in each individual tested in numbers from 4.4 × 107 to 2.0 × 109 cells/g of fecal dry mass. Six fecal E. ramulus isolates were recognized by S-S-E.ram-0997-a-A-18 but exhibited different band patterns when analyzed by randomly amplified polymorphic DNA. PMID:10427069
Quantitative CrAssphage PCR Assays for Human Fecal ...
Environmental waters are monitored for fecal pollution to protect public health and water resources. Traditionally, general fecal indicator bacteria are used; however, they cannot distinguish human fecal waste from pollution from other animals. Recently, a novel bacteriophage, crAssphage, was discovered by metagenomic data mining and reported to be abundant in and closely associated with human fecal waste. To confirm bioinformatic predictions, 384 primer sets were designed along the length of the crAssphage genome. Based upon initial screening, two novel crAssphage qPCR assays (CPQ_056 and CPQ_064) were designed and evaluated in reference fecal samples and water matrices. The assays exhibited high specificities (98.6%) when tested against a large animal fecal reference library and were highly abundant in raw sewage and sewage impacted water samples. In addition, CPQ_056 and CPQ_064 assay performance was compared to HF183/BacR287 and HumM2 methods in paired experiments. Findings confirm viral crAssphage qPCR assays perform at a similar level to well established bacterial human-associated fecal source identification technologies. These new viral based assays could become important water quality management and research tools. To inform the public.
Muehlenbein, Michael P.; Ancrenaz, Marc; Sakong, Rosman; Ambu, Laurentius; Prall, Sean; Fuller, Grace; Raghanti, Mary Ann
2012-01-01
Nature-based tourism can generate important revenue to support conservation of biodiversity. However, constant exposure to tourists and subsequent chronic activation of stress responses can produce pathological effects, including impaired cognition, growth, reproduction, and immunity in the same animals we are interested in protecting. Utilizing fecal samples (N = 53) from 2 wild habituated orangutans (Pongo pygmaeus morio) (in addition to 26 fecal samples from 4 wild unhabituated orangutans) in the Lower Kinabatangan Wildlife Sanctuary of Sabah, Malaysian Borneo, we predicted that i) fecal glucocorticoid metabolite concentrations would be elevated on the day after tourist visitation (indicative of normal stress response to exposure to tourists on the previous day) compared to samples taken before or during tourist visitation in wild, habituated orangutans, and ii) that samples collected from habituated animals would have lower fecal glucocorticoid metabolites than unhabituated animals not used for tourism. Among the habituated animals used for tourism, fecal glucocorticoid metabolite levels were significantly elevated in samples collected the day after tourist visitation (indicative of elevated cortisol production on the previous day during tourist visitation). Fecal glucocorticoid metabolite levels were also lower in the habituated animals compared to their age-matched unhabituated counterparts. We conclude that the habituated animals used for this singular ecotourism project are not chronically stressed, unlike other species/populations with documented permanent alterations in stress responses. Animal temperament, species, the presence of coping/escape mechanisms, social confounders, and variation in amount of tourism may explain differences among previous experiments. Acute alterations in glucocorticoid measures in wildlife exposed to tourism must be interpreted conservatively. While permanently altered stress responses can be detrimental, preliminary results in these wild habituated orangutans suggest that low levels of predictable disturbance can likely result in low physiological impact on these animals. PMID:22438916
Muehlenbein, Michael P; Ancrenaz, Marc; Sakong, Rosman; Ambu, Laurentius; Prall, Sean; Fuller, Grace; Raghanti, Mary Ann
2012-01-01
Nature-based tourism can generate important revenue to support conservation of biodiversity. However, constant exposure to tourists and subsequent chronic activation of stress responses can produce pathological effects, including impaired cognition, growth, reproduction, and immunity in the same animals we are interested in protecting. Utilizing fecal samples (N = 53) from 2 wild habituated orangutans (Pongo pygmaeus morio) (in addition to 26 fecal samples from 4 wild unhabituated orangutans) in the Lower Kinabatangan Wildlife Sanctuary of Sabah, Malaysian Borneo, we predicted that i) fecal glucocorticoid metabolite concentrations would be elevated on the day after tourist visitation (indicative of normal stress response to exposure to tourists on the previous day) compared to samples taken before or during tourist visitation in wild, habituated orangutans, and ii) that samples collected from habituated animals would have lower fecal glucocorticoid metabolites than unhabituated animals not used for tourism. Among the habituated animals used for tourism, fecal glucocorticoid metabolite levels were significantly elevated in samples collected the day after tourist visitation (indicative of elevated cortisol production on the previous day during tourist visitation). Fecal glucocorticoid metabolite levels were also lower in the habituated animals compared to their age-matched unhabituated counterparts. We conclude that the habituated animals used for this singular ecotourism project are not chronically stressed, unlike other species/populations with documented permanent alterations in stress responses. Animal temperament, species, the presence of coping/escape mechanisms, social confounders, and variation in amount of tourism may explain differences among previous experiments. Acute alterations in glucocorticoid measures in wildlife exposed to tourism must be interpreted conservatively. While permanently altered stress responses can be detrimental, preliminary results in these wild habituated orangutans suggest that low levels of predictable disturbance can likely result in low physiological impact on these animals.
Barcelos, Adriana Renata; Bobrowiec, Paulo Estefano D; Sanaiotti, Tânia Margarete; Gribel, Rogério
2013-03-01
This study evaluated the potential of lowland tapirs as seed dispersers in the northern Brazilian Amazon. The study analyzed the viability of seeds after passage through the gut. Fecal samples were collected from 6 different vegetation physiognomies in Viruá National Park during the dry season. The samples were then kept in a greenhouse for 16 months to allow the seeds to germinate. The seedling species were identified and classified according to the type of fruit, plant habit, seed size and type of ingestion. Of the 111 fecal samples, 94 (84.7%) had viable seeds of 75 species. Melastomataceae was the most frequent family with viable seeds in the fecal samples (69.1% of samples, N= 18 species). The data suggest that the importance of the lowland tapirs as dispersers is not restricted to the species consumed actively by frugivory but also extends to species accidentally consumed during browsing. The occurrence of both large and small viable seeds in the fecal samples as well as a number of large drupes, which probably cannot be transported via endozoochory by any other animal species, provide evidence of the ecological importance of lowland tapirs to the dynamics of the forest-campinarana vegetation mosaic in the region. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
Van Donkersgoed, J; Graham, T; Gannon, V
1999-05-01
Fecal samples collected from cattle at processing during a 1-year period were tested for verotoxins (VT1, VT2), Escherichia coli O157:H7, and Salmonella. Verotoxins were detected in 42.6% (95% CI, 39.8% to 45.4%), E. coli O157:H7 in 7.5% (95% CI, 6.1% to 9.1%), and Salmonella in 0.08% (95% CI, 0.004% to 0.5%) of the fecal samples. In yearling cattle, the median within-lot prevalence (percentage of positive samples within a lot) was 40% (range, 0% to 100%) for verotoxins and 0% for E. coli O157:H7 (range, 0% to 100%) and Salmonella (range, 0% to 17%). One or more fecal samples were positive for verotoxins in 80.4% (95% CI, 72.8% to 86.4%) of the lots of yearling cattle, whereas E. coli O157:H7 were detected in 33.6% (95% CI, 26.0% to 42.0%) of the lots. In cull cows, the median within-lot prevalence was 50% (range, 0% to 100%) for verotoxins and 0% (range, 0% to 100%) for E. coli O157:H7 and Salmonella (range, 0% to 0%). Verotoxins were detected in one or more fecal samples from 78.0% (95% CI, 70.4% to 84.2%) of the lots of cull cows, whereas E. coli O157:H7 were detected in only 6.0% (95% CI, 3.0% to 11.4%) of the lots of cull cows. The prevalence of verotoxins in fecal samples was lower in yearling cattle than in cull cows, whereas the prevalence of E. coli O157:H7 in fecal samples was higher in yearling cattle than in cull cows. The prevalence of E. coli O157:H7 in fecal samples was highest in the summer months. Rumen fill, body condition score, sex, type of cattle (dairy, beef), and distance travelled to the plant were not associated with the fecal prevalence of verotoxins or E. coli O157:H7. The prevalence of verotoxins in fecal samples of cull cows was associated with the source of the cattle. It was highest in cows from the auction market (52%) and farm/ranch (47%) and lowest in cows from the feedlot (31%). In rumen samples, the prevalence of verotoxins was 6.4% (95% CI, 4.2% to 9.4%), and it was 0.8% (95% CI, 0.2% to 2.3%) for E. coli O157:H7, and 0.3% (95% CI, 0.007% to 1.5%) for Salmonella.
Li, Rui; Liu, Jianjun; Xue, Huiping; Huang, Gang
2012-10-15
The measurement of fecal tumor M2-pyruvate kinase (PKM2), overexpressed in tumor cells, has been proposed as a novel tool for detecting colorectal cancer (CRC). However, the sensitivity and specificity of this test varied among studies. The aim of this meta-analysis was to determine the diagnostic accuracy of fecal PKM2 for CRC and to evaluate its utility in the CRC screening. It was compared to guaiac fecal occult blood test (gFOBT) or immunological fecal occult blood test (iFOBT). Through comprehensive literature search, 10 studies met the inclusion criteria and were included. Summary estimates for sensitivity and specificity were calculated by using the bivariate random effect model. The hierarchical summary receiver operating characteristic curve was also undertaken. The overall sensitivity and specificity of fecal PKM2 for detecting CRC were 79% (95% CI = 75-83%) and 81% (95% CI = 73-87%), respectively. The summary positive predictive value and negative predictive value were 74% (95% CI = 56-87%) and 86% (95% CI = 79-91%), respectively. The pooled diagnostic odds ratio was 16 (95% CI = 10-26). In head-to-head comparison, the diagnostic odds ratio of PKM2 and gFOBT for CRC were 10.167 (95% CI = 5.992-17.250) and 6.557 (95% CI = 3.467-12.403), respectively. The diagnostic odds ratio of PKM2 and iFOBT for CRC were 9.542 (95% CI = 5.893-15.452) and 67.248 (95% CI = 16.194-279.26), respectively. The fecal PKM2 test was a diagnostic tool with moderate sensitivity and specificity for detecting CRC. Its diagnostic efficiency was similar to that of gFOBT. Because of its relatively low specificity and positive predict value, fecal PKM2 was not recommended used alone as a screening tool for CRC. Copyright © 2012 UICC.
Neish, Emma M.; Miller, Nancy S.; Dhere, Tanvi; Burd, Eileen M.; Carpentieri, Cynthia; Sitchenko, Kaitlin L.
2017-01-01
ABSTRACT Fecal microbiota transplantation is an efficacious and inexpensive therapy for recurrent Clostridium difficile infection, yet its safety is thought to depend on appropriate fecal donor screening. FDA guidance for regulation of this procedure is in flux, but screening and manufacture of fecal material from asymptomatic donors present many challenges to clinical laboratories. This minireview summarizes FDA regulatory changes, principles of donor selection, and recommended laboratory screening practices for fecal microbiota transplantation. PMID:28077694
Cernicchiaro, N; Renter, D G; Cull, C A; Paddock, Z D; Shi, X; Nagaraja, T G
2014-05-01
The objectives of this study were to determine whether fecal shedding of non-O157 Shiga toxin-producing Escherichia coli (STEC) in feedlot cattle was affected by the use of an E. coli O157:H7 vaccine or a direct-fed microbial (DFM) and whether the shedding of a particular non-O157 STEC serogroup within feces was associated with shedding of O157 or other non-O157 STEC serogroups. A total of 17,148 cattle in 40 pens were randomized to receive one, both, or neither (control) of the two interventions: a vaccine based on the siderophore receptor and porin proteins (E. coli SRP vaccine, two doses) and a DFM product (low-dose Bovamine). Fresh fecal samples (30 samples per pen) were collected weekly from pen floors for four consecutive weeks beginning approximately 56 days after study allocation. DNA extracted from enriched samples was tested for STEC O157 and non-O157 serogroups O26, O45, O103, O111, O121, and O145 and for four major virulence genes (stx1, stx2, eae, and ehxA) using an 11-gene multiplex PCR assay. Generalized linear mixed models were used to analyze the effects of treatments and make within-sample comparisons of the presence of O-serogroup-specific genes. Results of cumulative prevalence measures indicated that O157 (14.6%), O26 (10.5%), and O103 (10.3%) were the most prevalent STEC O serogroups. However, the vaccine, DFM, or both had no significant effect (P > 0.05) on fecal prevalence of the six non-O157 STEC serogroups in feedlot cattle. Within-sample comparisons of the presence of STEC serogroup-specific genes indicated that fecal shedding of E. coli O157 in cattle was associated with an increased probability (P < 0.05) of fecal shedding of STEC O26, O45, O103, and O121. Our study revealed that neither the E. coli O157:H7 vaccine, which reduced STEC O157 fecal shedding, nor the DFM significantly affected fecal shedding of non-O157 STEC serogroups, despite the fact that the most prevalent non-O157 STEC serogroups tended to occur concurrently with O157 STEC strains within fecal samples.
Pant, Narayan Dutt; Poudyal, Nimesh; Bhattacharya, Shyamal Kumar
2016-06-07
Water-related diseases are of great concern in developing countries like Nepal. Every year, there are countless morbidity and mortality due to the consumption of unsafe drinking water. Recently, there have been increased uses of bottled drinking water in an assumption that the bottled water is safer than the tap water and its use will help to protect from water-related diseases. So, the main objective of this study was to analyze the bacteriological quality of bottled drinking water and that of municipal tap water. A total of 100 samples (76 tap water and 24 bottled water) were analyzed for bacteriological quality and pH. The methods used were spread plate method for total plate count (TPC) and membrane filter method for total coliform count (TCC), fecal coliform count (FCC), and fecal streptococcal count (FSC). pH meter was used for measuring pH. One hundred percent of the tap water samples and 87.5 % of the bottled water samples were found to be contaminated with heterotrophic bacteria. Of the tap water samples, 55.3 % were positive for total coliforms, compared with 25 % of the bottled water. No bottled water samples were positive for fecal coliforms and fecal streptococci, in contrast to 21.1 % and 14.5 % of the tap water samples being contaminated with fecal coliforms and fecal streptococci, respectively. One hundred percent of the tap water samples and 54.2 % of the bottled water samples had pH in the acceptable range. All of the municipal tap water samples and most of the bottled drinking water samples distributed in Dharan municipality were found to be contaminated with one or more than one type of indicator organisms. On the basis of our findings, we may conclude that comparatively, the bottled drinking water may have been safer (than tap water) to drink.
Cryptosporidium and Giardia in Humans, Domestic Animals, and Village Water Sources in Rural India
Daniels, Miles E.; Shrivastava, Arpit; Smith, Woutrina A.; Sahu, Priyadarshi; Odagiri, Mitsunori; Misra, Pravas R.; Panigrahi, Pinaki; Suar, Mrutyunjay; Clasen, Thomas; Jenkins, Marion W.
2015-01-01
Cryptosporidium parvum and Giardia lamblia are zoonotic enteric protozoa of significant health concern where sanitation, hygiene, and water supplies are inadequate. We examined 85 stool samples from diarrhea patients, 111 pooled fecal samples by species across seven domestic animal types, and water from tube wells (N = 207) and ponds (N = 94) across 60 villages in coastal Odisha, India, for Cryptosporidium oocysts and Giardia cysts to measure occurrence, concentration/shedding, and environmental loading rates. Oocysts/cysts were detected in 12% of diarrhea patients. Detection ranged from 0% to 35% for Cryptosporidium and 0% to 67% for Giardia across animal hosts. Animal loading estimates indicate the greatest contributors of environmental oocysts/cysts in the study region are cattle. Ponds were contaminated with both protozoa (oocysts: 37%, cysts: 74%), as were tube wells (oocysts: 10%, cysts: 14%). Future research should address the public health concern highlighted from these findings and investigate the role of domestic animals in diarrheal disease transmission in this and similar settings. PMID:26123963
Edrington, Tom S; MacDonald, Jim C; Farrow, Russell L; Callaway, Todd R; Anderson, Robin C; Nisbet, David J
2010-05-01
The current research examined the inclusion of 20% wet distiller's grains (WDG) fed with steam-flaked corn (SFC) or dry-rolled corn (DRC) in diets fed to feedlot cattle on fecal prevalence of Escherichia coli O157:H7 and Salmonella. Crossbred beef heifers (n = 272; average initial body weight (BW) = 354 kg) were blocked by BW and pen size and randomly assigned to treatment. Fecal samples from freshly voided fecal pats were collected from each pen on the day cattle shipped for slaughter (237 fecal samples: 72, 125, and 40 from cattle 132, 160, and 181 days on feed, respectively). Fecal samples were cultured quantitatively and qualitatively for the above pathogens. Populations of E. coli O157:H7 and Salmonella were generally low with very few samples containing quantifiable populations. Similarly, after enrichment, few samples were E. coli O157:H7 positive in any collection with no treatment differences (p > 0.10). More samples were Salmonella positive during the first collection with an increased (p < 0.05) prevalence observed in the SFC and DRC treatments compared with DRC + WDG treatment. No other treatment differences were observed for Salmonella. Putative fecal coliform isolates (18 per treatment; first collection) were examined for antimicrobial susceptibility, and the majority were susceptible to all of the antibiotics examined. Most of the resistance was observed in the SFC (n = 3) and DRC (n = 4) treatments, and only one isolate in each of the two WDG treatments demonstrated resistance (one antibiotic each, streptomycin and tetracycline). All multidrug resistance (2-4 antibiotics) was observed in isolates cultured from the DRC and SFC treatments (n = 2 isolates in each treatment). Results of the current research found no significant effect of feeding WDG to feedlot cattle on fecal prevalence, at time of shipment for slaughter, of E. coli O157:H7, and only modest differences (decreases) in Salmonella prevalence with no apparent affect on antimicrobial susceptibility of fecal coliform isolates.
Chapter A7. Section 7.2. Fecal Indicator Viruses
Bushon, Rebecca N.
2003-01-01
More than 100 types of human pathogenic viruses may be present in fecal-contaminated waters. Coliphages are used as indicators of virus-related fecal contamination and of the microbiological quality of waters. This report provides information on the equipment, sampling protocols, and laboratory methods that are in standard use by U.S. Geological Survey (USGS) personnel for the collection of data on fecal indicator viruses.
Lamendella, R.; Domingo, J.W.S.; Oerther, D.B.; Vogel, J.R.; Stoeckel, D.M.
2007-01-01
We evaluated the efficacy, sensitivity, host-specificity, and spatial/temporal dynamics of human- and ruminant-specific 16S rRNA gene Bacteroidetes markers used to assess the sources of fecal pollution in a fecally impacted watershed. Phylogenetic analyses of 1271 fecal and environmental 16S rRNA gene clones were also performed to study the diversity of Bacteroidetes in this watershed. The host-specific assays indicated that ruminant feces were present in 28-54% of the water samples and in all sampling seasons, with increasing frequency in downstream sites. The human-targeted assays indicated that only 3-5% of the water samples were positive for human fecal signals, although a higher percentage of human-associated signals (19-24%) were detected in sediment samples. Phylogenetic analysis indicated that 57% of all water clones clustered with yet-to-be-cultured Bacteroidetes species associated with sequences obtained from ruminant feces, further supporting the prevalence of ruminant contamination in this watershed. However, since several clusters contained sequences from multiple sources, future studies need to consider the potential cosmopolitan nature of these bacterial populations when assessing fecal pollution sources using Bacteroidetes markers. Moreover, additional data is needed in order to understand the distribution of Bacteroidetes host-specific markers and their relationship to water quality regulatory standards. ?? 2006 Federation of European Microbiological Societies.
Zanzani, Sergio Aurelio; Di Cerbo, Anna Rita; Gazzonis, Alessia Libera; Genchi, Marco; Rinaldi, Laura; Musella, Vincenzo; Cringoli, Giuseppe; Manfredi, Maria Teresa
2014-01-01
Intestinal parasites of dogs represent a serious threat to human health due to their zoonotic potential. Thus, metropolitan areas presenting high concentrations of pets and urban fecal contamination on public areas are at sanitary risk. Major aim of this survey was to determine prevalence of zoonotic parasites in dog fecal samples collected from public soil of Milan (north-western Italy). Differences in parasites prevalence distribution were explored by a geographical information system- (GIS-) based approach, and risk factors (human density, sizes of green parks, and dog areas) were considered. The metropolitan area was divided into 157 rectangular subareas and sampling was performed following a 1-kilometer straight transect. A total of 463 fecal samples were analyzed using centrifugation-flotation technique and ELISA to detect Giardia and Cryptosporidium coproantigens. A widespread fecal contamination of soil was highlighted, being fecal samples found in 86.8% of the subareas considered. The overall prevalence of intestinal parasites was 16.63%. Zoonotic parasites were found, such as Trichuris vulpis (3.67%), Toxocara canis (1.72%), Strongyloides stercoralis (0.86%), Ancylostomatidae (0.43%), and Dipylidium caninum (0.43%). Giardia duodenalis was the most prevalent zoonotic protozoa (11.06%), followed by Cryptosporidium (1.10%). Faeces from subareas characterized by broad green areas showed to be particularly prone to infection.
Zanzani, Sergio Aurelio; Di Cerbo, Anna Rita; Gazzonis, Alessia Libera; Genchi, Marco; Rinaldi, Laura; Musella, Vincenzo; Cringoli, Giuseppe
2014-01-01
Intestinal parasites of dogs represent a serious threat to human health due to their zoonotic potential. Thus, metropolitan areas presenting high concentrations of pets and urban fecal contamination on public areas are at sanitary risk. Major aim of this survey was to determine prevalence of zoonotic parasites in dog fecal samples collected from public soil of Milan (north-western Italy). Differences in parasites prevalence distribution were explored by a geographical information system- (GIS-) based approach, and risk factors (human density, sizes of green parks, and dog areas) were considered. The metropolitan area was divided into 157 rectangular subareas and sampling was performed following a 1-kilometer straight transect. A total of 463 fecal samples were analyzed using centrifugation-flotation technique and ELISA to detect Giardia and Cryptosporidium coproantigens. A widespread fecal contamination of soil was highlighted, being fecal samples found in 86.8% of the subareas considered. The overall prevalence of intestinal parasites was 16.63%. Zoonotic parasites were found, such as Trichuris vulpis (3.67%), Toxocara canis (1.72%), Strongyloides stercoralis (0.86%), Ancylostomatidae (0.43%), and Dipylidium caninum (0.43%). Giardia duodenalis was the most prevalent zoonotic protozoa (11.06%), followed by Cryptosporidium (1.10%). Faeces from subareas characterized by broad green areas showed to be particularly prone to infection. PMID:25478583
Evaluation of an inhouse rapid ELISA test for detection of giardia in domestic sheep (Ovis aries).
Wilson, Jolaine M; Hankenson, F Claire
2010-11-01
Sheep (Ovis aries) are increasingly used at our institution as models of human disease. Within the research environment, routine husbandry and handling of sheep has potential for transmission of zoonotic agents, including Giardia. The prevalence of Giardia in sheep may approach 68%. Classic diagnostic testing involves microscopic examination for fecal cysts or trophozoites; however, limitations of microscopy include time, labor, and potential false-negative results due to intermittent shedding. We wished to determine whether a commercial rapid ELISA used for Giardia detection in dogs and cats could be used in sheep. Fecal samples collected from sheep (n = 93) were tested with a combination of 6 methods: reference laboratory fecal flotation, reference laboratory ELISA, inhouse fecal flotation, and commercially available tests (enzyme immunoassay, direct fluorescence antibody assay, and rapid ELISA). Prevalence of Giardia infection in facility sheep was 11.8% (11 of 93 animals). Of the 11 samples considered positive, 3 were confirmed by multiple testing methods, and 5 were positive by microscopy alone. Inhouse fecal flotation for 8 samples was positive on only 1 of 2 consecutive testing days. The rapid ELISA test exhibited 0% sensitivity for sheep giardiasis. Overall, the examined methods had low sensitivities and low positive predictive values. Despite limitations, microscopic analysis of repeat fecal samples remained the most accurate diagnostic method for ovine giardiasis among the methods tested.
Effects of Holding Time, Storage, and the Preservation of ...
The purpose of this project was to answer questions related to storage of samples to be analyzed by the quantitative polymerase chain reaction (qPCR)-based assays for fecal indicator bacteria. The project was divided into two parts. The first part was to determine if filters that were used to collect fecal indicators could be stored frozen and analyzed at a later date and the second part was to determine if refrigerated water samples could be held for 24 to 48 hours prior to analysis by qPCR. Both of these studies answer questions that were important in the analysis of fresh and marine surface water samples for beach monitoring purposes. 1) Develop and evaluate qPCR assays and test methods for the detection and quantification of genetic markers from indicator bacteria that are associated with human fecal waste and from two new groups of general fecal indicator bacteria (E. coli and Clostridia) that historically have been widely used or are favored in specific regions 2) Determine the occurrence and densities of genetic markers detected by new qPCR assays developed under objective 1 and compare with occurrence and densities of genetic markers detected by previously developed qPCR assays for enterococci and total Bacterioidalesin waste waters and fecal material from different animal sources. 3) Determine stability of fecal indicator bacteria target DNA sequences in freezer archived filter retentates of ambient surface water samples 4) Determine the densitie
Magwedere, K; Shilangale, R; Mbulu, R S; Hemberger, Y; Hoffman, L C; Dziva, F
2013-01-01
To assess the microbiological quality and safety of export game meat; i) a total of 80 pooled meat samples for aerobic plate count (APC) and Enterobacteriaceae ii) water used in harvesting and processing for microbiological quality and iii) meat and rectal contents for Salmonella spp. and Shiga toxin Escherichia coli (STEC) were evaluated in 2009 and 2010. No differences (p>0.05) in the APCs were observed between the years, but the mean Enterobacteriaceae count for 2009 was 1.33 ± 0.69 log(10)cfu/cm(2) compared to 2.93 ± 1.50 log(10)cfu/cm(2) for 2010. Insignificant Heterotrophic Plate Count (HPC) levels were detected in 9/23 field water samples, while fecal bacterial (coliforms, Clostridium perfringens and enterococci) were absent in all samples. No Salmonella spp. was isolated and all E. coli isolates from meat were negative for STEC virulence genes (stx1, stx2, eae and hlyA), suggesting a negligible role by springbok in the epidemiology of STEC and Salmonella. Copyright © 2012 Elsevier Ltd. All rights reserved.
Water quality and sources of fecal coliform bacteria in the Meduxnekeag River, Houlton, Maine
Culbertson, Charles W.; Huntington, Thomas G.; Stoeckel, Donald M.; Caldwell, James M.; O'Donnell, Cara
2014-01-01
In response to bacterial contamination in the Meduxnekeag River and the desire to manage the watershed to reduce contaminant sources, the Houlton Band of Maliseet Indians (HBMI) and the U.S. Geological Survey began a cooperative effort to establish a baseline of water-quality data that can be used in future studies and to indicate potential sources of nutrient and bacterial contamination. This study was conducted during the summer of 2005 in the Meduxnekeag River Basin near Houlton, Maine. Continuously recorded specific conductance can be a good indicator for water quality. Specific conductance increased downstream from the town of Houlton, between runoff events, and decreased sharply following major runoff events. Collections of discrete samples during the summer of 2005 indicated seasonal positive concentration-discharge relations for total phosphorus and total nitrogen; these results indicate that storm runoff may mobilize and transport these nutrients from the terrestrial environment to the river. Data collected by the HBMI on fecal coliform bacteria indicated that bacterial contamination enters the Meduxnekeag River from multiple paths including tributaries and surface drains (ditches) in developed areas in Houlton, Maine. The Houlton wastewater treatment discharge was not an important source of bacterial contamination. Bacteroidales-based tests for general fecal contamination (Bac32 marker) were predominantly positive in samples that had excessive fecal contamination as indicated by Enterococci density greater than 104 colony-forming units per 100 millilters. Of the 22 samples tested for Bacteroidales-based markers of human-associated fecal contamination (HF134 and HF183), 8 were positive. Of the 22 samples tested for Bacteroidales-based markers of ruminant-associated fecal contamination (CF128 and CF193), 7 were positive. Human fecal contamination was detected consistently at two sites (surface drains in urban areas in the town of Houlton) and occasionally detected at one site (Moose Brook) but was not detected at other sites. Fecal contamination (as indicated by fecal coliform density) apparently is localized under normal flow conditions with the highest levels restricted to drains in urban areas and to a lesser extent B Stream, Pearce Brook, and Big Brook, all tributaries to the main stem of the Meduxnekeag River. Coliphage were enumerated as an alternate indicator of fecal contamination with the intent of typing the virus into host-associated classes (human or ruminant), as was done for Enterococci; however, insufficient coliphage were isolated to provide more than preliminary indications. In spite of low coliphage enumeration, the preliminary results strengthen the conclusion that the Enterococci data correctly indicated the samples that contained human and ruminant fecal contamination. The finding that contamination was in many of the tributaries following storms in mid-July indicates that storm runoff likely carries fecal contaminants to more locations than runoff under lower flow conditions.
Microbiological quality of Puget Sound Basin streams and identification of contaminant sources
Embrey, S.S.
2001-01-01
Fecal coliforms, Escherichia coli, enterococci, and somatic coliphages were detected in samples from 31 sites on streams draining urban and agricultural regions of the Puget Sound Basin Lowlands. Densities of bacteria in 48 and 71 percent of the samples exceeded U.S. Environmental Protection Agency's freshwater recreation criteria for Escherichia coli and enterococci, respectively, and 81 percent exceeded Washington State fecal coliform standards. Male-specific coliphages were detected in samples from 15 sites. Male-specific F+RNA coliphages isolated from samples taken at South Fork Thornton and Longfellow Creeks were serotyped as Group II, implicating humans as potential contaminant sources. These two sites are located in residential, urban areas. F+RNA coliphages in samples from 10 other sites, mostly in agricultural or rural areas, were serotyped as Group I, implicating non-human animals as likely sources. Chemicals common to wastewater, including fecal sterols, were detected in samples from several urban streams, and also implicate humans, at least in part, as possible sources of fecal bacteria and viruses to the streams.
A human fecal contamination index for ranking impaired ...
Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk management. The transition from a research subject to a management tool requires the integration of standardized water sampling, laboratory, and data analysis procedures. In this study, a standardized HF183/BacR287 qPCR method was combined with a water sampling strategy and Bayesian data algorithm to establish a human fecal contamination index that can be used to rank impaired recreational water sites polluted with human waste. Stability and bias of index predictions were investigated under various parameters including siteswith different pollution levels, sampling period time range (1-15 weeks), and number of qPCR replicates per sample (2-14 replicates). Sensitivity analyses were conducted with simulated data sets (100 iterations) seeded with HF183/BacR287 qPCR laboratory measurements from water samples collected from three Southern California sites (588 qPCR measurements). Findings suggest that site ranking is feasible and that all parameters tested influence stability and bias in human fecal contamination indexscoring. Trends identified by sensitivity analyses will provide managers with the information needed to design and conduct field studies to rank impaired recreational water sites based
Rutgersson, Carolin; Fick, Jerker; Marathe, Nachiket; Kristiansson, Erik; Janzon, Anders; Angelin, Martin; Johansson, Anders; Shouche, Yogesh; Flach, Carl-Fredrik; Larsson, D G Joakim
2014-07-15
There is increasing concern that environmental antibiotic pollution promotes transfer of resistance genes to the human microbiota. Here, fluoroquinolone-polluted river sediment, well water, irrigated farmland, and human fecal flora of local villagers within a pharmaceutical industrial region in India were analyzed for quinolone resistance (qnr) genes by quantitative PCR. Similar samples from Indian villages farther away from industrial areas, as well as fecal samples from Swedish study participants and river sediment from Sweden, were included for comparison. Fluoroquinolones were detected by MS/MS in well water and soil from all villages located within three km from industrially polluted waterways. Quinolone resistance genes were detected in 42% of well water, 7% of soil samples and in 100% and 18% of Indian and Swedish river sediments, respectively. High antibiotic concentrations in Indian sediment coincided with high abundances of qnr, whereas lower fluoroquinolone levels in well water and soil did not. We could not find support for an enrichment of qnr in fecal samples from people living in the fluoroquinolone-contaminated villages. However, as qnr was detected in 91% of all Indian fecal samples (24% of the Swedish) it suggests that the spread of qnr between people is currently a dominating transmission route.
Dargatz, David A; Marshall, Katherine L; Fedorka-Cray, Paula J; Erdman, Matthew M; Kopral, Christine A
2015-12-01
Salmonella is a major cause of foodborne illness and can cause clinical disease in animals. Understanding the on-farm ecology of Salmonella will be helpful in decreasing the risk of foodborne transmission. An objective of this study was to determine the prevalence of Salmonella among fecal samples collected on sheep operations in the United States. Another objective was to compare the use of composite fecal samples with fecal samples collected from individual sheep as a tool for screening sheep flocks for Salmonella. Sheep fecal samples (individual and composite) were collected on operations in 22 states. Salmonella isolates were characterized with regard to species, serotype, and antimicrobial susceptibility profile. Most operations (72.1%) had at least one positive sample and overall 26.9% of samples were positive. The percentage of positive samples varied by animal age class. Composite and individual samples gave similar results. The majority of the isolates (94%) were Salmonella enterica subspecies diarizonae serotype 61:-:1,5,7. Nearly all of the isolates (91.2%) tested for antimicrobial susceptibility were susceptible to all antimicrobials in the panel. The findings suggest that salmonellae typically associated with foodborne disease transmission are infrequently found on sheep operations in the United States.
Steiner, J M; Rehfeld, J F; Pantchev, N
2010-01-01
An assay for the measurement of pancreatic elastase in dog feces has been introduced. The goal of this study was to evaluate the rate of false-positive fecal-elastase test results in dogs with suspected exocrine pancreatic insufficiency (EPI) and to assess serum cholecystokinin (CCK) concentrations in dogs with a false positive fecal elastase test result. Twenty-six fecal and serum samples from dogs suspected of EPI, for which samples had been submitted to a commercial laboratory (Vet Med Labor) for analysis. Prospective study. Serum trypsin-like immunoreactivity (TLI) was measured in 26 dogs with a decreased fecal elastase concentration of <10 microg/g feces. Serum CCK concentrations were measured in 21 of these dogs. Of 26 dogs with a decreased fecal elastase concentration, 6 (23%) had serum TLI concentrations within or above the reference range. Serum CCK concentrations were significantly higher in dogs with a true positive fecal elastase test result (median: 1.1 pmol/L; range: 0.1-3.3 pmol/L) than in those with a false positive fecal elastase test result (median: 0.1 pmol/L; range: 0.1-0.9 pmol/L; P value = .0163). The rate of false positive fecal elastase test results was high in this group of dogs, suggesting that diagnosis of EPI must be confirmed by other means. The decreased CCK concentration in dogs with a false positive fecal elastase test result could suggest that false positive results are because of decreased stimulation of exocrine pancreatic function caused by other conditions.
Kirschner, Alexander K T; Zechmeister, Thomas C; Kavka, Gerhard G; Beiwl, Christian; Herzig, Alois; Mach, Robert L; Farnleitner, Andreas H
2004-12-01
Wild birds are an important nonpoint source of fecal contamination of surface waters, but their contribution to fecal pollution is mostly difficult to estimate. Thus, to evaluate the relation between feces production and input of fecal indicator bacteria (FIB) into aquatic environments by wild waterfowl, we introduced a new holistic approach for evaluating the performance of FIB in six shallow saline habitats. For this, we monitored bird abundance, fecal pellet production, and the abundance of FIB concomitantly with a set of environmental variables over a 9-month period. For estimating fecal pellet production, a new protocol of fecal pellet counting was introduced, which was called fecal taxation (FTX). We could show that, over the whole range of investigated habitats, bird abundance, FTX values, and FIB abundance were highly significantly correlated and could demonstrate the good applicability of the FTX as a meaningful surrogate parameter for recent bird abundances and fecal contamination by birds in shallow aquatic ecosystems. Presumptive enterococci (ENT) were an excellent surrogate parameter of recent fecal contamination in these saline environments for samples collected at biweekly to monthly sampling intervals while presumptive Escherichia coli and fecal coliforms (FC) were often undetectable. Significant negative correlations with salinity indicated that E. coli and FC survival was hampered by osmotic stress. Statistical analyses further revealed that fecal pollution-associated parameters represented one system component independent from other environmental variables and that, besides feces production, rainfall, total suspended solids (direct), and trophy (indirect) had significant positive effects on ENT concentrations. Our holistic approach of linking bird abundance, feces production, and FIB detection with environmental variables may serve as a powerful model for application to other aquatic ecosystems.
Kirschner, Alexander K. T.; Zechmeister, Thomas C.; Kavka, Gerhard G.; Beiwl, Christian; Herzig, Alois; Mach, Robert L.; Farnleitner, Andreas H.
2004-01-01
Wild birds are an important nonpoint source of fecal contamination of surface waters, but their contribution to fecal pollution is mostly difficult to estimate. Thus, to evaluate the relation between feces production and input of fecal indicator bacteria (FIB) into aquatic environments by wild waterfowl, we introduced a new holistic approach for evaluating the performance of FIB in six shallow saline habitats. For this, we monitored bird abundance, fecal pellet production, and the abundance of FIB concomitantly with a set of environmental variables over a 9-month period. For estimating fecal pellet production, a new protocol of fecal pellet counting was introduced, which was called fecal taxation (FTX). We could show that, over the whole range of investigated habitats, bird abundance, FTX values, and FIB abundance were highly significantly correlated and could demonstrate the good applicability of the FTX as a meaningful surrogate parameter for recent bird abundances and fecal contamination by birds in shallow aquatic ecosystems. Presumptive enterococci (ENT) were an excellent surrogate parameter of recent fecal contamination in these saline environments for samples collected at biweekly to monthly sampling intervals while presumptive Escherichia coli and fecal coliforms (FC) were often undetectable. Significant negative correlations with salinity indicated that E. coli and FC survival was hampered by osmotic stress. Statistical analyses further revealed that fecal pollution-associated parameters represented one system component independent from other environmental variables and that, besides feces production, rainfall, total suspended solids (direct), and trophy (indirect) had significant positive effects on ENT concentrations. Our holistic approach of linking bird abundance, feces production, and FIB detection with environmental variables may serve as a powerful model for application to other aquatic ecosystems. PMID:15574941
Eukaryotic viruses in wastewater samples from the United States
Symonds, E.M.; Griffin, Dale W.; Breitbart, M.
2009-01-01
Human fecal matter contains a large number of viruses, and current bacterial indicators used for monitoring water quality do not correlate with the presence of pathogenic viruses. Adenoviruses and enteroviruses have often been used to identify fecal pollution in the environment; however, other viruses shed in fecal matter may more accurately detect fecal pollution. The purpose of this study was to develop a baseline understanding of the types of viruses found in raw sewage. PCR was used to detect adenoviruses, enteroviruses, hepatitis B viruses, herpesviruses, morbilliviruses, noroviruses, papillomaviruses, picobirnaviruses, reoviruses, and rotaviruses in raw sewage collected throughout the United States. Adenoviruses and picobirnaviruses were detected in 100% of raw sewage samples and 25% and 33% of final effluent samples, respectively. Enteroviruses and noroviruses were detected in 75% and 58% of raw sewage samples, respectively, and both viral groups were found in 8% of final effluent samples. This study showed that adenoviruses, enteroviruses, noroviruses, and picobirnaviruses are widespread in raw sewage. Since adenoviruses and picobirnaviruses were detected in 100% of raw sewage samples, they are potential markers of fecal contamination. Additionally, this research uncovered previously unknown sequence diversity in human picobirnaviruses. This baseline understanding of viruses in raw sewage will enable educated decisions to be made regarding the use of different viruses in water quality assessments. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.
Patterns and sources of fecal coliform bacteria in three streams in Virginia, 1999-2000
Hyer, Kenneth; Moyer, Douglas
2003-01-01
Surface-water impairment by fecal coliform bacteria is a water-quality issue of national scope and importance. In Virginia, more than 175 stream segments are on the Commonwealth's 1998 303(d) list of impaired waters because of elevated concentrations of fecal coliform bacteria. These fecal coliform-impaired stream segments require the development of total maximum daily load (TMDL) and associated implementation plans, but accurate information on the sources contributing these bacteria usually is lacking. The development of defendable fecal coliform TMDLs and management plans can benefit from reliable information on the bacteria sources that are responsible for the impairment. Bacterial source tracking (BST) recently has emerged as a powerful tool for identifying the sources of fecal coliform bacteria that impair surface waters. In a demonstration of BST technology, three watersheds on Virginia's 1998 303(d) list with diverse land-use practices (and potentially diverse bacteria sources) were studied. Accotink Creek is dominated by urban land uses, Christians Creek by agricultural land uses, and Blacks Run is affected by both urban and agricultural land uses. During the 20-month field study (March 1999?October 2000), water samples were collected from each stream during a range of flow conditions and seasons. For each sample, specific conductance, dissolved oxygen concentration, pH, turbidity, flow, and water temperature were measured. Fecal coliform concentrations of each water sample were determined using the membrane filtration technique. Next, Escherichia coli (E. coli) were isolated from the fecal coliform bacteria and their sources were identified using ribotyping (a method of 'genetic fingerprinting'). Study results provide enhanced understanding of the concentrations and sources of fecal coliform bacteria in these three watersheds. Continuum sampling (sampling along the length of the streams) indicated that elevated concentrations of fecal coliform bacteria (maximum observed concentration of 290,000 colonies/100 milliliters (col/100mL) could occur along the entire length of each stream, and that the samples collected at the downstream monitoring station of each stream were generally representative of the entire upstream reach. Seasonal patterns were observed in the base-flow fecal coliform concentrations of all streams; concentrations were typically highest in the summer and lowest in the winter. Fecal coliform concentrations were lowest during periods of base flow (typically 200?2,000 col/100mL) and increased by 3?4 orders of magnitude during storm events (as high as 700,000 col/100mL). Multiple linear regression models were developed to predict fecal coliform concentrations as a function of streamflow and other water-quality parameters. The source tracking technique provided identification of bacteria contributions from diverse sources that included (but were not limited to) humans, cattle, poultry, horses, dogs, cats, geese, ducks, raccoons, and deer. Seasonal patterns were observed in the contributions of cattle and poultry sources. There were relations between the identified sources of fecal coliform bacteria and the land-use practices within each watershed. There were only minor differences in the distribution of bacteria sources between low-flow periods and high-flow periods. A coupled approach that utilized both a large available source library and a smaller, location-specific source library provided the most success in identifying the unknown E. coli isolates. BST data should provide valuable support and guidance for producing more defendable and scientifically rigorous watershed models. Incorporation of these bacteria-source data into watershed management strategies also should result in the selection of more efficient source-reduction scenarios for improving water quality.
Griffin, Dale W.; Stokes, Rodger; Rose, J.B.; Paul, J.H.
2000-01-01
A microbiological water quality study of Homosassa Springs State Wildlife Park (HSSWP) and surrounding areas was undertaken. Samples were collected in November of 1997 (seven sites) and again in November of 1998 (nine sites). Fecal bacterial concentrations (total and fecal coliforms, Clostridium perfringens, and enterococci) were measured as relative indicators of fecal contamination. F+-specific coliphage genotyping was performed to determine the source of fecal contamination at the study sites. Bacterial levels were considerably higher at most sites in the 1997 sampling compared to the 1998 sampling, probably because of the greater rainfall that year. In November of 1997, 2 of the 7 sites were in violation of all indicator standards and guidance levels. In November of 1998, 1 of 9 sites was in violation of all indicator standard and guidance levels. The highest concentrations of all fecal indicators were found at a station downstream of the animal holding pens in HSSWP. The lowest levels of indicators were found at the Homosassa Main Spring vent. Levels of fecal indicators downstream of HSSWP (near the point of confluence with the river) were equivalent to those found in the Southeastern Fork and areas upstream of the park influences. F+ specific RNA coliphage analysis indicated that fecal contamination at all sites that tested positive was from animal sources (mammals and birds). These results suggest that animal (indigenous and those in HSSWP) and not human sources influenced microbial water quality in the area of Homosassa River covered by this study.
Pinna, Carlo; Vecchiato, Carla Giuditta; Bolduan, Carmen; Grandi, Monica; Stefanelli, Claudio; Windisch, Wilhelm; Zaghini, Giuliano; Biagi, Giacomo
2018-03-20
Feeding dogs with diets rich in protein may favor putrefactive fermentations in the hindgut, negatively affecting the animal's intestinal environment. Conversely, prebiotics may improve the activity of health-promoting bacteria and prevent bacterial proteolysis in the colon. The aim of this study was to evaluate the effects of dietary supplementation with fructooligosaccharides (FOS) on fecal microbiota and apparent total tract digestibility (ATTD) in dogs fed kibbles differing in protein content. Twelve healthy adult dogs were used in a 4 × 4 replicated Latin Square design to determine the effects of four diets: 1) Low protein diet (LP, crude protein (CP) 229 g/kg dry matter (DM)); 2) High protein diet (HP, CP 304 g/kg DM); 3) Diet 1 + 1.5 g of FOS/kg; 4) Diet 2 + 1.5 g of FOS/kg. The diets contained silica at 5 g/kg as a digestion marker. Differences in protein content were obtained using different amounts of a highly digestible swine greaves meal. Each feeding period lasted 28 d, with a 12 d wash-out in between periods. Fecal samples were collected from dogs at 0, 21 and 28 d of each feeding period. Feces excreted during the last five days of each feeding period were collected and pooled in order to evaluate ATTD. Higher fecal ammonia concentrations were observed both when dogs received the HP diets (p < 0.001) and the supplementation with FOS (p < 0.05). The diets containing FOS resulted in greater ATTD of DM, Ca, Mg, Na, Zn, and Fe (p < 0.05) while HP diets were characterized by lower crude ash ATTD (p < 0.05). Significant interactions were observed between FOS and protein concentration in regards to fecal pH (p < 0.05), propionic acid (p < 0.05), acetic to propionic acid and acetic + n-butyric to propionic acid ratios (p < 0.01), bifidobacteria (p < 0.05) and ATTD of CP (p < 0.05) and Mn (p < 0.001). A relatively moderate increase of dietary protein resulted in higher concentrations of ammonia in canine feces. Fructooligosaccharides displayed beneficial counteracting effects (such as increased bifidobacteria) when supplemented in HP diets, compared to those observed in LP diets and, in general, improved the ATTD of several minerals.
OCCURRENCE OF INTRINSIC VANCOMYCIN RESISTANT ENTEROCOCCI IN ANIMAL FECES
A survey was conducted to determine the occurrence of vancomycin resistant enterococci (VRE) in animal and human fecal samples. Fecal samples from 14 animal species and humans were analyzed by quantitative culture for enterococci and VRE. Over 800 VRE isolates were characterize...
There are numerous PCR-based methods available to characterize human fecal pollution in ambient waters. Each assay employs distinct oligonucleotides and many target different genes and microorganisms leading to potential variations in method performance. Laboratory comparisons ...
Rapi, Stefano; Berardi, Margherita; Cellai, Filippo; Ciattini, Samuele; Chelazzi, Laura; Ognibene, Agostino; Rubeca, Tiziana
2017-07-24
Information on preanalytical variability is mandatory to bring laboratories up to ISO 15189 requirements. Fecal sampling is greatly affected by lack of harmonization in laboratory medicine. The aims of this study were to obtain information on the devices used for fecal sampling and to explore the effect of different amounts of feces on the results from the fecal immunochemical test for hemoglobin (FIT-Hb). Four commercial sample collection devices for quantitative FIT-Hb measurements were investigated. The volume of interest (VOI) of the probes was measured from diameter and geometry. Quantitative measurements of the mass of feces were carried out by gravimetry. The effects of an increased amount of feces on the analytical environment were investigated measuring the Hb values with a single analytical method. VOI was 8.22, 7.1 and 9.44 mm3 for probes that collected a target of 10 mg of feces, and 3.08 mm3 for one probe that targeted 2 mg of feces. The ratio between recovered and target amounts of devices ranged from 56% to 121%. Different changes in the measured Hb values were observed, in adding increasing amounts of feces in commercial buffers. The amounts of collected materials are related to the design of probes. Three out 4 manufacturers declare the same target amount using different sampling volumes and obtaining different amounts of collected materials. The introduction of a standard probes to reduce preanalytical variability could be an useful step for fecal test harmonization and to fulfill the ISO 15189 requirements.
2012-01-01
Background Toxocarosis is a zoonotic disease caused by Toxocara canis (T. canis) and/or Toxocara cati (T. cati), two worldwide distributed roundworms which are parasites of canids and felids, respectively. Infections of humans occur through ingestion of embryonated eggs of T. canis or T. cati, when playing with soils contaminated with dogs or cats feces. Accordingly, the assessment of potential contamination of these areas with these roundworms eggs is paramount. Methods A duplex quantitative real-time PCR (2qPCR) targeting the ribosomal RNA gene internal transcribed spacer (ITS2) has been developed and used for rapid and specific identification of T. canis and T. cati eggs in fecal and soil samples. The assay was set up on DNA samples extracted from 53 adult worms including T. canis, T. cati, T. leonina, Ascaris suum (A. suum) and Parascaris equorum (P. equorum). The assay was used to assess the presence of T. cati eggs in several samples, including 12 clean soil samples spiked with eggs of either T. cati or A. suum, 10 actual soil samples randomly collected from playgrounds in Brussels, and fecal samples from cats, dogs, and other animals. 2qPCR results on dogs and cats fecal samples were compared with results from microscopic examination. Results 2qPCR assay allowed specific detection of T. canis and T. cati, whether adult worms, eggs spiked in soil or fecal samples. The 2qPCR limit of detection (LOD) in spiked soil samples was 2 eggs per g of soil for a turnaround time of 3 hours. A perfect concordance was observed between 2qPCR assay and microscopic examination on dogs and cats feces. Conclusion The newly developed 2qPCR assay can be useful for high throughput prospective or retrospective detection of T.canis and/or T. cati eggs in fecal samples as well as in soil samples from playgrounds, parks and sandpits. PMID:23216873
USDA-ARS?s Scientific Manuscript database
The objectives were to compare media types and evaluate the effects of fecal storage time and temperature on the enumeration of cellulolytic bacteria and lactobacilli from horses. Fecal samples were collected from horses (n = 3) and transported to the lab (CO2, 37 ºC, 0.5 h). The samples were assign...
Hamilton, K. A.; Gyawali, P.; Toze, S.; Haas, C. N.
2016-01-01
ABSTRACT Avian and possum fecal droppings may negatively impact roof-harvested rainwater (RHRW) water quality due to the presence of zoonotic pathogens. This study was aimed at evaluating the performance characteristics of a possum feces-associated (PSM) marker by screening 210 fecal and wastewater samples from possums (n = 20) and a range of nonpossum hosts (n = 190) in Southeast Queensland, Australia. The host sensitivity and specificity of the PSM marker were 0.90 and 0.95 (maximum value, 1.00), respectively. The mean concentrations of the GFD marker in possum fecal DNA samples (8.8 × 107 gene copies per g of feces) were two orders of magnitude higher than those in the nonpossum fecal DNA samples (5.0 × 105 gene copies per g of feces). The host sensitivity, specificity, and concentrations of the avian feces-associated GFD marker were reported in our recent study (W. Ahmed, V. J. Harwood, K. Nguyen, S. Young, K. Hamilton, and S. Toze, Water Res 88:613–622, 2016, http://dx.doi.org/10.1016/j.watres.2015.10.050). The utility of the GFD and PSM markers was evaluated by testing a large number of tank water samples (n = 134) from the Brisbane and Currumbin areas. GFD and PSM markers were detected in 39 of 134 (29%) and 11 of 134 (8%) tank water samples, respectively. The GFD marker concentrations in PCR-positive samples ranged from 3.7 × 102 to 8.5 × 105 gene copies per liter, whereas the concentrations of the PSM marker ranged from 2.0 × 103 to 6.8 × 103 gene copies per liter of water. The results of this study suggest the presence of fecal contamination in tank water samples from avian and possum hosts. This study has established an association between the degradation of microbial tank water quality and avian and possum feces. Based on the results, we recommend disinfection of tank water, especially for tanks designated for potable use. IMPORTANCE The use of roof-harvested rainwater (RHRW) for domestic purposes is a globally accepted practice. The presence of pathogens in rainwater tanks has been reported by several studies, supporting the necessity for the management of potential health risks. The sources of fecal pollution in rainwater tanks are unknown. However, the application of microbial source tracking (MST) markers has the potential to identify the sources of fecal contamination in a rainwater tank. In this study, we provide evidence of avian and possum fecal contamination in tank water samples using molecular markers. This study established a potential link between the degradation of the microbial quality of tank water and avian and possum feces. PMID:27208100
A PILOT STUDY TO COMPARE MICROBIAL AND CHEMICAL INDICATORS OF HUMAN FECAL CONTAMINATION IN WATER
Limitations exist in applying traditional microbial methods for the detection of human fecal contamination of water. A pilot study was undertaken to compare the microbial and chemical indicators of human fecal contamination of water. Sixty-four water samples were collected in O...
Bofill-Mas, Sílvia; Rusiñol, Marta; Fernandez-Cassi, Xavier; Carratalà, Anna; Hundesa, Ayalkibet
2013-01-01
Many different viruses are excreted by humans and animals and are frequently detected in fecal contaminated waters causing public health concerns. Classical bacterial indicator such as E. coli and enterococci could fail to predict the risk for waterborne pathogens such as viruses. Moreover, the presence and levels of bacterial indicators do not always correlate with the presence and concentration of viruses, especially when these indicators are present in low concentrations. Our research group has proposed new viral indicators and methodologies for determining the presence of fecal pollution in environmental samples as well as for tracing the origin of this fecal contamination (microbial source tracking). In this paper, we examine to what extent have these indicators been applied by the scientific community. Recently, quantitative assays for quantification of poultry and ovine viruses have also been described. Overall, quantification by qPCR of human adenoviruses and human polyomavirus JC, porcine adenoviruses, bovine polyomaviruses, chicken/turkey parvoviruses, and ovine polyomaviruses is suggested as a toolbox for the identification of human, porcine, bovine, poultry, and ovine fecal pollution in environmental samples. PMID:23762826
DETECTION OF INTRINSIC VANCOMYCIN RESISTANT ENTEROCOCCI IN ANIMAL AND HUMAN FECES
A survey was conducted to determine the occurrence of vancomycin resistant enterococci (VRE) in animal and human fecal samples. Fecal samples from 14 animal species and humans were analyzed by quantitative culture for enterococci and VRE. Over 800 VRE isolates were characterize...
Eriksson, Per; Mourkas, Evangelos; González-Acuna, Daniel; Olsen, Björn; Ellström, Patrik
2017-01-01
ABSTRACT Introduction: Advances in the development of nucleic acid-based methods have dramatically facilitated studies of host–microbial interactions. Fecal DNA analysis can provide information about the host’s microbiota and gastrointestinal pathogen burden. Numerous studies have been conducted in mammals, yet birds are less well studied. Avian fecal DNA extraction has proved challenging, partly due to the mixture of fecal and urinary excretions and the deficiency of optimized protocols. This study presents an evaluation of the performance in avian fecal DNA extraction of six commercial kits from different bird species, focusing on penguins. Material and methods: Six DNA extraction kits were first tested according to the manufacturers’ instructions using mallard feces. The kit giving the highest DNA yield was selected for further optimization and evaluation using Antarctic bird feces. Results: Penguin feces constitute a challenging sample type: most of the DNA extraction kits failed to yield acceptable amounts of DNA. The QIAamp cador Pathogen kit (Qiagen) performed the best in the initial investigation. Further optimization of the protocol resulted in good yields of high-quality DNA from seven bird species of different avian orders. Conclusion: This study presents an optimized approach to DNA extraction from challenging avian fecal samples. PMID:29152162
Sritharan, T.; Palmer, A.; Sidhu, J. P. S.; Toze, S.
