Science.gov

Sample records for pooling-based genome-wide analysis

  1. Genome-wide analysis correlates Ayurveda Prakriti

    PubMed Central

    Govindaraj, Periyasamy; Nizamuddin, Sheikh; Sharath, Anugula; Jyothi, Vuskamalla; Rotti, Harish; Raval, Ritu; Nayak, Jayakrishna; Bhat, Balakrishna K.; Prasanna, B. V.; Shintre, Pooja; Sule, Mayura; Joshi, Kalpana S.; Dedge, Amrish P.; Bharadwaj, Ramachandra; Gangadharan, G. G.; Nair, Sreekumaran; Gopinath, Puthiya M.; Patwardhan, Bhushan; Kondaiah, Paturu; Satyamoorthy, Kapaettu; Valiathan, Marthanda Varma Sankaran; Thangaraj, Kumarasamy

    2015-01-01

    The practice of Ayurveda, the traditional medicine of India, is based on the concept of three major constitutional types (Vata, Pitta and Kapha) defined as “Prakriti”. To the best of our knowledge, no study has convincingly correlated genomic variations with the classification of Prakriti. In the present study, we performed genome-wide SNP (single nucleotide polymorphism) analysis (Affymetrix, 6.0) of 262 well-classified male individuals (after screening 3416 subjects) belonging to three Prakritis. We found 52 SNPs (p ≤ 1 × 10−5) were significantly different between Prakritis, without any confounding effect of stratification, after 106 permutations. Principal component analysis (PCA) of these SNPs classified 262 individuals into their respective groups (Vata, Pitta and Kapha) irrespective of their ancestry, which represent its power in categorization. We further validated our finding with 297 Indian population samples with known ancestry. Subsequently, we found that PGM1 correlates with phenotype of Pitta as described in the ancient text of Caraka Samhita, suggesting that the phenotypic classification of India’s traditional medicine has a genetic basis; and its Prakriti-based practice in vogue for many centuries resonates with personalized medicine. PMID:26511157

  2. Genome-wide analysis correlates Ayurveda Prakriti.

    PubMed

    Govindaraj, Periyasamy; Nizamuddin, Sheikh; Sharath, Anugula; Jyothi, Vuskamalla; Rotti, Harish; Raval, Ritu; Nayak, Jayakrishna; Bhat, Balakrishna K; Prasanna, B V; Shintre, Pooja; Sule, Mayura; Joshi, Kalpana S; Dedge, Amrish P; Bharadwaj, Ramachandra; Gangadharan, G G; Nair, Sreekumaran; Gopinath, Puthiya M; Patwardhan, Bhushan; Kondaiah, Paturu; Satyamoorthy, Kapaettu; Valiathan, Marthanda Varma Sankaran; Thangaraj, Kumarasamy

    2015-10-29

    The practice of Ayurveda, the traditional medicine of India, is based on the concept of three major constitutional types (Vata, Pitta and Kapha) defined as "Prakriti". To the best of our knowledge, no study has convincingly correlated genomic variations with the classification of Prakriti. In the present study, we performed genome-wide SNP (single nucleotide polymorphism) analysis (Affymetrix, 6.0) of 262 well-classified male individuals (after screening 3416 subjects) belonging to three Prakritis. We found 52 SNPs (p ≤ 1 × 10(-5)) were significantly different between Prakritis, without any confounding effect of stratification, after 10(6) permutations. Principal component analysis (PCA) of these SNPs classified 262 individuals into their respective groups (Vata, Pitta and Kapha) irrespective of their ancestry, which represent its power in categorization. We further validated our finding with 297 Indian population samples with known ancestry. Subsequently, we found that PGM1 correlates with phenotype of Pitta as described in the ancient text of Caraka Samhita, suggesting that the phenotypic classification of India's traditional medicine has a genetic basis; and its Prakriti-based practice in vogue for many centuries resonates with personalized medicine.

  3. A novel statistic for genome-wide interaction analysis.

    PubMed

    Wu, Xuesen; Dong, Hua; Luo, Li; Zhu, Yun; Peng, Gang; Reveille, John D; Xiong, Momiao

    2010-09-23

    Although great progress in genome-wide association studies (GWAS) has been made, the significant SNP associations identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a novel statistic for testing interaction between two loci (either linked or unlinked). The null distribution and the type I error rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44 and 211 pairs of SNPs showing significant evidence of interactions with FDR<0.001 and 0.001genome-wide interaction analysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the results of genome-wide interaction analysis can be replicated in two independent studies.

  4. Design and bioinformatics analysis of genome-wide CLIP experiments

    PubMed Central

    Wang, Tao; Xiao, Guanghua; Chu, Yongjun; Zhang, Michael Q.; Corey, David R.; Xie, Yang

    2015-01-01

    The past decades have witnessed a surge of discoveries revealing RNA regulation as a central player in cellular processes. RNAs are regulated by RNA-binding proteins (RBPs) at all post-transcriptional stages, including splicing, transportation, stabilization and translation. Defects in the functions of these RBPs underlie a broad spectrum of human pathologies. Systematic identification of RBP functional targets is among the key biomedical research questions and provides a new direction for drug discovery. The advent of cross-linking immunoprecipitation coupled with high-throughput sequencing (genome-wide CLIP) technology has recently enabled the investigation of genome-wide RBP–RNA binding at single base-pair resolution. This technology has evolved through the development of three distinct versions: HITS-CLIP, PAR-CLIP and iCLIP. Meanwhile, numerous bioinformatics pipelines for handling the genome-wide CLIP data have also been developed. In this review, we discuss the genome-wide CLIP technology and focus on bioinformatics analysis. Specifically, we compare the strengths and weaknesses, as well as the scopes, of various bioinformatics tools. To assist readers in choosing optimal procedures for their analysis, we also review experimental design and procedures that affect bioinformatics analyses. PMID:25958398

  5. Massively expedited genome-wide heritability analysis (MEGHA).

    PubMed

    Ge, Tian; Nichols, Thomas E; Lee, Phil H; Holmes, Avram J; Roffman, Joshua L; Buckner, Randy L; Sabuncu, Mert R; Smoller, Jordan W

    2015-02-24

    The discovery and prioritization of heritable phenotypes is a computational challenge in a variety of settings, including neuroimaging genetics and analyses of the vast phenotypic repositories in electronic health record systems and population-based biobanks. Classical estimates of heritability require twin or pedigree data, which can be costly and difficult to acquire. Genome-wide complex trait analysis is an alternative tool to compute heritability estimates from unrelated individuals, using genome-wide data that are increasingly ubiquitous, but is computationally demanding and becomes difficult to apply in evaluating very large numbers of phenotypes. Here we present a fast and accurate statistical method for high-dimensional heritability analysis using genome-wide SNP data from unrelated individuals, termed massively expedited genome-wide heritability analysis (MEGHA) and accompanying nonparametric sampling techniques that enable flexible inferences for arbitrary statistics of interest. MEGHA produces estimates and significance measures of heritability with several orders of magnitude less computational time than existing methods, making heritability-based prioritization of millions of phenotypes based on data from unrelated individuals tractable for the first time to our knowledge. As a demonstration of application, we conducted heritability analyses on global and local morphometric measurements derived from brain structural MRI scans, using genome-wide SNP data from 1,320 unrelated young healthy adults of non-Hispanic European ancestry. We also computed surface maps of heritability for cortical thickness measures and empirically localized cortical regions where thickness measures were significantly heritable. Our analyses demonstrate the unique capability of MEGHA for large-scale heritability-based screening and high-dimensional heritability profile construction.

  6. Genome wide copy number analysis of single cells

    PubMed Central

    Baslan, Timour; Kendall, Jude; Rodgers, Linda; Cox, Hilary; Riggs, Mike; Stepansky, Asya; Troge, Jennifer; Ravi, Kandasamy; Esposito, Diane; Lakshmi, B.; Wigler, Michael; Navin, Nicholas; Hicks, James

    2016-01-01

    Summary Copy number variation (CNV) is increasingly recognized as an important contributor to phenotypic variation in health and disease. Most methods for determining CNV rely on admixtures of cells, where information regarding genetic heterogeneity is lost. Here, we present a protocol that allows for the genome wide copy number analysis of single nuclei isolated from mixed populations of cells. Single nucleus sequencing (SNS), combines flow sorting of single nuclei based on DNA content, whole genome amplification (WGA), followed by next generation sequencing to quantize genomic intervals in a genome wide manner. Multiplexing of single cells is discussed. Additionally, we outline informatic approaches that correct for biases inherent in the WGA procedure and allow for accurate determination of copy number profiles. All together, the protocol takes ~3 days from flow cytometry to sequence-ready DNA libraries. PMID:22555242

  7. Methodological challenges of genome-wide association analysis in Africa

    PubMed Central

    Teo, Yik-Ying; Small, Kerrin S.; Kwiatkowski, Dominic P.

    2013-01-01

    Medical research in Africa has yet to benefit from the advent of genome-wide association (GWA) analysis, partly because the genotyping tools and statistical methods that have been developed for European and Asian populations struggle to deal with the high levels of genome diversity and population structure in Africa. However, the haplotypic diversity of African populations might help to overcome one of the major roadblocks in GWA research, the fine mapping of causal variants. We review the methodological challenges and consider how GWA studies in Africa will be transformed by new approaches in statistical imputation and large-scale genome sequencing. PMID:20084087

  8. Genome-wide association interaction analysis for Alzheimer's disease.

    PubMed

    Gusareva, Elena S; Carrasquillo, Minerva M; Bellenguez, Céline; Cuyvers, Elise; Colon, Samuel; Graff-Radford, Neill R; Petersen, Ronald C; Dickson, Dennis W; Mahachie John, Jestinah M; Bessonov, Kyrylo; Van Broeckhoven, Christine; Harold, Denise; Williams, Julie; Amouyel, Philippe; Sleegers, Kristel; Ertekin-Taner, Nilüfer; Lambert, Jean-Charles; Van Steen, Kristel; Ramirez, Alfredo

    2014-11-01

    We propose a minimal protocol for exhaustive genome-wide association interaction analysis that involves screening for epistasis over large-scale genomic data combining strengths of different methods and statistical tools. The different steps of this protocol are illustrated on a real-life data application for Alzheimer's disease (AD) (2259 patients and 6017 controls from France). Particularly, in the exhaustive genome-wide epistasis screening we identified AD-associated interacting SNPs-pair from chromosome 6q11.1 (rs6455128, the KHDRBS2 gene) and 13q12.11 (rs7989332, the CRYL1 gene) (p = 0.006, corrected for multiple testing). A replication analysis in the independent AD cohort from Germany (555 patients and 824 controls) confirmed the discovered epistasis signal (p = 0.036). This signal was also supported by a meta-analysis approach in 5 independent AD cohorts that was applied in the context of epistasis for the first time. Transcriptome analysis revealed negative correlation between expression levels of KHDRBS2 and CRYL1 in both the temporal cortex (β = -0.19, p = 0.0006) and cerebellum (β = -0.23, p < 0.0001) brain regions. This is the first time a replicable epistasis associated with AD was identified using a hypothesis free screening approach.

  9. Genome-wide analysis of DNA methylation in hepatoblastoma tissues

    PubMed Central

    Cui, Ximao; Liu, Baihui; Zheng, Shan; Dong, Kuiran; Dong, Rui

    2016-01-01

    DNA methylation has a crucial role in cancer biology. In the present study, a genome-wide analysis of DNA methylation in hepatoblastoma (HB) tissues was performed to verify differential methylation levels between HB and normal tissues. As alpha-fetoprotein (AFP) has a critical role in HB, AFP methylation levels were also detected using pyrosequencing. Normal and HB liver tissue samples (frozen tissue) were obtained from patients with HB. Genome-wide analysis of DNA methylation in these tissues was performed using an Infinium HumanMethylation450 BeadChip, and the results were confirmed with reverse transcription-quantitative polymerase chain reaction. The Infinium HumanMethylation450 BeadChip demonstrated distinctively less methylation in HB tissues than in non-tumor tissues. In addition, methylation enrichment was observed in positions near the transcription start site of AFP, which exhibited lower methylation levels in HB tissues than in non-tumor liver tissues. Lastly, a significant negative correlation was observed between AFP messenger RNA expression and DNA methylation percentage, using linear Pearson's R correlation coefficients. The present results demonstrate differential methylation levels between HB and normal tissues, and imply that aberrant methylation of AFP in HB could reflect HB development. Expansion of these findings could provide useful insight into HB biology. PMID:27446465

  10. Comparative analysis of methods for genome-wide nucleosome cartography.

    PubMed

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use. PMID:25296770

  11. Genome-wide transcriptome analysis of 150 cell samples.

    PubMed

    Irimia, Daniel; Mindrinos, Michael; Russom, Aman; Xiao, Wenzhong; Wilhelmy, Julie; Wang, Shenglong; Heath, Joe Don; Kurn, Nurith; Tompkins, Ronald G; Davis, Ronald W; Toner, Mehmet

    2009-01-01

    A major challenge in molecular biology is interrogating the human transcriptome on a genome wide scale when only a limited amount of biological sample is available for analysis. Current methodologies using microarray technologies for simultaneously monitoring mRNA transcription levels require nanogram amounts of total RNA. To overcome the sample size limitation of current technologies, we have developed a method to probe the global gene expression in biological samples as small as 150 cells, or the equivalent of approximately 300 pg total RNA. The new method employs microfluidic devices for the purification of total RNA from mammalian cells and ultra-sensitive whole transcriptome amplification techniques. We verified that the RNA integrity is preserved through the isolation process, accomplished highly reproducible whole transcriptome analysis, and established high correlation between repeated isolations of 150 cells and the same cell culture sample. We validated the technology by demonstrating that the combined microfluidic and amplification protocol is capable of identifying biological pathways perturbed by stimulation, which are consistent with the information recognized in bulk-isolated samples.

  12. Genome-wide transcriptome analysis of 150 cell samples†

    PubMed Central

    Russom, Aman; Xiao, Wenzhong; Wilhelmy, Julie; Wang, Shenglong; Heath, Joe Don; Kurn, Nurith; Tompkins, Ronald G.; Davis, Ronald W.; Toner, Mehmet

    2013-01-01

    A major challenge in molecular biology is interrogating the human transcriptome on a genome wide scale when only a limited amount of biological sample is available for analysis. Current methodologies using microarray technologies for simultaneously monitoring mRNA transcription levels require nanogram amounts of total RNA. To overcome the sample size limitation of current technologies, we have developed a method to probe the global gene expression in biological samples as small as 150 cells, or the equivalent of approximately 300 pg total RNA. The new method employs microfluidic devices for the purification of total RNA from mammalian cells and ultra-sensitive whole transcriptome amplification techniques. We verified that the RNA integrity is preserved through the isolation process, accomplished highly reproducible whole transcriptome analysis, and established high correlation between repeated isolations of 150 cells and the same cell culture sample. We validated the technology by demonstrating that the combined microfluidic and amplification protocol is capable of identifying biological pathways perturbed by stimulation, which are consistent with the information recognized in bulk-isolated samples. PMID:20023796

  13. Comparative analysis of methods for genome-wide nucleosome cartography.

    PubMed

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use.

  14. Genome-wide transcriptome analysis of human epidermal melanocytes

    PubMed Central

    Haltaufderhyde, Kirk D.; Oancea, Elena

    2015-01-01

    Because human epidermal melanocytes (HEMs) provide critical protection against skin cancer, sunburn, and photoaging, a genome-wide perspective of gene expression in these cells is vital to understanding human skin physiology. In this study we performed high throughput sequencing of HEMs to obtain a complete data set of transcript sizes, abundances, and splicing. As expected, we found that melanocyte specific genes that function in pigmentation were among the highest expressed genes. We analyzed receptor, ion channel and transcription factor gene families to get a better understanding of the cell signalling pathways used by melanocytes. We also performed a comparative transcriptomic analysis of lightly versus darkly pigmented HEMs and found 16 genes differentially expressed in the two pigmentation phenotypes; of those, only one putative melanosomal transporter (SLC45A2) has known function in pigmentation. In addition, we found 166 genes with splice isoforms expressed exclusively in one pigmentation phenotype, 17 of which are genes involved in signal transduction. Our melanocyte transcriptome study provides a comprehensive view and may help identify novel pigmentation genes and potential pharmacological targets. PMID:25451175

  15. Genome-Wide Analysis of Human Metapneumovirus Evolution

    PubMed Central

    Kim, Jin Il; Park, Sehee; Lee, Ilseob; Park, Kwang Sook; Kwak, Eun Jung; Moon, Kwang Mee; Lee, Chang Kyu; Bae, Joon-Yong; Park, Man-Seong; Song, Ki-Joon

    2016-01-01

    Human metapneumovirus (HMPV) has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L) using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2). A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs. PMID:27046055

  16. Improved Statistics for Genome-Wide Interaction Analysis

    PubMed Central

    Ueki, Masao; Cordell, Heather J.

    2012-01-01

    Recently, Wu and colleagues [1] proposed two novel statistics for genome-wide interaction analysis using case/control or case-only data. In computer simulations, their proposed case/control statistic outperformed competing approaches, including the fast-epistasis option in PLINK and logistic regression analysis under the correct model; however, reasons for its superior performance were not fully explored. Here we investigate the theoretical properties and performance of Wu et al.'s proposed statistics and explain why, in some circumstances, they outperform competing approaches. Unfortunately, we find minor errors in the formulae for their statistics, resulting in tests that have higher than nominal type 1 error. We also find minor errors in PLINK's fast-epistasis and case-only statistics, although theory and simulations suggest that these errors have only negligible effect on type 1 error. We propose adjusted versions of all four statistics that, both theoretically and in computer simulations, maintain correct type 1 error rates under the null hypothesis. We also investigate statistics based on correlation coefficients that maintain similar control of type 1 error. Although designed to test specifically for interaction, we show that some of these previously-proposed statistics can, in fact, be sensitive to main effects at one or both loci, particularly in the presence of linkage disequilibrium. We propose two new “joint effects” statistics that, provided the disease is rare, are sensitive only to genuine interaction effects. In computer simulations we find, in most situations considered, that highest power is achieved by analysis under the correct genetic model. Such an analysis is unachievable in practice, as we do not know this model. However, generally high power over a wide range of scenarios is exhibited by our joint effects and adjusted Wu statistics. We recommend use of these alternative or adjusted statistics and urge caution when using Wu et al

  17. Improved statistics for genome-wide interaction analysis.

    PubMed

    Ueki, Masao; Cordell, Heather J

    2012-01-01

    Recently, Wu and colleagues [1] proposed two novel statistics for genome-wide interaction analysis using case/control or case-only data. In computer simulations, their proposed case/control statistic outperformed competing approaches, including the fast-epistasis option in PLINK and logistic regression analysis under the correct model; however, reasons for its superior performance were not fully explored. Here we investigate the theoretical properties and performance of Wu et al.'s proposed statistics and explain why, in some circumstances, they outperform competing approaches. Unfortunately, we find minor errors in the formulae for their statistics, resulting in tests that have higher than nominal type 1 error. We also find minor errors in PLINK's fast-epistasis and case-only statistics, although theory and simulations suggest that these errors have only negligible effect on type 1 error. We propose adjusted versions of all four statistics that, both theoretically and in computer simulations, maintain correct type 1 error rates under the null hypothesis. We also investigate statistics based on correlation coefficients that maintain similar control of type 1 error. Although designed to test specifically for interaction, we show that some of these previously-proposed statistics can, in fact, be sensitive to main effects at one or both loci, particularly in the presence of linkage disequilibrium. We propose two new "joint effects" statistics that, provided the disease is rare, are sensitive only to genuine interaction effects. In computer simulations we find, in most situations considered, that highest power is achieved by analysis under the correct genetic model. Such an analysis is unachievable in practice, as we do not know this model. However, generally high power over a wide range of scenarios is exhibited by our joint effects and adjusted Wu statistics. We recommend use of these alternative or adjusted statistics and urge caution when using Wu et al

  18. Genome-wide analysis of condensin binding in Caenorhabditis elegans

    PubMed Central

    2013-01-01

    Background Condensins are multi-subunit protein complexes that are essential for chromosome condensation during mitosis and meiosis, and play key roles in transcription regulation during interphase. Metazoans contain two condensins, I and II, which perform different functions and localize to different chromosomal regions. Caenorhabditis elegans contains a third condensin, IDC, that is targeted to and represses transcription of the X chromosome for dosage compensation. Results To understand condensin binding and function, we performed ChIP-seq analysis of C. elegans condensins in mixed developmental stage embryos, which contain predominantly interphase nuclei. Condensins bind to a subset of active promoters, tRNA genes and putative enhancers. Expression analysis in kle-2-mutant larvae suggests that the primary effect of condensin II on transcription is repression. A DNA sequence motif, GCGC, is enriched at condensin II binding sites. A sequence extension of this core motif, AGGG, creates the condensin IDC motif. In addition to differences in recruitment that result in X-enrichment of condensin IDC and condensin II binding to all chromosomes, we provide evidence for a shared recruitment mechanism, as condensin IDC recruiter SDC-2 also recruits condensin II to the condensin IDC recruitment sites on the X. In addition, we found that condensin sites overlap extensively with the cohesin loader SCC-2, and that SDC-2 also recruits SCC-2 to the condensin IDC recruitment sites. Conclusions Our results provide the first genome-wide view of metazoan condensin II binding in interphase, define putative recruitment motifs, and illustrate shared loading mechanisms for condensin IDC and condensin II. PMID:24125077

  19. Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii

    PubMed Central

    2010-01-01

    Background Genome-wide computational analysis of alternative splicing (AS) in several flowering plants has revealed that pre-mRNAs from about 30% of genes undergo AS. Chlamydomonas, a simple unicellular green alga, is part of the lineage that includes land plants. However, it diverged from land plants about one billion years ago. Hence, it serves as a good model system to study alternative splicing in early photosynthetic eukaryotes, to obtain insights into the evolution of this process in plants, and to compare splicing in simple unicellular photosynthetic and non-photosynthetic eukaryotes. We performed a global analysis of alternative splicing in Chlamydomonas reinhardtii using its recently completed genome sequence and all available ESTs and cDNAs. Results Our analysis of AS using BLAT and a modified version of the Sircah tool revealed AS of 498 transcriptional units with 611 events, representing about 3% of the total number of genes. As in land plants, intron retention is the most prevalent form of AS. Retained introns and skipped exons tend to be shorter than their counterparts in constitutively spliced genes. The splice site signals in all types of AS events are weaker than those in constitutively spliced genes. Furthermore, in alternatively spliced genes, the prevalent splice form has a stronger splice site signal than the non-prevalent form. Analysis of constitutively spliced introns revealed an over-abundance of motifs with simple repetitive elements in comparison to introns involved in intron retention. In almost all cases, AS results in a truncated ORF, leading to a coding sequence that is around 50% shorter than the prevalent splice form. Using RT-PCR we verified AS of two genes and show that they produce more isoforms than indicated by EST data. All cDNA/EST alignments and splice graphs are provided in a website at http://combi.cs.colostate.edu/as/chlamy. Conclusions The extent of AS in Chlamydomonas that we observed is much smaller than observed in

  20. Phenome-wide analysis of genome-wide polygenic scores

    PubMed Central

    Krapohl, E; Euesden, J; Zabaneh, D; Pingault, J-B; Rimfeld, K; von Stumm, S; Dale, P S; Breen, G; O'Reilly, P F; Plomin, R

    2016-01-01

    Genome-wide polygenic scores (GPS), which aggregate the effects of thousands of DNA variants from genome-wide association studies (GWAS), have the potential to make genetic predictions for individuals. We conducted a systematic investigation of associations between GPS and many behavioral traits, the behavioral phenome. For 3152 unrelated 16-year-old individuals representative of the United Kingdom, we created 13 GPS from the largest GWAS for psychiatric disorders (for example, schizophrenia, depression and dementia) and cognitive traits (for example, intelligence, educational attainment and intracranial volume). The behavioral phenome included 50 traits from the domains of psychopathology, personality, cognitive abilities and educational achievement. We examined phenome-wide profiles of associations for the entire distribution of each GPS and for the extremes of the GPS distributions. The cognitive GPS yielded stronger predictive power than the psychiatric GPS in our UK-representative sample of adolescents. For example, education GPS explained variation in adolescents' behavior problems (~0.6%) and in educational achievement (~2%) but psychiatric GPS were associated with neither. Despite the modest effect sizes of current GPS, quantile analyses illustrate the ability to stratify individuals by GPS and opportunities for research. For example, the highest and lowest septiles for the education GPS yielded a 0.5 s.d. difference in mean math grade and a 0.25 s.d. difference in mean behavior problems. We discuss the usefulness and limitations of GPS based on adult GWAS to predict genetic propensities earlier in development. PMID:26303664

  1. Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Neale, Benjamin M.; Medland, Sarah E.; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V.; Nguyen, Thuy Trang; Schafer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J. L.; Langely, Kate; O'Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P.; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association studies (GWAS) have not yielded significant results, we conducted a meta-analysis of…

  2. Genome-Wide Analysis of Polyadenylation Events in Schmidtea mediterranea

    PubMed Central

    Lakshmanan, Vairavan; Bansal, Dhiru; Kulkarni, Jahnavi; Poduval, Deepak; Krishna, Srikar; Sasidharan, Vidyanand; Anand, Praveen; Seshasayee, Aswin; Palakodeti, Dasaradhi

    2016-01-01

    In eukaryotes, 3′ untranslated regions (UTRs) play important roles in regulating posttranscriptional gene expression. The 3′UTR is defined by regulated cleavage/polyadenylation of the pre-mRNA. The advent of next-generation sequencing technology has now enabled us to identify these events on a genome-wide scale. In this study, we used poly(A)-position profiling by sequencing (3P-Seq) to capture all poly(A) sites across the genome of the freshwater planarian, Schmidtea mediterranea, an ideal model system for exploring the process of regeneration and stem cell function. We identified the 3′UTRs for ∼14,000 transcripts and thus improved the existing gene annotations. We found 97 transcripts, which are polyadenylated within an internal exon, resulting in the shrinking of the ORF and loss of a predicted protein domain. Around 40% of the transcripts in planaria were alternatively polyadenylated (ApA), resulting either in an altered 3′UTR or a change in coding sequence. We identified specific ApA transcript isoforms that were subjected to miRNA mediated gene regulation using degradome sequencing. In this study, we also confirmed a tissue-specific expression pattern for alternate polyadenylated transcripts. The insights from this study highlight the potential role of ApA in regulating the gene expression essential for planarian regeneration. PMID:27489207

  3. Assessing statistical significance in multivariable genome wide association analysis

    PubMed Central

    Buzdugan, Laura; Kalisch, Markus; Navarro, Arcadi; Schunk, Daniel; Fehr, Ernst; Bühlmann, Peter

    2016-01-01

    Motivation: Although Genome Wide Association Studies (GWAS) genotype a very large number of single nucleotide polymorphisms (SNPs), the data are often analyzed one SNP at a time. The low predictive power of single SNPs, coupled with the high significance threshold needed to correct for multiple testing, greatly decreases the power of GWAS. Results: We propose a procedure in which all the SNPs are analyzed in a multiple generalized linear model, and we show its use for extremely high-dimensional datasets. Our method yields P-values for assessing significance of single SNPs or groups of SNPs while controlling for all other SNPs and the family wise error rate (FWER). Thus, our method tests whether or not a SNP carries any additional information about the phenotype beyond that available by all the other SNPs. This rules out spurious correlations between phenotypes and SNPs that can arise from marginal methods because the ‘spuriously correlated’ SNP merely happens to be correlated with the ‘truly causal’ SNP. In addition, the method offers a data driven approach to identifying and refining groups of SNPs that jointly contain informative signals about the phenotype. We demonstrate the value of our method by applying it to the seven diseases analyzed by the Wellcome Trust Case Control Consortium (WTCCC). We show, in particular, that our method is also capable of finding significant SNPs that were not identified in the original WTCCC study, but were replicated in other independent studies. Availability and implementation: Reproducibility of our research is supported by the open-source Bioconductor package hierGWAS. Contact: peter.buehlmann@stat.math.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153677

  4. Genomic-Wide Analysis with Microarrays in Human Oncology

    PubMed Central

    Inaoka, Kenichi; Inokawa, Yoshikuni; Nomoto, Shuji

    2015-01-01

    DNA microarray technologies have advanced rapidly and had a profound impact on examining gene expression on a genomic scale in research. This review discusses the history and development of microarray and DNA chip devices, and specific microarrays are described along with their methods and applications. In particular, microarrays have detected many novel cancer-related genes by comparing cancer tissues and non-cancerous tissues in oncological research. Recently, new methods have been in development, such as the double-combination array and triple-combination array, which allow more effective analysis of gene expression and epigenetic changes. Analysis of gene expression alterations in precancerous regions compared with normal regions and array analysis in drug-resistance cancer tissues are also successfully performed. Compared with next-generation sequencing, a similar method of genome analysis, several important differences distinguish these techniques and their applications. Development of novel microarray technologies is expected to contribute to further cancer research.

  5. Meta-Analysis of Genome-Wide Linkage Studies in Celiac Disease

    PubMed Central

    Forabosco, Paola; Neuhausen, Susan L.; Greco, Luigi; Naluai, Åsa Torinsson; Wijmenga, Cisca; Saavalainen, Päivi; Houlston, Richard S.; Ciclitira, Paul J.; Babron, Marie-Claude; Lewis, Cathryn M.

    2009-01-01

    Objective A meta-analysis of genome-wide linkage studies allows us to summarize the extensive information available from family-based studies, as the field moves into genome-wide association studies. Methods Here we apply the genome scan meta-analysis (GSMA) method, a rank-based, model-free approach, to combine results across eight independent genome-wide linkages performed on celiac disease (CD), including 554 families with over 1,500 affected individuals. We also investigate the agreement between signals we identified from this meta-analysis of linkage studies and those identified from genome-wide association analysis using a hypergeometric distribution. Results Not surprisingly, the most significant result was obtained in the HLA region. Outside the HLA region, suggestive evidence for linkage was obtained at the telomeric region of chromosome 10 (10q26.12-qter; p = 0.00366), and on chromosome 8 (8q22.2-q24.21; p = 0.00491). Testing signals of association and linkage within bins showed no significant evidence for co-localization of results. Conclusion This meta-analysis allowed us to pool the results from available genome-wide linkage studies and to identify novel regions potentially harboring predisposing genetic variation contributing to CD. This study also shows that linkage and association studies may identify different types of disease-predisposing variants. PMID:19622889

  6. Genome-wide Comparative Analysis of Annexin Superfamily in Plants

    PubMed Central

    Jami, Sravan Kumar; Clark, Greg B.; Ayele, Belay T.; Ashe, Paula; Kirti, Pulugurtha Bharadwaja

    2012-01-01

    Most annexins are calcium-dependent, phospholipid-binding proteins with suggested functions in response to environmental stresses and signaling during plant growth and development. They have previously been identified and characterized in Arabidopsis and rice, and constitute a multigene family in plants. In this study, we performed a comparative analysis of annexin gene families in the sequenced genomes of Viridiplantae ranging from unicellular green algae to multicellular plants, and identified 149 genes. Phylogenetic studies of these deduced annexins classified them into nine different arbitrary groups. The occurrence and distribution of bona fide type II calcium binding sites within the four annexin domains were found to be different in each of these groups. Analysis of chromosomal distribution of annexin genes in rice, Arabidopsis and poplar revealed their localization on various chromosomes with some members also found on duplicated chromosomal segments leading to gene family expansion. Analysis of gene structure suggests sequential or differential loss of introns during the evolution of land plant annexin genes. Intron positions and phases are well conserved in annexin genes from representative genomes ranging from Physcomitrella to higher plants. The occurrence of alternative motifs such as K/R/HGD was found to be overlapping or at the mutated regions of the type II calcium binding sites indicating potential functional divergence in certain plant annexins. This study provides a basis for further functional analysis and characterization of annexin multigene families in the plant lineage. PMID:23133603

  7. Genome-wide Association Study and Meta-Analysis Identify ISL1 as Genome-wide Significant Susceptibility Gene for Bladder Exstrophy

    PubMed Central

    Draaken, Markus; Knapp, Michael; Pennimpede, Tracie; Schmidt, Johanna M.; Ebert, Anne-Karolin; Rösch, Wolfgang; Stein, Raimund; Utsch, Boris; Hirsch, Karin; Boemers, Thomas M.; Mangold, Elisabeth; Heilmann, Stefanie; Ludwig, Kerstin U.; Jenetzky, Ekkehart; Zwink, Nadine; Moebus, Susanne; Herrmann, Bernhard G.; Mattheisen, Manuel; Nöthen, Markus M.

    2015-01-01

    The bladder exstrophy-epispadias complex (BEEC) represents the severe end of the uro-rectal malformation spectrum, and is thought to result from aberrant embryonic morphogenesis of the cloacal membrane and the urorectal septum. The most common form of BEEC is isolated classic bladder exstrophy (CBE). To identify susceptibility loci for CBE, we performed a genome-wide association study (GWAS) of 110 CBE patients and 1,177 controls of European origin. Here, an association was found with a region of approximately 220kb on chromosome 5q11.1. This region harbors the ISL1 (ISL LIM homeobox 1) gene. Multiple markers in this region showed evidence for association with CBE, including 84 markers with genome-wide significance. We then performed a meta-analysis using data from a previous GWAS by our group of 98 CBE patients and 526 controls of European origin. This meta-analysis also implicated the 5q11.1 locus in CBE risk. A total of 138 markers at this locus reached genome-wide significance in the meta-analysis, and the most significant marker (rs9291768) achieved a P value of 2.13 × 10−12. No other locus in the meta-analysis achieved genome-wide significance. We then performed murine expression analyses to follow up this finding. Here, Isl1 expression was detected in the genital region within the critical time frame for human CBE development. Genital regions with Isl1 expression included the peri-cloacal mesenchyme and the urorectal septum. The present study identified the first genome-wide significant locus for CBE at chromosomal region 5q11.1, and provides strong evidence for the hypothesis that ISL1 is the responsible candidate gene in this region. PMID:25763902

  8. Genome-wide association study and meta-analysis identify ISL1 as genome-wide significant susceptibility gene for bladder exstrophy.

    PubMed

    Draaken, Markus; Knapp, Michael; Pennimpede, Tracie; Schmidt, Johanna M; Ebert, Anne-Karolin; Rösch, Wolfgang; Stein, Raimund; Utsch, Boris; Hirsch, Karin; Boemers, Thomas M; Mangold, Elisabeth; Heilmann, Stefanie; Ludwig, Kerstin U; Jenetzky, Ekkehart; Zwink, Nadine; Moebus, Susanne; Herrmann, Bernhard G; Mattheisen, Manuel; Nöthen, Markus M; Ludwig, Michael; Reutter, Heiko

    2015-03-01

    The bladder exstrophy-epispadias complex (BEEC) represents the severe end of the uro-rectal malformation spectrum, and is thought to result from aberrant embryonic morphogenesis of the cloacal membrane and the urorectal septum. The most common form of BEEC is isolated classic bladder exstrophy (CBE). To identify susceptibility loci for CBE, we performed a genome-wide association study (GWAS) of 110 CBE patients and 1,177 controls of European origin. Here, an association was found with a region of approximately 220kb on chromosome 5q11.1. This region harbors the ISL1 (ISL LIM homeobox 1) gene. Multiple markers in this region showed evidence for association with CBE, including 84 markers with genome-wide significance. We then performed a meta-analysis using data from a previous GWAS by our group of 98 CBE patients and 526 controls of European origin. This meta-analysis also implicated the 5q11.1 locus in CBE risk. A total of 138 markers at this locus reached genome-wide significance in the meta-analysis, and the most significant marker (rs9291768) achieved a P value of 2.13 × 10-12. No other locus in the meta-analysis achieved genome-wide significance. We then performed murine expression analyses to follow up this finding. Here, Isl1 expression was detected in the genital region within the critical time frame for human CBE development. Genital regions with Isl1 expression included the peri-cloacal mesenchyme and the urorectal septum. The present study identified the first genome-wide significant locus for CBE at chromosomal region 5q11.1, and provides strong evidence for the hypothesis that ISL1 is the responsible candidate gene in this region.

  9. Genome-wide analysis of promoter architecture in Drosophila melanogaster

    SciTech Connect

    Hoskins, Roger A.; Landolin, Jane M.; Brown, James B.; Sandler, Jeremy E.; Takahashi, Hazuki; Lassmann, Timo; Yu, Charles; Booth, Benjamin W.; Zhang, Dayu; Wan, Kenneth H.; Yang, Li; Boley, Nathan; Andrews, Justen; Kaufman, Thomas C.; Graveley, Brenton R.; Bickel, Peter J.; Carninci, Piero; Carlson, Joseph W.; Celniker, Susan E.

    2010-10-20

    Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLMRACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals.

  10. Genome-wide proximal promoter analysis and interpretation.

    PubMed

    Guruceaga, Elizabeth; Segura, Victor; Corrales, Fernando J; Rubio, Angel

    2010-01-01

    High-throughput gene expression technologies based on DNA microarrays allow the examination of biological systems. However, the interpretation of the complex molecular descriptions generated by these approaches is still challenging. The development of new methodologies to identify common regulatory mechanisms involved in the control of the expression of a set of co-expressed genes might enhance our capacity to extract functional information from genomic data sets. In this chapter, we describe a method that integrates different sources of information: gene expression data, genome sequence information, described transcription factor binding sites (TFBSs), functional information, and bibliographic data. The starting point of the analysis is the extraction of promoter sequences from a whole genome and the detection of TFBSs in each gene promoter. This information allows the identification of enriched TFBSs in the proximal promoter of differentially expressed genes. The functional and bibliographic interpretation of the results improves our biological insight into the regulatory mechanisms involved in a microarray experiment. PMID:19957149

  11. Genome-wide analysis of TCP family in tobacco.

    PubMed

    Chen, L; Chen, Y Q; Ding, A M; Chen, H; Xia, F; Wang, W F; Sun, Y H

    2016-01-01

    The TCP family is a transcription factor family, members of which are extensively involved in plant growth and development as well as in signal transduction in the response against many physiological and biochemical stimuli. In the present study, 61 TCP genes were identified in tobacco (Nicotiana tabacum) genome. Bioinformatic methods were employed for predicting and analyzing the gene structure, gene expression, phylogenetic analysis, and conserved domains of TCP proteins in tobacco. The 61 NtTCP genes were divided into three diverse groups, based on the division of TCP genes in tomato and Arabidopsis, and the results of the conserved domain and sequence analyses further confirmed the classification of the NtTCP genes. The expression pattern of NtTCP also demonstrated that majority of these genes play important roles in all the tissues, while some special genes exercise their functions only in specific tissues. In brief, the comprehensive and thorough study of the TCP family in other plants provides sufficient resources for studying the structure and functions of TCPs in tobacco. PMID:27323069

  12. Genome-wide analysis of mobile genetic element insertion sites

    PubMed Central

    Rawal, Kamal; Ramaswamy, Ram

    2011-01-01

    Mobile genetic elements (MGEs) account for a significant fraction of eukaryotic genomes and are implicated in altered gene expression and disease. We present an efficient computational protocol for MGE insertion site analysis. ELAN, the suite of tools described here uses standard techniques to identify different MGEs and their distribution on the genome. One component, DNASCANNER analyses known insertion sites of MGEs for the presence of signals that are based on a combination of local physical and chemical properties. ISF (insertion site finder) is a machine-learning tool that incorporates information derived from DNASCANNER. ISF permits classification of a given DNA sequence as a potential insertion site or not, using a support vector machine. We have studied the genomes of Homo sapiens, Mus musculus, Drosophila melanogaster and Entamoeba histolytica via a protocol whereby DNASCANNER is used to identify a common set of statistically important signals flanking the insertion sites in the various genomes. These are used in ISF for insertion site prediction, and the current accuracy of the tool is over 65%. We find similar signals at gene boundaries and splice sites. Together, these data are suggestive of a common insertion mechanism that operates in a variety of eukaryotes. PMID:21609951

  13. Signatures of positive selection in East African Shorthorn Zebu: a genome-wide SNP analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The small East African Shorthorn Zebu is the main indigenous cattle across East Africa. A recent genome wide SNPs analysis has revealed their ancient stable African taurine x Asian zebu admixture. Here, we assess the presence of candidate signature of positive selection in their genome, with the aim...

  14. On the Analysis of a Repeated Measure Design in Genome-Wide Association Analysis

    PubMed Central

    Lee, Young; Park, Suyeon; Moon, Sanghoon; Lee, Juyoung; Elston, Robert C.; Lee, Woojoo; Won, Sungho

    2014-01-01

    Longitudinal data enables detecting the effect of aging/time, and as a repeated measures design is statistically more efficient compared to cross-sectional data if the correlations between repeated measurements are not large. In particular, when genotyping cost is more expensive than phenotyping cost, the collection of longitudinal data can be an efficient strategy for genetic association analysis. However, in spite of these advantages, genome-wide association studies (GWAS) with longitudinal data have rarely been analyzed taking this into account. In this report, we calculate the required sample size to achieve 80% power at the genome-wide significance level for both longitudinal and cross-sectional data, and compare their statistical efficiency. Furthermore, we analyzed the GWAS of eight phenotypes with three observations on each individual in the Korean Association Resource (KARE). A linear mixed model allowing for the correlations between observations for each individual was applied to analyze the longitudinal data, and linear regression was used to analyze the first observation on each individual as cross-sectional data. We found 12 novel genome-wide significant disease susceptibility loci that were then confirmed in the Health Examination cohort, as well as some significant interactions between age/sex and SNPs. PMID:25464127

  15. Meta-analysis of 32 genome-wide linkage studies of schizophrenia

    PubMed Central

    Ng, MYM; Levinson, DF; Faraone, SV; Suarez, BK; DeLisi, LE; Arinami, T; Riley, B; Paunio, T; Pulver, AE; Irmansyah; Holmans, PA; Escamilla, M; Wildenauer, DB; Williams, NM; Laurent, C; Mowry, BJ; Brzustowicz, LM; Maziade, M; Sklar, P; Garver, DL; Abecasis, GR; Lerer, B; Fallin, MD; Gurling, HMD; Gejman, PV; Lindholm, E; Moises, HW; Byerley, W; Wijsman, EM; Forabosco, P; Tsuang, MT; Hwu, H-G; Okazaki, Y; Kendler, KS; Wormley, B; Fanous, A; Walsh, D; O’Neill, FA; Peltonen, L; Nestadt, G; Lasseter, VK; Liang, KY; Papadimitriou, GM; Dikeos, DG; Schwab, SG; Owen, MJ; O’Donovan, MC; Norton, N; Hare, E; Raventos, H; Nicolini, H; Albus, M; Maier, W; Nimgaonkar, VL; Terenius, L; Mallet, J; Jay, M; Godard, S; Nertney, D; Alexander, M; Crowe, RR; Silverman, JM; Bassett, AS; Roy, M-A; Mérette, C; Pato, CN; Pato, MT; Roos, J Louw; Kohn, Y; Amann-Zalcenstein, D; Kalsi, G; McQuillin, A; Curtis, D; Brynjolfson, J; Sigmundsson, T; Petursson, H; Sanders, AR; Duan, J; Jazin, E; Myles-Worsley, M; Karayiorgou, M; Lewis, CM

    2009-01-01

    A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (PSR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for ‘aggregate’ genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies. PMID:19349958

  16. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma

    PubMed Central

    Law, Matthew H.; Bishop, D. Timothy; Martin, Nicholas G.; Moses, Eric K.; Song, Fengju; Barrett, Jennifer H.; Kumar, Rajiv; Easton, Douglas F.; Pharoah, Paul D. P.; Swerdlow, Anthony J.; Kypreou, Katerina P.; Taylor, John C.; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A.; Andresen, Per A.; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M.; Dębniak, Tadeusz; Duffy, David L.; Elder, David E.; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M.; Goldstein, Alisa M.; Gruis, Nelleke A.; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A.; Chen, Wei V.; Landi, Maria Teresa; Lang, Julie; Lathrop, G. Mark; Lubiński, Jan; Mackie, Rona M.; Mann, Graham J.; Molven, Anders; Montgomery, Grant W.; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A.; Radford-Smith, Graham L.; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C.; Craig, Jamie E.; Schadendorf, Dirk; Simms, Lisa A.; Burdon, Kathryn P.; Nyholt, Dale R.; Pooley, Karen A.; Orr, Nick; Stratigos, Alexander J.; Cust, Anne E.; Ward, Sarah V.; Hayward, Nicholas K.; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M.; Bishop, Julia A. Newton; MacGregor, Stuart; Iles, Mark M.

    2015-01-01

    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5×10–8), as did two previously-reported but un-replicated loci and all thirteen established loci. Novel SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes including one involved in telomere biology. PMID:26237428

  17. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma.

    PubMed

    Law, Matthew H; Bishop, D Timothy; Lee, Jeffrey E; Brossard, Myriam; Martin, Nicholas G; Moses, Eric K; Song, Fengju; Barrett, Jennifer H; Kumar, Rajiv; Easton, Douglas F; Pharoah, Paul D P; Swerdlow, Anthony J; Kypreou, Katerina P; Taylor, John C; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A; Andresen, Per A; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M; Dȩbniak, Tadeusz; Duffy, David L; Elder, David E; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M; Goldstein, Alisa M; Gruis, Nelleke A; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A; Chen, Wei V; Landi, Maria Teresa; Lang, Julie; Lathrop, G Mark; Lubiński, Jan; Mackie, Rona M; Mann, Graham J; Molven, Anders; Montgomery, Grant W; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A; Radford-Smith, Graham L; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C; Craig, Jamie E; Schadendorf, Dirk; Simms, Lisa A; Burdon, Kathryn P; Nyholt, Dale R; Pooley, Karen A; Orr, Nick; Stratigos, Alexander J; Cust, Anne E; Ward, Sarah V; Hayward, Nicholas K; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M; Bishop, Julia A Newton; Demenais, Florence; Amos, Christopher I; MacGregor, Stuart; Iles, Mark M

    2015-09-01

    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5 × 10(-8)), as did 2 previously reported but unreplicated loci and all 13 established loci. Newly associated SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes in the associated regions, including one involved in telomere biology. PMID:26237428

  18. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality.

    PubMed

    Kamvar, Zhian N; Brooks, Jonah C; Grünwald, Niklaus J

    2015-01-01

    To gain a detailed understanding of how plant microbes evolve and adapt to hosts, pesticides, and other factors, knowledge of the population dynamics and evolutionary history of populations is crucial. Plant pathogen populations are often clonal or partially clonal which requires different analytical tools. With the advent of high throughput sequencing technologies, obtaining genome-wide population genetic data has become easier than ever before. We previously contributed the R package poppr specifically addressing issues with analysis of clonal populations. In this paper we provide several significant extensions to poppr with a focus on large, genome-wide SNP data. Specifically, we provide several new functionalities including the new function mlg.filter to define clone boundaries allowing for inspection and definition of what is a clonal lineage, minimum spanning networks with reticulation, a sliding-window analysis of the index of association, modular bootstrapping of any genetic distance, and analyses across any level of hierarchies. PMID:26113860

  19. Meta-analysis of sex-specific genome-wide association studies.

    PubMed

    Magi, Reedik; Lindgren, Cecilia M; Morris, Andrew P

    2010-12-01

    Despite the success of genome-wide association studies, much of the genetic contribution to complex human traits is still unexplained. One potential source of genetic variation that may contribute to this "missing heritability" is that which differs in magnitude and/or direction between males and females, which could result from sexual dimorphism in gene expression. Such sex-differentiated effects are common in model organisms, and are becoming increasingly evident in human complex traits through large-scale male- and female-specific meta-analyses. In this article, we review the methodology for meta-analysis of sex-specific genome-wide association studies, and propose a sex-differentiated test of association with quantitative or dichotomous traits, which allows for heterogeneity of allelic effects between males and females. We perform detailed simulations to compare the power of the proposed sex-differentiated meta-analysis with the more traditional "sex-combined" approach, which is ambivalent to gender. The results of this study highlight only a small loss in power for the sex-differentiated meta-analysis when the allelic effects of the causal variant are the same in males and females. However, over a range of models of heterogeneity in allelic effects between genders, our sex-differentiated meta-analysis strategy offers substantial gains in power, and thus has the potential to discover novel loci contributing effects to complex human traits with existing genome-wide association data.

  20. Meta-analysis of genome-wide association studies of attention deficit/hyperactivity disorder

    PubMed Central

    Neale, Benjamin M; Medland, Sarah E.; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V.; Nguyen, Thuy Trang; Schäfer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J.L.; Langely, Kate; O’Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P.; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-01-01

    Objective Although twin and family studies have shown Attention Deficit/Hyperactivity Disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association scans (GWAS) have not yielded significant results, we conducted a meta-analysis of existing studies to boost statistical power. Method We used data from four projects: a) the Children’s Hospital of Philadelphia (CHOP), b) phase I of the International Multicenter ADHD Genetics project (IMAGE), c) phase II of IMAGE (IMAGE II), and d) the Pfizer funded study from the University of California, Los Angeles, Washington University and the Massachusetts General Hospital (PUWMa). The final sample size consisted of 2,064 trios, 896 cases and 2,455 controls. For each study, we imputed HapMap SNPs, computed association test statistics and transformed them to Z-scores, and then combined weighted Z-scores in a meta-analysis. Results No genome-wide significant associations were found, although an analysis of candidate genes suggests they may be involved in the disorder. Conclusions Given that ADHD is a highly heritable disorder, our negative results suggest that the effects of common ADHD risk variants must, individually, be very small or that other types of variants, e.g. rare ones, account for much of the disorder’s heritability. PMID:20732625

  1. Genome-wide association analysis identifies six new loci associated with forced vital capacity

    PubMed Central

    Loth, Daan W.; Artigas, María Soler; Gharib, Sina A.; Wain, Louise V.; Franceschini, Nora; Koch, Beate; Pottinger, Tess; Smith, Albert Vernon; Duan, Qing; Oldmeadow, Chris; Lee, Mi Kyeong; Strachan, David P.; James, Alan L.; Huffman, Jennifer E.; Vitart, Veronique; Ramasamy, Adaikalavan; Wareham, Nicholas J.; Kaprio, Jaakko; Wang, Xin-Qun; Trochet, Holly; Kähönen, Mika; Flexeder, Claudia; Albrecht, Eva; Lopez, Lorna M.; de Jong, Kim; Thyagarajan, Bharat; Alves, Alexessander Couto; Enroth, Stefan; Omenaas, Ernst; Joshi, Peter K.; Fall, Tove; Viňuela, Ana; Launer, Lenore J.; Loehr, Laura R.; Fornage, Myriam; Li, Guo; Wilk, Jemma B.; Tang, Wenbo; Manichaikul, Ani; Lahousse, Lies; Harris, Tamara B.; North, Kari E.; Rudnicka, Alicja R.; Hui, Jennie; Gu, Xiangjun; Lumley, Thomas; Wright, Alan F.; Hastie, Nicholas D.; Campbell, Susan; Kumar, Rajesh; Pin, Isabelle; Scott, Robert A.; Pietiläinen, Kirsi H.; Surakka, Ida; Liu, Yongmei; Holliday, Elizabeth G.; Schulz, Holger; Heinrich, Joachim; Davies, Gail; Vonk, Judith M.; Wojczynski, Mary; Pouta, Anneli; Johansson, Åsa; Wild, Sarah H.; Ingelsson, Erik; Rivadeneira, Fernando; Völzke, Henry; Hysi, Pirro G.; Eiriksdottir, Gudny; Morrison, Alanna C.; Rotter, Jerome I.; Gao, Wei; Postma, Dirkje S.; White, Wendy B.; Rich, Stephen S.; Hofman, Albert; Aspelund, Thor; Couper, David; Smith, Lewis J.; Psaty, Bruce M.; Lohman, Kurt; Burchard, Esteban G.; Uitterlinden, André G.; Garcia, Melissa; Joubert, Bonnie R.; McArdle, Wendy L.; Musk, A. Bill; Hansel, Nadia; Heckbert, Susan R.; Zgaga, Lina; van Meurs, Joyce B.J.; Navarro, Pau; Rudan, Igor; Oh, Yeon-Mok; Redline, Susan; Jarvis, Deborah; Zhao, Jing Hua; Rantanen, Taina; O’Connor, George T.; Ripatti, Samuli; Scott, Rodney J.; Karrasch, Stefan; Grallert, Harald; Gaddis, Nathan C.; Starr, John M.; Wijmenga, Cisca; Minster, Ryan L.; Lederer, David J.; Pekkanen, Juha; Gyllensten, Ulf; Campbell, Harry; Morris, Andrew P.; Gläser, Sven; Hammond, Christopher J.; Burkart, Kristin M.; Beilby, John; Kritchevsky, Stephen B.; Gudnason, Vilmundur; Hancock, Dana B.; Williams, O. Dale; Polasek, Ozren; Zemunik, Tatijana; Kolcic, Ivana; Petrini, Marcy F.; Wjst, Matthias; Kim, Woo Jin; Porteous, David J.; Scotland, Generation; Smith, Blair H.; Viljanen, Anne; Heliövaara, Markku; Attia, John R.; Sayers, Ian; Hampel, Regina; Gieger, Christian; Deary, Ian J.; Boezen, H. Marike; Newman, Anne; Jarvelin, Marjo-Riitta; Wilson, James F.; Lind, Lars; Stricker, Bruno H.; Teumer, Alexander; Spector, Timothy D.; Melén, Erik; Peters, Marjolein J.; Lange, Leslie A.; Barr, R. Graham; Bracke, Ken R.; Verhamme, Fien M.; Sung, Joohon; Hiemstra, Pieter S.; Cassano, Patricia A.; Sood, Akshay; Hayward, Caroline; Dupuis, Josée; Hall, Ian P.; Brusselle, Guy G.; Tobin, Martin D.; London, Stephanie J.

    2014-01-01

    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR-129-2/HSD17B12, PRDM11, WWOX, and KCNJ2. Two (GSTCD and PTCH1) loci previously associated with spirometric measures were related to FVC. Newly implicated regions were followed-up in samples of African American, Korean, Chinese, and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and pathogenesis of restrictive lung disease. PMID:24929828

  2. A guide to genome-wide association analysis and post-analytic interrogation.

    PubMed

    Reed, Eric; Nunez, Sara; Kulp, David; Qian, Jing; Reilly, Muredach P; Foulkes, Andrea S

    2015-12-10

    This tutorial is a learning resource that outlines the basic process and provides specific software tools for implementing a complete genome-wide association analysis. Approaches to post-analytic visualization and interrogation of potentially novel findings are also presented. Applications are illustrated using the free and open-source R statistical computing and graphics software environment, Bioconductor software for bioinformatics and the UCSC Genome Browser. Complete genome-wide association data on 1401 individuals across 861,473 typed single nucleotide polymorphisms from the PennCATH study of coronary artery disease are used for illustration. All data and code, as well as additional instructional resources, are publicly available through the Open Resources in Statistical Genomics project: http://www.stat-gen.org.

  3. Genome-wide association analysis identifies six new loci associated with forced vital capacity.

    PubMed

    Loth, Daan W; Soler Artigas, María; Gharib, Sina A; Wain, Louise V; Franceschini, Nora; Koch, Beate; Pottinger, Tess D; Smith, Albert Vernon; Duan, Qing; Oldmeadow, Chris; Lee, Mi Kyeong; Strachan, David P; James, Alan L; Huffman, Jennifer E; Vitart, Veronique; Ramasamy, Adaikalavan; Wareham, Nicholas J; Kaprio, Jaakko; Wang, Xin-Qun; Trochet, Holly; Kähönen, Mika; Flexeder, Claudia; Albrecht, Eva; Lopez, Lorna M; de Jong, Kim; Thyagarajan, Bharat; Alves, Alexessander Couto; Enroth, Stefan; Omenaas, Ernst; Joshi, Peter K; Fall, Tove; Viñuela, Ana; Launer, Lenore J; Loehr, Laura R; Fornage, Myriam; Li, Guo; Wilk, Jemma B; Tang, Wenbo; Manichaikul, Ani; Lahousse, Lies; Harris, Tamara B; North, Kari E; Rudnicka, Alicja R; Hui, Jennie; Gu, Xiangjun; Lumley, Thomas; Wright, Alan F; Hastie, Nicholas D; Campbell, Susan; Kumar, Rajesh; Pin, Isabelle; Scott, Robert A; Pietiläinen, Kirsi H; Surakka, Ida; Liu, Yongmei; Holliday, Elizabeth G; Schulz, Holger; Heinrich, Joachim; Davies, Gail; Vonk, Judith M; Wojczynski, Mary; Pouta, Anneli; Johansson, Asa; Wild, Sarah H; Ingelsson, Erik; Rivadeneira, Fernando; Völzke, Henry; Hysi, Pirro G; Eiriksdottir, Gudny; Morrison, Alanna C; Rotter, Jerome I; Gao, Wei; Postma, Dirkje S; White, Wendy B; Rich, Stephen S; Hofman, Albert; Aspelund, Thor; Couper, David; Smith, Lewis J; Psaty, Bruce M; Lohman, Kurt; Burchard, Esteban G; Uitterlinden, André G; Garcia, Melissa; Joubert, Bonnie R; McArdle, Wendy L; Musk, A Bill; Hansel, Nadia; Heckbert, Susan R; Zgaga, Lina; van Meurs, Joyce B J; Navarro, Pau; Rudan, Igor; Oh, Yeon-Mok; Redline, Susan; Jarvis, Deborah L; Zhao, Jing Hua; Rantanen, Taina; O'Connor, George T; Ripatti, Samuli; Scott, Rodney J; Karrasch, Stefan; Grallert, Harald; Gaddis, Nathan C; Starr, John M; Wijmenga, Cisca; Minster, Ryan L; Lederer, David J; Pekkanen, Juha; Gyllensten, Ulf; Campbell, Harry; Morris, Andrew P; Gläser, Sven; Hammond, Christopher J; Burkart, Kristin M; Beilby, John; Kritchevsky, Stephen B; Gudnason, Vilmundur; Hancock, Dana B; Williams, O Dale; Polasek, Ozren; Zemunik, Tatijana; Kolcic, Ivana; Petrini, Marcy F; Wjst, Matthias; Kim, Woo Jin; Porteous, David J; Scotland, Generation; Smith, Blair H; Viljanen, Anne; Heliövaara, Markku; Attia, John R; Sayers, Ian; Hampel, Regina; Gieger, Christian; Deary, Ian J; Boezen, H Marike; Newman, Anne; Jarvelin, Marjo-Riitta; Wilson, James F; Lind, Lars; Stricker, Bruno H; Teumer, Alexander; Spector, Timothy D; Melén, Erik; Peters, Marjolein J; Lange, Leslie A; Barr, R Graham; Bracke, Ken R; Verhamme, Fien M; Sung, Joohon; Hiemstra, Pieter S; Cassano, Patricia A; Sood, Akshay; Hayward, Caroline; Dupuis, Josée; Hall, Ian P; Brusselle, Guy G; Tobin, Martin D; London, Stephanie J

    2014-07-01

    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.

  4. Five endometrial cancer risk loci identified through genome-wide association analysis.

    PubMed

    Cheng, Timothy H T; Thompson, Deborah J; O'Mara, Tracy A; Painter, Jodie N; Glubb, Dylan M; Flach, Susanne; Lewis, Annabelle; French, Juliet D; Freeman-Mills, Luke; Church, David; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Webb, Penelope M; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Henders, Anjali K; Martin, Nicholas G; Montgomery, Grant W; Nyholt, Dale R; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Dennis, Joe; Fasching, Peter A; Beckmann, Matthias W; Hein, Alexander; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Amant, Frederic; Schrauwen, Stefanie; Zhao, Hui; Lambrechts, Diether; Depreeuw, Jeroen; Dowdy, Sean C; Goode, Ellen L; Fridley, Brooke L; Winham, Stacey J; Njølstad, Tormund S; Salvesen, Helga B; Trovik, Jone; Werner, Henrica M J; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Liu, Tao; Mints, Miriam; Tham, Emma; Li, Mulin Jun; Yip, Shun H; Wang, Junwen; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Dunlop, Malcolm; Houlston, Richard; Palles, Claire; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Cunningham, Julie M; Pharoah, Paul D P; Dunning, Alison M; Edwards, Stacey L; Easton, Douglas F; Tomlinson, Ian; Spurdle, Amanda B

    2016-06-01

    We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer. PMID:27135401

  5. Genome-wide meta-analysis of longitudinal alcohol consumption across youth and early adulthood

    PubMed Central

    Adkins, Daniel E.; Clark, Shaunna L.; Copeland, William E.; Kennedy, Martin; Conway, Kevin; Angold, Adrian; Maes, Hermine; Liu, Youfang; Kumar, Gaurav; Erkanli, Alaattin; Patkar, Ashwin A.; Silberg, Judy; Brown, Tyson H.; Fergusson, David M.; Horwood, L. John; Eaves, Lindon; van den Oord, Edwin J.C.G.; Sullivan, Patrick F.; Costello, E. J.

    2016-01-01

    The public health burden of alcohol is unevenly distributed across the life course, with levels of use, abuse and dependence increasing across adolescence and peaking in early adulthood. Here we leverage this temporal patterning to search for common genetic variants predicting developmental trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol consumption were collected in three, longitudinal community samples (N=2,126, obs=12,166). Consumption repeated measurements spanning adolescence and early adulthood were analyzed using linear mixed models, estimating individual consumption trajectories, which were then tested for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). Association results were combined across samples using standard meta-analysis methods. Four meta-analysis associations satisfied our pre-determined genome-wide significance criterion (FDR<0.1) and 6 others met our “suggestive” criterion (FDR<0.2). Genome-wide significant associations were highly biological plausible, including associations within GABA transporter 1, SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-like). Pathway analyses elaborated single marker results, indicating significant enriched associations to intuitive biological mechanisms including neurotransmission, xenobiotic pharmacodynamics and nuclear hormone receptors. These findings underscore the value of combining longitudinal behavioral data and genome-wide genotype information in order to study developmental patterns and improve statistical power in genomic studies. PMID:26081443

  6. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies

    PubMed Central

    2014-01-01

    Summary Background The epilepsies are a clinically heterogeneous group of neurological disorders. Despite strong evidence for heritability, genome-wide association studies have had little success in identification of risk loci associated with epilepsy, probably because of relatively small sample sizes and insufficient power. We aimed to identify risk loci through meta-analyses of genome-wide association studies for all epilepsy and the two largest clinical subtypes (genetic generalised epilepsy and focal epilepsy). Methods We combined genome-wide association data from 12 cohorts of individuals with epilepsy and controls from population-based datasets. Controls were ethnically matched with cases. We phenotyped individuals with epilepsy into categories of genetic generalised epilepsy, focal epilepsy, or unclassified epilepsy. After standardised filtering for quality control and imputation to account for different genotyping platforms across sites, investigators at each site conducted a linear mixed-model association analysis for each dataset. Combining summary statistics, we conducted fixed-effects meta-analyses of all epilepsy, focal epilepsy, and genetic generalised epilepsy. We set the genome-wide significance threshold at p<1·66 × 10−8. Findings We included 8696 cases and 26 157 controls in our analysis. Meta-analysis of the all-epilepsy cohort identified loci at 2q24.3 (p=8·71 × 10−10), implicating SCN1A, and at 4p15.1 (p=5·44 × 10−9), harbouring PCDH7, which encodes a protocadherin molecule not previously implicated in epilepsy. For the cohort of genetic generalised epilepsy, we noted a single signal at 2p16.1 (p=9·99 × 10−9), implicating VRK2 or FANCL. No single nucleotide polymorphism achieved genome-wide significance for focal epilepsy. Interpretation This meta-analysis describes a new locus not previously implicated in epilepsy and provides further evidence about the genetic architecture of these disorders, with the

  7. A genome-wide association meta-analysis of plasma Aβ peptides concentrations in the elderly

    PubMed Central

    Chouraki, V; De Bruijn, RFAG; Chapuis, J; Bis, JC; Reitz, C; Schraen, S; Ibrahim-Verbaas, CA; Grenier-Boley, B; Delay, C; Rogers, R; Demiautte, F; Mounier, A; Fitzpatrick, AL; Berr, C; Dartigues, J-F; Uitterlinden, AG; Hofman, A; Breteler, M; Becker, JT; Lathrop, M; Schupf, N; Alpérovitch, A; Mayeux, R; van Duijn, CM; Buée, L; Amouyel, P; Lopez, OL; Ikram, MA; Tzourio, C; Lambert, J-C

    2014-01-01

    Amyloid beta (Aβ) peptides are the major components of senile plaques, one of the main pathological hallmarks of Alzheimer disease (AD). However, Aβ peptides’ functions are not fully understood and seem to be highly pleiotropic. We hypothesized that plasma Aβ peptides concentrations could be a suitable endophenotype for a genome-wide association study (GWAS) designed to (i) identify novel genetic factors involved in amyloid precursor protein metabolism and (ii) highlight relevant Aβ-related physiological and pathophysiological processes. Hence, we performed a genome-wide association meta-analysis of four studies totaling 3 528 healthy individuals of European descent and for whom plasma Aβ1–40 and Aβ1–42 peptides levels had been quantified. Although we did not observe any genome-wide significant locus, we identified 18 suggestive loci (P<1 × 10−5). Enrichment-pathway analyses revealed canonical pathways mainly involved in neuronal functions, for example, axonal guidance signaling. We also assessed the biological impact of the gene most strongly associated with plasma Aβ1–42 levels (cortexin 3, CTXN3) on APP metabolism in vitro and found that the gene protein was able to modulate Aβ1–42 secretion. In conclusion, our study results suggest that plasma Aβ peptides levels are valid endophenotypes in GWASs and can be used to characterize the metabolism and functions of APP and its metabolites. PMID:24535457

  8. A genome-wide association meta-analysis of plasma Aβ peptides concentrations in the elderly.

    PubMed

    Chouraki, V; De Bruijn, R F A G; Chapuis, J; Bis, J C; Reitz, C; Schraen, S; Ibrahim-Verbaas, C A; Grenier-Boley, B; Delay, C; Rogers, R; Demiautte, F; Mounier, A; Fitzpatrick, A L; Berr, C; Dartigues, J-F; Uitterlinden, A G; Hofman, A; Breteler, M; Becker, J T; Lathrop, M; Schupf, N; Alpérovitch, A; Mayeux, R; van Duijn, C M; Buée, L; Amouyel, P; Lopez, O L; Ikram, M A; Tzourio, C; Lambert, J-C

    2014-12-01

    Amyloid beta (Aβ) peptides are the major components of senile plaques, one of the main pathological hallmarks of Alzheimer disease (AD). However, Aβ peptides' functions are not fully understood and seem to be highly pleiotropic. We hypothesized that plasma Aβ peptides concentrations could be a suitable endophenotype for a genome-wide association study (GWAS) designed to (i) identify novel genetic factors involved in amyloid precursor protein metabolism and (ii) highlight relevant Aβ-related physiological and pathophysiological processes. Hence, we performed a genome-wide association meta-analysis of four studies totaling 3 528 healthy individuals of European descent and for whom plasma Aβ1-40 and Aβ1-42 peptides levels had been quantified. Although we did not observe any genome-wide significant locus, we identified 18 suggestive loci (P<1 × 10(-)(5)). Enrichment-pathway analyses revealed canonical pathways mainly involved in neuronal functions, for example, axonal guidance signaling. We also assessed the biological impact of the gene most strongly associated with plasma Aβ1-42 levels (cortexin 3, CTXN3) on APP metabolism in vitro and found that the gene protein was able to modulate Aβ1-42 secretion. In conclusion, our study results suggest that plasma Aβ peptides levels are valid endophenotypes in GWASs and can be used to characterize the metabolism and functions of APP and its metabolites.

  9. Common genes underlying asthma and COPD? Genome-wide analysis on the Dutch hypothesis

    PubMed Central

    Smolonska, Joanna; Koppelman, Gerard H.; Wijmenga, Cisca; Vonk, Judith M.; Zanen, Pieter; Bruinenberg, Marcel; Curjuric, Ivan; Imboden, Medea; Thun, Gian-Andri; Franke, Lude; Probst-Hensch, Nicole M.; Nürnberg, Peter; Riemersma, Roland A.; van Schayck, Onno; Loth, Daan W.; Bruselle, Guy G.; Stricker, Bruno H; Hofman, Albert; Uitterlinden, André G.; Lahousse, Lies; London, Stephanie J.; Loehr, Laura R.; Manichaikul, Ani; Barr, R. Graham; Donohue, Kathleen M.; Rich, Stephen S.; Pare, Peter; Bossé, Yohan; Hao, Ke; van den Berge, Maarten; Groen, Harry J.M.; Lammers, Jan-Willem J.; Mali, Willem; Boezen, H. Marike; Postma, Dirkje S.

    2014-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are thought to share a genetic background (“Dutch hypothesis”). We investigated whether asthma and COPD have common underlying genetic factors, performing genome-wide association studies for both asthma and COPD and combining the results in meta-analyses. Three loci showed potential involvement in both diseases: chr2p24.3, chr5q23.1 and chr13q14.2, containing DDX1, COMMD10 (both participating in the NFκβ pathway) and GNG5P5, respectively. SNP rs9534578 in GNG5P5 reached genome-wide significance after first stage replication (p=9.96·*10−9). The second stage replication in seven independent cohorts provided no significant replication. eQTL analysis in blood and lung on the top 20 associated SNPs identified two SNPs in COMMD10 influencing gene expression. Inflammatory processes differ in asthma and COPD and are mediated by NFκβ, which could be driven by the same underlying genes, COMMD10 and DDX1. None of the SNPs reached genome-wide significance. Our eQTL studies support a functional role of two COMMD10 SNPs, since they influence gene expression in both blood cells and lung tissue. Our findings either suggest that there is no common genetic component in asthma and COPD or, alternatively, different environmental factors, like lifestyle and occupation in different countries and continents may have obscured the genetic common contribution. PMID:24993907

  10. Refining genome-wide linkage intervals using a meta-analysis of genome-wide association studies identifies loci influencing personality dimensions.

    PubMed

    Amin, Najaf; Hottenga, Jouke-Jan; Hansell, Narelle K; Janssens, A Cecile J W; de Moor, Marleen H M; Madden, Pamela A F; Zorkoltseva, Irina V; Penninx, Brenda W; Terracciano, Antonio; Uda, Manuela; Tanaka, Toshiko; Esko, Tonu; Realo, Anu; Ferrucci, Luigi; Luciano, Michelle; Davies, Gail; Metspalu, Andres; Abecasis, Goncalo R; Deary, Ian J; Raikkonen, Katri; Bierut, Laura J; Costa, Paul T; Saviouk, Viatcheslav; Zhu, Gu; Kirichenko, Anatoly V; Isaacs, Aaron; Aulchenko, Yurii S; Willemsen, Gonneke; Heath, Andrew C; Pergadia, Michele L; Medland, Sarah E; Axenovich, Tatiana I; de Geus, Eco; Montgomery, Grant W; Wright, Margaret J; Oostra, Ben A; Martin, Nicholas G; Boomsma, Dorret I; van Duijn, Cornelia M

    2013-08-01

    Personality traits are complex phenotypes related to psychosomatic health. Individually, various gene finding methods have not achieved much success in finding genetic variants associated with personality traits. We performed a meta-analysis of four genome-wide linkage scans (N=6149 subjects) of five basic personality traits assessed with the NEO Five-Factor Inventory. We compared the significant regions from the meta-analysis of linkage scans with the results of a meta-analysis of genome-wide association studies (GWAS) (N∼17 000). We found significant evidence of linkage of neuroticism to chromosome 3p14 (rs1490265, LOD=4.67) and to chromosome 19q13 (rs628604, LOD=3.55); of extraversion to 14q32 (ATGG002, LOD=3.3); and of agreeableness to 3p25 (rs709160, LOD=3.67) and to two adjacent regions on chromosome 15, including 15q13 (rs970408, LOD=4.07) and 15q14 (rs1055356, LOD=3.52) in the individual scans. In the meta-analysis, we found strong evidence of linkage of extraversion to 4q34, 9q34, 10q24 and 11q22, openness to 2p25, 3q26, 9p21, 11q24, 15q26 and 19q13 and agreeableness to 4q34 and 19p13. Significant evidence of association in the GWAS was detected between openness and rs677035 at 11q24 (P-value=2.6 × 10(-06), KCNJ1). The findings of our linkage meta-analysis and those of the GWAS suggest that 11q24 is a susceptible locus for openness, with KCNJ1 as the possible candidate gene. PMID:23211697

  11. FVGWAS: Fast Voxelwise Genome Wide Association Analysis of Large-scale Imaging Genetic Data 1

    PubMed Central

    Huang, Meiyan; Nichols, Thomas; Huang, Chao; Yang, Yu; Lu, Zhaohua; Feng, Qianjing; Knickmeyer, Rebecca C; Zhu, Hongtu

    2015-01-01

    More and more large-scale imaging genetic studies are being widely conducted to collect a rich set of imaging, genetic, and clinical data to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. Several major big-data challenges arise from testing genome-wide (NC > 12 million known variants) associations with signals at millions of locations (NV ~ 106) in the brain from thousands of subjects (n ~ 103). The aim of this paper is to develop a Fast Voxelwise Genome Wide Association analysiS (FVGWAS) framework to e ciently carry out whole-genome analyses of whole-brain data. FVGWAS consists of three components including a heteroscedastic linear model, a global sure independence screening (G-SIS) procedure, and a detection procedure based on wild bootstrap methods. Specifically, for standard linear association, the computational complexity is O(nNV NC) for voxelwise genome wide association analysis (VGWAS) method compared with O((NC + NV)n2) for FVGWAS. Simulation studies show that FVGWAS is an effcient method of searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. Finally, we have successfully applied FVGWAS to a large-scale imaging genetic data analysis of ADNI data with 708 subjects, 193,275 voxels in RAVENS maps, and 501,584 SNPs, and the total processing time was 203,645 seconds for a single CPU. Our FVG-WAS may be a valuable statistical toolbox for large-scale imaging genetic analysis as the field is rapidly advancing with ultra-high-resolution imaging and whole-genome sequencing. PMID:26025292

  12. Comparative analysis of genome-wide divergence, domestication footprints and genome-wide association study of root traits for Gossypium hirsutum and Gossypium barbadense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using genome-wide distributed SNPs, we examined ...

  13. Meta-analysis of genome-wide association studies of anxiety disorders

    PubMed Central

    Otowa, Takeshi; Hek, Karin; Lee, Minyoung; Byrne, Enda M.; Mirza, Saira S.; Nivard, Michel G.; Bigdeli, Timothy; Aggen, Steven H.; Adkins, Daniel; Wolen, Aaron; Fanous, Ayman; Keller, Matthew C.; Castelao, Enrique; Kutalik, Zoltan; Van der Auwera, Sandra; Homuth, Georg; Nauck, Matthias; Teumer, Alexander; Milaneschi, Yuri; Hottenga, Jouke-Jan; Direk, Nese; Hofman, Albert; Uitterlinden, Andre; Mulder, Cornelis L.; Henders, Anjali K.; Medland, Sarah E.; Gordon, Scott; Heath, Andrew C.; Madden, Pamela A.F.; Pergadia, Michelle; van der Most, Peter J.; Nolte, Ilja M.; van Oort, Floor V.A.; Hartman, Catharina A.; Oldehinkel, Albertine J.; Preisig, Martin; Grabe, Hans Jörgen; Middeldorp, Christel M.; Penninx, Brenda WJH; Boomsma, Dorret; Martin, Nicholas G.; Montgomery, Grant; Maher, Brion S.; van den Oord, Edwin J.; Wray, Naomi R.; Tiemeier, Henning; Hettema, John M.

    2015-01-01

    Anxiety disorders, namely generalized anxiety disorder, panic disorder, and phobias, are common, etiologically complex conditions with a partially genetic basis. Despite differing on diagnostic definitions based upon clinical presentation, anxiety disorders likely represent various expressions of an underlying common diathesis of abnormal regulation of basic threat-response systems. We conducted genome-wide association analyses in nine samples of European ancestry from seven large, independent studies. To identify genetic variants contributing to genetic susceptibility shared across interview-generated DSM-based anxiety disorders, we applied two phenotypic approaches: (1) comparisons between categorical anxiety disorder cases and super-normal controls, and (2) quantitative phenotypic factor scores derived from a multivariate analysis combining information across the clinical phenotypes. We used logistic and linear regression, respectively, to analyze the association between these phenotypes and genome-wide single nucleotide polymorphisms. Meta-analysis for each phenotype combined results across the nine samples for over 18 000 unrelated individuals. Each meta-analysis identified a different genome-wide significant region, with the following markers showing the strongest association: for case-control contrasts, rs1709393 located in an uncharacterized non-coding RNA locus on chromosomal band 3q12.3 (P=1.65×10−8); for factor scores, rs1067327 within CAMKMT encoding the calmodulin-lysine N-methyltransferase on chromosomal band 2p21 (P=2.86×10−9). Independent replication and further exploration of these findings are needed to more fully understand the role of these variants in risk and expression of anxiety disorders. PMID:26754954

  14. Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci

    PubMed Central

    Melum, Espen; Franke, Andre; Schramm, Christoph; Weismüller, Tobias J; Gotthardt, Daniel Nils; Offner, Felix A; Juran, Brian D; Laerdahl, Jon K; Labi, Verena; Björnsson, Einar; Weersma, Rinse K; Henckaerts, Liesbet; Teufel, Andreas; Rust, Christian; Ellinghaus, Eva; Balschun, Tobias; Boberg, Kirsten Muri; Ellinghaus, David; Bergquist, Annika; Sauer, Peter; Ryu, Euijung; Hov, Johannes Roksund; Wedemeyer, Jochen; Lindkvist, Björn; Wittig, Michael; Porte, Robert J; Holm, Kristian; Gieger, Christian; Wichmann, H-Erich; Stokkers, Pieter; Ponsioen, Cyriel Y; Runz, Heiko; Stiehl, Adolf; Wijmenga, Cisca; Sterneck, Martina; Vermeire, Severine; Beuers, Ulrich; Villunger, Andreas; Schrumpf, Erik; Lazaridis, Konstantinos N; Manns, Michael P; Schreiber, Stefan; Karlsen, Tom H

    2015-01-01

    Primary sclerosing cholangitis (PSC) is a chronic bile duct disease affecting 2.4–7.5% of individuals with inflammatory bowel disease. We performed a genome-wide association analysis of 2,466,182 SNPs in 715 individuals with PSC and 2,962 controls, followed by replication in 1,025 PSC cases and 2,174 controls. We detected non-HLA associations at rs3197999 in MST1 and rs6720394 near BCL2L11 (combined P = 1.1 × 10−16 and P = 4.1 × 10−8, respectively). PMID:21151127

  15. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins.