2013-01-01
This study was aimed at evaluating the host specificity and host sensitivity of two bovine feces-associated bacterial (BacCow-UCD and cowM3) and one viral [bovine adenovirus (B-AVs)] microbial source tracking (MST) markers by screening 130 fecal and wastewater samples from 10 target and nontarget host groups in southeast Queensland, Australia. In addition, 36 water samples were collected from a reservoir and tested for the occurrence of all three bovine feces-associated markers along with fecal indicator bacteria (FIB), Campylobacter spp., Escherichia coli O157, and Salmonella spp. The overall host specificity values of the BacCow-UCD, cowM3, and B-AVs markers to differentiate between bovine and other nontarget host groups were 0.66, 0.88, and 1.00, respectively (maximum value of 1.00). The overall host sensitivity values of these markers, however, in composite bovine wastewater and individual bovine fecal DNA samples were 0.93, 0.90, and 0.60, respectively (maximum value of 1.00). Among the 36 water samples tested, 56%, 22%, and 6% samples were PCR positive for the BacCow-UCD, cowM3, and B-AVs markers, respectively. Among the 36 samples tested, 50% and 14% samples were PCR positive for the Campylobacter 16S rRNA and E. coli O157 rfbE genes, respectively. Based on the results, we recommend that multiple bovine feces-associated markers be used if possible for bovine fecal pollution tracking. Nonetheless, the presence of the multiple bovine feces-associated markers along with the presence of potential zoonotic pathogens indicates bovine fecal pollution in the reservoir water samples. Further research is required to understand the decay rates of these markers in relation to FIB and zoonotic pathogens. PMID:23417003
Fecal coliform and Escherichia coli bacteria in the St. Croix National Scenic Riverway, Summer 1999
Kroening, Sharon E.
1999-01-01
Fecal coliform and Escherichia coli (E. coli) concentrations were determined in the St. Croix National Scenic Riverway to assess whether pathogenic organisms pose a potential problem for recreational use. Samples were collected from May through September 1999 at 22 locations on the St. Croix and Namekagon Rivers. No concentrations exceeded water-quality criteria or standards set by the U.S. Environmental Protection Agency or the states of Minnesota and Wisconsin. Maximum fecal coliform and E. coli concentrations were measured in the St. Croix River at St. Croix Falls, Wisconsin. Median fecal coliform and E. coli concentrations were greater in the St. Croix River near Woodland Corner, Wisconsin, and at Marine on St. Croix, Minnesota than at other locations sampled. There were no consistent short-term variations in fecal coliform or E. coli concentrations during the summer period or any significant relations between concentrations and stream discharge, based on these results.
Kephart, Christopher M.; Bushon, Rebecca N.
2010-01-01
An influx of concentrated animal feeding operations in northwest Ohio has prompted local agencies to examine the effects of these industrial farms on water quality in the upper Portage River watershed. The utility of microbial source-tracking (MST) tools as a means of characterizing sources of fecal contamination in the watershed was evaluated. From 2007 to 2008, scientists with the U.S. Geological Survey, Bowling Green State University, and the Wood County Health Department collected and analyzed 17 environmental samples and 13 fecal source samples for Bacteroides-based host-associated DNA markers. At many of the environmental sites tested, MST marker results corroborated the presumptive fecal contamination sources. Results from this demonstration study support the utility of using MST with host-specific molecular markers to characterize the sources of fecal contamination in the Portage River watershed.
Shanks, Orin C.; Newton, Ryan J.; Kelty, Catherine A.; Huse, Susan M.; Sogin, Mitchell L.
2013-01-01
Microbial sewage communities consist of a combination of human fecal microorganisms and nonfecal microorganisms, which may be residents of urban sewer infrastructure or flowthrough originating from gray water or rainwater inputs. Together, these different microorganism sources form an identifiable community structure that may serve as a signature for sewage discharges and as candidates for alternative indicators specific for human fecal pollution. However, the structure and variability of this community across geographic space remains uncharacterized. We used massively parallel 454 pyrosequencing of the V6 region in 16S rRNA genes to profile microbial communities from 13 untreated sewage influent samples collected from a wide range of geographic locations in the United States. We obtained a total of 380,175 high-quality sequences for sequence-based clustering, taxonomic analyses, and profile comparisons. The sewage profile included a discernible core human fecal signature made up of several abundant taxonomic groups within Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria. DNA sequences were also classified into fecal, sewage infrastructure (i.e., nonfecal), and transient groups based on data comparisons with fecal samples. Across all sewage samples, an estimated 12.1% of sequences were fecal in origin, while 81.4% were consistently associated with the sewage infrastructure. The composition of feces-derived operational taxonomic units remained congruent across all sewage samples regardless of geographic locale; however, the sewage infrastructure community composition varied among cities, with city latitude best explaining this variation. Together, these results suggest that untreated sewage microbial communities harbor a core group of fecal bacteria across geographically dispersed wastewater sewage lines and that ambient water quality indicators targeting these select core microorganisms may perform well across the United States. PMID:23435885
Junick, Jana
2012-01-01
Quantitative real-time PCR assays targeting the groEL gene for the specific enumeration of 12 human fecal Bifidobacterium species were developed. The housekeeping gene groEL (HSP60 in eukaryotes) was used as a discriminative marker for the differentiation of Bifidobacterium adolescentis, B. angulatum, B. animalis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. gallicum, B. longum, B. pseudocatenulatum, B. pseudolongum, and B. thermophilum. The bifidobacterial chromosome contains a single copy of the groEL gene, allowing the determination of the cell number by quantification of the groEL copy number. Real-time PCR assays were validated by comparing fecal samples spiked with known numbers of a given Bifidobacterium species. Independent of the Bifidobacterium species tested, the proportion of groEL copies recovered from fecal samples spiked with 5 to 9 log10 cells/g feces was approximately 50%. The quantification limit was 5 to 6 log10 groEL copies/g feces. The interassay variability was less than 10%, and variability between different DNA extractions was less than 23%. The method developed was applied to fecal samples from healthy adults and full-term breast-fed infants. Bifidobacterial diversity in both adults and infants was low, with mostly ≤3 Bifidobacterium species and B. longum frequently detected. The predominant species in infant and adult fecal samples were B. breve and B. adolescentis, respectively. It was possible to distinguish B. catenulatum and B. pseudocatenulatum. We conclude that the groEL gene is a suitable molecular marker for the specific and accurate quantification of human fecal Bifidobacterium species by real-time PCR. PMID:22307308
Dupre, David H.; Hortness, Jon E.; Terrio, Paul J.; Sharpe, Jennifer B.
2012-01-01
The Illinois Environmental Protection Agency has designated portions of the Illinois River in Peoria, Woodford, and Tazewell Counties, Illinois, as impaired owing to the presence of fecal coliform bacteria. The U.S. Geological Survey, in cooperation with the Tri-County Regional Planning Commission, examined the water quality in the Illinois River and major tributaries within a 47-mile reach between Peoria and Hennepin, Ill., during water year 2008 (October 2007–September 2008). Investigations included synoptic (snapshot) sampling at multiple locations in a 1-day period: once in October 2007 during lower streamflow conditions, and again in June 2008 during higher streamflow conditions. Five locations in the study area were monitored for the entire year at monthly or more frequent intervals. Two indicator bacteria were analyzed in each water sample: fecal coliform and Escherichia coli (E. coli). Streamflow information from previously established monitoring locations in the study area was used in the analysis. Correlation analyses were used to characterize the relation between the two fecal-indicator bacteria and the relation of either indicator to streamflow. Concentrations of the two measured fecal-indicator bacteria correlated well for all samples analyzed (r = 0.94, p E. coli: rho = -0.43, p = 0.0157). The correlation between fecal indicators and streamflow in tributaries or in the Illinois River at Hennepin was found to be statistically significant, yet moderate in strength with coefficient values ranging from r = 0.4 to 0.6. Indirect observations from the June 2008 higher flow synoptic event may indicate continued effects from combined storm and sanitary sewers in the vicinity of the Illinois River near Peoria, Ill., contributing to observed single-sample exceedance of the State criterion for fecal coliform.
Selection and Evaluation of Chemical Indicators for Waste Stream Identification
NASA Astrophysics Data System (ADS)
DeVita, W. M.; Hall, J.
2015-12-01
Human and animal wastes pose a threat to the quality of groundwater, surface water and drinking water. This is especially of concern for private and public water supplies in agricultural areas of Wisconsin where land spreading of livestock waste occurs on thin soils overlaying fractured bedrock. Current microbial source tracking (MST) methods for source identification requires the use of polymerase chain reaction (PCR) techniques. Due to cost, these tests are often not an option for homeowners, municipalities or state agencies with limited resources. The Water and Environmental Analysis Laboratory sought to develop chemical methods to provide lower cost processes to determine sources of fecal waste using fecal sterols, pharmaceuticals (human and veterinary) and human care/use products in ground and surface waters using solid phase extraction combined with triple quadrupole mass spectrometry. The two separate techniques allow for the detection of fecal sterol and other chemical markers in the sub part per billion-range. Fecal sterol ratios from published sources were used to evaluate drinking water samples and wastewater from onsite waste treatment systems and municipal wastewater treatment plants. Pharmaceuticals and personal care products indicative of human waste included: acetaminophen, caffeine, carbamazepine, cotinine, paraxanthine, sulfamethoxazole, and the artificial sweeteners; acesulfame, saccharin, and sucralose. The bovine antibiotic sulfamethazine was also targeted. Well water samples with suspected fecal contamination were analyzed for fecal sterols and PPCPs. Results were compared to traditional MST results from the Wisconsin State Laboratory of Hygiene. Chemical indicators were found in 6 of 11 drinking water samples, and 5 of 11 were in support of MST results. Lack of detection of chemical indicators in samples contaminated with fecal waste supports the need for confirmatory methods and advancement of chemical indicator detection technologies.
Pauling, Cassandra D; Lankford, Scott E; Jackson, Victoria L
2017-12-01
Due to the intensive management of the scimitar-horned oryx, Oryx dammah, involving both captivity and reintroductions, understanding the stress associated with environmental situations this endangered species might experience would be particularly helpful. Fecal cortisol levels were measured across seasons, between captive management programs, and among varying reproductive states in animals held at Fossil Rim Wildlife Center (FRWC) and Kansas City Zoo (KCZ). A total of 72 samples were collected from FRWC and 69 samples were collected from KCZ. The herd size and sex ratio changed for both locations in the middle of sampling due to translocations and birth. The herd sizes ranged from 25 to 28 individuals at FRWC and 22 to 24 individuals at KCZ. An ELISA was optimized and utilized to investigate fecal cortisol variances across seasons, captive management programs, and among varying reproductive states. Fecal cortisol levels ranged from 68.9 to 668.7 pg/g throughout this study, but key differences were found in response to reproductive status, environmental conditions, and social status. The highest level of fecal cortisol measured (668.7 pg/g) was in a pregnant female 9 days prior to parturition. During winter months, an increase in fecal cortisol levels occurred in both herds (FRWC 160.3 pg/g to 335.1 pg/g and KCZ 118.8 pg/g to 505.0 pg/g). In addition, when intact males were held together in an enclosure, the dominant males had lower fecal cortisol levels compared with submissive males during three of the four sampling periods. Understanding how these data relate to the physiologic stress response will require further study, but these results can be utilized to help establish expected fecal cortisol ranges in multiple environments and can aid current captive scimitar-horned oryx management programs, as well as future reintroduction efforts.
Wells, Scott J.; Collins, Michael T.; Faaberg, Kay S.; Wees, Carrie; Tavornpanich, Saraya; Petrini, Kristine R.; Collins, James E.; Cernicchiaro, Natalia; Whitlock, Robert H.
2006-01-01
A high-throughput TaqMan PCR assay for detection of bovine paratuberculosis was evaluated by using fecal samples from 1,808 dairy cattle in seven naturally infected herds and 347 dairy cattle in seven herds considered free of paratuberculosis. Fecal, blood, and milk samples were submitted to laboratories where the PCR-based assay, three different fecal culture procedures for Mycobacterium avium subsp. paratuberculosis (centrifugation, sedimentation, and the BACTEC filter concentration method), two serologic enzyme-linked immunosorbent assays (ELISAs), and one milk ELISA were performed. Results from testing of dairy cattle in herds free of M. avium subsp. paratuberculosis showed that the PCR assay's specificity was 99.7%. Twenty-three percent of the dairy cows that were fecal culture positive by at least one of the three methods were positive by the PCR assay. By Bayesian non-“gold standard” analysis methods, the TaqMan PCR assay had a higher specificity than the serum ELISAs (99.3%; 95% confidence interval [CI] = 98.6 to 99.7%) and a test sensitivity similar to that of the serum ELISAs (29%; 95% CI = 24 to 35%). By classical methods, the estimated relative sensitivity of the fecal PCR assay was 4% for light and moderate fecal shedders (compared to 12 to 13% for the ELISAs) and 76% for heavy fecal shedders (compared to 67% for the milk ELISA). The PCR assay has higher sensitivity for detection of heavy fecal shedders than the evaluated milk ELISA but lower sensitivity than a serum or milk ELISA for detection of light and moderate fecal shedders. This assay can be used as a quick test for detection of cattle with heavy fecal shedding, those cattle with the highest risk of transmitting infection to susceptible cattle. PMID:16928884
NASA Astrophysics Data System (ADS)
Saintil, T.; Radcliffe, D. E.; Rasmussen, T. C.; Kannan, A.
2017-12-01
Fecal coliforms are indicators for disease-causing pathogens. The United States Environmental Protection Agency (US. EPA) recommends the use of E. coli and Enterococci because they are highly correlated with pathogenic organisms in recreational waters. This standard method helps to determine the overall water quality and the potential health risks. Studies have shown that it is difficult to estimate the exact sources of fecal contamination because both human and certain animal species contain E. coli and Enterococci in their waste. Certain strains of E. coli and Enterococci are also able to survive outside of their hosts, which should not be the case for an appropriate fecal indicator. As a result, microbial source tracking (MST) studies use gene specific markers to identify the possible contributors to water pollution whether human or animal. Trail Creek is a second-order stream located in Athens-Clarke County, GA. The 33-km2 watershed is approximately 64% forests, 18% pastures and 16% residential communities. Trail Creek is on the TMDL list and an extended study on the relationships between the different factors causing elevated fecal bacteria is needed. Synoptic sampling events were conducted during baseflow conditions at six locations. Storm sampling events (> 8 mm) were captured using automated samplers at two locations. These samplers were equipped with pressure transducers which record stage at 30-minute intervals. The samples were analyzed for fecal coliform, E. Coli and Enterococci. Water quality parameters including temperature, specific conductance, dissolved oxygen, pH, and turbidity were also recorded. Relationships between the parameters and fecal indicator bacteria show inconsistent patterns and high variability. Using quantitative PCR and MST techniques, the human specific marker (HF183) and ruminant marker (Rum2Bac) were used to identify the fecal sources in both baseflow and storm samples. The presence and abundance of the different markers at each site will be presented. The findings will be useful for adopting best management practices and implementing green infrastructure for the reduction of fecal pollution.
Sewage reflects the microbiomes of human populations.
Newton, Ryan J; McLellan, Sandra L; Dila, Deborah K; Vineis, Joseph H; Morrison, Hilary G; Eren, A Murat; Sogin, Mitchell L
2015-02-24
Molecular characterizations of the gut microbiome from individual human stool samples have identified community patterns that correlate with age, disease, diet, and other human characteristics, but resources for marker gene studies that consider microbiome trends among human populations scale with the number of individuals sampled from each population. As an alternative strategy for sampling populations, we examined whether sewage accurately reflects the microbial community of a mixture of stool samples. We used oligotyping of high-throughput 16S rRNA gene sequence data to compare the bacterial distribution in a stool data set to a sewage influent data set from 71 U.S. cities. On average, only 15% of sewage sample sequence reads were attributed to human fecal origin, but sewage recaptured most (97%) human fecal oligotypes. The most common oligotypes in stool matched the most common and abundant in sewage. After informatically separating sequences of human fecal origin, sewage samples exhibited ~3× greater diversity than stool samples. Comparisons among municipal sewage communities revealed the ubiquitous and abundant occurrence of 27 human fecal oligotypes, representing an apparent core set of organisms in U.S. populations. The fecal community variability among U.S. populations was significantly lower than among individuals. It clustered into three primary community structures distinguished by oligotypes from either: Bacteroidaceae, Prevotellaceae, or Lachnospiraceae/Ruminococcaceae. These distribution patterns reflected human population variation and predicted whether samples represented lean or obese populations with 81 to 89% accuracy. Our findings demonstrate that sewage represents the fecal microbial community of human populations and captures population-level traits of the human microbiome. The gut microbiota serves important functions in healthy humans. Numerous projects aim to define a healthy gut microbiome and its association with health states. However, financial considerations and privacy concerns limit the number of individuals who can be screened. By analyzing sewage from 71 cities, we demonstrate that geographically distributed U.S. populations share a small set of bacteria whose members represent various common community states within U.S. adults. Cities were differentiated by their sewage bacterial communities, and the community structures were good predictors of a city's estimated level of obesity. Our approach demonstrates the use of sewage as a means to sample the fecal microbiota from millions of people and its potential to elucidate microbiome patterns associated with human demographics. Copyright © 2015 Newton et al.
2012-01-01
Background Cattle shedding at least 104 CFU Escherichia coli O157:H7/g feces are described as super-shedders and have been shown to increase transmission of E. coli O157:H7 to other cattle in feedlots. This study investigated relationships among fecal isolates from super-shedders (n = 162), perineal hide swab isolates (PS) from super-shedders (n = 137) and fecal isolates from low-shedder (< 104 CFU/g feces) pen-mates (n = 496) using pulsed-field gel electrophoresis (PFGE). A subsample of these fecal isolates (n = 474) was tested for antimicrobial resistance. Isolates of E. coli O157:H7 were obtained from cattle in pens (avg. 181 head) at 2 commercial feedlots in southern Alberta with each steer sampled at entry to the feedlot and prior to slaughter. Results Only 1 steer maintained super-shedder status at both samplings, although approximately 30% of super-shedders in sampling 1 had low-shedder status at sampling 2. A total of 85 restriction endonuclease digestion clusters (REPC; 90% or greater similarity) and 86 unique isolates (< 90% similarity) were detected, with the predominant REPC (30% of isolates) being isolated from cattle in all feedlot pens, although it was not associated with shedding status (super- or low-shedder; P = 0.94). Only 2/21 super-shedders had fecal isolates in the same REPC at both samplings. Fecal and PS isolates from individual super-shedders generally belonged to different REPCs, although fecal isolates of E. coli O157:H7 from super- and low-shedders showed greater similarity (P < 0.001) than those from PS. For 77% of super-shedders, PFGE profiles of super-shedder fecal and PS isolates were distinct from all low-shedder fecal isolates collected in the same pen. A low level of antimicrobial resistance (3.7%) was detected and prevalence of antimicrobial resistance did not differ among super- and low-shedder isolates (P = 0.69), although all super-shedder isolates with antimicrobial resistance (n = 3) were resistant to multiple antimicrobials. Conclusions Super-shedders did not have increased antimicrobial resistance compared to low-shedder pen mates. Our data demonstrated that PFGE profiles of individual super-shedders varied over time and that only 1/162 steers remained a super-shedder at 2 samplings. In these two commercial feedlots, PFGE subtypes of E. coli O157:H7 from fecal isolates of super- and low-shedders were frequently different as were subtypes of fecal and perineal hide isolates from super-shedders. PMID:23014060
Zhang, Lu; Huang, Ying; Zhou, Yang; Buckley, Timothy
2013-01-01
This study examined the impact of oral exposure to antibiotic-resistant bacteria and antibiotic administration methods on antibiotic resistance (AR) gene pools and the profile of resistant bacteria in host gastrointestinal (GI) tracts using C57BL/6J mice with natural gut microbiota. Mice inoculated with a mixture of tet(M)-carrying Enterococcus spp. or blaCMY-2-carrying Escherichia coli were treated with different doses of tetracycline hydrochloride (Tet) or ampicillin sodium (Amp) and delivered via either feed or intravenous (i.v.) injection. Quantitative PCR assessment of mouse fecal samples revealed that (i) AR gene pools were below the detection limit in mice without prior inoculation of AR gene carriers regardless of subsequent exposure to corresponding antibiotics; (ii) oral exposure to high doses of Tet and Amp in mice inoculated with AR gene carriers led to rapid enrichment of corresponding AR gene pools in feces; (iii) significantly less or delayed development of AR in the GI tract of the AR carrier-inoculated mice was observed when the same doses of antibiotics were administered via i.v. injection rather than oral administration; and (iv) antibiotic dosage, and maybe the excretion route, affected AR in the GI tract. The shift of dominant AR bacterial populations in the gut microbiota was consistent with the dynamics of AR gene pools. The emergence of endogenous resistant bacteria in the gut microbiota corresponding to drug exposure was also observed. Together, these data suggest that oral administration of antibiotics has a prominent effect on AR amplification and development in gut microbiota, which may be minimized by alternative drug administration approaches, as illustrated by i.v. injection in this study and proper drug selection. PMID:23689712
Zhang, Lu; Huang, Ying; Zhou, Yang; Buckley, Timothy; Wang, Hua H
2013-08-01
This study examined the impact of oral exposure to antibiotic-resistant bacteria and antibiotic administration methods on antibiotic resistance (AR) gene pools and the profile of resistant bacteria in host gastrointestinal (GI) tracts using C57BL/6J mice with natural gut microbiota. Mice inoculated with a mixture of tet(M)-carrying Enterococcus spp. or blaCMY-2-carrying Escherichia coli were treated with different doses of tetracycline hydrochloride (Tet) or ampicillin sodium (Amp) and delivered via either feed or intravenous (i.v.) injection. Quantitative PCR assessment of mouse fecal samples revealed that (i) AR gene pools were below the detection limit in mice without prior inoculation of AR gene carriers regardless of subsequent exposure to corresponding antibiotics; (ii) oral exposure to high doses of Tet and Amp in mice inoculated with AR gene carriers led to rapid enrichment of corresponding AR gene pools in feces; (iii) significantly less or delayed development of AR in the GI tract of the AR carrier-inoculated mice was observed when the same doses of antibiotics were administered via i.v. injection rather than oral administration; and (iv) antibiotic dosage, and maybe the excretion route, affected AR in the GI tract. The shift of dominant AR bacterial populations in the gut microbiota was consistent with the dynamics of AR gene pools. The emergence of endogenous resistant bacteria in the gut microbiota corresponding to drug exposure was also observed. Together, these data suggest that oral administration of antibiotics has a prominent effect on AR amplification and development in gut microbiota, which may be minimized by alternative drug administration approaches, as illustrated by i.v. injection in this study and proper drug selection.
Bellosa, Mary L; Nydam, Daryl V; Liotta, Janice L; Zambriski, Jennifer A; Linden, Thomas C; Bowman, Dwight D
2011-04-01
Evaluation of dairy calf feces is often used in research and for clinical decision making to assess severity of diarrhea. However, this has not been validated for agreement between dry matter content and observed fecal consistency. Therefore, a comparison of observed fecal consistency score to fecal percent dry matter and Cryptosporidium parvum oocyst shedding was performed to assess the accuracy of observational scoring as a measure of diarrhea and its association with number of oocysts shed. Fecal samples from 20 dairy calves experimentally infected with C. parvum oocysts were collected daily post-infection and scored on a scale from 1 to 4, with 1 being normal feces to 4 being severe diarrhea. An aliquot of each sample was analyzed for percent dry matter and Cryptosporidium oocyst counts by using immunofluorescent microscopy. Fecal consistency scores of 1, 2, 3, and 4 had median percent dry matter of 20.9, 16.3, 9.6, and 5.8, respectively. Using percent dry matter assessed by fecal consistency scoring were significantly different from each other (P < 0.001). A higher fecal consistency score also was associated with a greater number of Cryptosporidium oocysts shed (P < 0 .0001). Scores of 1, 2, 3, and 4 had median oocyst counts of 0, 0, 1.3 × 10⁶, and 2.8 × 10⁶, respectively. These results suggest that observational scoring is a useful proxy to assess diarrhea in dairy calves.
Inactivation of fecal bacteria in drinking water by solar heating.
Joyce, T M; McGuigan, K G; Elmore-Meegan, M; Conroy, R M
1996-02-01
We report simulations of the thermal effect of strong equatorial sunshine on water samples contaminated with high populations of fecal coliforms. Water samples, heavily contaminated with a wild-type strain of Escherichia coli (starting population = 20 x 10(5) CFU/ml), are heated to those temperatures recorded for 2-liter samples stored in transparent plastic bottles and exposed to full Kenyan sunshine (maximum water temperature, 55 degrees C). The samples are completely disinfected within 7 h, and no viable E. coli organisms are detected at either the end of the experiment or a further 12 h later, showing that no bacterial recovery has occurred. The feasibility of employing solar disinfection for highly turbid, fecally contaminated water is discussed.
Water-quality assessment of Francis E Walter reservoir, Luzerne and Carbon counties, Pennsylvania
Barker, J.L.
1983-01-01
Water-quality data, both past and present, show that the waters of the upper Lehigh River basin are somewhat acidic, but otherwise are generally of good quality. This report contains a summary of all known water-quality data collected by the U.S. Geological Survey and other agencies, as well as a synopsis of current water-quality conditions in the reservoir and its tributaries. Water-quality data collected from June 1981 to May 1982 indicate that raising the pool level from 1,300 to approximately 1,392 feet above sea level (NGVD of 1929) has had some significant, if only temporary, detrimental impacts on the reservoir system and its discharge. Depth profile measurements show that, while the impoindment was thermally stratified for only about 2 weeks, the dissolved oxygen concentrations were depressed to levels critical to fishlife throughout much of the reservoir. Another effect of the raised pool was the lowering of pH in the impoinded water. Median pH values were less than 6.0 throughout the reservoir, whereas they commonly exceeded 6.5 at the normal pool elevation. Tests for fecal coliform and fecal streptococcus indicate the impoinded water is nearly free of enteric bacteria. Algal analyses and nutrient concentrations support the premise that the impoundment is nutrient poor and phosphorus limited. Raising the water level an additional 125 feet should have no permanent detrimental effect upon water quality and will greatly increase available habitat for fish and waterflow. Increased retention time should not alter the current trophic status and may decrease the concentration of available nutrients.
Janwan, Penchom; Intapan, Pewpan M; Thanchomnang, Tongjit; Lulitanond, Viraphong; Anamnart, Witthaya; Maleewong, Wanchai
2011-12-01
Human opisthorchiasis caused by the liver fluke Opisthorchis viverrini is an endemic disease in Southeast Asian countries including the Lao People's Democratic Republic, Cambodia, Vietnam, and Thailand. Infection with the soil-transmitted roundworm Strongyloides stercoralis is an important problem worldwide. In some areas, both parasitic infections are reported as co-infections. A duplex real-time fluorescence resonance energy transfer (FRET) PCR merged with melting curve analysis was developed for the rapid detection of O. viverrini and S. stercoralis in human fecal samples. Duplex real-time FRET PCR is based on fluorescence melting curve analysis of a hybrid of amplicons generated from two genera of DNA elements: the 162 bp pOV-A6 DNA sequence specific to O. viverrini and the 244 bp 18S rRNA sequence specific to S. stercoralis, and two pairs of specific fluorophore-labeled probes. Both O. viverrini and S. stercoralis can be differentially detected in infected human fecal samples by this process through their different fluorescence channels and melting temperatures. Detection limit of the method was as little as two O. viverrini eggs and four S. stercoralis larvae in 100 mg of fecal sample. The assay could distinguish the DNA of both parasites from the DNA of negative fecal samples and fecal samples with other parasite materials, as well as from the DNA of human leukocytes and other control parasites. The technique showed 100% sensitivity and specificity. The introduced duplex real-time FRET PCR can reduce labor time and reagent costs and is not prone to carry over contamination. The method is important for simultaneous detection especially in areas where both parasites overlap incidence and is useful as the screening tool in the returning travelers and immigrants to industrialized countries where number of samples in the diagnostic units will become increasing.
Ercumen, Ayse; Pickering, Amy J; Kwong, Laura H; Arnold, Benjamin F; Parvez, Sarker Masud; Alam, Mahfuja; Sen, Debashis; Islam, Sharmin; Kullmann, Craig; Chase, Claire; Ahmed, Rokeya; Unicomb, Leanne; Luby, Stephen P; Colford, John M
2017-08-01
Fecal-oral pathogens are transmitted through complex, environmentally mediated pathways. Sanitation interventions that isolate human feces from the environment may reduce transmission but have shown limited impact on environmental contamination. We conducted a study in rural Bangladesh to (1) quantify domestic fecal contamination in settings with high on-site sanitation coverage; (2) determine how domestic animals affect fecal contamination; and (3) assess how each environmental pathway affects others. We collected water, hand rinse, food, soil, and fly samples from 608 households. We analyzed samples with IDEXX Quantitray for the most probable number (MPN) of E. coli. We detected E. coli in source water (25%), stored water (77%), child hands (43%), food (58%), flies (50%), ponds (97%), and soil (95%). Soil had >120 000 mean MPN E. coli per gram. In compounds with vs without animals, E. coli was higher by 0.54 log 10 in soil, 0.40 log 10 in stored water and 0.61 log 10 in food (p < 0.05). E. coli in stored water and food increased with increasing E. coli in soil, ponds, source water and hands. We provide empirical evidence of fecal transmission in the domestic environment despite on-site sanitation. Animal feces contribute to fecal contamination, and fecal indicator bacteria do not strictly indicate human fecal contamination when animals are present.
2017-01-01
Fecal-oral pathogens are transmitted through complex, environmentally mediated pathways. Sanitation interventions that isolate human feces from the environment may reduce transmission but have shown limited impact on environmental contamination. We conducted a study in rural Bangladesh to (1) quantify domestic fecal contamination in settings with high on-site sanitation coverage; (2) determine how domestic animals affect fecal contamination; and (3) assess how each environmental pathway affects others. We collected water, hand rinse, food, soil, and fly samples from 608 households. We analyzed samples with IDEXX Quantitray for the most probable number (MPN) of E. coli. We detected E. coli in source water (25%), stored water (77%), child hands (43%), food (58%), flies (50%), ponds (97%), and soil (95%). Soil had >120 000 mean MPN E. coli per gram. In compounds with vs without animals, E. coli was higher by 0.54 log10 in soil, 0.40 log10 in stored water and 0.61 log10 in food (p < 0.05). E. coli in stored water and food increased with increasing E. coli in soil, ponds, source water and hands. We provide empirical evidence of fecal transmission in the domestic environment despite on-site sanitation. Animal feces contribute to fecal contamination, and fecal indicator bacteria do not strictly indicate human fecal contamination when animals are present. PMID:28686435
Heaney, Christopher D.; Myers, Kevin; Wing, Steve; Hall, Devon; Baron, Dothula; Stewart, Jill R.
2015-01-01
Swine farming has gone through many changes in the last few decades, resulting in operations with a high animal density known as confined animal feeding operations (CAFOs). These operations produce a large quantity of fecal waste whose environmental impacts are not well understood. The purpose of this study was to investigate microbial water quality in surface waters proximal to swine CAFOs including microbial source tracking of fecal microbes specific to swine. For one year, surface water samples at up- and downstream sites proximal to swine CAFO lagoon waste land application sites were tested for fecal indicator bacteria (fecal coliforms, Escherichia coli and Enterococcus) and candidate swine-specific microbial source-tracking (MST) markers (Bacteroidales Pig-1-Bac, Pig-2-Bac, and Pig-Bac-2, and methanogen P23-2). Testing of 187 samples showed high fecal indicator bacteria concentrations at both up- and downstream sites. Overall, 40%, 23%, and 61% of samples exceeded state and federal recreational water quality guidelines for fecal coliforms, E. coli, and Enterococcus, respectively. Pig-1-Bac and Pig-2-Bac showed the highest specificity to swine fecal wastes and were 2.47 (95% confidence interval [CI] = 1.03, 5.94) and 2.30 times (95% CI = 0.90, 5.88) as prevalent proximal down- than proximal upstream of swine CAFOs, respectively. Pig-1-Bac and Pig-2-Bac were also 2.87 (95% CI = 1.21, 6.80) and 3.36 (95% CI = 1.34, 8.41) times as prevalent when 48 hour antecedent rainfall was greater than versus less than the mean, respectively. Results suggest diffuse and overall poor sanitary quality of surface waters where swine CAFO density is high. Pig-1-Bac and Pig-2-Bac are useful for tracking off-site conveyance of swine fecal wastes into surface waters proximal to and downstream of swine CAFOs and during rain events. PMID:25600418
Heaney, Christopher D; Myers, Kevin; Wing, Steve; Hall, Devon; Baron, Dothula; Stewart, Jill R
2015-04-01
Swine farming has gone through many changes in the last few decades, resulting in operations with a high animal density known as confined animal feeding operations (CAFOs). These operations produce a large quantity of fecal waste whose environmental impacts are not well understood. The purpose of this study was to investigate microbial water quality in surface waters proximal to swine CAFOs including microbial source tracking of fecal microbes specific to swine. For one year, surface water samples at up- and downstream sites proximal to swine CAFO lagoon waste land application sites were tested for fecal indicator bacteria (fecal coliforms, Escherichia coli and Enterococcus) and candidate swine-specific microbial source-tracking (MST) markers (Bacteroidales Pig-1-Bac, Pig-2-Bac, and Pig-Bac-2, and methanogen P23-2). Testing of 187 samples showed high fecal indicator bacteria concentrations at both up- and downstream sites. Overall, 40%, 23%, and 61% of samples exceeded state and federal recreational water quality guidelines for fecal coliforms, E. coli, and Enterococcus, respectively. Pig-1-Bac and Pig-2-Bac showed the highest specificity to swine fecal wastes and were 2.47 (95% confidence interval [CI]=1.03, 5.94) and 2.30 times (95% CI=0.90, 5.88) as prevalent proximal down- than proximal upstream of swine CAFOs, respectively. Pig-1-Bac and Pig-2-Bac were also 2.87 (95% CI=1.21, 6.80) and 3.36 (95% CI=1.34, 8.41) times as prevalent when 48 hour antecedent rainfall was greater than versus less than the mean, respectively. Results suggest diffuse and overall poor sanitary quality of surface waters where swine CAFO density is high. Pig-1-Bac and Pig-2-Bac are useful for tracking off-site conveyance of swine fecal wastes into surface waters proximal to and downstream of swine CAFOs and during rain events. Copyright © 2014 Elsevier B.V. All rights reserved.
Fecal Leukocytes in Children Infected with Diarrheagenic Escherichia coli▿
Mercado, Erik H.; Ochoa, Theresa J.; Ecker, Lucie; Cabello, Martin; Durand, David; Barletta, Francesca; Molina, Margarita; Gil, Ana I.; Huicho, Luis; Lanata, Claudio F.; Cleary, Thomas G.
2011-01-01
The purpose of this study was to determine the presence and quantity of fecal leukocytes in children infected with diarrheagenic Escherichia coli and to compare these levels between diarrhea and control cases. We analyzed 1,474 stool samples from 935 diarrhea episodes and 539 from healthy controls of a cohort study of children younger than 2 years of age in Lima, Peru. Stools were analyzed for common enteric pathogens, and diarrheagenic E. coli isolates were studied by a multiplex real-time PCR. Stool smears were stained with methylene blue and read by a blinded observer to determine the number of polymorphonuclear leukocytes per high-power field (L/hpf). Fecal leukocytes at >10 L/hpf were present in 11.8% (110/935) of all diarrheal episodes versus 1.1% (6/539) in controls (P < 0.001). Among stool samples with diarrheagenic E. coli as the only pathogen isolated (excluding coinfection), fecal leukocytes at >10 L/hpf were present in 8.5% (18/212) of diarrhea versus 1.3% (2/157) of control samples (P < 0.01). Ninety-five percent of 99 diarrheagenic E. coli diarrhea samples were positive for fecal lactoferrin. Adjusting for the presence of blood in stools, age, sex, undernutrition, and breastfeeding, enterotoxigenic E. coli (ETEC) isolation as a single pathogen, excluding coinfections, was highly associated with the presence of fecal leukocytes (>10 L/hpf) with an odds ratio (OR) of 4.1 (95% confidence interval [CI], 1.08 to 15.51; P < 0.05). Although diarrheagenic E. coli was isolated with similar frequencies in diarrhea and control samples, clearly it was associated with a more inflammatory response during symptomatic infection; however, in general, these pathogens elicited a mild inflammatory response. PMID:21325554
Salgado, M; Steuer, P; Troncoso, E; Collins, M T
2013-12-27
Mycobacterium avium subsp. paratuberculosis (MAP) causes paratuberculosis, or Johne's disease, in animals. Diagnosis of MAP infection is challenging because of the pathogen's fastidious in vitro growth requirements and low-level intermittent shedding in feces during the preclinical phase of the infection. Detection of these "low-shedders" is important for effective control of paratuberculosis as these animals serve as sources of infection for susceptible calves. Magnetic separation technology, used in combination with culture or molecular methods for the isolation and detection of pathogenic bacteria, enhances the analytical sensitivity and specificity of detection methods. The aim of the present study was to evaluate peptide-mediated magnetic separation (PMS) capture technology coupled with IS900 PCR using the Roche real-time PCR system (PMS-PCR), in comparison with fecal culture using BACTEC-MGIT 960 system, for detection of MAP in bovine fecal samples. Among the 351 fecal samples 74.9% (263/351) were PMS-PCR positive while only 12.3% (43/351) were MGIT culture-positive (p=0.0001). All 43 MGIT culture-positive samples were also positive by PMS-PCR. Mean PMS-PCR crossing-point (Cp) values for the 13 fecal samples with the highest number of MAP, based on time to detection, (26.3) were significantly lower than for the 17 fecal samples with <100 MAP per 2g feces (30.06) (p<0.05). PMS-PCR technology provided results in a shorter time and yielded a higher number of positive results than MGIT culture. Earlier and faster detection of animals shedding MAP by PMS-PCR should significantly strengthen control efforts for MAP-infected cattle herds by helping to limit infection transmission at earlier stages of the infection. Copyright © 2013 Elsevier B.V. All rights reserved.
Factors affecting genotyping success in giant panda fecal samples.
Zhu, Ying; Liu, Hong-Yi; Yang, Hai-Qiong; Li, Yu-Dong; Zhang, He-Min
2017-01-01
Fecal samples play an important role in giant panda conservation studies. Optimal preservation conditions and choice of microsatellites for giant panda fecal samples have not been established. In this study, we evaluated the effect of four factors (namely, storage type (ethanol (EtOH), EtOH -20 °C, 2-step storage medium, DMSO/EDTA/Tris/salt buffer (DETs) and frozen at -20 °C), storage time (one, three and six months), fragment length, and repeat motif of microsatellite loci) on the success rate of microsatellite amplification, allelic dropout (ADO) and false allele (FA) rates from giant panda fecal samples. Amplification success and ADO rates differed between the storage types. Freezing was inferior to the other four storage methods based on the lowest average amplification success and the highest ADO rates ( P < 0.05). The highest microsatellite amplification success was obtained from either EtOH or the 2-step storage medium at three storage time points. Storage time had a negative effect on the average amplification of microsatellites and samples stored in EtOH and the 2-step storage medium were more stable than the other three storage types. We only detected the effect of repeat motif on ADO and FA rates. The lower ADO and FA rates were obtained from tri- and tetra-nucleotide loci. We suggest that freezing should not be used for giant panda fecal preservation in microsatellite studies, and EtOH and the 2-step storage medium should be chosen on priority for long-term storage. We recommend candidate microsatellite loci with longer repeat motif to ensure greater genotyping success for giant panda fecal studies.
Factors affecting genotyping success in giant panda fecal samples
Zhu, Ying; Liu, Hong-Yi; Yang, Hai-Qiong; Li, Yu-Dong
2017-01-01
Fecal samples play an important role in giant panda conservation studies. Optimal preservation conditions and choice of microsatellites for giant panda fecal samples have not been established. In this study, we evaluated the effect of four factors (namely, storage type (ethanol (EtOH), EtOH −20 °C, 2-step storage medium, DMSO/EDTA/Tris/salt buffer (DETs) and frozen at −20 °C), storage time (one, three and six months), fragment length, and repeat motif of microsatellite loci) on the success rate of microsatellite amplification, allelic dropout (ADO) and false allele (FA) rates from giant panda fecal samples. Amplification success and ADO rates differed between the storage types. Freezing was inferior to the other four storage methods based on the lowest average amplification success and the highest ADO rates (P < 0.05). The highest microsatellite amplification success was obtained from either EtOH or the 2-step storage medium at three storage time points. Storage time had a negative effect on the average amplification of microsatellites and samples stored in EtOH and the 2-step storage medium were more stable than the other three storage types. We only detected the effect of repeat motif on ADO and FA rates. The lower ADO and FA rates were obtained from tri- and tetra-nucleotide loci. We suggest that freezing should not be used for giant panda fecal preservation in microsatellite studies, and EtOH and the 2-step storage medium should be chosen on priority for long-term storage. We recommend candidate microsatellite loci with longer repeat motif to ensure greater genotyping success for giant panda fecal studies. PMID:28560107
Sommer, D; Enderlein, D; Antakli, A; Schönenbrücher, H; Slaghuis, J; Redmann, T; Lierz, M
2012-01-01
The efficiency of two commercial PCR methods based on real-time technology, the foodproof® Salmonella detection system and the BAX® PCR Assay Salmonella system was compared to standardized culture methods (EN ISO 6579:2002 - Annex D) for the detection of Salmonella spp. in poultry samples. Four sample matrices (feed, dust, boot swabs, feces) obtained directly from poultry flocks, as well as artificially spiked samples of the same matrices, were used. All samples were tested for Salmonella spp. using culture methods first as the gold standard. In addition samples spiked with Salmonella Enteridis were tested to evaluate the sensitivity of both PCR methods. Furthermore all methods were evaluated in an annual ring-trial of the National Salmonella Reference Laboratory of Germany. Salmonella detection in the matrices feed, dust and boot swabs were comparable in both PCR systems whereas the results from feces differed markedly. The quality, especially the freshness, of the fecal samples had an influence on the sensitivity of the real-time PCR and the results of the culture methods. In fresh fecal samples an initial spiking level of 100cfu/25g Salmonella Enteritidis was detected. Two-days-dried fecal samples allowed the detection of 14cfu/25g. Both real- time PCR protocols appear to be suitable for the detection of Salmonella spp. in all four matrices. The foodproof® system detected eight samples more to be positive compared to the BAX® system, but had a potential false positive result in one case. In 7-days-dried samples none of the methods was able to detect Salmonella likely through letal cell damage. In general the advantage of PCR analyses over the culture method is the reduction of working time from 4-5 days to only 2 days. However, especially for the analysis of fecal samples official validation should be conducted according to the requirement of EN ISO6579:2002 - Annex D.
Mieszkin, Sophie; Furet, Jean-Pierre; Corthier, Gérard; Gourmelon, Michèle
2009-01-01
The microbiological quality of coastal or river water can be affected by fecal contamination from human or animal sources. To discriminate pig fecal pollution from other pollution, a library-independent microbial source tracking method targeting Bacteroidales host-specific 16S rRNA gene markers by real-time PCR was designed. Two pig-specific Bacteroidales markers (Pig-1-Bac and Pig-2-Bac) were designed using 16S rRNA gene Bacteroidales clone libraries from pig feces and slurry. For these two pig markers, 98 to 100% sensitivity and 100% specificity were obtained when tested by TaqMan real-time PCR. A decrease in the concentrations of Pig-1-Bac and Pig-2-Bac markers was observed throughout the slurry treatment chain. The two newly designed pig-specific Bacteroidales markers, plus the human-specific (HF183) and ruminant-specific (BacR) Bacteroidales markers, were then applied to river water samples (n = 24) representing 14 different sites from the French Daoulas River catchment (Brittany, France). Pig-1-Bac and Pig-2-Bac were quantified in 25% and 62.5%, respectively, of samples collected around pig farms, with concentrations ranging from 3.6 to 4.1 log10 copies per 100 ml of water. They were detected in water samples collected downstream from pig farms but never detected near cattle farms. HF183 was quantified in 90% of water samples collected downstream near Daoulas town, with concentrations ranging between 3.6 and 4.4 log10 copies per 100 ml of water, and BacR in all water samples collected around cattle farms, with concentrations ranging between 4.6 and 6.0 log10 copies per 100 ml of water. The results of this study highlight that pig fecal contamination was not as frequent as human or bovine fecal contamination and that fecal pollution generally came from multiple origins. The two pig-specific Bacteroidales markers can be applied to environmental water samples to detect pig fecal pollution. PMID:19329663
Scala, Antonio; Demontis, Francesca; Varcasia, Antonio; Pipia, Anna Paola; Poglayen, Giovanni; Ferrari, Nicola; Genchi, Marco
2009-08-26
A study was carried out to assess the efficacy and the economic profit of prophylactic treatment against Isopsora suis with toltrazuril or with a sulfamethazine/trimethoprim combination in piglets from an intensive pig farm. Thirty-one litters were included in study. Eight litters were treated once with toltrazuril (20 mg/kg b.w.) at 3 days of age (Toltra group); 8 litters were treated with 2 ml/animal of a [corrected] sulphonamide combination (sodium sulfamethazine 250 [DOSAGE ERROR CORRECTED] mg and trimethoprim 50 [DOSAGE ERROR CORRECTED] mg/kg b.w.) for 3 consecutive days starting at 3 days of age (Sulfa group), and 15 litters were untreated (control group). Counts of oocyst per gram on pooled feces sampled from each litter were carried out on Days 7, 14, 21 and 28 and diarrhea was registered daily from pooled samples. Piglets were weighed on Days 1, 7 and 28 and mean weight gain (WG) and daily weight gain (DWG) were evaluated. The economic profit of treatment was evaluated comparing the WG of piglets of each treatment group from the day of birth to Day 28. On Days 14, 21 and 28, toltrazuril showed a better efficacy in controlling fecal oocyst output, diarrhea and weight gain compared with sulphamidic treatment (P<0.001). The budgeting analysis showed a return of economic benefit of euro 0.915 per toltrazuril-treated piglets and an additional cost of euro 1.155 per sulphonamide-treated piglets.
Lisle, J.T.; Smith, J.J.; Edwards, D.D.; McFeters, G.A.
2004-01-01
McMurdo Station, Antarctica, has discharged untreated sewage into McMurdo Sound for decades. Previous studies delineated the impacted area, which included the drinking water intake, by using total coliform and Clostridium perfringens concentrations. The estimation of risk to humans in contact with the impacted and potable waters may be greater than presumed, as these microbial indicators may not be the most appropriate for this environment. To address these concerns, concentrations of these and additional indicators (fecal coliforms, Escherichia coli, enterococci, coliphage, and enteroviruses) in the untreated wastewater, water column, and sediments of the impacted area and drinking water treatment facility and distribution system at McMurdo Station were determined. Fecal samples from Weddell seals in this area were also collected and analyzed for indicators. All drinking water samples were negative for indicators except for a single total coliform-positive sample. Total coliforms were present in water column samples at higher concentrations than other indicators. Fecal coliform and enterococcus concentrations were similar to each other and greater than those of other indicators in sediment samples closer to the discharge site. C. perfringens concentrations were higher in sediments at greater distances from the discharge site. Seal fecal samples contained concentrations of fecal coliforms, E. coli, enterococci, and C. perfringens similar to those found in untreated sewage. All samples were negative for enteroviruses. A wastewater treatment facility at McMurdo Station has started operation, and these data provide a baseline data set for monitoring the recovery of the impacted area. The contribution of seal feces to indicator concentrations in this area should be considered.
Windey, Karen; Houben, Els; Deroover, Lise; Verbeke, Kristin
2015-01-01
Whether or not abdominal symptoms occur in subjects with small intestinal lactose malabsorption might depend on differences in colonic fermentation. To evaluate this hypothesis, we collected fecal samples from subjects with lactose malabsorption with abdominal complaints (LM-IT, n = 11) and without abdominal complaints (LM-T, n = 8) and subjects with normal lactose digestion (NLD, n = 15). Lactose malabsorption was diagnosed using a 13C-lactose breath test. Colonic fermentation was characterized in fecal samples at baseline and after incubation with lactose for 3 h, 6 h and 24 h through a metabolomics approach using gas chromatography-mass spectrometry (GC-MS). Fecal water cytotoxicity was analyzed using a colorimetric assay. Fecal water cytotoxicity was not different between the three groups (Kruskall-Wallis p = 0.164). Cluster analysis of the metabolite patterns revealed separate clusters for NLD, LM-T and LM-IT samples at baseline and after 24 h incubation with lactose. Levels of 5-methyl-2-furancarboxaldehyde were significantly higher in LM-IT and LM-T compared to NLD whereas those of an unidentified aldehyde were significantly higher in LM-IT compared to LM-T and NLD. Incubation with lactose increased short chain fatty acid (SCFA) concentrations more in LM-IT and LM-T compared to NLD. In conclusion, fermentation patterns were clearly different in NLD, LM-IT and LM-T, but not related to differences in fecal water cytotoxicity. PMID:26371036
Windey, Karen; Houben, Els; Deroover, Lise; Verbeke, Kristin
2015-09-08
Whether or not abdominal symptoms occur in subjects with small intestinal lactose malabsorption might depend on differences in colonic fermentation. To evaluate this hypothesis, we collected fecal samples from subjects with lactose malabsorption with abdominal complaints (LM-IT, n = 11) and without abdominal complaints (LM-T, n = 8) and subjects with normal lactose digestion (NLD, n = 15). Lactose malabsorption was diagnosed using a (13)C-lactose breath test. Colonic fermentation was characterized in fecal samples at baseline and after incubation with lactose for 3 h, 6 h and 24 h through a metabolomics approach using gas chromatography-mass spectrometry (GC-MS). Fecal water cytotoxicity was analyzed using a colorimetric assay. Fecal water cytotoxicity was not different between the three groups (Kruskall-Wallis p = 0.164). Cluster analysis of the metabolite patterns revealed separate clusters for NLD, LM-T and LM-IT samples at baseline and after 24 h incubation with lactose. Levels of 5-methyl-2-furancarboxaldehyde were significantly higher in LM-IT and LM-T compared to NLD whereas those of an unidentified aldehyde were significantly higher in LM-IT compared to LM-T and NLD. Incubation with lactose increased short chain fatty acid (SCFA) concentrations more in LM-IT and LM-T compared to NLD. In conclusion, fermentation patterns were clearly different in NLD, LM-IT and LM-T, but not related to differences in fecal water cytotoxicity.
Diagnostic stages of the parasites of the Florida manatee, Trichechus manatus latirostris.
Bando, Monica; Larkin, Iskande V; Wright, Scott D; Greiner, Ellis C
2014-02-01
Limited information is available on diagnostic stages of parasites in Florida manatees (Trichechus manatus latirostris). We examined 67 fecal samples from captive and wild manatees to define the diagnostic stages of the parasite fauna known to occur in Florida manatees. Parasite eggs were freshly extracted ex utero from identified mature helminths and subsequently characterized, illustrated, and matched to those isolated from fecal samples. In addition, coccidian oocysts in the fecal samples were identified. These diagnostic stages included eggs from 5 species of trematodes (Chiorchis fabaceus, Chiorchis groschafti, Pulmonicola cochleotrema, Moniligerum blairi, and Nudacotyle undicola), 1 nematode (Heterocheilus tunicatus), and oocysts of 2 coccidians (Eimeria manatus and Eimeria nodulosa).
Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between...
Vigo, German B; Cappuccio, Javier A; Piñeyro, Pablo E; Salve, Angela; Machuca, Mariana A; Quiroga, Maria A; Moredo, Fabiana; Giacoboni, Gabriel; Cancer, Jose L; Caffer, Ines G; Binsztein, Norma; Pichel, Mariana; Perfumo, Carlos J
2009-10-01
The aim of this surveillance was to study both Salmonella spp. shedding patterns and the time course of serological response in farrow-to-finish reared pigs from a subclinically infected farm. Antimicrobial resistance profile, molecular subtyping, and the relationship among the isolates were determined by pulsed-field gel electrophoresis (PFGE). A farrow-to-finish farm of 6000 sows, with a history of Salmonella Typhimurium septicemia, was selected. A longitudinal bacteriological and serological study was conducted in 25 sows before farrowing (M/S1) and in 50 offspring at 21 (M/S2), 35 (M/S3), 65 (M/S4), 86 (M/S5), 128 (M/S6), and 165 (M/S7) days of age. Serum antibodies were tested using Herdcheck((R)) Swine Salmonella antibody test kit (Idexx Laboratories, ME). Bacteria were isolated from pooled fecal samples. Suspected isolates were confirmed by conventional biochemical assays, and those identified as Salmonella spp. were serotyped. A variation between seropositive percentages and positive fecal samples was observed. Serologically positive pigs decreased from S1 to S4, and subsequently increased from S4 to S7. The percentages of fecal positive culture increased from M1 to M3, and then declined in M4, increased in M5, and were negative in M6 and M7. In the study three serovars, Salmonella 3,10:e,h:-, Salmonella Muenster, and Salmonella Bovismorbificans, were identified with low pathogenicity for swine. Three multidrug resistance strains (one belonged to Salmonella 3,10:e,h:- and two belonged to Salmonella Muenster) were found. PFGE results showed three different but closely related patterns among the 13 isolates of Salmonella Bovismorbificans, and two patterns for the three Salmonella Muenster and Salmonella 3,10:e,h:- isolates. This longitudinal study established critical points of Salmonella spp. infection in the farm and the production stages, where appropriate control measures must be taken. PFGE showed clonal relationships in each serovar. Antibiotic resistance profiles should be periodically included due to public health concerns.
Vigo, German B.; Cappuccio, Javier A.; Salve, Angela; Machuca, Mariana A.; Quiroga, Maria A.; Moredo, Fabiana; Giacoboni, Gabriel; Cancer, Jose L.; Caffer, Ines G.; Binsztein, Norma; Pichel, Mariana; Perfumo, Carlos J.