    PubMed

    Postmus, Iris; Trompet, Stella; Deshmukh, Harshal A; Barnes, Michael R; Li, Xiaohui; Warren, Helen R; Chasman, Daniel I; Zhou, Kaixin; Arsenault, Benoit J; Donnelly, Louise A; Wiggins, Kerri L; Avery, Christy L; Griffin, Paula; Feng, QiPing; Taylor, Kent D; Li, Guo; Evans, Daniel S; Smith, Albert V; de Keyser, Catherine E; Johnson, Andrew D; de Craen, Anton J M; Stott, David J; Buckley, Brendan M; Ford, Ian; Westendorp, Rudi G J; Slagboom, P Eline; Sattar, Naveed; Munroe, Patricia B; Sever, Peter; Poulter, Neil; Stanton, Alice; Shields, Denis C; O'Brien, Eoin; Shaw-Hawkins, Sue; Chen, Y-D Ida; Nickerson, Deborah A; Smith, Joshua D; Dubé, Marie Pierre; Boekholdt, S Matthijs; Hovingh, G Kees; Kastelein, John J P; McKeigue, Paul M; Betteridge, John; Neil, Andrew; Durrington, Paul N; Doney, Alex; Carr, Fiona; Morris, Andrew; McCarthy, Mark I; Groop, Leif; Ahlqvist, Emma; Bis, Joshua C; Rice, Kenneth; Smith, Nicholas L; Lumley, Thomas; Whitsel, Eric A; Stürmer, Til; Boerwinkle, Eric; Ngwa, Julius S; O'Donnell, Christopher J; Vasan, Ramachandran S; Wei, Wei-Qi; Wilke, Russell A; Liu, Ching-Ti; Sun, Fangui; Guo, Xiuqing; Heckbert, Susan R; Post, Wendy; Sotoodehnia, Nona; Arnold, Alice M; Stafford, Jeanette M; Ding, Jingzhong; Herrington, David M; Kritchevsky, Stephen B; Eiriksdottir, Gudny; Launer, Leonore J; Harris, Tamara B; Chu, Audrey Y; Giulianini, Franco; MacFadyen, Jean G; Barratt, Bryan J; Nyberg, Fredrik; Stricker, Bruno H; Uitterlinden, André G; Hofman, Albert; Rivadeneira, Fernando; Emilsson, Valur; Franco, Oscar H; Ridker, Paul M; Gudnason, Vilmundur; Liu, Yongmei; Denny, Joshua C; Ballantyne, Christie M; Rotter, Jerome I; Adrienne Cupples, L; Psaty, Bruce M; Palmer, Colin N A; Tardif, Jean-Claude; Colhoun, Helen M; Hitman, Graham; Krauss, Ronald M; Wouter Jukema, J; Caulfield, Mark J

    2014-10-28

    Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response.

  16. Genome-wide Meta-analysis on the Sense of Smell Among US Older Adults.

    PubMed

    Dong, Jing; Yang, Jingyun; Tranah, Greg; Franceschini, Nora; Parimi, Neeta; Alkorta-Aranburu, Gorka; Xu, Zongli; Alonso, Alvaro; Cummings, Steven R; Fornage, Myriam; Huang, Xuemei; Kritchevsky, Stephen; Liu, Yongmei; London, Stephanie; Niu, Liang; Wilson, Robert S; De Jager, Philip L; Yu, Lei; Singleton, Andrew B; Harris, Tamara; Mosley, Thomas H; Pinto, Jayant M; Bennett, David A; Chen, Honglei

    2015-11-01

    Olfactory dysfunction is common among older adults and affects their safety, nutrition, quality of life, and mortality. More importantly, the decreased sense of smell is an early symptom of neurodegenerative diseases such as Parkinson disease (PD) and Alzheimer disease. However, the genetic determinants for the sense of smell have been poorly investigated. We here performed the first genome-wide meta-analysis on the sense of smell among 6252 US older adults of European descent from the Atherosclerosis Risk in Communities (ARIC) study, the Health, Aging, and Body Composition (Health ABC) study, and the Religious Orders Study and the Rush Memory and Aging Project (ROS/MAP). Genome-wide association study analysis was performed first by individual cohorts and then meta-analyzed using fixed-effect models with inverse variance weights. Although no SNPs reached genome-wide statistical significance, we identified 13 loci with suggestive evidence for an association with the sense of smell (Pmeta < 1 × 10). Of these, 2 SNPs at chromosome 17q21.31 (rs199443 in NSF, P = 3.02 × 10; and rs2732614 in KIAA1267-LRRC37A, P = 6.65 × 10) exhibited cis effects on the expression of microtubule-associated protein tau (MAPT, 17q21.31) in 447 frontal-cortex samples obtained postmortem and profiled by RNA-seq (P < 1 × 10). Gene-based and pathway-enrichment analyses further implicated MAPT in regulating the sense of smell in older adults. Similar results were obtained after excluding participants who reported a physician-diagnosed PD or use of PD medications. In conclusion, we provide preliminary evidence that the MAPT locus may play a role in regulating the sense of smell in older adults and therefore offer a potential genetic link between poor sense of smell and major neurodegenerative diseases. PMID:26632684

  17. Genome-wide Meta-analysis on the Sense of Smell Among US Older Adults.

    PubMed

    Dong, Jing; Yang, Jingyun; Tranah, Greg; Franceschini, Nora; Parimi, Neeta; Alkorta-Aranburu, Gorka; Xu, Zongli; Alonso, Alvaro; Cummings, Steven R; Fornage, Myriam; Huang, Xuemei; Kritchevsky, Stephen; Liu, Yongmei; London, Stephanie; Niu, Liang; Wilson, Robert S; De Jager, Philip L; Yu, Lei; Singleton, Andrew B; Harris, Tamara; Mosley, Thomas H; Pinto, Jayant M; Bennett, David A; Chen, Honglei

    2015-11-01

    Olfactory dysfunction is common among older adults and affects their safety, nutrition, quality of life, and mortality. More importantly, the decreased sense of smell is an early symptom of neurodegenerative diseases such as Parkinson disease (PD) and Alzheimer disease. However, the genetic determinants for the sense of smell have been poorly investigated. We here performed the first genome-wide meta-analysis on the sense of smell among 6252 US older adults of European descent from the Atherosclerosis Risk in Communities (ARIC) study, the Health, Aging, and Body Composition (Health ABC) study, and the Religious Orders Study and the Rush Memory and Aging Project (ROS/MAP). Genome-wide association study analysis was performed first by individual cohorts and then meta-analyzed using fixed-effect models with inverse variance weights. Although no SNPs reached genome-wide statistical significance, we identified 13 loci with suggestive evidence for an association with the sense of smell (Pmeta < 1 × 10). Of these, 2 SNPs at chromosome 17q21.31 (rs199443 in NSF, P = 3.02 × 10; and rs2732614 in KIAA1267-LRRC37A, P = 6.65 × 10) exhibited cis effects on the expression of microtubule-associated protein tau (MAPT, 17q21.31) in 447 frontal-cortex samples obtained postmortem and profiled by RNA-seq (P < 1 × 10). Gene-based and pathway-enrichment analyses further implicated MAPT in regulating the sense of smell in older adults. Similar results were obtained after excluding participants who reported a physician-diagnosed PD or use of PD medications. In conclusion, we provide preliminary evidence that the MAPT locus may play a role in regulating the sense of smell in older adults and therefore offer a potential genetic link between poor sense of smell and major neurodegenerative diseases.

  18. Genome-wide analysis of alternative splicing during human heart development

    PubMed Central

    Wang, He; Chen, Yanmei; Li, Xinzhong; Chen, Guojun; Zhong, Lintao; Chen, Gangbing; Liao, Yulin; Liao, Wangjun; Bin, Jianping

    2016-01-01

    Alternative splicing (AS) drives determinative changes during mouse heart development. Recent high-throughput technological advancements have facilitated genome-wide AS, while its analysis in human foetal heart transition to the adult stage has not been reported. Here, we present a high-resolution global analysis of AS transitions between human foetal and adult hearts. RNA-sequencing data showed extensive AS transitions occurred between human foetal and adult hearts, and AS events occurred more frequently in protein-coding genes than in long non-coding RNA (lncRNA). A significant difference of AS patterns was found between foetal and adult hearts. The predicted difference in AS events was further confirmed using quantitative reverse transcription-polymerase chain reaction analysis of human heart samples. Functional foetal-specific AS event analysis showed enrichment associated with cell proliferation-related pathways including cell cycle, whereas adult-specific AS events were associated with protein synthesis. Furthermore, 42.6% of foetal-specific AS events showed significant changes in gene expression levels between foetal and adult hearts. Genes exhibiting both foetal-specific AS and differential expression were highly enriched in cell cycle-associated functions. In conclusion, we provided a genome-wide profiling of AS transitions between foetal and adult hearts and proposed that AS transitions and deferential gene expression may play determinative roles in human heart development. PMID:27752099

  19. Genome-Wide Analysis of a Wnt1-Regulated Transcriptional Network Implicates Neurodegenerative Pathways

    PubMed Central

    Wexler, Eric M.; Rosen, Ezra; Lu, Daning; Osborn, Gregory E.; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H.

    2013-01-01

    Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information–based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer’s disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes. PMID:21971039

  20. Genome-Wide Analysis of DNA Methylation and Cigarette Smoking in a Chinese Population

    PubMed Central

    Zhu, Xiaoyan; Li, Jun; Deng, Siyun; Yu, Kuai; Liu, Xuezhen; Deng, Qifei; Sun, Huizhen; Zhang, Xiaomin; He, Meian; Guo, Huan; Chen, Weihong; Yuan, Jing; Zhang, Bing; Kuang, Dan; He, Xiaosheng; Bai, Yansen; Han, Xu; Liu, Bing; Li, Xiaoliang; Yang, Liangle; Jiang, Haijing; Zhang, Yizhi; Hu, Jie; Cheng, Longxian; Luo, Xiaoting; Mei, Wenhua; Zhou, Zhiming; Sun, Shunchang; Zhang, Liyun; Liu, Chuanyao; Guo, Yanjun; Zhang, Zhihong; Hu, Frank B.; Liang, Liming; Wu, Tangchun

    2016-01-01

    Background: Smoking is a risk factor for many human diseases. DNA methylation has been related to smoking, but genome-wide methylation data for smoking in Chinese populations is limited. Objectives: We aimed to investigate epigenome-wide methylation in relation to smoking in a Chinese population. Methods: We measured the methylation levels at > 485,000 CpG sites (CpGs) in DNA from leukocytes using a methylation array and conducted a genome-wide meta-analysis of DNA methylation and smoking in a total of 596 Chinese participants. We further evaluated the associations of smoking-related CpGs with internal polycyclic aromatic hydrocarbon (PAH) biomarkers and their correlations with the expression of corresponding genes. Results: We identified 318 CpGs whose methylation levels were associated with smoking at a genome-wide significance level (false discovery rate < 0.05), among which 161 CpGs annotated to 123 genes were not associated with smoking in recent studies of Europeans and African Americans. Of these smoking-related CpGs, methylation levels at 80 CpGs showed significant correlations with the expression of corresponding genes (including RUNX3, IL6R, PTAFR, ANKRD11, CEP135 and CDH23), and methylation at 15 CpGs was significantly associated with urinary 2-hydroxynaphthalene, the most representative internal monohydroxy-PAH biomarker for smoking. Conclusion: We identified DNA methylation markers associated with smoking in a Chinese population, including some markers that were also correlated with gene expression. Exposure to naphthalene, a byproduct of tobacco smoke, may contribute to smoking-related methylation. Citation: Zhu X, Li J, Deng S, Yu K, Liu X, Deng Q, Sun H, Zhang X, He M, Guo H, Chen W, Yuan J, Zhang B, Kuang D, He X, Bai Y, Han X, Liu B, Li X, Yang L, Jiang H, Zhang Y, Hu J, Cheng L, Luo X, Mei W, Zhou Z, Sun S, Zhang L, Liu C, Guo Y, Zhang Z, Hu FB, Liang L, Wu T. 2016. Genome-wide analysis of DNA methylation and cigarette smoking in Chinese. Environ

  1. Genome-wide association analysis of red blood cell traits in African Americans: the COGENT Network.

    PubMed

    Chen, Zhao; Tang, Hua; Qayyum, Rehan; Schick, Ursula M; Nalls, Michael A; Handsaker, Robert; Li, Jin; Lu, Yingchang; Yanek, Lisa R; Keating, Brendan; Meng, Yan; van Rooij, Frank J A; Okada, Yukinori; Kubo, Michiaki; Rasmussen-Torvik, Laura; Keller, Margaux F; Lange, Leslie; Evans, Michele; Bottinger, Erwin P; Linderman, Michael D; Ruderfer, Douglas M; Hakonarson, Hakon; Papanicolaou, George; Zonderman, Alan B; Gottesman, Omri; Thomson, Cynthia; Ziv, Elad; Singleton, Andrew B; Loos, Ruth J F; Sleiman, Patrick M A; Ganesh, Santhi; McCarroll, Steven; Becker, Diane M; Wilson, James G; Lettre, Guillaume; Reiner, Alexander P

    2013-06-15

    Laboratory red blood cell (RBC) measurements are clinically important, heritable and differ among ethnic groups. To identify genetic variants that contribute to RBC phenotypes in African Americans (AAs), we conducted a genome-wide association study in up to ~16 500 AAs. The alpha-globin locus on chromosome 16pter [lead SNP rs13335629 in ITFG3 gene; P < 1E-13 for hemoglobin (Hgb), RBC count, mean corpuscular volume (MCV), MCH and MCHC] and the G6PD locus on Xq28 [lead SNP rs1050828; P < 1E - 13 for Hgb, hematocrit (Hct), MCV, RBC count and red cell distribution width (RDW)] were each associated with multiple RBC traits. At the alpha-globin region, both the common African 3.7 kb deletion and common single nucleotide polymorphisms (SNPs) appear to contribute independently to RBC phenotypes among AAs. In the 2p21 region, we identified a novel variant of PRKCE distinctly associated with Hct in AAs. In a genome-wide admixture mapping scan, local European ancestry at the 6p22 region containing HFE and LRRC16A was associated with higher Hgb. LRRC16A has been previously associated with the platelet count and mean platelet volume in AAs, but not with Hgb. Finally, we extended to AAs the findings of association of erythrocyte traits with several loci previously reported in Europeans and/or Asians, including CD164 and HBS1L-MYB. In summary, this large-scale genome-wide analysis in AAs has extended the importance of several RBC-associated genetic loci to AAs and identified allelic heterogeneity and pleiotropy at several previously known genetic loci associated with blood cell traits in AAs.

  2. Genome-wide analysis of zygotic linkage disequilibrium and its components in crossbred cattle

    PubMed Central

    2012-01-01

    Background Linkage disequilibrium (LD) between genes at linked or independent loci can occur at gametic and zygotic levels known asgametic LD and zygotic LD, respectively. Gametic LD is well known for its roles in fine-scale mapping of quantitative trait loci, genomic selection and evolutionary inference. The less-well studied is the zygotic LD and its components that can be also estimated directly from the unphased SNPs. Results This study was set up to investigate the genome-wide extent and patterns of zygotic LD and its components in a crossbred cattle population using the genomic data from the Illumina BovineSNP50 beadchip. The animal population arose from repeated crossbreeding of multiple breeds and selection for growth and cow reproduction. The study showed that similar genomic structures in gametic and zygotic LD were observed, with zygotic LD decaying faster than gametic LD over marker distance. The trigenic and quadrigenic disequilibria were generally two- to three-fold smaller than the usual digenic disequilibria (gametic or composite LD). There was less power of testing for these high-order genic disequilibria than for the digenic disequilibria. The power estimates decreased with the marker distance between markers though the decay trend is more obvious for the digenic disequilibria than for high-order disequilibria. Conclusions This study is the first major genome-wide survey of all non-allelic associations between pairs of SNPs in a cattle population. Such analysis allows us to assess the relative importance of gametic LD vs. all other non-allelic genic LDs regardless of whether or not the population is in HWE. The observed predominance of digenic LD (gametic or composite LD) coupled with insignificant high-order trigenic and quadrigenic disequilibria supports the current intensive focus on the use of high-density SNP markers for genome-wide association studies and genomic selection activities in the cattle population. PMID:22827586

  3. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    PubMed

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Smith, G D; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  4. [Analysis of population stratification using random SNPs in genome-wide association studies].

    PubMed

    Cao, Zong-Fu; Ma, Chuan-Xiang; Wang, Lei; Cai, Bin

    2010-09-01

    Since population genetic STRUCTURE can increase false-positive rate in genome-wide association studies (GWAS) for complex diseases, the effect of population stratification should be taken into account in GWAS. However, the effect of randomly selected SNPs in population stratification analysis is underdetermined. In this study, based on the genotype data generated on Genome-Wide Human SNP Array 6.0 from unrelated individuals of HapMap Phase2, we randomly selected SNPs that were evenly distributed across the whole-genome, and acquired Ancestry Informative Markers (AIMs) by the method of f value and allelic Fisher exact test. F-statistics and STRUCTURE analysis based on the select different sets of SNPs were used to evaluate the effect of distinguishing the populations from HapMap Phase3. We found that randomly selected SNPs that were evenly distributed across the whole-genome were able to be used to identify the population structure. This study further indicated that more than 3 000 randomly selected SNPs that were evenly distributed across the whole-genome were substituted for AIMs in population stratification analysis, when there were no available AIMs for spe-cific populations.

  5. Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling.

    PubMed

    Bhattacharjee, Annapurna; Ghangal, Rajesh; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Homeobox genes encode transcription factors that are known to play a major role in different aspects of plant growth and development. In the present study, we identified homeobox genes belonging to 14 different classes in five legume species, including chickpea, soybean, Medicago, Lotus and pigeonpea. The characteristic differences within homeodomain sequences among various classes of homeobox gene family were quite evident. Genome-wide expression analysis using publicly available datasets (RNA-seq and microarray) indicated that homeobox genes are differentially expressed in various tissues/developmental stages and under stress conditions in different legumes. We validated the differential expression of selected chickpea homeobox genes via quantitative reverse transcription polymerase chain reaction. Genome duplication analysis in soybean indicated that segmental duplication has significantly contributed in the expansion of homeobox gene family. The Ka/Ks ratio of duplicated homeobox genes in soybean showed that several members of this family have undergone purifying selection. Moreover, expression profiling indicated that duplicated genes might have been retained due to sub-functionalization. The genome-wide identification and comprehensive gene expression profiling of homeobox gene family members in legumes will provide opportunities for functional analysis to unravel their exact role in plant growth and development.

  6. Genome-Wide DNA Methylation Patterns and Transcription Analysis in Sheep Muscle

    PubMed Central

    Couldrey, Christine; Brauning, Rudiger; Bracegirdle, Jeremy; Maclean, Paul; Henderson, Harold V.; McEwan, John C.

    2014-01-01

    DNA methylation plays a central role in regulating many aspects of growth and development in mammals through regulating gene expression. The development of next generation sequencing technologies have paved the way for genome-wide, high resolution analysis of DNA methylation landscapes using methodology known as reduced representation bisulfite sequencing (RRBS). While RRBS has proven to be effective in understanding DNA methylation landscapes in humans, mice, and rats, to date, few studies have utilised this powerful method for investigating DNA methylation in agricultural animals. Here we describe the utilisation of RRBS to investigate DNA methylation in sheep Longissimus dorsi muscles. RRBS analysis of ∼1% of the genome from Longissimus dorsi muscles provided data of suitably high precision and accuracy for DNA methylation analysis, at all levels of resolution from genome-wide to individual nucleotides. Combining RRBS data with mRNAseq data allowed the sheep Longissimus dorsi muscle methylome to be compared with methylomes from other species. While some species differences were identified, many similarities were observed between DNA methylation patterns in sheep and other more commonly studied species. The RRBS data presented here highlights the complexity of epigenetic regulation of genes. However, the similarities observed across species are promising, in that knowledge gained from epigenetic studies in human and mice may be applied, with caution, to agricultural species. The ability to accurately measure DNA methylation in agricultural animals will contribute an additional layer of information to the genetic analyses currently being used to maximise production gains in these species. PMID:25010796

  7. Genome-wide association analysis demonstrates the highly polygenic character of age-related hearing impairment

    PubMed Central

    Fransen, Erik; Bonneux, Sarah; Corneveaux, Jason J; Schrauwen, Isabelle; Di Berardino, Federica; White, Cory H; Ohmen, Jeffrey D; Van de Heyning, Paul; Ambrosetti, Umberto; Huentelman, Matthew J; Van Camp, Guy; Friedman, Rick A

    2015-01-01

    We performed a genome-wide association study (GWAS) to identify the genes responsible for age-related hearing impairment (ARHI), the most common form of hearing impairment in the elderly. Analysis of common variants, with and without adjustment for stratification and environmental covariates, rare variants and interactions, as well as gene-set enrichment analysis, showed no variants with genome-wide significance. No evidence for replication of any previously reported genes was found. A study of the genetic architecture indicates for the first time that ARHI is highly polygenic in nature, with probably no major genes involved. The phenotype depends on the aggregated effect of a large number of SNPs, of which the individual effects are undetectable in a modestly powered GWAS. We estimated that 22% of the variance in our data set can be explained by the collective effect of all genotyped SNPs. A score analysis showed a modest enrichment in causative SNPs among the SNPs with a P-value below 0.01. PMID:24939585

  8. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci.

    PubMed

    Stahl, Eli A; Raychaudhuri, Soumya; Remmers, Elaine F; Xie, Gang; Eyre, Stephen; Thomson, Brian P; Li, Yonghong; Kurreeman, Fina A S; Zhernakova, Alexandra; Hinks, Anne; Guiducci, Candace; Chen, Robert; Alfredsson, Lars; Amos, Christopher I; Ardlie, Kristin G; Barton, Anne; Bowes, John; Brouwer, Elisabeth; Burtt, Noel P; Catanese, Joseph J; Coblyn, Jonathan; Coenen, Marieke J H; Costenbader, Karen H; Criswell, Lindsey A; Crusius, J Bart A; Cui, Jing; de Bakker, Paul I W; De Jager, Philip L; Ding, Bo; Emery, Paul; Flynn, Edward; Harrison, Pille; Hocking, Lynne J; Huizinga, Tom W J; Kastner, Daniel L; Ke, Xiayi; Lee, Annette T; Liu, Xiangdong; Martin, Paul; Morgan, Ann W; Padyukov, Leonid; Posthumus, Marcel D; Radstake, Timothy R D J; Reid, David M; Seielstad, Mark; Seldin, Michael F; Shadick, Nancy A; Steer, Sophia; Tak, Paul P; Thomson, Wendy; van der Helm-van Mil, Annette H M; van der Horst-Bruinsma, Irene E; van der Schoot, C Ellen; van Riel, Piet L C M; Weinblatt, Michael E; Wilson, Anthony G; Wolbink, Gert Jan; Wordsworth, B Paul; Wijmenga, Cisca; Karlson, Elizabeth W; Toes, Rene E M; de Vries, Niek; Begovich, Ann B; Worthington, Jane; Siminovitch, Katherine A; Gregersen, Peter K; Klareskog, Lars; Plenge, Robert M

    2010-06-01

    To identify new genetic risk factors for rheumatoid arthritis, we conducted a genome-wide association study meta-analysis of 5,539 autoantibody-positive individuals with rheumatoid arthritis (cases) and 20,169 controls of European descent, followed by replication in an independent set of 6,768 rheumatoid arthritis cases and 8,806 controls. Of 34 SNPs selected for replication, 7 new rheumatoid arthritis risk alleles were identified at genome-wide significance (P < 5 x 10(-8)) in an analysis of all 41,282 samples. The associated SNPs are near genes of known immune function, including IL6ST, SPRED2, RBPJ, CCR6, IRF5 and PXK. We also refined associations at two established rheumatoid arthritis risk loci (IL2RA and CCL21) and confirmed the association at AFF3. These new associations bring the total number of confirmed rheumatoid arthritis risk loci to 31 among individuals of European ancestry. An additional 11 SNPs replicated at P < 0.05, many of which are validated autoimmune risk alleles, suggesting that most represent genuine rheumatoid arthritis risk alleles. PMID:20453842

  9. Differential network analysis reveals the genome-wide landscape of estrogen receptor modulation in hormonal cancers

    PubMed Central

    Hsiao, Tzu-Hung; Chiu, Yu-Chiao; Hsu, Pei-Yin; Lu, Tzu-Pin; Lai, Liang-Chuan; Tsai, Mong-Hsun; Huang, Tim H.-M.; Chuang, Eric Y.; Chen, Yidong

    2016-01-01

    Several mutual information (MI)-based algorithms have been developed to identify dynamic gene-gene and function-function interactions governed by key modulators (genes, proteins, etc.). Due to intensive computation, however, these methods rely heavily on prior knowledge and are limited in genome-wide analysis. We present the modulated gene/gene set interaction (MAGIC) analysis to systematically identify genome-wide modulation of interaction networks. Based on a novel statistical test employing conjugate Fisher transformations of correlation coefficients, MAGIC features fast computation and adaption to variations of clinical cohorts. In simulated datasets MAGIC achieved greatly improved computation efficiency and overall superior performance than the MI-based method. We applied MAGIC to construct the estrogen receptor (ER) modulated gene and gene set (representing biological function) interaction networks in breast cancer. Several novel interaction hubs and functional interactions were discovered. ER+ dependent interaction between TGFβ and NFκB was further shown to be associated with patient survival. The findings were verified in independent datasets. Using MAGIC, we also assessed the essential roles of ER modulation in another hormonal cancer, ovarian cancer. Overall, MAGIC is a systematic framework for comprehensively identifying and constructing the modulated interaction networks in a whole-genome landscape. MATLAB implementation of MAGIC is available for academic uses at https://github.com/chiuyc/MAGIC. PMID:26972162

  10. Genome-Wide Analysis of Acute Endurance Exercise-Induced Translational Regulation in Mouse Skeletal Muscle

    PubMed Central

    Sako, Hiroaki; Yada, Koichi; Suzuki, Katsuhiko

    2016-01-01

    Exercise dynamically changes skeletal muscle protein synthesis to respond and adapt to the external and internal stimuli. Many studies have focused on overall protein synthesis to understand how exercise regulates the muscular adaptation. However, despite the probability that each gene transcript may have its own unique translational characteristics and would be differentially regulated at translational level, little attention has been paid to how exercise affects translational regulation of individual genes at a genome-wide scale. Here, we conducted a genome-wide translational analysis using ribosome profiling to investigate the effect of a single bout of treadmill running (20 m/min for 60 min) on mouse gastrocnemius. Global translational profiles largely differed from those in transcription even at a basal resting condition as well as immediately after exercise. As for individual gene, Slc25a25 (Solute carrier family 25, member 25), localized in mitochondrial inner membrane and maintaining ATP homeostasis and endurance performance, showed significant up-regulation at translational level. However, multiple regression analysis suggests that Slc25a25 protein degradation may also have a role in mediating Slc25a25 protein abundance in the basal and early stages after acute endurance exercise. PMID:26845575

  11. Quantifying the heritability of glioma using genome-wide complex trait analysis

    PubMed Central

    Kinnersley, Ben; Mitchell, Jonathan S.; Gousias, Konstantinos; Schramm, Johannes; Idbaih, Ahmed; Labussière, Marianne; Marie, Yannick; Rahimian, Amithys; Wichmann, H.-Erich; Schreiber, Stefan; Hoang-Xuan, Khe; Delattre, Jean-Yves; Nöthen, Markus M.; Mokhtari, Karima; Lathrop, Mark; Bondy, Melissa; Simon, Matthias; Sanson, Marc; Houlston, Richard S.

    2015-01-01

    Genome-wide association studies (GWAS) have successfully identified a number of common single-nucleotide polymorphisms (SNPs) influencing glioma risk. While these SNPs only explain a small proportion of the genetic risk it is unclear how much is left to be detected by other, yet to be identified, common SNPs. Therefore, we applied Genome-Wide Complex Trait Analysis (GCTA) to three GWAS datasets totalling 3,373 cases and 4,571 controls and performed a meta-analysis to estimate the heritability of glioma. Our results identify heritability estimates of 25% (95% CI: 20–31%, P = 1.15 × 10−17) for all forms of glioma - 26% (95% CI: 17–35%, P = 1.05 × 10−8) for glioblastoma multiforme (GBM) and 25% (95% CI: 17–32%, P = 1.26 × 10−10) for non-GBM tumors. This is a substantial increase from the genetic variance identified by the currently identified GWAS risk loci (~6% of common heritability), indicating that most of the heritable risk attributable to common genetic variants remains to be identified. PMID:26625949

  12. Genome-wide association study and meta-analysis of intraocular pressure.

    PubMed

    Ozel, A Bilge; Moroi, Sayoko E; Reed, David M; Nika, Melisa; Schmidt, Caroline M; Akbari, Sara; Scott, Kathleen; Rozsa, Frank; Pawar, Hemant; Musch, David C; Lichter, Paul R; Gaasterland, Doug; Branham, Kari; Gilbert, Jesse; Garnai, Sarah J; Chen, Wei; Othman, Mohammad; Heckenlively, John; Swaroop, Anand; Abecasis, Gonçalo; Friedman, David S; Zack, Don; Ashley-Koch, Allison; Ulmer, Megan; Kang, Jae H; Liu, Yutao; Yaspan, Brian L; Haines, Jonathan; Allingham, R Rand; Hauser, Michael A; Pasquale, Louis; Wiggs, Janey; Richards, Julia E; Li, Jun Z

    2014-01-01

    Elevated intraocular pressure (IOP) is a major risk factor for glaucoma and is influenced by genetic and environmental factors. Recent genome-wide association studies (GWAS) reported associations with IOP at TMCO1 and GAS7, and with primary open-angle glaucoma (POAG) at CDKN2B-AS1, CAV1/CAV2, and SIX1/SIX6. To identify novel genetic variants and replicate the published findings, we performed GWAS and meta-analysis of IOP in >6,000 subjects of European ancestry collected in three datasets: the NEI Glaucoma Human genetics collaBORation, GLAUcoma Genes and ENvironment study, and a subset of the Age-related Macular Degeneration-Michigan, Mayo, AREDS and Pennsylvania study. While no signal achieved genome-wide significance in individual datasets, a meta-analysis identified significant associations with IOP at TMCO1 (rs7518099-G, p = 8.0 × 10(-8)). Focused analyses of five loci previously reported for IOP and/or POAG, i.e., TMCO1, CDKN2B-AS1, GAS7, CAV1/CAV2, and SIX1/SIX6, revealed associations with IOP that were largely consistent across our three datasets, and replicated the previously reported associations in both effect size and direction. These results confirm the involvement of common variants in multiple genomic regions in regulating IOP and/or glaucoma risk.

  13. Meta-analysis of genome-wide linkage scans for renal function traits

    PubMed Central

    Rao, Madhumathi; Mottl, Amy K.; Cole, Shelley A.; Umans, Jason G.; Freedman, Barry I.; Bowden, Donald W.; Langefeld, Carl D.; Fox, Caroline S.; Yang, Qiong; Cupples, Adrienne; Iyengar, Sudha K.; Hunt, Steven C.

    2012-01-01

    Background. Several genome scans have explored the linkage of chronic kidney disease phenotypes to chromosomic regions with disparate results. Genome scan meta-analysis (GSMA) is a quantitative method to synthesize linkage results from independent studies and assess their concordance. Methods. We searched PubMed to identify genome linkage analyses of renal function traits in humans, such as estimated glomerular filtration rate (GFR), albuminuria, serum creatinine concentration and creatinine clearance. We contacted authors for numerical data and extracted information from individual studies. We applied the GSMA nonparametric approach to combine results across 14 linkage studies for GFR, 11 linkage studies for albumin creatinine ratio, 11 linkage studies for serum creatinine and 4 linkage studies for creatinine clearance. Results. No chromosomal region reached genome-wide statistical significance in the main analysis which included all scans under each phenotype; however, regions on Chromosomes 7, 10 and 16 reached suggestive significance for linkage to two or more phenotypes. Subgroup analyses by disease status or ethnicity did not yield additional information. Conclusions. While heterogeneity across populations, methodologies and study designs likely explain this lack of agreement, it is possible that linkage scan methodologies lack the resolution for investigating complex traits. Combining family-based linkage studies with genome-wide association studies may be a powerful approach to detect private mutations contributing to complex renal phenotypes. PMID:21622988

  14. Genome-wide Comparative Analysis of Atopic Dermatitis and Psoriasis Gives Insight into Opposing Genetic Mechanisms

    PubMed Central

    Baurecht, Hansjörg; Hotze, Melanie; Brand, Stephan; Büning, Carsten; Cormican, Paul; Corvin, Aiden; Ellinghaus, David; Ellinghaus, Eva; Esparza-Gordillo, Jorge; Fölster-Holst, Regina; Franke, Andre; Gieger, Christian; Hubner, Norbert; Illig, Thomas; Irvine, Alan D.; Kabesch, Michael; Lee, Young A.E.; Lieb, Wolfgang; Marenholz, Ingo; McLean, W.H. Irwin; Morris, Derek W.; Mrowietz, Ulrich; Nair, Rajan; Nöthen, Markus M.; Novak, Natalija; O’Regan, Grainne M.; Schreiber, Stefan; Smith, Catherine; Strauch, Konstantin; Stuart, Philip E.; Trembath, Richard; Tsoi, Lam C.; Weichenthal, Michael; Barker, Jonathan; Elder, James T.; Weidinger, Stephan; Cordell, Heather J.; Brown, Sara J.

    2015-01-01

    Atopic dermatitis and psoriasis are the two most common immune-mediated inflammatory disorders affecting the skin. Genome-wide studies demonstrate a high degree of genetic overlap, but these diseases have mutually exclusive clinical phenotypes and opposing immune mechanisms. Despite their prevalence, atopic dermatitis and psoriasis very rarely co-occur within one individual. By utilizing genome-wide association study and ImmunoChip data from >19,000 individuals and methodologies developed from meta-analysis, we have identified opposing risk alleles at shared loci as well as independent disease-specific loci within the epidermal differentiation complex (chromosome 1q21.3), the Th2 locus control region (chromosome 5q31.1), and the major histocompatibility complex (chromosome 6p21–22). We further identified previously unreported pleiotropic alleles with opposing effects on atopic dermatitis and psoriasis risk in PRKRA and ANXA6/TNIP1. In contrast, there was no evidence for shared loci with effects operating in the same direction on both diseases. Our results show that atopic dermatitis and psoriasis have distinct genetic mechanisms with opposing effects in shared pathways influencing epidermal differentiation and immune response. The statistical analysis methods developed in the conduct of this study have produced additional insight from previously published data sets. The approach is likely to be applicable to the investigation of the genetic basis of other complex traits with overlapping and distinct clinical features. PMID:25574825

  15. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci

    PubMed Central

    Stahl, Eli A.; Raychaudhuri, Soumya; Remmers, Elaine F.; Xie, Gang; Eyre, Stephen; Thomson, Brian P.; Li, Yonghong; Kurreeman, Fina A. S.; Zhernakova, Alexandra; Hinks, Anne; Guiducci, Candace; Chen, Robert; Alfredsson, Lars; Amos, Christopher I.; Ardlie, Kristin G.; Barton, Anne; Bowes, John; Brouwer, Elisabeth; Burtt, Noel P.; Catanese, Joseph J.; Coblyn, Jonathan; Coenen, Marieke JH; Costenbader, Karen H.; Criswell, Lindsey A.; Crusius, J. Bart A.; Cui, Jing; de Bakker, Paul I.W.; De Jager, Phillip L.; Ding, Bo; Emery, Paul; Flynn, Edward; Harrison, Pille; Hocking, Lynne J.; Huizinga, Tom W. J.; Kastner, Daniel L.; Ke, Xiayi; Lee, Annette T.; Liu, Xiangdong; Martin, Paul; Morgan, Ann W.; Padyukov, Leonid; Posthumus, Marcel D.; Radstake, Timothy RDJ; Reid, David M.; Seielstad, Mark; Seldin, Michael F.; Shadick, Nancy A.; Steer, Sophia; Tak, Paul P.; Thomson, Wendy; van der Helm-van Mil, Annette H. M.; van der Horst-Bruinsma, Irene E.; van der Schoot, C. Ellen; van Riel, Piet LCM; Weinblatt, Michael E.; Wilson, Anthony G.; Wolbink, Gert Jan; Wordsworth, Paul; Wijmenga, Cisca; Karlson, Elizabeth W.; Toes, Rene E. M.; de Vries, Niek; Begovich, Ann B.; Worthington, Jane; Siminovitch, Katherine A.; Gregersen, Peter K.; Klareskog, Lars; Plenge, Robert M.

    2014-01-01

    To identify novel genetic risk factors for rheumatoid arthritis (RA), we conducted a genome-wide association study (GWAS) meta-analysis of 5,539 autoantibody positive RA cases and 20,169 controls of European descent, followed by replication in an independent set of 6,768 RA cases and 8,806 controls. Of 34 SNPs selected for replication, 7 novel RA risk alleles were identified at genome-wide significance (P<5×10−8) in analysis of all 41,282 samples. The associated SNPs are near genes of known immune function, including IL6ST, SPRED2, RBPJ, CCR6, IRF5, and PXK. We also refined the risk alleles at two established RA risk loci (IL2RA and CCL21) and confirmed the association at AFF3. These new associations bring the total number of confirmed RA risk loci to 31 among individuals of European ancestry. An additional 11 SNPs replicated at P<0.05, many of which are validated autoimmune risk alleles, suggesting that most represent bona fide RA risk alleles. PMID:20453842

  16. Genome-wide analysis of the MYB transcription factor superfamily in soybean

    PubMed Central

    2012-01-01

    Background The MYB superfamily constitutes one of the most abundant groups of transcription factors described in plants. Nevertheless, their functions appear to be highly diverse and remain rather unclear. To date, no genome-wide characterization of this gene family has been conducted in a legume species. Here we report the first genome-wide analysis of the whole MYB superfamily in a legume species, soybean (Glycine max), including the gene structures, phylogeny, chromosome locations, conserved motifs, and expression patterns, as well as a comparative genomic analysis with Arabidopsis. Results A total of 244 R2R3-MYB genes were identified and further classified into 48 subfamilies based on a phylogenetic comparative analysis with their putative orthologs, showed both gene loss and duplication events. The phylogenetic analysis showed that most characterized MYB genes with similar functions are clustered in the same subfamily, together with the identification of orthologs by synteny analysis, functional conservation among subgroups of MYB genes was strongly indicated. The phylogenetic relationships of each subgroup of MYB genes were well supported by the highly conserved intron/exon structures and motifs outside the MYB domain. Synonymous nucleotide substitution (dN/dS) analysis showed that the soybean MYB DNA-binding domain is under strong negative selection. The chromosome distribution pattern strongly indicated that genome-wide segmental and tandem duplication contribute to the expansion of soybean MYB genes. In addition, we found that ~ 4% of soybean R2R3-MYB genes had undergone alternative splicing events, producing a variety of transcripts from a single gene, which illustrated the extremely high complexity of transcriptome regulation. Comparative expression profile analysis of R2R3-MYB genes in soybean and Arabidopsis revealed that MYB genes play conserved and various roles in plants, which is indicative of a divergence in function. Conclusions In this

  17. Genome-wide analysis of host factors in nodavirus RNA replication.

    PubMed

    Hao, Linhui; Lindenbach, Brett; Wang, Xiaofeng; Dye, Billy; Kushner, David; He, Qiuling; Newton, Michael; Ahlquist, Paul

    2014-01-01

    Flock House virus (FHV), the best studied of the animal nodaviruses, has been used as a model for positive-strand RNA virus research. As one approach to identify host genes that affect FHV RNA replication, we performed a genome-wide analysis using a yeast single gene deletion library and a modified, reporter gene-expressing FHV derivative. A total of 4,491 yeast deletion mutants were tested for their ability to support FHV replication. Candidates for host genes modulating FHV replication were selected based on the initial genome-wide reporter gene assay and validated in repeated Northern blot assays for their ability to support wild type FHV RNA1 replication. Overall, 65 deletion strains were confirmed to show significant changes in the replication of both FHV genomic RNA1 and sub-genomic RNA3 with a false discovery rate of 5%. Among them, eight genes support FHV replication, since their deletion significantly reduced viral RNA accumulation, while 57 genes limit FHV replication, since their deletion increased FHV RNA accumulation. Of the gene products implicated in affecting FHV replication, three are localized to mitochondria, where FHV RNA replication occurs, 16 normally reside in the nucleus and may have indirect roles in FHV replication, and the remaining 46 are in the cytoplasm, with functions enriched in translation, RNA processing and trafficking. PMID:24752411

  18. Genome-wide interaction analysis reveals replicated epistatic effects on brain structure

    PubMed Central

    Hibar, Derrek P.; Stein, Jason L.; Jahanshad, Neda; Kohannim, Omid; Hua, Xue; Toga, Arthur W.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Weiner, Michael W.; Thompson, Paul M.

    2015-01-01

    The discovery of several genes that affect risk for Alzheimer's disease ignited a worldwide search for Single Nucleotide Polymorphisms (SNPs), common genetic variants that affect the brain. Genome-wide search of all possible SNP-SNP interactions is challenging and rarely attempted, due to the complexity of conducting ∼1011 pairwise statistical tests. However, recent advances in machine learning, e.g., iterative sure independence screening (SIS), make it possible to analyze datasets with vastly more predictors than observations. Using an implementation of the SIS algorithm (called EPISIS), we performed a genome-wide interaction analysis testing all possible SNP-SNP interactions affecting regional brain volumes measured on MRI and mapped using tensor-based morphometry. We identified a significant SNP-SNP interaction between rs1345203 and rs1213205 that explains 1.9% of the variance in temporal lobe volume. We mapped the whole-brain, voxelwise effects of the interaction in the ADNI dataset and separately in an independent replication dataset of healthy twins (QTIM). Each additional loading in the interaction effect was associated with ∼5% greater brain regional brain volume (a protective effect) in both ADNI and QTIM samples. PMID:25264344

  19. CONAN: copy number variation analysis software for genome-wide association studies

    PubMed Central

    2010-01-01

    Background Genome-wide association studies (GWAS) based on single nucleotide polymorphisms (SNPs) revolutionized our perception of the genetic regulation of complex traits and diseases. Copy number variations (CNVs) promise to shed additional light on the genetic basis of monogenic as well as complex diseases and phenotypes. Indeed, the number of detected associations between CNVs and certain phenotypes are constantly increasing. However, while several software packages support the determination of CNVs from SNP chip data, the downstream statistical inference of CNV-phenotype associations is still subject to complicated and inefficient in-house solutions, thus strongly limiting the performance of GWAS based on CNVs. Results CONAN is a freely available client-server software solution which provides an intuitive graphical user interface for categorizing, analyzing and associating CNVs with phenotypes. Moreover, CONAN assists the evaluation process by visualizing detected associations via Manhattan plots in order to enable a rapid identification of genome-wide significant CNV regions. Various file formats including the information on CNVs in population samples are supported as input data. Conclusions CONAN facilitates the performance of GWAS based on CNVs and the visual analysis of calculated results. CONAN provides a rapid, valid and straightforward software solution to identify genetic variation underlying the 'missing' heritability for complex traits that remains unexplained by recent GWAS. The freely available software can be downloaded at http://genepi-conan.i-med.ac.at. PMID:20546565

  20. Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization

    PubMed Central

    Liu, Jin; Huang, Jian; Ma, Shuangge

    2012-01-01

    Genome-wide association studies have been extensively conducted, searching for markers for biologically meaningful outcomes and phenotypes. Penalization methods have been adopted in the analysis of the joint effects of a large number of SNPs (single nucleotide polymorphisms) and marker identification. This study is partly motivated by the analysis of heterogeneous stock mice dataset, in which multiple correlated phenotypes and a large number of SNPs are available. Existing penalization methods designed to analyze a single response variable cannot accommodate the correlation among multiple response variables. With multiple response variables sharing the same set of markers, joint modeling is first employed to accommodate the correlation. The group Lasso approach is adopted to select markers associated with all the outcome variables. An efficient computational algorithm is developed. Simulation study and analysis of the heterogeneous stock mice dataset show that the proposed method can outperform existing penalization methods. PMID:23272092

  1. Meta-analysis of New Genome-wide Association Studies of Colorectal Cancer Risk

    PubMed Central

    Peters, Ulrike; Hutter, Carolyn M.; Hsu, Li; Schumacher, Fredrick R.; Conti, David V.; Carlson, Christopher S.; Edlund, Christopher K.; Haile, Robert W.; Gallinger, Steven; Zanke, Brent W.; Lemire, Mathieu; Rangrej, Jagadish; Vijayaraghavan, Raakhee; Chan, Andrew T.; Hazra, Aditi; Hunter, David J.; Ma, Jing; Fuchs, Charles S.; Giovannucci, Edward L.; Kraft, Peter; Liu, Yan; Chen, Lin; Jiao, Shuo; Makar, Karen W.; Taverna, Darin; Gruber, Stephen B.; Rennert, Gad; Moreno, Victor; Ulrich, Cornelia M.; Woods, Michael O.; Green, Roger C.; Parfrey, Patrick S.; Prentice, Ross L.; Kooperberg, Charles; Jackson, Rebecca D.; LaCroix, Andrea Z.; Caan, Bette J.; Hayes, Richard B.; Berndt, Sonja I.; Chanock, Stephen J.; Schoen, Robert E.; Chang-Claude, Jenny; Hoffmeister, Michael; Brenner, Hermann; Frank, Bernd; Bézieau, Stéphane; Küry, Sébastien; Slattery, Martha L.; Hopper, John L.; Jenkins, Mark A.; Le Marchand, Loic; Lindor, Noralane M.; Newcomb, Polly A.; Seminara, Daniela; Hudson, Thomas J.; Duggan, David J.; Potter, John D.; Casey, Graham

    2011-01-01

    Colorectal cancer is the second leading cause of cancer death in developed countries. Genome-wide association studies (GWAS) have successfully identified novel susceptibility loci for colorectal cancer. To follow-up on these findings, and try to identify novel colorectal cancer susceptibility loci, we present results for genome-wide association studies (GWAS) of colorectal cancer (2,906 cases, 3,416 controls) that have not previously published main associations. Specifically, we calculated odds ratios (ORs) and 95% confidence intervals (CIs) using log-additive models for each study. In order to improve our power to detect novel colorectal cancer susceptibility loci, we performed a meta-analysis combining the results across studies. We selected the most statistically significant single nucleotide polymorphisms (SNPs) for replication using 10 independent studies (8,161 cases and 9,101 controls). We again used a meta-analysis to summarize results for the replication studies alone, and for a combined analysis of GWAS and replication studies. We measured 10 SNPs previously identified in colorectal cancer susceptibility loci and found eight to be associated with colorectal cancer (p-value range: 0.02 to 1.8 × 10−8). When we excluded studies that have previously published on these SNPs, five SNPs remained significant at p<0.05 in the combined analysis. No novel susceptibility loci were significant in the replication study after adjustment for multiple testing, and none reached genome-wide significance from a combined analysis of GWAS and replication. We observed marginally significant evidence for a second independent SNP in the BMP2 region at chromosomal location 20p12 (rs4813802; replication p-value 0.03; combined p-value 7.3 × 10−5). In a region on 5p33.15, which includes the coding regions of the TERT-CLPTM1L genes and has been identified in GWAS to be associated with susceptibility to at least seven other cancers, we observed a marginally significant

  2. Pathway-based analysis using reduced gene subsets in genome-wide association studies

    PubMed Central

    2011-01-01

    Background Single Nucleotide Polymorphism (SNP) analysis only captures a small proportion of associated genetic variants in Genome-Wide Association Studies (GWAS) partly due to small marginal effects. Pathway level analysis incorporating prior biological information offers another way to analyze GWAS's of complex diseases, and promises to reveal the mechanisms leading to complex diseases. Biologically defined pathways are typically comprised of numerous genes. If only a subset of genes in the pathways is associated with disease then a joint analysis including all individual genes would result in a loss of power. To address this issue, we propose a pathway-based method that allows us to test for joint effects by using a pre-selected gene subset. In the proposed approach, each gene is considered as the basic unit, which reduces the number of genetic variants considered and hence reduces the degrees of freedom in the joint analysis. The proposed approach also can be used to investigate the joint effect of several genes in a candidate gene study. Results We applied this new method to a published GWAS of psoriasis and identified 6 biologically plausible pathways, after adjustment for multiple testing. The pathways identified in our analysis overlap with those reported in previous studies. Further, using simulations across a range of gene numbers and effect sizes, we demonstrate that the proposed approach enjoys higher power than several other approaches to detect associated pathways. Conclusions The proposed method could increase the power to discover susceptibility pathways and to identify associated genes using GWAS. In our analysis of genome-wide psoriasis data, we have identified a number of relevant pathways for psoriasis. PMID:21226955

  3. Heritability and genome-wide linkage analysis of migraine in the genetic isolate of Norfolk Island.

    PubMed

    Cox, Hannah C; Lea, Rod A; Bellis, Claire; Nyholt, Dale R; Dyer, Thomas D; Haupt, Larisa M; Charlesworth, Jac; Matovinovic, Elizabeth; Blangero, John; Griffiths, Lyn R

    2012-02-15

    Migraine is a common neurovascular disorder with a complex envirogenomic aetiology. In an effort to identify migraine susceptibility genes, we conducted a study of the isolated population of Norfolk Island, Australia. A large portion of the permanent inhabitants of Norfolk Island are descended from 18th Century English sailors involved in the infamous mutiny on the Bounty and their Polynesian consorts. In total, 600 subjects were recruited including a large pedigree of 377 individuals with lineage to the founders. All individuals were phenotyped for migraine using International Classification of Headache Disorders-II criterion. All subjects were genotyped for a genome-wide panel of microsatellite markers. Genotype and phenotype data for the pedigree were analysed using heritability and linkage methods implemented in the programme SOLAR. Follow-up association analysis was performed using the CLUMP programme. A total of 154 migraine cases (25%) were identified indicating the Norfolk Island population is high-risk for migraine. Heritability estimation of the 377-member pedigree indicated a significant genetic component for migraine (h(2)=0.53, P=0.016). Linkage analysis showed peaks on chromosome 13q33.1 (P=0.003) and chromosome 9q22.32 (P=0.008). Association analysis of the key microsatellites in the remaining 223 unrelated Norfolk Island individuals showed evidence of association, which strengthen support for the linkage findings (P≤0.05). In conclusion, a genome-wide linkage analysis and follow-up association analysis of migraine in the genetic isolate of Norfolk Island provided evidence for migraine susceptibility loci on chromosomes 9q22.22 and 13q33.1. PMID:22197687

  4. Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica.

    PubMed

    Zhang, Shizhong; Xu, Ruirui; Luo, Xiaocui; Jiang, Zesheng; Shu, Huairui

    2013-12-01

    MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, which are composed of three classes of hierarchically organized protein kinases, namely MAPKKKs, MAPKKs, and MAPKs. Although genome-wide analysis of this family has been carried out in some species, little is known about MAPK and MAPKK genes in apple (Malus domestica). In this study, a total of 26 putative apple MAPK genes (MdMPKs) and 9 putative apple MAPKK genes (MdMKKs) have been identified and located within the apple genome. Phylogenetic analysis revealed that MdMAPKs and MdMAPKKs could be divided into 4 subfamilies (groups A, B, C and D), respectively. The predicted MdMAPKs and MdMAPKKs were distributed across 13 out of 17 chromosomes with different densities. In addition, analysis of exon-intron junctions and of intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. According to the microarray and expressed sequence tag (EST) analysis, the different expression patterns indicate that they may play different roles during fruit development and rootstock-scion interaction process. Moreover, MAPK and MAPKK genes were performed expression profile analyses in different tissues (root, stem, leaf, flower and fruit), and all of the selected genes were expressed in at least one of the tissues tested, indicating that the MAPKs and MAPKKs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this is the first report of a genome-wide analysis of the apple MAPK and MAPKK gene family. This study provides valuable information for understanding the classification and putative functions of the MAPK signal in apple.

  5. Exploring genome wide bisulfite sequencing for DNA methylation analysis in livestock: a technical assessment.

    PubMed

    Doherty, Rachael; Couldrey, Christine

    2014-01-01

    Recent advances made in "omics" technologies are contributing to a revolution in livestock selection and breeding practices. Epigenetic mechanisms, including DNA methylation are important determinants for the control of gene expression in mammals. DNA methylation research will help our understanding of how environmental factors contribute to phenotypic variation of complex production and health traits. High-throughput sequencing is a vital tool for the comprehensive analysis of DNA methylation, and bisulfite-based strategies coupled with DNA sequencing allows for quantitative, site-specific methylation analysis at the genome level or genome wide. Reduced representation bisulfite sequencing (RRBS) and more recently whole genome bisulfite sequencing (WGBS) have proven to be effective techniques for studying DNA methylation in both humans and mice. Here we report the development of RRBS and WGBS for use in sheep, the first application of this technology in livestock species. Important technical issues associated with these methodologies including fragment size selection and sequence depth are examined and discussed. PMID:24860595

  6. Genome-wide Meta-analysis on the Sense of Smell Among US Older Adults

    PubMed Central

    Dong, Jing; Yang, Jingyun; Tranah, Greg; Franceschini, Nora; Parimi, Neeta; Alkorta-Aranburu, Gorka; Xu, Zongli; Alonso, Alvaro; Cummings, Steven R.; Fornage, Myriam; Huang, Xuemei; Kritchevsky, Stephen; Liu, Yongmei; London, Stephanie; Niu, Liang; Wilson, Robert S.; De Jager, Philip L.; Yu, Lei; Singleton, Andrew B.; Harris, Tamara; Mosley, Thomas H.; Pinto, Jayant M.; Bennett, David A.; Chen, Honglei

    2015-01-01

    Abstract Olfactory dysfunction is common among older adults and affects their safety, nutrition, quality of life, and mortality. More importantly, the decreased sense of smell is an early symptom of neurodegenerative diseases such as Parkinson disease (PD) and Alzheimer disease. However, the genetic determinants for the sense of smell have been poorly investigated. We here performed the first genome-wide meta-analysis on the sense of smell among 6252 US older adults of European descent from the Atherosclerosis Risk in Communities (ARIC) study, the Health, Aging, and Body Composition (Health ABC) study, and the Religious Orders Study and the Rush Memory and Aging Project (ROS/MAP). Genome-wide association study analysis was performed first by individual cohorts and then meta-analyzed using fixed-effect models with inverse variance weights. Although no SNPs reached genome-wide statistical significance, we identified 13 loci with suggestive evidence for an association with the sense of smell (Pmeta < 1 × 10−5). Of these, 2 SNPs at chromosome 17q21.31 (rs199443 in NSF, P = 3.02 × 10−6; and rs2732614 in KIAA1267–LRRC37A, P = 6.65 × 10−6) exhibited cis effects on the expression of microtubule-associated protein tau (MAPT, 17q21.31) in 447 frontal-cortex samples obtained postmortem and profiled by RNA-seq (P < 1 × 10−15). Gene-based and pathway-enrichment analyses further implicated MAPT in regulating the sense of smell in older adults. Similar results were obtained after excluding participants who reported a physician-diagnosed PD or use of PD medications. In conclusion, we provide preliminary evidence that the MAPT locus may play a role in regulating the sense of smell in older adults and therefore offer a potential genetic link between poor sense of smell and major neurodegenerative diseases. PMID:26632684

  7. Genome-wide linkage analysis and association study identifies loci for polydactyly in chickens.

    PubMed

    Sun, Yanfa; Liu, Ranran; Zhao, Guiping; Zheng, Maiqing; Sun, Yan; Yu, Xiaoqiong; Li, Peng; Wen, Jie

    2014-04-21

    Polydactyly occurs in some chicken breeds, but the molecular mechanism remains incompletely understood. Combined genome-wide linkage analysis and association study (GWAS) for chicken polydactyly helps identify loci or candidate genes for the trait and potentially provides further mechanistic understanding of this phenotype in chickens and perhaps other species. The linkage analysis and GWAS for polydactyly was conducted using an F2 population derived from Beijing-You chickens and commercial broilers. The results identified two QTLs through linkage analysis and seven single-nucleotide polymorphisms (SNPs) through GWAS, associated with the polydactyly trait. One QTL located at 35 cM on the GGA2 was significant at the 1% genome-wise level and another QTL at the 1% chromosome-wide significance level was detected at 39 cM on GGA19. A total of seven SNPs, four of 5% genome-wide significance (P < 2.98 × 10(-6)) and three of suggestive significance (5.96 × 10(-5)) were identified, including two SNPs (GGaluGA132178 and Gga_rs14135036) in the QTL on GGA2. Of the identified SNPs, the eight nearest genes were sonic hedgehog (SHH), limb region 1 homolog (mouse) (LMBR1), dipeptidyl-peptidase 6, transcript variant 3 (DPP6), thyroid-stimulating hormone, beta (TSHB), sal-like 4 (Drosophila) (SALL4), par-6 partitioning defective 6 homolog beta (Caenorhabditis elegans) (PARD6B), coenzyme Q5 (COQ5), and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, etapolypeptide (YWHAH). The GWAS supports earlier reports of the importance of SHH and LMBR1 as regulating genes for polydactyly in chickens and other species, and identified others, most of which have not previously been associated with limb development. The genes and associated SNPs revealed here provide detailed information for further exploring the molecular and developmental mechanisms underlying polydactyly.

  8. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins.

    PubMed

    Postmus, Iris; Trompet, Stella; Deshmukh, Harshal A; Barnes, Michael R; Li, Xiaohui; Warren, Helen R; Chasman, Daniel I; Zhou, Kaixin; Arsenault, Benoit J; Donnelly, Louise A; Wiggins, Kerri L; Avery, Christy L; Griffin, Paula; Feng, QiPing; Taylor, Kent D; Li, Guo; Evans, Daniel S; Smith, Albert V; de Keyser, Catherine E; Johnson, Andrew D; de Craen, Anton J M; Stott, David J; Buckley, Brendan M; Ford, Ian; Westendorp, Rudi G J; Slagboom, P Eline; Sattar, Naveed; Munroe, Patricia B; Sever, Peter; Poulter, Neil; Stanton, Alice; Shields, Denis C; O'Brien, Eoin; Shaw-Hawkins, Sue; Chen, Y-D Ida; Nickerson, Deborah A; Smith, Joshua D; Dubé, Marie Pierre; Boekholdt, S Matthijs; Hovingh, G Kees; Kastelein, John J P; McKeigue, Paul M; Betteridge, John; Neil, Andrew; Durrington, Paul N; Doney, Alex; Carr, Fiona; Morris, Andrew; McCarthy, Mark I; Groop, Leif; Ahlqvist, Emma; Bis, Joshua C; Rice, Kenneth; Smith, Nicholas L; Lumley, Thomas; Whitsel, Eric A; Stürmer, Til; Boerwinkle, Eric; Ngwa, Julius S; O'Donnell, Christopher J; Vasan, Ramachandran S; Wei, Wei-Qi; Wilke, Russell A; Liu, Ching-Ti; Sun, Fangui; Guo, Xiuqing; Heckbert, Susan R; Post, Wendy; Sotoodehnia, Nona; Arnold, Alice M; Stafford, Jeanette M; Ding, Jingzhong; Herrington, David M; Kritchevsky, Stephen B; Eiriksdottir, Gudny; Launer, Leonore J; Harris, Tamara B; Chu, Audrey Y; Giulianini, Franco; MacFadyen, Jean G; Barratt, Bryan J; Nyberg, Fredrik; Stricker, Bruno H; Uitterlinden, André G; Hofman, Albert; Rivadeneira, Fernando; Emilsson, Valur; Franco, Oscar H; Ridker, Paul M; Gudnason, Vilmundur; Liu, Yongmei; Denny, Joshua C; Ballantyne, Christie M; Rotter, Jerome I; Adrienne Cupples, L; Psaty, Bruce M; Palmer, Colin N A; Tardif, Jean-Claude; Colhoun, Helen M; Hitman, Graham; Krauss, Ronald M; Wouter Jukema, J; Caulfield, Mark J

    2014-01-01

    Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response. PMID:25350695

  9. Genome-Wide Analysis Reveals Novel Regulators of Growth in Drosophila melanogaster

    PubMed Central

    Vonesch, Sibylle Chantal; Lamparter, David; Mackay, Trudy F. C.; Bergmann, Sven; Hafen, Ernst

    2016-01-01

    Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA) analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequenced lines. We find that the top associated variants differ between traits and sexes; do not map to canonical growth pathway genes, but can be linked to these by epistasis analysis; and are enriched for genes and putative enhancers. Performing GWA on well-studied developmental traits under controlled conditions expands our understanding of developmental processes underlying phenotypic diversity. PMID:26751788

  10. Comparative genome-wide transcriptional analysis of human left and right internal mammary arteries

    PubMed Central

    Ferrari, Giovanni; Quackenbush, John; Strobeck, John; Hu, Lan; Johnson, Christopher K.; Mak, Andrew; Shaw, Richard E.; Sayles, Kathleen; Brizzio, Mariano E.; Zapolanski, Alex; Grau, Juan B.

    2014-01-01

    In coronary artery bypass grafting (CABG), the combined use of left and right internal mammary arteries (LIMA and RIMA) — collectively known as bilateral IMAs (BIMAs) provides a survival advantage over the use of LIMA alone. However, gene expression in RIMA has never been compared to that in LIMA. Here we report a genome-wide transcriptional analysis of BIMA to investigate the expression profiles of these conduits in patients undergoing CABG. As expected, in comparing the BIMAs to the aorta, we found differences in pathways and processes associated with atherosclerosis, inflammation, and cell signaling — pathways which provide biological support for the observation that BIMA grafts deliver long-term benefits to the patients and protect against continued atherosclerosis. These data support the widespread use of BIMAs as the preferred conduits in CABG. PMID:24858532

  11. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins

    PubMed Central

    Postmus, Iris; Trompet, Stella; Deshmukh, Harshal A.; Barnes, Michael R.; Li, Xiaohui; Warren, Helen R.; Chasman, Daniel I.; Zhou, Kaixin; Arsenault, Benoit J.; Donnelly, Louise A.; Wiggins, Kerri L.; Avery, Christy L.; Griffin, Paula; Feng, QiPing; Taylor, Kent D.; Li, Guo; Evans, Daniel S.; Smith, Albert V.; de Keyser, Catherine E.; Johnson, Andrew D.; de Craen, Anton J. M.; Stott, David J.; Buckley, Brendan M.; Ford, Ian; Westendorp, Rudi G. J.; Eline Slagboom, P.; Sattar, Naveed; Munroe, Patricia B.; Sever, Peter; Poulter, Neil; Stanton, Alice; Shields, Denis C.; O’Brien, Eoin; Shaw-Hawkins, Sue; Ida Chen, Y.-D.; Nickerson, Deborah A.; Smith, Joshua D.; Pierre Dubé, Marie; Matthijs Boekholdt, S.; Kees Hovingh, G.; Kastelein, John J. P.; McKeigue, Paul M.; Betteridge, John; Neil, Andrew; Durrington, Paul N.; Doney, Alex; Carr, Fiona; Morris, Andrew; McCarthy, Mark I.; Groop, Leif; Ahlqvist, Emma; Bis, Joshua C.; Rice, Kenneth; Smith, Nicholas L.; Lumley, Thomas; Whitsel, Eric A.; Stürmer, Til; Boerwinkle, Eric; Ngwa, Julius S.; O’Donnell, Christopher J.; Vasan, Ramachandran S.; Wei, Wei-Qi; Wilke, Russell A.; Liu, Ching-Ti; Sun, Fangui; Guo, Xiuqing; Heckbert, Susan R; Post, Wendy; Sotoodehnia, Nona; Arnold, Alice M.; Stafford, Jeanette M.; Ding, Jingzhong; Herrington, David M.; Kritchevsky, Stephen B.; Eiriksdottir, Gudny; Launer, Leonore J.; Harris, Tamara B.; Chu, Audrey Y.; Giulianini, Franco; MacFadyen, Jean G.; Barratt, Bryan J.; Nyberg, Fredrik; Stricker, Bruno H.; Uitterlinden, André G.; Hofman, Albert; Rivadeneira, Fernando; Emilsson, Valur; Franco, Oscar H.; Ridker, Paul M.; Gudnason, Vilmundur; Liu, Yongmei; Denny, Joshua C.; Ballantyne, Christie M.; Rotter, Jerome I.; Adrienne Cupples, L.; Psaty, Bruce M.; Palmer, Colin N. A.; Tardif, Jean-Claude; Colhoun, Helen M.; Hitman, Graham; Krauss, Ronald M.; Wouter Jukema, J; Caulfield, Mark J.; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M.; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N. A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C. A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Donnelly, Peter; Langford, Cordelia; Hunt, Sarah E.; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Waller, Matthew; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Barroso, Ines; Deloukas, Panos; Mathew, Christopher G.; Blackwell, Jenefer M.; Brown, Matthew A.; Corvin, Aiden; McCarthy, Mark I.; Spencer, Chris C. A.

    2014-01-01

    Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response. PMID:25350695

  12. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index.

    PubMed

    Felix, Janine F; Bradfield, Jonathan P; Monnereau, Claire; van der Valk, Ralf J P; Stergiakouli, Evie; Chesi, Alessandra; Gaillard, Romy; Feenstra, Bjarke; Thiering, Elisabeth; Kreiner-Møller, Eskil; Mahajan, Anubha; Pitkänen, Niina; Joro, Raimo; Cavadino, Alana; Huikari, Ville; Franks, Steve; Groen-Blokhuis, Maria M; Cousminer, Diana L; Marsh, Julie A; Lehtimäki, Terho; Curtin, John A; Vioque, Jesus; Ahluwalia, Tarunveer S; Myhre, Ronny; Price, Thomas S; Vilor-Tejedor, Natalia; Yengo, Loïc; Grarup, Niels; Ntalla, Ioanna; Ang, Wei; Atalay, Mustafa; Bisgaard, Hans; Blakemore, Alexandra I; Bonnefond, Amelie; Carstensen, Lisbeth; Eriksson, Johan; Flexeder, Claudia; Franke, Lude; Geller, Frank; Geserick, Mandy; Hartikainen, Anna-Liisa; Haworth, Claire M A; Hirschhorn, Joel N; Hofman, Albert; Holm, Jens-Christian; Horikoshi, Momoko; Hottenga, Jouke Jan; Huang, Jinyan; Kadarmideen, Haja N; Kähönen, Mika; Kiess, Wieland; Lakka, Hanna-Maaria; Lakka, Timo A; Lewin, Alexandra M; Liang, Liming; Lyytikäinen, Leo-Pekka; Ma, Baoshan; Magnus, Per; McCormack, Shana E; McMahon, George; Mentch, Frank D; Middeldorp, Christel M; Murray, Clare S; Pahkala, Katja; Pers, Tune H; Pfäffle, Roland; Postma, Dirkje S; Power, Christine; Simpson, Angela; Sengpiel, Verena; Tiesler, Carla M T; Torrent, Maties; Uitterlinden, André G; van Meurs, Joyce B; Vinding, Rebecca; Waage, Johannes; Wardle, Jane; Zeggini, Eleftheria; Zemel, Babette S; Dedoussis, George V; Pedersen, Oluf; Froguel, Philippe; Sunyer, Jordi; Plomin, Robert; Jacobsson, Bo; Hansen, Torben; Gonzalez, Juan R; Custovic, Adnan; Raitakari, Olli T; Pennell, Craig E; Widén, Elisabeth; Boomsma, Dorret I; Koppelman, Gerard H; Sebert, Sylvain; Järvelin, Marjo-Riitta; Hyppönen, Elina; McCarthy, Mark I; Lindi, Virpi; Harri, Niinikoski; Körner, Antje; Bønnelykke, Klaus; Heinrich, Joachim; Melbye, Mads; Rivadeneira, Fernando; Hakonarson, Hakon; Ring, Susan M; Smith, George Davey; Sørensen, Thorkild I A; Timpson, Nicholas J; Grant, Struan F A; Jaddoe, Vincent W V

    2016-01-15

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index.

  13. Meta-analysis of genome-wide association studies for personality.

    PubMed

    de Moor, M H M; Costa, P T; Terracciano, A; Krueger, R F; de Geus, E J C; Toshiko, T; Penninx, B W J H; Esko, T; Madden, P A F; Derringer, J; Amin, N; Willemsen, G; Hottenga, J-J; Distel, M A; Uda, M; Sanna, S; Spinhoven, P; Hartman, C A; Sullivan, P; Realo, A; Allik, J; Heath, A C; Pergadia, M L; Agrawal, A; Lin, P; Grucza, R; Nutile, T; Ciullo, M; Rujescu, D; Giegling, I; Konte, B; Widen, E; Cousminer, D L; Eriksson, J G; Palotie, A; Peltonen, L; Luciano, M; Tenesa, A; Davies, G; Lopez, L M; Hansell, N K; Medland, S E; Ferrucci, L; Schlessinger, D; Montgomery, G W; Wright, M J; Aulchenko, Y S; Janssens, A C J W; Oostra, B A; Metspalu, A; Abecasis, G R; Deary, I J; Räikkönen, K; Bierut, L J; Martin, N G; van Duijn, C M; Boomsma, D I

    2012-03-01

    Personality can be thought of as a set of characteristics that influence people's thoughts, feelings and behavior across a variety of settings. Variation in personality is predictive of many outcomes in life, including mental health. Here we report on a meta-analysis of genome-wide association (GWA) data for personality in 10 discovery samples (17,375 adults) and five in silico replication samples (3294 adults). All participants were of European ancestry. Personality scores for Neuroticism, Extraversion, Openness to Experience, Agreeableness and Conscientiousness were based on the NEO Five-Factor Inventory. Genotype data of ≈ 2.4M single-nucleotide polymorphisms (SNPs; directly typed and imputed using HapMap data) were available. In the discovery samples, classical association analyses were performed under an additive model followed by meta-analysis using the weighted inverse variance method. Results showed genome-wide significance for Openness to Experience near the RASA1 gene on 5q14.3 (rs1477268 and rs2032794, P=2.8 × 10(-8) and 3.1 × 10(-8)) and for Conscientiousness in the brain-expressed KATNAL2 gene on 18q21.1 (rs2576037, P=4.9 × 10(-8)). We further conducted a gene-based test that confirmed the association of KATNAL2 to Conscientiousness. In silico replication did not, however, show significant associations of the top SNPs with Openness and Conscientiousness, although the direction of effect of the KATNAL2 SNP on Conscientiousness was consistent in all replication samples. Larger scale GWA studies and alternative approaches are required for confirmation of KATNAL2 as a novel gene affecting Conscientiousness.

  14. Genome-wide Linkage Analysis of Carotid Artery Lumen Diameter: The Strong Heart Family Study

    PubMed Central

    Bella, Jonathan N.; Cole, Shelley A.; Laston, Sandy; Almasy, Laura; Comuzzie, Anthony; Lee, Elisa T.; Best, Lyle G.; Fabsitz, Richard R.; Howard, Barbara V.; MacCluer, Jean W.; Roman, Mary J.; Devereux, Richard B.; Göring, Harald H.H.

    2014-01-01

    Background A significant proportion of the variability in carotid artery lumen diameter is attributable to genetic factors. Methods Carotid ultrasonography and genotyping were performed in the 3,300 American Indian participants in the Strong Heart Family Study (SHFS) to identify chromosomal regions harboring novel genes associated with inter-individual variation in carotid artery lumen diameter. Genome-wide linkage analysis was conducted using standard variance component linkage methods, implemented in SOLAR, based on multipoint identity-by-descent matrices. Results Genome-wide linkage analysis revealed a significant evidence for linkage for a locus for left carotid artery diastolic and systolic lumen diameter in Arizona SHFS participants on chromosome 7 at 120 cM (lod=4.85 and 3.77, respectively, after sex and age adjustment, and lod=3.12 and 2.72, respectively, after adjustment for sex, age, height, weight, systolic and diastolic blood pressure, diabetes mellitus and current smoking). Other regions with suggestive evidence of linkage for left carotid artery diastolic and systolic lumen diameter was found on chromosome 12 at 153 cM (lod=2.20 and 2.60, respectively, after sex and age adjustment, and lod=2.44 and 2.16, respectively, after full covariate adjustment) in Oklahoma SHFS participants; suggestive linkage for right carotid artery diastolic and systolic lumen diameter was found on chromosome 9 at 154 cM (lod=2.72 and 3.19, respectively after sex and age adjustment, and lod=2.36 and 2.21, respectively, after full covariate adjustment) in Oklahoma SHFS participants. Conclusion We found significant evidence for loci influencing carotid artery lumen diameter on chromosome 7q and suggestive linkage on chromosomes 12q and 9q. PMID:23871337

  15. Genome-wide meta-analysis of common variant differences between men and women

    PubMed Central

    Boraska, Vesna; Jerončić, Ana; Colonna, Vincenza; Southam, Lorraine; Nyholt, Dale R.; William Rayner, Nigel; Perry, John R.B.; Toniolo, Daniela; Albrecht, Eva; Ang, Wei; Bandinelli, Stefania; Barbalic, Maja; Barroso, Inês; Beckmann, Jacques S.; Biffar, Reiner; Boomsma, Dorret; Campbell, Harry; Corre, Tanguy; Erdmann, Jeanette; Esko, Tõnu; Fischer, Krista; Franceschini, Nora; Frayling, Timothy M.; Girotto, Giorgia; Gonzalez, Juan R.; Harris, Tamara B.; Heath, Andrew C.; Heid, Iris M.; Hoffmann, Wolfgang; Hofman, Albert; Horikoshi, Momoko; Hua Zhao, Jing; Jackson, Anne U.; Hottenga, Jouke-Jan; Jula, Antti; Kähönen, Mika; Khaw, Kay-Tee; Kiemeney, Lambertus A.; Klopp, Norman; Kutalik, Zoltán; Lagou, Vasiliki; Launer, Lenore J.; Lehtimäki, Terho; Lemire, Mathieu; Lokki, Marja-Liisa; Loley, Christina; Luan, Jian'an; Mangino, Massimo; Mateo Leach, Irene; Medland, Sarah E.; Mihailov, Evelin; Montgomery, Grant W.; Navis, Gerjan; Newnham, John; Nieminen, Markku S.; Palotie, Aarno; Panoutsopoulou, Kalliope; Peters, Annette; Pirastu, Nicola; Polašek, Ozren; Rehnström, Karola; Ripatti, Samuli; Ritchie, Graham R.S.; Rivadeneira, Fernando; Robino, Antonietta; Samani, Nilesh J.; Shin, So-Youn; Sinisalo, Juha; Smit, Johannes H.; Soranzo, Nicole; Stolk, Lisette; Swinkels, Dorine W.; Tanaka, Toshiko; Teumer, Alexander; Tönjes, Anke; Traglia, Michela; Tuomilehto, Jaakko; Valsesia, Armand; van Gilst, Wiek H.; van Meurs, Joyce B.J.; Smith, Albert Vernon; Viikari, Jorma; Vink, Jacqueline M.; Waeber, Gerard; Warrington, Nicole M.; Widen, Elisabeth; Willemsen, Gonneke; Wright, Alan F.; Zanke, Brent W.; Zgaga, Lina; Boehnke, Michael; d'Adamo, Adamo Pio; de Geus, Eco; Demerath, Ellen W.; den Heijer, Martin; Eriksson, Johan G.; Ferrucci, Luigi; Gieger, Christian; Gudnason, Vilmundur; Hayward, Caroline; Hengstenberg, Christian; Hudson, Thomas J.; Järvelin, Marjo-Riitta; Kogevinas, Manolis; Loos, Ruth J.F.; Martin, Nicholas G.; Metspalu, Andres; Pennell, Craig E.; Penninx, Brenda W.; Perola, Markus; Raitakari, Olli; Salomaa, Veikko; Schreiber, Stefan; Schunkert, Heribert; Spector, Tim D.; Stumvoll, Michael; Uitterlinden, André G.; Ulivi, Sheila; van der Harst, Pim; Vollenweider, Peter; Völzke, Henry; Wareham, Nicholas J.; Wichmann, H.-Erich; Wilson, James F.; Rudan, Igor; Xue, Yali; Zeggini, Eleftheria

    2012-01-01

    The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 × 10−8) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ∼115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased traits. PMID:22843499

  16. What Cure Models Can Teach us About Genome-Wide Survival Analysis.

    PubMed

    Stringer, Sven; Denys, Damiaan; Kahn, René S; Derks, Eske M

    2016-03-01

    The aim of logistic regression is to estimate genetic effects on disease risk, while survival analysis aims to determine effects on age of onset. In practice, genetic variants may affect both types of outcomes. A cure survival model analyzes logistic and survival effects simultaneously. The aim of this simulation study is to assess the performance of logistic regression and traditional survival analysis under a cure model and to investigate the benefits of cure survival analysis. We simulated data under a cure model and varied the percentage of subjects at risk for disease (cure fraction), the logistic and survival effect sizes, and the contribution of genetic background risk factors. We then computed the error rates and estimation bias of logistic, Cox proportional hazards (PH), and cure PH analysis, respectively. The power of logistic and Cox PH analysis is sensitive to the cure fraction and background heritability. Our results show that traditional Cox PH analysis may erroneously detect age of onset effects if no such effects are present in the data. In the presence of genetic background risk even the cure model results in biased estimates of both the odds ratio and the hazard ratio. Cure survival analysis takes cure fractions into account and can be used to simultaneously estimate the effect of genetic variants on disease risk and age of onset. Since genome-wide cure survival analysis is not computationally feasible, we recommend this analysis for genetic variants that are significant in a traditional survival analysis. PMID:26552795

  17. Genome-wide enrichment analysis between endometriosis and obesity-related traits reveals novel susceptibility loci

    PubMed Central

    Rahmioglu, Nilufer; Macgregor, Stuart; Drong, Alexander W.; Hedman, Åsa K.; Harris, Holly R.; Randall, Joshua C.; Prokopenko, Inga; Nyholt, Dale R.; Morris, Andrew P.; Montgomery, Grant W.; Missmer, Stacey A.; Lindgren, Cecilia M.; Zondervan, Krina T.