2009-01-01
Abstract The aim of this surveillance was to study both Salmonella spp. shedding patterns and the time course of serological response in farrow-to-finish reared pigs from a subclinically infected farm. Antimicrobial resistance profile, molecular subtyping, and the relationship among the isolates were determined by pulsed-field gel electrophoresis (PFGE). A farrow-to-finish farm of 6000 sows, with a history of Salmonella Typhimurium septicemia, was selected. A longitudinal bacteriological and serological study was conducted in 25 sows before farrowing (M/S1) and in 50 offspring at 21 (M/S2), 35 (M/S3), 65 (M/S4), 86 (M/S5), 128 (M/S6), and 165 (M/S7) days of age. Serum antibodies were tested using Herdcheck® Swine Salmonella antibody test kit (Idexx Laboratories, ME). Bacteria were isolated from pooled fecal samples. Suspected isolates were confirmed by conventional biochemical assays, and those identified as Salmonella spp. were serotyped. A variation between seropositive percentages and positive fecal samples was observed. Serologically positive pigs decreased from S1 to S4, and subsequently increased from S4 to S7. The percentages of fecal positive culture increased from M1 to M3, and then declined in M4, increased in M5, and were negative in M6 and M7. In the study three serovars, Salmonella 3,10:e,h:-, Salmonella Muenster, and Salmonella Bovismorbificans, were identified with low pathogenicity for swine. Three multidrug resistance strains (one belonged to Salmonella 3,10:e,h:- and two belonged to Salmonella Muenster) were found. PFGE results showed three different but closely related patterns among the 13 isolates of Salmonella Bovismorbificans, and two patterns for the three Salmonella Muenster and Salmonella 3,10:e,h:- isolates. This longitudinal study established critical points of Salmonella spp. infection in the farm and the production stages, where appropriate control measures must be taken. PFGE showed clonal relationships in each serovar. Antibiotic resistance profiles should be periodically included due to public health concerns. PMID:19642916
Cao, Yiping; Sivaganesan, Mano; Kelty, Catherine A; Wang, Dan; Boehm, Alexandria B; Griffith, John F; Weisberg, Stephen B; Shanks, Orin C
2018-01-01
Human fecal pollution of recreational waters remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality research and management. However, there are currently no standardized approaches for field implementation and interpretation of qPCR data. In this study, a standardized HF183/BacR287 qPCR method was combined with a water sampling strategy and a novel Bayesian weighted average approach to establish a human fecal contamination score (HFS) that can be used to prioritize sampling sites for remediation based on measured human waste levels. The HFS was then used to investigate 975 study design scenarios utilizing different combinations of sites with varying sampling intensities (daily to once per week) and number of qPCR replicates per sample (2-14 replicates). Findings demonstrate that site prioritization with HFS is feasible and that both sampling intensity and number of qPCR replicates influence reliability of HFS estimates. The novel data analysis strategy presented here provides a prescribed approach for the implementation and interpretation of human-associated HF183/BacR287 qPCR data with the goal of site prioritization based on human fecal pollution levels. In addition, information is provided for future users to customize study designs for optimal HFS performance. Published by Elsevier Ltd.
Yoshida, Hiromi; Sakoda, Yoshihiro; Endo, Mayumi; Motoshima, Masayuki; Yoshino, Fumi; Yamamoto, Naoki; Okamatsu, Masatoshi; Soejima, Takahiro; Senba, Syouhei; Kanda, Hidetoshi; Kida, Hiroshi
2011-06-01
Migratory water birds are a natural reservoir for influenza A viruses. Viruses replicate in the intestines of ducks and are shed with the fecal materials. Virus isolation from collected fecal materials, therefore, is an integral part of the surveillance of avian influenza in water birds. In the present study, reverse transcription loop-mediated isothermal amplification (RT-LAMP) was assessed for its usefulness in detecting the RNA of influenza A viruses in fecal materials. It was found that, RT-LAMP specifically and sensitively detects the matrix gene of influenza A viruses. Influenza A viruses were isolated from the fecal materials in which viral RNA were detected by RT-LAMP in 35 min. The present findings indicate that RT-LAMP is useful as a high throughput screening method for field samples prior to virus isolation, allowing the processing of hundreds of samples per day.
Effects of urbanization on stream water quality in the city of Atlanta, Georgia, USA
Peters, N.E.
2009-01-01
A long-term stream water quality monitoring network was established in the city of Atlanta, Georgia during 2003 to assess baseline water quality conditions and the effects of urbanization on stream water quality. Routine hydrologically based manual stream sampling, including several concurrent manual point and equal width increment sampling, was conducted ???12 times annually at 21 stations, with drainage areas ranging from 3.7 to 232 km2. Eleven of the stations are real-time (RT) stations having continuous measures of stream stage/ discharge, pH, dissolved oxygen, specific conductance, water temperature and turbidity, and automatic samplers for stormwater collection. Samples were analyzed for field parameters, and a broad suite of water quality and sediment-related constituents. Field parameters and concentrations of major ions, metals, nutrient species and coliform bacteria among stations were evaluated and with respect to watershed characteristics and plausible sources from 2003 through September 2007. Most constituent concentrations are much higher than nearby reference streams. Concentrations are statistically different among stations for several constituents, despite high variability both within and among stations. Routine manual sampling, automatic sampling during stormflows and RT water quality monitoring provided sufficient information about urban stream water quality variability to evaluate causes of water quality differences among streams. Fecal coliform bacteria concentrations of most samples exceeded Georgia's water quality standard for any water-usage class. High chloride concentrations occur at three stations and are hypothesized to be associated with discharges of chlorinated combined sewer overflows, drainage of swimming pool(s) and dissolution and transport during rainstorms of CaCl2, a deicing salt applied to roads during winter storms. One stream was affected by dissolution and transport of ammonium alum [NH4Al(SO4)2] from an alum-manufacturing plant; streamwater has low pH (<5), low alkalinity and high metals concentrations. Several trace metals exceed acute and chronic water quality standards and high concentrations are attributed to washoff from impervious surfaces.
Cull, Charley A; Renter, David G; Dewsbury, Diana M; Noll, Lance W; Shridhar, Pragathi B; Ives, Samuel E; Nagaraja, Tiruvoor G; Cernicchiaro, Natalia
2017-06-01
The objective of this study was to determine feedlot- and pen-level fecal prevalence of seven enterohemorrhagic Escherichia coli (EHEC) belonging to serogroups (O26, O45, O103, O111, O121, O145, and O157, or EHEC-7) in feces of feedlot cattle in two feeding areas in the United States. Cattle pens from four commercial feedlots in each of the two major U.S. beef cattle areas were sampled. Up to 16 pen-floor fecal samples were collected from each of 4-6 pens per feedlot, monthly, for a total of three visits per feedlot, from June to August, 2014. Culture procedures including fecal enrichment in E. coli broth, immunomagnetic separation, and plating on selective media, followed by confirmation through polymerase chain reaction (PCR) testing, were conducted. Generalized linear mixed models were fitted to estimate feedlot-, pen-, and sample-level fecal prevalence of EHEC-7 and to evaluate associations between potential demographic and management risk factors with feedlot and within-pen prevalence of EHEC-7. All study feedlots and 31.0% of the study pens had at least one non-O157 EHEC-positive fecal sample, whereas 62.4% of pens tested positive for EHEC O157; sample-level prevalence estimates ranged from 0.0% for EHEC O121 to 18.7% for EHEC O157. Within-pen prevalence of EHEC O157 varied significantly by sampling month; similarly within-pen prevalence of non-O157 EHEC varied significantly by month and by the sex composition of the pen (heifer, steer, or mixed). Feedlot management factors, however, were not significantly associated with fecal prevalence of EHEC-7. Intraclass correlation coefficients for EHEC-7 models indicated that most of the variation occurred between pens, rather than within pens, or between feedlots. Hence, the potential combination of preharvest interventions and pen-level management strategies may have positive food safety impacts downstream along the beef chain.
Potential for gulls to transport bacteria from human waste sites to beaches.
Alm, Elizabeth W; Daniels-Witt, Quri R; Learman, Deric R; Ryu, Hodon; Jordan, Dustin W; Gehring, Thomas M; Santo Domingo, Jorge
2018-02-15
Contamination of recreational beaches due to fecal waste from gulls complicates beach monitoring and may pose a risk to public health. Gulls that feed at human waste sites may ingest human fecal microorganisms associated with that waste. If these gulls also visit beaches, they may serve as vectors, transporting fecal microorganisms to the beach where they may subsequently contaminate sand and water. In this study, samples collected from landfills, treated wastewater storage lagoons, and public beaches demonstrated a spatial and temporal overlap of markers for gull and human-associated microorganisms. In addition, markers for gull, fecal indicator bacteria, and the human-associated marker, HF183, were detected in gull feces and cloacae samples. Further, HF183 was detected in cloacae samples from gulls that were documented by radio-telemetry traveling between human waste sites and public beaches. This study highlights the potential for gulls that visit human waste sites to disperse human-associated microorganisms in the beach landscape. Copyright © 2017 Elsevier B.V. All rights reserved.
Taylor, C; Duffy, L K; Plumley, F G; Bowyer, R T
2000-09-01
A spectrofluorometric method (B. Grandchamp et al., 1980, Biochem. Biophys. Acta 629, 577-586) developed for the determination of amounts of uroporphyrin I (Uro I), coproporphyrin III (Copro III), and protoporphyrin IX (Proto IX) in skin fibroblasts was compared with a high-performance liquid chromatography (HPLC) method for the analysis of porphyrins in fecal samples of river otters (Lutra canadensis). Heptacarboxylate porphyrin I and coproporphyrin I, two porphyrins determined to be critical in defining the porphyrin profile in fecal samples of river otters with the HPLC method, contributed substantially to the calculation of the concentrations of Uro I and Copro III, respectively, in standard solutions of porphyrins with the spectrofluorometric method. Fluorescent components of the fecal matrix complicated the determination of the concentrations of Uro I, Copro III, and Proto IX with the spectrofluorometric method and resulted in erroneous values for the concentrations of these porphyrins compared with values determined with the HPLC method. These results indicate that the complexity of the sample, particularly with regard to the potential presence of interfering fluorescent compounds, as well as porphyrins additional to Uro I, Copro III, and Proto IX, should be considered prior to the application of the spectrofluorometric method. An alternative HPLC method developed for the rapid characterization of porphyrin profiles in fecal samples of river otters is described. Copyright 2000 Academic Press.
Huang, Qianqian; Holman, Devin B; Alexander, Trevor; Hu, Tianming; Jin, Long; Xu, Zhongjun; McAllister, Tim A; Acharya, Surya; Zhao, Guoqi; Wang, Yuxi
2018-01-01
The present study assessed the effect of purple prairie clover (PPC) and PPC condensed tannins (CT) on the fecal microbiota of lambs using high-throughput 16S rRNA gene pyrosequencing. A total of 18 individual lambs were randomly divided into three groups and fed either green chop alfalfa (Alf), a 40:60 (DM basis; Mix) mixture of Alf and PPC, or Mix supplemented with polyethylene glycol (Mix-P) for 18 days. Fecal samples were collected on days 13 through 18 using digital rectal retrieval. The DNA of fecal samples was extracted and the microbial 16S rRNA gene amplicons were sequenced using 454 pyrosequencing. Regardless of diet, the bacterial community was dominated by Firmicutes and Bacteroidetes with many sequences unclassified at the genus level. Forage type and CT had no effect on the fecal microbial composition at the phylum level or on α-diversity. Compared to the Alf diet, the Mix diet reduced the relative abundance of Akkermansia (P = 0.03) and Asteroleplasma (P = 0.05). Fecal microbial populations in Alf and Mix-P clustered separately from each other when assessed using unweighted UniFrac (P < 0.05). These results indicate that PPC CT up to 36 g/kg DM in the diet had no major effect on fecal microbial flora at the phyla level and exerted only minor effects on the genera composition of fecal microbiota in lambs.
Determination of actinides in urine and fecal samples
McKibbin, Terry T.
1993-01-01
A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.
The purpose of this project was to answer questions related to storage of samples to be analyzed by the quantitative polymerase chain reaction (qPCR)-based assays for fecal indicator bacteria. The project was divided into two parts. The first part was to determine if filters th...
Determination of actinides in urine and fecal samples
McKibbin, T.T.
1993-03-02
A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.
Mathes, Melvin V.; O'Brien, Tara L.; Strickler, Kriston M.; Hardy, Joshua J.; Schill, William B.; Lukasik, Jerzy; Scott, Troy M.; Bailey, David E.; Fenger, Terry L.
2007-01-01
Several methods were used to determine the sources of fecal contamination in water samples collected during September and October 2004 from four tributaries to the New River Gorge National River -- Arbuckle Creek, Dunloup Creek, Keeney Creek, and Wolf Creek. All four tributaries historically have had elevated levels of fecal coliform bacteria. The source-tracking methods used yielded various results, possibly because one or more methods failed. Sourcing methods used in this study included the detection of several human-specific and animal-specific biological or molecular markers, and library-dependent pulsed-field gel electrophoresis analysis that attempted to associate Escherichia coli bacteria obtained from water samples with animal sources by matching DNA-fragment banding patterns. Evaluation of the results of quality-control analysis indicated that pulsed-field gel electrophoresis analysis was unable to identify known-source bacteria isolates. Increasing the size of the known-source library did not improve the results for quality-control samples. A number of emerging methods, using markers in Enterococcus, human urine, Bacteroidetes, and host mitochondrial DNA, demonstrated some potential in associating fecal contamination with human or animal sources in a limited analysis of quality-control samples. All four of the human-specific markers were detected in water samples from Keeney Creek, a watershed with no centralized municipal wastewater-treatment facilities, thus indicating human sources of fecal contamination. The human-specific Bacteroidetes and host mitochondrial DNA markers were detected in water samples from Dunloup Creek, Wolf Creek, and to a lesser degree Arbuckle Creek. Results of analysis for wastewater compounds indicate that the September 27 sample from Arbuckle Creek contained numerous human tracer compounds likely from sewage. Dog, horse, chicken, and pig host mitochondrial DNA were detected in some of the water samples with the exception of the October 5 sample from Dunloup Creek. Cow, white-tailed deer, and Canada goose DNA were not detected in any of the samples collected from the four tributaries, despite the presence of these animals in the watersheds. Future studies with more rigorous quality-control analyses are needed to investigate the potential applicability and use of these emerging methods. Because many of the detections for the various methods could vary over time and with flow conditions, repeated sampling during both base flow and storm events would be necessary to more definitively determine the sources of fecal contamination for each watershed.
Tap, Julien; Derrien, Muriel; Törnblom, Hans; Brazeilles, Rémi; Cools-Portier, Stéphanie; Doré, Joël; Störsrud, Stine; Le Nevé, Boris; Öhman, Lena; Simrén, Magnus
2017-01-01
We have limited knowledge about the association between the composition of the intestinal microbiota and clinical features of irritable bowel syndrome (IBS). We collected information on the fecal and mucosa-associated microbiota of patients with IBS and evaluated whether these were associated with symptoms. We collected fecal and mucosal samples from adult patients who met the Rome III criteria for IBS at a secondary/tertiary care outpatient clinics in Sweden, as well as from healthy subjects. The exploratory set comprised 149 subjects (110 with IBS and 39 healthy subjects); 232 fecal samples and 59 mucosal biopsy samples were collected and analyzed by 16S ribosomal RNA targeted pyrosequencing. The validation set comprised 46 subjects (29 with IBS and 17 healthy subjects); 46 fecal samples, but no mucosal samples, were collected and analyzed. For each subject, we measured exhaled H 2 and CH 4 , oro-anal transit time, and the severity of psychological and gastrointestinal symptoms. Fecal methanogens were measured by quantitative polymerase chain reaction. Numerical ecology analyses and a machine learning procedure were used to analyze the data. Fecal microbiota showed covariation with mucosal adherent microbiota. By using classic approaches, we found no differences in fecal microbiota abundance or composition between patients with IBS vs healthy patients. A machine learning procedure, a computational statistical technique, allowed us to reduce the 16S ribosomal RNA data complexity into a microbial signature for severe IBS, consisting of 90 bacterial operational taxonomic units. We confirmed the robustness of the intestinal microbial signature for severe IBS in the validation set. The signature was able to discriminate between patients with severe symptoms, patients with mild/moderate symptoms, and healthy subjects. By using this intestinal microbiota signature, we found IBS symptom severity to be associated negatively with microbial richness, exhaled CH 4 , presence of methanogens, and enterotypes enriched with Clostridiales or Prevotella species. This microbiota signature could not be explained by differences in diet or use of medications. In analyzing fecal and mucosal microbiota from patients with IBS and healthy individuals, we identified an intestinal microbiota profile that is associated with the severity of IBS symptoms. NCT01252550. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Excreta Sampling as an Alternative to In Vivo Measurements at the Hanford Site.
Carbaugh, Eugene H; Antonio, Cheryl L; Lynch, Timothy P
2015-08-01
The capabilities of indirect radiobioassay by urine and fecal sample analysis were compared with the direct radiobioassay methods of whole body counting and lung counting for the most common radionuclides and inhalation exposure scenarios encountered by Hanford workers. Radionuclides addressed by in vivo measurement included 137Cs, 60Co, 154Eu, and 241Am as an indicator for plutonium mixtures. The same radionuclides were addressed using gamma energy analysis of urine samples, augmented by radiochemistry and alpha spectrometry methods for plutonium in urine and fecal samples. It was concluded that in vivo whole body counting and lung counting capability should be maintained at the Hanford Site for the foreseeable future, however, urine and fecal sample analysis could provide adequate, though degraded, monitoring capability for workers as a short-term alternative, should in vivo capability be lost due to planned or unplanned circumstances.
Impacts of Hurricanes Katrina and Rita on the microbial landscape of the New Orleans area
Sinigalliano, C. D.; Gidley, M. L.; Shibata, T.; Whitman, D.; Dixon, T. H.; Laws, E.; Hou, A.; Bachoon, D.; Brand, L.; Amaral-Zettler, L.; Gast, R. J.; Steward, G. F.; Nigro, O. D.; Fujioka, R.; Betancourt, W. Q.; Vithanage, G.; Mathews, J.; Fleming, L. E.; Solo-Gabriele, H. M.
2007-01-01
Floodwaters in New Orleans from Hurricanes Katrina and Rita were observed to contain high levels of fecal indicator bacteria and microbial pathogens, generating concern about long-term impacts of these floodwaters on the sediment and water quality of the New Orleans area and Lake Pontchartrain. We show here that fecal indicator microbe concentrations in offshore waters from Lake Pontchartrain returned to prehurricane concentrations within 2 months of the flooding induced by these hurricanes. Vibrio and Legionella species within the lake were more abundant in samples collected shortly after the floodwaters had receded compared with samples taken within the subsequent 3 months; no evidence of a long-term hurricane-induced algal bloom was observed. Giardia and Cryptosporidium were detected in canal waters. Elevated levels of fecal indicator bacteria observed in sediment could not be solely attributed to impacts from floodwaters, as both flooded and nonflooded areas exhibited elevated levels of fecal indicator bacteria. Evidence from measurements of Bifidobacterium and bacterial diversity analysis suggest that the fecal indicator bacteria observed in the sediment were from human fecal sources. Epidemiologic studies are highly recommended to evaluate the human health effects of the sediments deposited by the floodwaters. PMID:17488814
ESTABLISHING NORMAL FECAL FLORA IN WILD AUSTRALIAN PASSERINE BIRDS BY USE OF THE FECAL GRAM STAIN.
Latham, Benjamin; Leishman, Alan; Martin, John; Phalen, David
2017-09-01
The purpose of this study was to determine the normal fecal bacterial and fungal flora and parasite prevalence in wild passerine birds found at the Australian Botanic Garden (Mount Annan, New South Wales). Wild passerine birds (n = 186) from 28 species were captured with mist nets. Fecal Gram stains (n = 155) were made from 26 species and analyzed for bacterial density, Gram stain morphology, and the presence of yeast. Fecal wet preparations (n = 139) were made from 24 passerine species and were analyzed for parasites. Our results showed that 81.9% of passerines sampled had bacteria present in their feces. The bacteria found were entirely Gram positive and consisted predominantly of cocci. Individuals that were caught on multiple occasions were found to have stable bacterial populations, apart from the red-browed finch (Neochmia temporalis). Insectivores had higher bacterial densities and cocci proportions than nectarivores had. Yeasts were rare in most species, with the exception of the bell miner (Manorina melanophrys) and noisy miner (Manorina melanocephala). The yeast, Macrorhabdus ornithogaster, and parasites were not observed in any fecal samples. These results will help practitioners to assess the health of Australian passerine species submitted for care or housed in zoological collections.
Parthasarathy, Gopanandan; Chen, Jun; Chen, Xianfeng; Chia, Nicholas; O'Connor, Helen M.; Wolf, Patricia G.; Gaskins, H. Rex; Bharucha, Adil E.
2015-01-01
Background & Aims In fecal samples from patients with chronic constipation, the microbiota differs from that of healthy subjects. However, the profiles of fecal microbiota only partially replicate those of the mucosal microbiota. It is not clear whether these differences are caused by variations in diet or colonic transit, or are associated with methane production (measured by breath tests). We compared the colonic mucosal and fecal microbiota in patients with chronic constipation and in healthy subjects to investigate the relationships between microbiota and other parameters. Methods Sigmoid colonic mucosal and fecal microbiota samples were collected from 25 healthy women (controls) and 25 women with chronic constipation and evaluated by 16S ribosomal RNA gene sequencing (average of 49,186 reads/sample). We assessed associations between microbiota (overall composition and operational taxonomic units) and demographic variables, diet, constipation status, colonic transit, and methane production (measured in breath samples after oral lactulose intake). Results Fourteen patients with chronic constipation had slow colonic transit. The profile of the colonic mucosal microbiota differed between constipated patients and controls (P<.05). The overall composition of the colonic mucosal microbiota was associated with constipation, independent of colonic transit (P<.05) and discriminated between patients with constipation and controls with 94% accuracy. Genera from Bacteroidetes were more abundant in the colonic mucosal microbiota of patients with constipation. The profile of the fecal microbiota was associated with colonic transit before adjusting for constipation, age, body mass index, and diet; genera from Firmicutes (Faecalibacterium, Lactococcus, and Roseburia) correlated with faster colonic transit. Methane production was associated with the composition of the fecal microbiota, but not with constipation or colonic transit. Conclusions After adjusting for diet and colonic transit, the profile of the microbiota in the colonic mucosa could discriminate patients with constipation from healthy individuals. The profile of the fecal microbiota was associated with colonic transit and methane production (measured in breath), but not constipation. PMID:26460205
Parthasarathy, Gopanandan; Chen, Jun; Chen, Xianfeng; Chia, Nicholas; O'Connor, Helen M; Wolf, Patricia G; Gaskins, H Rex; Bharucha, Adil E
2016-02-01
In fecal samples from patients with chronic constipation, the microbiota differs from that of healthy subjects. However, the profiles of fecal microbiota only partially replicate those of the mucosal microbiota. It is not clear whether these differences are caused by variations in diet or colonic transit, or are associated with methane production (measured by breath tests). We compared the colonic mucosal and fecal microbiota in patients with chronic constipation and in healthy subjects to investigate the relationships between microbiota and other parameters. Sigmoid colonic mucosal and fecal microbiota samples were collected from 25 healthy women (controls) and 25 women with chronic constipation and evaluated by 16S ribosomal RNA gene sequencing (average, 49,186 reads/sample). We assessed associations between microbiota (overall composition and operational taxonomic units) and demographic variables, diet, constipation status, colonic transit, and methane production (measured in breath samples after oral lactulose intake). Fourteen patients with chronic constipation had slow colonic transit. The profile of the colonic mucosal microbiota differed between constipated patients and controls (P < .05). The overall composition of the colonic mucosal microbiota was associated with constipation, independent of colonic transit (P < .05), and discriminated between patients with constipation and controls with 94% accuracy. Genera from Bacteroidetes were more abundant in the colonic mucosal microbiota of patients with constipation. The profile of the fecal microbiota was associated with colonic transit before adjusting for constipation, age, body mass index, and diet; genera from Firmicutes (Faecalibacterium, Lactococcus, and Roseburia) correlated with faster colonic transit. Methane production was associated with the composition of the fecal microbiota, but not with constipation or colonic transit. After adjusting for diet and colonic transit, the profile of the microbiota in the colonic mucosa could discriminate patients with constipation from healthy individuals. The profile of the fecal microbiota was associated with colonic transit and methane production (measured in breath), but not constipation. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Enteric porcine viruses in farmed shellfish in Denmark.
Krog, J S; Larsen, L E; Schultz, A C
2014-09-01
Bivalve shellfish are at constant risk of being exposed to pathogens as a consequence of contamination of the shellfish beds with human or animal waste originating from sewage treatment plants or slurry fertilized fields. Consumption of contaminated oysters and mussels are frequently reported as causes of disease outbreaks caused by norovirus or hepatitis A virus. Other zoonotic pathogens such as hepatitis E virus (HEV), rotavirus (RV) and Salmonella from livestock may also be transmitted to shellfish via this route. In this study, 29 pooled samples from commercial Danish blue mussels were tested for porcine pathogens and indicator bacteria Escherichia coli (E. coli). All samples tested negative for HEV, RV and Salmonella, whereas E. coli and the highly stable porcine circovirus type 2 (PCV2) were detected in eight and 12 samples, respectively. This is the first study to report the detection of PCV2 in commercial mussels. Based on the detection of PCV2 in clean areas with low prevalence of the normally applied fecal indicator E. coli, testing for PCV2 may be a more sensitive and robust specific porcine waste indicator in shellfish harvesting areas. Copyright © 2014. Published by Elsevier B.V.
Salmonella in Wild Birds Utilizing Protected and Human Impacted Habitats, Uganda.
Afema, Josephine Azikuru; Sischo, William M
2016-09-01
As human populations in Africa expand, humans encroach and modify wildlife habitats for farming, fishing, tourism, or settlement. Anthropogenic activities in shared environments may promote transmission of zoonotic pathogens between humans, domestic animals, and wildlife. Between July 2012 and February 2014, we evaluated Salmonella prevalence, serovars, genotypes, and antibiotic resistant phenotypes in resident and migratory birds utilizing human-impacted habitats in northwestern Lake Victoria and protected habitats in Queen Elisabeth National Park. Salmonella occurrence in the urban environment was assessed by sampling storm-water and wastewater from a channel that drains Kampala City into Lake Victoria. Salmonella was detected in 4.3% pooled bird fecal samples, and 57.1% of environmental samples. While birds in impacted and protected areas shared serovars, the genotypes were distinct. We found distinct strains in birds and the environment suggesting some strains in birds are host adapted, and strains circulating in the environment may not necessarily disseminate to birds. Conversely, birds in both impacted and protected areas shared strains with the urban environment, suggesting Salmonella disseminates between impacted environments and birds across sites. Overall, more strains were observed in the urban environment compared to birds, and poses risk of Salmonella reemergence in birds and transmission across species and space.
USDA-ARS?s Scientific Manuscript database
This study was part of a larger project investigating breed-related differences in feeding habits of Raramuri Criollo (RC) versus Angus x Hereford (AH) cows. Seed densities in fecal samples collected in July and August 2015 were analyzed to compare presumed mesquite bean consumption of RC and AH cow...
A quantitative polymerase chain reaction (qPCR) method for the detection of entercocci fecal indicator bacteria has been shown to be generally applicable for the analysis of temperate fresh (Great Lakes) and marine coastal waters and for providing risk-based determinations of wat...
A microhistological technique for analysis of food habits of mycophagous rodents.
Patrick W. McIntire; Andrew B. Carey
1989-01-01
We present a technique, based on microhistological analysis of fecal pellets, for quantifying the diets of forest rodents. This technique provides for the simultaneous recording of fungal spores and vascular plant material. Fecal samples should be freeze dried, weighed, and rehydrated with distilled water. We recommend a minimum sampling intensity of 50 fields of view...
A major assumption in microbial source tracking is that some fecal bacteria are specific to a host animal, and thus provide unique microbial fingerprints that can be used to differentiate hosts. However, the DNA information obtained from a particular sample may be biased dependi...
Cryptosporidium and Giardia in Humans, Domestic Animals, and Village Water Sources in Rural India.
Daniels, Miles E; Shrivastava, Arpit; Smith, Woutrina A; Sahu, Priyadarshi; Odagiri, Mitsunori; Misra, Pravas R; Panigrahi, Pinaki; Suar, Mrutyunjay; Clasen, Thomas; Jenkins, Marion W
2015-09-01
Cryptosporidium parvum and Giardia lamblia are zoonotic enteric protozoa of significant health concern where sanitation, hygiene, and water supplies are inadequate. We examined 85 stool samples from diarrhea patients, 111 pooled fecal samples by species across seven domestic animal types, and water from tube wells (N = 207) and ponds (N = 94) across 60 villages in coastal Odisha, India, for Cryptosporidium oocysts and Giardia cysts to measure occurrence, concentration/shedding, and environmental loading rates. Oocysts/cysts were detected in 12% of diarrhea patients. Detection ranged from 0% to 35% for Cryptosporidium and 0% to 67% for Giardia across animal hosts. Animal loading estimates indicate the greatest contributors of environmental oocysts/cysts in the study region are cattle. Ponds were contaminated with both protozoa (oocysts: 37%, cysts: 74%), as were tube wells (oocysts: 10%, cysts: 14%). Future research should address the public health concern highlighted from these findings and investigate the role of domestic animals in diarrheal disease transmission in this and similar settings. © The American Society of Tropical Medicine and Hygiene.
Middelbos, Ingmar S.; Vester Boler, Brittany M.; Qu, Ani; White, Bryan A.; Swanson, Kelly S.; Fahey, George C.
2010-01-01
Background Dogs suffer from many of the same maladies as humans that may be affected by the gut microbiome, but knowledge of the canine microbiome is incomplete. This work aimed to use 16S rDNA tag pyrosequencing to phylogenetically characterize hindgut microbiome in dogs and determine how consumption of dietary fiber affects community structure. Principal Findings Six healthy adult dogs were used in a crossover design. A control diet without supplemental fiber and a beet pulp-supplemented (7.5%) diet were fed. Fecal DNA was extracted and the V3 hypervariable region of the microbial 16S rDNA gene amplified using primers suitable for 454-pyrosequencing. Microbial diversity was assessed on random 2000-sequence subsamples of individual and pooled DNA samples by diet. Our dataset comprised 77,771 reads with an average length of 141 nt. Individual samples contained approximately 129 OTU, with Fusobacteria (23 – 40% of reads), Firmicutes (14 – 28% of reads) and Bacteroidetes (31 – 34% of reads) being co-dominant phyla. Feeding dietary fiber generally decreased Fusobacteria and increased Firmicutes, but these changes were not equally apparent in all dogs. UniFrac analysis revealed that structure of the gut microbiome was affected by diet and Firmicutes appeared to play a strong role in by-diet clustering. Conclusions Our data suggest three co-dominant bacterial phyla in the canine hindgut. Furthermore, a relatively small amount of dietary fiber changed the structure of the gut microbiome detectably. Our data are among the first to characterize the healthy canine gut microbiome using pyrosequencing and provide a basis for studies focused on devising dietary interventions for microbiome-associated diseases. PMID:20339542
Osaki, Takako; Mabe, Katsuhiro; Zaman, Cynthia; Yonezawa, Hideo; Okuda, Masumi; Amagai, Kenji; Fujieda, Shinji; Goto, Mitsuhide; Shibata, Wataru; Kato, Mototsugu; Kamiya, Shigeru
2017-10-01
To prevent Helicobacter pylori infection in the younger generation, it is necessary to investigate the prevalence of antibiotic-resistant H. pylori. The aim of this study was to evaluate the method of PCR-based sequencing to detect clarithromycin (CAM) resistance-associated mutations using fecal samples as a noninvasive method. DNA extracted from fecal specimens and isolates from gastric biopsy specimens were collected from patients with H. pylori infection. Antibiotic resistance to CAM was analyzed by molecular and culture methods. The detection rates of CAM resistance-associated mutations (A2142C or A2143G) were compared before and after eradication therapy. With CAM resistance of H. pylori evaluated by antibiotic susceptibility test as a gold standard, the sensitivity and the specificity of gene mutation detection from fecal DNA were 80% and 84.8%, respectively. In contrast, using DNA of isolated strains, the sensitivity and the specificity were 80% and 100%. Of the seven cases in which eradication was unsuccessful by triple therapy including CAM, CAM-resistant H. pylori, and resistance-associated mutations were detected in three cases, CAM-resistant H. pylori without the mutation was detected in two patients, and resistance-associated mutation was only detected in one patient. PCR-based sequencing to detect CAM resistance-associated mutations using isolates or fecal samples was useful for finding antibiotic-resistant H. pylori infection. Although the specificity of the detection from fecal samples compared with antibiotic susceptibility testing was lower than that from isolates, this fecal detection method is suitable especially for asymptomatic subjects including children. Further improvement is needed before clinical application. © 2017 John Wiley & Sons Ltd.
Stoeckel, D.M.; Stelzer, E.A.; Stogner, R.W.; Mau, D.P.
2011-01-01
Protocols for microbial source tracking of fecal contamination generally are able to identify when a source of contamination is present, but thus far have been unable to evaluate what portion of fecal-indicator bacteria (FIB) came from various sources. A mathematical approach to estimate relative amounts of FIB, such as Escherichia coli, from various sources based on the concentration and distribution of microbial source tracking markers in feces was developed. The approach was tested using dilute fecal suspensions, then applied as part of an analytical suite to a contaminated headwater stream in the Rocky Mountains (Upper Fountain Creek, Colorado). In one single-source fecal suspension, a source that was not present could not be excluded because of incomplete marker specificity; however, human and ruminant sources were detected whenever they were present. In the mixed-feces suspension (pet and human), the minority contributor (human) was detected at a concentration low enough to preclude human contamination as the dominant source of E. coli to the sample. Without the semi-quantitative approach described, simple detects of human-associated marker in stream samples would have provided inaccurate evidence that human contamination was a major source of E. coli to the stream. In samples from Upper Fountain Creek the pattern of E. coli, general and host-associated microbial source tracking markers, nutrients, and wastewater-associated chemical detections-augmented with local observations and land-use patterns-indicated that, contrary to expectations, birds rather than humans or ruminants were the predominant source of fecal contamination to Upper Fountain Creek. This new approach to E. coli allocation, validated by a controlled study and tested by application in a relatively simple setting, represents a widely applicable step forward in the field of microbial source tracking of fecal contamination. ?? 2011 Elsevier Ltd.
Recovery and Enumeration of Cryptosporidium parvum from Animal Fecal Matrices
Davies, Cheryl M.; Kaucner, Christine; Deere, Daniel; Ashbolt, Nicholas J.
2003-01-01
Accurate quantification of Cryptosporidium parvum oocysts in animal fecal deposits on land is an essential starting point for estimating watershed C. parvum loads. Due to the general poor performance and variable recovery efficiency of existing enumeration methods, protocols were devised based on initial dispersion of oocysts from feces by vortexing in 2 mM tetrasodium pyrophosphate, followed by immunomagnetic separation. The protocols were validated by using an internal control seed preparation to determine the levels of oocyst recovery for a range of fecal types. The levels of recovery of 102 oocysts from cattle feces (0.5 g of processed feces) ranged from 31 to 46%, and the levels of recovery from sheep feces (0.25 g of processed feces) ranged from 21% to 35%. The within-sample coefficients of variation for the percentages of recovery from five replicates ranged from 10 to 50%. The ranges for levels of recovery of oocysts from cattle, kangaroo, pig, and sheep feces (juveniles and adults) collected in a subsequent watershed animal fecal survey were far wider than the ranges predicted by the validation data. Based on the use of an internal control added to each fecal sample, the levels of recovery ranged from 0 to 83% for cattle, from 4 to 62% for sheep, from 1 to 42% for pigs, and from 40 to 73% for kangaroos. Given the variation in the levels of recovery of oocysts from different fecal matrices, it is recommended that an internal control be added to at least one replicate of every fecal sample analyzed to determine the percentage of recovery. Depending on the animal type and based on the lowest approximate percentages of recovery, between 10 and 100 oocysts g of feces−1 must be present to be detected. PMID:12732556
Jennings, Wiley C; Chern, Eunice C; O'Donohue, Diane; Kellogg, Michael G; Boehm, Alexandria B
2018-03-01
Fecal pollution of surface waters presents a global human health threat. New molecular indicators of fecal pollution have been developed to address shortcomings of traditional culturable fecal indicators. However, there is still little information on their fate and transport in the environment. The present study uses spatially and temporally extensive data on traditional (culturable enterococci, cENT) and molecular (qPCR-enterococci, qENT and human-associated marker, HF183/BacR287) indicator concentrations in marine water surrounding highly-urbanized San Francisco, California, USA to investigate environmental and anthropogenic processes that impact fecal pollution. We constructed multivariable regression models for fecal indicator bacteria at 14 sampling stations. The human marker was detected more frequently in our study than in many other published studies, with detection frequency at some stations as high as 97%. The odds of cENT, qENT, and HF183/BacR287 exceeding health-relevant thresholds were statistically elevated immediately following discharges of partially treated combined sewage, and cENT levels dissipated after approximately 1 day. However, combined sewer discharges were not important predictors of indicator levels typically measured in weekly monitoring samples. Instead, precipitation and solar insolation were important predictors of cENT in weekly samples, while precipitation and water temperature were important predictors of HF183/BacR287 and qENT. The importance of precipitation highlights the significance of untreated storm water as a source of fecal pollution to the urban ocean, even for a city served by a combined sewage system. Sunlight and water temperature likely control persistence of the indicators via photoinactivation and dark decay processes, respectively.
Davis, Jerri V.; Barr, Miya N.
2006-01-01
In 1998, a 5 river-mile reach of the Jacks Fork was included on Missouri's list of impaired waters as required by Section 303(d) of the Federal Clean Water Act. The identified pollutant on the Jacks Fork was fecal coliform bacteria. The length of the impaired reach was changed to 7 miles on the Missouri 2002 303(d) list because of data indicating the fecal coliform bacteria problem existed over a broader area. The U.S. Geological Survey, in cooperation with the National Park Service, conducted a study to better understand the extent and sources of microbiological contamination within the Jacks Fork from Alley Spring to the mouth, which includes the 7-mile 303(d) reach. Ten sites were sampled from June 2003 through October 2003 and from June 2004 through October 2004. Water-column and streambed sediment samples were collected from main-stem and tributary sites mostly during base-flow conditions during a variety of recreational season river uses and analyzed for fecal coliform and Escherichia coli bacteria. Isolates of Escherichia coli obtained from water samples collected at five sites were submitted for rep-PCR analysis to identify presumptive sources of fecal indicator bacteria in the Jacks Fork. Results indicate that recreational users (including boaters and swimmers) are not the primary source of fecal coliform bacteria in the Jacks Fork; rather, the presence of fecal coliform bacteria is associated with other animals, of which horses are the primary source. Increases in fecal coliform bacteria densities in the Jacks Fork are associated with cross-country horseback trail-riding events.
Diagnostic strategies to reveal covert infections with intestinal helminths in dogs.
Adolph, Chris; Barnett, Sharon; Beall, Melissa; Drake, Jason; Elsemore, David; Thomas, Jennifer; Little, Susan
2017-11-30
Intestinal helminths are common in dogs in the United States, particularly non-treated dogs in animal shelters, but surveys by fecal flotation may underestimate their prevalence. To determine the prevalence of intestinal helminths and evaluate the ability of fecal flotation and detection of nematode antigen to identify those infections, contents of the entire gastrointestinal tract of 97 adult (>1year) dogs previously identified for humane euthanasia at two animal control shelters in northeastern Oklahoma, USA, were screened. All helminths recovered were washed in saline and fixed prior to enumeration and identification to genus and species. Fecal samples from each dog were examined by passive sodium nitrate (SG 1.33) and centrifugal sugar solution (SG 1.25) flotation. Fecal antigen detection assays were used to confirm the presence of nematode antigen in frozen fecal samples from 92 dogs. Necropsy examination revealed Ancylostoma caninum in 45/97 (46.4%), Toxocara canis in 11/97 (11.3%), Trichuris vulpis in 38/97 (39.2%), Dipylidium caninum in 48/97 (49.5%), and Taenia sp. in 7/97 (7.2%) dogs. Passive fecal flotation identified 38/45 (84.4%) A. caninum, 6/11 (54.5%) T. canis, 26/38 (68.4%) T. vulpis, 2/48 (4.2%) D. caninum, and 1/7 (14.3%) Taenia sp. infections, while centrifugal flotation combined with antigen detection assays identified A. caninum in 97.7% (43/44), T. canis in 77.8% (7/9), and T. vulpis in 83.3% (30/36) of infected dogs based on necropsy recovery of nematodes. Taken together, these data indicate that detection of nematode antigen is a useful adjunct to microscopic examination of fecal samples for parasite eggs, and that this approach can improve diagnostic sensitivity for intestinal nematode infections in dogs. Copyright © 2017 Elsevier B.V. All rights reserved.
Erlandsen, S L; Sherlock, L A; Bemrick, W J
1990-04-01
The effects of freezing and thawing on the detection of selected Giardia spp. cysts were investigated using immunofluorescence, bright field microscopy, and low voltage scanning electron microscopy (SEM). Giardia muris cysts were obtained from either animal carcasses, fecal pellets, or isolated cyst preparations, whereas Giardia lamblia cysts were isolated from fecal samples. These samples were stained using an immunofluorescence technique after 1-3 freezing (-16 C) and thawing (20 C) cycles. Cysts were detected successfully by immunofluorescence in all samples. However, in those samples subjected to freeze-thawing, the cyst walls often became distorted and then were not detectable by bright field microscopy. Low voltage SEM demonstrated that the filaments in the distorted cyst wall underwent rearrangements of interfilament spacing. Quantitation of cyst recovery after freezing and thawing demonstrated that a substantial loss occurred after 1 cycle of alternating temperature when low concentrations of cysts were used, but not with high concentrations of cysts. Cyst recovery, after 3 freezing and thawing cycles, was dramatically lowered irrespective of the initial cyst concentration. These results demonstrated that immunofluorescence was an effective technique for the detection of Giardia spp. cysts in frozen samples and would suggest that freezing and thawing of fecal samples could prevent the detection of cysts when only bright field microscopy was employed.
Fecal Contamination on Produce from Wholesale and Retail Food Markets in Dhaka, Bangladesh.
Harris, Angela R; Islam, Mohammad Aminul; Unicomb, Leanne; Boehm, Alexandria B; Luby, Stephen; Davis, Jennifer; Pickering, Amy J
2018-01-01
Fresh produce items can become contaminated with enteric pathogens along the supply chain at the preharvest (e.g., irrigation water, soil, fertilizer) or postharvest (e.g., vendor handling or consumer handling) stages. This study assesses the concentrations of fecal indicator bacteria Escherichia coli , enterococci (ENT), and Bacteriodales on surfaces of carrots, eggplants, red amaranth leaves, and tomatoes obtained from both a wholesale market (recently harvested) and neighborhood retail markets in Dhaka, Bangladesh. We detected E. coli in 100% of carrot and red amaranth rinses, 92% of eggplant rinses, and 46% of tomato rinses. Using a molecular microbial source tracking assay, we found that 32% of produce samples were positive for ruminant fecal contamination. Fecal indicator bacteria were more likely to be detected on produce collected in retail markets compared with that in the wholesale market; retail market produce were 1.25 times more likely to have E. coli detected ( P = 0.03) and 1.24 times more likely to have ENT detected ( P = 0.03) as compared with wholesale market produce. Bacteriodales was detected in higher concentrations in retail market produce samples compared with wholesale market produce samples (0.40 log 10 gene copies per 100 cm 2 higher, P = 0.03). Our results suggest that ruminant and general fecal contamination of produce in markets in Dhaka is common, and suggest that unsanitary conditions in markets are an important source of produce fecal contamination postharvest.
Johnston, Christopher; Byappanahalli, Muruleedhara N.; Gibson, Jacqueline MacDonald; Ufnar, Jennifer A.; Whitman, Richard L.; Stewart, Jill R.
2013-01-01
Microbial source tracking assays to identify sources of waterborne contamination typically target genetic markers of host-specific microorganisms. However, no bacterial marker has been shown to be 100% host-specific, and cross-reactivity has been noted in studies evaluating known source samples. Using 485 challenge samples from 20 different human and animal fecal sources, this study evaluated microbial source tracking markers including the Bacteroides HF183 16S rRNA, M. smithii nifH, and Enterococcus esp gene targets that have been proposed as potential indicators of human fecal contamination. Bayes' Theorem was used to calculate the conditional probability that these markers or a combination of markers can correctly identify human sources of fecal pollution. All three human-associated markers were detected in 100% of the sewage samples analyzed. Bacteroides HF183 was the most effective marker for determining whether contamination was specifically from a human source, and greater than 98% certainty that contamination was from a human source was shown when both Bacteroides HF183 and M. smithii nifH markers were present. A high degree of certainty was attained even in cases where the prior probability of human fecal contamination was as low as 8.5%. The combination of Bacteroides HF183 and M. smithii nifH source tracking markers can help identify surface waters impacted by human fecal contamination, information useful for prioritizing restoration activities or assessing health risks from exposure to contaminated waters.
Harmon, S Michele; West, Ryan T; Yates, James R
2014-12-01
Sources of fecal coliform pollution in a small South Carolina (USA) watershed were identified using inexpensive methods and commonly available equipment. Samples from the upper reaches of the watershed were analyzed with 3M(™) Petrifilm(™) count plates. We were able to narrow down the study's focus to one particular tributary, Sand River, that was the major contributor of the coliform pollution (both fecal and total) to a downstream reservoir that is heavily used for recreation purposes. Concentrations of total coliforms ranged from 2,400 to 120,333 cfu/100 mL, with sharp increases in coliform counts observed in samples taken after rain events. Positive correlations between turbidity and fecal coliform counts suggested a relationship between fecal pollution and stormwater runoff. Antibiotic resistance analysis (ARA) compared antibiotic resistance profiles of fecal coliform isolates from the stream to those of a watershed-specific fecal source library (equine, waterfowl, canines, and untreated sewage). Known fecal source isolates and unknown isolates from the stream were exposed to six antibiotics at three concentrations each. Discriminant analysis grouped known isolates with an overall average rate of correct classification (ARCC) of 84.3 %. A total of 401 isolates from the first stream location were classified as equine (45.9 %), sewage (39.4 %), waterfowl (6.2 %), and feline (8.5 %). A similar pattern was observed at the second sampling location, with 42.6 % equine, 45.2 % sewage, 2.8 % waterfowl, 0.6 % canine, and 8.8 % feline. While there were slight weather-dependent differences, the vast majority of the coliform pollution in this stream appeared to be from two sources, equine and sewage. This information will contribute to better land use decisions and further justify implementation of low-impact development practices within this urban watershed.
Funk, J A; Harris, I T; Davies, P R
2005-04-25
In the USA, control of food-borne salmonellosis associated with meat consumption has been predominantly focused at slaughter and processing. It is expected that standards at slaughter and processing will become more stringent, creating pressure to reduce prevalence of Salmonella-positive food animals through on-farm interventions. The aim of this study was to compare traditional fecal culture and the Danish Mix-ELISA (DME) for determination of Salmonella prevalence pre-harvest in swine. In Trial 1, five cohorts of individually identified pigs were longitudinally sampled during the growing period to compare the kinetics of prevalence as estimated by fecal culture and the DME. In Trial 2, the correlation between fecal prevalence and seroprevalence was estimated pre-marketing in 49 groups of pigs. In Trial 1, fecal prevalence and seroprevalence showed similar kinetics, with a tendency of a higher OD% cut-off to more closely approximate fecal prevalence. In Trial 2, correlations between fecal culture and the DME were 0.40, 0.36, 0.43, and 0.43 (p<0.001) for OD% cut-offs > or =10, 20, 30, and 40, respectively. Based on these results, a higher OD% cut-off would be recommended if more approximate estimation of fecal prevalence is desired and longitudinal sampling would be suggested for evaluating the impact of on-farm interventions for Salmonella reduction whether utilizing fecal culture or the DME. Further evaluation of the impact of Salmonella serovar present on farms on seroprevalence and the relationship of on-farm seroprevalence with food safety risk are needed prior to utilizing the DME for pre-harvest Salmonella diagnostics in the US swine herd.
Validation of a fecal scoring scale in puppies during the weaning period.
Grellet, Aurélien; Feugier, Alexandre; Chastant-Maillard, Sylvie; Carrez, Bruno; Boucraut-Baralon, Corine; Casseleux, Gregory; Grandjean, Dominique
2012-10-01
In puppies weaning is a high risk period. Fecal changes are frequent and can be signs of infection by digestive pathogens (bacteria, viruses, parasites) and indicators of nutritional and environmental stress. The aim of this study was to define a pathological fecal score for weaning puppies, and to study the impact on that score of two intestinal viruses (canine parvovirus type 2 and canine coronavirus). For this, the quality of stools was evaluated on 154 puppies between 4 and 8 weeks of age (100 from small breeds and 54 from large breeds). The scoring was performed immediately after a spontaneous defecation based on a 13-point scale (from 1; liquid to 13; dry and hard feces). Fecal samples were frozen for further viral analysis. Each puppy was weighed once a week during the study period. The fecal score regarded as pathological was the highest score associated with a significant reduction in average daily gain (ADG). Fecal samples were checked by semi-quantitative PCR or RT-PCR for canine parvovirus type 2 and canine coronavirus identification, respectively. The quality of feces was affected by both age and breed size. In small breeds, the ADG was significantly reduced under a fecal score of 6 and 7 for puppies at 4-5 and 6-8 weeks of age, respectively. In large breeds, the ADG was significantly reduced under a fecal score of 5 whatever the age of the puppy. Whereas a high viral load of canine parvovirus type 2 significantly impacted feces quality, no effect was recorded for canine coronavirus. This study provides an objective threshold for evaluation of fecal quality in weaning puppies. It also emphasizes the importance to be given to age and breed size in that evaluation. Copyright © 2012 Elsevier B.V. All rights reserved.
Gao, Anli; Odumeru, Joseph; Raymond, Melinda; Hendrick, Steven; Duffield, Todd; Mutharia, Lucy
2009-01-01
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne’s disease in cattle and other farm ruminants, and is also a suspected pathogen of Crohn’s disease in humans. Development of diagnostic methods for MAP infection has been a challenge over the last few decades. The objective of this study was to investigate the relationship between different methods for detection of MAP in milk and fecal samples. A total of 134 milk samples and 110 feces samples were collected from 146 individual cows in 14 MAP-infected herds in southwestern Ontario. Culture, IS900 polymerase chain reaction (PCR) and nested PCR methods were used for detecting MAP in milk; results were compared with those of fecal culture. A significant relationship was found between milk culture, direct PCR, and nested PCR (P < 0.05). The fecal culture results were not related to any of the 3 assay methods used for the milk samples (P > 0.10). Although fecal culture showed a higher sensitivity than the milk culture method, the difference was not significant (P = 0.2473). The number of MAP colony-forming units (CFU) isolated by culture from fecal samples was, on average, higher than that isolated from milk samples (P = 0.0083). There was no significant correlation between the number of CFU cultured from milk and from feces (Pearson correlation coefficient = 0.1957, N = 63, P = 0.1243). The animals with high numbers of CFU in milk culture may not be detected by fecal culture at all, and vise versa. A significant proportion (29% to 41%) of the positive animals would be missed if only 1 culture method, instead of both milk and feces, were to be used for diagnosis. This suggests that the shedding of MAP in feces and milk is not synchronized. Most of the infected cows were low-level shedders. The proportion of low-level shedders may even be underestimated because MAP is killed during decontamination, thus reducing the chance of detection. Therefore, to identify suspected Johne’s-infected animals using the tests in this study, both milk and feces samples should be collected in duplicate to enhance the diagnostic rate. The high MAP kill rate identified in the culture methods during decontamination may be compensated for by using the nested PCR method, which had a higher sensitivity than the IS900 PCR method used. PMID:19337397
Ravaliya, Kruti; Garcia, Santos; Heredia, Norma; Fabiszewski de Aceituno, Anna; Bartz, Faith E.; Leon, Juan S.; Jaykus, Lee-Ann
2014-01-01
In recent decades, fresh and minimally processed produce items have been associated with an increasing proportion of food-borne illnesses. Most pathogens associated with fresh produce are enteric (fecal) in origin, and contamination can occur anywhere along the farm-to-fork chain. Microbial source tracking (MST) is a tool developed in the environmental microbiology field to identify and quantify the dominant source(s) of fecal contamination. This study investigated the utility of an MST method based on Bacteroidales 16S rRNA gene sequences as a means of identifying potential fecal contamination, and its source, in the fresh produce production environment. The method was applied to rinses of fresh produce, source and irrigation waters, and harvester hand rinses collected over the course of 1 year from nine farms (growing tomatoes, jalapeño peppers, and cantaloupe) in Northern Mexico. Of 174 samples, 39% were positive for a universal Bacteroidales marker (AllBac), including 66% of samples from cantaloupe farms (3.6 log10 genome equivalence copies [GEC]/100 ml), 31% of samples from tomato farms (1.7 log10 GEC/100 ml), and 18% of samples from jalapeño farms (1.5 log10 GEC/100 ml). Of 68 AllBac-positive samples, 46% were positive for one of three human-specific markers, and none were positive for a bovine-specific marker. There was no statistically significant correlation between Bacteroidales and generic Escherichia coli across all samples. This study provides evidence that Bacteroidales markers may serve as alternative indicators for fecal contamination in fresh produce production, allowing for determination of both general contamination and that derived from the human host. PMID:24212583
Sample treatment optimization for fish stool metabolomics.
Hano, Takeshi; Ito, Mana; Ito, Katsutoshi; Uchida, Motoharu
2018-06-07
Gut microbiota play an essential role in an organism's health. The fecal metabolite profiling content reflects these microbiota-mediated physiological changes in various organisms, including fish. Therefore, metabolomics analysis of fish feces should provide insight into the dynamics linking physiology and gut microbiota. However, metabolites are often unstable in aquatic environments, making fecal metabolites difficult to examine in fish. In this study, a novel method using gas chromatography-mass spectrometry (GC-MS) was developed and optimized for the preparation of metabolomics samples from the feces of the marine fish, red sea bream (Pagrus major). The preparation methodology was optimized, focusing on rinsing frequency and rinsing solvent. Feces (collected within 4 h of excretion) were rinsed three times with sterilized 2.5% NaCl solution or 3.0% artificial seawater (ASW). Among the 86 metabolites identified in the NaCl-rinsed samples, 57 showed superior recovery to that in ASW-rinsed samples, indicating that NaCl is a better rinsing solvent, particularly for amino acids, organic acids, and fatty acids. To evaluate rinsing frequency, fecal samples were rinsed with NaCl solution 0, 1, 3, or 5 times. The results indicate that three or more rinses enabled robust and stable detection of metabolites encapsulated within the solid fecal residue. Furthermore, these data suggest that rinsing is unnecessary when studying sugars, amino acids, and sterols, again highlighting the need for appropriate rinsing solvent and frequency. This study provides further insight into the use of fecal samples to evaluate and promote fish health during farming and supports the application of this and similar analyses to study the effects of environmental fluctuations and/or contamination. Copyright © 2018 Elsevier B.V. All rights reserved.