    2015-01-01

    Endometriosis is a chronic inflammatory condition in women that results in pelvic pain and subfertility, and has been associated with decreased body mass index (BMI). Genetic variants contributing to the heritable component have started to emerge from genome-wide association studies (GWAS), although the majority remain unknown. Unexpectedly, we observed an intergenic locus on 7p15.2 that was genome-wide significantly associated with both endometriosis and fat distribution (waist-to-hip ratio adjusted for BMI; WHRadjBMI) in an independent meta-GWAS of European ancestry individuals. This led us to investigate the potential overlap in genetic variants underlying the aetiology of endometriosis, WHRadjBMI and BMI using GWAS data. Our analyses demonstrated significant enrichment of common variants between fat distribution and endometriosis (P = 3.7 × 10−3), which was stronger when we restricted the investigation to more severe (Stage B) cases (P = 4.5 × 10−4). However, no genetic enrichment was observed between endometriosis and BMI (P = 0.79). In addition to 7p15.2, we identify four more variants with statistically significant evidence of involvement in both endometriosis and WHRadjBMI (in/near KIFAP3, CAB39L, WNT4, GRB14); two of these, KIFAP3 and CAB39L, are novel associations for both traits. KIFAP3, WNT4 and 7p15.2 are associated with the WNT signalling pathway; formal pathway analysis confirmed a statistically significant (P = 6.41 × 10−4) overrepresentation of shared associations in developmental processes/WNT signalling between the two traits. Our results demonstrate an example of potential biological pleiotropy that was hitherto unknown, and represent an opportunity for functional follow-up of loci and further cross-phenotype comparisons to assess how fat distribution and endometriosis pathogenesis research fields can inform each other. PMID:25296917

  18. TEGS-CN: A Statistical Method for Pathway Analysis of Genome-wide Copy Number Profile.

    PubMed

    Huang, Yen-Tsung; Hsu, Thomas; Christiani, David C

    2014-01-01

    The effects of copy number alterations make up a significant part of the tumor genome profile, but pathway analyses of these alterations are still not well established. We proposed a novel method to analyze multiple copy numbers of genes within a pathway, termed Test for the Effect of a Gene Set with Copy Number data (TEGS-CN). TEGS-CN was adapted from TEGS, a method that we previously developed for gene expression data using a variance component score test. With additional development, we extend the method to analyze DNA copy number data, accounting for different sizes and thus various numbers of copy number probes in genes. The test statistic follows a mixture of X (2) distributions that can be obtained using permutation with scaled X (2) approximation. We conducted simulation studies to evaluate the size and the power of TEGS-CN and to compare its performance with TEGS. We analyzed a genome-wide copy number data from 264 patients of non-small-cell lung cancer. With the Molecular Signatures Database (MSigDB) pathway database, the genome-wide copy number data can be classified into 1814 biological pathways or gene sets. We investigated associations of the copy number profile of the 1814 gene sets with pack-years of cigarette smoking. Our analysis revealed five pathways with significant P values after Bonferroni adjustment (<2.8 × 10(-5)), including the PTEN pathway (7.8 × 10(-7)), the gene set up-regulated under heat shock (3.6 × 10(-6)), the gene sets involved in the immune profile for rejection of kidney transplantation (9.2 × 10(-6)) and for transcriptional control of leukocytes (2.2 × 10(-5)), and the ganglioside biosynthesis pathway (2.7 × 10(-5)). In conclusion, we present a new method for pathway analyses of copy number data, and causal mechanisms of the five pathways require further study.

  19. A “Candidate-Interactome” Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis

    PubMed Central

    Policano, Claudia; Annibali, Viviana; Coarelli, Giulia; Ricigliano, Vito A. G.; Vittori, Danila; Fornasiero, Arianna; Buscarinu, Maria Chiara; Romano, Silvia; Salvetti, Marco; Ristori, Giovanni

    2013-01-01

    Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a “candidate interactome” (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms. PMID:23696811

  20. A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis.

    PubMed

    Mechelli, Rosella; Umeton, Renato; Policano, Claudia; Annibali, Viviana; Coarelli, Giulia; Ricigliano, Vito A G; Vittori, Danila; Fornasiero, Arianna; Buscarinu, Maria Chiara; Romano, Silvia; Salvetti, Marco; Ristori, Giovanni

    2013-01-01

    Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms.

  1. Vector algebra in the analysis of genome-wide expression data

    PubMed Central

    Kuruvilla, Finny G; Park, Peter J; Schreiber, Stuart L

    2002-01-01

    Background Data from thousands of transcription-profiling experiments in organisms ranging from yeast to humans are now publicly available. How best to analyze these data remains an important challenge. A variety of tools have been used for this purpose, including hierarchical clustering, self-organizing maps and principal components analysis. In particular, concepts from vector algebra have proven useful in the study of genome-wide expression data. Results Here we present a framework based on vector algebra for the analysis of transcription profiles that is geometrically intuitive and computationally efficient. Concepts in vector algebra such as angles, magnitudes, subspaces, singular value decomposition, bases and projections have natural and powerful interpretations in the analysis of microarray data. Angles in particular offer a rigorous method of defining 'similarity' and are useful in evaluating the claims of a microarray-based study. We present a sample analysis of cells treated with rapamycin, an immunosuppressant whose effects have been extensively studied with microarrays. In addition, the algebraic concept of a basis for a space affords the opportunity to simplify data analysis and uncover a limited number of expression vectors to span the transcriptional range of cell behavior. Conclusions This framework represents a compact, powerful and scalable construction for analysis and computation. As the amount of microarray data in the public domain grows, these vector-based methods are relevant in determining statistical significance. These approaches are also well suited to extract biologically meaningful information in the analysis of signaling networks. PMID:11897023

  2. Genome-wide microarray analysis of gene expression profiling in major depression and antidepressant therapy.

    PubMed

    Lin, Eugene; Tsai, Shih-Jen

    2016-01-01

    Major depressive disorder (MDD) is a serious health concern worldwide. Currently there are no predictive tests for the effectiveness of any particular antidepressant in an individual patient. Thus, doctors must prescribe antidepressants based on educated guesses. With the recent advent of scientific research, genome-wide gene expression microarray studies are widely utilized to analyze hundreds of thousands of biomarkers by high-throughput technologies. In addition to the candidate-gene approach, the genome-wide approach has recently been employed to investigate the determinants of MDD as well as antidepressant response to therapy. In this review, we mainly focused on gene expression studies with genome-wide approaches using RNA derived from peripheral blood cells. Furthermore, we reviewed their limitations and future directions with respect to the genome-wide gene expression profiling in MDD pathogenesis as well as in antidepressant therapy.

  3. A genome-wide analysis of the expansin genes in Malus × Domestica.

    PubMed

    Zhang, Shizhong; Xu, Ruirui; Gao, Zheng; Chen, Changtian; Jiang, Zesheng; Shu, Huairui

    2014-04-01

    Expansins were first identified as cell wall-loosening proteins; they are involved in regulating cell expansion, fruits softening and many other physiological processes. However, our knowledge about the expansin family members and their evolutionary relationships in fruit trees, such as apple, is limited. In this study, we identified 41 members of the expansin gene family in the genome of apple (Malus × Domestica L. Borkh). Phylogenetic analysis revealed that expansin genes in apple could be divided into four subfamilies according to their gene structures and protein motifs. By phylogenetic analysis of the expansins in five plants (Arabidopsis, rice, poplar, grape and apple), the expansins were divided into 17 subgroups. Our gene duplication analysis revealed that whole-genome and chromosomal-segment duplications contributed to the expansion of Mdexpansins. The microarray and expressed sequence tag (EST) data showed that 34 Mdexpansin genes could be divided into five groups by the EST analysis; they may also play different roles during fruit development. An expression model for MdEXPA16 and MdEXPA20 showed their potential role in developing fruit. Overall, our study provides useful data and novel insights into the functions and regulatory mechanisms of the expansin genes in apple, as well as their evolution and divergence. As the first step towards genome-wide analysis of the expansin genes in apple, our results have established a solid foundation for future studies on the function of the expansin genes in fruit development.

  4. Genome-wide association analysis of imputed rare variants: application to seven common complex diseases.

    PubMed

    Mägi, Reedik; Asimit, Jennifer L; Day-Williams, Aaron G; Zeggini, Eleftheria; Morris, Andrew P

    2012-12-01

    Genome-wide association studies have been successful in identifying loci contributing effects to a range of complex human traits. The majority of reproducible associations within these loci are with common variants, each of modest effect, which together explain only a small proportion of heritability. It has been suggested that much of the unexplained genetic component of complex traits can thus be attributed to rare variation. However, genome-wide association study genotyping chips have been designed primarily to capture common variation, and thus are underpowered to detect the effects of rare variants. Nevertheless, we demonstrate here, by simulation, that imputation from an existing scaffold of genome-wide genotype data up to high-density reference panels has the potential to identify rare variant associations with complex traits, without the need for costly re-sequencing experiments. By application of this approach to genome-wide association studies of seven common complex diseases, imputed up to publicly available reference panels, we identify genome-wide significant evidence of rare variant association in PRDM10 with coronary artery disease and multiple genes in the major histocompatibility complex (MHC) with type 1 diabetes. The results of our analyses highlight that genome-wide association studies have the potential to offer an exciting opportunity for gene discovery through association with rare variants, conceivably leading to substantial advancements in our understanding of the genetic architecture underlying complex human traits.

  5. Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis

    PubMed Central

    2014-01-01

    Background Grain size and shape greatly influence grain weight which ultimately enhances grain yield in wheat. Digital imaging (DI) based phenomic characterization can capture the three dimensional variation in grain size and shape than has hitherto been possible. In this study, we report the results from using digital imaging of grain size and shape to understand the relationship among different components of this trait, their contribution to enhance grain weight, and to identify genomic regions (QTLs) controlling grain morphology using genome wide association mapping with high density diversity array technology (DArT) and allele-specific markers. Results Significant positive correlations were observed between grain weight and grain size measurements such as grain length (r = 0.43), width, thickness (r = 0.64) and factor from density (FFD) (r = 0.69). A total of 231 synthetic hexaploid wheats (SHWs) were grouped into five different sub-clusters by Bayesian structure analysis using unlinked DArT markers. Linkage disequilibrium (LD) decay was observed among DArT loci > 10 cM distance and approximately 28% marker pairs were in significant LD. In total, 197 loci over 60 chromosomal regions and 79 loci over 31 chromosomal regions were associated with grain morphology by genome wide analysis using general linear model (GLM) and mixed linear model (MLM) approaches, respectively. They were mainly distributed on homoeologous group 2, 3, 6 and 7 chromosomes. Twenty eight marker-trait associations (MTAs) on the D genome chromosomes 2D, 3D and 6D may carry novel alleles with potential to enhance grain weight due to the use of untapped wild accessions of Aegilops tauschii. Statistical simulations showed that favorable alleles for thousand kernel weight (TKW), grain length, width and thickness have additive genetic effects. Allelic variations for known genes controlling grain size and weight, viz. TaCwi-2A, TaSus-2B, TaCKX6-3D and TaGw2-6A, were also associated

  6. Genome-wide phylogenetic analysis of differences in thermotolerance among closely related Acetobacter pasteurianus strains.

    PubMed

    Matsutani, Minenosuke; Hirakawa, Hideki; Saichana, Natsaran; Soemphol, Wichai; Yakushi, Toshiharu; Matsushita, Kazunobu

    2012-01-01

    Acetobacter pasteurianus is a Gram-negative strictly aerobic bacterium that is widely used for the industrial production of vinegar. Three Acetobacter pasteurianus strains, SKU1108, NBRC 3283 and IFO 3191, have the same 16S rRNA sequence (100 % sequence identity) but show differences in thermotolerance. To clarify the relationships between phylogeny and thermotolerance of these strains, genome-wide analysis of these three strains was performed. Concatenated phylogenetic analysis of a dataset of 1864 orthologues has shown that the more thermotolerant strains, SKU1108 and NBRC 3283, are more closely related to each other than to the more thermosensitive strain, IFO 3191. In addition, we defined a dataset of 2010 unique orthologues among these three strains, and compared the frequency of amino acid mutations among them. Genes involved in translation, transcription and signal transduction are highly conserved among each unique orthologous dataset. The results also showed that there are several genes with increased mutation rates in IFO 3191 compared with the thermotolerant strains, SKU1108 and NBRC 3283. Analysis of the mutational directions of these genes suggested that some of them might be correlated with the thermosensitivity of IFO 3191. Concatenated phylogenetic analysis of these closely related strains revealed that there is a phylogenetic relationship associated with this phenotype among the thermotolerant and thermosensitive strains.

  7. Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize

    PubMed Central

    2013-01-01

    Background Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in various physiological processes, including plant growth and development, abiotic and biotic stress responses and plant hormone signaling in plants. Results In this study, we performed a bioinformatics analysis of the entire maize genome and identified 40 CDPK genes. Phylogenetic analysis indicated that 40 ZmCPKs can be divided into four groups. Most maize CDPK genes exhibited different expression levels in different tissues and developmental stages. Twelve CDPK genes were selected to respond to various stimuli, including salt, drought and cold, as well as ABA and H2O2. Expression analyses suggested that maize CDPK genes are important components of maize development and multiple transduction pathways. Conclusion Here, we present a genome-wide analysis of the CDPK gene family in maize for the first time, and this genomic analysis of maize CDPK genes provides the first step towards a functional study of this gene family in maize. PMID:23815483

  8. Genome-wide Identification and Structural, Functional and Evolutionary Analysis of WRKY Components of Mulberry.

    PubMed

    Baranwal, Vinay Kumar; Negi, Nisha; Khurana, Paramjit

    2016-01-01

    Mulberry is known to be sensitive to several biotic and abiotic stresses, which in turn have a direct impact on the yield of silk, because it is the sole food source for the silk worm. WRKYs are a family of transcription factors, which play an important role in combating various biotic and abiotic stresses. In this study, we identified 54 genes with conserved WRKY motifs in the Morus notabilis genome. Motif searches coupled with a phylogenetic analysis revealed seven sub-groups as well as the absence of members of Group Ib in mulberry. Analyses of the 2K upstream region in addition to a gene ontology terms enrichment analysis revealed putative functions of mulberry WRKYs under biotic and abiotic stresses. An RNA-seq-based analysis showed that several of the identified WRKYs have shown preferential expression in the leaf, bark, root, male flower, and winter bud of M. notabilis. Finally, expression analysis by qPCR under different stress and hormone treatments revealed genotype-specific responses. Taken together, our results briefs about the genome-wide identification of WRKYs as well as their differential response to stresses and hormones. Importantly, these data can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in mulberry.

  9. Genome-Wide Analysis of Branched-Chain Amino Acid Levels in Arabidopsis Seeds[W

    PubMed Central

    Angelovici, Ruthie; Lipka, Alexander E.; Deason, Nicholas; Gonzalez-Jorge, Sabrina; Lin, Haining; Cepela, Jason; Buell, Robin; Gore, Michael A.; DellaPenna, Dean

    2013-01-01

    Branched-chain amino acids (BCAAs) are three of the nine essential amino acids in human and animal diets and are important for numerous processes in development and growth. However, seed BCAA levels in major crops are insufficient to meet dietary requirements, making genetic improvement for increased and balanced seed BCAAs an important nutritional target. Addressing this issue requires a better understanding of the genetics underlying seed BCAA content and composition. Here, a genome-wide association study and haplotype analysis for seed BCAA traits in Arabidopsis thaliana revealed a strong association with a chromosomal interval containing two BRANCHED-CHAIN AMINO ACID TRANSFERASES, BCAT1 and BCAT2. Linkage analysis, reverse genetic approaches, and molecular complementation analysis demonstrated that allelic variation at BCAT2 is responsible for the natural variation of seed BCAAs in this interval. Complementation analysis of a bcat2 null mutant with two significantly different alleles from accessions Bayreuth-0 and Shahdara is consistent with BCAT2 contributing to natural variation in BCAA levels, glutamate recycling, and free amino acid homeostasis in seeds in an allele-dependent manner. The seed-specific phenotype of bcat2 null alleles, its strong transcription induction during late seed development, and its subcellular localization to the mitochondria are consistent with a unique, catabolic role for BCAT2 in BCAA metabolism in seeds. PMID:24368787

  10. Pathway analysis of genome-wide association datasets of personality traits.

    PubMed

    Kim, H-N; Kim, B-H; Cho, J; Ryu, S; Shin, H; Sung, J; Shin, C; Cho, N H; Sung, Y A; Choi, B-O; Kim, H-L

    2015-04-01

    Although several genome-wide association (GWA) studies of human personality have been recently published, genetic variants that are highly associated with certain personality traits remain unknown, due to difficulty reproducing results. To further investigate these genetic variants, we assessed biological pathways using GWA datasets. Pathway analysis using GWA data was performed on 1089 Korean women whose personality traits were measured with the Revised NEO Personality Inventory for the 5-factor model of personality. A total of 1042 pathways containing 8297 genes were included in our study. Of these, 14 pathways were highly enriched with association signals that were validated in 1490 independent samples. These pathways include association of: Neuroticism with axon guidance [L1 cell adhesion molecule (L1CAM) interactions]; Extraversion with neuronal system and voltage-gated potassium channels; Agreeableness with L1CAM interaction, neurotransmitter receptor binding and downstream transmission in postsynaptic cells; and Conscientiousness with the interferon-gamma and platelet-derived growth factor receptor beta polypeptide pathways. Several genes that contribute to top-ranked pathways in this study were previously identified in GWA studies or by pathway analysis in schizophrenia or other neuropsychiatric disorders. Here we report the first pathway analysis of all five personality traits. Importantly, our analysis identified novel pathways that contribute to understanding the etiology of personality traits. PMID:25809424

  11. Pathway analysis of genome-wide association datasets of personality traits.

    PubMed

    Kim, H-N; Kim, B-H; Cho, J; Ryu, S; Shin, H; Sung, J; Shin, C; Cho, N H; Sung, Y A; Choi, B-O; Kim, H-L

    2015-04-01

    Although several genome-wide association (GWA) studies of human personality have been recently published, genetic variants that are highly associated with certain personality traits remain unknown, due to difficulty reproducing results. To further investigate these genetic variants, we assessed biological pathways using GWA datasets. Pathway analysis using GWA data was performed on 1089 Korean women whose personality traits were measured with the Revised NEO Personality Inventory for the 5-factor model of personality. A total of 1042 pathways containing 8297 genes were included in our study. Of these, 14 pathways were highly enriched with association signals that were validated in 1490 independent samples. These pathways include association of: Neuroticism with axon guidance [L1 cell adhesion molecule (L1CAM) interactions]; Extraversion with neuronal system and voltage-gated potassium channels; Agreeableness with L1CAM interaction, neurotransmitter receptor binding and downstream transmission in postsynaptic cells; and Conscientiousness with the interferon-gamma and platelet-derived growth factor receptor beta polypeptide pathways. Several genes that contribute to top-ranked pathways in this study were previously identified in GWA studies or by pathway analysis in schizophrenia or other neuropsychiatric disorders. Here we report the first pathway analysis of all five personality traits. Importantly, our analysis identified novel pathways that contribute to understanding the etiology of personality traits.

  12. Genome-wide Identification and Structural, Functional and Evolutionary Analysis of WRKY Components of Mulberry

    PubMed Central

    Baranwal, Vinay Kumar; Negi, Nisha; Khurana, Paramjit

    2016-01-01

    Mulberry is known to be sensitive to several biotic and abiotic stresses, which in turn have a direct impact on the yield of silk, because it is the sole food source for the silk worm. WRKYs are a family of transcription factors, which play an important role in combating various biotic and abiotic stresses. In this study, we identified 54 genes with conserved WRKY motifs in the Morus notabilis genome. Motif searches coupled with a phylogenetic analysis revealed seven sub-groups as well as the absence of members of Group Ib in mulberry. Analyses of the 2K upstream region in addition to a gene ontology terms enrichment analysis revealed putative functions of mulberry WRKYs under biotic and abiotic stresses. An RNA-seq-based analysis showed that several of the identified WRKYs have shown preferential expression in the leaf, bark, root, male flower, and winter bud of M. notabilis. Finally, expression analysis by qPCR under different stress and hormone treatments revealed genotype-specific responses. Taken together, our results briefs about the genome-wide identification of WRKYs as well as their differential response to stresses and hormones. Importantly, these data can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in mulberry. PMID:27477686

  13. Genome-wide Identification and Structural, Functional and Evolutionary Analysis of WRKY Components of Mulberry.

    PubMed

    Baranwal, Vinay Kumar; Negi, Nisha; Khurana, Paramjit

    2016-01-01

    Mulberry is known to be sensitive to several biotic and abiotic stresses, which in turn have a direct impact on the yield of silk, because it is the sole food source for the silk worm. WRKYs are a family of transcription factors, which play an important role in combating various biotic and abiotic stresses. In this study, we identified 54 genes with conserved WRKY motifs in the Morus notabilis genome. Motif searches coupled with a phylogenetic analysis revealed seven sub-groups as well as the absence of members of Group Ib in mulberry. Analyses of the 2K upstream region in addition to a gene ontology terms enrichment analysis revealed putative functions of mulberry WRKYs under biotic and abiotic stresses. An RNA-seq-based analysis showed that several of the identified WRKYs have shown preferential expression in the leaf, bark, root, male flower, and winter bud of M. notabilis. Finally, expression analysis by qPCR under different stress and hormone treatments revealed genotype-specific responses. Taken together, our results briefs about the genome-wide identification of WRKYs as well as their differential response to stresses and hormones. Importantly, these data can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in mulberry. PMID:27477686

  14. Genome-Wide Meta-Analysis of Sciatica in Finnish Population

    PubMed Central

    Lemmelä, Susanna; Solovieva, Svetlana; Shiri, Rahman; Benner, Christian; Heliövaara, Markku; Kettunen, Johannes; Anttila, Verneri; Ripatti, Samuli; Perola, Markus; Seppälä, Ilkka; Juonala, Markus; Kähönen, Mika; Salomaa, Veikko; Viikari, Jorma; Raitakari, Olli T.; Lehtimäki, Terho; Palotie, Aarno; Viikari-Juntura, Eira; Husgafvel-Pursiainen, Kirsti

    2016-01-01

    Sciatica or the sciatic syndrome is a common and often disabling low back disorder in the working-age population. It has a relatively high heritability but poorly understood molecular mechanisms. The Finnish population is a genetic isolate where small founder population and bottleneck events have led to enrichment of certain rare and low frequency variants. We performed here the first genome-wide association (GWAS) and meta-analysis of sciatica. The meta-analysis was conducted across two GWAS covering 291 Finnish sciatica cases and 3671 controls genotyped and imputed at 7.7 million autosomal variants. The most promising loci (p<1x10-6) were replicated in 776 Finnish sciatica patients and 18,489 controls. We identified five intragenic variants, with relatively low frequencies, at two novel loci associated with sciatica at genome-wide significance. These included chr9:14344410:I (rs71321981) at 9p22.3 (NFIB gene; p = 1.30x10-8, MAF = 0.08) and four variants at 15q21.2: rs145901849, rs80035109, rs190200374 and rs117458827 (MYO5A; p = 1.34x10-8, MAF = 0.06; p = 2.32x10-8, MAF = 0.07; p = 3.85x10-8, MAF = 0.06; p = 4.78x10-8, MAF = 0.07, respectively). The most significant association in the meta-analysis, a single base insertion rs71321981 within the regulatory region of the transcription factor NFIB, replicated in an independent Finnish population sample (p = 0.04). Despite identifying 15q21.2 as a promising locus, we were not able to replicate it. It was differentiated; the lead variants within 15q21.2 were more frequent in Finland (6–7%) than in other European populations (1–2%). Imputation accuracies of the three significantly associated variants (chr9:14344410:I, rs190200374, and rs80035109) were validated by genotyping. In summary, our results suggest a novel locus, 9p22.3 (NFIB), which may be involved in susceptibility to sciatica. In addition, another locus, 15q21.2, emerged as a promising one, but failed to replicate. PMID:27764105

  15. Genome-wide identification and phylogenetic analysis of the SBP-box gene family in melons.

    PubMed

    Ma, Y; Guo, J W; Bade, R; Men, Z H; Hasi, A

    2014-10-27

    The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants, including green algae, moss, silver birch, snapdragon, Arabidopsis, rice, and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in melon. Using the highly conserved sequence of the Arabidopsis thaliana SBP-box domain protein as a probe of information sequence, the genome-wide protein database of melon was explored to obtain 13 SBP-box protein sequences, which were further divided into 4 groups, based on phylogenetic analysis. A further analysis centered on the melon SBP-box genetic family's phylogenetic evolution, sequence similarities, gene structure, and miR156 target sequence was also conducted. Analysis of all the expression patterns of melon SBP-box family genes showed that the SBP-box genes were detected in 7 kinds of tissue, and fruit had the highest expression level. CmSBP11 tends to present its specific expression in melon fruit and root. CmSBP09 expression was the highest in flower. Overall, the molecular evolution and expression pattern of the melon SBP-box gene family, revealed by these results, suggest its function differentiation that followed gene duplication.

  16. Genome-Wide Identification and Expression Analysis of Calcium-dependent Protein Kinase in Tomato

    PubMed Central

    Hu, Zhangjian; Lv, Xiangzhang; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Calcium-dependent protein kinases (CDPKs) play critical roles in regulating growth, development and stress response in plants. Information about CDPKs in tomato, however, remains obscure although it is one of the most important model crops in the world. In this study, we performed a bioinformatics analysis of the entire tomato genome and identified 29 CDPK genes. These CDPK genes are found to be located in 12 chromosomes, and could be divided into four groups. Analysis of the gene structure and splicing site reflected high structure conservation within different CDPK gene groups both in the exon-intron pattern and mRNA splicing. Transcripts of most CDPK genes varied with plant organs and developmental stages and their transcripts could be differentially induced by abscisic acid (ABA), brassinosteroids (BRs), methyl jasmonate (MeJA), and salicylic acid (SA), as well as after exposure to heat, cold, and drought, respectively. To our knowledge, this is the first report about the genome-wide analysis of the CDPK gene family in tomato, and the findings obtained offer a clue to the elaborated regulatory role of CDPKs in plant growth, development and stress response in tomato. PMID:27092168

  17. Pathway-based analysis of primary biliary cirrhosis genome-wide association studies

    PubMed Central

    Kar, SP; Seldin, MF; Chen, W; Lu, E; Hirschfield, GM; Invernizzi, P; Heathcote, J; Cusi, D; Gershwin, ME; Siminovitch, KA; Amos, CI

    2013-01-01

    Genome-wide association studies (GWAS) have successfully identified several loci associated with primary biliary cirrhosis (PBC) risk. Pathway analysis complements conventional GWAS analysis. We applied the recently developed linear combination test for pathways to datasets drawn from independent PBC GWAS in Italian and Canadian subjects. Of the Kyoto Encyclopedia of Genes and Genomes and BioCarta pathways tested, 25 pathways in the Italian dataset (449 cases, 940 controls) and 26 pathways in the Canadian dataset (530 cases, 398 controls) were associated with PBC susceptibility (P < 0.05). After correcting for multiple comparisons, only the eight most significant pathways in the Italian dataset had FDR < 0.25 with tumor necrosis factor/stress-related signaling emerging as the top pathway (P = 7.38 × 10−4, FDR = 0.18). Two pathways, phosphatidylinositol signaling and hedgehog signaling, were replicated in both datasets (P < 0.05), and subjected to two additional complementary pathway tests. Both pathway signals remained significant in the Italian dataset on modified gene set enrichment analysis (P < 0.05). In both GWAS, variants nominally associated with PBC were significantly overrepresented in the phosphatidylinositol pathway (Fisher exact P < 0.05). These results point to established and novel pathway-level associations with inherited predisposition to PBC that on further independent replication and functional validation, may provide fresh insights into PBC etiology. PMID:23392275

  18. Joint Analysis for Genome-Wide Association Studies in Family-Based Designs

    PubMed Central

    Sha, Qiuying; Zhang, Zhaogong; Zhang, Shuanglin

    2011-01-01

    In family-based data, association information can be partitioned into the between-family information and the within-family information. Based on this observation, Steen et al. (Nature Genetics. 2005, 683–691) proposed an interesting two-stage test for genome-wide association (GWA) studies under family-based designs which performs genomic screening and replication using the same data set. In the first stage, a screening test based on the between-family information is used to select markers. In the second stage, an association test based on the within-family information is used to test association at the selected markers. However, we learn from the results of case-control studies (Skol et al. Nature Genetics. 2006, 209–213) that this two-stage approach may be not optimal. In this article, we propose a novel two-stage joint analysis for GWA studies under family-based designs. For this joint analysis, we first propose a new screening test that is based on the between-family information and is robust to population stratification. This new screening test is used in the first stage to select markers. Then, a joint test that combines the between-family information and within-family information is used in the second stage to test association at the selected markers. By extensive simulation studies, we demonstrate that the joint analysis always results in increased power to detect genetic association and is robust to population stratification. PMID:21799758

  19. Genome-Wide DNA Methylation Analysis and Epigenetic Variations Associated with Congenital Aortic Valve Stenosis (AVS)

    PubMed Central

    Radhakrishna, Uppala; Albayrak, Samet; Alpay-Savasan, Zeynep; Zeb, Amna; Turkoglu, Onur; Sobolewski, Paul; Bahado-Singh, Ray O.

    2016-01-01

    Congenital heart defect (CHD) is the most common cause of death from congenital anomaly. Among several candidate epigenetic mechanisms, DNA methylation may play an important role in the etiology of CHDs. We conducted a genome-wide DNA methylation analysis using an Illumina Infinium 450k human methylation assay in a cohort of 24 newborns who had aortic valve stenosis (AVS), with gestational-age matched controls. The study identified significantly-altered CpG methylation at 59 sites in 52 genes in AVS subjects as compared to controls (either hypermethylated or demethylated). Gene Ontology analysis identified biological processes and functions for these genes including positive regulation of receptor-mediated endocytosis. Consistent with prior clinical data, the molecular function categories as determined using DAVID identified low-density lipoprotein receptor binding, lipoprotein receptor binding and identical protein binding to be over-represented in the AVS group. A significant epigenetic change in the APOA5 and PCSK9 genes known to be involved in AVS was also observed. A large number CpG methylation sites individually demonstrated good to excellent diagnostic accuracy for the prediction of AVS status, thus raising possibility of molecular screening markers for this disorder. Using epigenetic analysis we were able to identify genes significantly involved in the pathogenesis of AVS. PMID:27152866

  20. Fast genome-wide pedigree quantitative trait loci analysis using MENDEL.

    PubMed

    Zhou, Hua; Zhou, Jin; Sobel, Eric M; Lange, Kenneth

    2014-01-01

    The linkage era left a rich legacy of pedigree samples that can be used for modern genome-wide association sequencing (GWAS) or next-generation sequencing (NGS) studies. Family designs are naturally equipped to detect rare variants, control for population stratification, and facilitate the study of parent-of-origin effects. Unfortunately, pedigree likelihoods are notoriously hard to compute, and current software for association mapping in pedigrees is prohibitively slow in processing dense marker maps. In a recent release of the comprehensive genetic analysis software MENDEL, we implemented an ultra-fast score test for association mapping with pedigree-based GWAS or NGS study data. Our implementation (a) works for random sample data, pedigree data, or a mix of both;(b) allows for covariate adjustment, including correction for population stratification;(c) accommodates both univariate and multivariate quantitative traits; and (d) allows missing values in multivariate traits. In this paper, we assess the capabilities of MENDEL on the Genetic Analysis Workshop 18 sequencing data. For instance, when jointly testing the 4 longitudinally measured diastolic blood pressure traits, it takes MENDEL less than 51 minutes on a standard laptop computer to read, quality check, and analyze a data set with 959 individuals and 8.3 million single-nucleotide polymorphisms (SNPs). Our analysis reveals association of one SNP in the q32.2 region of chromosome 1. MENDEL is freely available on http://www.genetics.ucla.edu/software.

  1. Genome-wide linkage analysis is a powerful prenatal diagnostic tool in families with unknown genetic defects.

    PubMed

    Arélin, Maria; Schulze, Bernt; Müller-Myhsok, Bertram; Horn, Denise; Diers, Alexander; Uhlenberg, Birgit; Nürnberg, Peter; Nürnberg, Gudrun; Becker, Christian; Mundlos, Stefan; Lindner, Tom H; Sperling, Karl; Hoffmann, Katrin

    2013-04-01

    Genome-wide linkage analysis is an established tool to map inherited diseases. To our knowledge it has not been used in prenatal diagnostics of any genetic disorder. We present a family with a severe recessive mental retardation syndrome, where the mother wished pregnancy termination to avoid delivering another affected child. By genome-wide scanning using the Affymetrix (Santa Clara, CA, USA) 10k chip we were able to establish the disease haplotype. Without knowing the exact genetic defect, we excluded the condition in the fetus. The woman finally gave birth to a healthy baby. We suggest that genome-wide linkage analysis--based on either SNP mapping or full-genome sequencing--is a very useful tool in prenatal diagnostics of diseases.

  2. Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci

    PubMed Central

    Smith, D J; Escott-Price, V; Davies, G; Bailey, M E S; Colodro-Conde, L; Ward, J; Vedernikov, A; Marioni, R; Cullen, B; Lyall, D; Hagenaars, S P; Liewald, D C M; Luciano, M; Gale, C R; Ritchie, S J; Hayward, C; Nicholl, B; Bulik-Sullivan, B; Adams, M; Couvy-Duchesne, B; Graham, N; Mackay, D; Evans, J; Smith, B H; Porteous, D J; Medland, S E; Martin, N G; Holmans, P; McIntosh, A M; Pell, J P; Deary, I J; O'Donovan, M C

    2016-01-01

    Neuroticism is a personality trait of fundamental importance for psychological well-being and public health. It is strongly associated with major depressive disorder (MDD) and several other psychiatric conditions. Although neuroticism is heritable, attempts to identify the alleles involved in previous studies have been limited by relatively small sample sizes. Here we report a combined meta-analysis of genome-wide association study (GWAS) of neuroticism that includes 91 370 participants from the UK Biobank cohort, 6659 participants from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and 8687 participants from a QIMR (Queensland Institute of Medical Research) Berghofer Medical Research Institute (QIMR) cohort. All participants were assessed using the same neuroticism instrument, the Eysenck Personality Questionnaire-Revised (EPQ-R-S) Short Form's Neuroticism scale. We found a single-nucleotide polymorphism-based heritability estimate for neuroticism of ∼15% (s.e.=0.7%). Meta-analysis identified nine novel loci associated with neuroticism. The strongest evidence for association was at a locus on chromosome 8 (P=1.5 × 10−15) spanning 4 Mb and containing at least 36 genes. Other associated loci included interesting candidate genes on chromosome 1 (GRIK3 (glutamate receptor ionotropic kainate 3)), chromosome 4 (KLHL2 (Kelch-like protein 2)), chromosome 17 (CRHR1 (corticotropin-releasing hormone receptor 1) and MAPT (microtubule-associated protein Tau)) and on chromosome 18 (CELF4 (CUGBP elav-like family member 4)). We found no evidence for genetic differences in the common allelic architecture of neuroticism by sex. By comparing our findings with those of the Psychiatric Genetics Consortia, we identified a strong genetic correlation between neuroticism and MDD and a less strong but significant genetic correlation with schizophrenia, although not with bipolar disorder. Polygenic risk scores derived from the primary UK Biobank sample captured

  3. Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci.

    PubMed

    Smith, D J; Escott-Price, V; Davies, G; Bailey, M E S; Colodro-Conde, L; Ward, J; Vedernikov, A; Marioni, R; Cullen, B; Lyall, D; Hagenaars, S P; Liewald, D C M; Luciano, M; Gale, C R; Ritchie, S J; Hayward, C; Nicholl, B; Bulik-Sullivan, B; Adams, M; Couvy-Duchesne, B; Graham, N; Mackay, D; Evans, J; Smith, B H; Porteous, D J; Medland, S E; Martin, N G; Holmans, P; McIntosh, A M; Pell, J P; Deary, I J; O'Donovan, M C

    2016-06-01

    Neuroticism is a personality trait of fundamental importance for psychological well-being and public health. It is strongly associated with major depressive disorder (MDD) and several other psychiatric conditions. Although neuroticism is heritable, attempts to identify the alleles involved in previous studies have been limited by relatively small sample sizes. Here we report a combined meta-analysis of genome-wide association study (GWAS) of neuroticism that includes 91 370 participants from the UK Biobank cohort, 6659 participants from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and 8687 participants from a QIMR (Queensland Institute of Medical Research) Berghofer Medical Research Institute (QIMR) cohort. All participants were assessed using the same neuroticism instrument, the Eysenck Personality Questionnaire-Revised (EPQ-R-S) Short Form's Neuroticism scale. We found a single-nucleotide polymorphism-based heritability estimate for neuroticism of ∼15% (s.e.=0.7%). Meta-analysis identified nine novel loci associated with neuroticism. The strongest evidence for association was at a locus on chromosome 8 (P=1.5 × 10(-15)) spanning 4 Mb and containing at least 36 genes. Other associated loci included interesting candidate genes on chromosome 1 (GRIK3 (glutamate receptor ionotropic kainate 3)), chromosome 4 (KLHL2 (Kelch-like protein 2)), chromosome 17 (CRHR1 (corticotropin-releasing hormone receptor 1) and MAPT (microtubule-associated protein Tau)) and on chromosome 18 (CELF4 (CUGBP elav-like family member 4)). We found no evidence for genetic differences in the common allelic architecture of neuroticism by sex. By comparing our findings with those of the Psychiatric Genetics Consortia, we identified a strong genetic correlation between neuroticism and MDD and a less strong but significant genetic correlation with schizophrenia, although not with bipolar disorder. Polygenic risk scores derived from the primary UK Biobank sample captured

  4. Multiple SNP Set Analysis for Genome-Wide Association Studies Through Bayesian Latent Variable Selection.

    PubMed

    Lu, Zhao-Hua; Zhu, Hongtu; Knickmeyer, Rebecca C; Sullivan, Patrick F; Williams, Stephanie N; Zou, Fei

    2015-12-01

    The power of genome-wide association studies (GWAS) for mapping complex traits with single-SNP analysis (where SNP is single-nucleotide polymorphism) may be undermined by modest SNP effect sizes, unobserved causal SNPs, correlation among adjacent SNPs, and SNP-SNP interactions. Alternative approaches for testing the association between a single SNP set and individual phenotypes have been shown to be promising for improving the power of GWAS. We propose a Bayesian latent variable selection (BLVS) method to simultaneously model the joint association mapping between a large number of SNP sets and complex traits. Compared with single SNP set analysis, such joint association mapping not only accounts for the correlation among SNP sets but also is capable of detecting causal SNP sets that are marginally uncorrelated with traits. The spike-and-slab prior assigned to the effects of SNP sets can greatly reduce the dimension of effective SNP sets, while speeding up computation. An efficient Markov chain Monte Carlo algorithm is developed. Simulations demonstrate that BLVS outperforms several competing variable selection methods in some important scenarios. PMID:26515609

  5. Meta-analysis of genome-wide association from genomic prediction models.

    PubMed

    Bernal Rubio, Y L; Gualdrón Duarte, J L; Bates, R O; Ernst, C W; Nonneman, D; Rohrer, G A; King, A; Shackelford, S D; Wheeler, T L; Cantet, R J C; Steibel, J P

    2016-02-01

    Genome-wide association (GWA) studies based on GBLUP models are a common practice in animal breeding. However, effect sizes of GWA tests are small, requiring larger sample sizes to enhance power of detection of rare variants. Because of difficulties in increasing sample size in animal populations, one alternative is to implement a meta-analysis (MA), combining information and results from independent GWA studies. Although this methodology has been used widely in human genetics, implementation in animal breeding has been limited. Thus, we present methods to implement a MA of GWA, describing the proper approach to compute weights derived from multiple genomic evaluations based on animal-centric GBLUP models. Application to real datasets shows that MA increases power of detection of associations in comparison with population-level GWA, allowing for population structure and heterogeneity of variance components across populations to be accounted for. Another advantage of MA is that it does not require access to genotype data that is required for a joint analysis. Scripts related to the implementation of this approach, which consider the strength of association as well as the sign, are distributed and thus account for heterogeneity in association phase between QTL and SNPs. Thus, MA of GWA is an attractive alternative to summarizing results from multiple genomic studies, avoiding restrictions with genotype data sharing, definition of fixed effects and different scales of measurement of evaluated traits.

  6. Integrative Network-based Analysis of Magnetic Resonance Spectroscopy and Genome Wide Expression in Glioblastoma multiforme

    PubMed Central

    Heiland, Dieter Henrik; Mader, Irina; Schlosser, Pascal; Pfeifer, Dietmar; Carro, Maria Stella; Lange, Thomas; Schwarzwald, Ralf; Vasilikos, Ioannis; Urbach, Horst; Weyerbrock, Astrid

    2016-01-01

    The goal of this study was to identify correlations between metabolites from proton MR spectroscopy and genetic pathway activity in glioblastoma multiforme (GBM). Twenty patients with primary GBM were analysed by short echo-time chemical shift imaging and genome-wide expression analyses. Weighed Gene Co-Expression Analysis was used for an integrative analysis of imaging and genetic data. N-acetylaspartate, normalised to the contralateral healthy side (nNAA), was significantly correlated to oligodendrocytic and neural development. For normalised creatine (nCr), a group with low nCr was linked to the mesenchymal subtype, while high nCr could be assigned to the proneural subtype. Moreover, clustering of normalised glutamine and glutamate (nGlx) revealed two groups, one with high nGlx being attributed to the neural subtype, and one with low nGlx associated with the classical subtype. Hence, the metabolites nNAA, nCr, and nGlx correlate with a specific gene expression pattern reflecting the previously described subtypes of GBM. Moreover high nNAA was associated with better clinical prognosis, whereas patients with lower nNAA revealed a shorter progression-free survival (PFS). PMID:27350391

  7. Genome-wide linkage analysis of multiple metabolic factors: evidence of genetic heterogeneity.

    PubMed

    Cheng, Ching-Yu; Lee, Kristine E; Duggal, Priya; Moore, Emily L; Wilson, Alexander F; Klein, Ronald; Bailey-Wilson, Joan E; Klein, Barbara E K

    2010-01-01

    The metabolic syndrome is a highly complex disease and has become one of the major public-health challenges worldwide. We sought to identify genetic loci with potential influence on multiple metabolic factors in a white population in Beaver Dam, Wisconsin, and to explore the possibility of genetic heterogeneity by family history of diabetes (FHD). Three metabolic factors were generated using principal-component factor analysis, and they represented: (i) glycemia, (ii) blood pressure, and (iii) combined (BMI, high-density lipoprotein (HDL) cholesterol, and serum uric acid) factors. Multipoint model-free linkage analysis of these factors with 385 microsatellite markers was performed on 1,055 sib-pairs, using Haseman-Elston regression. Genome-wide suggestive evidence of linkage was found at 30 cM on chromosome 22q (empirical P (P(e)) = 0.0002) for the glycemia factor, at 188-191 cM on chromosome 1q (P(e) = 0.0007) for the blood pressure factor, and at 82 cM on chromosome 17q (P(e) = 0.0007) for the combined factor. Subset analyses of the families by FHD showed evidence of genetic heterogeneity, with divergent linkage signals in the subsets on at least four chromosomes. We found evidence of genetic heterogeneity by FHD for the three metabolic factors. The results also confirmed findings of previous studies that mapped components of the metabolic syndrome to a chromosome 1q region.

  8. Semiparametric methods for genome-wide linkage analysis of human gene expression data.

    PubMed

    Diao, Guoqing; Lin, D Y

    2007-01-01

    With the availability of high-throughput microarray technologies, investigators can simultaneously measure the expression levels of many thousands of genes in a short period. Although there are rich statistical methods for analyzing microarray data in the literature, limited work has been done in mapping expression quantitative trait loci (eQTL) that influence the variation in levels of gene expression. Most existing eQTL mapping methods assume that the expression phenotypes follow a normal distribution and violation of the normality assumption may lead to inflated type I error and reduced power. QTL analysis of expression data involves the mapping of many expression phenotypes at thousands or hundreds of thousands of marker loci across the whole genome. An appropriate procedure to adjust for multiple testing is essential for guarding against an abundance of false positive results. In this study, we applied a semiparametric quantitative trait loci (SQTL) mapping method to human gene expression data. The SQTL mapping method is rank-based and therefore robust to non-normality and outliers. Furthermore, we apply an efficient Monte Carlo procedure to account for multiple testing and assess the genome-wide significance level. Particularly, we apply the SQTL mapping method and the Monte-Carlo approach to the gene expression data provided by Genetic Analysis Workshop 15.

  9. Semiparametric methods for genome-wide linkage analysis of human gene expression data

    PubMed Central

    Diao, Guoqing; Lin, DY

    2007-01-01

    With the availability of high-throughput microarray technologies, investigators can simultaneously measure the expression levels of many thousands of genes in a short period. Although there are rich statistical methods for analyzing microarray data in the literature, limited work has been done in mapping expression quantitative trait loci (eQTL) that influence the variation in levels of gene expression. Most existing eQTL mapping methods assume that the expression phenotypes follow a normal distribution and violation of the normality assumption may lead to inflated type I error and reduced power. QTL analysis of expression data involves the mapping of many expression phenotypes at thousands or hundreds of thousands of marker loci across the whole genome. An appropriate procedure to adjust for multiple testing is essential for guarding against an abundance of false positive results. In this study, we applied a semiparametric quantitative trait loci (SQTL) mapping method to human gene expression data. The SQTL mapping method is rank-based and therefore robust to non-normality and outliers. Furthermore, we apply an efficient Monte Carlo procedure to account for multiple testing and assess the genome-wide significance level. Particularly, we apply the SQTL mapping method and the Monte-Carlo approach to the gene expression data provided by Genetic Analysis Workshop 15. PMID:18466586

  10. Genome-wide methylation analysis of tubulocystic and papillary renal cell carcinomas.

    PubMed

    Korabecna, M; Geryk, J; Hora, M; Steiner, P; Seda, O; Tesar, V

    2016-01-01

    Tubulocystic renal cell carcinoma (TRCC) represents a rare tumor with incidence lower than 1 % of all renal carcinomas. This study was undertaken to contribute to characterization of molecular signatures associated with TRCC and to compare them with the features of papillary renal cell carcinoma (PRCC) at the level of genome wide methylation analysis.We performed methylated DNA immunoprecipitation (MeDIP) coupled with microarray analysis (Roche NimbleGen). Using the CHARM package, we compared the levels of gene methylation between paired samples of tumors and control renal tissues of each examined individual. We found significant global demethylation in all tumor samples in comparison with adjacent kidney tissues of normal histological appearance but no significant differences in gene methylation between the both compared tumor entities. Therefore we focused on characterization of differentially methylated regions between both tumors and control tissues. We found 42 differentially methylated genes.Hypermethylated genes for protocadherins (PCDHG) and genes coding for products associated with functions of plasma membrane were evaluated as significantly overrepresented among hypermethylated genes detected in both types of renal cell carcinomas.In our pilot study, we provide the first evidence that identical features in the process of carcinogenesis leading to TRCC and/or to PRCC may be found at the gene methylation level.

  11. Genome-wide analysis reveals gene expression and metabolic network dynamics during embryo development in Arabidopsis.

    PubMed

    Xiang, Daoquan; Venglat, Prakash; Tibiche, Chabane; Yang, Hui; Risseeuw, Eddy; Cao, Yongguo; Babic, Vivijan; Cloutier, Mathieu; Keller, Wilf; Wang, Edwin; Selvaraj, Gopalan; Datla, Raju

    2011-05-01

    Embryogenesis is central to the life cycle of most plant species. Despite its importance, because of the difficulty associated with embryo isolation, global gene expression programs involved in plant embryogenesis, especially the early events following fertilization, are largely unknown. To address this gap, we have developed methods to isolate whole live Arabidopsis (Arabidopsis thaliana) embryos as young as zygote and performed genome-wide profiling of gene expression. These studies revealed insights into patterns of gene expression relating to: maternal and paternal contributions to zygote development, chromosomal level clustering of temporal expression in embryogenesis, and embryo-specific functions. Functional analysis of some of the modulated transcription factor encoding genes from our data sets confirmed that they are critical for embryogenesis. Furthermore, we constructed stage-specific metabolic networks mapped with differentially regulated genes by combining the microarray data with the available Kyoto Encyclopedia of Genes and Genomes metabolic data sets. Comparative analysis of these networks revealed the network-associated structural and topological features, pathway interactions, and gene expression with reference to the metabolic activities during embryogenesis. Together, these studies have generated comprehensive gene expression data sets for embryo development in Arabidopsis and may serve as an important foundational resource for other seed plants. PMID:21402797

  12. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia

    PubMed Central

    Berndt, Sonja I.; Camp, Nicola J.; Skibola, Christine F.; Vijai, Joseph; Wang, Zhaoming; Gu, Jian; Nieters, Alexandra; Kelly, Rachel S.; Smedby, Karin E.; Monnereau, Alain; Cozen, Wendy; Cox, Angela; Wang, Sophia S.; Lan, Qing; Teras, Lauren R.; Machado, Moara; Yeager, Meredith; Brooks-Wilson, Angela R.; Hartge, Patricia; Purdue, Mark P.; Birmann, Brenda M.; Vajdic, Claire M.; Cocco, Pierluigi; Zhang, Yawei; Giles, Graham G.; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Montalvan, Rebecca; Burdett, Laurie; Hutchinson, Amy; Ye, Yuanqing; Call, Timothy G.; Shanafelt, Tait D.; Novak, Anne J.; Kay, Neil E.; Liebow, Mark; Cunningham, Julie M.; Allmer, Cristine; Hjalgrim, Henrik; Adami, Hans-Olov; Melbye, Mads; Glimelius, Bengt; Chang, Ellen T.; Glenn, Martha; Curtin, Karen; Cannon-Albright, Lisa A.; Diver, W Ryan; Link, Brian K.; Weiner, George J.; Conde, Lucia; Bracci, Paige M.; Riby, Jacques; Arnett, Donna K.; Zhi, Degui; Leach, Justin M.; Holly, Elizabeth A.; Jackson, Rebecca D.; Tinker, Lesley F.; Benavente, Yolanda; Sala, Núria; Casabonne, Delphine; Becker, Nikolaus; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; McKay, James; Staines, Anthony; Chaffee, Kari G.; Achenbach, Sara J.; Vachon, Celine M.; Goldin, Lynn R.; Strom, Sara S.; Leis, Jose F.; Weinberg, J. Brice; Caporaso, Neil E.; Norman, Aaron D.; De Roos, Anneclaire J.; Morton, Lindsay M.; Severson, Richard K.; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Masala, Giovanna; Weiderpass, Elisabete; Chirlaque, María- Dolores; Vermeulen, Roel C. H.; Travis, Ruth C.; Southey, Melissa C.; Milne, Roger L.; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Clavel, Jacqueline; Zheng, Tongzhang; Holford, Theodore R.; Villano, Danylo J.; Maria, Ann; Spinelli, John J.; Gascoyne, Randy D.; Connors, Joseph M.; Bertrand, Kimberly A.; Giovannucci, Edward; Kraft, Peter; Kricker, Anne; Turner, Jenny; Ennas, Maria Grazia; Ferri, Giovanni M.; Miligi, Lucia; Liang, Liming; Ma, Baoshan; Huang, Jinyan; Crouch, Simon; Park, Ju-Hyun; Chatterjee, Nilanjan; North, Kari E.; Snowden, John A.; Wright, Josh; Fraumeni, Joseph F.; Offit, Kenneth; Wu, Xifeng; de Sanjose, Silvia; Cerhan, James R.; Chanock, Stephen J.; Rothman, Nathaniel; Slager, Susan L.

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and 7,667 controls with follow-up replication in 1,958 cases and 5,530 controls. Here we report three new loci at 3p24.1 (rs9880772, EOMES, P=2.55 × 10−11), 6p25.2 (rs73718779, SERPINB6, P=1.97 × 10−8) and 3q28 (rs9815073, LPP, P=3.62 × 10−8), as well as a new independent SNP at the known 2q13 locus (rs9308731, BCL2L11, P=1.00 × 10−11) in the combined analysis. We find suggestive evidence (P<5 × 10−7) for two additional new loci at 4q24 (rs10028805, BANK1, P=7.19 × 10−8) and 3p22.2 (rs1274963, CSRNP1, P=2.12 × 10−7). Pathway analyses of new and known CLL loci consistently show a strong role for apoptosis, providing further evidence for the importance of this biological pathway in CLL susceptibility. PMID:26956414

  13. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility

    PubMed Central

    Yin, Xianyong; Low, Hui Qi; Wang, Ling; Li, Yonghong; Ellinghaus, Eva; Han, Jiali; Estivill, Xavier; Sun, Liangdan; Zuo, Xianbo; Shen, Changbing; Zhu, Caihong; Zhang, Anping; Sanchez, Fabio; Padyukov, Leonid; Catanese, Joseph J.; Krueger, Gerald G.; Duffin, Kristina Callis; Mucha, Sören; Weichenthal, Michael; Weidinger, Stephan; Lieb, Wolfgang; Foo, Jia Nee; Li, Yi; Sim, Karseng; Liany, Herty; Irwan, Ishak; Teo, Yikying; Theng, Colin T. S.; Gupta, Rashmi; Bowcock, Anne; De Jager, Philip L.; Qureshi, Abrar A.; de Bakker, Paul I. W.; Seielstad, Mark; Liao, Wilson; Ståhle, Mona; Franke, Andre; Zhang, Xuejun; Liu, Jianjun

    2015-01-01

    Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here we present the largest trans-ethnic genome-wide meta-analysis (GWMA) of psoriasis in 15,369 cases and 19,517 controls of Caucasian and Chinese ancestries. We identify four novel associations at LOC144817, COG6, RUNX1 and TP63, as well as three novel secondary associations within IFIH1 and IL12B. Fine-mapping analysis of MHC region demonstrates an important role for all three HLA class I genes and a complex and heterogeneous pattern of HLA associations between Caucasian and Chinese populations. Further, trans-ethnic comparison suggests population-specific effect or allelic heterogeneity for 11 loci. These population-specific effects contribute significantly to the ethnic diversity of psoriasis prevalence. This study not only provides novel biological insights into the involvement of immune and keratinocyte development mechanism, but also demonstrates a complex and heterogeneous genetic architecture of psoriasis susceptibility across ethnic populations. PMID:25903422

  14. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility.

    PubMed

    Yin, Xianyong; Low, Hui Qi; Wang, Ling; Li, Yonghong; Ellinghaus, Eva; Han, Jiali; Estivill, Xavier; Sun, Liangdan; Zuo, Xianbo; Shen, Changbing; Zhu, Caihong; Zhang, Anping; Sanchez, Fabio; Padyukov, Leonid; Catanese, Joseph J; Krueger, Gerald G; Duffin, Kristina Callis; Mucha, Sören; Weichenthal, Michael; Weidinger, Stephan; Lieb, Wolfgang; Foo, Jia Nee; Li, Yi; Sim, Karseng; Liany, Herty; Irwan, Ishak; Teo, Yikying; Theng, Colin T S; Gupta, Rashmi; Bowcock, Anne; De Jager, Philip L; Qureshi, Abrar A; de Bakker, Paul I W; Seielstad, Mark; Liao, Wilson; Ståhle, Mona; Franke, Andre; Zhang, Xuejun; Liu, Jianjun

    2015-04-23

    Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here we present the largest trans-ethnic genome-wide meta-analysis (GWMA) of psoriasis in 15,369 cases and 19,517 controls of Caucasian and Chinese ancestries. We identify four novel associations at LOC144817, COG6, RUNX1 and TP63, as well as three novel secondary associations within IFIH1 and IL12B. Fine-mapping analysis of MHC region demonstrates an important role for all three HLA class I genes and a complex and heterogeneous pattern of HLA associations between Caucasian and Chinese populations. Further, trans-ethnic comparison suggests population-specific effect or allelic heterogeneity for 11 loci. These population-specific effects contribute significantly to the ethnic diversity of psoriasis prevalence. This study not only provides novel biological insights into the involvement of immune and keratinocyte development mechanism, but also demonstrates a complex and heterogeneous genetic architecture of psoriasis susceptibility across ethnic populations.

  15. Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins.

    PubMed

    Venkatesh, Jelli; Yu, Jae-Woong; Park, Se Won

    2013-12-01

    Aquaporins belongs to the major intrinsic proteins involved in the transcellular membrane transport of water and other small solutes. A comprehensive genome-wide search for the homologues of Solanum tuberosum major intrinsic protein (MIP) revealed 41 full-length potato aquaporin genes. All potato aquaporins are grouped into five subfamilies; plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) and x-intrinsic proteins (XIPs). Functional predictions based on the aromatic/arginine (ar/R) selectivity filters and Froger's positions showed a remarkable difference in substrate transport specificity among subfamilies. The expression pattern of potato aquaporins, examined by qPCR analysis, showed distinct expression profiles in various organs and tuber developmental stages. Furthermore, qPCR analysis of potato plantlets, subjected to various abiotic stresses revealed the marked effect of stresses on expression levels of aquaporins. Taken together, the expression profiles of aquaporins imply that aquaporins play important roles in plant growth and development, in addition to maintaining water homeostasis in response to environmental stresses.

  16. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia.

    PubMed

    Berndt, Sonja I; Camp, Nicola J; Skibola, Christine F; Vijai, Joseph; Wang, Zhaoming; Gu, Jian; Nieters, Alexandra; Kelly, Rachel S; Smedby, Karin E; Monnereau, Alain; Cozen, Wendy; Cox, Angela; Wang, Sophia S; Lan, Qing; Teras, Lauren R; Machado, Moara; Yeager, Meredith; Brooks-Wilson, Angela R; Hartge, Patricia; Purdue, Mark P; Birmann, Brenda M; Vajdic, Claire M; Cocco, Pierluigi; Zhang, Yawei; Giles, Graham G; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Montalvan, Rebecca; Burdett, Laurie; Hutchinson, Amy; Ye, Yuanqing; Call, Timothy G; Shanafelt, Tait D; Novak, Anne J; Kay, Neil E; Liebow, Mark; Cunningham, Julie M; Allmer, Cristine; Hjalgrim, Henrik; Adami, Hans-Olov; Melbye, Mads; Glimelius, Bengt; Chang, Ellen T; Glenn, Martha; Curtin, Karen; Cannon-Albright, Lisa A; Diver, W Ryan; Link, Brian K; Weiner, George J; Conde, Lucia; Bracci, Paige M; Riby, Jacques; Arnett, Donna K; Zhi, Degui; Leach, Justin M; Holly, Elizabeth A; Jackson, Rebecca D; Tinker, Lesley F; Benavente, Yolanda; Sala, Núria; Casabonne, Delphine; Becker, Nikolaus; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; McKay, James; Staines, Anthony; Chaffee, Kari G; Achenbach, Sara J; Vachon, Celine M; Goldin, Lynn R; Strom, Sara S; Leis, Jose F; Weinberg, J Brice; Caporaso, Neil E; Norman, Aaron D; De Roos, Anneclaire J; Morton, Lindsay M; Severson, Richard K; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Masala, Giovanna; Weiderpass, Elisabete; Chirlaque, María-Dolores; Vermeulen, Roel C H; Travis, Ruth C; Southey, Melissa C; Milne, Roger L; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Clavel, Jacqueline; Zheng, Tongzhang; Holford, Theodore R; Villano, Danylo J; Maria, Ann; Spinelli, John J; Gascoyne, Randy D; Connors, Joseph M; Bertrand, Kimberly A; Giovannucci, Edward; Kraft, Peter; Kricker, Anne; Turner, Jenny; Ennas, Maria Grazia; Ferri, Giovanni M; Miligi, Lucia; Liang, Liming; Ma, Baoshan; Huang, Jinyan; Crouch, Simon; Park, Ju-Hyun; Chatterjee, Nilanjan; North, Kari E; Snowden, John A; Wright, Josh; Fraumeni, Joseph F; Offit, Kenneth; Wu, Xifeng; de Sanjose, Silvia; Cerhan, James R; Chanock, Stephen J; Rothman, Nathaniel; Slager, Susan L

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and 7,667 controls with follow-up replication in 1,958 cases and 5,530 controls. Here we report three new loci at 3p24.1 (rs9880772, EOMES, P=2.55 × 10(-11)), 6p25.2 (rs73718779, SERPINB6, P=1.97 × 10(-8)) and 3q28 (rs9815073, LPP, P=3.62 × 10(-8)), as well as a new independent SNP at the known 2q13 locus (rs9308731, BCL2L11, P=1.00 × 10(-11)) in the combined analysis. We find suggestive evidence (P<5 × 10(-7)) for two additional new loci at 4q24 (rs10028805, BANK1, P=7.19 × 10(-8)) and 3p22.2 (rs1274963, CSRNP1, P=2.12 × 10(-7)). Pathway analyses of new and known CLL loci consistently show a strong role for apoptosis, providing further evidence for the importance of this biological pathway in CLL susceptibility. PMID:26956414

  17. Genome-wide analysis and expression profiling of the phospholipase D gene family in Gossypium arboreum.

    PubMed

    Tang, Kai; Dong, Chunjuan; Liu, Jinyuan

    2016-02-01

    The plant phospholipase D (PLD) plays versatile functions in multiple aspects of plant growth, development, and stress responses. However, until now, our knowledge concerning the PLD gene family members and their expression patterns in cotton has been limited. In this study, we performed for the first time the genome-wide analysis and expression profiling of PLD gene family in Gossypium arboretum, and finally, a total of 19 non-redundant PLD genes (GaPLDs) were identified. Based on the phylogenetic analysis, they were divided into six well-supported clades (α, β/γ, δ, ε, ζ and φ). Most of the GaPLD genes within the same clade showed the similar exon-intron organization and highly conserved motif structures. Additionally, the chromosomal distribution pattern revealed that GaPLD genes were unevenly distributed across 10 of the 13 cotton chromosomes. Segmental duplication is the major contributor to the expansion of GaPLD gene family and estimated to have occurred from 19.61 to 20.44 million years ago when a recent large-scale genome duplication occurred in cotton. Moreover, the expression profiling provides the functional divergence of GaPLD genes in cotton and provides some new light on the molecular mechanisms of GaPLDα1 and GaPLDδ2 in fiber development. PMID:26718354

  18. Genome-wide analysis uncovers novel recurrent alterations in primary central nervous system lymphomas

    PubMed Central

    Braggio, Esteban; Van Wier, Scott; Ojha, Juhi; McPhail, Ellen; Asmann, Yan W.; Egan, Jan; da Silva, Jackline Ayres; Schiff, David; Lopes, M Beatriz; Decker, Paul A; Valdez, Riccardo; Tibes, Raoul; Eckloff, Bruce; Witzig, Thomas E.; Stewart, A Keith; Fonseca, Rafael; O’Neill, Brian Patrick

    2015-01-01

    Purpose Primary central nervous system lymphoma (PCNSL) is an aggressive non-Hodgkin lymphoma confined to the CNS. Whether there is a PCNSL-specific genomic signature and, if so, how it differs from systemic diffuse large B-cell lymphoma (DLBCL) is uncertain. Experimental design We performed a comprehensive genomic study of tumor samples from 19 immunocompetent PCNSL patients. Testing comprised array-comparative genomic hybridization and whole exome sequencing. Results Biallelic inactivation of TOX and PRKCD were recurrently found in PCNSL but not in systemic DLBCL, suggesting a specific role in PCNSL pathogenesis. Additionally, we found a high prevalence of MYD88 mutations (79%) and CDKN2A biallelic loss (60%). Several genes recurrently affected in PCNSL were common with systemic DLBCL, including loss of TNFAIP3, PRDM1, GNA13, TMEM30A, TBL1XR1, B2M, CD58, activating mutations of CD79B, CARD11 and translocations IgH-BCL6. Overall, BCR/TLR/NF-κB pathways were altered in >90% of PNCSL, highlighting its value for targeted therapeutic approaches. Furthermore, integrated analysis showed enrichment of pathways associated with immune response, proliferation, apoptosis, and lymphocyte differentiation. Conclusions In summary, genome-wide analysis uncovered novel recurrent alterations, including TOX and PRKCD, helping to differentiate PCNSL from systemic DLBCL and related lymphomas. PMID:25991819

  19. Genome-Wide Analysis of the Lysine Biosynthesis Pathway Network during Maize Seed Development

    PubMed Central

    Liu, Yuwei; Xie, Shaojun; Yu, Jingjuan

    2016-01-01

    Lysine is one of the most limiting essential amino acids for humans and livestock. The nutritional value of maize (Zea mays L.) is reduced by its poor lysine content. To better understand the lysine biosynthesis pathway in maize seed, we conducted a genome-wide analysis of the genes involved in lysine biosynthesis. We identified lysine biosynthesis pathway genes (LBPGs) and investigated whether a diaminopimelate pathway variant exists in maize. We analyzed two genes encoding the key enzyme dihydrodipicolinate synthase, and determined that they contribute differently to lysine synthesis during maize seed development. A coexpression network of LBPGs was constructed using RNA-sequencing data from 21 developmental stages of B73 maize seed. We found a large set of genes encoding ribosomal proteins, elongation factors and zein proteins that were coexpressed with LBPGs. The coexpressed genes were enriched in cellular metabolism terms and protein related terms. A phylogenetic analysis of the LBPGs from different plant species revealed different relationships. Additionally, six transcription factor (TF) families containing 13 TFs were identified as the Hub TFs of the LBPGs modules. Several expression quantitative trait loci of LBPGs were also identified. Our results should help to elucidate the lysine biosynthesis pathway network in maize seed. PMID:26829553

  20. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    PubMed Central

    Diao, Wei-Ping; Snyder, John C.; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper. PMID:26941768

  1. A genome-wide resource for the analysis of protein localisation in Drosophila

    PubMed Central

    Sarov, Mihail; Barz, Christiane; Jambor, Helena; Hein, Marco Y; Schmied, Christopher; Suchold, Dana; Stender, Bettina; Janosch, Stephan; KJ, Vinay Vikas; Krishnan, RT; Krishnamoorthy, Aishwarya; Ferreira, Irene RS; Ejsmont, Radoslaw K; Finkl, Katja; Hasse, Susanne; Kämpfer, Philipp; Plewka, Nicole; Vinis, Elisabeth; Schloissnig, Siegfried; Knust, Elisabeth; Hartenstein, Volker; Mann, Matthias; Ramaswami, Mani; VijayRaghavan, K; Tomancak, Pavel; Schnorrer, Frank

    2016-01-01

    The Drosophila genome contains >13000 protein-coding genes, the majority of which remain poorly investigated. Important reasons include the lack of antibodies or reporter constructs to visualise these proteins. Here, we present a genome-wide fosmid library of 10000 GFP-tagged clones, comprising tagged genes and most of their regulatory information. For 880 tagged proteins, we created transgenic lines, and for a total of 207 lines, we assessed protein expression and localisation in ovaries, embryos, pupae or adults by stainings and live imaging approaches. Importantly, we visualised many proteins at endogenous expression levels and found a large fraction of them localising to subcellular compartments. By applying genetic complementation tests, we estimate that about two-thirds of the tagged proteins are functional. Moreover, these tagged proteins enable interaction proteomics from developing pupae and adult flies. Taken together, this resource will boost systematic analysis of protein expression and localisation in various cellular and developmental contexts. DOI: http://dx.doi.org/10.7554/eLife.12068.001 PMID:26896675

  2. Design and analysis issues in genome-wide somatic mutation studies of cancer.

    PubMed

    Parmigiani, Giovanni; Boca, Simina; Lin, Jimmy; Kinzler, Kenneth W; Velculescu, Victor; Vogelstein, Bert

    2009-01-01

    The availability of the human genome sequence and progress in sequencing and bioinformatic technologies have enabled genome-wide investigation of somatic mutations in human cancers. This article briefly reviews challenges arising in the statistical analysis of mutational data of this kind. A first challenge is that of designing studies that efficiently allocate sequencing resources. We show that this can be addressed by two-stage designs and demonstrate via simulations that even relatively small studies can produce lists of candidate cancer genes that are highly informative for future research efforts. A second challenge is to distinguish mutated genes that are selected for by cancer (drivers) from mutated genes that have no role in the development of cancer and simply happened to mutate (passengers). We suggest that this question is best approached as a classification problem and discuss some of the difficulties of more traditional testing-based approaches. A third challenge is to identify biologic processes affected by the driver genes. This can be pursued by gene set analyses. These can reliably identify functional groups and pathways that are enriched for mutated genes even when the individual genes involved in those pathways or sets are not mutated at sufficient frequencies to provide conclusive evidence as drivers.

  3. Genome-wide analysis in Brazilian Xavante Indians reveals low degree of admixture.

    PubMed

    Kuhn, Patricia C; Horimoto, Andréa R V Russo; Sanches, José Maurício; Vieira Filho, João Paulo B; Franco, Luciana; Fabbro, Amaury Dal; Franco, Laercio Joel; Pereira, Alexandre C; Moises, Regina S

    2012-01-01

    Characterization of population genetic variation and structure can be used as tools for research in human genetics and population isolates are of great interest. The aim of the present study was to characterize the genetic structure of Xavante Indians and compare it with other populations. The Xavante, an indigenous population living in Brazilian Central Plateau, is one of the largest native groups in Brazil. A subset of 53 unrelated subjects was selected from the initial sample of 300 Xavante Indians. Using 86,197 markers, Xavante were compared with all populations of HapMap Phase III and HGDP-CEPH projects and with a Southeast Brazilian population sample to establish its population structure. Principal Components Analysis showed that the Xavante Indians are concentrated in the Amerindian axis near other populations of known Amerindian ancestry such as Karitiana, Pima, Surui and Maya and a low degree of genetic admixture was observed. This is consistent with the historical records of bottlenecks experience and cultural isolation. By calculating pair-wise F(st) statistics we characterized the genetic differentiation between Xavante Indians and representative populations of the HapMap and from HGDP-CEPH project. We found that the genetic differentiation between Xavante Indians and populations of Ameridian, Asian, European, and African ancestry increased progressively. Our results indicate that the Xavante is a population that remained genetically isolated over the past decades and can offer advantages for genome-wide mapping studies of inherited disorders. PMID:22900041

  4. Genome-wide analysis of homeobox genes from Mesobuthus martensii reveals Hox gene duplication in scorpions.

    PubMed

    Di, Zhiyong; Yu, Yao; Wu, Yingliang; Hao, Pei; He, Yawen; Zhao, Huabin; Li, Yixue; Zhao, Guoping; Li, Xuan; Li, Wenxin; Cao, Zhijian

    2015-06-01

    Homeobox genes belong to a large gene group, which encodes the famous DNA-binding homeodomain that plays a key role in development and cellular differentiation during embryogenesis in animals. Here, one hundred forty-nine homeobox genes were identified from the Asian scorpion, Mesobuthus martensii (Chelicerata: Arachnida: Scorpiones: Buthidae) based on our newly assembled genome sequence with approximately 248 × coverage. The identified homeobox genes were categorized into eight classes including 82 families: 67 ANTP class genes, 33 PRD genes, 11 LIM genes, five POU genes, six SINE genes, 14 TALE genes, five CUT genes, two ZF genes and six unclassified genes. Transcriptome data confirmed that more than half of the genes were expressed in adults. The homeobox gene diversity of the eight classes is similar to the previously analyzed Mandibulata arthropods. Interestingly, it is hypothesized that the scorpion M. martensii may have two Hox clusters. The first complete genome-wide analysis of homeobox genes in Chelicerata not only reveals the repertoire of scorpion, arachnid and chelicerate homeobox genes, but also shows some insights into the evolution of arthropod homeobox genes.

  5. Genome-wide gene expression analysis of mouse embryonic stem cells exposed to p-dichlorobenzene.

    PubMed

    Tani, Hidenori; Takeshita, Jun-Ichi; Aoki, Hiroshi; Abe, Ryosuke; Toyoda, Akinobu; Endo, Yasunori; Miyamoto, Sadaaki; Gamo, Masashi; Torimura, Masaki

    2016-09-01

    Because of the limitations of whole animal testing approaches for toxicological assessment, new cell-based assay systems have been widely studied. In this study, we focused on two biological products for toxicological assessment: mouse embryonic stem cells (mESCs) and long noncoding RNAs (lncRNAs). mESCs possess the abilities of self-renewal and differentiation into multiple cell types. LlncRNAs are an important class of pervasive non-protein-coding transcripts involved in the molecular mechanisms associated with responses to chemicals. We exposed mESCs to p-dichlorobenzene (p-DCB) for 1 or 28 days (daily dose), extracted total RNA, and performed deep sequencing analyses. The genome-wide gene expression analysis indicated that mechanisms modulating proteins occurred following acute and chronic exposures, and mechanisms modulating genomic DNA occurred following chronic exposure. Moreover, our results indicate that three novel lncRNAs (Snora41, Gm19947, and Scarna3a) in mESCs respond to p-DCB exposure. We propose that these lncRNAs have the potential to be surrogate indicators of p-DCB responses in mESCs. PMID:26975756

  6. Genome-wide transcription analysis of clinal genetic variation in Drosophila.

    PubMed

    Chen, Ying; Lee, Siu F; Blanc, Eric; Reuter, Caroline; Wertheim, Bregje; Martinez-Diaz, Pedro; Hoffmann, Ary A; Partridge, Linda

    2012-01-01

    Clinal variation in quantitative traits is widespread, but its genetic basis awaits identification. Drosophila melanogaster shows adaptive, clinal variation in traits such as body size along latitudinal gradients on multiple continents. To investigate genome wide transcription differentiation between North and South that might contribute to the clinal phenotypic variation, we compared RNA expression patterns during development of D. melanogaster from tropical northern and temperate southern populations using whole genome tiling arrays. We found that genes that were differentially expressed between the cline ends were generally associated with metabolism and growth, and experimental alteration of expression of a sample of them generally resulted in altered body size in the predicted direction, sometimes significantly so. We further identified the serpent (srp) transcription factor binding sites to be enriched near genes up-regulated in expression in the south. Analysis of clinal populations revealed a significant cline in the expression level of srp. Experimental over-expression of srp increased body size, as predicted from its clinal expression pattern, suggesting that it may be involved in regulating adaptive clinal variation in Drosophila. This study identified a handful of genes that contributed to clinal phenotypic variation through altered gene expression level, yet misexpression of individual gene led to modest body size change. PMID:22514645

  7. Integrated genome-wide analysis of genomic changes and gene regulation in human adrenocortical tissue samples

    PubMed Central

    Gara, Sudheer Kumar; Wang, Yonghong; Patel, Dhaval; Liu-Chittenden, Yi; Jain, Meenu; Boufraqech, Myriem; Zhang, Lisa; Meltzer, Paul S.; Kebebew, Electron

    2015-01-01

    To gain insight into the pathogenesis of adrenocortical carcinoma (ACC) and whether there is progression from normal-to-adenoma-to-carcinoma, we performed genome-wide gene expression, gene methylation, microRNA expression and comparative genomic hybridization (CGH) analysis in human adrenocortical tissue (normal, adrenocortical adenomas and ACC) samples. A pairwise comparison of normal, adrenocortical adenomas and ACC gene expression profiles with more than four-fold expression differences and an adjusted P-value < 0.05 revealed no major differences in normal versus adrenocortical adenoma whereas there are 808 and 1085, respectively, dysregulated genes between ACC versus adrenocortical adenoma and ACC versus normal. The majority of the dysregulated genes in ACC were downregulated. By integrating the CGH, gene methylation and expression profiles of potential miRNAs with the gene expression of dysregulated genes, we found that there are higher alterations in ACC versus normal compared to ACC versus adrenocortical adenoma. Importantly, we identified several novel molecular pathways that are associated with dysregulated genes and further experimentally validated that oncostatin m signaling induces caspase 3 dependent apoptosis and suppresses cell proliferation. Finally, we propose that there is higher number of genomic changes from normal-to-adenoma-to-carcinoma and identified oncostatin m signaling as a plausible druggable pathway for therapeutics. PMID:26446994

  8. A genome-wide linkage analysis of dementia in the Amish

    PubMed Central

    Hahs, Daniel W.; McCauley, Jacob L.; Crunk, Amy E.; McFarland, Lynne L.; Gaskell, Perry C.; Jiang, Lan; Slifer, Susan H.; Vance, Jeffery M.; Scott, William K.; Welsh-Bohmer, Kathleen A.; Johnson, Stephanie R.; Jackson, Charles E.; Pericak-Vance, Margaret A.; Haines, Jonathan L.