Harwood, Valerie J.; Whitlock, John; Withington, Victoria
2000-01-01
The antibiotic resistance patterns of fecal streptococci and fecal coliforms isolated from domestic wastewater and animal feces were determined using a battery of antibiotics (amoxicillin, ampicillin, cephalothin, chlortetracycline, oxytetracycline, tetracycline, erythromycin, streptomycin, and vancomycin) at four concentrations each. The sources of animal feces included wild birds, cattle, chickens, dogs, pigs, and raccoons. Antibiotic resistance patterns of fecal streptococci and fecal coliforms from known sources were grouped into two separate databases, and discriminant analysis of these patterns was used to establish the relationship between the antibiotic resistance patterns and the bacterial source. The fecal streptococcus and fecal coliform databases classified isolates from known sources with similar accuracies. The average rate of correct classification for the fecal streptococcus database was 62.3%, and that for the fecal coliform database was 63.9%. The sources of fecal streptococci and fecal coliforms isolated from surface waters were identified by discriminant analysis of their antibiotic resistance patterns. Both databases identified the source of indicator bacteria isolated from surface waters directly impacted by septic tank discharges as human. At sample sites selected for relatively low anthropogenic impact, the dominant sources of indicator bacteria were identified as various animals. The antibiotic resistance analysis technique promises to be a useful tool in assessing sources of fecal contamination in subtropical waters, such as those in Florida. PMID:10966379
Ryu, Hodon; Lu, Jingrang; Vogel, Jason; Elk, Michael; Chávez-Ramírez, Felipe; Ashbolt, Nicholas
2012-01-01
While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics. PMID:22492437
Maharshak, Nitsan; Ringel, Yehuda; Katibian, David; Lundqvist, Ashley; Sartor, R Balfour; Carroll, Ian M; Ringel-Kulka, Tamar
2018-05-17
Irritable bowel syndrome (IBS) has been associated with changes in the intestinal microbiota. Only a few studies have explored differences in the mucosa-associated microbiota between IBS patients and healthy controls (HC). To characterize and compare the microbiota in mucosal and fecal samples from carefully selected patients with IBS-D and HC. The cohort was composed of 23 diarrhea-predominant IBS (IBS-D) patients and 24 HC. Fresh stool samples were collected from participants prior to the collection of colonic mucosal samples from an unprepped bowel. After DNA extraction, 16S rRNA genes were sequenced by 454 pyrosequencing and analyzed using the QIIME pipeline. The fecal microbiota (luminal niche) of IBS-D patients was found to have reduced enteric richness compared to HC (P < 0.05), whereas no differences were observed between the two groups within the mucosal microbiota. Within the luminal niche, the relative proportions of Faecalibacterium genus were found to be lower in IBS-D than in HC and the Dorea genus was higher in IBS-D. None of the taxa proportions were significantly different in IBS-D patients versus HC using an FDR of ≤ 0.1 when analyzing samples that appeared in > 25% samples of either niche. Fecal and mucosal microbiota of IBS-D patients and HC are very similar and are not sufficient to explain the reported altered physiology and symptomatology of IBS-D. Future studies should investigate intestinal microbiome-dependent functional activity in addition to the fecal and mucosal-associated microbial composition.
Ruan, Jia; Ren, Dong-xia; Yang, Dan-ni; Long, Pin-pin; Zhao, Hong-yue; Wang, Yi-qi; Li, Yong-xin
2015-07-01
To establish a rapid and sensitive method based on polymerase chain reaction (PCR) combined with capillary electrophoresis-laser induced fluorescence (CE-LIF) and microchip capillary electrophoresis-laser induced fluorescence (MCE-LIF) for detecting adenoviruses in fecal samples. The DNA of adenovirus in fecal samples were extracted by the commercial kits and the conserved region of hexon gene was selected as the target gene and amplified by PCR reaction. After labeling highly sensitive nucleic acid fluorescent dye SYBR Gold and SYBR Orange respectively, PCR amplification products were separated by CE and MCE under the optimized condition and detected by LIF detector. PCR amplification products could be detected within 9 min by CE-LIF and 6 min by MCE-LIF under the optimized separation condition. The sequenced PCR product showed good specificity in comparison with the prototype sequences from NCBI. The intraday and inter-day relative standard deviation (RSD) of the size (bp) of the target DNA was in the range of 1.14%-1.34% and 1.27%- 2.76%, respectively, for CE-LIF, and 1.18%-1.48% and 2.85%-4.06%, respectively, for MCE-LIF. The detection limits was 2.33 x 10(2) copies/mL for CE-LIF and 2.33 x 10(3) copies/mL for MCE-LIF. The two proposed methods were applied to detect fecal samples, both showing high accuracy. The two proposed methods of PCR-CE-LIF and PCR-MCE-LIF can detect adenovirus in fecal samples rapidly, sensitively and specifically.
Ahmed, W; Gyawali, P; Toze, S
2015-03-03
Quantitative PCR (qPCR) assays were used to determine the concentrations of E. coli including shiga toxin-producing E. coli (STEC) associated virulence genes (eaeA, stx1, stx2, and hlyA) in ten animal species (fecal sources) and environmental water samples in Southeast Queensland, Australia. The mean Log10 concentrations and standard deviations of E. coli 23S rRNA across fecal sources ranged from 1.3 ± 0.1 (horse) to 6.3 ± 0.4 (cattle wastewater) gene copies at a test concentration of 10 ng of DNA. The differences in mean concentrations of E. coli 23S rRNA gene copies among fecal source samples were significantly different from each other (P < 0.0001). Among the virulence genes, stx2 (25%, 95% CI, 17-33%) was most prevalent among fecal sources, followed by eaeA (19%, 95% CI, 12-27%), stx1 (11%, 95% CI, 5%-17%) and hlyA (8%, 95% CI, 3-13%). The Log10 concentrations of STEC virulence genes in cattle wastewater samples ranged from 3.8 to 5.0 gene copies at a test concentration of 10 ng of DNA. Of the 18 environmental water samples tested, three (17%) were positive for eaeA and two (11%) samples were also positive for the stx2 virulence genes. The data presented in this study will aid in the estimation of quantitative microbial risk assessment (QMRA) from fecal pollution of domestic and wild animals in drinking/recreational water catchments.
FECAL COLIFORM INCREASE AFTER CENTRIFUGATION
The Water Environment Research Foundation (WERF) recently published a report titled Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bacte...
40 CFR 141.202 - Tier 1 Public Notice-Form, manner, and frequency of notice.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fecal coliform or E. coli are present in the water distribution system (as specified in § 141.63(b)), or when the water system fails to test for fecal coliforms or E. coli when any repeat sample tests...) Detection of E. coli, enterococci, or coliphage in source water samples as specified in § 141.402(a) and...
40 CFR 141.202 - Tier 1 Public Notice-Form, manner, and frequency of notice.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fecal coliform or E. coli are present in the water distribution system (as specified in § 141.63(b)), or when the water system fails to test for fecal coliforms or E. coli when any repeat sample tests...) Detection of E. coli, enterococci, or coliphage in source water samples as specified in § 141.402(a) and...
Hasegawa, Kohei; Stewart, Christopher J; Mansbach, Jonathan M; Linnemann, Rachel W; Ajami, Nadim J; Petrosino, Joseph F; Camargo, Carlos A
2017-07-26
Emerging evidence demonstrated that the structure of fecal microbiome is associated with the likelihood of bronchiolitis in infants. However, no study has examined functional profiles of fecal microbiome in infants with bronchiolitis. In this context, we conducted a case-control study. As a part of multicenter prospective study, we collected stool samples from 40 infants hospitalized with bronchiolitis (cases). We concurrently enrolled 115 age-matched healthy controls. First, by applying 16S rRNA gene sequencing to these 155 fecal samples, we identified the taxonomic profiles of fecal microbiome. Next, based on the taxonomy data, we inferred the functional capabilities of fecal microbiome and tested for differences in the functional capabilities between cases and controls. Overall, the median age was 3 months and 45% were female. Among 274 metabolic pathways surveyed, there were significant differences between bronchiolitis cases and healthy controls for 37 pathways, including lipid metabolic pathways (false discovery rate [FDR] <0.05). Particularly, the fecal microbiome of bronchiolitis cases had consistently higher abundances of gene function related to the sphingolipid metabolic pathways compared to that of controls (FDR <0.05). These pathways were more abundant in infants with Bacteroides-dominant microbiome profile compared to the others (FDR <0.001). On the basis of the predicted metagenome in this case-control study, we found significant differences in the functional potential of fecal microbiome between infants with bronchiolitis and healthy controls. Although causal inferences remain premature, our data suggest a potential link between the bacteria-derived metabolites, modulations of host immune response, and development of bronchiolitis.
Peltonen, R; Ling, W H; Hänninen, O; Eerola, E
1992-01-01
The effect of an uncooked extreme vegan diet on fecal microflora was studied by direct stool sample gas-liquid chromatography (GLC) of bacterial cellular fatty acids and by quantitative bacterial culture by using classical microbiological techniques of isolation, identification, and enumeration of different bacterial species. Eighteen volunteers were divided randomly into two groups. The test group received an uncooked vegan diet for 1 month and a conventional diet of mixed Western type for the other month of the study. The control group consumed a conventional diet throughout the study period. Stool samples were collected. Bacterial cellular fatty acids were extracted directly from the stool samples and measured by GLC. Computerized analysis of the resulting fatty acid profiles was performed. Such a profile represents all bacterial cellular fatty acids in a sample and thus reflects its microflora and can be used to detect changes, differences, or similarities of bacterial flora between individual samples or sample groups. GLC profiles changed significantly in the test group after the induction and discontinuation of the vegan diet but not in the control group at any time, whereas quantitative bacterial culture did not detect any significant change in fecal bacteriology in either of the groups. The results suggest that an uncooked extreme vegan diet alters the fecal bacterial flora significantly when it is measured by direct stool sample GLC of bacterial fatty acids. PMID:1482187
ONUMA, Manabu; KAKOGAWA, Masayoshi; YANAGISAWA, Masae; HAGA, Atsushi; OKANO, Tomomi; NEAGARI, Yasuko; OKANO, Tsukasa; GOKA, Koichi; ASAKAWA, Mitsuhiko
2017-01-01
The objectives of the present study were to observe the temporal pattern of avian influenza virus (AIV) introduction into Japan and to determine which migratory birds play an important role in introducing AIV. In total, 19,407 fecal samples from migratory birds were collected at 52 sites between October 2008 and May 2015. Total nucleic acids extracted from the fecal samples were subjected to reverse transcription loop–mediated isothermal amplification to detect viral RNA. Species identification of host migratory birds was conducted by DNA barcoding for positive fecal samples. The total number of positive samples was 352 (prevalence, 1.8%). The highest prevalence was observed in autumn migration, and a decrease in prevalence was observed. During autumn migration, central to southern Japan showed a prevalence higher than the overall prevalence. Thus, the main AIV entry routes may involve crossing the Sea of Japan and entry through the Korean Peninsula. Species identification was successful in 221 of the 352 positive samples. Two major species sequences were identified: the Mallard/Eastern Spot-billed duck group (115 samples; 52.0%) and the Northern pintail (61 samples; 27.6%). To gain a better understanding of the ecology of AIV in Japan and the introduction pattern of highly pathogenic avian influenza viruses, information regarding AIV prevalence by species, the prevalence of hatch-year migratory birds, migration patterns and viral subtypes in fecal samples using egg inoculation and molecular-based methods in combination is required. PMID:28484128
Stahl, Randal; Waters, W. Ray; Palmer, Mitchell V.; Nol, Pauline; Rhyan, Jack C.; VerCauteren, Kurt C.; Koziel, Jacek A.
2017-01-01
Bovine tuberculosis is a zoonotic disease of global public health concern. Development of diagnostic tools to improve test accuracy and efficiency in domestic livestock and enable surveillance of wildlife reservoirs would improve disease management and eradication efforts. Use of volatile organic compound analysis in breath and fecal samples is being developed and optimized as a means to detect disease in humans and animals. In this study we demonstrate that VOCs present in fecal samples can be used to discriminate between non-vaccinated and BCG-vaccinated cattle prior to and after Mycobacterium bovis challenge. PMID:28686691
Gu, B; Bo, G Z; Ke, C
2018-06-01
Exploration of fecal microbiota transplantation in the treatment of refractory diarrhea after renal transplantation. Summarize the etiology of 120 cases with diarrhea after renal transplantation from 2014 to 2017 in our hospital. There were 4 recipients of refractory diarrhea who accepted fecal microbiota transplantation with informed consent, and we collected clinical data of stool and bacterial culture, gut microbiota analysis, graft function, electrolytes, immunosuppressant concentrations of prognostic evaluation of patients with fecal transplantation. The absorption of electrolyte is slightly higher and concentration of tacrolimus and creatinine were not significantly changed compared with before. Fecal microbiota transplantation provides a new choice to refractory diarrhea after renal transplantation as an innovative treatment, but the effectiveness of fecal microbiota transplantation needs long-term observation and further evaluation through large sample data. Copyright © 2018. Published by Elsevier Inc.
Laurin, Emilie L; Sanchez, Javier; Chaffer, Marcelo; McKenna, Shawn L B; Keefe, Greg P
2017-01-01
Milk ELISA are commonly used for detection of Mycobacterium avium ssp. paratuberculosis (MAP) antibodies in dairy cows, due to low cost and quick processing for large numbers of samples. However, low sensitivity and variations from host and environmental factors can impede detection of MAP antibodies at early disease stages. The objectives of our study were to assess the sensitivity of milk ELISA in comparison with fecal tests and to evaluate how detectable antibody concentrations in milk vary with changes in fecal shedding of MAP, cow age, cow parity, days in milk, and time of year. To compare the sensitivity of a commercial milk ELISA with solid and broth fecal culture and with fecal real-time PCR, a longitudinal study was performed for the identification of MAP-infectious animals as determined by prior fecal testing for MAP shedding. In addition, associations between variation in milk MAP ELISA score and changes in fecal MAP shedding, host age, days in milk, and season were evaluated. Monthly milk and fecal samples were collected over 1 yr from 46 cows that were previously shedding MAP in their feces. Sensitivity of milk ELISA was 29.9% (95% CI: 24.8 to 35.1%), compared with 46.7% (40.7 to 52.7%) for fecal solid culture, 55.0% (49.3 to 60.7%) for fecal broth culture, and 78.4% (73.3 to 83.1%) for fecal direct real-time PCR. The effect of stage of lactation could not be separated from the effect of season, with increased milk ELISA scores at greater days in milk in winter. However, unpredictable monthly variations in results were observed among the 3 assays for individual cow testing, which highlights the importance of identifying patterns in pathogen and antibody detection over time in MAP-positive herds. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Vynne, Carly; Kinsella, John M
2009-06-01
The entodiniomorph ciliates (Ciliophora: Entodiniomorphida) are endosymbiotes widely found in the intestines of herbivorous mammals. These commensals commonly occur in the Artiodactyla and Perissodactyla and have also been described in the Proboscidea, Primates, Rodentia, and Diprotodontia. This study reports the first finding of a ciliate in a member of order Carnivora, the maned wolf (Chrysocyon brachyurus). Fecal samples from wild and captive maned wolves were screened using ethyl acetate sedimentation. Prevalence in fecal samples collected from free-ranging maned wolves in Brazil was 40% (6 of 15). Fecal samples from two of four captive individuals from the St. Louis Zoo also had the same species of ciliate. The largely frugivorous diet of the maned wolf likely explains the occurrence of these normally herbivore-associated endosymbiotes in a carnivore.
Analysis of the Microbial Diversity in the Fecal Material of Giraffes.
Schmidt, Jessica M; Henken, Susan; Dowd, Scot E; McLaughlin, Richard William
2018-03-01
Using bacterial and fungal tag-encoded FLX-Titanium amplicon pyrosequencing, the microbiota of the fecal material of seven giraffes living in captivity at the Jacksonville Zoo and Gardens, Jacksonville, FL was investigated. In all samples, the most predominant bacterial phylum was the Firmicutes followed by Bacteroidetes. The most predominant fungi were members of the phylum Ascomycota followed by Neocallimastigomycota in five of seven samples. The reverse was true in the other two samples.
Parasite prevalence in fecal samples from shelter dogs and cats across the Canadian provinces.
Villeneuve, Alain; Polley, Lydden; Jenkins, Emily; Schurer, Janna; Gilleard, John; Kutz, Susan; Conboy, Gary; Benoit, Donald; Seewald, Wolfgang; Gagné, France
2015-05-21
In Canada, surveys of enteric parasites in dogs and cats have been reported sporadically over the past 40 years, mostly focusing on a specific region. The present work was performed to determine the current prevalence of various parasites in fecal samples from shelter dogs and cats across the Canadian provinces. A total of 1086 dog and 636 cat fecal samples from 26 shelters were analysed using a sugar solution double centrifugal flotation technique. Prevalences (national, regional, provincial, age and parasite-specific), were calculated and compared using the Fisher-Exact test. A multiplex PCR was performed to distinguish Taenia spp, Echinococcus granulosus and E. multilocularis on samples positive for taeniid eggs. Overall, 33.9% of dogs and 31.8% of cats were positive for at least one parasite. Toxocara canis and T. cati were the most prevalent parasite present in fecal samples followed by Cystoisospora spp. Prevalence in dogs was similar across the Atlantic, East, West and Pacific regions, while prevalence in cats varied regionally. Eggs of E. granulosus/E. canadensis were detected in samples from dogs from BC, AB, and ON. Data from this study will help in the development of strategies, based on the level of risk per geographic location for the prevention and response to these parasites in pets and free-roaming and shelter animals in Canada.
Omulo, Sylvia; Lofgren, Eric T; Mugoh, Maina; Alando, Moshe; Obiya, Joshua; Kipyegon, Korir; Kikwai, Gilbert; Gumbi, Wilson; Kariuki, Samuel; Call, Douglas R
2017-05-01
Investigators often rely on studies of Escherichia coli to characterize the burden of antibiotic resistance in a clinical or community setting. To determine if prevalence estimates for antibiotic resistance are sensitive to sample handling and interpretive criteria, we collected presumptive E. coli isolates (24 or 95 per stool sample) from a community in an urban informal settlement in Kenya. Isolates were tested for susceptibility to nine antibiotics using agar breakpoint assays and results were analyzed using generalized linear mixed models. We observed a <3-fold difference between prevalence estimates based on freshly isolated bacteria when compared to isolates collected from unprocessed fecal samples or fecal slurries that had been stored at 4°C for up to 7days. No time-dependence was evident (P>0.1). Prevalence estimates did not differ for five distinct E. coli colony morphologies on MacConkey agar plates (P>0.2). Successive re-plating of samples for up to five consecutive days had little to no impact on prevalence estimates. Finally, culturing E. coli under different conditions (with 5% CO 2 or micro-aerobic) did not affect estimates of prevalence. For the conditions tested in these experiments, minor modifications in sample processing protocols are unlikely to bias estimates of the prevalence of antibiotic-resistance for fecal E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.
Canine scent detection and microbial source tracking of human waste contamination in storm drains.
Van De Werfhorst, Laurie C; Murray, Jill L S; Reynolds, Scott; Reynolds, Karen; Holden, Patricia A
2014-06-01
Human fecal contamination of surface waters and drains is difficult to diagnose. DNA-based and chemical analyses of water samples can be used to specifically quantify human waste contamination, but their expense precludes routine use. We evaluated canine scent tracking, using two dogs trained to respond to the scent of municipal wastewater, as a field approach for surveying human fecal contamination. Fecal indicator bacteria, as well as DNA-based and chemical markers of human waste, were analyzed in waters sampled from canine scent-evaluated sites (urban storm drains and creeks). In the field, the dogs responded positively (70% and 100%) at sites for which sampled waters were then confirmed as contaminated with human waste. When both dogs indicated a negative response, human waste markers were absent. Overall, canine scent tracking appears useful for prioritizing sampling sites for which DNA-based and similarly expensive assays can confirm and quantify human waste contamination.
Role of Native and Exotic Earthworms in Plant Biopolymer Dynamics in Forest Soil
NASA Astrophysics Data System (ADS)
Filley, Timothy
2010-05-01
Many forests within northern North America are experiencing the introduction of earthworms for the first time, presumably since before the last major glaciation. Forest dynamics are undergoing substantial changes because of the activity of the mainly European lumbricid species. Documented losses in litter layers, expansion of A-horizons, loss of the organic horizon, changes in fine root density, and shifts in microbial populations have all been documented in invaded zones. Two free air CO2 enrichment (FACE) forest experiments (aspen FACE at Rhinelander, Wisconsin and sweet gum FACE at Oak Ridge National Lab, Tennessee) lie within the zones of invasion and exhibit differences in amounts of exotic and native species as well as endogeic (predominantly mineral soil dwelling) and epigeic (litter and organic matter horizon dwelling) types. Considerations of carbon accrual dynamics and relative input of above vs. below ground plant input in these young successional systems do not consider the potential impact of these ecosystem engineers. We investigated the impact of earthworm activity by tracking the relative abundance and stable carbon isotope compositions of lignin and substituted fatty acids extracted from isolated earthworms and their fecal pellets and from host soils. Indications of root vs leaf input to earthworm casts and fecal matter were derived from differences in the chemical composition of cutin, suberin, and lignin. The isotopically depleted CO2 used in FACE and the resulting isotopically depleted plant organic matter afford an excellent opportunity to assess biopolymer-specific turnover dynamics. We find that endogeic species are proportionately more responsible for fine root cycling while some epigeic species are responsible for microaggregation of foliar cutin. CSIA of fecal pellet lignin and SFA indicates how these biopolymer pools can be derived from variable sources, roots, background soil, foliar tissue within one earthworm. Additionally, CSIA indicates the distinct roles that different earthworm types have in "aging" surface soil biopolymer pools through encapsulation and upward transport of deeper soil carbon, and "freshening" deeper soil biopolymer pools through downward transport of surface carbon to deeper layers,. As earthworm species abundance and activity are not is steady state in many forests, the role of these important invertebrates should be more considered when assessing the changing soil state.
Lucas, Aaron S; Swecker, William S; Lindsay, David S; Scaglia, Guillermo; Neel, James P S; Elvinger, Francois C; Zajac, Anne M
2014-05-28
There is little information available on the species dynamics of eimerian parasites in grazing cattle in the central Appalachian region of the United States. Therefore, the objective of this study was to describe the level of infection and species dynamics of Eimeria spp. in grazing beef cattle of various age groups over the course of a year in the central Appalachian region. Rectal fecal samples were collected from male and female calves (n=72) monthly from May through October 2005, heifers only (n=36) monthly from November 2005 to April 2006, and cows (n=72) in May, July, and September, 2005. Eimeria spp. oocysts were seen in 399 of 414 (96%) fecal samples collected from the calves from May through October. Fecal oocysts counts (FOC) in the calves were lower (P<0.05) in May than all other months and no significant differences were detected from June through September. Eimeria spp. oocysts were detected in 198 of 213 (92%) of fecal samples collected from the 36 replacement heifers monthly from November to April and monthly mean FOC did not differ during this time period. The prevalence of oocyst shedding increased to 100% in calves in September and remained near 100% in the replacement heifers during the sampling period. Eimeria spp. oocysts were also detected in 150 of 200 (75%) samples collected in May, July, and September from the cows and mean FOC did not differ significantly over the sampling period. Eimeria spp. composition was dominated by Eimeria bovis in fecal samples collected from calves, replacement heifers and cows. Mixed Eimeria spp. infections were, however, common in all groups and 13 Eimeria spp. oocysts were identified throughout the sampling period. Copyright © 2014 Elsevier B.V. All rights reserved.
FECAL COLIFORM INCREASE AFTER CENTRIFUGATION: EPA PERSPECTIVE
The Water Environment Research Foundation (WERF) recently published a report titled Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bacte...
Sexsmith, Jennifer L; Whiting, Terry L; Green, Chris; Orvis, Sheldon; Berezanski, Dean J; Thompson, Amy B
2009-08-01
The prevalence of Baylisascaris procyonis was estimated in the urban raccoon population of Winnipeg through the fecal flotation of raccoon feces collected at active latrines and through gross postmortem and fecal flotation of samples collected from nuisance raccoons. Fecal flotation of latrine-collected feces was positive in 33 of 89 samples and, of 52 latrines identified, 26 were positive on 1 or more occasions. Trapped individual raccoons subjected to postmortem examination were positive in 57 of 114 animals captured. Comparing a single fecal flotation to the gold standard of finding adult worms in the small intestine had a sensitivity of 78.9% and specificity of 92.9%. This study suggests that carriage of Baylisascaris procyonis is widespread in raccoons in the Winnipeg urban ecosystem. Raccoon latrines in Winnipeg should be treated as infectious sites and efforts should be made to limit access of pets and people at risk to those sites.
Levels of fecal corticosterone in sandhill cranes during a human-led migration.
Hartup, Barry K; Olsen, Glenn H; Czekala, Nancy M; Paul-Murphy, Joanne; Langenberg, Julia A
2004-04-01
Fourteen captive-reared greater sandhill cranes (Grus canadensis tabida) were conditioned to follow ultralight aircraft to promote migration between Wisconsin and Florida (USA) after release. Fecal samples were collected throughout the training period in Wisconsin and during a l977-km human-led migration to Florida to determine fecal corticosterone (FC) concentrations by radioimmunnoassay. The mean (+/-SE) FC concentration during the training period was 109.5 +/- 7.5 ng/g and was representative of baseline levels recorded previously from sandhill cranes. Fecal corticosterone concentrations increased in early migration compared to concentrations I mo prior to departure (P < 0.01) but were not different from baseline concentrations at tile end of the 6-wk migration period. The variability of FC concentrations in individual samples was greater throughout the migration than the training period. Increases in FC during migration were modest and generally consistent with normal corticosterone elevations observed in migrating birds.
Fecal /sup 13/C analysis for the detection and quantitation of intestinal malabsorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, P.D.; MacLean, W.C. Jr.; Watkins, J.B.
Use of /sup 14/CO/sub 2/ breath tests and fecal analyses for the detection and quantitation of intestinal malabsorption has been extensively documented in adult subjects. The use of radioisotopes has extended the range of breath test applications to include pediatric and geriatric subjects. Here we report a fecal /sup 13/C analysis that can be used in conjunction with /sup 14/CO/sub 2/ breath tests. Twenty-four-hour fecal samples were collected before and after the administration of a labeled substrate. Simultaneous cholyglycine /sup 13/CO/sub 2/ breath tests and fecal assays were performed in five children. One child with bacterial overgrowth had an abnormalmore » breath test and a normal fecal test. Of three children with ileal dysfunction, only one had an abnormal breath test, whereas the fecal test was abnormal in all three. Both the breath test and fecal test were abnormal for a child who had undergone an ileal resection. Both tests were normal for a child with ulcerative colitis.« less
Shankar, Vijay; Homer, Daniel; Rigsbee, Laura; Khamis, Harry J; Michail, Sonia; Raymer, Michael; Reo, Nicholas V; Paliy, Oleg
2015-01-01
The goal of this study was to determine if fecal metabolite and microbiota profiles can serve as biomarkers of human intestinal diseases, and to uncover possible gut microbe–metabolite associations. We employed proton nuclear magnetic resonance to measure fecal metabolites of healthy children and those diagnosed with diarrhea-predominant irritable bowel syndrome (IBS-D). Metabolite levels were associated with fecal microbial abundances. Using several ordination techniques, healthy and irritable bowel syndrome (IBS) samples could be distinguished based on the metabolite profiles of fecal samples, and such partitioning was congruent with the microbiota-based sample separation. Measurements of individual metabolites indicated that the intestinal environment in IBS-D was characterized by increased proteolysis, incomplete anaerobic fermentation and possible change in methane production. By correlating metabolite levels with abundances of microbial genera, a number of statistically significant metabolite–genus associations were detected in stools of healthy children. No such associations were evident for IBS children. This finding complemented the previously observed reduction in the number of microbe–microbe associations in the distal gut of the same cohort of IBS-D children. PMID:25635640
Shankar, Vijay; Homer, Daniel; Rigsbee, Laura; Khamis, Harry J; Michail, Sonia; Raymer, Michael; Reo, Nicholas V; Paliy, Oleg
2015-08-01
The goal of this study was to determine if fecal metabolite and microbiota profiles can serve as biomarkers of human intestinal diseases, and to uncover possible gut microbe-metabolite associations. We employed proton nuclear magnetic resonance to measure fecal metabolites of healthy children and those diagnosed with diarrhea-predominant irritable bowel syndrome (IBS-D). Metabolite levels were associated with fecal microbial abundances. Using several ordination techniques, healthy and irritable bowel syndrome (IBS) samples could be distinguished based on the metabolite profiles of fecal samples, and such partitioning was congruent with the microbiota-based sample separation. Measurements of individual metabolites indicated that the intestinal environment in IBS-D was characterized by increased proteolysis, incomplete anaerobic fermentation and possible change in methane production. By correlating metabolite levels with abundances of microbial genera, a number of statistically significant metabolite-genus associations were detected in stools of healthy children. No such associations were evident for IBS children. This finding complemented the previously observed reduction in the number of microbe-microbe associations in the distal gut of the same cohort of IBS-D children.
Fecal coliforms on environmental surfaces in two day care centers.
Weniger, B G; Ruttenber, A J; Goodman, R A; Juranek, D D; Wahlquist, S P; Smith, J D
1983-01-01
A survey of environmental surfaces in two Atlanta area day care centers was conducted to determine the prevalence of fecal coliform bacteria, considered a marker for the presence of fecal contamination which might contain pathogenic parasites, bacteria, or viruses. Fecal coliforms were found in 17 (4.3%) of 398 representative samples of building surfaces, furniture, and other objects. These surfaces may be involved in the chain of transmission of enteric diseases among children. Therefore, disinfection of inanimate objects, in addition to good handwashing, may be important in controlling the spread of enteric diseases in day care centers. PMID:6830225
NASA Astrophysics Data System (ADS)
Allocca, V.; Celico, F.; Petrella, E.; Marzullo, G.; Naclerio, G.
2008-07-01
Limestone aquifers in Southern Italy are often affected by bacterial contamination produced by pasture and agriculture. The main goals of this study were (1) to analyze the role of land use and environmental factors on microbial contamination and, (2) to identify, at field scale, the most suitable indicator of fecal pollution, by comparing fecal coliforms and fecal enterococci. Analyzing surface and spring water, it was noted that both fecal indicators showed a significant decrease during the period characterized by freezing and/or freeze-thaw intervals. The data analysis shows that fecal coliforms are characterized by a significant decrease in population (3 orders of magnitude, at least) during the freezing period, while fecal enterococci are temporarily inhibited. A taxonomic classification of fecal enterococci detected in spring water samples was performed by the API 20 Strep system and by sequencing of the ribosomal 16S DNA genes. The results showed that freezing conditions did not cause any significant change on the set of enterococcal species.
Standridge, J H; Lesar, D J
1977-01-01
The problem of extending the storage time of water samples for fecal coliform analysis was addressed. Included in this report is a literature review of the storage problem. Twenty-eight samples were analyzed in replicate to determine the effect of 24-h storage of water samples at 4 degrees C. A new statistical approach to data analysis, coupled with the concept of practical acceptability, is presented. According to our results, many samples can successfully be stored at 4 degrees C for 24 h. PMID:335972
Comparing protein and energy status of winter-fed white-tailed deer
Page, B.D.; Underwood, H.B.
2006-01-01
Although nutritional status in response to controlled feeding trials has been extensively studied in captive white-tailed deer (Odocoileus virginianus), there remains a considerable gap in understanding the influence of variable supplemental feeding protocols on free-ranging deer. Consequently, across the northern portion of the white-tailed deer range, numerous property managers are investing substantial resources into winter supplemental-feeding programs without adequate tools to assess the nutritional status of their populations. We studied the influence of a supplemental winter feeding gradient on the protein and energy status of free-ranging white-tailed deer in the Adirondack Mountains of New York. We collected blood and fecal samples from 31 captured fawns across 3 sites that varied considerably in the frequency, quantity, and method of supplemental feed distribution. To facilitate population-wide comparisons, we collected fresh fecal samples off the snow at each of the 3 sites with supplemental feeding and 1 reference site where no feeding occurred. Results indicated that the method of feed distribution, in addition to quantity and frequency, can affect the nutritional status of deer. The least intensively fed population showed considerable overlap in diet quality with the unfed population in a principal components ordination, despite the substantial time and financial resources invested in the feeding program. Data from fecal samples generally denoted a gradient in diet quality and digestibility that corresponded with the availability of supplements. Our results further demonstrated that fecal nitrogen and fecal fiber, indices of dietary protein and digestibility, can be estimated using regressions of fecal pellet mass, enabling a rapid qualitative assessment of diet quality.
Aulenbach, Brent T.
2010-01-01
Bacteria holding-time experiments of up to 62 h were performed on five surface-water samples from four urban stream sites in the vicinity of Atlanta, GA, USA that had relatively high densities of coliform bacteria (Escherichia coli densities were all well above the US Environmental Protection Agency criterion of 126 colonies (100 ml) − 1 for recreational waters). Holding-time experiments were done for fecal coliform using the membrane filtration modified fecal coliform (mFC) agar method and for total coliform and E. coli using the Colilert®-18 Quanti-Tray® method. The precisions of these analytical methods were quantified. Precisions determined for fecal coliform indicated that the upper bound of the ideal range of counts could reasonably be extended upward and would improve precision. For the Colilert®-18 method, analytical precisions were similar to the theoretical precisions for this method. Fecal and total coliform densities did not change significantly with holding times up to about 27 h. Limited information indicated that fecal coliform densities might be stable for holding times of up to 62 h, whereas total coliform densities might not be stable for holding times greater than about 27 h. E. coli densities were stable for holding times of up to 18 h—a shorter period than indicated from a previous studies. These results should be applicable to non-regulatory monitoring sampling designs for similar urban surface-water sample types.
Fecal Microbiota Transplantation for Ulcerative Colitis: A Systematic Review and Meta-Analysis.
Shi, Yanqiang; Dong, Yiwei; Huang, Wenhui; Zhu, Decong; Mao, Hua; Su, Peizhu
2016-01-01
Fecal microbiota transplantation (FMT) has been recognized as a novel treatment for ulcerative colitis (UC). However, its efficacy and safety remain unclear. We conducted this systematic review to assess the efficacy and safety of FMT in UC. PubMed, EMBASE, Cochrane Central, Web of Science Core Collection, and three other Chinese databases were searched for reports of FMT in UC with clear outcomes. We estimated pooled rates [with 95% confidence interval (CI)] of clinical remission among 15 cohort studies and clinical response among 16 cohort studies. Twenty five studies (2 randomized controlled trials, 15 cohort studies, and 8 case studies) with 234 UC patients were included. Overall, 41.58% (84/202) patients achieved clinical remission (CR) and 65.28% (126/193) achieved clinical response. Among the cohort studies, the pooled estimate of patients who achieved CR and clinical response were 40.5% (95% CI 24.7%-58.7%), and 66.1% (95% CI 43.7%-83.0%). Most adverse events were slight and self-resolving. The analyses of gut microbiota in 7 studies showed that FMT could increase microbiota diversity and richness, similarity, and certain change of bacterial composition. FMT provides a promising effect for UC with few adverse events. Successful FMT may be associated with an increase in microbiota diversity and richness, similarity, and certain change of bacterial composition.
Fecal Microbiota Transplantation for Ulcerative Colitis: A Systematic Review and Meta-Analysis
Shi, Yanqiang; Dong, Yiwei; Huang, Wenhui; Zhu, Decong; Mao, Hua; Su, Peizhu
2016-01-01
Background Fecal microbiota transplantation (FMT) has been recognized as a novel treatment for ulcerative colitis (UC). However, its efficacy and safety remain unclear. Objective We conducted this systematic review to assess the efficacy and safety of FMT in UC. Data Sources PubMed, EMBASE, Cochrane Central, Web of Science Core Collection, and three other Chinese databases were searched for reports of FMT in UC with clear outcomes. Data Extraction and Synthesis We estimated pooled rates [with 95% confidence interval (CI)] of clinical remission among 15 cohort studies and clinical response among 16 cohort studies. Results Twenty five studies (2 randomized controlled trials, 15 cohort studies, and 8 case studies) with 234 UC patients were included. Overall, 41.58% (84/202) patients achieved clinical remission (CR) and 65.28% (126/193) achieved clinical response. Among the cohort studies, the pooled estimate of patients who achieved CR and clinical response were 40.5% (95% CI 24.7%-58.7%), and 66.1% (95% CI 43.7%-83.0%). Most adverse events were slight and self-resolving. The analyses of gut microbiota in 7 studies showed that FMT could increase microbiota diversity and richness, similarity, and certain change of bacterial composition. Conclusion FMT provides a promising effect for UC with few adverse events. Successful FMT may be associated with an increase in microbiota diversity and richness, similarity, and certain change of bacterial composition. PMID:27295210
Blekhman, Ran; Tang, Karen; Archie, Elizabeth A; Barreiro, Luis B; Johnson, Zachary P; Wilson, Mark E; Kohn, Jordan; Yuan, Michael L; Gesquiere, Laurence; Grieneisen, Laura E; Tung, Jenny
2016-08-16
Field studies of wild vertebrates are frequently associated with extensive collections of banked fecal samples-unique resources for understanding ecological, behavioral, and phylogenetic effects on the gut microbiome. However, we do not understand whether sample storage methods confound the ability to investigate interindividual variation in gut microbiome profiles. Here, we extend previous work on storage methods for gut microbiome samples by comparing immediate freezing, the gold standard of preservation, to three methods commonly used in vertebrate field studies: lyophilization, storage in ethanol, and storage in RNAlater. We found that the signature of individual identity consistently outweighed storage effects: alpha diversity and beta diversity measures were significantly correlated across methods, and while samples often clustered by donor, they never clustered by storage method. Provided that all analyzed samples are stored the same way, banked fecal samples therefore appear highly suitable for investigating variation in gut microbiota. Our results open the door to a much-expanded perspective on variation in the gut microbiome across species and ecological contexts.
Morato, R G; Bueno, M G; Malmheister, P; Verreschi, I T N; Barnabe, R C
2004-12-01
In the present study we determined the efficacy of the measurement of fecal cortisol and androgen metabolite concentrations to monitor adrenal and testicular activity in the jaguar (Panthera onca). Three captive male jaguars were chemically restrained and electroejaculated once or twice within a period of two months. Fecal samples were collected daily for 5 days before and 5 days after the procedure and stored at -20 degrees C until extraction. Variations in the concentrations of cortisol and androgen metabolites before and after the procedure were determined by solid phase cortisol and testosterone radioimmunoassay and feces dry weight was determined by drying at 37 degrees C for 24 h under vacuum. On four occasions, fecal cortisol metabolite levels were elevated above baseline (307.8 +/- 17.5 ng/g dry feces) in the first fecal sample collected after the procedure (100 to 350% above baseline). On one occasion, we did not detect any variation. Mean (+/- SEM) fecal androgen concentration did not change after chemical restraint and electroejaculation (before: 131.1 +/- 26.7, after: 213.7 +/- 43.6 ng/g dry feces). These data show that determination of fecal cortisol and androgen metabolites can be very useful for a noninvasive assessment of animal well-being and as a complement to behavioral, physiological, and pathological studies. It can also be useful for the study of the relationship between adrenal activity and reproductive performance in the jaguar.
Albino, Luiz A A; Rostagno, Marcos H; Húngaro, Humberto M; Mendonça, Regina C S
2014-08-01
Foodborne illness due to Salmonella-contaminated pork products is an important public health problem, causing significant economic losses worldwide. The use of bacteriophages is a potential intervention tool that has attracted interest for the control of foodborne pathogens. The objective of this study was to detect the presence of Salmonella in commercial pig farms and to isolate specific autochthonous bacteriophages against Salmonella Typhimurium, to characterize them and to evaluate their lytic capacity against Salmonella Typhimurium in vivo and in vitro. Salmonella was isolated on 50% (4/8) of the farms, with serotype Typhimurium being the most prevalent, detected in 48.2% of samples (13/27). The isolated Salmonella Typhimurium bacteriophages belong to the Podoviridae family, were active against serotypes Abony, Enteritidis, Typhi, and Typhimurium, but not against serotypes Arizonae, Cholerasuis, Gallinarum, and Pullorum. In in vitro tests, bacteriophage at 10(7) PFU/mL and 10(9) PFU/mL significantly reduced (p<0.05) Salmonella Typhimurium counts in 1.6 and 2.5 log10 colony-forming units (CFU)/mL, respectively, after 24 h. Before the in vivo treatment with bacteriophages, Salmonella was identified in 93.3% (28/30) of the fecal samples from the pigs inoculated with 10(6) CFU/mL, and only in 56.6% (17/30) after the treatment consisting of oral administration of the pool of the bacteriophages after the fasting period, simulating a common preslaughter practice. These results indicate that the pool of bacteriophages administered was capable of reducing the colonization of Salmonella in pigs.
Hepatitis E Virus in Pork Production Chain in Czech Republic, Italy, and Spain, 2010
Di Bartolo, Ilaria; Diez-Valcarce, Marta; Vasickova, Petra; Kralik, Petr; Hernandez, Marta; Angeloni, Giorgia; Ostanello, Fabio; Bouwknegt, Martijn; Rodríguez-Lázaro, David; Pavlik, Ivo
2012-01-01
We evaluated the prevalence of hepatitis E virus (HEV) in the pork production chain in Czech Republic, Italy, and Spain during 2010. A total of 337 fecal, liver, and meat samples from animals at slaughterhouses were tested for HEV by real-time quantitative PCR. Overall, HEV was higher in Italy (53%) and Spain (39%) than in Czech Republic (7.5%). HEV was detected most frequently in feces in Italy (41%) and Spain (39%) and in liver (5%) and meat (2.5%) in Czech Republic. Of 313 sausages sampled at processing and point of sale, HEV was detected only in Spain (6%). HEV sequencing confirmed only g3 HEV strains. Indicator virus (porcine adenovirus) was ubiquitous in fecal samples and absent in liver samples and was detected in 1 slaughterhouse meat sample. At point of sale, we found porcine adenovirus in sausages (1%–2%). The possible dissemination of HEV and other fecal viruses through pork production demands containment measures. PMID:22840221
Aperce, C. C.; Amachawadi, R.; Van Bibber-Krueger, C. L.; Nagaraja, T. G.; Scott, H. M.; Vinasco-Torre, J.; Drouillard, J. S.
2016-01-01
The pool of antimicrobial resistance determinants in the environment and in the gut flora of cattle is a serious public health concern. In addition to being a source of human exposure, these bacteria can transfer antibiotic resistance determinants to pathogenic bacteria and endanger the future of antimicrobial therapy. The occurrence of antimicrobial resistance genes on mobile genetic elements, such as plasmids, facilitates spread of resistance. Recent work has shown in vitro anti-plasmid activity of menthol, a plant-based compound with the potential to be used as a feed additive to beneficially alter ruminal fermentation. The present study aimed to determine if menthol supplementation in diets of feedlot cattle decreases the prevalence of multidrug-resistant bacteria in feces. Menthol was included in diets of steers at 0.3% of diet dry matter. Fecal samples were collected weekly for 4 weeks and analyzed for total coliforms counts, antimicrobial susceptibilities, and the prevalence of tet genes in E. coli isolates. Results revealed no effect of menthol supplementation on total coliforms counts or prevalence of E. coli resistant to amoxicillin, ampicillin, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfisoxazole, and sulfamethoxazole; however, 30 days of menthol addition to steer diets increased the prevalence of tetracycline-resistant E. coli (P < 0.02). Although the mechanism by which menthol exerts its effects remains unclear, results of our study suggest that menthol may have an impact on antimicrobial resistance in gut bacteria. PMID:28030622
33 CFR 159.309 - Limitations on discharge of treated sewage or graywater.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30-day period does not exceed 20 fecal coliform/100 milliliters (ml) and not more than 10 percent of the samples exceed 40 fecal coliform/100 ml; (4) Concentrations of total residual chlorine do not...
33 CFR 159.309 - Limitations on discharge of treated sewage or graywater.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30-day period does not exceed 20 fecal coliform/100 milliliters (ml) and not more than 10 percent of the samples exceed 40 fecal coliform/100 ml; (4) Concentrations of total residual chlorine do not...
McLellan, S.L.; Huse, S.M.; Mueller-Spitz, S.R.; Andreishcheva, E.N.; Sogin, M.L.
2009-01-01
The release of untreated sewage introduces non-indigenous microbial populations of uncertain composition into surface waters. We used massively parallel 454 sequencing of hypervariable regions in rRNA genes to profile microbial communities from eight untreated sewage influent samples of two wastewater treatment plants (WWTP) in metropolitan Milwaukee. The sewage profiles included a discernable human fecal signature made up of several taxonomic groups including multiple Bifidobacteriaceae, Coriobacteriaceae, Bacteroidaceae, Lachnospiraceae, and Ruminococcaceae genera. The fecal signature made up a small fraction of the taxa present in sewage but the relative abundance of these sequence tags mirrored the population structures of human fecal samples. These genera were much more prevalent in the sewage influent than standard indicators species. High-abundance sequences from taxonomic groups within the Beta- and Gammaproteobacteria dominated the sewage samples but occurred at very low levels in fecal and surface water samples, suggesting that these organisms proliferate within the sewer system. Samples from Jones Island (JI – servicing residential plus a combined sewer system) and South Shore (SS – servicing a residential area) WWTPs had very consistent community profiles, with greater similarity between WWTPs on a given collection day than the same plant collected on different days. Rainfall increased influent flows at SS and JI WWTPs, and this corresponded to greater diversity in the community at both plants. Overall, the sewer system appears to be a defined environment with both infiltration of rainwater and stormwater inputs modulating community composition. Microbial sewage communities represent a combination of inputs from human fecal microbes and enrichment of specific microbes from the environment to form a unique population structure. PMID:19840106
Ghaju Shrestha, Rajani; Tanaka, Yasuhiro; Malla, Bikash; Bhandari, Dinesh; Tandukar, Sarmila; Inoue, Daisuke; Sei, Kazunari; Sherchand, Jeevan B; Haramoto, Eiji
2017-12-01
Bacteriological analysis of drinking water leads to detection of only conventional fecal indicator bacteria. This study aimed to explore and characterize bacterial diversity, to understand the extent of pathogenic bacterial contamination, and to examine the relationship between pathogenic bacteria and fecal indicator bacteria in different water sources in the Kathmandu Valley, Nepal. Sixteen water samples were collected from shallow dug wells (n=12), a deep tube well (n=1), a spring (n=1), and rivers (n=2) in September 2014 for 16S rRNA gene next-generation sequencing. A total of 525 genera were identified, of which 81 genera were classified as possible pathogenic bacteria. Acinetobacter, Arcobacter, and Clostridium were detected with a relatively higher abundance (>0.1% of total bacterial genes) in 16, 13, and 5 of the 16 samples, respectively, and the highest abundance ratio of Acinetobacter (85.14%) was obtained in the deep tube well sample. Furthermore, the bla OXA23-like genes of Acinetobacter were detected using SYBR Green-based quantitative PCR in 13 (35%) of 37 water samples, including the 16 samples that were analyzed for next-generation sequencing, with concentrations ranging 5.3-7.5logcopies/100mL. There was no sufficient correlation found between fecal indicator bacteria, such as Escherichia coli and total coliforms, and potential pathogenic bacteria, as well as the bla OXA23-like gene of Acinetobacter. These results suggest the limitation of using conventional fecal indicator bacteria in evaluating the pathogenic bacteria contamination of different water sources in the Kathmandu Valley. Copyright © 2017 Elsevier B.V. All rights reserved.
Coccidian Parasites and Conservation Implications for the Endangered Whooping Crane (Grus americana)
Bertram, Miranda R.; Hamer, Gabriel L.; Snowden, Karen F.; Hartup, Barry K.; Hamer, Sarah A.
2015-01-01
While the population of endangered whooping cranes (Grus americana) has grown from 15 individuals in 1941 to an estimated 304 birds today, the population growth is not sufficient to support a down-listing of the species to threatened status. The degree to which disease may be limiting the population growth of whooping cranes is unknown. One disease of potential concern is caused by two crane-associated Eimeria species: Eimeria gruis and E. reichenowi. Unlike most species of Eimeria, which are localized to the intestinal tract, these crane-associated species may multiply systemically and cause a potentially fatal disease. Using a non-invasive sampling approach, we assessed the prevalence and phenology of Eimeria oocysts in whooping crane fecal samples collected across two winter seasons (November 2012–April 2014) at the Aransas National Wildlife Refuge along the Texas Gulf coast. We also compared the ability of microscopy and PCR to detect Eimeria in fecal samples. Across both years, 26.5% (n = 328) of fecal samples were positive for Eimeria based on microscopy. Although the sensitivity of PCR for detecting Eimeria infections seemed to be less than that of microscopy in the first year of the study (8.9% vs. 29.3%, respectively), an improved DNA extraction protocol resulted in increased sensitivity of PCR relative to microscopy in the second year of the study (27.6% and 20.8%, respectively). The proportion of positive samples did not vary significantly between years or among sampling sites. The proportion of Eimeria positive fecal samples varied with date of collection, but there was no consistent pattern of parasite shedding between the two years. We demonstrate that non-invasive fecal collections combined with PCR and DNA sequencing techniques provides a useful tool for monitoring Eimeria infection in cranes. Understanding the epidemiology of coccidiosis is important for management efforts to increase population growth of the endangered whooping crane. PMID:26061631
Bickford, Tammy M.; Lindsey, Bruce D.; Beaver, M.R.
1996-01-01
This report describes the bacteriological results of a ground-water study conducted from 1993 to 1995 as part of the U.S. Geological Survey's National Water-Quality Assessment Program in the Lower Susquehanna River Basin study unit. Water samples collected from 146 household supply wells were analyzed for fecal-indicator organisms including total coliform, fecal coliform, Escherichia coli (E. coli), and fecal streptococcus concentrations. Supporting data used in the interpretations are selected water-quality constituents, well-construction information, and the environmental setting at the well site including land use, physiography, and bedrock type. Water from nearly 70 percent of the wells sampled had total coliform present and thus was not suitable for drinking without treatment. Fecal coliforms were found in water from approximately 25 percent of the sampled wells. E. coli testing was not conducted in 1993. Approximately 30 percent of the 88 sampled wells had waters with E. coli. Fecal streptococcus bacteria was present in water from about 65 percent of the wells sampled. Bacteriological contamination was more likely to occur in water from wells in agricultural areas than in water from wells in forested areas. Water from wells sampled in the Ridge and Valley Physiographic Province was more likely to have bacteria than water from wells in the Piedmont Physiographic Province. Differences in bacterial concentrations among bedrock types are only statistically significant for E. coli. Bacterial concentrations are weakly related to well-age but not to other well characteristics such as the total well depth or the casing length. Relations exist between bacterial concentrations and selected water-quality constituents. Most wells from which water was sampled did not have sanitary seals and very few were grouted. This may have contributed to the number of detections of bacteria. It is uncertain whether the bacteria detected are the result of widespread aquifer contamination or site-specific factors.
Fogarty, Lisa R; Voytek, Mary A
2005-10-01
To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment.
Fogarty, Lisa R.; Voytek, Mary A.
2005-01-01
To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment. PMID:16204514
Pesapane, R; Ponder, M; Alexander, K A
2013-06-01
A primary challenge to managing emerging infectious disease is identifying pathways that allow pathogen transmission at the human-wildlife interface. Using Escherichia coli as a model organism, we evaluated fecal bacterial transmission between banded mongoose (Mungos mungo) and humans in northern Botswana. Fecal samples were collected from banded mongoose living in protected areas (n = 87, 3 troops) and surrounding villages (n = 92, 3 troops). Human fecal waste was collected from the same environment (n = 46). Isolates were evaluated for susceptibility to 10 antibiotics. Resistant E. coli isolates from mongoose were compared to human isolates using rep-PCR fingerprinting and MLST-PCR. Antimicrobial resistant isolates were identified in 57 % of the mongoose fecal samples tested (range 31-78% among troops). At least one individual mongoose fecal sample demonstrated resistance to each tested antibiotic, and multidrug resistance was highest in the protected areas (40.9%). E. coli isolated from mongoose and human sources in this study demonstrated an extremely high degree of genetic similarity on rep-PCR (AMOVA, F ST = 0.0027, p = 0.18) with a similar pattern identified on MLST-PCR. Human waste may be an important source of microbial exposure to wildlife. Evidence of high levels of antimicrobial resistance even within protected areas identifies an emerging health threat and highlights the need for improved waste management in these systems.
Fogarty, L.R.; Voytek, M.A.
2005-01-01
To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment.
NASA Astrophysics Data System (ADS)
McKay, L. D.; Layton, A.; Gentry, R.
2004-12-01
A multi-disciplinary group of researchers at the University of Tennessee is developing and testing a series of microbial assay methods based on real-time PCR to detect fecal bacterial concentrations and host sources in water samples. Real-time PCR is an enumeration technique based on the unique and conserved nucleic acid sequences present in all organisms. The first research task was development of an assay (AllBac) to detect total amount of Bacteroides, which represents up to 30 percent of fecal mass. Subsequent assays were developed to detect Bacteroides from cattle (BoBac) and humans (HuBac) using 16sRNA genes based on DNA sequences in the national GenBank, as well as sequences from local fecal samples. The assays potentially have significant advantages over conventional bacterial source tracking methods because: 1. unlike traditional enumeration methods, they do not require bacterial cultivation; 2. there are no known non-fecal sources of Bacteroides; 3. the assays are quantitative with results for total concentration and for each species expressed in mg/l; and 4. they show little regional variation within host species, meaning that they do not require development of extensive local gene libraries. The AllBac and BoBac assays have been used in a study of fecal contamination in a small rural watershed (Stock Creek) near Knoxville, TN, and have proven useful in identification of areas where cattle represent a significant fecal input and in development of BMPs. It is expected that these types of assays (and future assays for birds, hogs, etc.) could have broad applications in monitoring fecal impacts from Animal Feeding Operations, as well as from wildlife and human sources.
NASA Astrophysics Data System (ADS)
Johnson, R. D.; Mendez, G. O.; La, J. X.; Izbicki, J. A.
2005-12-01
Streams and ocean beaches in Santa Barbara, California, occasionally have concentrations of fecal indicator bacteria that exceed public health standards for recreational water, forcing temporary beach closures. Possible sources of fecal bacteria contamination include transient human populations, animal populations, and leaking sewer lines. The purpose of this three-year study is to identify important sources of fecal bacteria affecting the urban streams and beaches and to identify important pathways of transport. Contamination may enter streams and beaches directly by surface runoff, but also may be transmitted short distances through shallow ground water. Our analysis of existing historical data shows that fecal indicator bacteria concentrations are higher in near-shore ocean water following extreme high tides. The possible role of near shore ground water in supplying contaminants to the sea will be investigated by sampling water from an array of shallow wells installed for this study between an older city sewer line and the ocean. The ground water flux to the ocean will be inferred from water levels in these wells, and further tested by radium isotope values in near shore ocean samples. Two additional well arrays will be installed to test for leakage from residential sewage hookups and measure associated exchanges between ground water, streams, and ocean. Preliminary data collected by this study show fecal indicator bacteria concentrations in urban reaches of Mission Creek and its tributaries, the principle drainage through the city, are higher during low flow periods than during periods of higher flow. Analysis of preliminary data also shows short-term temporal variations in bacterial concentrations during twenty-four hour periods. Human enterovirus has been detected in our sample from one urban-drain tributary to Mission Creek. In order to identify the origins of fecal indicator bacteria water samples from Mission Creek, its tributaries, urban drains, and associated shallow ground water will be analyzed for nutrients, dissolved organic carbon (including optical properties to characterize the composition of the organic carbon), fecal sterols, DNA (using Terminal-Restriction Fragment Length Poylmorphism), and phospholipid fatty acids.
Sayah, Raida S.; Kaneene, John B.; Johnson, Yvette; Miller, RoseAnn
2005-01-01
A repeated cross-sectional study was conducted to determine the patterns of antimicrobial resistance in 1,286 Escherichia coli strains isolated from human septage, wildlife, domestic animals, farm environments, and surface water in the Red Cedar watershed in Michigan. Isolation and identification of E. coli were done by using enrichment media, selective media, and biochemical tests. Antimicrobial susceptibility testing by the disk diffusion method was conducted for neomycin, gentamicin, streptomycin, chloramphenicol, ofloxacin, trimethoprim-sulfamethoxazole, tetracycline, ampicillin, nalidixic acid, nitrofurantoin, cephalothin, and sulfisoxazole. Resistance to at least one antimicrobial agent was demonstrated in isolates from livestock, companion animals, human septage, wildlife, and surface water. In general, E. coli isolates from domestic species showed resistance to the largest number of antimicrobial agents compared to isolates from human septage, wildlife, and surface water. The agents to which resistance was demonstrated most frequently were tetracycline, cephalothin, sulfisoxazole, and streptomycin. There were similarities in the patterns of resistance in fecal samples and farm environment samples by animal, and the levels of cephalothin-resistant isolates were higher in farm environment samples than in fecal samples. Multidrug resistance was seen in a variety of sources, and the highest levels of multidrug-resistant E. coli were observed for swine fecal samples. The fact that water sample isolates were resistant only to cephalothin may suggest that the resistance patterns for farm environment samples may be more representative of the risk of contamination of surface waters with antimicrobial agent-resistant bacteria. PMID:15746342
Gourmelon, Michèle; Caprais, Marie Paule; Ségura, Raphaël; Le Mennec, Cécile; Lozach, Solen; Piriou, Jean Yves; Rincé, Alain
2007-01-01
In order to identify the origin of the fecal contamination observed in French estuaries, two library-independent microbial source tracking (MST) methods were selected: (i) Bacteroidales host-specific 16S rRNA gene markers and (ii) F-specific RNA bacteriophage genotyping. The specificity of the Bacteroidales markers was evaluated on human and animal (bovine, pig, sheep, and bird) feces. Two human-specific markers (HF183 and HF134), one ruminant-specific marker (CF193′), and one pig-specific marker (PF163) showed a high level of specificity (>90%). However, the data suggest that the proposed ruminant-specific CF128 marker would be better described as an animal marker, as it was observed in all bovine and sheep feces and 96% of pig feces. F RNA bacteriophages were detected in only 21% of individual fecal samples tested, in 60% of pig slurries, but in all sewage samples. Most detected F RNA bacteriophages were from genotypes II and III in sewage samples and from genotypes I and IV in bovine, pig, and bird feces and from pig slurries. Both MST methods were applied to 28 water samples collected from three watersheds at different times. Classification of water samples as subject to human, animal, or mixed fecal contamination was more frequent when using Bacteroidales markers (82.1% of water samples) than by bacteriophage genotyping (50%). The ability to classify a water sample increased with increasing Escherichia coli or enterococcus concentration. For the samples that could be classified by bacteriophage genotyping, 78% agreed with the classification obtained from Bacteroidales markers. PMID:17557850
Paar, Jack; Doolittle, Mark M; Varma, Manju; Siefring, Shawn; Oshima, Kevin; Haugland, Richard A
2015-05-01
A method, incorporating recently improved reverse transcriptase-PCR primer/probe assays and including controls for detecting interferences in RNA recovery and analysis, was developed for the direct, culture-independent detection of genetic markers from FRNA coliphage genogroups I, II & IV in water samples. Results were obtained from an initial evaluation of the performance of this method in analyses of waste water, ambient surface water and stormwater drain and outfall samples from predominantly urban locations. The evaluation also included a comparison of the occurrence of the FRNA genetic markers with genetic markers from general and human-related bacterial fecal indicators determined by current or pending EPA-validated qPCR methods. Strong associations were observed between the occurrence of the putatively human related FRNA genogroup II marker and the densities of the bacterial markers in the stormwater drain and outfall samples. However fewer samples were positive for FRNA coliphage compared to either the general bacterial fecal indicator or the human-related bacterial fecal indicator markers particularly for ambient water samples. Together, these methods show promise as complementary tools for the identification of contaminated storm water drainage systems as well as the determination of human and non-human sources of contamination. Published by Elsevier B.V.
Guimaraes, W.B.
1995-01-01
Water samples were collected in 1991-93 from Withers Swash and its two tributaries (the Mainstem and KOA Branches) in Myrtle Beach, S.C., and analyzed for physical properties, organic and inorganic constituents, and fecal coliform and streptococcus bacteria. Samples were collected during wet- and dry-weather conditions to assess the water quality of the streams before and after storm runoff. Water samples were analyzed for over 200 separate physical, chemical, and biological constituents. Concentrations of 11 constituents violated State criteria for shellfish harvesting waters, and State Human Health Criteria. The 11 constituents included concentrations of dissolved oxygen, arsenic, lead, cadmium, mercury, chlordane, dieldrin, 1,1,1-trichloroethane, 1,1-dichloroethylene, trichloroethylene, and fecal coliform bacteria. Water samples were examined for the presence of enteric bacteria (fecal coliform and fecal streptococcus) at 46 sites throughout the Withers Swash Basin and 5 sites on the beach and in the Atlantic Ocean. Water samples were collected just upstream from all confluences in order to determine sources of bacterial contamination. Temporally and spatially high concentrations of enteric bacteria were detected throughout the Withers Swash Basin; however, these sporadic bacteria concentrations made it difficult to determine a single source of the contamination. These enteric bacteria concentrations are probably derived from a number of sources in the basin including septic tanks, garbage containers, and the feces of waterfowl and domestic animals.
Survival of fecal coliforms in dry-composting toilets.
Redlinger, T; Graham, J; Corella-Barud, V; Avitia, R
2001-09-01
The dry-composting toilet, which uses neither water nor sewage infrastructure, is a practical solution in areas with inadequate sewage disposal and where water is limited. These systems are becoming increasingly popular and are promoted to sanitize human excreta and to recycle them into fertilizer for nonedible plants, yet there are few data on the safety of this technology. This study analyzed fecal coliform reduction in approximately 90 prefabricated, dry-composting toilets (Sistema Integral de Reciclamiento de Desechos Orgánicos [SIRDOs]) that were installed on the U.S.-Mexico border in Ciudad Juárez, Chihuahua, Mexico. The purpose of this study was to determine fecal coliform reduction over time and the most probable method of this reduction. Biosolid waste samples were collected and analyzed at approximately 3 and 6 months and were classified based on U.S. Environmental Protection Agency standards. Results showed that class A compost (high grade) was present in only 35.8% of SIRDOs after 6 months. The primary mechanism for fecal coliform reduction was found to be desiccation rather than biodegradation. There was a significant correlation (P = 0.008) between classification rating and percent moisture categories of the biosolid samples: drier samples had a greater proportion of class A samples. Solar exposure was critical for maximal class A biosolid end products (P = 0.001). This study only addressed fecal coliforms as an indicator organism, and further research is necessary to determine the safety of composting toilets with respect to other pathogenic microorganisms, some of which are more resistant to desiccation.
Bacteriology of Dehydrated Space Foods 1
Powers, Edmund M.; Ay, Carl; El-Bisi, Hamed M.; Rowley, Durwood B.
1971-01-01
The initial bacteriological requirement established in 1964 for space foods by the U.S. Army Natick Laboratories are: a total aerobic plate count (≤ 10,000 per g), a total coliform count (≤ 10 per g), fecal coliforms (negative per gram), fecal streptococci (≤ 20 per g), coagulase-positive staphylococci (negative in 5 g) and salmonellae (negative in 10 g). Of the space foods and prototypes tested during 1968 and 1969, 93% complied with the total aerobic plate count, 98% had less than 1 coliform per g, and 99% were negative for fecal coliforms; 88% complied with the streptococci requirement; 100 and 98% were negative for staphylococci and salmonellae, respectively. Nineteen food samples which did not comply (as indicated parenthetically by actual counts per gram) with the requirements were (i) total aerobic plate count: beef soup and gravy base (18,000), chicken soup and gravy base (57,000), spaghetti with meat sauce (12,100 and 14,000), sugared coffee (> 300,000), chocolate ice cream cubes (20,000), and each of four samples of chocolate candy (12,000 to 61,000); (ii) coliforms: two out of three vanilla milk drinks (16 and 127) and one beef hash bar (14); (iii) fecal coliforms: one sample of chicken soup and gravy base positive; (iv) fecal streptococci: two samples of peanut cubes (40 and 108), coconut cubes (75), chicken soup and gravy base (2,650), beef soup and gravy base (33), and five out of six flavored milk drinks (23 to 300); (v) salmonellae: one each of chicken and beef soup and gravy base were positive. Images PMID:4940878
Quantitative Real-Time PCR Fecal Source Identification in the ...
Rivers in the Tillamook Basin play a vital role in supporting a thriving dairy and cheese-making industry, as well as providing a safe water resource for local human and wildlife populations. Historical concentrations of fecal bacteria in these waters are at times too high to allow for safe use leading to economic loss, endangerment of local wildlife, and poor conditions for recreational use. In this study, we employ host-associated qPCR methods for human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), cattle (CowM2 and CowM3), canine (DG3 and DG37), and avian (GFD) fecal pollution combined with high-resolution geographic information system (GIS) land use data and general indicator bacteria measurements to elucidatewater quality spatial and temporal trends. Water samples (n=584) were collected over a 1-year period at 29 sites along the Trask, Kilchis, and Tillamook rivers and tributaries (Tillamook Basin, OR). A total of 16.6% of samples (n=97) yielded E. coli levels considered impaired based on Oregon Department of Environmental Quality bacteria criteria (406 MPN/100mL). Hostassociated genetic indicators were detected at frequencies of 39.2% (HF183/BacR287), 16.3% (HumM2), 74.6% (Rum2Bac), 13.0% (CowM2), 26.7% (CowM3), 19.8% (DG3), 3.2% (DG37), and 53.4% (GFD) across all water samples (n=584). Seasonal trends in avian, cattle, and human fecal pollution sources were evident over the study area. On a sample site basis, quantitative fecal source identification and
Survival of Fecal Coliforms in Dry-Composting Toilets
Redlinger, Thomas; Graham, Jay; Corella-Barud, Verónica; Avitia, Raquel
2001-01-01
The dry-composting toilet, which uses neither water nor sewage infrastructure, is a practical solution in areas with inadequate sewage disposal and where water is limited. These systems are becoming increasingly popular and are promoted to sanitize human excreta and to recycle them into fertilizer for nonedible plants, yet there are few data on the safety of this technology. This study analyzed fecal coliform reduction in approximately 90 prefabricated, dry-composting toilets (Sistema Integral de Reciclamiento de Desechos Orgánicos [SIRDOs]) that were installed on the U.S.-Mexico border in Ciudad Juárez, Chihuahua, Mexico. The purpose of this study was to determine fecal coliform reduction over time and the most probable method of this reduction. Biosolid waste samples were collected and analyzed at approximately 3 and 6 months and were classified based on U.S. Environmental Protection Agency standards. Results showed that class A compost (high grade) was present in only 35.8% of SIRDOs after 6 months. The primary mechanism for fecal coliform reduction was found to be desiccation rather than biodegradation. There was a significant correlation (P = 0.008) between classification rating and percent moisture categories of the biosolid samples: drier samples had a greater proportion of class A samples. Solar exposure was critical for maximal class A biosolid end products (P = 0.001). This study only addressed fecal coliforms as an indicator organism, and further research is necessary to determine the safety of composting toilets with respect to other pathogenic microorganisms, some of which are more resistant to desiccation. PMID:11526002
Depletion of Stercobilin in Fecal Matter from a Mouse Model of Autism Spectrum Disorders
Sekera, Emily R.; Rudolph, Heather L.; Carro, Stephen D.; Morales, Michael J.; Bett, Glenna C. L.; Rasmusson, Randall L.; Wood, Troy D.
2017-01-01
Introduction Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders lacking a clinical biomarker for diagnosis. Emerging evidence shows that intestinal microflora from ASD subjects can be distinguished from controls, suggesting metabolite differences due to the action of intestinal microbes may provide a means for identifying potential biomarkers for ASD. Objectives The aim of this study was to determine if quantitative differences in levels of stercobilin and stercobilinogen, metabolites produced by biological action of intestinal microflora, exist in the fecal matter between an ASD mouse model population and controls. Methods Pairs of fecal samples were collected from two mouse groups, an ASD model group with Timothy syndrome 2 (TS2-NEO) and a gender-matched control group. After centrifugation, supernatant was spiked with an 18O-labeled stercobilin isotopomer and subjected to solid phase extraction for processing. Extracted samples were spotted on a stainless steel plate and subjected to matrix-assisted laser desorption and ionization mass spectrometry using dihydroxybenzoic acid as the matrix (n = 5). Peak areas for bilins and 18O-stercobilin isotopomers were determined in each fecal sample. Results A 40–45% depletion in stercobilin in TS2-NEO fecal samples compared with controls was observed with p < 0.05; a less dramatic depletion was observed for stercobilinogen. Conclusions The results show that stercobilin depletion in feces is observed for an ASD mouse model vs. controls. This may help to explain recent observations of a less diverse microbiome in humans with ASD and may prove helpful in developing a clinical ASD biomarker. PMID:29147105
Jennelle, Christopher S; Carstensen, Michelle; Hildebrand, Erik C; Cornicelli, Louis; Wolf, Paul; Grear, Daniel A; Ip, Hon S; Vandalen, Kaci K; Minicucci, Larissa A
2016-07-01
In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To understand the potential role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9-June 4, 2015. HPAIV was isolated from a Cooper's hawk but not from waterfowl fecal samples.
Notes on the Diet of Reproductively Active Male Rafinesque's Big Eared Bats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzel, M.A.; Carter, T.C.; Menzel, J.M.
Diet examination through the use of fecal samples, of five reproductively active male Rafinesque's big-eared bats from the Upper Coastal Plain of South Carolina during August and September 1999. Diets of these individuals in upland pine stands were similar to diets of Rafinesque's big-eared bats in bottomland and upland hardwood habitats. Although fecal samples had three insect orders, the diet consisted primarily of lepidopterans.
Human Parvovirus 4 in Nasal and Fecal Specimens from Children, Ghana
Drexler, Jan Felix; Reber, Ulrike; Muth, Doreen; Herzog, Petra; Annan, Augustina; Ebach, Fabian; Sarpong, Nimarko; Acquah, Samuel; Adlkofer, Julia; Adu-Sarkodie, Yaw; Panning, Marcus; Tannich, Egbert; May, Jürgen; Drosten, Christian
2012-01-01
Nonparenteral transmission might contribute to human parvovirus 4 (PARV4) infections in sub-Saharan Africa. PARV4 DNA was detected in 8 (0.83%) of 961 nasal samples and 5 (0.53%) of 943 fecal samples from 1,904 children in Ghana. Virus concentrations ≤6–7 log10 copies/mL suggest respiratory or fecal–oral modes of PARV4 transmission. PMID:23018024
Weese, J Scott; Jalali, Mohammad
2014-09-30
Evaluation of factors that might impact microbiota assessment is important to avoid spurious results, particularly in field and multicenter studies where sample collection may occur distant from the laboratory. This study evaluated the impact of refrigeration on next generation sequence-based assessment of the canine and feline fecal microbiota. Fecal samples were collected from seven dogs and ten cats, and analysed at baseline and after 3, 7, 10 and 14 days of storage at 4°C. There were no differences in community membership or population structure between timepoints for either dogs or cats, nor were there any differences in richness, diversity and evenness. There were few differences in relative abundance of phyla or predominant genera, with the only differences being significant increases in Actinobacteria between Days 0-14 (P = 0.0184) and 1-14 (P = 0.0182) for canine samples, and a decrease in Erysipelotrichaceae incertae sedis between Day 0 and Day 7 (median 4.9 vs 2.2%, P = 0.046) in feline samples. Storage for at least 14 days at 4°C has limited impact on culture-independent assessment of the canine and feline fecal microbiota, although changes in some individual groups may occur.
Kennedy, Rebekah C; Fling, Russell R; Terry, Paul D; Menn, Fu-Min; Chen, Jiangang; Borman, Christopher J
2015-07-15
Triclocarban (3,4,4'-Trichlorocarbanilide; TCC) in the environment has been well documented. Methods have been developed to monitor TCC levels from various matrices including water, sediment, biosolids, plants, blood and urine; however, no method has been developed to document the concentration of TCC in fecal content after oral exposure in animal studies. In the present study, we developed and validated a method that uses liquid extraction coupled with HPLC-MS/MS determination to measure TCC in feces. The limit of detection and limit of quantitation in control rats without TCC exposure was 69.0 ng/g and 92.9 ng/g of feces, respectively. The base levels of TCC in feces were lower than LOD. At 12 days of treatment, the fecal TCC concentration increased to 2220 µg/g among 0.2% w/w exposed animals. The concentration in fecal samples decreased over the washout period in 0.2% w/w treated animals to 0.399 µ/g feces after exposure was removed for 28 days. This method required a small amount of sample (0.1 g) with simple sample preparation. Given its sensitivity and efficiency, this method may be useful for monitoring TCC exposure in toxicological studies of animals.
Fecal water genotoxicity in healthy free-living young Italian people.
Daniela, Erba; Sara, Soldi; Marcella, Malavolti; Giovanni, Aragone; Meynier, Alexandra; Sophie, Vinoy; Cristina, Casiraghi M
2014-02-01
Dietary habit affects the composition of human feces thus determining intestinal environment and exposure of colon mucosa to risk factors. Fecal water (FW) citotoxicity and genotoxicity were investigated in 33 healthy young Italian people, as well as the relationship between genotoxicity and nutrient intake or microflora composition. Two fecal samples were collected at 2 weeks apart and 3-d dietary diary was recorded for each volunteer. Cytotoxicity was measured using the Trypan Blue Dye Exclusion assay and genotoxicity using the Comet Assay (alkaline single-cell electrophoresis). Fecal bifidobacteria, total microbial count and nutrient intakes were also assessed. High intra- and inter-variability in genotoxicity data and in bacteria counts were found. None of the FW samples were citotoxic, but 90% of FW samples were genotoxic. Seventy five percent indicated intermediate and 15% were highly genotoxic. There was a different sex-related distribution. Genotoxicity was positively correlated to the total lipid intake in females and to the bifidobacteria/total bacteria count ratio in male volunteers. These results demonstrate that the majority of FW samples isolated from free-living Italian people show intermediate level of genotoxicity and sustain a relation between this possible non-invasive marker of colorectal cancer risk with both dietary habits and colonic ecosystem. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rojas, Alicia; Segev, Gilad; Markovics, Alex; Aroch, Itamar; Baneth, Gad
2017-09-19
Spirocerca lupi, the dog oesophageal nematode, causes a potentially fatal disease in domestic dogs, and is currently clinically diagnosed by coproscopy and oesophagoscopy. To date, a single molecular method, a semi-nested PCR, targeting the cox1 gene, has been developed to aid in the diagnosis of spirocercosis. The present study describes three novel high-resolution melt (HRM) quantitative PCR (qPCR) assays targeting fragments of the ITS1, 18S and cytb loci of S. lupi. The performance of these molecular assays in feces was compared to fecal flotation and to the previously described cox1 gene semi-nested PCR in 18 fecal samples from dogs with clinical oesophageal spirocercosis diagnosed by oesophagoscopy. The HRM qPCR for ITS1 and 18S were both able to detect 0.2 S. lupi eggs per gram (epg), while the HRM qPCR for the cytb and the semi-nested PCR for the cox1 detected 6 epg and 526 epg, respectively. Spirocerca lupi was detected in 61.1%, 44.4%, 27.8%, 11.1% and 5.6% of the fecal samples of dogs diagnosed with spirocercosis by using the ITS1 and 18S HRM qPCR assays, fecal flotation, cytb HRM qPCR and cox1 semi-nested PCR, respectively. All dogs positive by fecal flotation were also positive by ITS1 and 18S HRM qPCRs. Quantification of S. lupi eggs was successfully achieved in the HRM qPCRs and compared to the fecal flotation with no significant difference in the calculated concentrations between the HRM qPCRs that detected the 18S and ITS1 loci and the fecal flotation. The HRM qPCR for the 18S cross-amplified DNA from Toxocara canis and Toxascaris leonina. In contrast, the HRM qPCR for ITS1 did not cross-amplify DNA from other canine gastrointestinal parasites. This study presents two new molecular assays with significantly increased sensitivity for confirming and quantifying fecal S. lupi eggs. Of these, the HRM qPCR for ITS1 showed the best performance in terms of the limit of detection and absence of cross-amplification with other parasites. These assays will be useful in detecting infection and for follow-up during therapy.
Impact of exercise on fecal and cecal metabolome over aging: a longitudinal study in rats.
Deda, Olga; Gika, Helen; Panagoulis, Theodoros; Taitzoglou, Ioannis; Raikos, Nikolaos; Theodoridis, Georgios
2017-01-01
Physical exercise can reduce adverse conditions during aging, while both exercise and aging act as metabolism modifiers. The present study investigates rat fecal and cecal metabolome alterations derived from exercise during rats' lifespan. Groups of rats trained life-long or for a specific period of time were under study. The training protocol consisted of swimming, 15-18 min per day, 3-5 days per week, with load of 4-0% of rat's weight. Fecal samples and cecal extracts were analyzed by targeted and untargeted metabolic profiling methods (GC-MS and LC-MS/MS). Effects of exercise and aging on the rats' fecal and cecal metabolome were observed. Fecal and cecal metabolomics are a promising field to investigate exercise biochemistry and age-related alterations.
Beauvais, Wendy; Gart, Elena V; Bean, Melissa; Blanco, Anthony; Wilsey, Jennifer; McWhinney, Kallie; Bryan, Laura; Krath, Mary; Yang, Ching-Yuan; Manriquez Alvarez, Diego; Paudyal, Sushil; Bryan, Kelsey; Stewart, Samantha; Cook, Peter W; Lahodny, Glenn; Baumgarten, Karina; Gautam, Raju; Nightingale, Kendra; Lawhon, Sara D; Pinedo, Pablo; Ivanek, Renata
2018-01-01
Escherichia coli O157:H7 fecal shedding in feedlot cattle is common and is a public health concern due to the risk of foodborne transmission that can result in severe, or even fatal, disease in people. Despite a large body of research, few practical and cost-effective farm-level interventions have been identified. In this study, a randomized controlled trial was conducted to assess the effect of reducing the level of water in automatically refilling water-troughs on fecal shedding of E. coli O157:H7 in feedlot cattle. Pens in a feedlot in the Texas Panhandle were randomly allocated as control (total number: 17) or intervention (total number: 18) pens. Fecal samples (2,759 in total) were collected both at baseline and three weeks after the intervention, and tested for the presence of E. coli O157:H7 using immunomagnetic bead separation and selective culture. There was a strong statistical association between sampling date and the likelihood of a fecal sample testing positive for E. coli O157:H7. Pen was also a strong predictor of fecal prevalence. Despite accounting for this high level of clustering, a statistically significant association between reduced water levels in the trough and increased prevalence of E. coli O157:H7 in the feces was observed (Odds Ratio = 1.6; 95% Confidence Interval: 1.2-2.0; Likelihood Ratio Test: p = 0.02). This is the first time that such an association has been reported, and suggests that increasing water-trough levels may be effective in reducing shedding of E. coli O157:H7 in cattle feces, although further work would be needed to test this hypothesis. Controlling E. coli O157:H7 fecal shedding at the pre-harvest level may lead to a reduced burden of human foodborne illness attributed to this pathogen in beef.
Gart, Elena V.; Bean, Melissa; Blanco, Anthony; Wilsey, Jennifer; McWhinney, Kallie; Bryan, Laura; Krath, Mary; Yang, Ching-Yuan; Manriquez Alvarez, Diego; Paudyal, Sushil; Bryan, Kelsey; Stewart, Samantha; Cook, Peter W.; Lahodny, Glenn; Baumgarten, Karina; Gautam, Raju; Nightingale, Kendra; Lawhon, Sara D.; Pinedo, Pablo; Ivanek, Renata
2018-01-01
Escherichia coli O157:H7 fecal shedding in feedlot cattle is common and is a public health concern due to the risk of foodborne transmission that can result in severe, or even fatal, disease in people. Despite a large body of research, few practical and cost-effective farm-level interventions have been identified. In this study, a randomized controlled trial was conducted to assess the effect of reducing the level of water in automatically refilling water-troughs on fecal shedding of E. coli O157:H7 in feedlot cattle. Pens in a feedlot in the Texas Panhandle were randomly allocated as control (total number: 17) or intervention (total number: 18) pens. Fecal samples (2,759 in total) were collected both at baseline and three weeks after the intervention, and tested for the presence of E. coli O157:H7 using immunomagnetic bead separation and selective culture. There was a strong statistical association between sampling date and the likelihood of a fecal sample testing positive for E. coli O157:H7. Pen was also a strong predictor of fecal prevalence. Despite accounting for this high level of clustering, a statistically significant association between reduced water levels in the trough and increased prevalence of E. coli O157:H7 in the feces was observed (Odds Ratio = 1.6; 95% Confidence Interval: 1.2–2.0; Likelihood Ratio Test: p = 0.02). This is the first time that such an association has been reported, and suggests that increasing water-trough levels may be effective in reducing shedding of E. coli O157:H7 in cattle feces, although further work would be needed to test this hypothesis. Controlling E. coli O157:H7 fecal shedding at the pre-harvest level may lead to a reduced burden of human foodborne illness attributed to this pathogen in beef. PMID:29414986
Stoeckel, Donald M; Stelzer, Erin A; Stogner, Robert W; Mau, David P
2011-05-01
Protocols for microbial source tracking of fecal contamination generally are able to identify when a source of contamination is present, but thus far have been unable to evaluate what portion of fecal-indicator bacteria (FIB) came from various sources. A mathematical approach to estimate relative amounts of FIB, such as Escherichia coli, from various sources based on the concentration and distribution of microbial source tracking markers in feces was developed. The approach was tested using dilute fecal suspensions, then applied as part of an analytical suite to a contaminated headwater stream in the Rocky Mountains (Upper Fountain Creek, Colorado). In one single-source fecal suspension, a source that was not present could not be excluded because of incomplete marker specificity; however, human and ruminant sources were detected whenever they were present. In the mixed-feces suspension (pet and human), the minority contributor (human) was detected at a concentration low enough to preclude human contamination as the dominant source of E. coli to the sample. Without the semi-quantitative approach described, simple detects of human-associated marker in stream samples would have provided inaccurate evidence that human contamination was a major source of E. coli to the stream. In samples from Upper Fountain Creek the pattern of E. coli, general and host-associated microbial source tracking markers, nutrients, and wastewater-associated chemical detections--augmented with local observations and land-use patterns--indicated that, contrary to expectations, birds rather than humans or ruminants were the predominant source of fecal contamination to Upper Fountain Creek. This new approach to E. coli allocation, validated by a controlled study and tested by application in a relatively simple setting, represents a widely applicable step forward in the field of microbial source tracking of fecal contamination. Copyright © 2011 Elsevier Ltd. All rights reserved.
Davis, Jerri V.; Richards, Joseph M.
2002-01-01
In 1998, an 8-mile reach of the Jacks Fork was included on Missouri?s list of impaired waters as required by Section 303(d) of the Federal Clean Water Act. The identified pollutant on the Jacks Fork was fecal coliform bacteria. Potential sources of fecal contamination to the Jacks Fork include a wastewater treatment plant; campground pit-toilet or septic-system effluent; a large commercial, cross-country horseback trail riding facility; canoeists, boaters, and tubers; and cows.The U.S. Geological Survey, in cooperation with the National Park Service, conducted a study to better understand the extent and sources of microbiological contamination within the Jacks Fork from Alley Spring to the mouth, which includes the 8-mile 303(d) reach. Identification of the sources would provide the National Park Service and the State of Missouri with the information needed to craft a solution of abatement, regulation, prevention, and mitigation with the end result being the removal of the Jacks Fork from the 303(d) list. Fifteen sites were sampled from November 1999 through December 2000. An additional site was sampled one time. Samples were collected mostly during base-flow conditions during a variety of nonrecreational and recreational season river uses. Samples were analyzed for selected fecal indicator bacteria, physical properties, nutrients, and wastewater organic compounds. During the sampling period, the whole-body-contact recreation standard for fecal coliform (200 colonies per 100 milliliters of sample) was exceeded at three sites on August 10, 2000, and also at one site on May 11, June 7, and October 3, 2000. Fecal coliform densities and instantaneous loads generally increased from background concentrations at the Eminence site, peaked about 2 river miles downstream, and then decreased until the most downstream site sampled. Generally, the largest densities and loads at sites downstream from Eminence not related to wet-weather flow were observed during a trail ride held August 6 to12, 2000. A 24-hour sample collection effort was conducted the weekend of July 15 and 16, 2000, to investigate the effect that large numbers of swimmers, canoeists, and tubers had on fecal coliform densities in the Jacks Fork. Five or six samples were collected at six sites between Saturday morning and the following Sunday afternoon. No fecal coliform density at any of the sites sampled exceeded the whole-body-contact recreation standard. Because bacteria survive longer in stream-bed sediments than in water, a source of bacteria in the water column could be from resuspension of accumulated bacteria from streambed sediments. Water and streambed-sediment samples were collected at three sites on August 3, 2000, 1 week before a trail ride and again at three sites on 2 Assessment of Possible Sources of Microbiological Contamination of the Jacks Fork, Missouri?Phase II August 8, 2000, during a trail ride. Results indicate that fecal coliform bacteria densities increased substantially in the streambed sediment and the water column during the trail ride.Sixty-five Escherichia coli isolates obtained from water samples collected at 9 sites and 23 Escherichia coli isolates obtained from stream-bed-sediment samples collected at 5 sites were submitted for ribotyping analysis. Samples were collected in 2000 during a variety of nonrecreational and recreational season river uses, including trail rides, canoeing, tubing, and swimming. Of the 65 isolates from water samples, 40 percent were identified as originating from sewage, 29 percent from horse, 11 percent from cow, and 20 percent from an unknown source. Of the 23 isolates from streambed-sediment samples, 39 percent were identified as originating from sewage, 35 percent from horse, 13 percent from cow, and 13 percent from unknown sources.Analysis of physical property (dissolved oxygen, pH, specific conductance, and temperature) and nutrient (dissolved nitrite plus nitrate and total phosphorus) data
The influence of serial fecal sampling on the diagnosis of giardiasis in humans, dogs, and cats.
Uchôa, Flávia Fernandes de Mendonça; Sudré, Adriana Pittella; Macieira, Daniel de Barros; Almosny, Nádia Regina Pereira
2017-08-24
Giardia infection is a common clinical problem in humans and pets. The diagnosis of giardiasis is challenging as hosts intermittently excrete protozoan cysts in their feces. In the present study, we comparatively evaluated two methods of serial fecal sampling in humans, dogs, and cats from Rio de Janeiro, Brazil. The Faust et al. technique was used to examine fecal specimens collected in triplicate from 133 patients (52 humans, 60 dogs, and 21 cats). Specimens from 74 patients were received from the group assigned to carry out sampling on consecutive days - 34 humans, 35 dogs, and 5 cats, and specimens from 59 patients were received from the group assigned to carry out sampling on non-consecutive, separate days - 18 human beings, 25 dogs, and 16 cats. G. duodenalis cysts were found in stools of 30 individuals. Multiple stool sampling resulted in an increase in the number of samples that were positive for Giardia in both groups. The authors therefore conclude that multiple stool sampling increases the sensitivity of the Faust et al . technique to detect G. duodenalis cysts in samples from humans, cats and dogs.
ENHANCED CONCENTRATION AND ISOLATION OF CYCLOSPORA CAYETANENSIS OOCYSTS FROM HUMAN FECAL SAMPLES
Cyclospora cayetanensis is the causative agent of cyclosporiasis, an emerging infections disease. A new method for the purification of Cycloposra cayetanensis oocysts from fecal matter has been developed, using a modified detachment solution and a Renocal-sucrose gradient sedimen...
Cahoon, Lawrence B; Hales, Jason C; Carey, Erin S; Loucaides, Socratis; Rowland, Kevin R; Toothman, Byron R
2016-02-01
Fecal contamination of surface waters is a significant problem, particularly in rapidly developing coastal watersheds. Data from a water quality monitoring program in southwest Brunswick County, North Carolina, gathered in support of a regional wastewater and stormwater management program were used to examine likely modes and sources of fecal contamination. Sampling was conducted at 42 locations at 3-4-week intervals between 1996 and 2003, including streams, ponds, and estuarine waters in a variety of land use settings. Expected fecal sources included human wastewater systems (on-site and central), stormwater runoff, and direct deposition by animals. Fecal coliform levels were positively associated with rainfall measures, but frequent high fecal coliform concentrations at times of no rain indicated other modes of contamination as well. Fecal coliform levels were also positively associated with silicate levels, a groundwater source signal, indicating that flux of fecal-contaminated groundwater was a mode of contamination, potentially elevating FC levels in impacted waters independent of stormwater runoff. Fecal contamination by failing septic or sewer systems at many locations was significant and in addition to effects of stormwater runoff. Rainfall was also linked to fecal contamination by central sewage treatment system failures. These results highlight the importance of considering multiple modes of water pollution and different ways in which human activities cause water quality degradation. Management of water quality in coastal regions must therefore recognize diverse drivers of fecal contamination to surface waters.
Fecal calprotectin concentrations in adult dogs with chronic diarrhea.
Grellet, Aurélien; Heilmann, Romy M; Lecoindre, Patrick; Feugier, Alexandre; Day, Michael J; Peeters, Dominique; Freiche, Valérie; Hernandez, Juan; Grandjean, Dominique; Suchodolski, Jan S; Steiner, Jorg M
2013-05-01
To evaluate fecal calprotectin concentrations in healthy dogs and dogs with chronic diarrhea, to identify cutoff values for fecal calprotectin concentrations for use in differentiating dogs with chronic diarrhea and a canine chronic enteropathy clinical activity index (CCECAI) < 12 from dogs with chronic diarrhea and a CCECAI ≥ 12, and to evaluate the association between histologic evidence of intestinal mucosal changes and fecal calprotectin concentrations in dogs with chronic diarrhea. Fecal samples from 96 adult dogs (27 dogs with chronic diarrhea and 69 healthy control dogs). Severity of clinical signs was evaluated on the basis of the CCECAI scoring system. Endoscopy was performed in all dogs with chronic diarrhea, and mucosal biopsy specimens were evaluated histologically. Fecal calprotectin concentration was quantified via radioimmunoassay. Fecal calprotectin concentrations were significantly higher in dogs with chronic diarrhea than in healthy control dogs. Fecal calprotectin concentrations were also significantly higher in dogs with a CCECAI ≥ 12, compared with concentrations for dogs with a CCECAI between 4 and 11. Fecal calprotectin concentrations were significantly higher in dogs with chronic diarrhea associated with histologic lesions, compared with concentrations in control dogs, and were significantly correlated with the severity of histologic intestinal lesions. Among dogs with chronic diarrhea, the best cutoff fecal calprotectin concentration for predicting a CCECAI ≥ 12 was 48.9 μg/g (sensitivity, 53.3%; specificity, 91.7%). Fecal calprotectin may be a useful biomarker in dogs with chronic diarrhea, especially dogs with histologic lesions.
A case study characterizing animal fecal sources in surface water using a mitochondrial DNA marker.
Bucci, John P; Shattuck, Michelle D; Aytur, Semra A; Carey, Richard; McDowell, William H
2017-08-01
Water quality impairment by fecal waste in coastal watersheds is a public health issue. The present study provided evidence for the use of a mitochondrial (mtDNA) marker to detect animal fecal sources in surface water. The accurate identification of fecal pollution is based on the notion that fecal microorganisms preferentially inhabit a host animal's gut environment. In contrast, mtDNA host-specific markers are inherent to eukaryotic host cells, which offers the advantage by detecting DNA from the host rather than its fecal bacteria. The present study focused on sampling water presumably from non-point sources (NPS), which can increase bacterial and nitrogen concentrations to receiving water bodies. Stream sampling sites located within the Piscataqua River Watershed (PRW), New Hampshire, USA, were sampled from a range of sites that experienced nitrogen inputs such as sewer and septic systems and suburban runoff. Three mitochondrial (mtDNA) gene marker assays (human, bovine, and canine) were tested from surface water. Nineteen sites were sampled during an 18-month period. Analyses of the combined single and multiplex assay results showed that the proportion of occurrence was highest for bovine (15.6%; n = 77) compared to canine (5.6%; n = 70) and human (5.7%; n = 107) mtDNA gene markers. For the human mtDNA marker, there was a statistically significant relationship between presence vs. absence and land use (Fisher's test p = 0.0031). This result was evident particularly for rural suburban septic, which showed the highest proportion of presence (19.2%) compared to the urban sewered (3.3%), suburban sewered (0%), and agricultural (0%) as well as forested septic (0%) sites. Although further testing across varied land use is needed, our study provides evidence for using the mtDNA marker in large watersheds.
Opiyo, Stephen O.; Digianantonio, Rose; Williams, Michele L.; Wijeratne, Asela; Habing, Gregory
2018-01-01
Non-typhoidal Salmonella enterica is a zoonotic pathogen with critical importance in animal and public health. The persistence of Salmonella on farms affects animal productivity and health, and represents a risk for food safety. The intestinal microbiota plays a fundamental role in the colonization and invasion of this ubiquitous microorganism. To overcome the colonization resistance imparted by the gut microbiome, Salmonella uses invasion strategies and the host inflammatory response to survive, proliferate, and establish infections with diverse clinical manifestations. Cattle serve as reservoirs of Salmonella, and periparturient cows have high prevalence of Salmonella shedding; however, little is known about the association between the gut microbiome and the onset of Salmonella shedding during the periparturient period. Thus, the objective of this study was to assess the association between changes in bacterial communities and the onset of Salmonella shedding in cattle approaching parturition. In a prospective cohort study, fecal samples from 98 dairy cows originating from four different farms were collected at four time points relative to calving (-3 wks, -1 wk, +1 wk, +3 wks). All 392 samples were cultured for Salmonella. Sequencing of the V4 region of the 16S rRNA gene using the Illumina platform was completed to evaluate the fecal microbiome in a selected sample subset. Analyses of microbial composition, diversity, and structure were performed according to time points, farm, and Salmonella onset status. Individual cow fecal microbiomes, predominated by Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria phyla, significantly changed before and after parturition. Microbial communities from different farms were distinguishable based on multivariate analysis. Although there were significant differences in some bacterial taxa between Salmonella positive and negative samples, our results did not identify differences in the fecal microbial diversity or structure for cows with and without the onset of Salmonella shedding. These data suggest that determinants other than the significant changes in the fecal microbiome influence the periparturient onset of Salmonella shedding in dairy cattle. PMID:29750790
The presence and near-shore transport of human fecal pollution in Lake Michigan beaches
Molloy, S.L.; Liu, L.B.; Phanikumar, M.S.; Jenkins, T.M.; Wong, M.V.; Rose, J.B.; Whitman, R.L.; Shively, D.A.; Nevers, M.B.
2005-01-01
The Great Lakes are a source of water for municipal, agricultural and industrial use, and support significant recreation, commercial and sport fishing industries. Every year millions of people visit the 500 plus recreational beaches in the Great Lakes. An increasing public health risk has been suggested with increased evidence of fecal contamination at the shoreline. To investigate the transport and fate of fecal pollution at Great Lakes beaches and the health risk associated with swimming at these beaches, the near-shore waters of Mt Baldy Beach, Lake Michigan and Trail Creek, a tributary discharging into the lake were examined for fecal pollution indicators. A model of surf zone hydrodynamics coupled with a transport model with first-order inactivation of pollutant was used to understand the relative importance of different processes operating in the surf zone (e.g. physical versus biological processes). The Enterococcus human fecal pollution marker, which targets a putative virulence factor, the enterococcal surface protein (esp) in Enterococcus faecium, was detected in 2/28 samples (7%) from the tributaries draining into Lake Michigan and in 6/30 samples (20%) from Lake Michigan beaches. Preliminary analysis suggests that the majority of fecal indicator bactateria variation and water quality changes at the beaches can be explained by inputs from the influential stream and hydrometeorological conditions. Using modeling methods to predict impaired water quality may help reduce potential health threats to recreational visitors.
Ciçek, Mutalip; Körkoca, Hanifi; Gül, Abdurrahman
2008-01-01
This study was carried out in order to investigate the prevalence of Cryptosporidium sp. in slaughtered animals and workers of the Van municipality slaughterhouse in Van. Animals slaughtered at different times and workers who had been working in different departments of the slaughter house were included in the study for three months. A total of 309 fecal specimens from animals including 167 sheep, 56 goats and 86 cattle and 87 fecal specimens from workers were examined for Cryptosporidium sp. oocysts. In slaughtered animals, the modified acid-fast staining method was used to determine the oocysts of Cryptosporidium sp. The fecal samples of slaughter workers were examined by using RIDA (R) Quick Cryptosporidium Strip Test (R-Biopharm, Germany) and the modified acid-fast staining method. Fecal samples found to be positive by stripe test were also confirmed with the ELISA method (R-Biopharm, Germany). Oocysts of Cryptosporidium sp. were found in fecal specimens of 22 sheep (13.17%), 6 goats (10.71%) and 7 cattle (8.13%). Intestinal parasites were observed in 34 fecal specimens of workers (39.08%). Cryptosporidium sp., Hymenolepis nana, Chilomastix mesnili, Endolimax nana, Iodamoeba bütschlii were found in the specimen of one worker (1.14%), Entamoeba coli in 4 workers (4.59%), Blastocystis hominis (9.19%) in 8 workers, and Giardia intestinalis (19.54%) in 17 workers.
Bauer, Rosalie; Dizer, Halim; Graeber, Ingeborg; Rosenwinkel, Karl-Heinz; López-Pila, Juan M
2011-01-01
The aim of the present study was to estimate the performance of slow sand filtration (SSF) facilities, including the time needed for reaching stabilization (maturation), operated with surface water bearing high fecal contamination, representing realistic conditions of rivers in many emerging countries. Surface water spiked with wastewater was infiltrated at different pore water velocities (PWV) and samples were collected at different migration distances. The samples were analyzed for phages and to a lesser extent for fecal bacteria and enteric adenoviruses. At the PWV of 50 cm/d, at which somatic phages showed highest removal, their mean log(10) removal after 90 cm migration was 3.2. No substantial differences of removal rates were observed at PWVs between 100 and 900 cm/d (2.3 log(10) mean removal). The log(10) mean removal of somatic phages was less than the observed for fecal bacteria and tended more towards that of enteric adenoviruses This makes somatic phages a potentially better process indicator than Escherichia coli for the removal of viruses in SSF. We conclude that SSF, and by inference in larger scale river bank filtration (RBF), is an excellent option as a component in multi-barrier systems for drinking water treatment also in areas where the sources of raw water are considerably fecally polluted, as often found in many emerging countries. Copyright © 2010 Elsevier Ltd. All rights reserved.
Factors Influencing Fecal Contamination in Pond of Bangladesh
NASA Astrophysics Data System (ADS)
Knappett, P. S.; Escamilla, V.; Layton, A.; McKay, L. D.; Emch, M.; Mailloux, B. J.; Williams, D. E.; Huq, M. R.; Alam, M.; Farhana, L.; Ferguson, A. S.; Sayler, G. S.; Ahmed, K.; Serre, M. L.; Akita, Y.; Yunus, M.; van Geen, A.
2010-12-01
Occurrence of diarrheal disease in villages in rural Bangladesh remains relatively common, even though many households have switched to tubewell water for drinking and cooking. One factor contributing to this may be exposure to fecal contamination in ponds, which are often used for bathing and fishing. The objective of this study is to determine the dominant sources of fecal pollution in typical ponds and to explore the relationship between local population, latrine density, latrine quality and concentrations of fecal bacteria and pathogens in pond water. Forty-three ponds were sampled and analyzed for E. coli using culture-based methods and for E. coli, Bacteroides and adenovirus using quantitative PCR. Population and sanitation infrastructure were surveyed and compared to levels of pond fecal contamination. Molecular fecal source tracking using Bacteroides, determined that humans were the dominant source of fecal contamination in 79% of the ponds. Ponds directly receiving latrine effluent had the highest concentrations of fecal indicator bacteria. Concentrations of fecal indicator bacteria correlated with population surveyed within a distance of 30-70 m (p<0.01) and total latrines surveyed within 50-70 m (p<0.05). Unsanitary latrines with visible effluent within the pond drainage basin were also significantly correlated to fecal indicator concentrations (p<0.05). The vast majority of the surveyed ponds contained unsafe levels of fecal contamination primarily due to unsanitary latrines, and to lesser extent to sanitary latrines and cattle. Since the majority of fecal pollution is from humans, use of pond water could help explain the persistence of diarrheal disease in rural Bangladesh.
Van Donsel, Dale J.; Geldreich, Edwin E.; Clarke, Norman A.
1967-01-01
Survival of a fecal coliform (Escherichia coli) and a fecal streptococcus (Streptococcus faecalis var. liquifaciens) was studied through several years at shaded and exposed outdoor soil plots. Death rates for both organisms were calculated for the different seasons at both sites. The 90% reduction times for the fecal coliform ranged from 3.3 days in summer to 13.4 days in autumn. For the fecal streptococcus, 90% reduction times were from 2.7 days in summer to 20.1 days in winter. During summer, the fecal coliform survived slightly longer than the fecal streptococcus; during autumn, survival was the same; and in spring and winter the fecal streptococcus survived much longer than the fecal coliform. Both organisms were isolated from storm-water runoff collected below a sampling site when counts were sufficiently high in soil. Isolation was more frequent during prolonged rains, lasting up to 10 days, than during short rain storms. There was evidence of aftergrowth of nonfecal coliforms in the soil as a result of temperature and rainfall variations. Such aftergrowth may contribute to variations in bacterial count of storm-water runoff which have no relation to the sanitary history of the drainage area. PMID:16349746
Silvestre, Thiago; Zanetti, Eveline S; Duarte, José M B; Barriento, Fernando G; Hirano, Zelinda M B; Souza, Júlio C; Passos, Fernando C
2017-01-01
The ovarian cycle in howler monkeys (genus Alouatta) has beean investigated through several biological parameters (ranging between 16.3 and 29.5 days); however, no data exist concerning the ovarian activity of the southern brown howler monkey (Alouatta guariba clamitans). This study aimed to describe the ovarian cycle of A. g. clamitans by profiling fecal progestin concentrations. Over 20 weeks, fecal samples of eight captive adult females of A. g. clamitans were collected. The collections were made at dawn, 5 days a week, and the samples were frozen immediately following collection. Next, they were dried, pulverized and hormonal metabolites were extracted to determine progestin concentrations by enzyme immunoassay. Of the 758 samples tested, the mean concentration of fecal progestins was 2866.40 ± 470.03 ng/g of dry feces, while the mean concentration at baseline was 814.47 ± 164.36 ng/g of dry feces. Among the eight females, one showed no ovarian cyclicity and three presented periods of probable absence of cyclicity and low progestin concentrations. A mean duration of 16 ± 0.52 days was observed for the 35 cycles studied. The interluteal phase lasted 4 ± 0.37 days on average, with a mean concentration of fecal progestins of 467.98 ± 29.12 ng/g of dry feces, while the luteal phase lasted 11 ± 0.50 days, with a mean concentration of 4283.27 ± 193.31 ng/g of dry feces. Besides describing the characteristics of the ovarian cycle, possible causes for the low concentrations of fecal progestins and periods of absence of cyclicity are also discussed.
Di Cagno, Raffaella; Rizzello, Carlo G; Gagliardi, Francesca; Ricciuti, Patrizia; Ndagijimana, Maurice; Francavilla, Ruggiero; Guerzoni, M Elisabetta; Crecchio, Carmine; Gobbetti, Marco; De Angelis, Maria
2009-06-01
This study aimed at investigating the fecal microbiotas of children with celiac disease (CD) before (U-CD) and after (T-CD) they were fed a gluten-free diet and of healthy children (HC). Brothers or sisters of T-CD were enrolled as HC. Each group consisted of seven children. PCR-denaturing gradient gel electrophoresis (DGGE) analysis with V3 universal primers revealed a unique profile for each fecal sample. PCR-DGGE analysis with group- or genus-specific 16S rRNA gene primers showed that the Lactobacillus community of U-CD changed significantly, while the diversity of the Lactobacillus community of T-CD was quite comparable to that of HC. Compared to HC, the ratio of cultivable lactic acid bacteria and Bifidobacterium to Bacteroides and enterobacteria was lower in T-CD and even lower in U-CD. The percentages of strains identified as lactobacilli differed as follows: HC (ca. 38%) > T-CD (ca. 17%) > U-CD (ca. 10%). Lactobacillus brevis, Lactobacillus rossiae, and Lactobacillus pentosus were identified only in fecal samples from T-CD and HC. Lactobacillus fermentum, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus gasseri were identified only in several fecal samples from HC. Compared to HC, the composition of Bifidobacterium species of T-CD varied, and it varied even more for U-CD. Forty-seven volatile organic compounds (VOCs) belonging to different chemical classes were identified using gas-chromatography mass spectrometry-solid-phase microextraction analysis. The median concentrations varied markedly for HC, T-CD, and U-CD. Overall, the r(2) values for VOC data for brothers and sisters were equal to or lower than those for unrelated HC and T-CD. This study shows the effect of CD pathology on the fecal microbiotas of children.
Leight, Andrew K.; Crump, Byron C.; Hood, Raleigh R.
2018-01-01
Routine monitoring of shellfish growing waters for bacteria indicative of human sewage pollution reveals little about the bacterial communities that co-occur with these indicators. This study investigated the bacterial community, potential pathogens, and fecal indicator bacteria in 40 water samples from a shellfish growing area in the Chesapeake Bay, USA. Bacterial community composition was quantified with deep sequencing of 16S rRNA gene amplicons, and absolute gene abundances were estimated with an internal standard (Thermus thermophilus genomes). Fecal coliforms were quantified by culture, and Vibrio vulnificus and V. parahaemolyticus with quantitative PCR. Fecal coliforms and V. vulnificus were detected in most samples, and a diverse assemblage of potential human pathogens were detected in all samples. These taxa followed two general patterns of abundance. Fecal coliforms and 16S rRNA genes for Enterobacteriaceae, Aeromonas, Arcobacter, Staphylococcus, and Bacteroides increased in abundance after a 1.3-inch rain event in May, and, for some taxa, after smaller rain events later in the season, suggesting that these are allochthonous organisms washed in from land. Clostridiaceae and Mycobacterium 16S rRNA gene abundances increased with day of the year and were not positively related to rainfall, suggesting that these are autochthonous organisms. Other groups followed both patterns, such as Legionella. Fecal coliform abundance did not correlate with most other taxa, but were extremely high following the large rainstorm in May when they co-occurred with a broad range of potential pathogen groups. V. vulnificus were absent during the large rainstorm, and did not correlate with 16S rRNA abundances of Vibrio spp. or most other taxa. These results highlight the complex nature of bacterial communities and the limited utility of using specific bacterial groups as indicators of pathogen presence. PMID:29593669
Hughes, B; Beale, D J; Dennis, P G; Cook, S; Ahmed, W
2017-04-15
Detection of human wastewater contamination in recreational waters is of critical importance to regulators due to the risks posed to public health. To identify such risks, human wastewater-associated microbial source tracking (MST) markers have been developed. At present, however, a greater understanding of the suitability of these markers for the detection of diluted human wastewater in environmental waters is necessary to predict risk. Here, we compared the process limit of detection (PLOD) and process limit of quantification (PLOQ) of six human wastewater-associated MST markers ( Bacteroides HF183 [HF183], Escherichia coli H8 [EC H8], Methanobrevibacter smithii nifH , human adenovirus [HAdV], human polyomavirus [HPyV], and pepper mild mottle virus [PMMoV]) in relation to a fecal indicator bacterium (FIB), Enterococcus sp. 23S rRNA (ENT 23S), and three enteric viruses (human adenovirus serotypes 40/41 [HAdV 40/41], human norovirus [HNoV], and human enterovirus [EV]) in beach water samples seeded with raw and secondary-treated wastewater. Among the six MST markers tested, HF183 was the most sensitive measure of human fecal pollution and was quantifiable up to dilutions of 10 -6 and 10 -4 for beach water samples seeded with raw and secondary-treated wastewater, respectively. Other markers and enteric viruses were detected at various dilutions (10 -1 to 10 -5 ). These MST markers, FIB, and enteric viruses were then quantified in beach water ( n = 12) and sand samples ( n = 12) from South East Queensland (SEQ), Australia, to estimate the levels of human fecal pollution. Of the 12 sites examined, beach water and sand samples from several sites had quantifiable concentrations of HF183 and PMMoV markers. Overall, our results indicate that while HF183 is the most sensitive measure of human fecal pollution, it should be used in conjunction with a conferring viral marker to avoid overestimating the risk of gastrointestinal illness. IMPORTANCE MST is an effective tool to help utilities and regulators improve recreational water quality around the globe. Human fecal pollution poses significant public health risks compared to animal fecal pollution. Several human wastewater-associated markers have been developed and used for MST field studies. However, a head-to-head comparison in terms of their performance to detect diluted human fecal pollution in recreational water is lacking. In this study, we cross-compared the performance of six human wastewater-associated markers in relation to FIB and enteric viruses in beach water samples seeded with raw and secondary-treated wastewater. The results of this study will provide guidance to regulators and utilities on the appropriate application of MST markers for tracking the sources of human fecal pollution in environmental waters and confer human health risks. Copyright © 2017 American Society for Microbiology.
Wicklein, Shaun M.
2004-01-01
Tributary streamflow to the St. Johns River in Duval County is thought to be affected by septic tank leachate from residential areas adjacent to these tributaries. Water managers and the city of Jacksonville have committed to infrastructure improvements as part of a management plan to address the impairment of tributary water quality. In order to provide data to evaluate the effects of future remedial activities in selected tributaries, major ion and nutrient concentrations, fecal coliform concentrations, detection of wastewater compounds, and tracking of bacterial sources were used to document septic tank influences on the water quality of selected tributaries. The tributaries Fishing Creek and South Big Fishweir Creek were selected because they drain subdivisions identified as high priority locations for septic tank phase-out projects: the Pernecia and Murray Hill B subdivisions, respectively. Population, housing (number of residences), and septic tank densities for the Murray Hill B subdivision are greater than those for the Pernecia subdivision. Water-quality samples collected in the study basins indicate influences from ground water and septic tanks. Estimated concentrations of total nitrogen ranged from 0.33 to 2.86 milligrams per liter (mg/L), and ranged from less than laboratory reporting limit (0.02 mg/L) to 0.64 mg/L for total phosphorus. Major ion concentrations met the State of Florida Class III surface-water standards; total nitrogen and total phosphorus concentrations exceeded the U.S. Environmental Protection Agency Ecoregion XII nutrient criteria for rivers and streams 49 and 96 percent of the time, respectively. Organic wastewater compounds detected at study sites were categorized as detergents, antioxidants and flame retardants, manufactured polycarbonate resins, industrial solvents, and mosquito repellent. The most commonly detected compound was para-nonylphenol, a breakdown product of detergent. Results of wastewater sampling give evidence that stream water in the study basins is affected by septic tank effluent. Fecal coliform bacteria concentrations were measured on a monthly basis; of 115 samples, 63 percent exceeded the State of Florida fecal coliform bacteria standard for Class III surface waters of 800 colonies per 100 milliliters of water on any 1 day. Fecal coliform bacteria concentrations ranged from less than 20 colonies per 100 milliliters of sample to greater than or equal to 160,000 colonies per 100 milliliters of sample. Antibiotic resistance patterns of fecal coliform bacteria were used to identify the sources of fecal coliform bacteria. Significant sources of fecal coliform bacteria included wild animals, dogs, and humans. A majority of the fecal coliform bacteria were classified to be from human sources. Because the primary source of fecal coliform bacteria is from human sources, and most likely septic tank effluent, management of human sources may substantially improve microbiological water quality in both the Fishing Creek and South Branch Big Fishweir Creek basins.