    2008-01-01

    Susceptibility genes for Alzheimer's disease are proving to be highly challenging to detect and verify. Population heterogeneity may be a significant confounding factor contributing to this difficulty. To increase the power for disease susceptibility gene detection we conducted a genome-wide genetic linkage screen using individuals from the relatively isolated, genetically homogeneous, Amish population. Our genome linkage analysis used a 407 microsatellite marker map (average density 7 cM) to search for autosomal genes linked to dementia in five Amish families from four Midwestern U.S. counties. Our highest two-point lod score (3.01) was observed at marker D4S1548 on chromosome 4q31. Five other regions (10q22, 3q28, 11p13, 4q28, 19p13) also demonstrated suggestive linkage with markers having two-point lod scores >2.0. While two of these regions are novel (4q31 and 11p13), the other regions lie close to regions identified in previous genome scans in other populations. Our results identify regions of the genome that may harbor genes involved in a subset of dementia patients, in particular the North American Amish community. PMID:16389594

  9. High-Performance Mixed Models Based Genome-Wide Association Analysis with omicABEL software.

    PubMed

    Fabregat-Traver, Diego; Sharapov, Sodbo Zh; Hayward, Caroline; Rudan, Igor; Campbell, Harry; Aulchenko, Yurii; Bientinesi, Paolo

    2014-01-01

    To raise the power of genome-wide association studies (GWAS) and avoid false-positive results in structured populations, one can rely on mixed model based tests. When large samples are used, and when multiple traits are to be studied in the 'omics' context, this approach becomes computationally challenging. Here we consider the problem of mixed-model based GWAS for arbitrary number of traits, and demonstrate that for the analysis of single-trait and multiple-trait scenarios different computational algorithms are optimal. We implement these optimal algorithms in a high-performance computing framework that uses state-of-the-art linear algebra kernels, incorporates optimizations, and avoids redundant computations, increasing throughput while reducing memory usage and energy consumption. We show that, compared to existing libraries, our algorithms and software achieve considerable speed-ups. The OmicABEL software described in this manuscript is available under the GNU GPL v. 3 license as part of the GenABEL project for statistical genomics at http: //www.genabel.org/packages/OmicABEL. PMID:25717363

  10. Genome-Wide Analysis in Brazilian Xavante Indians Reveals Low Degree of Admixture

    PubMed Central

    Kuhn, Patricia C.; Horimoto, Andréa R. V. Russo.; Sanches, José Maurício; Vieira Filho, João Paulo B.; Franco, Luciana; Fabbro, Amaury Dal; Franco, Laercio Joel; Pereira, Alexandre C.; Moises, Regina S

    2012-01-01

    Characterization of population genetic variation and structure can be used as tools for research in human genetics and population isolates are of great interest. The aim of the present study was to characterize the genetic structure of Xavante Indians and compare it with other populations. The Xavante, an indigenous population living in Brazilian Central Plateau, is one of the largest native groups in Brazil. A subset of 53 unrelated subjects was selected from the initial sample of 300 Xavante Indians. Using 86,197 markers, Xavante were compared with all populations of HapMap Phase III and HGDP-CEPH projects and with a Southeast Brazilian population sample to establish its population structure. Principal Components Analysis showed that the Xavante Indians are concentrated in the Amerindian axis near other populations of known Amerindian ancestry such as Karitiana, Pima, Surui and Maya and a low degree of genetic admixture was observed. This is consistent with the historical records of bottlenecks experience and cultural isolation. By calculating pair-wise Fst statistics we characterized the genetic differentiation between Xavante Indians and representative populations of the HapMap and from HGDP-CEPH project. We found that the genetic differentiation between Xavante Indians and populations of Ameridian, Asian, European, and African ancestry increased progressively. Our results indicate that the Xavante is a population that remained genetically isolated over the past decades and can offer advantages for genome-wide mapping studies of inherited disorders. PMID:22900041

  11. Genome-wide analysis in Brazilian Xavante Indians reveals low degree of admixture.

    PubMed

    Kuhn, Patricia C; Horimoto, Andréa R V Russo; Sanches, José Maurício; Vieira Filho, João Paulo B; Franco, Luciana; Fabbro, Amaury Dal; Franco, Laercio Joel; Pereira, Alexandre C; Moises, Regina S

    2012-01-01

    Characterization of population genetic variation and structure can be used as tools for research in human genetics and population isolates are of great interest. The aim of the present study was to characterize the genetic structure of Xavante Indians and compare it with other populations. The Xavante, an indigenous population living in Brazilian Central Plateau, is one of the largest native groups in Brazil. A subset of 53 unrelated subjects was selected from the initial sample of 300 Xavante Indians. Using 86,197 markers, Xavante were compared with all populations of HapMap Phase III and HGDP-CEPH projects and with a Southeast Brazilian population sample to establish its population structure. Principal Components Analysis showed that the Xavante Indians are concentrated in the Amerindian axis near other populations of known Amerindian ancestry such as Karitiana, Pima, Surui and Maya and a low degree of genetic admixture was observed. This is consistent with the historical records of bottlenecks experience and cultural isolation. By calculating pair-wise F(st) statistics we characterized the genetic differentiation between Xavante Indians and representative populations of the HapMap and from HGDP-CEPH project. We found that the genetic differentiation between Xavante Indians and populations of Ameridian, Asian, European, and African ancestry increased progressively. Our results indicate that the Xavante is a population that remained genetically isolated over the past decades and can offer advantages for genome-wide mapping studies of inherited disorders.

  12. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep

    PubMed Central

    Wei, Caihong; Wang, Huihua; Liu, Gang; Zhao, Fuping; Kijas, James W.; Ma, Youji; Lu, Jian; Zhang, Li; Cao, Jiaxue; Wu, Mingming; Wang, Guangkai; Liu, Ruizao; Liu, Zhen; Zhang, Shuzhen; Liu, Chousheng; Du, Lixin

    2016-01-01

    Tibetan sheep have lived on the Tibetan Plateau for thousands of years; however, the process and consequences of adaptation to this extreme environment have not been elucidated for important livestock such as sheep. Here, seven sheep breeds, representing both highland and lowland breeds from different areas of China, were genotyped for a genome-wide collection of single-nucleotide polymorphisms (SNPs). The FST and XP-EHH approaches were used to identify regions harbouring local positive selection between these highland and lowland breeds, and 236 genes were identified. We detected selection events spanning genes involved in angiogenesis, energy production and erythropoiesis. In particular, several candidate genes were associated with high-altitude hypoxia, including EPAS1, CRYAA, LONP1, NF1, DPP4, SOD1, PPARG and SOCS2. EPAS1 plays a crucial role in hypoxia adaption; therefore, we investigated the exon sequences of EPAS1 and identified 12 mutations. Analysis of the relationship between blood-related phenotypes and EPAS1 genotypes in additional highland sheep revealed that a homozygous mutation at a relatively conserved site in the EPAS1 3′ untranslated region was associated with increased mean corpuscular haemoglobin concentration and mean corpuscular volume. Taken together, our results provide evidence of the genetic diversity of highland sheep and indicate potential high-altitude hypoxia adaptation mechanisms, including the role of EPAS1 in adaptation. PMID:27230812

  13. High-Performance Mixed Models Based Genome-Wide Association Analysis with omicABEL software

    PubMed Central

    Fabregat-Traver, Diego; Sharapov, Sodbo Zh.; Hayward, Caroline; Rudan, Igor; Campbell, Harry; Aulchenko, Yurii; Bientinesi, Paolo

    2014-01-01

    To raise the power of genome-wide association studies (GWAS) and avoid false-positive results in structured populations, one can rely on mixed model based tests. When large samples are used, and when multiple traits are to be studied in the ’omics’ context, this approach becomes computationally challenging. Here we consider the problem of mixed-model based GWAS for arbitrary number of traits, and demonstrate that for the analysis of single-trait and multiple-trait scenarios different computational algorithms are optimal. We implement these optimal algorithms in a high-performance computing framework that uses state-of-the-art linear algebra kernels, incorporates optimizations, and avoids redundant computations, increasing throughput while reducing memory usage and energy consumption. We show that, compared to existing libraries, our algorithms and software achieve considerable speed-ups. The OmicABEL software described in this manuscript is available under the GNU GPL v. 3 license as part of the GenABEL project for statistical genomics at http: //www.genabel.org/packages/OmicABEL. PMID:25717363

  14. Integrated genome-wide analysis of genomic changes and gene regulation in human adrenocortical tissue samples.

    PubMed

    Gara, Sudheer Kumar; Wang, Yonghong; Patel, Dhaval; Liu-Chittenden, Yi; Jain, Meenu; Boufraqech, Myriem; Zhang, Lisa; Meltzer, Paul S; Kebebew, Electron

    2015-10-30

    To gain insight into the pathogenesis of adrenocortical carcinoma (ACC) and whether there is progression from normal-to-adenoma-to-carcinoma, we performed genome-wide gene expression, gene methylation, microRNA expression and comparative genomic hybridization (CGH) analysis in human adrenocortical tissue (normal, adrenocortical adenomas and ACC) samples. A pairwise comparison of normal, adrenocortical adenomas and ACC gene expression profiles with more than four-fold expression differences and an adjusted P-value < 0.05 revealed no major differences in normal versus adrenocortical adenoma whereas there are 808 and 1085, respectively, dysregulated genes between ACC versus adrenocortical adenoma and ACC versus normal. The majority of the dysregulated genes in ACC were downregulated. By integrating the CGH, gene methylation and expression profiles of potential miRNAs with the gene expression of dysregulated genes, we found that there are higher alterations in ACC versus normal compared to ACC versus adrenocortical adenoma. Importantly, we identified several novel molecular pathways that are associated with dysregulated genes and further experimentally validated that oncostatin m signaling induces caspase 3 dependent apoptosis and suppresses cell proliferation. Finally, we propose that there is higher number of genomic changes from normal-to-adenoma-to-carcinoma and identified oncostatin m signaling as a plausible druggable pathway for therapeutics.

  15. Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits

    PubMed Central

    van Zanten, Martijn

    2015-01-01

    Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation. PMID:26496492

  16. The Genome-Wide Analysis of Carcinoembryonic Antigen Signaling by Colorectal Cancer Cells Using RNA Sequencing.

    PubMed

    Bajenova, Olga; Gorbunova, Anna; Evsyukov, Igor; Rayko, Michael; Gapon, Svetlana; Bozhokina, Ekaterina; Shishkin, Alexander; O'Brien, Stephen J

    2016-01-01

    Сarcinoembryonic antigen (CEA, CEACAM5, CD66) is a promoter of metastasis in epithelial cancers that is widely used as a prognostic clinical marker of metastasis. The aim of this study is to identify the network of genes that are associated with CEA-induced colorectal cancer liver metastasis. We compared the genome-wide transcriptomic profiles of CEA positive (MIP101 clone 8) and CEA negative (MIP 101) colorectal cancer cell lines with different metastatic potential in vivo. The CEA-producing cells displayed quantitative changes in the level of expression for 100 genes (over-expressed or down-regulated). They were confirmed by quantitative RT-PCR. The KEGG pathway analysis identified 4 significantly enriched pathways: cytokine-cytokine receptor interaction, MAPK signaling pathway, TGF-beta signaling pathway and pyrimidine metabolism. Our results suggest that CEA production by colorectal cancer cells triggers colorectal cancer progression by inducing the epithelial- mesenchymal transition, increasing tumor cell invasiveness into the surrounding tissues and suppressing stress and apoptotic signaling. The novel gene expression distinctions establish the relationships between the existing cancer markers and implicate new potential biomarkers for colorectal cancer hepatic metastasis. PMID:27583792

  17. Genome-Wide Analysis of Polymorphisms Associated with Cytokine Responses in Smallpox Vaccine Recipients

    PubMed Central

    Kennedy, Richard B.; Ovsyannikova, Inna G.; Pankratz, V. Shane; Haralambieva, Iana H.; Vierkant, Robert A.; Poland, Gregory A.

    2014-01-01

    The role that genetics plays in response to infection or disease is becoming increasingly clear as we learn more about immunogenetics and host-pathogen interactions. Here we report a genome-wide analysis of the effects of host genetic variation on cytokine responses to vaccinia virus stimulation in smallpox vaccine recipients. Our data show that vaccinia stimulation of immune individuals results in secretion of inflammatory and Th1 cytokines. We identified multiple SNPs significantly associated with variations in cytokine secretion. These SNPs are found in genes with known immune function, as well as in genes encoding for proteins involved in signal transduction, cytoskeleton, membrane channels and ion transport, as well as others with no previously identified connection to immune responses. The large number of significant SNP associations implies that cytokine secretion in response to vaccinia virus is a complex process controlled by multiple genes and gene families. Follow-up studies to replicate these findings and then pursue mechanistic studies will provide a greater understanding of how genetic variation influences vaccine responses. PMID:22610502

  18. Genome-wide analysis suggests divergent evolution of lipid phosphotases/phosphotransferase genes in plants.

    PubMed

    Wang, Peng; Chen, Zhenxi; Kasimu, Rena; Chen, Yinhua; Zhang, Xiaoxiao; Gai, Jiangtao

    2016-08-01

    Genes of the LPPT (lipid phosphatase/phosphotransferase) family play important roles in lipid phosphorous transfer and triacylglycerol accumulation in plants. To provide overviews of the plant LPPT family and their overall relationships, here we carried out genome-wide identifications and analyses of plant LPPT family members. A total of 643 putative LPPT genes were identified from 48 sequenced plant genomes, among which 205 genes from 14 plants were chosen for further analyses. Plant LPPT genes belonged to three distinctive groups, namely the LPT (lipid phosphotransfease), LPP (lipid phosphatase), and pLPP (plastidic lipid phosphotransfease) groups. Genes of the LPT group could be further partitioned into three groups, two of which were only identified in terrestrial plants. Genes in the LPP and pLPP groups experienced duplications in early stages of plant evolution. Among 17 Zea mays LPPT genes, divergence of temporal-spatial expression patterns was revealed based on microarray data analysis. Peptide sequences of plant LPPT genes harbored different conserved motifs. A test of Branch Model versus One-ratio Model did not support significant selective pressures acting on different groups of LPPT genes, although quite different nonsynonymous evolutionary rates and selective pressures were observed. The complete picture of the plant LPPT family provided here should facilitate further investigations of plant LPPT genes and offer a better understanding of lipid biosynthesis in plants. PMID:27501416

  19. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.

    PubMed

    Kim, Daesik; Kim, Jungeun; Hur, Junho K; Been, Kyung Wook; Yoon, Sun-Heui; Kim, Jin-Soo

    2016-08-01

    Programmable clustered regularly interspaced short palindromic repeats (CRISPR) Cpf1 endonucleases are single-RNA-guided (crRNA) enzymes that recognize thymidine-rich protospacer-adjacent motif (PAM) sequences and produce cohesive double-stranded breaks (DSBs). Genome editing with CRISPR-Cpf1 endonucleases could provide an alternative to CRISPR-Cas9 endonucleases, but the determinants of targeting specificity are not well understood. Using mismatched crRNAs we found that Cpf1 could tolerate single or double mismatches in the 3' PAM-distal region, but not in the 5' PAM-proximal region. Genome-wide analysis of cleavage sites in vitro for eight Cpf1 nucleases using Digenome-seq revealed that there were 6 (LbCpf1) and 12 (AsCpf1) cleavage sites per crRNA in the human genome, fewer than are present for Cas9 nucleases (>90). Most Cpf1 off-target cleavage sites did not produce mutations in cells. We found mismatches in either the 3' PAM-distal region or in the PAM sequence of 12 off-target sites that were validated in vivo. Off-target effects were completely abrogated by using preassembled, recombinant Cpf1 ribonucleoproteins.

  20. Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits.

    PubMed

    van Heerwaarden, Joost; van Zanten, Martijn; Kruijer, Willem

    2015-10-01

    Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation.

  1. The Genome-Wide Analysis of Carcinoembryonic Antigen Signaling by Colorectal Cancer Cells Using RNA Sequencing

    PubMed Central

    Gorbunova, Anna; Evsyukov, Igor; Rayko, Michael; Gapon, Svetlana; Bozhokina, Ekaterina; Shishkin, Alexander; O’Brien, Stephen J.

    2016-01-01

    Сarcinoembryonic antigen (CEA, CEACAM5, CD66) is a promoter of metastasis in epithelial cancers that is widely used as a prognostic clinical marker of metastasis. The aim of this study is to identify the network of genes that are associated with CEA-induced colorectal cancer liver metastasis. We compared the genome-wide transcriptomic profiles of CEA positive (MIP101 clone 8) and CEA negative (MIP 101) colorectal cancer cell lines with different metastatic potential in vivo. The CEA-producing cells displayed quantitative changes in the level of expression for 100 genes (over-expressed or down-regulated). They were confirmed by quantitative RT-PCR. The KEGG pathway analysis identified 4 significantly enriched pathways: cytokine-cytokine receptor interaction, MAPK signaling pathway, TGF-beta signaling pathway and pyrimidine metabolism. Our results suggest that CEA production by colorectal cancer cells triggers colorectal cancer progression by inducing the epithelial- mesenchymal transition, increasing tumor cell invasiveness into the surrounding tissues and suppressing stress and apoptotic signaling. The novel gene expression distinctions establish the relationships between the existing cancer markers and implicate new potential biomarkers for colorectal cancer hepatic metastasis. PMID:27583792

  2. Mammalian NET-seq analysis defines nascent RNA profiles and associated RNA processing genome-wide.

    PubMed

    Nojima, Takayuki; Gomes, Tomás; Carmo-Fonseca, Maria; Proudfoot, Nicholas J

    2016-03-01

    The transcription cycle of RNA polymerase II (Pol II) correlates with changes to the phosphorylation state of its large subunit C-terminal domain (CTD). We recently developed Native Elongation Transcript sequencing using mammalian cells (mNET-seq), which generates single-nucleotide-resolution genome-wide profiles of nascent RNA and co-transcriptional RNA processing that are associated with different CTD phosphorylation states. Here we provide a detailed protocol for mNET-seq. First, Pol II elongation complexes are isolated with specific phospho-CTD antibodies from chromatin solubilized by micrococcal nuclease digestion. Next, RNA derived from within the Pol II complex is size fractionated and Illumina sequenced. Using mNET-seq, we have previously shown that Pol II pauses at both ends of protein-coding genes but with different CTD phosphorylation patterns, and we have also detected phosphorylation at serine 5 (Ser5-P) CTD-specific splicing intermediates and Pol II accumulation over co-transcriptionally spliced exons. With moderate biochemical and bioinformatic skills, mNET-seq can be completed in ∼6 d, not including sequencing and data analysis. PMID:26844429

  3. Genome-wide Promoter Analysis of the SOX4 Transcriptional Network in Prostate Cancer Cells

    PubMed Central

    Scharer, Christopher D.; McCabe, Colleen D.; Ali-Seyed, Mohamed; Berger, Michael F.; Bulyk, Martha L.; Moreno, Carlos S.

    2008-01-01

    SOX4 is a critical developmental transcription factor in vertebrates and is required for precise differentiation and proliferation in multiple tissues. In addition, SOX4 is overexpressed in many human malignancies, but the exact role of SOX4 in cancer progression is not well understood. Here we have identified the direct transcriptional targets of SOX4 using a combination of genome-wide localization ChIP-chip analysis and transient overexpression followed by expression profiling in a prostate cancer model cell line. We have also used protein-binding microarrays to derive a novel SOX4-specific position-weight matrix and determined that SOX4 binding sites are enriched in SOX4-bound promoter regions. Direct transcriptional targets of SOX4 include several key cellular regulators such as EGFR, HSP70, Tenascin C, Frizzled-5, Patched-1, and Delta-like 1 We also show that SOX4 targets 23 transcription factors such as MLL, FOXA1, ZNF281, and NKX3-1 In addition, SOX4 directly regulates expression of three components of the RNA-induced silencing complex (RISC), namely Dicer, Argonaute 1, and RNA Helicase A. These data provide new insights into how SOX4 impacts developmental signaling pathways and how these changes may influence cancer progression via regulation of gene networks involved in microRNA processing, transcriptional regulation, the TGFβ, Wnt, Hedgehog, and Notch pathways, growth factor signaling, and tumor metastasis. PMID:19147588

  4. Meta-analysis and genome-wide interpretation of genetic susceptibility to drug addiction

    PubMed Central

    2011-01-01

    Background Classical genetic studies provide strong evidence for heritable contributions to susceptibility to developing dependence on addictive substances. Candidate gene and genome-wide association studies (GWAS) have sought genes, chromosomal regions and allelic variants likely to contribute to susceptibility to drug addiction. Results Here, we performed a meta-analysis of addiction candidate gene association studies and GWAS to investigate possible functional mechanisms associated with addiction susceptibility. From meta-data retrieved from 212 publications on candidate gene association studies and 5 GWAS reports, we linked a total of 843 haplotypes to addiction susceptibility. We mapped the SNPs in these haplotypes to functional and regulatory elements in the genome and estimated the magnitude of the contributions of different molecular mechanisms to their effects on addiction susceptibility. In addition to SNPs in coding regions, these data suggest that haplotypes in gene regulatory regions may also contribute to addiction susceptibility. When we compared the lists of genes identified by association studies and those identified by molecular biological studies of drug-regulated genes, we observed significantly higher participation in the same gene interaction networks than expected by chance, despite little overlap between the two gene lists. Conclusions These results appear to offer new insights into the genetic factors underlying drug addiction. PMID:21999673

  5. Genome-Wide Analysis of Sterol-Lipid Storage and Trafficking in Saccharomyces cerevisiae▿

    PubMed Central

    Fei, Weihua; Alfaro, Gabriel; Muthusamy, Baby-Periyanayaki; Klaassen, Zachary; Graham, Todd R.; Yang, Hongyuan; Beh, Christopher T.

    2008-01-01

    The pandemic of lipid-related disease necessitates a determination of how cholesterol and other lipids are transported and stored within cells. The first step in this determination is the identification of the genes involved in these transport and storage processes. Using genome-wide screens, we identified 56 yeast (Saccharomyces cerevisiae) genes involved in sterol-lipid biosynthesis, intracellular trafficking, and/or neutral-lipid storage. Direct biochemical and cytological examination of mutant cells revealed an unanticipated link between secretory protein glycosylation and triacylglycerol (TAG)/steryl ester (SE) synthesis for the storage of lipids. Together with the analysis of other deletion mutants, these results suggested at least two distinct events for the biogenesis of lipid storage particles: a step affecting neutral-lipid synthesis, generating the lipid core of storage particles, and another step for particle assembly. In addition to the lipid storage mutants, we identified mutations that affect the localization of unesterified sterols, which are normally concentrated in the plasma membrane. These findings implicated phospholipase C and the protein phosphatase Ptc1p in the regulation of sterol distribution within cells. This study identified novel sterol-related genes that define several distinct processes maintaining sterol homeostasis. PMID:18156287

  6. [Genome-wide analysis and functional prediction of the Trihelix transcription factor family in rice].

    PubMed

    Jianhui, Ji; Yingjun, Zhou; Hehe, Wu; Liming, Yang

    2015-12-01

    The Trihelix transcription factor family plays an essential role in plant growth, development and stress response. However, the studies about identification and analysis of this gene family in rice on the genome-wide level have not been reported. In this study, 31 members of the Trihelix family, which contain highly conserved and characteristic trihelix domain through sequence clustering and functional domains analysis, were identified in rice genome database using bioinformatic tools. These members could be classified into 5 subfamilies (I~V) based on the evolutionary relationship and domain characteristics. Clustering analyses of the Trihelix family in rice, Arabidopsis, Brachypodium distachyom and Sorghum bicolor showed that each species contained different members of subfamily although the classification of the Trihelix family were consistent in these four species, which indicated that the differentiation of the Trihelix gene family occur earlier than that of these species. The conserved motifs in the Trihelix family of rice analyzed using the MEME program were highly consistent with the results of clustering analyses. Intraspecific and interspecific chromosomal replication in partial Trihelix family members were found to exist in rice and between rice and other species through chromosome replication analysis. Microarray data analysis revealed diverse expression patterns of Trihelix family genes in different tissues of rice or in response to six different phytohormones. Moreover, 20 members of the Trihelix transcription factor family were found to interact with other proteins in rice using RiceFRIEND online database analysis. Therefore, our results preliminarily identified the evolution, chromosome distribution and replication, expression patterns, phytohormones response of the Trihelix transcription factor family and the interaction between trihelix family proteins and other proteins in rice, which will provide a basis to further reveal the molecular evolution

  7. Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning

    PubMed Central

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further

  8. Bivariate Genome-Wide Linkage Analysis of Femoral Bone Traits and Leg Lean Mass: Framingham Study

    PubMed Central

    Karasik, David; Zhou, Yanhua; Cupples, L Adrienne; Hannan, Marian T; Kiel, Douglas P; Demissie, Serkalem

    2009-01-01

    The risk of osteoporotic fracture is a function of both applied muscle mass and bone tissue distribution. Leg lean mass (LLM) and femoral bone geometry are both known to have substantial genetic components. Therefore, we estimated shared heritability (h2) and performed linkage analysis to identify chromosomal regions governing both LLM and bone geometry. A genome-wide scan (using 636 microsatellite markers) for linkage analyses was performed on 1346 adults from 327 extended families of the Framingham study. DXA measures were LLM, femoral neck length, neck-shaft angle (NSA), subperiosteal width, cross-sectional area (CSA), and section modulus (Z) at the femoral narrow neck and shaft (S) regions. Variance component linkage analysis was performed on normalized residuals (adjusted for age, height, BMI, and estrogen status in women). The results indicated substantial h2 for LLM (0.42 ± 0.07) that was comparable to bone geometry traits. Phenotypic correlations between LLM and bone geometry phenotypes ranged from 0.033 with NSA (p > 0.05) to 0.251 with S_Z (p < 0.001); genetic correlations ranged from 0.087 (NSA, p > 0.05) to 0.454 (S_Z, p < 0.001). Univariate linkage analysis of covariate-adjusted LLM identified no chromosomal regions with LOD scores ≥2.0; however, bivariate analysis identified two loci with LOD scores >3.0, shared by LLM with S_CSA on chromosome 12p12.3–12p13.2, and with NSA, on 14q21.3–22.1. In conclusion, we identified chromosomal regions potentially linked to both LLM and femoral bone geometry. Identification and subsequent characterization of these shared loci may further elucidate the genetic contributions to both osteoporosis and sarcopenia. PMID:19063671

  9. From Human Monocytes to Genome-Wide Binding Sites - A Protocol for Small Amounts of Blood: Monocyte Isolation/ChIP-Protocol/Library Amplification/Genome Wide Computational Data Analysis

    PubMed Central

    Weiterer, Sebastian; Uhle, Florian; Bhuju, Sabin; Jarek, Michael; Weigand, Markus A.; Bartkuhn, Marek

    2014-01-01

    Chromatin immunoprecipitation in combination with a genome-wide analysis via high-throughput sequencing is the state of the art method to gain genome-wide representation of histone modification or transcription factor binding profiles. However, chromatin immunoprecipitation analysis in the context of human experimental samples is limited, especially in the case of blood cells. The typically extremely low yields of precipitated DNA are usually not compatible with library amplification for next generation sequencing. We developed a highly reproducible protocol to present a guideline from the first step of isolating monocytes from a blood sample to analyse the distribution of histone modifications in a genome-wide manner. Conclusion: The protocol describes the whole work flow from isolating monocytes from human blood samples followed by a high-sensitivity and small-scale chromatin immunoprecipitation assay with guidance for generating libraries compatible with next generation sequencing from small amounts of immunoprecipitated DNA. PMID:24732314

  10. Genome-wide analysis of SAUR gene family in Solanaceae species.

    PubMed

    Wu, Jian; Liu, Songyu; He, Yanjun; Guan, Xiaoyan; Zhu, Xiangfei; Cheng, Lin; Wang, Jie; Lu, Gang

    2012-11-01

    The plant hormone auxin plays a vital role in regulating many aspects of plant growth and development. Small auxin up-regulated RNAs (SAURs) are primary auxin response genes hypothesized to be involved in auxin signaling pathway, but their functions remain unclear. Here, a genome-wide search for SAUR gene homologues in Solanaceae species identified 99 and 134 members of SAUR gene family from tomato and potato, respectively. Phylogenetic analysis indicated that the SAUR proteins from Arabidopsis, rice, sorghum, tomato and potato were divided into four major groups with 16 subgroups. Among them, 25 histidine-rich SAURs genes with metal-binding characteristics were found in Arabidopsis, sorghum and Solanaceae species, but not in rice. Using tomato as a model, a comprehensive overview of SAUR gene family is presented, including the gene structures, phylogeny and chromosome locations. Quantitative real-time PCR analysis indicated that 11 randomly selected SlSAUR genes in tomato could be expressed at least in one of the tomato organs/tissues tested. However, different SlSAUR genes displayed distinctive expression levels. SlSAUR16 and SlSAUR71 exhibited highly tissue-specific expression patterns. Almost all of the detected SlSAURs showed an accumulating pattern of mRNA along tomato flower and fruit development. Some of them displayed differential response to exogenous IAA treatment. The abiotic (cold, salt and drought) stresses significantly modified transcript levels of SlSAURs genes. Most of them were down-regulated in response to abiotic stresses (drought, heat and salinity), but SlSAUR58, as a histidine-rich SAUR gene, was up-regulated after salt treatment, indicating that it may play a specific role in the salt signaling transduction pathway. Our comparative analysis provides some basic genomic information for the SAUR genes in the Solanaceae species and will pave the way for deciphering their function during plant development.

  11. Genome Wide Association Analysis of Copy Number Variation in Recurrent Depressive Disorder

    PubMed Central

    Rucker, James J.H.; Breen, Gerome; Pinto, Dalila; Pedroso, Inti; Lewis, Cathryn M.; Cohen-Woods, Sarah; Uher, Rudolf; Schosser, Alexandra; Rivera, Margarita; Aitchison, Katherine J.; Craddock, Nick; Owen, Michael J.; Jones, Lisa; Jones, Ian; Korszun, Ania; Muglia, Pierandrea; Barnes, Michael R.; Preisig, Martin; Mors, Ole; Gill, Mike; Maier, Wolfgang; Rice, John; Rietschel, Marcella; Holsboer, Florian; Farmer, Anne E.; Craig, Ian W.; Scherer, Stephen W.; McGuffin, Peter

    2014-01-01

    Large, rare copy number variants (CNV) have been implicated in a variety of psychiatric disorders, but the role of CNVs in recurrent depression is unclear. We performed a genome-wide analysis of large, rare CNVs in 3,106 cases of recurrent depression, 459 controls screened for lifetime-absence of psychiatric disorder and 5,619 unscreened controls from phase 2 of the Wellcome Trust Case Control Consortium (WTCCC2). We compared the frequency of cases with CNVs against the frequency observed in each control group, analysing CNVs over the whole genome, genic, intergenic, intronic and exonic regions. We found that deletion CNVs were associated with recurrent depression while duplications were not. The effect was significant when comparing cases to WTCCC2 controls (p=7.7×10−6, OR =1.25 (95% CI 1.13 - 1.37)) and to screened controls (p=5.6×10−4, OR=1.52 (95% CI 1.20 - 1.93). Further analysis showed that CNVs deleting protein coding regions were largely responsible for the association. Within an analysis of regions previously implicated in schizophrenia, we found an overall enrichment of CNVs in our cases when compared to screened controls (p=0.019). We observe an ordered increase of samples with deletion CNVs, with the lowest proportion seen in screened controls, the next highest in unscreened controls and the highest in cases. This may suggest that the absence of deletion CNVs, especially in genes, is associated with resilience to recurrent depression. PMID:22042228

  12. Genome-wide analysis reveals positional-nucleosome-oriented binding pattern of pioneer factor FOXA1

    PubMed Central

    Ye, Zhenqing; Chen, Zhong; Sunkel, Benjamin; Frietze, Seth; Huang, Tim H.-M.; Wang, Qianben; Jin, Victor X.

    2016-01-01

    The compaction of nucleosomal structures creates a barrier for DNA-binding transcription factors (TFs) to access their cognate cis-regulatory elements. Pioneer factors (PFs) such as FOXA1 are able to directly access these cis-targets within compact chromatin. However, how these PFs interplay with nucleosomes remains to be elucidated, and is critical for us to understand the underlying mechanism of gene regulation. Here, we have conducted a computational analysis on a strand-specific paired-end ChIP-exo (termed as ChIP-ePENS) data of FOXA1 in LNCaP cells by our novel algorithm ePEST. We find that FOXA1 chromatin binding occurs via four distinct border modes (or footprint boundary patterns), with a preferential footprint boundary patterns relative to FOXA1 motif orientation. In addition, from this analysis three fundamental nucleotide positions (oG, oS and oH) emerged as major determinants for blocking exo-digestion and forming these four distinct border modes. By integrating histone MNase-seq data, we found an astonishingly consistent, ‘well-positioned’ configuration occurs between FOXA1 motifs and dyads of nucleosomes genome-wide. We further performed ChIP-seq of eight chromatin remodelers and found an increased occupancy of these remodelers on FOXA1 motifs for all four border modes (or footprint boundary patterns), indicating the full occupancy of FOXA1 complex on the three blocking sites (oG, oS and oH) likely produces an active regulatory status with well-positioned phasing for protein binding events. Together, our results suggest a positional-nucleosome-oriented accessing model for PFs seeking target motifs, in which FOXA1 can examine each underlying DNA nucleotide and is able to sense all potential motifs regardless of whether they face inward or outward from histone octamers along the DNA helix axis. PMID:27458208

  13. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption.

    PubMed

    Cornelis, M C; Byrne, E M; Esko, T; Nalls, M A; Ganna, A; Paynter, N; Monda, K L; Amin, N; Fischer, K; Renstrom, F; Ngwa, J S; Huikari, V; Cavadino, A; Nolte, I M; Teumer, A; Yu, K; Marques-Vidal, P; Rawal, R; Manichaikul, A; Wojczynski, M K; Vink, J M; Zhao, J H; Burlutsky, G; Lahti, J; Mikkilä, V; Lemaitre, R N; Eriksson, J; Musani, S K; Tanaka, T; Geller, F; Luan, J; Hui, J; Mägi, R; Dimitriou, M; Garcia, M E; Ho, W-K; Wright, M J; Rose, L M; Magnusson, P K E; Pedersen, N L; Couper, D; Oostra, B A; Hofman, A; Ikram, M A; Tiemeier, H W; Uitterlinden, A G; van Rooij, F J A; Barroso, I; Johansson, I; Xue, L; Kaakinen, M; Milani, L; Power, C; Snieder, H; Stolk, R P; Baumeister, S E; Biffar, R; Gu, F; Bastardot, F; Kutalik, Z; Jacobs, D R; Forouhi, N G; Mihailov, E; Lind, L; Lindgren, C; Michaëlsson, K; Morris, A; Jensen, M; Khaw, K-T; Luben, R N; Wang, J J; Männistö, S; Perälä, M-M; Kähönen, M; Lehtimäki, T; Viikari, J; Mozaffarian, D; Mukamal, K; Psaty, B M; Döring, A; Heath, A C; Montgomery, G W; Dahmen, N; Carithers, T; Tucker, K L; Ferrucci, L; Boyd, H A; Melbye, M; Treur, J L; Mellström, D; Hottenga, J J; Prokopenko, I; Tönjes, A; Deloukas, P; Kanoni, S; Lorentzon, M; Houston, D K; Liu, Y; Danesh, J; Rasheed, A; Mason, M A; Zonderman, A B; Franke, L; Kristal, B S; Karjalainen, J; Reed, D R; Westra, H-J; Evans, M K; Saleheen, D; Harris, T B; Dedoussis, G; Curhan, G; Stumvoll, M; Beilby, J; Pasquale, L R; Feenstra, B; Bandinelli, S; Ordovas, J M; Chan, A T; Peters, U; Ohlsson, C; Gieger, C; Martin, N G; Waldenberger, M; Siscovick, D S; Raitakari, O; Eriksson, J G; Mitchell, P; Hunter, D J; Kraft, P; Rimm, E B; Boomsma, D I; Borecki, I B; Loos, R J F; Wareham, N J; Vollenweider, P; Caporaso, N; Grabe, H J; Neuhouser, M L; Wolffenbuttel, B H R; Hu, F B; Hyppönen, E; Järvelin, M-R; Cupples, L A; Franks, P W; Ridker, P M; van Duijn, C M; Heiss, G; Metspalu, A; North, K E; Ingelsson, E; Nettleton, J A; van Dam, R M; Chasman, D I

    2015-05-01

    Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to 91,462 coffee consumers of European ancestry with top single-nucleotide polymorphisms (SNPs) followed-up in ~30 062 and 7964 coffee consumers of European and African-American ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)>5.64) with per-allele effect sizes of 0.03-0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver enzyme profiles (P<5 × 10(-8)).Our genetic findings among European and African-American adults reinforce the role of caffeine in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in pharmacological and health effects of coffee. PMID:25288136

  14. Genome-wide variant analysis of simplex autism families with an integrative clinical-bioinformatics pipeline

    PubMed Central

    Jiménez-Barrón, Laura T.; O'Rawe, Jason A.; Wu, Yiyang; Yoon, Margaret; Fang, Han; Iossifov, Ivan; Lyon, Gholson J.

    2015-01-01

    Autism spectrum disorders (ASDs) are a group of developmental disabilities that affect social interaction and communication and are characterized by repetitive behaviors. There is now a large body of evidence that suggests a complex role of genetics in ASDs, in which many different loci are involved. Although many current population-scale genomic studies have been demonstrably fruitful, these studies generally focus on analyzing a limited part of the genome or use a limited set of bioinformatics tools. These limitations preclude the analysis of genome-wide perturbations that may contribute to the development and severity of ASD-related phenotypes. To overcome these limitations, we have developed and utilized an integrative clinical and bioinformatics pipeline for generating a more complete and reliable set of genomic variants for downstream analyses. Our study focuses on the analysis of three simplex autism families consisting of one affected child, unaffected parents, and one unaffected sibling. All members were clinically evaluated and widely phenotyped. Genotyping arrays and whole-genome sequencing were performed on each member, and the resulting sequencing data were analyzed using a variety of available bioinformatics tools. We searched for rare variants of putative functional impact that were found to be segregating according to de novo, autosomal recessive, X-linked, mitochondrial, and compound heterozygote transmission models. The resulting candidate variants included three small heterozygous copy-number variations (CNVs), a rare heterozygous de novo nonsense mutation in MYBBP1A located within exon 1, and a novel de novo missense variant in LAMB3. Our work demonstrates how more comprehensive analyses that include rich clinical data and whole-genome sequencing data can generate reliable results for use in downstream investigations. PMID:27148569

  15. Oxidative Stress and Heat-Shock Responses in Desulfovibrio vulgaris by Genome-Wide Transcriptomic Analysis

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Hogan, Mike; Vitiritti, Luigi; Brockman, Fred J.