Hughes, B.; Beale, D. J.; Dennis, P. G.; Cook, S.
2017-01-01
ABSTRACT Detection of human wastewater contamination in recreational waters is of critical importance to regulators due to the risks posed to public health. To identify such risks, human wastewater-associated microbial source tracking (MST) markers have been developed. At present, however, a greater understanding of the suitability of these markers for the detection of diluted human wastewater in environmental waters is necessary to predict risk. Here, we compared the process limit of detection (PLOD) and process limit of quantification (PLOQ) of six human wastewater-associated MST markers (Bacteroides HF183 [HF183], Escherichia coli H8 [EC H8], Methanobrevibacter smithii nifH, human adenovirus [HAdV], human polyomavirus [HPyV], and pepper mild mottle virus [PMMoV]) in relation to a fecal indicator bacterium (FIB), Enterococcus sp. 23S rRNA (ENT 23S), and three enteric viruses (human adenovirus serotypes 40/41 [HAdV 40/41], human norovirus [HNoV], and human enterovirus [EV]) in beach water samples seeded with raw and secondary-treated wastewater. Among the six MST markers tested, HF183 was the most sensitive measure of human fecal pollution and was quantifiable up to dilutions of 10−6 and 10−4 for beach water samples seeded with raw and secondary-treated wastewater, respectively. Other markers and enteric viruses were detected at various dilutions (10−1 to 10−5). These MST markers, FIB, and enteric viruses were then quantified in beach water (n = 12) and sand samples (n = 12) from South East Queensland (SEQ), Australia, to estimate the levels of human fecal pollution. Of the 12 sites examined, beach water and sand samples from several sites had quantifiable concentrations of HF183 and PMMoV markers. Overall, our results indicate that while HF183 is the most sensitive measure of human fecal pollution, it should be used in conjunction with a conferring viral marker to avoid overestimating the risk of gastrointestinal illness. IMPORTANCE MST is an effective tool to help utilities and regulators improve recreational water quality around the globe. Human fecal pollution poses significant public health risks compared to animal fecal pollution. Several human wastewater-associated markers have been developed and used for MST field studies. However, a head-to-head comparison in terms of their performance to detect diluted human fecal pollution in recreational water is lacking. In this study, we cross-compared the performance of six human wastewater-associated markers in relation to FIB and enteric viruses in beach water samples seeded with raw and secondary-treated wastewater. The results of this study will provide guidance to regulators and utilities on the appropriate application of MST markers for tracking the sources of human fecal pollution in environmental waters and confer human health risks. PMID:28159789
Prasetyo, R H
2016-03-01
The purpose of this study was to investigate the prevalence of house rat zoonotic intestinal parasites from Surabaya District, East Java, Indonesia that have the potential to cause opportunistic infection in humans. House rat fecal samples were collected from an area of Surabaya District with a dense rat population during May 2015. Intestinal parasites were detected microscopically using direct smear of feces stained with Lugol's iodine and modified Ziehl-Neelsen stains. The fecal samples were also cultured for Strongyloides stercoralis. Ninety-eight house rat fecal samples were examined. The potential opportunistic infection parasite densities found in those samples were Strongyloides stercoralis in 53%, Hymenolepis nana in 42%, Cryptosporidium spp in 33%, and Blastocystis spp in 6%. This is the first report of this kind in Surabaya District. Measures need to be taken to control the house rat population in the study area to reduce the risk of the public health problem. Keywords: zoonotic intestinal parasites, opportunistic infection, house rat, densely populated area, Indonesia
Lipp, E K; Farrah, S A; Rose, J B
2001-04-01
The goals of this study were to assess watersheds impacted by high densities of OSDS (onsite sewage disposal systems) for evidence of fecal contamination and evaluate the occurrence of human pathogens in coastal waters off west Florida. Eleven stations (representing six watersheds) were intensively sampled for microbial indicators of fecal pollution (fecal coliform bacteria, enterococci, Clostridium perfringens and coliphage) and the human enteric pathogens, Cryptosporidium, Giardia, and enteroviruses during the summer rainy season (May-September 1996). Levels of all indicators ranged between < 5 and > 4000 CFU/100 ml. Cryptosporidium and Giardia were detected infrequently (6.8% and 2.3% of samples tested positive, respectively). Conversely, infectious enteroviruses were detected at low levels in 5 of the 6 watersheds sampled. Using cluster analysis, sites were grouped into two categories, high and low risks, based on combined levels of indicators. These results suggest that stations of highest pollution risk were located within areas of high OSDS densities. Furthermore, data indicate a subsurface transport of contaminated water to surface waters. The high prevalence of enteroviruses throughout the study area suggests a chronic pollution problem and potential risk to recreational swimmers in and around Sarasota Bay.
Davoodi, Reza; Pirsaheb, Meghdad; Karimyan, Kamaladdin; Gupta, Vinod Kumar; Takhtshahi, Ali Reza; Sharafi, Hooshmand; Moradi, Masoud
2018-06-01
This study was aimed to investigate the distribution of various species of fecal coliform in urban, rural and private drinking water sources of Kermanshah, in the west of Iran. For this study, data of ten years period (2006-2016) assessments of microbial quality regarding various species of Fecal coliforms was taken from health centers associated with urban, rural and private resources of Kermanshah city. A total number of 8643 samples were taken, 1851 samples from rural, 365 from urban and 4834 from private resources. The results showed that Fecal coliforms , Escherichia coli ( E. coli ) had the widest distribution in all urban, rural and private water resources (22.3%, 45.9% and 34%, respectively). Moreover, E. coli (47.5%) and Klebsiella (0.4%) had, respectively, the highest and lowest distribution in all months considered. Based on the results, E.coli exists mostly in water resources; it is therefore of particular importance in the monitoring of water resources.
Farkas, Klaudia; Bálint, Anita; Bor, Renáta; Földesi, Imre; Szűcs, Mónika; Nagy, Ferenc; Szepes, Zoltán; Annaházi, Anita; Róka, Richárd; Molnár, Tamás
2015-03-01
Potential non-invasive markers of pouchitis would have a great deal of significance within clinical practice. This study is aimed at assessing the diagnostic accuracy of fecal calprotectin and matrix metalloprotease-9 as potential markers in patients both with and without pouchitis. Stool and blood samples were collected from 33 ileal pouch-anal anastomosis patients before a follow-up pouchoscopy. Biopsy samples were taken for histological purposes. The presence of cuffitis and stenosis was evaluated with an endoscopy. Calprotectin and matrix metalloprotease-9 were quantified with an enzyme-linked immunosorbent assay. Pouchitis was detected in 30.3% of the patients. The levels of fecal calprotectin and matrix metalloprotease-9 increased significantly in patients with pouchitis. The sensitivity and specificity of matrix metalloprotease-9 was higher than that of fecal calprotectin. Only matrix metalloprotease-9 correlated significantly with the severity of pouchitis. Fecal matrix metalloprotease-9 has a high specificity in the diagnosis of pouchitis.
Newton, Ryan J.; Bootsma, Melinda J.; Morrison, Hilary G.; Sogin, Mitchell L.
2014-01-01
Urban coasts receive watershed drainage from ecosystems that include highly developed lands with sewer and stormwater infrastructure. In these complex ecosystems, coastal waters are often contaminated with fecal pollution, where multiple delivery mechanisms that often contain multiple fecal sources make it difficult to mitigate the pollution. Here, we exploit bacterial community sequencing of the V6 and V6V4 hypervariable regions of the bacterial 16S rRNA gene to identify bacterial distributions that signal the presence of sewer, fecal, and human fecal pollution. The sequences classified to three sewer infrastructure-associated bacterial genera, Acinetobacter, Arcobacter, and Trichococcus, and five fecal-associated bacterial families, Bacteroidaceae, Porphyromonadaceae, Clostridiaceae, Lachnospiraceae, and Ruminococcaceae, served as signatures of sewer and fecal contamination, respectively. The human fecal signature was determined with the Bayesian source estimation program SourceTracker, which we applied to a set of 40 sewage influent samples collected in Milwaukee, WI, USA to identify operational taxonomic units (≥97 % identity) that were most likely of human fecal origin. During periods of dry weather, the magnitudes of all three signatures were relatively low in Milwaukee's urban rivers and harbor and nearly zero in Lake Michigan. However, the relative contribution of the sewer and fecal signature frequently increased to >2 % of the measured surface water communities following sewer overflows. Also during combined sewer overflows, the ratio of the human fecal pollution signature to the fecal pollution signature in surface waters was generally close to that of sewage, but this ratio decreased dramatically during dry weather and rain events, suggesting that nonhuman fecal pollution was the dominant source during these weather-driven scenarios. The qPCR detection of two human fecal indicators, human Bacteroides and Lachno2, confirmed the urban fecal footprint in this ecosystem extends to at least 8 km offshore. PMID:23475306
Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul; Grear, Daniel A.; Ip, Hon S.; Vandalen, Kaci K.; Minicucci, Larissa A.
2016-01-01
In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To understand the potential role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl fecal samples. PMID:27064759
Roug, Annette; Geoghegan, Claire; Wellington, Elizabeth; Miller, Woutrina A; Travis, Emma; Porter, David; Cooper, David; Clifford, Deana L; Mazet, Jonna A K; Parsons, Sven
2014-01-01
A real-time PCR protocol for detecting Mycobacterium bovis in feces was evaluated in bovine tuberculosis-infected African buffalo (Syncerus caffer). Fecal samples spiked with 1.42 × 10(3) cells of M. bovis culture/g and Bacille Calmette-Guérin standards with 1.58 × 10(1) genome copies/well were positive by real-time PCR but all field samples were negative.
Yinda, Claude Kwe; Zell, Roland; Deboutte, Ward; Zeller, Mark; Conceição-Neto, Nádia; Heylen, Elisabeth; Maes, Piet; Knowles, Nick J; Ghogomu, Stephen Mbigha; Van Ranst, Marc; Matthijnssens, Jelle
2017-03-23
The order Picornavirales represents a diverse group of positive-stranded RNA viruses with small non-enveloped icosahedral virions. Recently, bats have been identified as an important reservoir of several highly pathogenic human viruses. Since many members of the Picornaviridae family cause a wide range of diseases in humans and animals, this study aimed to characterize members of the order Picornavirales in fruit bat populations located in the Southwest region of Cameroon. These bat populations are frequently in close contact with humans due to hunting, selling and eating practices, which provides ample opportunity for interspecies transmissions. Fecal samples from 87 fruit bats (Eidolon helvum and Epomophorus gambianus), were combined into 25 pools and analyzed using viral metagenomics. In total, Picornavirales reads were found in 19 pools, and (near) complete genomes of 11 picorna-like viruses were obtained from 7 of these pools. The picorna-like viruses possessed varied genomic organizations (monocistronic or dicistronic), and arrangements of gene cassettes. Some of the viruses belonged to established families, including the Picornaviridae, whereas others clustered distantly from known viruses and most likely represent novel genera and families. Phylogenetic and nucleotide composition analyses suggested that mammals were the likely host species of bat sapelovirus, bat kunsagivirus and bat crohivirus, whereas the remaining viruses (named bat iflavirus, bat posalivirus, bat fisalivirus, bat cripavirus, bat felisavirus, bat dicibavirus and bat badiciviruses 1 and 2) were most likely diet-derived. The existence of a vast genetic variability of picorna-like viruses in fruit bats may increase the probability of spillover infections to humans especially when humans and bats have direct contact as the case in this study site. However, further screening for these viruses in humans will fully indicate their zoonotic potential.
Muradrasoli, Shaman; Mohamed, Nahla; Hornyák, Akos; Fohlman, Jan; Olsen, Björn; Belák, Sándor; Blomberg, Jonas
2009-08-01
Coronaviruses (CoVs) can cause trivial or fatal disease in humans and in animals. Detection methods for a wide range of CoVs are needed, to understand viral evolution, host range, transmission and maintenance in reservoirs. A new concept, "Multiprobe QPCR", which uses a balanced mixture of competing discrete non- or moderately degenerated nuclease degradable (TaqMan) probes was employed. It provides a broadly targeted and rational single tube real-time reverse transcription PCR ("NQPCR") for the generic detection and discovery of CoV. Degenerate primers, previously published, and the new probes, were from a conserved stretch of open reading frame 1b, encoding the replicase. This multiprobe design reduced the degree of probe degeneration, which otherwise decreases the sensitivity, and allowed a preliminary classification of the amplified sequence directly from the QPCR trace. The split probe strategy allowed detection of down to 10 viral nucleic acid equivalents of CoV from all known CoV groups. Evaluation was with reference CoV strains, synthetic targets, human respiratory samples and avian fecal samples. Infectious-Bronchitis-Virus (IBV)-related variants were found in 7 of 35 sample pools, from 100 wild mallards (Anas platyrhynchos). Ducks may spread and harbour CoVs. NQPCR can detect a wide range of CoVs, as illustrated for humans and ducks.
Red blood cells play a role in reverse cholesterol transport.
Hung, Kimberly T; Berisha, Stela Z; Ritchey, Brian M; Santore, Jennifer; Smith, Jonathan D
2012-06-01
Reverse cholesterol transport (RCT) involves the removal of cholesterol from peripheral tissue for excretion in the feces. Here, we determined whether red blood cells (RBCs) can contribute to RCT. We performed a series of studies in apolipoprotein AI-deficient mice where the high-density lipoprotein-mediated pathway of RCT is greatly diminished. RBCs carried a higher fraction of whole blood cholesterol than plasma in apolipoprotein AI-deficient mice, and as least as much of the labeled cholesterol derived from injected foam cells appeared in RBCs compared with plasma. To determine whether RBCs mediate RCT to the fecal compartment, we measured RCT in anemic and control apolipoprotein AI-deficient mice and found that anemia decreased RCT to the feces by over 35% after correcting for fecal mass. Transfusion of [(3)H]cholesterol-labeled RBCs led to robust delivery of the labeled cholesterol to the feces in apolipoprotein AI-deficient hosts. In wild-type mice, the majority of the blood cholesterol mass, as well as [(3)H]cholesterol derived from the injected foam cells, was found in plasma, and anemia did not significantly alter RCT to the feces after correction for fecal mass. The RBC cholesterol pool is dynamic and facilitates RCT of peripheral cholesterol to the feces, particularly in the low high-density lipoprotein state.
False positive fecal coliform in biosolid samples assayed using A-1 medium.
Baker, Katherine H; Redmond, Brady; Herson, Diane S
2005-01-01
Two most probable number (MPN) methods-lauryl tryptose broth with Escherichia coli broth confirmation and direct A-1 broth incubation (A-1)--were compared for the enumeration of fecal coliform in lime-treated biosolid. Fecal coliform numbers were significantly higher using the A-1 method. Analysis of positive A-1 tubes, however, indicated that a high percentage of these were false positives. Therefore, the use of A-1 broth for 40 CFR Part 503 Pathogen Reduction (CFR, 1993) compliance testing is not recommended.
Chapter A7. Section 7.1. Fecal Indicator Bacteria
Myers, Donna N.; Sylvester, Marc A.
1997-01-01
Fecal indicator bacteria are used to assess the microbiological quality of water because, although not typically disease causing, they are correlated with the presence of several waterborne disease-causing organisms. The concentration of indicator bacteria is a measure of water safety for body-contact recreation or for consumption. This report provides information on the equipment, sampling protocols, and identification, enumeration, and calculation procedures that are in standard use by U.S. Geological Survey (USGS) personnel for the collection of data on fecal indicator bacteria.
1976-07-01
coliform, fecal coliform, and fecal streptococcus densities. Salmonellae and shigellae were not recovered from either upstream water samples or from...fecal streptococci, Clostridlum perfringens) and enteric pathogens (salmonellae, shigellae , enteroviruses, infectious hepatitus agent) have beeii shown...the Mississippi River that was polluted with Shigella sonnet (5,32). 49W 1.----Wq W P4 p TABLE 1. Incidence of selected enteric diseases during 1975 in
Tolleson, D R; Schafer, D W
2014-01-01
Monitoring the nutritional status of range cows is difficult. Near-infrared spectroscopy (NIRS) of feces has been used to predict diet quality in cattle. When fecal NIRS is coupled with decision support software such as the Nutritional Balance Analyzer (NUTBAL PRO), nutritional status and animal performance can be monitored. Approximately 120 Hereford and 90 CGC composite (50% Red Angus, 25% Tarentaise, and 25% Charolais) cows grazing in a single herd were used in a study to determine the ability of fecal NIRS and NutbalPro to project BCS (1 = thin and 9 = fat) under commercial scale rangeland conditions in central Arizona. Cattle were rotated across the 31,000 ha allotment at 10 to 20 d intervals. Cattle BCS and fecal samples (approximately 500 g) composited from 5 to 10 cows were collected in the pasture approximately monthly at the midpoint of each grazing period. Samples were frozen and later analyzed by NIRS for prediction of diet crude protein (CP) and digestible organic matter (DOM). Along with fecal NIRS predicted diet quality, animal breed type, reproductive status, and environmental conditions were input to the software for each fecal sampling and BCS date. Three different evaluations were performed. First, fecal NIRS and NutbalPro derived BCS was projected forward from each sampling as if it were a "one-time only" measurement. Second, BCS was derived from the average predicted weight change between 2 sampling dates for a given period. Third, inputs to the model were adjusted to better represent local animals and conditions. Fecal NIRS predicted diet quality varied from a minimum of approximately 5% CP and 57% DOM in winter to a maximum of approximately 11% CP and 60% DOM in summer. Diet quality correlated with observed seasonal changes and precipitation events. In evaluation 1, differences in observed versus projected BCS were not different (P > 0.1) between breed types but these values ranged from 0.1 to 1.1 BCS in Herefords and 0.0 to 0.9 in CGC. In evaluation 2, differences in observed versus projected BCS were not different (P > 0.1) between breed types but these values ranged from 0.00 to 0.46 in Hereford and 0.00 to 0.67 in CGC. In evaluation 3, the range of differences between observed and projected BCS was 0.04 to 0.28. The greatest difference in projected versus observed BCS occurred during periods of lowest diet quality. Body condition was predicted accurately enough to be useful in monitoring the nutrition of range beef cows under the conditions of this study.
Turnbaugh, Peter J.; Quince, Christopher; Faith, Jeremiah J.; McHardy, Alice C.; Yatsunenko, Tanya; Niazi, Faheem; Affourtit, Jason; Egholm, Michael; Henrissat, Bernard; Knight, Rob; Gordon, Jeffrey I.
2010-01-01
We deeply sampled the organismal, genetic, and transcriptional diversity in fecal samples collected from a monozygotic (MZ) twin pair and compared the results to 1,095 communities from the gut and other body habitats of related and unrelated individuals. Using a new scheme for noise reduction in pyrosequencing data, we estimated the total diversity of species-level bacterial phylotypes in the 1.2-1.5 million bacterial 16S rRNA reads obtained from each deeply sampled cotwin to be ~800 (35.9%, 49.1% detected in both). A combined 1.1 million read 16S rRNA dataset representing 281 shallowly sequenced fecal samples from 54 twin pairs and their mothers contained an estimated 4,018 species-level phylotypes, with each sample having a unique species assemblage (53.4 ± 0.6% and 50.3 ± 0.5% overlap with the deeply sampled cotwins). Of the 134 phylotypes with a relative abundance of >0.1% in the combined dataset, only 37 appeared in >50% of the samples, with one phylotype in the Lachnospiraceae family present in 99%. Nongut communities had significantly reduced overlap with the deeply sequenced twins’ fecal microbiota (18.3 ± 0.3%, 15.3 ± 0.3%). The MZ cotwins’ fecal DNA was deeply sequenced (3.8-6.3 Gbp/sample) and assembled reads were assigned to 25 genus-level phylogenetic bins. Only 17% of the genes in these bins were shared between the cotwins. Bins exhibited differences in their degree of sequence variation, gene content including the repertoire of carbohydrate active enzymes present within and between twins (e.g., predicted cellulases, dockerins), and transcriptional activities. These results provide an expanded perspective about features that make each of us unique life forms and directions for future characterization of our gut ecosystems. PMID:20363958
Weidhaas, Jennifer L; Macbeth, Tamzen W; Olsen, Roger L; Harwood, Valerie J
2011-03-01
The impact of fecal contamination from human and agricultural animal waste on water quality is a major public health concern. Identification of the dominant source(s) of fecal pollution in a watershed is necessary for assessing the safety of recreational water and protecting water resources. A field study was conducted using quantitative PCR (qPCR) for the 16S rRNA gene of Brevibacterium sp. LA35 to track feces-contaminated poultry litter in environmental samples. Based on sensitivity and specificity characteristics of the qPCR method, the Bayesian conditional probability that detection of the LA35 marker gene in a water sample represented a true-positive result was 93%. The marker's covariance with fecal indicator bacteria (FIB) and metals associated with poultry litter was also assessed in litter, runoff, surface water, and groundwater samples. LA35 was detected in water and soil samples collected throughout the watershed, and its concentration covaried with concentrations of Escherichia coli, enterococci, As, Cu, P, and Zn. Significantly greater concentrations of FIB, As, Cu, P, and Zn were observed in edge-of-field runoff samples in which LA35 was detected, compared to samples in which it was not detected. Furthermore, As, Cu, P, and Zn concentrations covaried in environmental samples in which LA35 was detected and typically did not in samples in which the marker gene was not detected. The covariance of the poultry-specific LA35 marker gene with these known contaminants from poultry feces provides further evidence that it is a useful tool for assessing the impact of poultry-derived fecal pollution in environmental waters.
A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...
Duris, Joseph W.; Beeler, Stephanie
2008-01-01
The U.S. Geological Survey, in cooperation with the Lenawee County Conservation District in Lenawee County, Mich., conducted a sampling effort over a single growing season (June to November 2007) to evaluate the microbiological water quality around a novel livestock reservoir wetland sub-irrigation system. Samples were collected and analyzed for fecal coliform bacteria, Escherichia coli (E. coli) bacteria, and six genes from pathogenic strains of E. coli.A total of 73 water-quality samples were collected on nine occasions from June to November 2007. These samples were collected within the surface water, shallow ground water, and the manure-treatment system near Bakerlads Farm near Clayton in Lenawee County, Mich. Fecal coliform bacteria concentrations ranged from 10 to 1.26 million colony forming units per 100 milliliters (CFU/100 mL). E. coli bacteria concentrations ranged from 8 to 540,000 CFU/100 mL. Data from the E. coli pathogen analysis showed that 73 percent of samples contained the eaeA gene, 1 percent of samples contained the stx2 gene, 37 percent of samples contained the stx1 gene, 21 percent of samples contained the rfbO157 gene, and 64 percent of samples contained the LTIIa gene.
Storm loads of culturable and molecular fecal indicators in an inland urban stream.
Liao, Hehuan; Krometis, Leigh-Anne H; Cully Hession, W; Benitez, Romina; Sawyer, Richard; Schaberg, Erin; von Wagoner, Emily; Badgley, Brian D
2015-10-15
Elevated concentrations of fecal indicator bacteria in receiving waters during wet-weather flows are a considerable public health concern that is likely to be exacerbated by future climate change and urbanization. Knowledge of factors driving the fate and transport of fecal indicator bacteria in stormwater is limited, and even less is known about molecular fecal indicators, which may eventually supplant traditional culturable indicators. In this study, concentrations and loading rates of both culturable and molecular fecal indicators were quantified throughout six storm events in an instrumented inland urban stream. While both concentrations and loading rates of each fecal indicator increased rapidly during the rising limb of the storm hydrographs, it is the loading rates rather than instantaneous concentrations that provide a better estimate of transport through the stream during the entire storm. Concentrations of general fecal indicators (both culturable and molecular) correlated most highly with each other during storm events but not with the human-associated HF183 Bacteroides marker. Event loads of general fecal indicators most strongly correlated with total runoff volume, maximum discharge, and maximum turbidity, while event loads of HF183 most strongly correlated with the time to peak flow in a hydrograph. These observations suggest that collection of multiple samples during a storm event is critical for accurate predictions of fecal indicator loading rates and total loads during wet-weather flows, which are required for effective watershed management. In addition, existing predictive models based on general fecal indicators may not be sufficient to predict source-specific genetic markers of fecal contamination. Copyright © 2015 Elsevier B.V. All rights reserved.
Concentrations of fecal coliform bacteria in creeks, Anchorage, Alaska, August and September 1998
Dorava, Joseph M.; Love, Andra
1999-01-01
Water samples were collected from five creeks in undeveloped, semi-developed, and developed areas of Anchorage, Alaska, during August and September 1998 to determine concentrations of fecal coliform bacteria. In undeveloped areas of Ship, Chester, and Campbell Creeks, and the semi-developed area of Rabbit Creek, concentrations of fecal coliform bacteria ranged from less than 1 to 16 colonies per 100 milliliters of water. In the semi-developed area of Little Rabbit Creek, concentrations ranged from 30 to 860 colonies per 100 milliliters of water. In developed areas of the creeks, concentrations of fecal coliform bacteria ranged from 6 to 80 colonies per 100 milliliters of water.
Li, Mei; Zhao, Bo; Li, Bo; Wang, Qiang; Niu, Lili; Deng, Jiabo; Gu, Xiaobin; Peng, Xuerong; Wang, Tao; Yang, Guangyou
2015-06-01
Captive primates are susceptible to gastrointestinal (GIT) parasitic infections, which are often zoonotic and can contribute to morbidity and mortality. Fecal samples were examined by the means of direct smear, fecal flotation, fecal sedimentation, and fecal cultures. Of 26.51% (317/1196) of the captive primates were diagnosed gastrointestinal parasitic infections. Trichuris spp. were the most predominant in the primates, while Entamoeba spp. were the most prevalent in Old World monkeys (P < 0.05). These preliminary data will improve the management of captive primates and the safety of animal keepers and visitors. © 2015 The Authors. Journal of Medical Primatology Published by John Wiley & Sons Ltd.
Slade, Raymond M.; Dorsey, Michael E.; Stewart, Sheree L.
1986-01-01
Water-quality data for 1979-83 are available for each creek that recharges the aquifer, from Barton Springs, and for 38 wells. Water quality from Barton Springs and the wells is better than the creeks providing surface recharge, which have fecal-bacteria values as high as 100,000 colonies per 100 milliliters. Significant densities of fecal bacteria have been found in water from Barton Springs. Significant concentrations of nitrate nitrogen, fecal-group bacteria, and fluoride have been identified in samples from wells. Fluoride originates in the aquifers that underlie the Edwards aquifer. Nitrate nitrogen and fecal-group bacteria originate in residential developments and cattle ranches located in the area.
Community Structures of Fecal Bacteria in Cattle from Different Animal Feeding Operations▿†
Shanks, Orin C.; Kelty, Catherine A.; Archibeque, Shawn; Jenkins, Michael; Newton, Ryan J.; McLellan, Sandra L.; Huse, Susan M.; Sogin, Mitchell L.
2011-01-01
The fecal microbiome of cattle plays a critical role not only in animal health and productivity but also in food safety, pathogen shedding, and the performance of fecal pollution detection methods. Unfortunately, most published molecular surveys fail to provide adequate detail about variability in the community structures of fecal bacteria within and across cattle populations. Using massively parallel pyrosequencing of a hypervariable region of the rRNA coding region, we profiled the fecal microbial communities of cattle from six different feeding operations where cattle were subjected to consistent management practices for a minimum of 90 days. We obtained a total of 633,877 high-quality sequences from the fecal samples of 30 adult beef cattle (5 individuals per operation). Sequence-based clustering and taxonomic analyses indicate less variability within a population than between populations. Overall, bacterial community composition correlated significantly with fecal starch concentrations, largely reflected in changes in the Bacteroidetes, Proteobacteria, and Firmicutes populations. In addition, network analysis demonstrated that annotated sequences clustered by management practice and fecal starch concentration, suggesting that the structures of bovine fecal bacterial communities can be dramatically different in different animal feeding operations, even at the phylum and family taxonomic levels, and that the feeding operation is a more important determinant of the cattle microbiome than is the geographic location of the feedlot. PMID:21378055
Fogarty, Lisa R.; Duris, Joseph W.; Aichele, Stephen S.
2005-01-01
A preliminary study was done in Oakland County, Michigan, to determine the concentration of fecal indicator bacteria (fecal coliform bacteria and enterococci), antibiotic resistance patterns of these two groups, and the presence of potentially pathogenic Escherichia coli (E. coli). For selected sites, specific members of these groups [E. coli, Enterococcus faecium (E. faecium) and Enterococcus faecalis (E. faecalis)] were isolated and tested for levels of resistance to specific antibiotics used to treat human infections by pathogens in these groups and for their potential to transfer these resistances. In addition, water samples from all sites were tested for indicators of potentially pathogenic E. coli by three assays: a growth-based assay for sorbitol-negative E. coli, an immunological assay for E. coli O157, and a molecular assay for three virulence and two serotype genes. Samples were also collected from two non-urbanized sites outside of Oakland County. Results from the urbanized Oakland County area were compared to those from these two non-urbanized sites. Fecal indicator bacteria concentrations exceeded State of Michigan recreational water-quality standards and (or) recommended U.S. Environmental Protection Agency (USEPA) standards in samples from all but two Oakland County sites. Multiple-antibiotic-resistant fecal coliform bacteria were found at all sites, including two reference sites from outside the county. Two sites (Stony Creek and Paint Creek) yielded fecal coliform isolates resistant to all tested antibiotics. Patterns indicative of extended-spectrum-β-lactamase (ESBL)- producing fecal coliform bacteria were found at eight sites in Oakland County and E. coli resistant to clinically significant antibiotics were recovered from the River Rouge, Clinton River, and Paint Creek. Vancomycin-resistant presumptive enterococci were found at six sites in Oakland County and were not found at the reference sites. Evidence of acquired antibiotic resistances was detected in bacteria from multiple sites in Oakland County but not detected in bacteria from the reference sites. Integrons capable of transferring resistance were detected in isolates from the River Rouge and Clinton River. E. faecium and E. faecalis identified in samples collected from Kearsley Creek and Evans Ditch were resistant to high levels of vancomycin and carried transferable genes responsible for resistance. Several sites in Oakland County had indicators of pathogenic E. coli in August and (or) September 2003. Two samples from the Clinton River in August tested positive for all three E. coli O157 tests. Both the August and September samples from one River Rouge site were positive for the immunological and molecular assay for E. coli O157. A combination of virulence genes commonly associated with human illness was detected at five sites in August and seven sites in September. Antibiotic-resistance profiles of clinical concern along with genes capable of transferring the resistance were found at several sites throughout Oakland County; samples from many of these sites also contained potentially pathogenic E. coli.
Novel and canine genotypes of Giardia duodenalis in harbor seals ( Phoca vitulina richardsi).
Gaydos, J K; Miller, W A; Johnson, C; Zornetzer, H; Melli, A; Packham, A; Jeffries, S J; Lance, M M; Conrad, P A
2008-12-01
Feces of harbor seals (Phoca vitulina richardsi) and hybrid glaucous-winged/western gulls (Larus glaucescens / occidentalis) from Washington State's inland marine waters were examined for Giardia and Cryptosporidium spp. to determine if genotypes carried by these wildlife species were the same genotypes that commonly infect humans and domestic animals. Using immunomagnetic separation followed by direct fluorescent antibody detection, Giardia spp. cysts were detected in 42% of seal fecal samples (41/97). Giardia-positive samples came from 90% of the sites (9/10) and the prevalence of positive seal fecal samples differed significantly among study sites. Fecal samples collected from seal haulout sites with over 400 animals were 4.7 times more likely to have Giardia spp. cysts than samples collected at smaller haulout sites. In gulls, a single Giardia sp. cyst was detected in 4% of fecal samples (3/78). Cryptosporidium spp. oocysts were not detected in any of the seals or gulls tested. Sequence analysis of a 398 bp segment of G. duodenalis DNA at the glutamate dehydrogenase locus suggested that 11 isolates originating from seals throughout the region were a novel genotype and 3 isolates obtained from a single site in south Puget Sound were the G. duodenalis canine genotype D. Real-time TaqMan PCR amplification and subsequent sequencing of a 52 bp small subunit ribosomal DNA region from novel harbor seal genotype isolates showed sequence homology to canine genotypes C and D. Sequence analysis of the 52 bp small subunit ribosomal DNA products from the 3 canine genotype isolates from seals produced mixed sequences at could not be evaluated.
Detection of antibodies against classical swine fever virus in fecal samples from wild boar.
Seo, Sang won; Sunwoo, Sun young; Hyun, Bang hoon; Lyoo, Young S
2012-12-28
Classical swine fever (CSF) is a contagious viral disease that affects pigs. Wild boars can play an important epidemiological role in CSF outbreaks. In the past decades, studies conducted in many countries have reported that the CSF virus (CSFV) may persist in wild boar populations. The existence of CSFV in the free-ranging wild boar populations was indirectly confirmed by determining the prevalence of antibodies against CSFV in the serum of hunted wild boars. However, analyzing sero-prevalence in hunted wild boars to study the risk of CSF outbreaks is difficult due to insufficient number of samples, limitation of hunting area and biased age distribution of hunted wild boars. To improve this survey method, we collected feces of wild boars from their habitat and tested them using CSFV antibody enzyme-linked immunosorbent assay (ELISA) and CSF virus neutralization (VN) test. In this study, ELISA was found to be highly sensitive for detecting antibodies against CSFV in fecal samples. Most of doubtful or positive results obtained in CSFV ELISA were confirmed by VN tests. Despite the high coincidence rate of antibody-positive samples between CSFV ELISA and VN test, the possibility of false positive reaction should be considered. In the regional distribution, a fact that antibody-positive fecal and serum samples were found in geographically close area was shown. Hence, presence of antibodies in fecal samples may provide vital information regarding the risk of CSF outbreaks in wild boar groups in geographical proximity. Copyright © 2012 Elsevier B.V. All rights reserved.
The microbiome in PTEN hamartoma tumor syndrome.
Byrd, Victoria; Getz, Ted; Padmanabhan, Roshan; Arora, Hans; Eng, Charis
2018-03-01
Germline PTEN mutations defining PTEN hamartoma tumor syndrome (PHTS) confer heritable predisposition to breast, endometrial, thyroid and other cancers with known age-related risks, but it remains impossible to predict if any individual will develop cancer. In the general population, gut microbial dysbiosis has been linked to cancer, yet is unclear whether these are associated in PHTS patients. In this pilot study, we aimed to characterize microbial composition of stool, urine, and oral wash from 32 PTEN mutation-positive individuals using 16S rRNA gene sequencing. PCoA revealed clustering of the fecal microbiome by cancer history ( P = 0.03, R 2 = 0.04). Fecal samples from PHTS cancer patients had relatively more abundant operational taxonomic units (OTUs) from family Rikenellaceae and unclassified members of Clostridia compared to those from non-cancer patients, whereas families Peptostreptococcaceae, Enterobacteriaceae, and Bifidobacteriaceae represented relatively more abundant OTUs among fecal samples from PHTS non-cancer patients. Functional metagenomic prediction revealed enrichment of the folate biosynthesis, genetic information processing and cell growth and death pathways among fecal samples from PHTS cancer patients compared to non-cancer patients. We found no major shifts in overall diversity and no clustering by cancer history among oral wash or urine samples. Our observations suggest the utility of an expanded study to interrogate gut dysbiosis as a potential cancer risk modifier in PHTS patients. © 2018 The authors.
Mayer, René E; Reischer, Georg H; Ixenmaier, Simone K; Derx, Julia; Blaschke, Alfred Paul; Ebdon, James E; Linke, Rita; Egle, Lukas; Ahmed, Warish; Blanch, Anicet R; Byamukama, Denis; Savill, Marion; Mushi, Douglas; Cristóbal, Héctor A; Edge, Thomas A; Schade, Margit A; Aslan, Asli; Brooks, Yolanda M; Sommer, Regina; Masago, Yoshifumi; Sato, Maria I; Taylor, Huw D; Rose, Joan B; Wuertz, Stefan; Shanks, Orin C; Piringer, Harald; Mach, Robert L; Savio, Domenico; Zessner, Matthias; Farnleitner, Andreas H
2018-05-01
Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4 400 000 population equivalents) from 13 countries spanning six continents. In addition, genetic markers were tested against 280 human and nonhuman fecal samples from domesticated, agricultural and wild animal sources. Findings revealed that all genetic markers are present in consistently high concentrations in raw (median log 10 7.2-8.0 marker equivalents (ME) 100 mL -1 ) and biologically treated wastewater samples (median log 10 4.6-6.0 ME 100 mL -1 ) regardless of location and population. The false positive rates of the various markers in nonhuman fecal samples ranged from 5% to 47%. Results suggest that several genetic markers have considerable potential for measuring human-associated contamination in polluted environmental waters. This will be helpful in water quality monitoring, pollution modeling and health risk assessment (as demonstrated by QMRAcatch) to guide target-oriented water safety management across the globe.
Quantitative polymerase chain reaction (QPCR) can be used as a rapid method for detecting fecal indicator bacteria. Because false negative results can be caused by PCR inhibitors that co-extract with the DNA samples, an internal amplification control (IAC) should be run with eac...
The Effects of Water Matrix on Decay of Human Fecal Molecular Markers and Campylobacter spp.
Although molecular source tracking for human fecal contamination is used on a wide range of sample types, little is known about comparative decay of proposed molecular markers under different conditions, or correlation with pathogen decay. Our purpose was to measure correlations ...
Culture- and PCR-based methods for characterization of fecal pollution were evaluated in relation to physiographic, biotic, and chemical indicators of stream condition. Stream water samples (n = 235) were collected monthly over a two year period from ten channels draining subwat...
USDA-ARS?s Scientific Manuscript database
Diet composition of free roaming livestock and wildlife in extensive rangelands are difficult to quantify. Recent technological advances now allow us to reconstruct plant species-specific dietary protein composition using fecal samples. However, it has been suggested that validation of the method i...
Several swine-specific microbial source tracking methods are based on PCR assays targeting Bacteroidales 16S rRNA gene sequences. The limited application of these assays can be explained by the poor understanding of their molecular diversity in fecal sources and environmental wat...
Fecal Coliform Determinations. Training Module 5.115.3.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with multiple tube and membrane filter techniques for determining fecal coliform concentrations in a wastewater sample. Included are objectives, instructor guides, student handouts and transparency masters. This module considers proper…
Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host specific markers. Here, we describe the application of a genome fragment enrichment met...
Widespread presence of human-pathogenic E. bieneusi genotypes in chickens
USDA-ARS?s Scientific Manuscript database
A total of 151 fecal specimens from chickens were randomly collected from local markets in Uberlandia and Belo in the state of Minas Gerais, Brazil, to evaluate the presence of Enterocytozoon bieneusi by polymerase chain reaction (PCR). Enterocytozoon bieneusi was identified in 24 fecal samples (15....
Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host specific markers. Here, we describe the application of a genome fragment enrichment met...
Lee, Cheonghoon; Agidi, Senyo; Marion, Jason W; Lee, Jiyoung
2012-08-01
The genus Arcobacter has been associated with human illness and fecal contamination by humans and animals. To better characterize the health risk posed by this emerging waterborne pathogen, we investigated the occurrence of Arcobacter spp. in Lake Erie beach waters. During the summer of 2010, water samples were collected 35 times from the Euclid, Villa Angela, and Headlands (East and West) beaches, located along Ohio's Lake Erie coast. After sample concentration, Arcobacter was quantified by real-time PCR targeting the Arcobacter 23S rRNA gene. Other fecal genetic markers (Bacteroides 16S rRNA gene [HuBac], Escherichia coli uidA gene, Enterococcus 23S rRNA gene, and tetracycline resistance genes) were also assessed. Arcobacter was detected frequently at all beaches, and both the occurrence and densities of Arcobacter spp. were higher at the Euclid and Villa Angela beaches (with higher levels of fecal contamination) than at the East and West Headlands beaches. The Arcobacter density in Lake Erie beach water was significantly correlated with the human-specific fecal marker HuBac according to Spearman's correlation analysis (r = 0.592; P < 0.001). Phylogenetic analysis demonstrated that most of the identified Arcobacter sequences were closely related to Arcobacter cryaerophilus, which is known to cause gastrointestinal diseases in humans. Since human-pathogenic Arcobacter spp. are linked to human-associated fecal sources, it is important to identify and manage the human-associated contamination sources for the prevention of Arcobacter-associated public health risks at Lake Erie beaches.
Ferrocino, Ilario; Di Cagno, Raffaella; De Angelis, Maria; Turroni, Silvia; Vannini, Lucia; Bancalari, Elena; Rantsiou, Kalliopi; Cardinali, Gianluigi; Neviani, Erasmo; Cocolin, Luca
2015-01-01
In this study, the fecal microbiota of 153 healthy volunteers, recruited from four different locations in Italy, has been studied by coupling viable counts, on different microbiological media, with ribosomal RNA Denaturing Gradient Gel Electrophoresis (rRNA-DGGE). The volunteers followed three different diets, namely omnivore, ovo-lacto-vegetarian and vegan. The results obtained from culture-dependent and -independent methods have underlined a high level of similarity of the viable fecal microbiota for the three investigated diets. The rRNA DGGE profiles were very complex and comprised a total number of bands that varied from 67 to 64 for the V3 and V9 regions of the 16S rRNA gene, respectively. Only a few bands were specific in/of all three diets, and the presence of common taxa associated with the dietary habits was found. As far as the viable counts are concerned, the high similarity of the fecal microbiota was once again confirmed, with only a few of the investigated groups showing significant differences. Interestingly, the samples grouped differently, according to the recruitment site, thus highlighting a higher impact of the food consumed by the volunteers in the specific geographical locations than that of the type of diet. Lastly, it should be mentioned that the fecal microbiota DGGE profiles obtained from the DNA were clearly separated from those produced using RNA, thus underlining a difference between the total and viable populations in the fecal samples.
Ferrocino, Ilario; Di Cagno, Raffaella; De Angelis, Maria; Turroni, Silvia; Vannini, Lucia; Bancalari, Elena; Rantsiou, Kalliopi; Cardinali, Gianluigi; Neviani, Erasmo; Cocolin, Luca
2015-01-01
In this study, the fecal microbiota of 153 healthy volunteers, recruited from four different locations in Italy, has been studied by coupling viable counts, on different microbiological media, with ribosomal RNA Denaturing Gradient Gel Electrophoresis (rRNA-DGGE). The volunteers followed three different diets, namely omnivore, ovo-lacto-vegetarian and vegan. The results obtained from culture-dependent and -independent methods have underlined a high level of similarity of the viable fecal microbiota for the three investigated diets. The rRNA DGGE profiles were very complex and comprised a total number of bands that varied from 67 to 64 for the V3 and V9 regions of the 16S rRNA gene, respectively. Only a few bands were specific in/of all three diets, and the presence of common taxa associated with the dietary habits was found. As far as the viable counts are concerned, the high similarity of the fecal microbiota was once again confirmed, with only a few of the investigated groups showing significant differences. Interestingly, the samples grouped differently, according to the recruitment site, thus highlighting a higher impact of the food consumed by the volunteers in the specific geographical locations than that of the type of diet. Lastly, it should be mentioned that the fecal microbiota DGGE profiles obtained from the DNA were clearly separated from those produced using RNA, thus underlining a difference between the total and viable populations in the fecal samples. PMID:26035837
Grabow, W O; Hilner, C A; Coubrough, P
1981-08-01
MacConkey agar, standard M-FC agar, M-FC agar without rosolic acid, M-FC agar with a resuscitation top layer, Teepol agar, and pads saturated with Teepol broth, were evaluated as growth media for membrane filtration counting of fecal coliform bacteria in water. In comparative tests on 312 samples of water from a wide variety of sources, including chlorinated effluents, M-FC agar without rosolic acid proved the medium of choice because it generally yielded the highest counts, was readily obtainable, easy to prepare and handle, and yielded clearly recognizable fecal coliform colonies. Identification of 1,139 fecal coliform isolates showed that fecal coliform tests cannot be used to enumerate Escherichia coli because the incidence of E. coli among fecal coliforms varied from an average of 51% for river water to 93% for an activated sludge effluent after chlorination. The incidence of Klebsiella pneumoniae among fecal coliforms varied from an average of 4% for the activated sludge effluent after chlorination to 32% for the river water. The advantages of a standard membrane filtration procedure for routine counting of fecal coliforms in water using M-FC agar without rosolic acid as growth medium, in the absence of preincubation or resuscitation steps, are outlined.
Effect of high-fiber and high-oil diets on the fecal flora of swine.
Moore, W E; Moore, L V; Cato, E P; Wilkins, T D; Kornegay, E T
1987-01-01
Six pairs of pigs were fed a basal diet, a high-fiber diet, and a diet high in corn oil in different sequences to minimize the carry-over effect of diet. After 2 months on each diet, a fecal specimen from each pig was cultured on nonselective medium in roll tubes. Fifty colonies were randomly selected from each fecal sample, and isolates were characterized to identify a representative cross section of the fecal flora. The bacterial composition of the fecal flora differed between basal and high-fiber diets (P = 0.002) and between high-fiber and high-oil diets (P = 0.015). However, the floras were not significantly different between the basal and the high-oil diets (P = 0.135), nor were the floras of the 12 individual pigs (each on all three diets) statistically different (P = 0.103). Only 14 of the 160 observed taxa have been detected in the human fecal flora, and only 159 of 1,871 total isolates (8.5%) were members of described species. The most common isolate was a Streptococcus species similar to that reported by Robinson et al. (I. M. Robinson, S. C. Whipp, J. A. Bucklin, and M. J. Allison, Appl. Environ. Microbiol. 48:964-969, 1984), which was found in 34 of 36 samples and which represented 27.5% of all isolates. Lactobacillus, Fusobacterium, Eubacterium, Bacteroides, and Peptostreptococcus species were the next most common bacteria. Escherichia coli represented 1.7% of all fecal isolates, which is somewhat higher than the 0.1 to 0.6% observed in human feces cultured similarly with prereduced anaerobically sterilized media.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2821900
Beaver, A; Sweeney, R W; Hovingh, E; Wolfgang, D R; Gröhn, Y T; Schukken, Y H
2017-09-01
Mycobacterium avium ssp. paratuberculosis (MAP), the causative agent of ruminant Johne's disease, presents a particular challenge with regard to infection mitigation on dairy farms. Diagnostic testing strategies to identify and quantify MAP and associated antibodies are imperfect, and certain facets of the relationship between diagnostic tests remain to be explored. Additional repeated-measures data from known infected animals are needed to complement the body of cross-sectional research on Johne's disease-testing methods. Statistical models that accurately account for multiple diagnostic results while adjusting for the effects of individual animals and herds over time can provide a more detailed understanding of the interplay between diagnostic outcomes. Further, test results may be considered as continuous wherever possible so as to avoid the information loss associated with dichotomization. To achieve a broader understanding of the relationship between diagnostic tests, we collected a large number of repeated fecal and milk samples from 14 infected cows, in addition to bulk milk samples, from 2 low-prevalence dairy herds in the northeast United States. Predominately through the use of mixed linear modeling, we identified strong associations between milk ELISA optical density, fecal quantitative PCR, and fecal culture in individual animals while concurrently adjusting for variables that could alter these relationships. Notably, we uncovered subtleties in the predictive abilities of fecal shedding level on milk ELISA results, with animals categorized as disease progressors reaching higher ELISA optical density levels. Moreover, we observed that spikes in fecal shedding could predict subsequent high ELISA values up to 2 mo later. We also investigated the presence of MAP in individual milk samples via PCR and noted an association between poor udder hygiene and MAP positivity in milk, suggesting some level of environmental contamination. The paucity of positive milk samples and the complete absence of detectable MAP in the bulk tank throughout the study period indicate that contamination of milk with MAP may not be of chief concern in low-prevalence herds. An enhanced understanding of the interrelationships between diagnostic tests can only benefit the development of testing strategies and objectives, which in turn may lessen MAP infection prevalence in dairy herds. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Gebrekidan, Hagos; Gasser, Robin B; Stevenson, Mark A; McGrath, Sean; Jabbar, Abdul
2017-02-01
Oriental theileriosis caused by multiple genotypes of Theileria orientalis is an important tick-borne disease of bovines. Here, we assessed the performance of an established multiplexed tandem PCR (MT-PCR) for the diagnosis of the two recognized, pathogenic genotypes (chitose and ikeda) of T. orientalis in cattle using pooled blood samples. We used a total of 265 cattle blood samples, which were divided into two groups according to previous MT-PCR results for individual samples. Samples in group 1 (n = 155) were from a herd with a relatively high prevalence of T. orientalis infection; and those in group 2 (n = 110) were from four herds with a low prevalence. For group 1, 31 and 15 batches of five- and ten-pooled samples (selected at random), respectively, were formed. For group 2, 22 and 11 batches of five- and ten-pooled samples (selected at random), respectively, were formed. DNAs from individual pooled samples in each batch and group were then tested by MT-PCR. For group 1, the apparent prevalences estimated using the 31 batches of five-pooled samples (97%) and 15 batches of ten-pooled samples (100%) were significantly higher compared with individual samples (75%). For group 2, higher apparent prevalences (9% and 36%) were also recorded for the 22 and 11 batches of pooled samples, respectively, compared with individual samples (7%). Overall, the average infection intensity recorded for the genotypes of chitose and ikeda were considerably lower in pooled compared with individual samples. The diagnostic specificities of MT-PCR were estimated at 95% and 94%, respectively, when batches of five- and ten-pooled samples were tested, and 94% for individual samples. The diagnostic sensitivity of this assay was estimated at 98% same for all individual, five- and ten-pooled samples. This study shows that screening batches of five- and ten-pooled blood samples from cattle herds are similar to those obtained for individual samples, and, importantly, that the reduced cost for the testing of pooled samples represents a considerable saving to herd managers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Giddings, Elise M.; Oblinger, Carolyn J.
2004-01-01
Water quality in the Newfound Creek watershed has been shown to be affected by bacteria, sediment, and nutrients. In this study, Escherichia coli (E. coli) bacteria were sampled at five sites in Newfound Creek and five tributary sites during low flow on May 28, 2003, and high flow on November 19, 2003. In addition, a subset of five sites was sampled for fecal coliform bacteria, E. coli bacteria in streambed sediments (low flow only), and coliphage virus for serotyping. Coliphage virus serotyping has been used to identify human and animal sources of bacterial contamination. A streamflow gage was installed and operated to support ongoing water-quality studies in the watershed. Fecal coliform densities ranged from 92 to 27,000 colony-forming units per 100 milliliters of water for E. coli and 140 to an estimated 29,000 colony-forming units per 100 milliliters of water for fecal coliform during the two sampling visits. Ninety percent of the E. coli and fecal coliform samples exceeded corresponding U.S. Environmental Protection Agency or North Carolina water-quality criteria for recreational and ambient waters. During low flow, the middle part of the Newfound Creek watershed and the Dix Creek tributary had the highest densities of E. coli bacteria. During the high-flow sampling, all tributaries contained high densities of E. coli bacteria, although Dix Creek and Round Hill Branch were the largest contributors of these bacteria to Newfound Creek. Coliphage virus serotyping results were inconclusive because most samples did not contain the male-specific RNA coliphage needed for serotyping. Positive results indicated, however, that during low flow, non-human sources of bacteria were present in Sluder Branch, and during high flow, human sources of bacteria were present in Round Hill Branch. Sampling of bacteria in streambed sediments during low flow indicated that sediments do not appear to be a substantial source of bacteria relative to the water column, with the exception of an area near the confluence of Sluder Branch and Newfound Creek.
Keiter, David A.; Cunningham, Fred L.; Rhodes, Olin E.; Irwin, Brian J.; Beasley, James
2016-01-01
Collection of scat samples is common in wildlife research, particularly for genetic capture-mark-recapture applications. Due to high degradation rates of genetic material in scat, large numbers of samples must be collected to generate robust estimates. Optimization of sampling approaches to account for taxa-specific patterns of scat deposition is, therefore, necessary to ensure sufficient sample collection. While scat collection methods have been widely studied in carnivores, research to maximize scat collection and noninvasive sampling efficiency for social ungulates is lacking. Further, environmental factors or scat morphology may influence detection of scat by observers. We contrasted performance of novel radial search protocols with existing adaptive cluster sampling protocols to quantify differences in observed amounts of wild pig (Sus scrofa) scat. We also evaluated the effects of environmental (percentage of vegetative ground cover and occurrence of rain immediately prior to sampling) and scat characteristics (fecal pellet size and number) on the detectability of scat by observers. We found that 15- and 20-m radial search protocols resulted in greater numbers of scats encountered than the previously used adaptive cluster sampling approach across habitat types, and that fecal pellet size, number of fecal pellets, percent vegetative ground cover, and recent rain events were significant predictors of scat detection. Our results suggest that use of a fixed-width radial search protocol may increase the number of scats detected for wild pigs, or other social ungulates, allowing more robust estimation of population metrics using noninvasive genetic sampling methods. Further, as fecal pellet size affected scat detection, juvenile or smaller-sized animals may be less detectable than adult or large animals, which could introduce bias into abundance estimates. Knowledge of relationships between environmental variables and scat detection may allow researchers to optimize sampling protocols to maximize utility of noninvasive sampling for wild pigs and other social ungulates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, David A.; Cunningham, Fred L.; Rhodes, Jr., Olin E.
Collection of scat samples is common in wildlife research, particularly for genetic capture-mark-recapture applications. Due to high degradation rates of genetic material in scat, large numbers of samples must be collected to generate robust estimates. Optimization of sampling approaches to account for taxa-specific patterns of scat deposition is, therefore, necessary to ensure sufficient sample collection. While scat collection methods have been widely studied in carnivores, research to maximize scat collection and noninvasive sampling efficiency for social ungulates is lacking. Further, environmental factors or scat morphology may influence detection of scat by observers. We contrasted performance of novel radial search protocolsmore » with existing adaptive cluster sampling protocols to quantify differences in observed amounts of wild pig ( Sus scrofa) scat. We also evaluated the effects of environmental (percentage of vegetative ground cover and occurrence of rain immediately prior to sampling) and scat characteristics (fecal pellet size and number) on the detectability of scat by observers. We found that 15- and 20-m radial search protocols resulted in greater numbers of scats encountered than the previously used adaptive cluster sampling approach across habitat types, and that fecal pellet size, number of fecal pellets, percent vegetative ground cover, and recent rain events were significant predictors of scat detection. Our results suggest that use of a fixed-width radial search protocol may increase the number of scats detected for wild pigs, or other social ungulates, allowing more robust estimation of population metrics using noninvasive genetic sampling methods. Further, as fecal pellet size affected scat detection, juvenile or smaller-sized animals may be less detectable than adult or large animals, which could introduce bias into abundance estimates. In conclusion, knowledge of relationships between environmental variables and scat detection may allow researchers to optimize sampling protocols to maximize utility of noninvasive sampling for wild pigs and other social ungulates.« less
Keiter, David A; Cunningham, Fred L; Rhodes, Olin E; Irwin, Brian J; Beasley, James C
2016-01-01
Collection of scat samples is common in wildlife research, particularly for genetic capture-mark-recapture applications. Due to high degradation rates of genetic material in scat, large numbers of samples must be collected to generate robust estimates. Optimization of sampling approaches to account for taxa-specific patterns of scat deposition is, therefore, necessary to ensure sufficient sample collection. While scat collection methods have been widely studied in carnivores, research to maximize scat collection and noninvasive sampling efficiency for social ungulates is lacking. Further, environmental factors or scat morphology may influence detection of scat by observers. We contrasted performance of novel radial search protocols with existing adaptive cluster sampling protocols to quantify differences in observed amounts of wild pig (Sus scrofa) scat. We also evaluated the effects of environmental (percentage of vegetative ground cover and occurrence of rain immediately prior to sampling) and scat characteristics (fecal pellet size and number) on the detectability of scat by observers. We found that 15- and 20-m radial search protocols resulted in greater numbers of scats encountered than the previously used adaptive cluster sampling approach across habitat types, and that fecal pellet size, number of fecal pellets, percent vegetative ground cover, and recent rain events were significant predictors of scat detection. Our results suggest that use of a fixed-width radial search protocol may increase the number of scats detected for wild pigs, or other social ungulates, allowing more robust estimation of population metrics using noninvasive genetic sampling methods. Further, as fecal pellet size affected scat detection, juvenile or smaller-sized animals may be less detectable than adult or large animals, which could introduce bias into abundance estimates. Knowledge of relationships between environmental variables and scat detection may allow researchers to optimize sampling protocols to maximize utility of noninvasive sampling for wild pigs and other social ungulates.
Keiter, David A.; Cunningham, Fred L.; Rhodes, Jr., Olin E.; ...
2016-05-25
Collection of scat samples is common in wildlife research, particularly for genetic capture-mark-recapture applications. Due to high degradation rates of genetic material in scat, large numbers of samples must be collected to generate robust estimates. Optimization of sampling approaches to account for taxa-specific patterns of scat deposition is, therefore, necessary to ensure sufficient sample collection. While scat collection methods have been widely studied in carnivores, research to maximize scat collection and noninvasive sampling efficiency for social ungulates is lacking. Further, environmental factors or scat morphology may influence detection of scat by observers. We contrasted performance of novel radial search protocolsmore » with existing adaptive cluster sampling protocols to quantify differences in observed amounts of wild pig ( Sus scrofa) scat. We also evaluated the effects of environmental (percentage of vegetative ground cover and occurrence of rain immediately prior to sampling) and scat characteristics (fecal pellet size and number) on the detectability of scat by observers. We found that 15- and 20-m radial search protocols resulted in greater numbers of scats encountered than the previously used adaptive cluster sampling approach across habitat types, and that fecal pellet size, number of fecal pellets, percent vegetative ground cover, and recent rain events were significant predictors of scat detection. Our results suggest that use of a fixed-width radial search protocol may increase the number of scats detected for wild pigs, or other social ungulates, allowing more robust estimation of population metrics using noninvasive genetic sampling methods. Further, as fecal pellet size affected scat detection, juvenile or smaller-sized animals may be less detectable than adult or large animals, which could introduce bias into abundance estimates. In conclusion, knowledge of relationships between environmental variables and scat detection may allow researchers to optimize sampling protocols to maximize utility of noninvasive sampling for wild pigs and other social ungulates.« less
Henaux, V.; Samuel, M.D.; Dusek, Robert J.; Fleskes, J.P.; Ip, Hon S.
2012-01-01
Although wild waterfowl are the main reservoir for low pathogenic avian influenza viruses (LPAIv), the environment plays a critical role for the circulation and persistence of AIv. LPAIv may persist for extended periods in cold environments, suggesting that waterfowl breeding areas in the northern hemisphere may be an important reservoir for AIv in contrast to the warmer southern wintering areas. We evaluated whether southern wetlands, with relatively small populations (thousands) of resident waterfowl, maintain AIv in the summer, prior to the arrival of millions of migratory birds. We collected water and fecal samples at ten wetlands in two regions (Yolo Bypass and Sacramento Valley) of the California Central Valley during three bi-weekly intervals beginning in late July, 2010. We detected AIv in 29/367 fecal samples (7.9%) and 12/597 water samples (2.0%) by matrix real time Reverse Transcription Polymerase Chain Reaction (rRT-PCR). We isolated two H3N8, two H2N3, and one H4N8 among rRT-PCR positive fecal samples but no live virus from water samples. Detection of AIv RNA in fecal samples was higher from wetlands in the Sacramento Valley (11.9%) than in the Yolo Bypass (0.0%), but no difference was found for water samples (2.7 vs. 1.7%, respectively). Our study showed that low densities of hosts and unfavorable environmental conditions did not prevent LPAIv circulation during summer in California wetlands. Our findings justify further investigations to understand AIv dynamics in resident waterfowl populations, compare AIv subtypes between migratory and resident waterfowl, and assess the importance of local AIv as a source of infection for migratory birds.
Kosek, Margaret N.; Schwab, Kellogg J.
2017-01-01
Empiric quantification of environmental fecal contamination is an important step toward understanding the impact that water, sanitation, and hygiene interventions have on reducing enteric infections. There is a need to standardize the methods used for surface sampling in field studies that examine fecal contamination in low-income settings. The dry cloth method presented in this manuscript improves upon the more commonly used swabbing technique that has been shown in the literature to have a low sampling efficiency. The recovery efficiency of a dry electrostatic cloth sampling method was evaluated using Escherichia coli and then applied to household surfaces in Iquitos, Peru, where there is high fecal contamination and enteric infection. Side-by-side measurements were taken from various floor locations within a household at the same time over a three-month period to compare for consistency of quantification of E. coli bacteria. The dry cloth sampling method in the laboratory setting showed 105% (95% Confidence Interval: 98%, 113%) E. coli recovery efficiency off of the cloths. The field application demonstrated strong agreement of side-by-side results (Pearson correlation coefficient for dirt surfaces was 0.83 (p < 0.0001) and 0.91 (p < 0.0001) for cement surfaces) and moderate agreement for results between entrance and kitchen samples (Pearson (0.53, p < 0.0001) and weighted Kappa statistic (0.54, p < 0.0001)). Our findings suggest that this method can be utilized in households with high bacterial loads using either continuous (quantitative) or categorical (semi-quantitative) data. The standardization of this low-cost, dry electrostatic cloth sampling method can be used to measure differences between households in intervention and non-intervention arms of randomized trials. PMID:28829392
Exum, Natalie G; Kosek, Margaret N; Davis, Meghan F; Schwab, Kellogg J
2017-08-22
Empiric quantification of environmental fecal contamination is an important step toward understanding the impact that water, sanitation, and hygiene interventions have on reducing enteric infections. There is a need to standardize the methods used for surface sampling in field studies that examine fecal contamination in low-income settings. The dry cloth method presented in this manuscript improves upon the more commonly used swabbing technique that has been shown in the literature to have a low sampling efficiency. The recovery efficiency of a dry electrostatic cloth sampling method was evaluated using Escherichia coli and then applied to household surfaces in Iquitos, Peru, where there is high fecal contamination and enteric infection. Side-by-side measurements were taken from various floor locations within a household at the same time over a three-month period to compare for consistency of quantification of E. coli bacteria. The dry cloth sampling method in the laboratory setting showed 105% (95% Confidence Interval: 98%, 113%) E. coli recovery efficiency off of the cloths. The field application demonstrated strong agreement of side-by-side results (Pearson correlation coefficient for dirt surfaces was 0.83 ( p < 0.0001) and 0.91 ( p < 0.0001) for cement surfaces) and moderate agreement for results between entrance and kitchen samples (Pearson (0.53, p < 0.0001) and weighted Kappa statistic (0.54, p < 0.0001)). Our findings suggest that this method can be utilized in households with high bacterial loads using either continuous (quantitative) or categorical (semi-quantitative) data. The standardization of this low-cost, dry electrostatic cloth sampling method can be used to measure differences between households in intervention and non-intervention arms of randomized trials.
Rogers, Shane W; Shaffer, Carrie E; Langen, Tom A; Jahne, Michael; Welsh, Rick
2018-03-09
The purpose of this study was to investigate genetic biomarkers of zoonotic enteric pathogens and antibiotic-resistant genes (ARGs) in the feces of white-tailed deer (Odocoileus virginianus) as related to proximity of deer to land that receives livestock manure or human waste biosolid fertilizers. Deer feces were collected in the St. Lawrence River Valley and Adirondack State Park of New York. Campylobacter spp. 16S rDNA was detected in 12 of 232 fecal samples (8 of 33 sites). Salmonellae were cultivated from 2 of 182 fecal samples (2 of 29 sites). Genetic virulence markers for Shiga-like toxin I (stx 1 ) and enterohemolysin (hylA) were each detected in one isolate of Escherichia coli; E. coli O157 was not detected in any of 295 fecal samples. ARGs detected in deer feces included ermB (erythromycin-resistant gene; 9 of 295 fecal samples, 5 of 38 sites), vanA (vancomycin-resistant gene; 93 of 284 samples, 33 of 38 sites), tetQ (tetracycline-resistant gene; 93 of 295 samples, 25 of 38 sites), and sul(I) (sulfonamide-resistant gene; 113 of 292 samples, 28 of 38 sites). Genetic markers of pathogens and ARGs in deer feces were spatially associated with collection near concentrated animal feeding operations (CAFOs; Campylobacter spp., tetQ, and ermB) and land-applied biosolids (tetQ). These results indicate that contact with human waste biosolids or animal manure may be an important method of pathogen and ARG transmission and that deer in proximity to land-applied manure and human waste biosolids pose increased risk to nearby produce and water quality.
Matsuda, Ikki; Bernard, Henry; Tuuga, Augustine; Nathan, Sen K. S. S.; Sha, John C. M.; Osman, Ismon; Sipangkui, Rosa; Seino, Satoru; Asano, Sanae; Wong, Anna; Kreuzer, Michael; Ramirez Saldivar, Diana A.; Clauss, Marcus
2018-01-01
Understanding the natural diet of species may provide useful information that can contribute to successful captive maintenance. A common problem experienced with captive foregut-fermenting primate (colobine) diets is that they are deficient in fiber and therefore highly digestible. This may contribute to gastrointestinal disorders often observed in zoos. An approach to obtain information relevant for the improvement of diets is to compare the nutrient composition of feces from free-ranging and captive individuals. In theory, fecal material can be considered a proxy for diet intake integrated over a certain period of time. We collected fecal samples from eight free-ranging proboscis monkey (Nasalis larvatus, a highly endangered colobine species) groups from a secondary forest along the Kinabatangan River and four from a mixed mangrove-riverine forest along the Garama River, Sabah, Borneo, Malaysia. We also collected fecal samples from 12 individual captive adult/sub-adult proboscis monkeys from three different zoos. We confirmed that feces from free-ranging monkeys contained more fiber and less metabolic fecal nitrogen than those from captive specimens, indicating a less digestible diet in the wild. Modifying the diets of captive colobines to include more fiber, comparable to those of free-ranging ones, may contribute to their health and survival. PMID:29404345
Regional Assessment of Human Fecal Contamination in Southern California Coastal Drainages
Cao, Yiping; Raith, Meredith R.; Smith, Paul D.; Griffith, John F.; Weisberg, Stephen B.; Schriewer, Alexander; Sheldon, Andrew; Crompton, Chris; Gregory, Jason; Guzman, Joe; Othman, Laila; Manasjan, Mayela; Choi, Samuel; Rapoport, Shana; Steele, Syreeta; Nguyen, Tommy; Yu, Xueyuan
2017-01-01
Host-associated genetic markers that allow for fecal source identification have been used extensively as a diagnostic tool to determine fecal sources within watersheds, but have not been used in routine monitoring to prioritize remediation actions among watersheds. Here, we present a regional assessment of human marker prevalence among drainages that discharge to the U.S. southern California coast. Approximately 50 samples were analyzed for the HF183 human marker from each of 22 southern California coastal drainages under summer dry weather conditions, and another 50 samples were targeted from each of 23 drainages during wet weather. The HF183 marker was ubiquitous, detected in all but two sites in dry weather and at all sites during wet weather. However, there was considerable difference in the extent of human fecal contamination among sites. Similar site ranking was produced regardless of whether the assessment was based on frequency of HF183 detection or site average HF183 concentration. However, site ranking differed greatly between dry and wet weather. Site ranking also differed greatly when based on enterococci, which do not distinguish between pollution sources, vs. HF183, which distinguishes higher risk human fecal sources from other sources, indicating the additional value of the human-associated marker as a routine monitoring tool. PMID:28777324
Regional Assessment of Human Fecal Contamination in Southern California Coastal Drainages.
Cao, Yiping; Raith, Meredith R; Smith, Paul D; Griffith, John F; Weisberg, Stephen B; Schriewer, Alexander; Sheldon, Andrew; Crompton, Chris; Amenu, Geremew G; Gregory, Jason; Guzman, Joe; Goodwin, Kelly D; Othman, Laila; Manasjan, Mayela; Choi, Samuel; Rapoport, Shana; Steele, Syreeta; Nguyen, Tommy; Yu, Xueyuan
2017-08-04
Host-associated genetic markers that allow for fecal source identification have been used extensively as a diagnostic tool to determine fecal sources within watersheds, but have not been used in routine monitoring to prioritize remediation actions among watersheds. Here, we present a regional assessment of human marker prevalence among drainages that discharge to the U.S. southern California coast. Approximately 50 samples were analyzed for the HF183 human marker from each of 22 southern California coastal drainages under summer dry weather conditions, and another 50 samples were targeted from each of 23 drainages during wet weather. The HF183 marker was ubiquitous, detected in all but two sites in dry weather and at all sites during wet weather. However, there was considerable difference in the extent of human fecal contamination among sites. Similar site ranking was produced regardless of whether the assessment was based on frequency of HF183 detection or site average HF183 concentration. However, site ranking differed greatly between dry and wet weather. Site ranking also differed greatly when based on enterococci, which do not distinguish between pollution sources, vs. HF183, which distinguishes higher risk human fecal sources from other sources, indicating the additional value of the human-associated marker as a routine monitoring tool.
Quality evaluation of processed clay soil samples.
Steiner-Asiedu, Matilda; Harrison, Obed Akwaa; Vuvor, Frederick; Tano-Debrah, Kwaku
2016-01-01
This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was processed clay soil samples. Staphylococcus spp and fecal coliforms including Klebsiella, Escherichia, and Shigella and Enterobacterspp were isolated from the clay samples. Samples from the Kaneshie market in Accra recorded the highest total viable counts 6.5 Log cfu/g and Staphylococcal count 5.8 Log cfu/g. For fecal coliforms, Madina market samples had the highest count 6.5 Log cfu/g and also recorded the highest levels of yeast and mould. For Koforidua, total viable count was highest in the samples from the Zongo market 6.3 Log cfu/g. Central market samples had the highest count of fecal coliforms 4.6 Log cfu/g and yeasts and moulds 6.5 Log cfu/g. "Small" market recorded the highest staphylococcal count 6.2 Log cfu/g. The water activity of the clay samples were low, and ranged between 0.65±0.01 and 0.66±0.00 for samples collected from Koforidua and Accra respectively. The clay samples were found to contain Klebsiella spp. Escherichia, Enterobacter, Shigella spp. staphylococcus spp., yeast and mould. These have health implications when consumed.
Harwood, Valerie J; Boehm, Alexandria B; Sassoubre, Lauren M; Vijayavel, Kannappan; Stewart, Jill R; Fong, Theng-Theng; Caprais, Marie-Paule; Converse, Reagan R; Diston, David; Ebdon, James; Fuhrman, Jed A; Gourmelon, Michele; Gentry-Shields, Jennifer; Griffith, John F; Kashian, Donna R; Noble, Rachel T; Taylor, Huw; Wicki, Melanie
2013-11-15
An inter-laboratory study of the accuracy of microbial source tracking (MST) methods was conducted using challenge fecal and sewage samples that were spiked into artificial freshwater and provided as unknowns (blind test samples) to the laboratories. The results of the Source Identification Protocol Project (SIPP) are presented in a series of papers that cover 41 MST methods. This contribution details the results of the virus and bacteriophage methods targeting human fecal or sewage contamination. Human viruses used as source identifiers included adenoviruses (HAdV), enteroviruses (EV), norovirus Groups I and II (NoVI and NoVII), and polyomaviruses (HPyVs). Bacteriophages were also employed, including somatic coliphages and F-specific RNA bacteriophages (FRNAPH) as general indicators of fecal contamination. Bacteriophage methods targeting human fecal sources included genotyping of FRNAPH isolates and plaque formation on bacterial hosts Enterococcus faecium MB-55, Bacteroides HB-73 and Bacteroides GB-124. The use of small sample volumes (≤50 ml) resulted in relatively insensitive theoretical limits of detection (10-50 gene copies or plaques × 50 ml(-1)) which, coupled with low virus concentrations in samples, resulted in high false-negative rates, low sensitivity, and low negative predictive values. On the other hand, the specificity of the human virus methods was generally close to 100% and positive predictive values were ∼40-70% with the exception of NoVs, which were not detected. The bacteriophage methods were generally much less specific toward human sewage than virus methods, although FRNAPH II genotyping was relatively successful, with 18% sensitivity and 85% specificity. While the specificity of the human virus methods engenders great confidence in a positive result, better concentration methods and larger sample volumes must be utilized for greater accuracy of negative results, i.e. the prediction that a human contamination source is absent. Copyright © 2013 Elsevier Ltd. All rights reserved.
Identification of feces by detection of Bacteroides genes.
Nakanishi, Hiroaki; Shojo, Hideki; Ohmori, Takeshi; Hara, Masaaki; Takada, Aya; Adachi, Noboru; Saito, Kazuyuki
2013-01-01
In forensic science, the identification of feces is very important in a variety of crime investigations. However, no sensitive and simple fecal identification method using molecular biological techniques has been reported. Here, we focused on the fecal bacteria, Bacteroides uniformis, Bacteroides vulgatus and Bacteroides thetaiotaomicron, and developed a novel fecal identification method by detection of the gene sequences specific to these bacteria in various body (feces, blood, saliva, semen, urine, vaginal fluids and skin surfaces) and forensic (anal adhesions) specimens. Bacterial gene detection was performed by real-time PCR using a minor groove binding probe to amplify the RNA polymerase β-subunit gene of B. uniformis and B. vulgatus, and the α-1-6 mannanase gene of B. thetaiotaomicron. At least one of these bacteria was detected in the feces of 20 donors; the proportions of B. uniformis, B. vulgatus and B. thetaiotaomicron were 95, 85 and 60%, respectively. Bacteroides vulgatus was also detected in one of six vaginal fluid samples, but B. thetaiotaomicron and B. uniformis were not detected in body samples other than feces. Further, we applied this method to forensic specimens from 18 donors. Eighteen anal adhesions also contained at least one of three bacteria; B. uniformis, B. vulgatus and B. thetaiotaomicron were detected in 89, 78 and 56%, respectively, of the specimens. Thus, these bacteria were present at a high frequency in the fecal and forensic specimens, while either B. uniformis or B. vulgatus was detected in all samples. Therefore, B. uniformis and B. vulgatus represent more appropriate target species than B. thetaiotaomicron for the identification of fecal material. If B. vulgatus and/or B. uniformis are detected, it is likely that the sample contains feces. Taken together, our results suggest that the use of molecular biological techniques will aid the detection of feces in forensic practice, although it is possible that the samples contained both feces and vaginal fluid. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
SUDSUKH, Apichaya; TAYA, Kazuyoshi; WATANABE, Gen; WAJJWALKU, Worawidh; THONGPHAKDEE, Ampika; THONGTIP, Nikorn
2016-01-01
To clarify the reproductive cycle of female Rusa deer (Rusa timorensis), the fecal concentrations of progesterone and 17β-estradiol metabolites were measured. Fecal samples were collected on a weekly basis for one year (between October, 2012 and September, 2013) from five healthy adult hinds in Thailand. At the beginning of the study, three hinds were pregnant. Two hinds delivered one healthy offspring, and one hind delivered a stillborn calf. The mating period of Rusa hinds in Thailand is from November to April. In pregnant hinds, fecal progesterone metabolite concentration was high in late pregnancy and abruptly declined to the baseline around parturition, suggesting that the placenta secretes a large amount of progesterone. Fecal 17β-estradiol metabolite concentration remained elevated around the day of parturition. Both concentrations of fecal progesterone and 17β-estradiol metabolites in non-lactating hinds were significantly higher than those in lactating hinds, indicating that ovarian activity of lactating hinds is suppressed by the suckling stimulus of fawn during lactation. The present study demonstrated that monitoring of fecal steroid hormones is useful method for assessing ovarian function in this species. PMID:27570098
Newton, Ryan J.; VandeWalle, Jessica L.; Borchardt, Mark A.; Gorelick, Marc H.; McLellan, Sandra L.
2011-01-01
The complexity of fecal microbial communities and overlap among human and other animal sources have made it difficult to identify source-specific fecal indicator bacteria. However, the advent of next-generation sequencing technologies now provides increased sequencing power to resolve microbial community composition within and among environments. These data can be mined for information on source-specific phylotypes and/or assemblages of phylotypes (i.e., microbial signatures). We report the development of a new genetic marker for human fecal contamination identified through microbial pyrotag sequence analysis of the V6 region of the 16S rRNA gene. Sequence analysis of 37 sewage samples and comparison with database sequences revealed a human-associated phylotype within the Lachnospiraceae family, which was closely related to the genus Blautia. This phylotype, termed Lachno2, was on average the second most abundant fecal bacterial phylotype in sewage influent samples from Milwaukee, WI. We developed a quantitative PCR (qPCR) assay for Lachno2 and used it along with the qPCR-based assays for human Bacteroidales (based on the HF183 genetic marker), total Bacteroidales spp., and enterococci and the conventional Escherichia coli and enterococci plate count assays to examine the prevalence of fecal and human fecal pollution in Milwaukee's harbor. Both the conventional fecal indicators and the human-associated indicators revealed chronic fecal pollution in the harbor, with significant increases following heavy rain events and combined sewer overflows. The two human-associated genetic marker abundances were tightly correlated in the harbor, a strong indication they target the same source (i.e., human sewage). Human adenoviruses were routinely detected under all conditions in the harbor, and the probability of their occurrence increased by 154% for every 10-fold increase in the human indicator concentration. Both Lachno2 and human Bacteroidales increased specificity to detect sewage compared to general indicators, and the relationship to a human pathogen group suggests that the use of these alternative indicators will improve assessments for human health risks in urban waters. PMID:21803887
Maukonen, Johanna; Aura, Anna-Marja; Niemi, Piritta; Raza, Gulam Shere; Niemelä, Klaus; Walkowiak, Jaroslaw; Mattila, Ismo; Poutanen, Kaisa; Buchert, Johanna; Herzig, Karl-Heinz
2017-05-10
Brewer's spent grain (BSG) is the major side-stream from brewing. As BSG is rich in dietary fiber and protein, it could be used in more valuable applications, such as nutritional additives for foods. Our aim was to elucidate whether an insoluble lignin-rich fraction (INS) from BSG is metabolized by mice gut microbiota and how it affects the microbiota. Our results indicated that lignin was partially degraded by the gut microbiota, degradation products were absorbed, and finally excreted in urine. Therefore, they contribute to the phenolic pool circulating in the mammalian body, and may have systemic effects on health. In addition, the effects of the test diets on the microbiota were significant. Most interestingly, diversities of predominant cecal and fecal bacteria were higher after the intervention diet containing INS than after the intervention diet containing cellulose. Since low fecal bacterial diversity has been linked with numerous diseases and disorders, the diversity increasing ability opens very interesting perspectives for the future.
Wang, Yuke; Moe, Christine L.; Null, Clair; Raj, Suraja J.; Baker, Kelly K.; Robb, Katharine A.; Yakubu, Habib; Ampofo, Joseph A.; Wellington, Nii; Freeman, Matthew C.; Armah, George; Reese, Heather E.; Peprah, Dorothy; Teunis, Peter F. M.
2017-01-01
Abstract. Lack of adequate sanitation results in fecal contamination of the environment and poses a risk of disease transmission via multiple exposure pathways. To better understand how eight different sources contribute to overall exposure to fecal contamination, we quantified exposure through multiple pathways for children under 5 years old in four high-density, low-income, urban neighborhoods in Accra, Ghana. We collected more than 500 hours of structured observation of behaviors of 156 children, 800 household surveys, and 1,855 environmental samples. Data were analyzed using Bayesian models, estimating the environmental and behavioral factors associated with exposure to fecal contamination. These estimates were applied in exposure models simulating sequences of behaviors and transfers of fecal indicators. This approach allows us to identify the contribution of any sources of fecal contamination in the environment to child exposure and use dynamic fecal microbe transfer networks to track fecal indicators from the environment to oral ingestion. The contributions of different sources to exposure were categorized into four types (high/low by dose and frequency), as a basis for ranking pathways by the potential to reduce exposure. Although we observed variation in estimated exposure (108–1016 CFU/day for Escherichia coli) between different age groups and neighborhoods, the greatest contribution was consistently from food (contributing > 99.9% to total exposure). Hands played a pivotal role in fecal microbe transfer, linking environmental sources to oral ingestion. The fecal microbe transfer network constructed here provides a systematic approach to study the complex interaction between contaminated environment and human behavior on exposure to fecal contamination. PMID:29031283
Predicting Fecal Indicator Bacteria Fate and Removal in Urban Stormwater at the Watershed Scale
NASA Astrophysics Data System (ADS)
Wolfand, J.; Hogue, T. S.; Luthy, R. G.
2016-12-01
Urban stormwater is a major cause of water quality impairment, resulting in surface waters that fail to meet water quality standards and support their designated uses. Of the many stormwater pollutants, fecal indicator bacteria are particularly important to track because they are directly linked to pathogens which jeopardize public health; yet, their fate and transport in urban stormwater is poorly understood. Monitoring fecal bacteria in stormwater is possible, but due to the high variability of fecal indicators both spatially and temporally, single grab or composite samples do not fully capture fecal indicator loading. Models have been developed to predict fecal indicator bacteria at the watershed scale, but they are often limited to agricultural areas, or areas that receive frequent rainfall. Further, it is unclear whether best management practices (BMPs), such as bioretention or engineered wetlands, are able to reduce bacteria to meet water quality standards at watershed outlets. This research seeks to develop a model to predict fecal indicator bacteria in urban stormwater in a semi-arid climate at the watershed scale. Using the highly developed Ballona Creek watershed (89 mi2) located in Los Angeles County as a case study, several existing mechanistic models are coupled with a hydrologic model to predict fecal indicator concentrations (E. coli, enterococci, fecal coliform, and total coliform) at the outfall of Ballona Creek watershed, Santa Monica Bay. The hydrologic model was developed using InfoSWMM Sustain, calibrated for flow from WY 1998-2006 (NSE = 0.94; R2 = 0.95), and validated from WY 2007-2015 (NSE = 0.93; R2 = 0.95). The developed coupled model is being used to predict fecal indicator fate and transport and evaluate how BMPs can be optimized to reduce fecal indicator loading to surface waters and recreational beaches.
Farkas, Klaudia; Saródi, Zoltán; Bálint, Anita; Földesi, Imre; Tiszlavicz, László; Szűcs, Mónika; Nyári, Tibor; Tajti, János; Nagy, Ferenc; Szepes, Zoltán; Bor, Renáta; Annaházi, Anita; Róka, Richárd; Molnár, Tamás
2015-03-01
Only limited data are available regarding the diagnostic accuracy of fecal matrix metalloprotease-9 [MMP-9] for inflammatory bowel disease [IBD]. The aims of our study were to assess the diagnostic accuracy of fecal MMP-9 in patients with active Crohn's disease [CD], ulcerative colitis [UC], and pouchitis, and to compare the diagnostic accuracy of fecal MMP-9 and fecal calprotectin [CP] in IBD. Stool and blood samples were collected in 50 CD, 54 UC, and 34 ileal pouch-anal anastomosis patients before control endoscopies were performed. Biopsies were taken for histologic purposes. The activities of CD, UC, and pouchitis were defined with the use of clinical, endoscopic, and histologic activity scores. Fecal CP and MMP-9 levels were quantified by enzyme-linked immunosorbent assay. Active CD, UC, and pouchitis were detected in 38%, 54%, and 29% of the patients, respectively. A significant correlation was revealed between fecal CP and the clinical activities of CD and UC, and between fecal CP and the endoscopic activity of UC and pouchitis. Fecal MMP-9 did not correlate with any of the activity indices of CD; however, strong associations were shown between fecal MMP-9 and clinical, endoscopic, and histologic activities of both UC and pouchitis. This is the first study assessing the diagnostic accuracy of MMP-9 in different types of IBD. Our results showed that fecal MMP-9 has high sensitivity in the detection of endoscopically active UC and pouchitis. These non-invasive methods help assess intestinal inflammation. Copyright © 2015 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Fecal corticoid monitoring in whooping cranes (Grus americana) undergoing reintroduction
Hartup, Barry K.; Olsen, Glenn H.; Czekala, Nancy M.
2005-01-01
We used radioimmunoassay to determine fecal corticoid concentrations and assess potential stress in 10 endangered whooping cranes (Grus americana) undergoing reintroduction to the wild. Fecal samples were collected shortly after hatching at a captive facility in Maryland, during field training in Wisconsin, and throughout a human-led migration to Florida. After a 14-day decline following hatching, fecal corticoid concentrations stabilized at baseline levels for the duration of the captive period, despite exposure to potentially stressful stimuli. Shipment of the cranes to the field training site was correlated with an eight- to 34-fold increase in fecal corticoid concentrations, which returned to baseline levels within 1 week. Increases were positively correlated with age but not body weight at the time of shipping. Fecal corticoid concentrations during the training period increased slightly and exhibited greater variation than levels observed at the captive facility, but were well within expected norms based on previous studies. Fecal corticoid concentrations increased twofold following premigration physical examinations and placement of radiotransmitters, and persisted for up to 4 days before they returned to baseline levels. Though fecal corticoid concentrations and variation during the migration period were similar to training levels, there was an overall decline in fecal corticoid concentrations during the artificial migration. Acute stressors, such as capture, restraint, and severe storms, were associated with stress responses by the cranes that varied in accordance with lasting physical or psychological stimuli. The overall reintroduction process of costume-rearing, ultralight aircraft habituation, training, and artificial migration was not associated with elevations in fecal corticoid concentrations suggestive of chronic stress.
Molecular characterization of bacteriophages for microbial source tracking in Korea.
Lee, Jung Eun; Lim, Mi Young; Kim, Sei Yoon; Lee, Sunghee; Lee, Heetae; Oh, Hyun-Myung; Hur, Hor-Gil; Ko, Gwangpyo
2009-11-01
We investigated coliphages from various fecal sources, including humans and animals, for microbial source tracking in South Korea. Both somatic and F+-specific coliphages were isolated from 43 fecal samples from farms, wild animal habitats, and human wastewater plants. Somatic coliphages were more prevalent and abundant than F+ coliphages in all of the tested fecal samples. We further characterized 311 F+ coliphage isolates using RNase sensitivity assays, PCR and reverse transcription-PCR, and nucleic acid sequencing. Phylogenetic analyses were performed based on the partial nucleic acid sequences of 311 F+ coliphages from various sources. F+ RNA coliphages were most prevalent among geese (95%) and were least prevalent in cows (5%). Among the genogroups of F+ RNA coliphages, most F+ coliphages isolated from animal fecal sources belonged to either group I or group IV, and most from human wastewater sources were in group II or III. Some of the group I coliphages were present in both human and animal source samples. F+ RNA coliphages isolated from various sources were divided into two main clusters. All F+ RNA coliphages isolated from human wastewater were grouped with Qbeta-like phages, while phages isolated from most animal sources were grouped with MS2-like phages. UniFrac significance statistical analyses revealed significant differences between human and animal bacteriophages. In the principal coordinate analysis (PCoA), F+ RNA coliphages isolated from human waste were distinctively separate from those isolated from other animal sources. However, F+ DNA coliphages were not significantly different or separate in the PCoA. These results demonstrate that proper analysis of F+ RNA coliphages can effectively distinguish fecal sources.
Lewis, D J; Atwill, E R; Lennox, M S; Hou, L; Karle, B; Tate, K W
2005-08-01
How and where to improve water quality within an agricultural watershed requires data at a spatial scale that corresponds with individual management decision units on an agricultural operation. This is particularly true in the context of water quality regulations, such as Total Maximum Daily Loads (TMDLs), that identify agriculture as one source of non-point source pollution through larger tributary watershed scale and above and below water quality investigations. We have conducted a systems approach study of 10 coastal dairies and ranches to document fecal coliform concentration and loading to surface waters at the management decision unit scale. Water quality samples were collected on a storm event basis from loading units that included: manure management systems; gutters; storm drains; pastures; and corrals and lots. In addition, in-stream samples were collected above and below the dairy facilities and from a control watershed, managed for light grazing and without a dairy facility or human residence and corresponding septic system. Samples were analyzed for fecal coliform concentration by membrane filtration. Instantaneous discharge was measured for each collected sample. Storm runoff was also calculated using the curve number method (SCS, 1985). Results for a representative dairy as well as the entire 10 dairy data set are presented. Fecal coliform concentrations demonstrate high variability both within and between loading units. Fecal coliform concentrations for pastures range from 206 to 2,288,888 cfu/100 ml and for lots from 1,933 to 166,105,000 cfu/100 ml. Mean concentrations for pastures and lots are 121,298 (SE = 62,222) and 3,155,584 (SE = 1,902,713) cfu/100 ml, respectively. Fecal coliform load from units of concentrated animals and manure are significantly more than units such as pastures while storm flow amounts were significantly less. Compared with results from earlier tributary scale studies in the watershed, this systems approach has generated water quality data that is beneficial for management decisions because of its scale and representation of current management activities. These results are facilitating on-farm changes through the cooperative efforts of dairy managers, regulatory agency staff, and sources of technical and financial assistance.
Bacterial source tracking guides management of boat head waste in a coastal resort area.
Mallin, Michael A; Haltom, Mary I; Song, Bongkeun; Tavares, Mary E; Dellies, Stephen P
2010-12-01
Fecal contamination of water bodies causes a public health problem and economic loss. To control such contamination management actions need to be guided by sound science. From 2007-2009 a study was undertaken to determine the sources of fecal bacteria contamination to the marine waters adjoining the Town of Wrightsville Beach, North Carolina, USA. The research effort included sampling for fecal coliform and Enterococcus bacteria, sampling for optical brighteners, dye studies, and use of molecular bacterial source tracking techniques including polymerase chain reaction (PCR) and terminal restriction fragment polymorphism (T-RFLP) fingerprinting of the Bacteroides-Prevotella group. Of the 96 samples collected from nine locations during the study, the water contact standard for Enterococcus was exceeded on 13 occasions. The T-RFLP fingerprint analyses demonstrated that the most widespread source of fecal contamination was human, occurring in 38% of the samples, with secondary ruminant and avian sources also detected. Optical brightener concentrations were low, reflecting a lack of sewage line leakage or spills. A lack of sewer leaks and lack of septic systems in the town pointed toward discharge from boat heads into the marine waters as the major cause of fecal contamination; this was supported by dye studies. Based on these data, the Town initiated action to have the U.S. Environmental Protection Agency declare the coastal waters (out to 3 nautical miles), the nearby Atlantic Intracoastal Waterway and its tributaries a no-discharge zone (NDZ) to alleviate the human fecal pollution. The Town garnered supporting resolutions from other local communities who jointly petitioned the North Carolina Department of Environmental and Natural Resources. This State regulatory agency supported the local government resolutions and sent an application for an NDZ to the EPA in April 2009. The EPA concurred, and in February 2010 the coastal waters of New Hanover County, NC, became the first marine area on the U.S. eastern seaboard between Delaware and the Florida Keys to be declared a no-discharge zone. Copyright © 2010 Elsevier Ltd. All rights reserved.
Real-time quantitative PCR assays that target the human-associated HF183 bacterial cluster are considered to be some of the top performing methods for the characterization of human fecal pollution in ambient surface waters. In response, the United States Environmental Protectio...
Investigation of bacterial diversity in the feces of cattle fed different diets
USDA-ARS?s Scientific Manuscript database
The objective of this study is to investigate individual animal variation of bovine fecal microbiota including as affected by diets. Fecal samples were collected from 426 cattle fed 1 of 3 diets typically fed to feedlot cattle: 1) 143 steers fed finishing diet (83% dryrolled corn, 13% corn silage, a...
Tracking the Primary Sources of Fecal Pollution in a Tropical Watershed in a One-Year Study
A study was conducted to determine the primary sources of fecal pollution in a subtropical watershed using host-specific assays developed in temperate regions. Water samples (n=534) from 10 different sites along the Rio Grande de Arecibo watershed were collected every two-three w...
Green, Barbara L.; Clausen, Elizabeth; Litsky, Warren
1975-01-01
Fecal coliform recoveries were determined for six types of membrane filters using 65 nonchlorinated water samples. Results showed that the membranes could be ranked in order of decreasing recovery as follows: Millipore HC > Gelman > Johns-Manville ∼ Sartorius > Millipore HA > Schleicher & Schuell. PMID:1103735
Culture- and PCR-based measurements of fecal pollution were determined and compared to hydrologic and land use indicators. Stream water samples (n = 235) were collected monthly over a two year period from ten streams draining headwatersheds with different land use intensities ra...
Diseases and parasites in wolves of the Riding Mountain National Park region, Manitoba, Canada.
Stronen, Astrid V; Sallows, Tim; Forbes, Graham J; Wagner, Brent; Paquet, Paul C
2011-01-01
We examined wolf (Canis lupus) blood and fecal samples from the Riding Mountain National Park (RMNP) region of Manitoba, Canada. In 601 fecal samples collected during two study periods in RMNP and the Duck Mountain Provincial Park and Forest (DMPPF) we found gastrointestinal helminth eggs from Alaria sp. (15.5%), Capillaria sp. (1.0%), taeniid tapeworms (30.8%), Toxascaris sp. (1.7%), Toxocara sp. (0.2%), Trichuris sp. (2.2%), and Moniezia sp. (0.5%). In addition, we found Demodex sp. (0.2%) and the protozoal cysts/oocysts of Sarcocystis sp. (37.3%), Cryptosporidium sp. (1.2%), coccidia (Isospora sp. or Eimeria sp.) (1.7%), and Giardia sp. (29.5%). No fecal shedding of canine parvovirus (CPV, n=387) was detected. All 18 blood samples collected in RMNP showed CPV exposure and eight of 18 blood samples indicated canine distemper virus (CDV) exposure. One wolf died from CDV. Our results are consistent with previous findings on pathogens affecting wolves and with high Giardia sp. prevalence in wolves inhabiting agricultural regions.
Montecino-Latorre, Diego; Li, Xunde; Xiao, Chengling; Atwill, Edward R
2015-08-01
Wildlife are increasingly recognized as important biological reservoirs of zoonotic species of Cryptosporidium that might contaminate water and cause human exposure to this protozoal parasite. The habitat range of the yellow-bellied marmot (Marmota flaviventris) overlaps extensively with the watershed boundaries of municipal water supplies for California communities along the foothills of the Sierra Nevada. We conducted a cross-sectional epidemiological study to estimate the fecal shedding of Cryptosporidium oocysts by yellow-bellied marmots and to quantify the environmental loading rate and determine risk factors for Cryptosporidium fecal shedding in this montane wildlife species. The observed proportion of Cryptosporidium positive fecal samples was 14.7% (33/224, positive number relative to total number samples) and the environmental loading rate was estimated to be 10,693 oocysts animal(-1) day(-1). Fecal shedding was associated with the elevation and vegetation status of their habitat. Based on a portion of the 18s rRNA gene sequence of 2 isolates, the Cryptosporidium found in Marmota flaviventris were 99.88%-100% match to multiple isolates of C. parvum in the GenBank.
Comparison of four sampling methods for the detection of Salmonella in broiler litter.
Buhr, R J; Richardson, L J; Cason, J A; Cox, N A; Fairchild, B D
2007-01-01
Experiments were conducted to compare litter sampling methods for the detection of Salmonella. In experiment 1, chicks were challenged orally with a suspension of naladixic acid-resistant Salmonella and wing banded, and additional nonchallenged chicks were placed into each of 2 challenge pens. Nonchallenged chicks were placed into each nonchallenge pen located adjacent to the challenge pens. At 7, 8, 10, and 11 wk of age the litter was sampled using 4 methods: fecal droppings, litter grab, drag swab, and sock. For the challenge pens, Salmonella-positive samples were detected in 3 of 16 fecal samples, 6 of 16 litter grab samples, 7 of 16 drag swabs samples, and 7 of 16 sock samples. Samples from the nonchallenge pens were Salmonella positive in 2 of 16 litter grab samples, 9 of 16 drag swab samples, and 9 of 16 sock samples. In experiment 2, chicks were challenged with Salmonella, and the litter in the challenge and adjacent nonchallenge pens were sampled at 4, 6, and 8 wk of age with broilers remaining in all pens. For the challenge pens, Salmonella was detected in 10 of 36 fecal samples, 20 of 36 litter grab samples, 14 of 36 drag swab samples, and 26 of 36 sock samples. Samples from the adjacent nonchallenge pens were positive for Salmonella in 6 of 36 fecal droppings samples, 4 of 36 litter grab samples, 7 of 36 drag swab samples, and 19 of 36 sock samples. Sock samples had the highest rates of Salmonella detection. In experiment 3, the litter from a Salmonella-challenged flock was sampled at 7, 8, and 9 wk by socks and drag swabs. In addition, comparisons with drag swabs that were stepped on during sampling were made. Both socks (24 of 36, 67%) and drag swabs that were stepped on (25 of 36, 69%) showed significantly more Salmonella-positive samples than the traditional drag swab method (16 of 36, 44%). Drag swabs that were stepped on had comparable Salmonella detection level to that for socks. Litter sampling methods that incorporate stepping on the sample material while in contact with the litter appear to detect Salmonella in greater incidence than traditional sampling methods of dragging swabs over the litter surface.
Kostyla, Caroline; Bain, Rob; Cronk, Ryan; Bartram, Jamie
2015-05-01
Accounting for fecal contamination of drinking water sources is an important step in improving monitoring of global access to safe drinking water. Fecal contamination varies with time while its monitoring is often infrequent. We sought to understand seasonal trends in fecal contamination to guide best practices to capture seasonal variation and ascertain the extent to which the results of a single sample may overestimate compliance with health guidelines. The findings from 22 studies from developing countries written in English and identified through a systematic review were analyzed. Fecal contamination in improved drinking water sources was shown to follow a statistically significant seasonal trend of greater contamination during the wet season (p<0.001). This trend was consistent across fecal indicator bacteria, five source types, twelve Köppen-Geiger climate zones, and across both rural and urban areas. Guidance on seasonally representative water quality monitoring by the World Health Organization and national water quality agencies could lead to improved assessments of access to safe drinking water. Copyright © 2015 Elsevier B.V. All rights reserved.
Schoenecker, K.A.; Lyda, R.O.; Kirkpatrick, J.
2004-01-01
We compared three fecal steroid metabolite assays for their usefulness in detecting pregnancy among free-ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis) from Bighorn Canyon National Recreation Area, Wyoming and Montana (USA) and captive bighorn ewes at ZooMontana in Billings, Montana. Fecal samples were collected from 11 free-ranging, radio-collared bighorn ewes in late January–May 2001 and from 20 free-ranging, radio-collared ewes in late March to mid-May 2002. Free-ranging ewes were monitored the following spring to determine whether or not they lambed. In addition, two captive ewes were studied at Zoo-Montana. With three exceptions, free-ranging bighorn ewes that produced lambs had nonspecific progesterone metabolite (iPdG) levels of >1,800 ng/g feces and iPdG levels >7,000 ng/gm feces when samples were collected between early March and mid-May Samples collected earlier in the year were inconclusive. One false negative was suspected to be the result of sample collection error. Of the captive ewes, nonspecific pregnanediol-3α–glucuronide (PdG) and iPdG followed a predictable curve over the course of the 180-day pregnancies. We conclude that estrone conjugates are not useful in diagnosing pregnancy; however, fecal steroid analysis of PdG and iPdG can be used to accurately determine pregnancy and reproductive function in bighorn sheep. This holds great potential as a noninvasive technique for understanding the role of reproductive disease in wild bighorn sheep.
PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples.
Wang, R F; Cao, W W; Cerniglia, C E
1996-01-01
PCR procedures based on 16S rRNA gene sequences specific for 12 anaerobic bacteria that predominate in the human intestinal tract were developed and used for quantitative detection of these species in human (adult and baby) feces and animal (rat, mouse, cat, dog, monkey, and rabbit) feces. Fusobacterium prausnitzii, Peptostreptococcus productus, and Clostridium clostridiiforme had high PCR titers (the maximum dilutions for positive PCR results ranged from 10(-3) to 10(-8)) in all of the human and animal fecal samples tested. Bacteroides thetaiotaomicron, Bacteroides vulgatus, and Eubacterium limosum also showed higher PCR titers (10(-2) to 10(-6)) in adult human feces. The other bacteria tested, including Escherichia coli, Bifidobacterium adolescentis, Bifidobacterium longum, Lactobacillus acidophilus, Eubacterium biforme, and Bacteroides distasonis, were either at low PCR titers (less than 10(-2)) or not detected by PCR. The reported PCR procedure including the fecal sample preparation method is simplified and rapid and eliminates the DNA isolation steps. PMID:8919784
Transport of free and particulate-associated bacteria in karst
Mahler, B.J.; Personne, J.-C.; Lods, G.F.; Drogue, C.
2000-01-01
Karst aquifers, because of their unique hydrogeologic characteristics, are extremely susceptible to contamination by pathogens. Here we present the results of an investigation of contamination of a karst aquifer by fecal indicator bacteria. Two wells intercepting zones with contrasting effective hydraulic conductivities, as determined by pump test, were monitored both during the dry season and in response to a rain event. Samples were also collected from the adjacent ephemeral surface Stream, which is known to be impacted by an upstream wastewater treatment plant after rainfall. Whole water and suspended sediment samples were analyzed for fecal coliforms and enterococci. During the dry season, pumping over a 2-day period resulted in increases in concentrations of fecal coliforms to greater than 10,000 CFU/100 ml in the high-conductivity well; enterococci and total suspended solids also increased, to a lesser degree. Toward the end of the pumping period, as much as 50% of the fecal coliforms were associated with suspended sediment. Irrigation of an up-gradient pine plantation with primary-treated wastewater is the probable source of the bacterial contamination. Sampling after a rain event revealed the strong influence of water quality of the adjacent Terrieu Creek on the ground water. Bacterial concentrations in the wells showed a rapid response to increased concentrations in the surface water, with fecal coliform concentrations in ground water ultimately reaching 60,000 CFU/100 ml. Up to 100% of the bacteria in the ground water was associated with suspended sediment at various times. The results of this investigation are evidence of the strong influence of surface water on ground water in karst terrain, including that of irrigation water. The large proportion of bacteria associated with particulates in the ground Water has important implications for public health, as bacteria associated with particulates may be more persistent and more difficult to inactivate. The high bacterial concentrations found in both wells, despite the difference in hydraulic conductivity, demonstrates the difficulty of predicting vulnerability of individual wells to bacterial contamination in karst. The extreme temporal variability in bacterial concentrations underscores the importance of event-based monitoring of the bacterial quality of public water supplies in karst. (C) 2000 Elsevier Science B.V.Karst aquifers, because of their unique hydrogeologic characteristics, are extremely susceptible to contamination by pathogens. Here we present the results of an investigation of contamination of a karst aquifer by fecal indicator bacteria. Two wells intercepting zones with contrasting effective hydraulic conductivities, as determined by pump test, were monitored both during the dry season and in response to a rain event. Samples were also collected from the adjacent ephemeral surface stream, which is known to be impacted by an upstream wastewater treatment plant after rainfall. Whole water and suspended sediment samples were analyzed for fecal coliforms and enterococci. During the dry season, pumping over a 2-day period resulted in increases in concentrations of fecal coliforms to greater than 10,000 CFU/100 ml in the high-conductivity well; enterococci and total suspended solids also increased, to a lesser degree. Toward the end of the pumping period, as much as 50% of the fecal coliforms were associated with suspended sediment. Irrigation of an up-gradient pine plantation with primary-treated wastewater is the probable source of the bacterial contamination. Sampling after a rain event revealed the strong influence of water quality of the adjacent Terrieu Creek on the ground water. Bacterial concentrations in the wells showed a rapid response to increased concentrations in the surface water, with fecal coliform concentrations in ground water ultimately reaching 60,000 CFU/100 ml. Up to 100% of the bacteria in the ground water was associated with suspended
Kager, L; Liljeqvist, L; Malmborg, A S; Nord, C E
1981-01-01
Clindamycin was given intravenously to 15 patients undergoing colorectal surgery in an initial dose of 600 mg, given at induction of anesthesia followed by 6 doses of 600 mg at 8-h intervals. Series of serum samples and fecal specimens were taken for analysis of clindamycin concentrations. Tissue samples from the gut wall were taken at surgery. The highest serum concentrations observed occurred 30 min after administration of clindamycin and varied between 6.8 and 37.9 microgram/ml (mean, 14.8 +/- 2.0 [standard error] microgram/ml). The clindamycin concentrations in the tissue samples were between 1.8 and 13.0 microgram/g. Clindamycin concentration in the fecal samples varied between 2.1 and 460 microgram/g. Fecal samples were also collected during the investigation period for cultivation of aerobic and anaerobic bacteria. Among the aerobic bacteria, enterococci and streptococci decreased during the prophylaxis period. Anaerobic bacteria also decreased significantly during the same period. After the clindamycin administration period, enterococci, streptococci and anaerobic bacteria proliferated. No anaerobic strains resistant to clindamycin were isolated. Postoperative infections due to Streptococcus faecalis and different enterobacteria such as Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Klebsiella occurred in five patients. PMID:7325640
Kager, L; Liljeqvist, L; Malmborg, A S; Nord, C E
1981-12-01
Clindamycin was given intravenously to 15 patients undergoing colorectal surgery in an initial dose of 600 mg, given at induction of anesthesia followed by 6 doses of 600 mg at 8-h intervals. Series of serum samples and fecal specimens were taken for analysis of clindamycin concentrations. Tissue samples from the gut wall were taken at surgery. The highest serum concentrations observed occurred 30 min after administration of clindamycin and varied between 6.8 and 37.9 microgram/ml (mean, 14.8 +/- 2.0 [standard error] microgram/ml). The clindamycin concentrations in the tissue samples were between 1.8 and 13.0 microgram/g. Clindamycin concentration in the fecal samples varied between 2.1 and 460 microgram/g. Fecal samples were also collected during the investigation period for cultivation of aerobic and anaerobic bacteria. Among the aerobic bacteria, enterococci and streptococci decreased during the prophylaxis period. Anaerobic bacteria also decreased significantly during the same period. After the clindamycin administration period, enterococci, streptococci and anaerobic bacteria proliferated. No anaerobic strains resistant to clindamycin were isolated. Postoperative infections due to Streptococcus faecalis and different enterobacteria such as Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Klebsiella occurred in five patients.
Jaravata, Carmela V; Smith, Wayne L; Rensen, Gabriel J; Ruzante, Juliana M; Cullor, James S
2006-01-01
A modified forensic DNA extraction and real-time fluorescent polymerase chain reaction assay has been evaluated for the detection of Mycobacterium avium subsp. paratuberculosis (MAP) in bovine fecal samples using primers and fluorescent resonance energy transfer (FRET) probes targeting the IS900 gene sequence of MAP. DNA was successfully extracted from manure samples by utilizing the Whatman FTA card technology, which allows for simple processing and storage of samples at room temperature. The FTA cards were washed and subjected to a Chelex-100 incubation to remove any remaining polymerase chain reaction (PCR) inhibitors and to elute the DNA from the FTA card. This isolated DNA was then subjected to direct real time fluorescent PCR analysis. Detection of MAP DNA from bovine fecal samples spiked with known concentrations of viable MAP cells was obtained. The detection limits of the assay was consistently found to be between 10(2) and 10(4) colony forming units [CFU]/g, with some samples containing as low as 10 CFU/g, yielding positive assay results. This cost-efficient assay allows reporting of results as early as 4 h after fecal collection, which can be particularly useful in highthroughput herd screening.
Ravva, Subbarao V; Sarreal, Chester Z; Cooley, Michael B
2015-07-01
To provide data for traditional trace-back studies from fork to farm, it is necessary to determine the environmental sources for Shiga-toxigenic Escherichia coli. We developed SYBR green based reverse-transcriptase PCR methods to determine the prevalence of F+ RNA coliphages (FRNA) as indicators of fecal contamination. Male-specific coliphages, determined using a single-agar overlay method, were prevalent in all surface waters sampled for 8 months. F+ DNA coliphages (FDNA) were predominant compared to FRNA in water samples from majority of sampling locations. Most (90%) of the FRNA were sourced to humans and originated from human-impacted sites. Members of genogroup III represented 77% of FRNA originated from human sources. Furthermore, 93% of FRNA sourced to animals were also detected in water samples from human-impacted sites. Eighty percent of all FRNA were isolated during the winter months indicating seasonality in prevalence. In contrast, FDNA were more prevalent during summer months. E. coli O157:H7 and Shiga-toxigenic E. coli were detected in water samples from locations predominantly influenced by agriculture. Owing to their scarcity, their numbers could not be correlated with the prevalence of FRNA or FDNA in water samples. Both coliform bacteria and generic E. coli from agricultural or human-impacted sites were similar in numbers and thus could not be used to determine the sources of fecal contamination. Data on the prevalence of male-specific coliphages may be invaluable for predicting the sources of fecal contamination and aid in developing methods to prevent enteric pathogen contamination from likely sources during produce production.
Wade, S E; Mohammed, H O; Schaaf, S L
2000-11-01
A cross-sectional study was undertaken to determine the prevalence of Giardia sp. (G. duodenalis group), Cryptosporidium parvum and Cryptosporidium andersoni (C. muris) [corrected] in dairy cattle in three different age groups, and to evaluate the association of age and season with prevalence. One hundred and nine dairy farms, from a total of 212 farms, in five counties of southeastern New York volunteered to participate. On these farms, 2943 fecal samples were collected from three defined age groups. The farms were randomly assigned for sampling within the four seasons of the year. Each farm was visited once during the study period from March 1993 to June 1994 to collect fecal samples. Demographic data on the study population was collected at the time of sampling by interviewing the farm owner or manager. At collection, fecal samples were scored as diarrheic or non-diarrheic, and each condition was later related to positive or negative infection with these parasites. Fecal samples were processed using a quantitative centrifugation concentration flotation technique and enumerated using bright field and phase contrast microscopy. In this study, the overall population prevalence for Giardia sp. was 8.9%; C. parvum, 0.9%; and C. muris, 1.1%. When considering animals most at the risk of infection (those younger than 6 months of age) Giardia sp. and C. parvum was found in 20.1 and 2.4% of the animals, respectively. Giardia sp. and C. muris were found in all age groups. There was no significant seasonal pattern of infection for any of these parasites.
Johnson, David A; Barclay, Robert L; Mergener, Klaus; Weiss, Gunter; König, Thomas; Beck, Jürgen; Potter, Nicholas T
2014-01-01
Screening improves outcomes related to colorectal cancer (CRC); however, suboptimal participation for available screening tests limits the full benefits of screening. Non-invasive screening using a blood based assay may potentially help reach the unscreened population. To compare the performance of a new Septin9 DNA methylation based blood test with a fecal immunochemical test (FIT) for CRC screening. In this trial, fecal and blood samples were obtained from enrolled patients. To compare test sensitivity for CRC, patients with screening identified colorectal cancer (n = 102) were enrolled and provided samples prior to surgery. To compare test specificity patients were enrolled prospectively (n = 199) and provided samples prior to bowel preparation for screening colonoscopy. Plasma and fecal samples were analyzed using the Epi proColon and OC Fit-Check tests respectively. For all samples, sensitivity for CRC detection was 73.3% (95% CI 63.9-80.9%) and 68.0% (95% CI 58.2-76.5%) for Septin9 and FIT, respectively. Specificity of the Epi proColon test was 81.5% (95% CI 75.5-86.3%) compared with 97.4% (95% CI 94.1-98.9%) for FIT. For paired samples, the sensitivity of the Epi proColon test (72.2% -95% CI 62.5-80.1%) was shown to be statistically non-inferior to FIT (68.0%-95% CI 58.2-76.5%). When test results for Epi proColon and FIT were combined, CRC detection was 88.7% at a specificity of 78.8%. At a sensitivity of 72%, the Epi proColon test is non- inferior to FIT for CRC detection, although at a lower specificity. With negative predictive values of 99.8%, both methods are identical in confirming the absence of CRC. ClinicalTrials.gov NCT01580540.
Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole
2007-01-01
Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/ or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic-resistance genes (class I integrons) were detected in several samples, indicating that the resistance carried by these organisms may be transferable to other bacteria, including disease-causing bacteria.
Kusuda, Satoshi; Kakizoe, Yuka; Kanda, Koji; Sengoku, Tomoko; Fukumoto, Yohei; Adachi, Itsuki; Watanabe, Yoko; Doi, Osamu
2011-01-01
This study aimed to validate the measurements of body temperature and fecal progesterone concentrations as minimally invasive techniques for assessing ovarian cycle in a single sexually mature female killer whale. Rectal temperature data, fecal and blood samples were collected in the dorsal position using routine husbandry training on a voluntary basis. The correlations between rectal temperature and plasma progesterone concentration and between fecal and plasma progesterone concentrations were investigated. Fecal progesterone metabolites were identified by a combination of high-performance liquid chromatography and enzyme immunoassay. Plasma progesterone concentrations (range: 0.2-18.6 ng/ml) and rectal temperature (range: 35.3-35.9°C) changed cyclically, and cycle lengths were an average (±SD) of 44.9±4.0 days (nine cycles) and 44.6±5.9 days (nine cycles), respectively. Rectal temperature positively correlated with the plasma progesterone concentrations (r=0.641, P<0.01). There was a visual trend for fecal progesterone profiles to be similar to circulating plasma progesterone profiles. Fecal immunoreactive progestagen analysis resulted in a marked immunoreactive peak of progesterone. The data from the single killer whale indicate that the measurement of rectal temperature is suitable for minimally invasive assessment of the estrous cycle and monitoring the fecal progesterone concentration is useful to assess ovarian luteal activity. © 2010 Wiley-Liss, Inc.
Ohad, Shoshanit; Ben-Dor, Shifra; Prilusky, Jaime; Kravitz, Valeria; Dassa, Bareket; Chalifa-Caspi, Vered; Kashi, Yechezkel; Rorman, Efrat
2016-01-01
The emerging microbial source tracking (MST) methodologies aim to identify fecal contamination originating from domestic and wild animals, and from humans. Avian MST is especially challenging, primarily because the Aves class includes both domesticated and wild species with highly diverse habitats and dietary characteristics. The quest for specific fecal bacterial MST markers can be difficult with respect to attaining sufficient assay sensitivity and specificity. The present study utilizes high throughput sequencing (HTS) to screen bacterial 16S rRNA genes from fecal samples collected from both domestic and wild avian species. Operational taxonomic unit (OTU) analysis was then performed, from which sequences were retained for downstream quantitative polymerase chain reaction (qPCR) marker development. Identification of unique avian host DNA sequences, absent in non-avian hosts, was then carried out using a dedicated database of bacterial 16S rRNA gene taken from the Ribosomal Database Project. Six qPCR assays were developed targeting the 16S rRNA gene of Lactobacillus, Gallibacterium, Firmicutes, Fusobacteriaceae, and other bacteria. Two assays (Av4143 and Av163) identified most of the avian fecal samples and demonstrated sensitivity values of 91 and 70%, respectively. The Av43 assay only identified droppings from battery hens and poultry, whereas each of the other three assays (Av24, Av13, and Av216) identified waterfowl species with lower sensitivities values. The development of an MST assay-panel, which includes both domestic and wild avian species, expands the currently known MST analysis capabilities for decoding fecal contamination.
2018-01-01
Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750–4 400 000 population equivalents) from 13 countries spanning six continents. In addition, genetic markers were tested against 280 human and nonhuman fecal samples from domesticated, agricultural and wild animal sources. Findings revealed that all genetic markers are present in consistently high concentrations in raw (median log10 7.2–8.0 marker equivalents (ME) 100 mL–1) and biologically treated wastewater samples (median log10 4.6–6.0 ME 100 mL–1) regardless of location and population. The false positive rates of the various markers in nonhuman fecal samples ranged from 5% to 47%. Results suggest that several genetic markers have considerable potential for measuring human-associated contamination in polluted environmental waters. This will be helpful in water quality monitoring, pollution modeling and health risk assessment (as demonstrated by QMRAcatch) to guide target-oriented water safety management across the globe. PMID:29570973
Molecular Detection of Campylobacter spp. in California Gull (Larus californicus) Excreta ▿ †
Lu, Jingrang; Ryu, Hodon; Santo Domingo, Jorge W.; Griffith, John F.; Ashbolt, Nicholas
2011-01-01
We examined the prevalence, quantity, and diversity of Campylobacter species in the excreta of 159 California gull (Larus californicus) samples using culture-, PCR-, and quantitative PCR (qPCR)-based detection assays. Campylobacter prevalence and abundance were relatively high in the gull excreta examined; however, C. jejuni and C. lari were detected in fewer than 2% of the isolates and DNA extracts from the fecal samples that tested positive. Moreover, molecular and sequencing data indicated that most L. californicus campylobacters were novel (<97% 16S rRNA gene sequence identity to known Campylobacter species) and not closely related to species commonly associated with human illness. Campylobacter estimates were positively related with those of fecal indicators, including a gull fecal marker based on the Catellicoccus marimammalium 16S rRNA gene. PMID:21622785
Hamilton, Matthew J; Yan, Tao; Sadowsky, Michael J
2006-06-01
The contamination of waterways with fecal material is a persistent threat to public health. Identification of the sources of fecal contamination is a vital component for abatement strategies and for determination of total maximum daily loads. While phenotypic and genotypic techniques have been used to determine potential sources of fecal bacteria in surface waters, most methods require construction of large known-source libraries, and they often fail to adequately differentiate among environmental isolates originating from different animal sources. In this study, we used pooled genomic tester and driver DNAs in suppression subtractive hybridizations to enrich for host source-specific DNA markers for Escherichia coli originating from locally isolated geese. Seven markers were identified. When used as probes in colony hybridization studies, the combined marker DNAs identified 76% of the goose isolates tested and cross-hybridized, on average, with 5% of the human E. coli strains and with less than 10% of the strains obtained from other animal hosts. In addition, the combined probes identified 73% of the duck isolates examined, suggesting that they may be useful for determining the contribution of waterfowl to fecal contamination. However, the hybridization probes reacted mainly with E. coli isolates obtained from geese in the upper midwestern United States, indicating that there is regional specificity of the markers identified. Coupled with high-throughput, automated macro- and microarray screening, these markers may provide a quantitative, cost-effective, and accurate library-independent method for determining the sources of genetically diverse E. coli strains for use in source-tracking studies. However, future efforts to generate DNA markers specific for E. coli must include isolates obtained from geographically diverse animal hosts.
Quality evaluation of processed clay soil samples
Steiner-Asiedu, Matilda; Harrison, Obed Akwaa; Vuvor, Frederick; Tano-Debrah, Kwaku
2016-01-01
Introduction This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. Methods The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was processed clay soil samples. Results Staphylococcus spp and fecal coliforms including Klebsiella, Escherichia, and Shigella and Enterobacterspp were isolated from the clay samples. Samples from the Kaneshie market in Accra recorded the highest total viable counts 6.5 Log cfu/g and Staphylococcal count 5.8 Log cfu/g. For fecal coliforms, Madina market samples had the highest count 6.5 Log cfu/g and also recorded the highest levels of yeast and mould. For Koforidua, total viable count was highest in the samples from the Zongo market 6.3 Log cfu/g. Central market samples had the highest count of fecal coliforms 4.6 Log cfu/g and yeasts and moulds 6.5 Log cfu/g. “Small” market recorded the highest staphylococcal count 6.2 Log cfu/g. The water activity of the clay samples were low, and ranged between 0.65±0.01 and 0.66±0.00 for samples collected from Koforidua and Accra respectively. Conclusion The clay samples were found to contain Klebsiella spp. Escherichia, Enterobacter, Shigella spp. staphylococcus spp., yeast and mould. These have health implications when consumed. PMID:27642456
V, Pavana Jyothi; S, Akila; Selvan, Malini K; Naidu, Hariprasad; Raghunathan, Shwethaa; Kota, Sathish; Sundaram, R C Raja; Rana, Samir Kumar; Raj, G Dhinakar; Srinivasan, V A; Mohana Subramanian, B
2016-12-01
Canine parvovirus (CPV) is a non-enveloped single stranded DNA virus with an icosahedral capsid. Mini-sequencing based CPV typing was developed earlier to detect and differentiate all the CPV types and FPV in a single reaction. This technique was further evaluated in the present study by performing the mini-sequencing directly from fecal samples which avoided tedious virus isolation steps by cell culture system. Fecal swab samples were collected from 84 dogs with enteritis symptoms, suggestive of parvoviral infection from different locations across India. Seventy six of these samples were positive by PCR; the subsequent mini-sequencing reaction typed 74 of them as type 2a virus, and 2 samples as type 2b. Additionally, 25 of the positive samples were typed by cycle sequencing of PCR products. Direct CPV typing from fecal samples using mini-sequencing showed 100% correlation with CPV typing by cycle sequencing. Moreover, CPV typing was achieved by mini-sequencing even with faintly positive PCR amplicons which was not possible by cycle sequencing. Therefore, the mini-sequencing technique is recommended for regular epidemiological follow up of CPV types, since the technique is rapid, highly sensitive and high capacity method for CPV typing. Copyright © 2016. Published by Elsevier B.V.
Field-based evaluation of a male-specific (F+) RNA coliphage ...
Fecal contamination of water poses a significant risk to public health due to the potential presence of pathogens, including enteric viruses. Thus, sensitive, reliable and easy to use methods for the detection of microorganisms are needed to evaluate water quality. In this study, we performed a field evaluation of an anion-exchange resin based platform to concentrate F-RNA coliphages (fecal/enteric virus indicators) from diverse fecally impacted environmental waters. In this platform, F-RNA coliphages are adsorbed to anion-exchange resin and direct nucleic acid isolation is performed, yielding a sample amenable to real-time reverse transcriptase PCR detection. Matrix-dependent inhibition was evaluated using known quantities of spiked F-RNA coliphage genogroups GI, GII, GII and GIV. Detection was successful in 97%, 72%, 85% and 98% of the samples for spiked F-RNA coliphage GI, GII, GIII and GIV, respectively, and was differentially affected by inhibitory properties specific to each water sample. No association between inhibition and the water samples’ physicochemical properties was apparent. Parallel evaluations of the spiked samples with internal amplification control (IAC) reactions (a widely used control to assess inhibition) demonstrated that IAC reaction inhibition was not agreement with that observed for spiked samples, suggesting that testing of spiked samples allows for better assessments of matrix-dependent inhibition. Additionally, the anion-
Gohar, Maha Kamal; Atta, Amal Hassan
2016-01-01
Fecal contamination of drinking water is a major health problem which accounts for many cases of diarrhea mainly in infants and foreigners. This contamination is a complex interaction of many parameters. Antibiotic resistance among bacterial isolates complicates the problem. The study was done to identify fecal contamination of drinking water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig city and to trace reasons for such contamination, three hundred potable water samples were investigated for E. coli existence. Locations of E. coli positive samples were investigated in relation to population density, water source, and type of water pipe. Sixteen E. coli strains were isolated. Antibiotic sensitivity was done and enterotoxigenic, enteropathogenic, and enterohaemorrhagic virulence genes were investigated by PCR. Probability of fecal contamination correlated with higher population density, with increased distance from Zagazig water plant, and with asbestos cement water pipes. Resistance to at least one antimicrobial drug was found in all isolates. Virulence genes were detected in a rate of 26.27%, 13.13%, 20%, 6.67%, and 33.33% for LT, ST, stx1, stx2, and eae genes, respectively. This relatively high frequency of fecal contamination points towards the high risk of developing diarrhea by antibiotic resistant DEC in low socioeconomic communities particularly with old fashion distribution systems. PMID:27725834
Liu, L.; Phanikumar, M.S.; Molloy, S.L.; Whitman, R.L.; Shively, D.A.; Nevers, M.B.; Schwab, D.J.; Rose, J.B.
2006-01-01
To investigate the transport and fate of fecal pollution at Great Lakes beaches and the health risks associated with swimming, the near-shore waters of Lake Michigan and two tributaries discharging into it were examined for bacterial indicators of human fecal pollution. The enterococcus human fecal pollution marker, which targets a putative virulence factorthe enterococcal surface protein (esp) in Enterococcus faecium, was detected in 2/28 samples (7%) in the tributaries draining into Lake Michigan and in 6/30 samples (20%) in Lake Michigan beaches. This was indicative of human fecal pollution being transported in the tributaries and occurrence at Lake Michigan beaches. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, E. coli and enterococci) was used. Enterococci appear to survive longer than E. coli, which was described using an overall first-order inactivation coefficient in the range 0.5−2.0 per day. Our analysis suggests that the majority of fecal indicator bacteria variation can be explained based on loadings from the tributaries. Sunlight is a major contributor to inactivation in the surf-zone and the formulation based on sunlight, temperature and sedimentation is preferred over the first-order inactivation formulation.
Exum, Natalie G; Olórtegui, Maribel Paredes; Yori, Pablo Peñataro; Davis, Meghan F; Heaney, Christopher D; Kosek, Margaret; Schwab, Kellogg J
2016-07-19
Over two billion people worldwide lack access to an improved sanitation facility that adequately retains or treats feces. This results in the potential for fecal material containing enteric pathogens to contaminate the environment, including household floors. This study aimed to assess how floor type and sanitation practices impacted the concentration of fecal contamination on household floors. We sampled 189 floor surfaces within 63 households in a peri-urban community in Iquitos, Peru. All samples were analyzed for colony forming units (CFUs) of E. coli, and households were evaluated for their water, sanitation, and hygiene characteristics. Results of multivariate linear regression indicated that households with improved sanitation and cement floors in the kitchen area had reduced fecal contamination to those with unimproved sanitation and dirt floors (Beta: -1.18 log10 E. coli CFU/900 cm(2); 95% confidence interval [CI]: -1.77, -0.60). Households that did not versus did share their sanitation facility also had less contaminated kitchen floors (Beta: -0.65 log10 E. coli CFU/900 cm(2); 95% CI: -1.15, -0.16). These findings suggest that the sanitation facilities of a home may impact the microbial load found on floors, contributing to the potential for household floors to serve as an indirect route of fecal pathogen transmission to children.
Zhang, Chong-Miao; Du, Cong; Xu, Huan; Miao, Yan-Hui; Cheng, Yan-Yan; Tang, Hao; Zhou, Jin-Hong; Wang, Xiao-Chang
2015-01-01
Antibiotic resistance of fecal coliforms in an urban river poses great threats to both human health and the environment. To investigate the occurrence and distribution of antibiotic resistant bacteria in an urban river, water samples were collected from the Chanhe River in Xi'an, China. After membrane filtration of water samples, the tetracycline resistance rate of fecal coliforms and their resistance genes were detected by plating and polymerase chain reaction (PCR), respectively. We found that fecal coliforms were generally resistant to tetracycline and saw average resistance rates of 44.7%. The genes tetA and tetB were widely detected, and their positive rate was 60%-100% and 40%-90%, respectively. We found few strains containing tetC, tetK, tetQ and tetX, and we did not identify any strains containing tetG, tetM or tetO. The prevalence of tetA and tetB over other genes indicated that the main mechanism for resistance to tetracycline is by changes to the efflux pump. Our analysis of the types and proportion of tetracycline resistance genes in the Chanhe River at locations upstream and downstream of the urban center suggests that the increased number of tetracycline-resistant fecal coliforms and spatial variation of tetracycline resistance genes diversity were related to municipal wastewater treatment plant discharge.
We assessed diet of spotted bats (Euderma maculatum (J.A. Allen, 1891)) by visual analysis of bat feces and stable carbon (δ13C) and nitrogen (δ15N) isotope analysis of bat feces, wing, hair, and insect prey. We collected 33 fecal samples from spotted bats and trapped 3755 insect...
USDA-ARS?s Scientific Manuscript database
To determine the prevalence and genotype distribution of Enterocytozoon bieneusi in weaned beef calves in the United States, fecal samples were collected from 819 calves (6-18 months of age) from 49 operations. Feces were sieved and subjected to density gradient centrifugation to remove fecal debri...
Same day prediction of fecal indicator bacteria (FIB) concentrations and bather protection from the risk of exposure to pathogens are two important goals of implementing a modeling program at recreational beaches. Sampling efforts for modelling applications can be expensive and t...
Ryu, Hodon; Henson, Michael; Elk, Michael; Toledo-Hernandez, Carlos; Griffith, John; Blackwood, Denene; Noble, Rachel; Gourmelon, Michèle; Glassmeyer, Susan
2013-01-01
The detection of environmental enterococci has been determined primarily by using culture-based techniques that might exclude some enterococcal species as well as those that are nonculturable. To address this, the relative abundances of enterococci were examined by challenging fecal and water samples against a currently available genus-specific assay (Entero1). To determine the diversity of enterococcal species, 16S rRNA gene-based group-specific quantitative PCR (qPCR) assays were developed and evaluated against eight of the most common environmental enterococcal species. Partial 16S rRNA gene sequences of 439 presumptive environmental enterococcal strains were analyzed to study further the diversity of enterococci and to confirm the specificities of group-specific assays. The group-specific qPCR assays showed relatively high amplification rates with targeted species (>98%), although some assays cross-amplified with nontargeted species (1.3 to 6.5%). The results with the group-specific assays also showed that different enterococcal species co-occurred in most fecal samples. The most abundant enterococci in water and fecal samples were Enterococcus faecalis and Enterococcus faecium, although we identified more water isolates as Enterococcus casseliflavus than as any of the other species. The prevalence of the Entero1 marker was in agreement with the combined number of positive signals determined by the group-specific assays in most fecal samples, except in gull feces. On the other hand, the number of group-specific assay signals was lower in all water samples tested, suggesting that other enterococcal species are present in these samples. While the results highlight the value of genus- and group-specific assays for detecting the major enterococcal groups in environmental water samples, additional studies are needed to determine further the diversity, distributions, and relative abundances of all enterococcal species found in water. PMID:23087032
Enterococcus phages as potential tool for identifying sewage inputs in the Great Lakes region
Vijayavel, K.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Ebdon, J.; Taylor, H.; Kashian, D.R.
2014-01-01
Bacteriophages are viruses living in bacteria that can be used as a tool to detect fecal contamination in surface waters around the world. However, the lack of a universal host strain makes them unsuitable for tracking fecal sources. We evaluated the suitability of two newly isolated Enterococcus host strains (ENT-49 and ENT-55) capable for identifying sewage contamination in impacted waters by targeting phages specific to these hosts. Both host strains were isolated from wastewater samples and identified as E. faecium by 16S rRNA gene sequencing. Occurrence of Enterococcus phages was evaluated in sewage samples (n = 15) from five wastewater treatment plants and in fecal samples from twenty-two species of wild and domesticated animals (individual samples; n = 22). Levels of Enterococcus phages, F + coliphages, Escherichia coli and enterococci were examined from four rivers, four beaches, and three harbors. Enterococcus phages enumeration was at similar levels (Mean = 6.72 Log PFU/100 mL) to F + coliphages in all wastewater samples, but were absent from all non-human fecal sources tested. The phages infecting Enterococcus spp. and F + coliphages were not detected in the river samples (detection threshold < 10 PFU/100 mL), but were present in the beach and harbor samples (range = 1.83 to 2.86 Log PFU/100 mL). Slightly higher concentrations (range = 3.22 to 3.69 Log MPN/100 mL) of E. coli and enterococci when compared to F + coliphages and Enterococcus phages, were observed in the river, beach and harbor samples. Our findings suggest that the bacteriophages associated with these particular Enterococcus host strains offer potentially sensitive and human-source specific indicators of enteric pathogen risk.
Effects of abomasal oligofructose on blood and feces of Holstein steers.
Mainardi, S R; Hengst, B A; Nebzydoski, S J; Nemec, L M; Gressley, T F
2011-08-01
Subacute ruminal acidosis can result in increased flow of fermentable substrates to the hindgut, which can negatively affect animal health and productivity. However, animal responses to increased hindgut fermentation independent of subacute ruminal acidosis have rarely been evaluated. This study determined the impact of abomasal dosage of a fermentable carbohydrate on animal performance and blood and fecal variables. Six ruminally cannulated Holstein steers fed a lactating dairy cow ration were used in a crossover design study with 14-d periods. On d 13 of each period, steers were infused abomasally with a pulse dose of 0 (control) or 1 (Oligo) g of oligofructose/kg of BW. Blood samples collected at 0, 3, 6, 9, 12, and 24 h after abomasal oligofructose dose were evaluated for metabolites (blood urea N, β-hydroxybutyric acid, and NEFA) and systemic inflammatory markers (Cu, serum amyloid A, and haptoglobin). Fecal samples, rectal temperature, heart rate, and respiratory rate were taken at 0, 3, 6, 9, 12, 24, and 48 h after abomasal dosage. Fecal samples were assayed for pH, DM percentage, consistency score (1=liquid to 5=coarse), and organic acid concentrations. Data were evaluated using a model including the fixed effects of treatment, time after dosage, and their interaction. Effects of treatment or treatment × time were not significant for DMI, blood variables, rectal temperature, or respiratory rate. Fecal pH was slightly reduced for Oligo compared with control steers (6.76 vs. 7.02; P=0.04). A treatment × time interaction occurred for fecal DM (P < 0.001). Compared with control steers, DM content of feces was reduced in Oligo steers at 6 h (12.6 vs. 15.2%) but increased at 9 h (16.3 vs. 15.0%) and 12 h (16.5 vs. 15.0). Fecal consistency score was reduced by the Oligo treatment at 6 h (1.44 vs. 2.83; P < 0.001) and 9 h (1.83 vs. 2.67; P=0.005). A treatment × time interaction was detected for fecal concentrations of lactate and acetate (P < 0.05) and tended to occur for propionate and butyrate (P < 0.10). The greatest difference for all organic acids occurred at 12 h, when fecal concentrations of lactate, acetate, propionate, and butyrate were 0.5, 47, 11, and 4.0 mM in control steers and 5.3, 76, 15, and 6.8 mM in Oligo steers, respectively. In summary, abomasal dosage of 1 g of oligofructose/kg of BW increased fecal excretion of microbial fermentation products in steers without causing metabolic acidosis, metabolic disruption, or inflammation. © 2011 American Society of Animal Science. All rights reserved.
Siembieda, Jennifer L; Miller, Woutrina A; Byrne, Barbara A; Ziccardi, Michael H; Anderson, Nancy; Chouicha, Nadira; Sandrock, Christian E; Johnson, Christine K
2011-03-15
To determine types and estimate prevalence of potentially zoonotic enteric pathogens shed by wild animals admitted to either of 2 wildlife hospitals and to characterize distribution of these pathogens and of aerobic bacteria in a hospital environment. Cross-sectional study. Fecal samples from 338 animals in 2 wildlife hospitals and environmental samples from 1 wildlife hospital. Fecal samples were collected within 24 hours of hospital admission. Environmental samples were collected from air and surfaces. Samples were tested for zoonotic pathogens via culture techniques and biochemical analyses. Prevalence of pathogen shedding was compared among species groups, ages, sexes, and seasons. Bacterial counts were determined for environmental samples. Campylobacter spp, Vibrio spp, Salmonella spp, Giardia spp, and Cryptosporidium spp (alone or in combination) were detected in 105 of 338 (31%) fecal samples. Campylobacter spp were isolated only from birds. Juvenile passerines were more likely to shed Campylobacter spp than were adults; prevalence increased among juvenile passerines during summer. Non-O1 serotypes of Vibrio cholerae were isolated from birds; during an oil-spill response, 9 of 10 seabirds screened were shedding this pathogen, which was also detected in environmental samples. Salmonella spp and Giardia spp were isolated from birds and mammals; Cryptosporidium spp were isolated from mammals only. Floors of animal rooms had higher bacterial counts than did floors with only human traffic. Potentially zoonotic enteric pathogens were identified in samples from several species admitted to wildlife hospitals, indicating potential for transmission if prevention is not practiced.
Automated biowaste sampling system feces monitoring system
NASA Technical Reports Server (NTRS)
Hunt, S. R.; Glanfield, E. J.
1979-01-01
The Feces Monitoring System (FMS) Program designed, fabricated, assembled and tested an engineering model waste collector system (WCS) to be used in support of life science and medical experiments related to Shuttle missions. The FMS design was patterned closely after the Shuttle WCS, including: interface provisions; mounting; configuration; and operating procedures. These similarities make it possible to eventually substitute an FMS for the Shuttle WCS of Orbiter. In addition, several advanced waste collection features, including the capability of real-time inertial fecal separation and fecal mass measurement and sampling were incorporated into the FMS design.
Conceição-Neto, Nádia; Zeller, Mark; Heylen, Elisabeth; Lefrère, Hanne; Mesquita, João Rodrigo; Matthijnssens, Jelle
2015-05-20
More knowledge about viral populations in wild animals is needed in order to better understand and assess the risk of zoonotic diseases. In this study we performed viral metagenomic analysis of fecal samples from three healthy carnivores: a badger (Meles meles), a mongoose (Herpestes ichneumon) and an otter (Lutra lutra) from Portugal. We detected the presence of novel highly divergent viruses in the fecal material of the carnivores analyzed, such as five gemycircularviruses. Four of these gemycircularviruses were found in the mongoose and one in the badger. In addition we also identified an RNA-dependent RNA polymerase gene from a putative novel member of the Nodaviridae family in the fecal material of the otter. Together these results underline that many novel viruses are yet to be discovered and that fecal associated viruses are not always related to disease. Our study expands the knowledge of viral species present in the gut, although the interpretation of the true host species of such novel viruses needs to be reviewed with great caution.
Alterations of fecal steroid composition induced by changes in dietary fiber consumption.
Ullrich, I H; Lai, H Y; Vona, L; Reid, R L; Albrink, M J
1981-10-01
The short-term effects of high carbohydrate diets of normal foods either high or low in dietary fiber on fecal steroids and fiber was assessed in eight healthy young men. Each subject consumed in random order for 4 days a diet containing 59 g (high fiber) or 21 g (low fiber) neutral detergent fiber. After a 9-day rest period he consumed the other diet. Analysis of random fecal samples during their usual diet and after 4 days of each experimental diet showed an increased in primary bile acids from less than 4 to 32% of total bile acids, and a decreases of coprostanol from 76% (control diet) or 64% (low fiber diet) to 45% of total neutral sterol after the high fiber diet. Fecal fiber concentration doubled after the high fiber diet. We conclude that 4 days of high fiber diet is sufficient to cause a large increase in primary and decrease in secondary fecal steroids. Such changes have implications for prevention of arteriosclerosis and cancer of the colon.
Demcheck, Dennis K.
1996-01-01
Physical and chemical-related properties, concentrations of chemical constituents, which included major ions and nutrients, and concentrations of fecal-coliform bacteria were determined for 17 sites on 11 streams in St. Tammany Parish, Louisiana, during the period April-August 1995. The streams were sampled to assess the effects of different streamflow conditions on the concentrations of water-quality constituents. The streams included in the study were Tchefuncte River, Bogue Falaya, Abita River, Bayou Chinchouba, Bayou Castine, Cane Bayou, Bayou Lacombe, Bayou Liberty, Bayou Bonfouca, Bogue Chitto, and West Pearl River. Water-quality samples were collected under several hydrologic conditions. These conditions included a period of wet weather and sustained high river stages; a period of local storms several days apart and river stages typical of that situation; and a period of dry weather and low river stages. The concentrations of inorganic chemical constituents in water from the upstream sites generally were low. Concentrations from the downstream sites varied and were higher. Nutrient and fecal-coliform bacteria concentrations varied and indicated that degraded water-quality conditions that typically occur during storms persisted less than 1-3 days. In general, the larger the drainage basin, the longer it takes for the stream to recover. Fecal-coliform concen- trations reflected the effects of small, isolated storms in the area. Bayou Castine, sampled immediately after a storm, had a fecal-coliform concentration of 26,000 colonies per 100 milliliters. The stream was resampled 24 hours later, and the fecal-coliform concentration had decreased to 1,700 colonies per 100 milliliters. This is an indication of the rapid water-quality changes that typically occur in small streams.
Microbial Source Tracking in Adjacent Karst Springs.
Ohad, Shoshanit; Vaizel-Ohayon, Dalit; Rom, Meir; Guttman, Joseph; Berger, Diego; Kravitz, Valeria; Pilo, Shlomo; Huberman, Zohar; Kashi, Yechezkel; Rorman, Efrat
2015-08-01
Modern man-made environments, including urban, agricultural, and industrial environments, have complex ecological interactions among themselves and with the natural surroundings. Microbial source tracking (MST) offers advanced tools to resolve the host source of fecal contamination beyond indicator monitoring. This study was intended to assess karst spring susceptibilities to different fecal sources using MST quantitative PCR (qPCR) assays targeting human, bovine, and swine markers. It involved a dual-time monitoring frame: (i) monthly throughout the calendar year and (ii) daily during a rainfall event. Data integration was taken from both monthly and daily MST profile monitoring and improved identification of spring susceptibility to host fecal contamination; three springs located in close geographic proximity revealed different MST profiles. The Giach spring showed moderate fluctuations of MST marker quantities amid wet and dry samplings, while the Zuf spring had the highest rise of the GenBac3 marker during the wet event, which was mirrored in other markers as well. The revelation of human fecal contamination during the dry season not connected to incidents of raining leachates suggests a continuous and direct exposure to septic systems. Pigpens were identified in the watersheds of Zuf, Shefa, and Giach springs and on the border of the Gaaton spring watershed. Their impact was correlated with partial detection of the Pig-2-Bac marker in Gaaton spring, which was lower than detection levels in all three of the other springs. Ruminant and swine markers were detected intermittently, and their contamination potential during the wet samplings was exposed. These results emphasized the importance of sampling design to utilize the MST approach to delineate subtleties of fecal contamination in the environment. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Investigation of bacterial diversity in the feces of cattle fed different diets.
Kim, M; Kim, J; Kuehn, L A; Bono, J L; Berry, E D; Kalchayanand, N; Freetly, H C; Benson, A K; Wells, J E
2014-02-01
The objective of this study is to investigate individual animal variation of bovine fecal microbiota including as affected by diets. Fecal samples were collected from 426 cattle fed 1 of 3 diets typically fed to feedlot cattle: 1) 143 steers fed finishing diet (83% dry-rolled corn, 13% corn silage, and 4% supplement), 2) 147 steers fed late growing diet (66% dry-rolled corn, 26% corn silage, and 8% supplement), and 3) 136 heifers fed early growing diet (70% corn silage and 30% alfalfa haylage). Bacterial 16S rRNA gene amplicons were determined from individual fecal samples using next-generation pyrosequencing technology. A total of 2,149,008 16S rRNA gene sequences from 333 cattle with at least 2,000 sequences were analyzed. Firmicutes and Bacteroidetes were dominant phyla in all fecal samples. At the genus level, Oscillibacter, Turicibacter, Roseburia, Fecalibacterium, Coprococcus, Clostridium, Prevotella, and Succinivibrio were represented by more than 1% of total sequences. However, numerous sequences could not be assigned to a known genus. Dominant unclassified groups were unclassified Ruminococcaceae and unclassified Lachnospiraceae that could be classified to a family but not to a genus. These dominant genera and unclassified groups differed (P < 0.001) with diets. A total of 176,692 operational taxonomic units (OTU) were identified in combination across all the 333 cattle. Only 2,359 OTU were shared across 3 diet groups. UniFrac analysis showed that bacterial communities in cattle feces were greatly affected by dietary differences. This study indicates that the community structure of fecal microbiota in cattle is greatly affected by diet, particularly between forage- and concentrate-based diets.
Cummings, Kevin J; Warnick, Lorin D; Elton, Mara; Gröhn, Yrjo T; McDonough, Patrick L; Siler, Julie D
2010-07-01
The objective of this study was to determine if the within-herd prevalence of fecal Salmonella shedding is higher in dairy herds with clinical outbreaks of disease, as compared to herds with subclinical infections only. Data were collected prospectively from dairy herds throughout New York that had at least 150 lactating cows and that received clinical service from participating veterinarians. After enrollment, Salmonella surveillance consisted of both environmental screening and disease monitoring within the herd. Herds positive by either environmental or fecal culture were sampled during three visits to estimate the within-herd prevalence of Salmonella. We characterized isolates by serovar and antimicrobial resistance pattern. Among 57 enrolled herds, 44 (77%) yielded Salmonella-positive samples during the study period; 27 (61%) of the positive herds had Salmonella isolated from environmental samples only, and 17 (39%) had one or more laboratory-confirmed clinical cases. The within-herd prevalence of fecal Salmonella shedding ranged from 0 to 53%. Salmonella Cerro was the predominant serovar, accounting for 56% of all isolates. Antimicrobial resistance ranged from zero to nine drugs, and 14 (32%) of the positive farms generated multidrug-resistant isolates. Herds with laboratory-confirmed clinical cases had a higher prevalence of fecal Salmonella shedding than herds that only generated positive environmental samples, as estimated by a Poisson regression model (prevalence ratio, 2.7; p = 0.01). An association between dairy herd outbreaks of salmonellosis and a higher prevalence of asymptomatic shedding should help guide strategies for reducing the public health threat of Salmonella, as the ability to recognize high-risk herds by clinical laboratory submissions presents an obvious opportunity to maximize food safety at the preharvest level. This is in contrast with other foodborne zoonotic pathogens, such as Campylobacter jejuni and Escherichia coli O157:H7, which occur widely in adult cattle without accompanying clinical disease.
Warnick, Lorin D.; Elton, Mara; Gröhn, Yrjo T.; McDonough, Patrick L.; Siler, Julie D.
2010-01-01
Abstract The objective of this study was to determine if the within-herd prevalence of fecal Salmonella shedding is higher in dairy herds with clinical outbreaks of disease, as compared to herds with subclinical infections only. Data were collected prospectively from dairy herds throughout New York that had at least 150 lactating cows and that received clinical service from participating veterinarians. After enrollment, Salmonella surveillance consisted of both environmental screening and disease monitoring within the herd. Herds positive by either environmental or fecal culture were sampled during three visits to estimate the within-herd prevalence of Salmonella. We characterized isolates by serovar and antimicrobial resistance pattern. Among 57 enrolled herds, 44 (77%) yielded Salmonella-positive samples during the study period; 27 (61%) of the positive herds had Salmonella isolated from environmental samples only, and 17 (39%) had one or more laboratory-confirmed clinical cases. The within-herd prevalence of fecal Salmonella shedding ranged from 0 to 53%. Salmonella Cerro was the predominant serovar, accounting for 56% of all isolates. Antimicrobial resistance ranged from zero to nine drugs, and 14 (32%) of the positive farms generated multidrug-resistant isolates. Herds with laboratory-confirmed clinical cases had a higher prevalence of fecal Salmonella shedding than herds that only generated positive environmental samples, as estimated by a Poisson regression model (prevalence ratio, 2.7; p = 0.01). An association between dairy herd outbreaks of salmonellosis and a higher prevalence of asymptomatic shedding should help guide strategies for reducing the public health threat of Salmonella, as the ability to recognize high-risk herds by clinical laboratory submissions presents an obvious opportunity to maximize food safety at the preharvest level. This is in contrast with other foodborne zoonotic pathogens, such as Campylobacter jejuni and Escherichia coli O157:H7, which occur widely in adult cattle without accompanying clinical disease. PMID:20353290
Ridpath, Julia F; Neill, John D; Chiang, Yu-Wei; Waldbillig, Jill
2014-01-01
Infection of pregnant cattle with both species of Bovine viral diarrhea virus (BVDV) can result in reproductive disease that includes fetal reabsorption, mummification, abortion, stillbirths, congenital defects affecting structural, neural, reproductive, and immune systems, and the birth of calves persistently infected with BVDV. Accurate diagnosis of BVDV-associated reproductive disease is important to control BVDV at the production unit level and assessment of the cost of BVDV infections in support of BVDV control programs. The purpose of the current study was to examine the stability of viral nucleic acid in fetal tissues exposed to different conditions, as measured by detection by polymerase chain reaction. Five different types of fetal tissue, including brain, skin and muscle, ear, and 2 different pooled organ samples, were subjected to conditions that mimicked those that might exist for samples collected after abortions in production settings or possible storage conditions after collection and prior to testing. In addition, tissues were archived for 36 months at -20°C and then retested, to mimic conditions that might occur in the case of retrospective surveillance studies. Brain tissue showed the highest stability under the conditions tested. The impact of fecal contamination was increased following archiving in all tissue types suggesting that, for long-term storage, effort should be made to reduce environmental contaminants before archiving.
Development of Cross-Assembly Phage PCR-Based Methods ...
Technologies that can characterize human fecal pollution in environmental waters offer many advantages over traditional general indicator approaches. However, many human-associated methods cross-react with non-human animal sources and lack suitable sensitivity for fecal source identification applications. The genome of a newly discovered bacteriophage (~97 kbp), the Cross-Assembly phage or “crAssphage”, assembled from a human gut metagenome DNA sequence library is predicted to be both highly abundant and predominately occur in human feces suggesting that this double stranded DNA virus may be an ideal human fecal pollution indicator. We report the development of two human-associated crAssphage endpoint PCR methods (crAss056 and crAss064). A shotgun strategy was employed where 384 candidate primers were designed to cover ~41 kbp of the crAssphage genome deemed favorable for method development based on a series of bioinformatics analyses. Candidate primers were subjected to three rounds of testing to evaluate assay optimization, specificity, limit of detection (LOD95), geographic variability, and performance in environmental water samples. The top two performing candidate primer sets exhibited 100% specificity (n = 70 individual samples from 8 different animal species), >90% sensitivity (n = 10 raw sewage samples from different geographic locations), LOD95 of 0.01 ng/µL of total DNA per reaction, and successfully detected human fecal pollution in impaired envi
Steele, Joshua A; Blackwood, A Denene; Griffith, John F; Noble, Rachel T; Schiff, Kenneth C
2018-06-01
Along southern California beaches, the concentrations of fecal indicator bacteria (FIB) used to quantify the potential presence of fecal contamination in coastal recreational waters have been previously documented to be higher during wet weather conditions (typically winter or spring) than those observed during summer dry weather conditions. FIB are used for management of recreational waters because measurement of the bacterial and viral pathogens that are the potential causes of illness in beachgoers exposed to stormwater can be expensive, time-consuming, and technically difficult. Here, we use droplet digital Polymerase Chain Reaction (digital PCR) and digital reverse transcriptase PCR (digital RT-PCR) assays for direct quantification of pathogenic viruses, pathogenic bacteria, and source-specific markers of fecal contamination in the stormwater discharges. We applied these assays across multiple storm events from two different watersheds that discharge to popular surfing beaches in San Diego, CA. Stormwater discharges had higher FIB concentrations as compared to proximal beaches, often by ten-fold or more during wet weather. Multiple lines of evidence indicated that the stormwater discharges contained human fecal contamination, despite the presence of separate storm sewer and sanitary sewer systems in both watersheds. Human fecal source markers (up to 100% of samples, 20-12440 HF183 copies per 100 ml) and human norovirus (up to 96% of samples, 25-495 NoV copies per 100 ml) were routinely detected in stormwater discharge samples. Potential bacterial pathogens were also detected and quantified: Campylobacter spp. (up to 100% of samples, 16-504 gene copies per 100 ml) and Salmonella (up to 25% of samples, 6-86 gene copies per 100 ml). Other viral human pathogens were also measured, but occurred at generally lower concentrations: adenovirus (detected in up to 22% of samples, 14-41 AdV copies per 100 ml); no enterovirus was detected in any stormwater discharge sample. Higher concentrations of avian source markers were noted in the stormwater discharge located immediately downstream of a large bird sanctuary along with increased Campylobacter concentrations and notably different Campylobacter species composition than the watershed that had no bird sanctuary. This study is one of the few to directly measure an array of important bacterial and viral pathogens in stormwater discharges to recreational beaches, and provides context for stormwater-based management of beaches during high risk wet-weather periods. Furthermore, the combination of culture-based and digital PCR-derived data is demonstrated to be valuable for assessing hydrographic relationships, considering delivery mechanisms, and providing foundational exposure information for risk assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xie, XiaoTing; Bil, Joanna; Shantz, Emily; Hammermueller, Jutta; Nagy, Eva; Turner, Patricia V
2017-09-01
Lapine rotavirus and astrovirus have been associated with disease in rabbits, and there is strong evidence of zoonotic transmission of lapine hepatitis E virus (HEV). Outbreaks of enteritis are common on commercial meat farms, resulting in poor welfare, high rabbit mortality, and significant financial losses for rabbit producers. Currently, none of these viruses are routinely tested by diagnostic laboratories. In this study, we assessed the prevalence of rotavirus, astrovirus, and HEV RNA in 205 pooled and individual fecal samples from healthy Canadian laboratory, companion, shelter and commercial meat rabbit populations. Viral RNA were extracted and amplified via RT-PCR using virus-specific primers. Positive samples from the first cohort of samples tested were sequenced and aligned to previously identified viruses to confirm the products. Almost 45% (13/29) of the surveyed commercial rabbit farms were astrovirus-positive. Three commercial meat rabbit samples were positive for rotavirus, and either astrovirus or HEV RNA was also detected. Three companion rabbit samples also tested positive for lapine HEV. Samples from specific pathogen-free laboratory animals were negative for all viruses. Sequencing results showed highest identity to rotavirus A strain 30-96, lapine astrovirus strain 2208 and lapine HEV strain CMC-1. These results permit a better understanding of the prevalence of rotavirus, astrovirus, and hepatitis E virus in Canadian domestic rabbit populations, and continued screening for viruses may help to reduce risk of zoonotic agent transmission as well as providing a better understanding of potential causative agents of rabbit enteritis. Copyright © 2017 Elsevier B.V. All rights reserved.
40 CFR 141.63 - Maximum contaminant levels (MCLs) for microbiological contaminants.
Code of Federal Regulations, 2011 CFR
2011-07-01
... repeat sample or E. coli-positive repeat sample, or any total coliform-positive repeat sample following a fecal coliform-positive or E. coli-positive routine sample constitutes a violation of the MCL for total...
40 CFR 141.63 - Maximum contaminant levels (MCLs) for microbiological contaminants.
Code of Federal Regulations, 2010 CFR
2010-07-01
... repeat sample or E. coli-positive repeat sample, or any total coliform-positive repeat sample following a fecal coliform-positive or E. coli-positive routine sample constitutes a violation of the MCL for total...
Pilotte, Nils; Baumer, Ben; Grant, Jessica; Asbjornsdottir, Kristjana; Schaer, Fabian; Hu, Yan; Aroian, Raffi; Walson, Judd; Williams, Steven A.
2018-01-01
Background Proper collection and storage of fecal samples is necessary to guarantee the subsequent reliability of DNA-based soil-transmitted helminth diagnostic procedures. Previous research has examined various methods to preserve fecal samples for subsequent microscopic analysis or for subsequent determination of overall DNA yields obtained following DNA extraction. However, only limited research has focused on the preservation of soil-transmitted helminth DNA in stool samples stored at ambient temperature or maintained in a cold chain for extended periods of time. Methodology Quantitative real-time PCR was used in this study as a measure of the effectiveness of seven commercially available products to preserve hookworm DNA over time and at different temperatures. Results were compared against “no preservative” controls and the “gold standard” of rapidly freezing samples at -20°C. The preservation methods were compared at both 4°C and at simulated tropical ambient temperature (32°C) over a period of 60 days. Evaluation of the effectiveness of each preservative was based on quantitative real-time PCR detection of target hookworm DNA. Conclusions At 4°C there were no significant differences in DNA amplification efficiency (as measured by Cq values) regardless of the preservation method utilized over the 60-day period. At 32°C, preservation with FTA cards, potassium dichromate, and a silica bead two-step desiccation process proved most advantageous for minimizing Cq value increases, while RNA later, 95% ethanol and Paxgene also demonstrate some protective effect. These results suggest that fecal samples spiked with known concentrations of hookworm-derived egg material can remain at 4°C for 60 days in the absence of preservative, without significant degradation of the DNA target. Likewise, a variety of preservation methods can provide a measure of protection in the absence of a cold chain. As a result, other factors, such as preservative toxicity, inhibitor resistance, preservative cost, shipping requirements, sample infectivity, and labor costs should be considered when deciding upon an appropriate method for the storage of fecal specimens for subsequent PCR analysis. Balancing logistical factors and the need to preserve the target DNA, we believe that under most circumstances 95% ethanol provides the most pragmatic choice for preserving stool samples in the field. PMID:29346412
Komatsu, Haruki; Inui, Ayano; Murano, Takeyoshi; Tsunoda, Tomoyuki; Sogo, Tsuyoshi; Fujisawa, Tomoo
2015-08-20
Body fluids such as saliva and tears from patients with hepatitis B virus (HBV) infection are known as infectious agents. The infectivity of feces from patients with HBV infection has not been established. The aim of this study was to determine whether feces from HBV carriers can be a source of HBV infection. Thirty-three children and 17 adults (ages 0-49 years, median age 13 years) who were chronically infected with HBV were enrolled. The levels of HBV DNA in the feces from these patients were quantified by real-time PCR, and the levels of fecal HBsAg were measured. Isolated human hepatocytes from chimeric mice with humanized livers were co-cultured with serum, tears and feces from the HBV carriers. Four chimeric mice were inoculated intravenously with sterilized feces from HBV carriers. HBV DNA was detected in the feces of 37 (74%) of the 50 patients. The fecal HBV DNA levels ranged from 2.8 to 8.4 log copies/mL (mean ± SD = 5.6 ± 1.2 log copies/mL). A significant correlation was observed in the levels of HBV DNA between serum and feces (r = 0.54, p < 0.05). Of the 13 HBV carries, 7 (54%) were positive for fecal HBsAg. The fecal HBsAg levels ranged from 0.06 to 1.0 IU/mL (median 0.28 IU/mL). Immunogold electron microscopy showed Dane particles in feces. HBV DNA was detected in the human hepatocytes co-cultured with serum and tears, but not in those co-cultured with feces. HBV DNA was not detected in the serum of the chimeric mice after oral or intravenous inoculation with sterilized fecal samples, which contained 5 log copies/mL of HBV DNA levels. Although the positive rate of fecal HBV DNA was high, the fecal HBsAg levels were extremely low. The chimeric mice were not infected with HBV after oral or intravenous inoculation with sterilized fecal samples. Therefore, feces from HBV carriers seem not to serve as an infectious vehicle for the transmission of HBV.
Probabilistic assessment of compliance with the numerical criteria for fecal coliforms in rivers
NASA Astrophysics Data System (ADS)
Cha, YoonKyung
2017-04-01
Most guidelines for assessing fecal contamination in surface waters suggest that a waterbody is impaired if a certain percent or the geometric mean of samples exceeds the numerical criteria for fecal indicator organisms. However, this raw score approach is not able to account for the uncertainty and variability in the sample statistics. In a Bayesian hierarchical modeling approach, the uncertainty in the mean parameter is expressed as a posterior distribution, and the probability of not violating the criterion is referred to as the confidence of compliance (COC). Further, the spatiotemporal variability in the mean parameter can be quantified by imposing the hierarchical structure on the model. The monitoring data spanning 91 sites across the four major rivers (the Han, Geum, Yeongsan, and Nakdong) of South Korea for the years 2007-2016 were used. The Bayesian hierarchical model was developed for each river to predict the COC with the criteria for fecal coliforms. The established criteria for fecal coliforms are less than 10, 100, 200, and 1,000 CFU/100mL in the river whose water quality goal corresponds to Class Ia, Ib, II, and III, respectively. The model results suggested that the COC varied significantly by site, ranging from 0.0 to 98.9 percent across the four rivers. In the Geum, Yeongsan, and Nakdong Rivers, COC values in the upper river sections were substantially lower than those in the upper river sections. The model suggested that for all four rivers the spatial component, compared with annual and seasonal components, made the largest contribution to the variability in mean fecal coliforms. In all four rivers, mean levels for fecal coliform during the summer (July to September) were distinctly higher than those during other seasons. A decreasing pattern was clearly shown in the Yeongsan River over the recent decade, while monotonic increases or decreases were not shown in other three rivers.
Kennedy, Nicholas A; Walker, Alan W; Berry, Susan H; Duncan, Sylvia H; Farquarson, Freda M; Louis, Petra; Thomson, John M; Satsangi, Jack; Flint, Harry J; Parkhill, Julian; Lees, Charlie W; Hold, Georgina L
2014-01-01
Determining bacterial community structure in fecal samples through DNA sequencing is an important facet of intestinal health research. The impact of different commercially available DNA extraction kits upon bacterial community structures has received relatively little attention. The aim of this study was to analyze bacterial communities in volunteer and inflammatory bowel disease (IBD) patient fecal samples extracted using widely used DNA extraction kits in established gastrointestinal research laboratories. Fecal samples from two healthy volunteers (H3 and H4) and two relapsing IBD patients (I1 and I2) were investigated. DNA extraction was undertaken using MoBio Powersoil and MP Biomedicals FastDNA SPIN Kit for Soil DNA extraction kits. PCR amplification for pyrosequencing of bacterial 16S rRNA genes was performed in both laboratories on all samples. Hierarchical clustering of sequencing data was done using the Yue and Clayton similarity coefficient. DNA extracted using the FastDNA kit and the MoBio kit gave median DNA concentrations of 475 (interquartile range 228-561) and 22 (IQR 9-36) ng/µL respectively (p<0.0001). Hierarchical clustering of sequence data by Yue and Clayton coefficient revealed four clusters. Samples from individuals H3 and I2 clustered by patient; however, samples from patient I1 extracted with the MoBio kit clustered with samples from patient H4 rather than the other I1 samples. Linear modelling on relative abundance of common bacterial families revealed significant differences between kits; samples extracted with MoBio Powersoil showed significantly increased Bacteroidaceae, Ruminococcaceae and Porphyromonadaceae, and lower Enterobacteriaceae, Lachnospiraceae, Clostridiaceae, and Erysipelotrichaceae (p<0.05). This study demonstrates significant differences in DNA yield and bacterial DNA composition when comparing DNA extracted from the same fecal sample with different extraction kits. This highlights the importance of ensuring that samples in a study are prepared with the same method, and the need for caution when cross-comparing studies that use different methods.
First description of Cryptosporidium parvum in carrier pigeons (Columba livia).
Oliveira, Bruno César Miranda; Ferrari, Elis Domingos; da Cruz Panegossi, Mariele Fernanda; Nakamura, Alex Akira; Corbucci, Flávio Sader; Nagata, Walter Bertequini; Dos Santos, Bianca Martins; Gomes, Jancarlo Ferreira; Meireles, Marcelo Vasconcelos; Widmer, Giovanni; Bresciani, Katia Denise Saraiva
2017-08-30
The carrier pigeon and the domestic pigeon are different breeds of the species Columba livia. Carrier pigeons are used for recreational activities such as bird contests and exhibitions. Due to the close contact with humans, these birds may potentially represent a public health risk, since they can host and disseminate zoonotic parasites, such as those belonging to the genus Cryptosporidium (phylum Apicomplexa). The purpose of this work was the detection by microscopic and molecular techniques of Cryptosporidium spp. oocysts in fecal samples of carrier pigeons, and subsequently to sequence the 18S ribosomal RNA marker of positive samples to identify the species. A total of 100 fecal samples were collected individually in two pigeon breeding facilities from Formiga and Araçatuba, cities located in Minas Gerais state and São Paulo state, Brazil, respectively. The age of the birds ranged from one to 12 years; 56 were females and 44 males. Fecal smears were stained with negative malachite green, whereas the molecular characterization was based on the sequence of a ∼800bp fragment of the 18S rRNA gene. Microscopic examination of fecal smears revealed 4% (4/100) oocyst positivity. On the other hand, 7% (7/100) of positivity were found using nested PCR. Three samples were 99% to 100% similar to Cryptosporidium parvum 18S rDNA type A (Genbank AH006572) and the other three samples had 99% to 100% similarity to C. parvum 18S rDNA type B (Genbank AF308600). To our knowledge, this is the first report of C. parvum oocysts in carrier pigeons. Copyright © 2017 Elsevier B.V. All rights reserved.
Whittington, Richard J
2009-03-01
Culture of Mycobacterium avium subsp. paratuberculosis is the definitive diagnostic test for Johne's disease, a chronic granulomatous enteropathy of animals. Compared to solid media, the identification of all strains of the organism in liquid media can be more difficult because the appearance of colonies and mycobactin dependence are not observable, and the growth of other organisms needs to be distinguished, commonly by PCR. Factors affecting the isolation rate of S strains and the contamination rate in modified Middlebrook 7H9 broth (Bactec 12B) and 7H10 agar were studied using 11,598 fecal samples and 2,577 tissue samples from sheep from 1,421 farms over 10 years. Minimization of contamination in Bactec cultures required the avoidance of the carryover of fecal particles from the first sedimentation step in the double-incubation centrifugation method, and contamination was reduced significantly by incubating the sample in a solution containing vancomycin, amphotericin B, and nalidixic acid for 3 days compared to 2 days. The growth of irrelevant microorganisms confounded the identification of M. avium subsp. paratuberculosis in liquid culture by inhibiting IS900 PCR and in solid medium culture by inhibiting the growth of M. avium subsp. paratuberculosis or obscuring colonies. The contamination of samples was clustered in certain laboratory submissions and was reduced by including ampicillin in Bactec medium without affecting the odds of isolation of M. avium subsp. paratuberculosis. The long-term contamination rate for fecal cultures was about 7%, and that for tissue cultures was <0.2%. Liquid medium was more sensitive than solid medium culture for M. avium subsp. paratuberculosis. The applicability of these findings for C strains is discussed.
Fecal contamination of drinking water within peri-urban households, Lima, Peru.
Oswald, William E; Lescano, Andrés G; Bern, Caryn; Calderon, Maritza M; Cabrera, Lilia; Gilman, Robert H
2007-10-01
We assessed fecal contamination of drinking water in households in 2 peri-urban communities of Lima, Peru. We measured Escherichia coli counts in municipal source water and, within households, water from principal storage containers, stored boiled drinking water, and water in a serving cup. Source water was microbiologically clean, but 26 (28%) of 93 samples of water stored for cooking had fecal contamination. Twenty-seven (30%) of 91 stored boiled drinking water samples grew E. coli. Boiled water was more frequently contaminated when served in a drinking cup than when stored (P < 0.01). Post-source contamination increased successively through the steps of usage from source water to the point of consumption. Boiling failed to ensure safe drinking water at the point of consumption because of easily contaminated containers and poor domestic hygiene. Hygiene education, better point-of-use treatment and storage options, and in-house water connections are urgently needed.