    2006-05-30

    Abstract Sulfate-reducing bacteria, like Desulfovibrio vulgaris have developed a set of reactions allowing them to survive in environments. To obtain further knowledge of the protecting mechanisms employed in D. vulgaris against the oxidative stress and heat shock, we performed a genome-wide transcriptomic analysis to determine the cellular responses to both stimuli. The results showed that 130 genes were responsive to oxidative stress, while 427 genes responsive to heat-shock, respectively. Functional analyses suggested that the genes regulated were involved in a variety of cellular functions. Metabolic analysis showed that amino acid biosynthetic pathways were induced by both oxidative stress and heat shock treatments, while fatty acid metabolism, purine and cofactor biosynthesis were induced by heat shock only. Rubrerythrin gene (rbR) were upregulated by the oxidative stress, suggesting its important role in the oxidative resistance, whereas the expression of rubredoxin oxidoreductase (rbO), superoxide ismutase (sodB) and catalase (katA) genes were not subjected to regulation by oxidative stress in D. vulgaris. In addition, the results showed that thioredoxin reductase (trxB) was responsive to oxidative stress, suggesting the thiol-specific redox system might be involved in oxidative protection in D. vulgaris. Comparison of cellular responses to oxidative stress and heat-shock allowed the identification of 66 genes that showed a similar drastic response to both environmental stimuli, implying that they might be part of the general stress response (GSR) network in D. vulgaris, which was further supported by the finding of a conserved motif upstream these common-responsive genes.

  16. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume

    PubMed Central

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development.

  17. Genome-Wide Identification and Analysis of the MYB Transcription Factor Superfamily in Solanum lycopersicum.

    PubMed

    Li, Zhenjun; Peng, Rihe; Tian, Yongsheng; Han, Hongjuan; Xu, Jing; Yao, Quanhong

    2016-08-01

    MYB proteins constitute one of the largest transcription factor families in the plant kingdom, members of which perform a variety of functions in plant biological processes. However, there are only very limited reports on the characterization of MYB transcription factors in tomato (Solanum lycopersicum). In our study, a total of 127 MYB genes have been identified in the tomato genome. A complete overview of these MYB genes is presented, including the phylogeny, gene structures, protein motifs, chromosome locations and expression patterns. The 127 SlMYB proteins could be classified into 18 subgroups based on domain similarity and phylogenetic topology. Phylogenetic analysis of SlMYBs along with MYBs from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) indicated 14 subfamilies. Conserved motifs outside the MYB domain may reflect their functional conservation. The identified tomato MYB genes were distributed on 12 chromosomes at various densities but mainly in chromosomes 6 and 10 (12.6% and 11.8%, respectively). Genome-wide segmental and tandem duplications were also found, which may contribute to the expansion of SlMYB genes. RNA-sequencing and microarray data revealed tissue-specific and stress-responsive expression patterns of SlMYB genes. The expression profiles of SlMYB genes in response to salicylic acid (SA) and jasmonic acid methyl ester (MeJA) were also investigated by real-time PCR. Moreover, ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motifs were found in 24 SlMYB proteins. Collectively, our comprehensive analysis of SlMYB genes will facilitate future functional studies of the tomato MYB gene family and probably other Solanaceae plants. PMID:27279646

  18. Transport genes and chemotaxis in Laribacter hongkongensis: a genome-wide analysis

    PubMed Central

    2011-01-01

    Background Laribacter hongkongensis is a Gram-negative, sea gull-shaped rod associated with community-acquired gastroenteritis. The bacterium has been found in diverse freshwater environments including fish, frogs and drinking water reservoirs. Using the complete genome sequence data of L. hongkongensis, we performed a comprehensive analysis of putative transport-related genes and genes related to chemotaxis, motility and quorum sensing, which may help the bacterium adapt to the changing environments and combat harmful substances. Results A genome-wide analysis using Transport Classification Database TCDB, similarity and keyword searches revealed the presence of a large diversity of transporters (n = 457) and genes related to chemotaxis (n = 52) and flagellar biosynthesis (n = 40) in the L. hongkongensis genome. The transporters included those from all seven major transporter categories, which may allow the uptake of essential nutrients or ions, and extrusion of metabolic end products and hazardous substances. L. hongkongensis is unique among closely related members of Neisseriaceae family in possessing higher number of proteins related to transport of ammonium, urea and dicarboxylate, which may reflect the importance of nitrogen and dicarboxylate metabolism in this assacharolytic bacterium. Structural modeling of two C4-dicarboxylate transporters showed that they possessed similar structures to the determined structures of other DctP-TRAP transporters, with one having an unusual disulfide bond. Diverse mechanisms for iron transport, including hemin transporters for iron acquisition from host proteins, were also identified. In addition to the chemotaxis and flagella-related genes, the L. hongkongensis genome also contained two copies of qseB/qseC homologues of the AI-3 quorum sensing system. Conclusions The large number of diverse transporters and genes involved in chemotaxis, motility and quorum sensing suggested that the bacterium may utilize a complex system to

  19. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume

    PubMed Central

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development. PMID:27630648

  20. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume.

    PubMed

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development. PMID:27630648

  1. Genome-Wide Analysis of Antiviral Signature Genes in Porcine Macrophages at Different Activation Statuses

    PubMed Central

    Sang, Yongming; Brichalli, Wyatt; Rowland, Raymond R. R.; Blecha, Frank

    2014-01-01

    Macrophages (MФs) can be polarized to various activation statuses, including classical (M1), alternative (M2), and antiviral states. To study the antiviral activation status of porcine MФs during porcine reproductive and respiratory syndrome virus (PRRSV) infection, we used RNA Sequencing (RNA-Seq) for transcriptomic analysis of differentially expressed genes (DEGs). Sequencing assessment and quality evaluation showed that our RNA-Seq data met the criteria for genome-wide transcriptomic analysis. Comparisons of any two activation statuses revealed more than 20,000 DEGs that were normalized to filter out 153–5,303 significant DEGs [false discovery rate (FDR) ≤0.001, fold change ≥2] in each comparison. The highest 5,303 significant DEGs were found between lipopolysaccharide- (LPS) and interferon (IFN)γ-stimulated M1 cells, whereas only 153 significant DEGs were detected between interleukin (IL)-10-polarized M2 cells and control mock-activated cells. To identify signature genes for antiviral regulation pertaining to each activation status, we identified a set of DEGs that showed significant up-regulation in only one activation state. In addition, pathway analyses defined the top 20–50 significantly regulated pathways at each activation status, and we further analyzed DEGs pertinent to pathways mediated by AMP kinase (AMPK) and epigenetic mechanisms. For the first time in porcine macrophages, our transcriptomic analyses not only compared family-wide differential expression of most known immune genes at different activation statuses, but also revealed transcription evidence of multiple gene families. These findings show that using RNA-Seq transcriptomic analyses in virus-infected and status-synchronized macrophages effectively profiled signature genes and gene response pathways for antiviral regulation, which may provide a framework for optimizing antiviral immunity and immune homeostasis. PMID:24505295

  2. Genome-wide identification and expression analysis of the expansin gene family in tomato.

    PubMed

    Lu, Yongen; Liu, Lifeng; Wang, Xin; Han, Zhihui; Ouyang, Bo; Zhang, Junhong; Li, Hanxia

    2016-04-01

    Plant expansins are capable of inducing pH-dependent cell wall extension and stress relaxation. They may be useful as targets for crop improvement to enhance fruit development and stress resistance. Tomato is a major agricultural crop and a model plant for studying fruit development. Because only some tomato expansins have been studied, a genome-wide analysis of the tomato expansin family is necessary. In this study, we identified 25 SlEXPAs, eight SlEXPBs, one SlEXLA, four SlEXLBs, and five short homologs in the tomato genome. 25 of these genes were identified as being expressed. Bioinformatic analysis showed that although tomato expansins share similarities with those from other plants, they also exhibit specific features regarding genetic structure and amino acid sequences, which indicates a unique evolutionary process. Segmental and tandem duplication events have played important roles in expanding the tomato expansin family. Additionally, the 3-exon/2-intron structure may form the basic organization of expansin genes. We identified new expansin genes preferentially expressed in fruits (SlEXPA8, SlEXPB8, and SlEXLB1), roots (SlEXPA9, SlEXLB2, and SlEXLB4), and floral organs. Among the analyzed genes those that were inducible by hormone or stress treatments, including SlEXPA3, SlEXPA7, SlEXPB1-B2, SlEXPB8, SlEXLB1-LB2, and SlEXLB4. Our findings may further clarify the biological activities of tomato expansins, especially those related to fruit development and stress resistance, and contribute to the genetic modification of tomato plants to improve crop quality and yield.

  3. A combined analysis of genome-wide expression profiling of bipolar disorder in human prefrontal cortex.

    PubMed

    Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing

    2016-11-01

    Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease.

  4. Genome-wide linkage analysis for human longevity: Genetics of Healthy Ageing Study

    PubMed Central

    Beekman, Marian; Blanché, Hélène; Perola, Markus; Hervonen, Anti; Bezrukov, Vladyslav; Sikora, Ewa; Flachsbart, Frederieke; Christiansen, Lene; De Craen, Anton J.M.; Kirkwood, Tom B.L.; Rea, I. Meave; Poulain, Michel; Robine, Jean-Marie; Stazi, Maria Antonietta; Passarino, Giuseppe; Deiana, Luca; Gonos, Efstathios S.; Valensin, Silvana; Paternoster, Lavinia; Sørensen, Thorkild I.A.; Tan, Qihua; Helmer, Quinta; Van den Akker, Erik B.; Deelen, Joris; Martella, Francesca; Cordell, Heather J.; Ayers, Kristin L.; Vaupel, James W.; Törnwall, Outi; Johnson, Thomas E.; Schreiber, Stefan; Lathrop, Mark; Skytthe, Axel; Westendorp, Rudi G.J.; Christensen, Kaare; Gampe, Jutta; Nebel, Almut; Houwing-Duistermaat, Jeanine J.; Slagboom, P. Eline; Franceschi, Claudio

    2013-01-01

    Summary Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian sibling pairs that have been enrolled in fifteen study centers of eleven European countries as part of the Genetics of Healthy Ageing (GEHA) project. In the joint linkage analyses we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD=3.47), chromosome 17q12-q22 (LOD=2.95), chromosome 19p13.3-p13.11 (LOD=3.76) and chromosome 19q13.11-q13.32 (LOD=3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1,228 unrelated nonagenarian and 1,907 geographically matched controls. Using a fixed effect meta-analysis approach, rs4420638 at the TOMM40/APOE/APOC1 gene locus showed significant association with longevity (p-value=9.6 × 10−8). By combined modeling of linkage and association we showed that association of longevity with APOEε4 and APOEε2 alleles explain the linkage at 19q13.11-q13.32 with p-value=0.02 and p-value=1.0 × 10−5, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22 and 19p13.3-p13.11. Since the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity. PMID:23286790

  5. Genome-Wide Analysis of miRNA targets in Brachypodium and Biomass Energy Crops

    SciTech Connect

    Green, Pamela J.

    2015-08-11

    MicroRNAs (miRNAs) contribute to the control of numerous biological processes through the regulation of specific target mRNAs. Although the identities of these targets are essential to elucidate miRNA function, the targets are much more difficult to identify than the small RNAs themselves. Before this work, we pioneered the genome-wide identification of the targets of Arabidopsis miRNAs using an approach called PARE (German et al., Nature Biotech. 2008; Nature Protocols, 2009). Under this project, we applied PARE to Brachypodium distachyon (Brachypodium), a model plant in the Poaceae family, which includes the major food grain and bioenergy crops. Through in-depth global analysis and examination of specific examples, this research greatly expanded our knowledge of miRNAs and target RNAs of Brachypodium. New regulation in response to environmental stress or tissue type was found, and many new miRNAs were discovered. More than 260 targets of new and known miRNAs with PARE sequences at the precise sites of miRNA-guided cleavage were identified and characterized. Combining PARE data with the small RNA data also identified the miRNAs responsible for initiating approximately 500 phased loci, including one of the novel miRNAs. PARE analysis also revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. The project included generation of small RNA and PARE resources for bioenergy crops, to facilitate ongoing discovery of conserved miRNA-target RNA regulation. By associating specific miRNA-target RNA pairs with known physiological functions, the research provides insights about gene regulation in different tissues and in response to environmental stress. This, and release of new PARE and small RNA data sets should contribute basic knowledge to enhance breeding and may suggest new strategies for improvement of biomass energy crops.

  6. GDSL esterase/lipase genes in Brassica rapa L.: genome-wide identification and expression analysis.

    PubMed

    Dong, Xiangshu; Yi, Hankuil; Han, Ching-Tack; Nou, Ill-Sup; Hur, Yoonkang

    2016-04-01

    GDSL esterase/lipase proteins (GELPs), a very large subfamily of lipolytic enzymes, have been identified in microbes and many plants, but only a few have been characterized with respect to their roles in growth, development, and stress responses. In Brassica crops, as in many other species, genome-wide systematic analysis and functional studies of these genes are still lacking. As a first step to study their function in B. rapa ssp. pekinensis (Chinese cabbage), we comprehensively identified all GELP genes in the genome. We found a total of 121 Brassica rapa GDSL esterase/lipase protein genes (BrGELPs), forming three clades in the phylogenetic analysis (two major and one minor), with an asymmetrical chromosomal distribution. Most BrGELPs possess four strictly conserved residues (Ser-Gly-Asn-His) in four separate conserved regions, along with short conserved and clade-specific blocks, suggesting functional diversification of these proteins. Detailed expression profiling revealed that BrGELPs were expressed in various tissues, including floral organs, implying that BrGELPs play diverse roles in various tissues and during development. Ten percent of BrGELPs were specifically expressed in fertile buds, rather than male-sterile buds, implying their involvement in pollen development. Analyses of EXL6 (extracellular lipase 6) expression and its co-expressed genes in both B. rapa and Arabidopsis, as well as knockdown of this gene in Arabidopsis, revealed that this gene plays an important role in pollen development in both species. The data described in this study will facilitate future investigations of other BrGELP functions.

  7. Genome-wide analysis of gestational gene-environment interactions in the developing kidney

    PubMed Central

    Yan, Lei; Yao, Xiao; Bachvarov, Dimcho; Saifudeen, Zubaida

    2014-01-01

    The G protein-coupled bradykinin B2 receptor (Bdkrb2) plays an important role in regulation of blood pressure under conditions of excess salt intake. Our previous work has shown that Bdkrb2 also plays a developmental role since Bdkrb2−/− embryos, but not their wild-type or heterozygous littermates, are prone to renal dysgenesis in response to gestational high salt intake. Although impaired terminal differentiation and apoptosis are consistent findings in the Bdkrb2−/− mutant kidneys, the developmental pathways downstream of gene-environment interactions leading to the renal phenotype remain unknown. Here, we performed genome-wide transcriptional profiling on embryonic kidneys from salt-stressed Bdkrb2+/+ and Bdkrb2−/− embryos. The results reveal significant alterations in key pathways regulating Wnt signaling, apoptosis, embryonic development, and cell-matrix interactions. In silico analysis reveal that nearly 12% of differentially regulated genes harbor one or more Pax2 DNA-binding sites in their promoter region. Further analysis shows that metanephric kidneys of salt-stressed Bdkrb2−/− have a significant downregulation of Pax2 gene expression. This was corroborated in Bdkrb2−/−;Pax2GFP+/tg mice, demonstrating that Pax2 transcriptional activity is significantly repressed by gestational salt-Bdkrb2 interactions. We conclude that gestational gene (Bdkrb2) and environment (salt) interactions cooperate to impact gene expression programs in the developing kidney. Suppression of Pax2 likely contributes to the defects in epithelial survival, growth, and differentiation in salt-stressed BdkrB2−/− mice. PMID:25005792

  8. Genome-Wide Analysis of Polycistronic MicroRNAs in Cultivated and Wild Rice

    PubMed Central

    Baldrich, Patricia; Hsing, Yue-Ie Caroline; San Segundo, Blanca

    2016-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that direct posttranscriptional gene silencing in eukaryotes. They are frequently clustered in the genomes of animals and can be independently transcribed or simultaneously transcribed into single polycistronic transcripts. Only a few miRNA clusters have been described in plants, and most of them are generated from independent transcriptional units. Here, we used a combination of bioinformatic tools and experimental analyses to discover new polycistronic miRNAs in rice. A genome-wide analysis of clustering patterns of MIRNA loci in the rice genome was carried out using a criterion of 3 kb as the maximal distance between two miRNAs. This analysis revealed 28 loci with the ability to form the typical hairpin structure of miRNA precursors in which 2 or more mature miRNAs mapped along the same structure. RT-PCR provided evidence for the polycistronic nature of seven miRNA precursors containing homologous or nonhomologous miRNA species. Polycistronic miRNAs and candidate polycistronic miRNAs are located across different rice chromosomes, except chromosome 12, and resided in both duplicated and nonduplicated chromosomal regions. Finally, most polycistronic and candidate polycistronic miRNAs showed a pattern of conservation in the genome of rice species with an AA genome. The diversity in the organization of MIR genes that are transcribed as polycistrons suggests a versatile mechanism for the control of gene expression in different biological processes and supports additional levels of complexity in miRNA functioning in plants. PMID:27190137

  9. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption.

    PubMed

    Cornelis, M C; Byrne, E M; Esko, T; Nalls, M A; Ganna, A; Paynter, N; Monda, K L; Amin, N; Fischer, K; Renstrom, F; Ngwa, J S; Huikari, V; Cavadino, A; Nolte, I M; Teumer, A; Yu, K; Marques-Vidal, P; Rawal, R; Manichaikul, A; Wojczynski, M K; Vink, J M; Zhao, J H; Burlutsky, G; Lahti, J; Mikkilä, V; Lemaitre, R N; Eriksson, J; Musani, S K; Tanaka, T; Geller, F; Luan, J; Hui, J; Mägi, R; Dimitriou, M; Garcia, M E; Ho, W-K; Wright, M J; Rose, L M; Magnusson, P K E; Pedersen, N L; Couper, D; Oostra, B A; Hofman, A; Ikram, M A; Tiemeier, H W; Uitterlinden, A G; van Rooij, F J A; Barroso, I; Johansson, I; Xue, L; Kaakinen, M; Milani, L; Power, C; Snieder, H; Stolk, R P; Baumeister, S E; Biffar, R; Gu, F; Bastardot, F; Kutalik, Z; Jacobs, D R; Forouhi, N G; Mihailov, E; Lind, L; Lindgren, C; Michaëlsson, K; Morris, A; Jensen, M; Khaw, K-T; Luben, R N; Wang, J J; Männistö, S; Perälä, M-M; Kähönen, M; Lehtimäki, T; Viikari, J; Mozaffarian, D; Mukamal, K; Psaty, B M; Döring, A; Heath, A C; Montgomery, G W; Dahmen, N; Carithers, T; Tucker, K L; Ferrucci, L; Boyd, H A; Melbye, M; Treur, J L; Mellström, D; Hottenga, J J; Prokopenko, I; Tönjes, A; Deloukas, P; Kanoni, S; Lorentzon, M; Houston, D K; Liu, Y; Danesh, J; Rasheed, A; Mason, M A; Zonderman, A B; Franke, L; Kristal, B S; Karjalainen, J; Reed, D R; Westra, H-J; Evans, M K; Saleheen, D; Harris, T B; Dedoussis, G; Curhan, G; Stumvoll, M; Beilby, J; Pasquale, L R; Feenstra, B; Bandinelli, S; Ordovas, J M; Chan, A T; Peters, U; Ohlsson, C; Gieger, C; Martin, N G; Waldenberger, M; Siscovick, D S; Raitakari, O; Eriksson, J G; Mitchell, P; Hunter, D J; Kraft, P; Rimm, E B; Boomsma, D I; Borecki, I B; Loos, R J F; Wareham, N J; Vollenweider, P; Caporaso, N; Grabe, H J; Neuhouser, M L; Wolffenbuttel, B H R; Hu, F B; Hyppönen, E; Järvelin, M-R; Cupples, L A; Franks, P W; Ridker, P M; van Duijn, C M; Heiss, G; Metspalu, A; North, K E; Ingelsson, E; Nettleton, J A; van Dam, R M; Chasman, D I

    2015-05-01

    Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to 91,462 coffee consumers of European ancestry with top single-nucleotide polymorphisms (SNPs) followed-up in ~30 062 and 7964 coffee consumers of European and African-American ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)>5.64) with per-allele effect sizes of 0.03-0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver enzyme profiles (P<5 × 10(-8)).Our genetic findings among European and African-American adults reinforce the role of caffeine in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in pharmacological and health effects of coffee.

  10. Genome-wide linkage analysis for loci affecting pulse pressure: the Family Blood Pressure Program.

    PubMed

    Bielinski, Suzette J; Lynch, Amy I; Miller, Michael B; Weder, Alan; Cooper, Richard; Oberman, Albert; Chen, Yii-Der Ida; Turner, Stephen T; Fornage, Myriam; Province, Michael; Arnett, Donna K

    2005-12-01

    Pulse pressure, the difference between systolic and diastolic blood pressure, is an independent risk factor for cardiovascular disease. Increased pulse pressure reflects reduced compliance of arteries and is a marker of atherosclerosis. To locate genes that affect pulse pressure, a genome-wide linkage scan for quantitative trait loci influencing pulse pressure was performed using variance components methods as implemented in sequential oligogenic linkage analysis routines. The analysis sample included 10 798 participants in 3320 families who were recruited as part of the Family Blood Pressure Program and were phenotyped with an oscillometric blood pressure measurement device using a consistent protocol across centers. Pulse pressure was adjusted for the effects of sex, age, age2, age-by-sex interaction, age2-by-sex interaction, body mass index, and field center to remove sources of variation other than the genetic effects related to pulse pressure. Significant linkage was observed on chromosome 18 (logarithm of odds [LOD]=3.2) in a combined racial sample, chromosome 20 (LOD=4.4), and 17 (LOD=3.6) in Hispanics, chromosome 21 (LOD=4.3) in whites, chromosome 19 (LOD=3.1) in a combined sample of blacks and whites, and chromosome 7 (logarithm of odds [LOD]=3.1) in blacks from the GenNet Network. Our genome scan shows significant evidence for linkage for pulse pressure in multiple areas of the genome, supporting previous published linkage studies. The identification of these loci for pulse pressure and the apparent congruence with other blood pressure phenotypes provide increased support that these regions contain genes influencing blood pressure phenotypes.

  11. GDSL esterase/lipase genes in Brassica rapa L.: genome-wide identification and expression analysis.

    PubMed

    Dong, Xiangshu; Yi, Hankuil; Han, Ching-Tack; Nou, Ill-Sup; Hur, Yoonkang

    2016-04-01

    GDSL esterase/lipase proteins (GELPs), a very large subfamily of lipolytic enzymes, have been identified in microbes and many plants, but only a few have been characterized with respect to their roles in growth, development, and stress responses. In Brassica crops, as in many other species, genome-wide systematic analysis and functional studies of these genes are still lacking. As a first step to study their function in B. rapa ssp. pekinensis (Chinese cabbage), we comprehensively identified all GELP genes in the genome. We found a total of 121 Brassica rapa GDSL esterase/lipase protein genes (BrGELPs), forming three clades in the phylogenetic analysis (two major and one minor), with an asymmetrical chromosomal distribution. Most BrGELPs possess four strictly conserved residues (Ser-Gly-Asn-His) in four separate conserved regions, along with short conserved and clade-specific blocks, suggesting functional diversification of these proteins. Detailed expression profiling revealed that BrGELPs were expressed in various tissues, including floral organs, implying that BrGELPs play diverse roles in various tissues and during development. Ten percent of BrGELPs were specifically expressed in fertile buds, rather than male-sterile buds, implying their involvement in pollen development. Analyses of EXL6 (extracellular lipase 6) expression and its co-expressed genes in both B. rapa and Arabidopsis, as well as knockdown of this gene in Arabidopsis, revealed that this gene plays an important role in pollen development in both species. The data described in this study will facilitate future investigations of other BrGELP functions. PMID:26423069

  12. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency

    PubMed Central

    2012-01-01

    Background Plants react to iron deficiency stress adopting different kind of adaptive responses. Tomato, a Strategy I plant, improves iron uptake through acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Large-scale transcriptional analyses of roots under iron deficiency are only available for a very limited number of plant species with particular emphasis for Arabidopsis thaliana. Regarding tomato, an interesting model species for Strategy I plants and an economically important crop, physiological responses to Fe-deficiency have been thoroughly described and molecular analyses have provided evidence for genes involved in iron uptake mechanisms and their regulation. However, no detailed transcriptome analysis has been described so far. Results A genome-wide transcriptional analysis, performed with a chip that allows to monitor the expression of more than 25,000 tomato transcripts, identified 97 differentially expressed transcripts by comparing roots of Fe-deficient and Fe-sufficient tomato plants. These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle. Other genes play a role in flavonoid biosynthesis and hormonal metabolism. Conclusions The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency. PMID:22433273

  13. A population structure and genome-wide association analysis on the USDA soybean germplasm collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genotype-phenotype associations within the soybean (Glycine max) germplasm collection could provide valuable information on the frequency and distribution of alleles affecting economically important traits. Here we performed a genome-wide association study (GWAS) for seed protein and oil content in ...

  14. Genome-wide association analysis of symbiotic nitrogen fixation in common bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genome-wide association study (GWAS) was conducted to explore the genetic basis of variation for symbiotic nitrogen fixation (SNF) and related traits in the Andean diversity panel (ADP) comprised of 259 common bean (Phaseolus vulgaris) genotypes. The ADP was evaluated for SNF and related traits in...

  15. Implementing meta-analysis from genome-wide association studies for pork quality traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pork quality plays an important role in the meat processing industry, thus different methodologies have been implemented to elucidate the genetic architecture of traits affecting meat quality. One of the most common and widely used approaches is to perform genome-wide association (GWA) studies. Howe...

  16. Genome-wide CNV analysis reveals variants associated with growth traits in Bos indicus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Apart from single nucleotide polymorphism (SNP), copy number variation (CNV) is another important type of genetic variation, which may affect growth traits and play key roles for the production of beef cattle. To date, no genome-wide association study (GWAS) for CNV and body traits in be...

  17. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the compu...

  18. Meta-analysis of genome-wide expression patterns associated with behavioral maturation in honey bees

    PubMed Central

    Adams, Heather A; Southey, Bruce R; Robinson, Gene E; Rodriguez-Zas, Sandra L

    2008-01-01

    reported genes and helped identify genes (e.g. Tomosyn, Chitinase 5, Adar, Innexin 2, Transferrin 1, Sick, Oatp26F) and Gene Ontology categories (e.g. purine nucleotide binding) not previously associated with maturation in honey bees. Conclusion This study demonstrated that a combination of meta-analytical approaches best addresses the highly dimensional nature of genome-wide microarray studies. As expected, the integration of gene expression information from microarray studies using meta-analysis enhanced the characterization of the transcriptome of complex biological processes. PMID:18950506

  19. Genome-Wide Association Analysis of Eating Disorder-Related Symptoms, Behaviors, and Personality Traits

    PubMed Central

    Boraska, Vesna; Davis, Oliver SP; Cherkas, Lynn F; Helder, Sietske G; Harris, Juliette; Krug, Isabel; Pei-Chi Liao, Thomas; Treasure, Janet; Ntalla, Ioanna; Karhunen, Leila; Keski-Rahkonen, Anna; Christakopoulou, Danai; Raevuori, Anu; Shin, So-Youn; Dedoussis, George V; Kaprio, Jaakko; Soranzo, Nicole; Spector, Tim D; Collier, David A; Zeggini, Eleftheria

    2012-01-01

    Eating disorders (EDs) are common, complex psychiatric disorders thought to be caused by both genetic and environmental factors. They share many symptoms, behaviors, and personality traits, which may have overlapping heritability. The aim of the present study is to perform a genome-wide association scan (GWAS) of six ED phenotypes comprising three symptom traits from the Eating Disorders Inventory 2 [Drive for Thinness (DT), Body Dissatisfaction (BD), and Bulimia], Weight Fluctuation symptom, Breakfast Skipping behavior and Childhood Obsessive-Compulsive Personality Disorder trait (CHIRP). Investigated traits were derived from standardized self-report questionnaires completed by the TwinsUK population-based cohort. We tested 283,744 directly typed SNPs across six phenotypes of interest in the TwinsUK discovery dataset and followed-up signals from various strata using a two-stage replication strategy in two independent cohorts of European ancestry. We meta-analyzed a total of 2,698 individuals for DT, 2,680 for BD, 2,789 (821 cases/1,968 controls) for Bulimia, 1,360 (633 cases/727 controls) for Childhood Obsessive-Compulsive Personality Disorder trait, 2,773 (761 cases/2,012 controls) for Breakfast Skipping, and 2,967 (798 cases/2,169 controls) for Weight Fluctuation symptom. In this GWAS analysis of six ED-related phenotypes, we detected association of eight genetic variants with P < 10−5. Genetic variants that showed suggestive evidence of association were previously associated with several psychiatric disorders and ED-related phenotypes. Our study indicates that larger-scale collaborative studies will be needed to achieve the necessary power to detect loci underlying ED-related traits. © 2012 Wiley Periodicals, Inc. PMID:22911880

  20. Genome-wide association analysis of eating disorder-related symptoms, behaviors, and personality traits.

    PubMed

    Boraska, Vesna; Davis, Oliver S P; Cherkas, Lynn F; Helder, Sietske G; Harris, Juliette; Krug, Isabel; Liao, Thomas Pei-Chi; Treasure, Janet; Ntalla, Ioanna; Karhunen, Leila; Keski-Rahkonen, Anna; Christakopoulou, Danai; Raevuori, Anu; Shin, So-Youn; Dedoussis, George V; Kaprio, Jaakko; Soranzo, Nicole; Spector, Tim D; Collier, David A; Zeggini, Eleftheria

    2012-10-01

    Eating disorders (EDs) are common, complex psychiatric disorders thought to be caused by both genetic and environmental factors. They share many symptoms, behaviors, and personality traits, which may have overlapping heritability. The aim of the present study is to perform a genome-wide association scan (GWAS) of six ED phenotypes comprising three symptom traits from the Eating Disorders Inventory 2 [Drive for Thinness (DT), Body Dissatisfaction (BD), and Bulimia], Weight Fluctuation symptom, Breakfast Skipping behavior and Childhood Obsessive-Compulsive Personality Disorder trait (CHIRP). Investigated traits were derived from standardized self-report questionnaires completed by the TwinsUK population-based cohort. We tested 283,744 directly typed SNPs across six phenotypes of interest in the TwinsUK discovery dataset and followed-up signals from various strata using a two-stage replication strategy in two independent cohorts of European ancestry. We meta-analyzed a total of 2,698 individuals for DT, 2,680 for BD, 2,789 (821 cases/1,968 controls) for Bulimia, 1,360 (633 cases/727 controls) for Childhood Obsessive-Compulsive Personality Disorder trait, 2,773 (761 cases/2,012 controls) for Breakfast Skipping, and 2,967 (798 cases/2,169 controls) for Weight Fluctuation symptom. In this GWAS analysis of six ED-related phenotypes, we detected association of eight genetic variants with P < 10(-5) . Genetic variants that showed suggestive evidence of association were previously associated with several psychiatric disorders and ED-related phenotypes. Our study indicates that larger-scale collaborative studies will be needed to achieve the necessary power to detect loci underlying ED-related traits.

  1. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis.

    PubMed

    Joubert, Bonnie R; Felix, Janine F; Yousefi, Paul; Bakulski, Kelly M; Just, Allan C; Breton, Carrie; Reese, Sarah E; Markunas, Christina A; Richmond, Rebecca C; Xu, Cheng-Jian; Küpers, Leanne K; Oh, Sam S; Hoyo, Cathrine; Gruzieva, Olena; Söderhäll, Cilla; Salas, Lucas A; Baïz, Nour; Zhang, Hongmei; Lepeule, Johanna; Ruiz, Carlos; Ligthart, Symen; Wang, Tianyuan; Taylor, Jack A; Duijts, Liesbeth; Sharp, Gemma C; Jankipersadsing, Soesma A; Nilsen, Roy M; Vaez, Ahmad; Fallin, M Daniele; Hu, Donglei; Litonjua, Augusto A; Fuemmeler, Bernard F; Huen, Karen; Kere, Juha; Kull, Inger; Munthe-Kaas, Monica Cheng; Gehring, Ulrike; Bustamante, Mariona; Saurel-Coubizolles, Marie José; Quraishi, Bilal M; Ren, Jie; Tost, Jörg; Gonzalez, Juan R; Peters, Marjolein J; Håberg, Siri E; Xu, Zongli; van Meurs, Joyce B; Gaunt, Tom R; Kerkhof, Marjan; Corpeleijn, Eva; Feinberg, Andrew P; Eng, Celeste; Baccarelli, Andrea A; Benjamin Neelon, Sara E; Bradman, Asa; Merid, Simon Kebede; Bergström, Anna; Herceg, Zdenko; Hernandez-Vargas, Hector; Brunekreef, Bert; Pinart, Mariona; Heude, Barbara; Ewart, Susan; Yao, Jin; Lemonnier, Nathanaël; Franco, Oscar H; Wu, Michael C; Hofman, Albert; McArdle, Wendy; Van der Vlies, Pieter; Falahi, Fahimeh; Gillman, Matthew W; Barcellos, Lisa F; Kumar, Ashish; Wickman, Magnus; Guerra, Stefano; Charles, Marie-Aline; Holloway, John; Auffray, Charles; Tiemeier, Henning W; Smith, George Davey; Postma, Dirkje; Hivert, Marie-France; Eskenazi, Brenda; Vrijheid, Martine; Arshad, Hasan; Antó, Josep M; Dehghan, Abbas; Karmaus, Wilfried; Annesi-Maesano, Isabella; Sunyer, Jordi; Ghantous, Akram; Pershagen, Göran; Holland, Nina; Murphy, Susan K; DeMeo, Dawn L; Burchard, Esteban G; Ladd-Acosta, Christine; Snieder, Harold; Nystad, Wenche; Koppelman, Gerard H; Relton, Caroline L; Jaddoe, Vincent W V; Wilcox, Allen; Melén, Erik; London, Stephanie J

    2016-04-01

    Epigenetic modifications, including DNA methylation, represent a potential mechanism for environmental impacts on human disease. Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role. We formed the Pregnancy And Childhood Epigenetics (PACE) consortium and meta-analyzed, across 13 cohorts (n = 6,685), the association between maternal smoking in pregnancy and newborn blood DNA methylation at over 450,000 CpG sites (CpGs) by using the Illumina 450K BeadChip. Over 6,000 CpGs were differentially methylated in relation to maternal smoking at genome-wide statistical significance (false discovery rate, 5%), including 2,965 CpGs corresponding to 2,017 genes not previously related to smoking and methylation in either newborns or adults. Several genes are relevant to diseases that can be caused by maternal smoking (e.g., orofacial clefts and asthma) or adult smoking (e.g., certain cancers). A number of differentially methylated CpGs were associated with gene expression. We observed enrichment in pathways and processes critical to development. In older children (5 cohorts, n = 3,187), 100% of CpGs gave at least nominal levels of significance, far more than expected by chance (p value < 2.2 × 10(-16)). Results were robust to different normalization methods used across studies and cell type adjustment. In this large scale meta-analysis of methylation data, we identified numerous loci involved in response to maternal smoking in pregnancy with persistence into later childhood and provide insights into mechanisms underlying effects of this important exposure.

  2. Implementing meta-analysis from genome-wide association studies for pork quality traits.

    PubMed

    Bernal Rubio, Y L; Gualdrón Duarte, J L; Bates, R O; Ernst, C W; Nonneman, D; Rohrer, G A; King, D A; Shackelford, S D; Wheeler, T L; Cantet, R J C; Steibel, J P

    2015-12-01

    Pork quality plays an important role in the meat processing industry. Thus, different methodologies have been implemented to elucidate the genetic architecture of traits affecting meat quality. One of the most common and widely used approaches is to perform genome-wide association (GWA) studies. However, a limitation of many GWA in animal breeding is the limited power due to small sample sizes in animal populations. One alternative is to implement a meta-analysis of GWA (MA-GWA) combining results from independent association studies. The objective of this study was to identify significant genomic regions associated with meat quality traits by performing MA-GWA for 8 different traits in 3 independent pig populations. Results from MA-GWA were used to search for genes possibly associated with the set of evaluated traits. Data from 3 pig data sets (U.S. Meat Animal Research Center, commercial, and Michigan State University Pig Resource Population) were used. A MA was implemented by combining -scores derived for each SNP in every population and then weighting them using the inverse of estimated variance of SNP effects. A search for annotated genes retrieved genes previously reported as candidates for shear force (calpain-1 catalytic subunit [] and calpastatin []), as well as for ultimate pH, purge loss, and cook loss (protein kinase, AMP-activated, γ 3 noncatalytic subunit []). In addition, novel candidate genes were identified for intramuscular fat and cook loss (acyl-CoA synthetase family member 3 mitochondrial []) and for the objective measure of muscle redness, CIE a* (glycogen synthase 1, muscle [] and ferritin, light polypeptide []). Thus, implementation of MA-GWA allowed integration of results for economically relevant traits and identified novel genes to be tested as candidates for meat quality traits in pig populations.

  3. Genome-wide DNA methylation analysis in obsessive-compulsive disorder patients.

    PubMed

    Yue, Weihua; Cheng, Weiqiu; Liu, Zhaorui; Tang, Yi; Lu, Tianlan; Zhang, Dai; Tang, Muni; Huang, Yueqin

    2016-01-01

    Literatures have suggested that not only genetic but also environmental factors, interactively accounted for susceptibility of obsessive-compulsive disorder (OCD). DNA methylation may regulate expression of genes as the heritable epigenetic modification. The examination for genome-wide DNA methylation was performed on blood samples from 65 patients with OCD, as well as 96 healthy control subjects. The DNA methylation was examined at over 485,000 CpG sites using the Illumina Infinium Human Methylation450 BeadChip. As a result, 8,417 probes corresponding to 2,190 unique genes were found to be differentially methylated between OCD and healthy control subjects. Of those genes, 4,013 loci were located in CpG islands and 2,478 were in promoter regions. These included BCYRN1, BCOR, FGF13, HLA-DRB1, ARX, etc., which have previously been reported to be associated with OCD. Pathway analyses indicated that regulation of actin cytoskeleton, cell adhesion molecules (CAMs), actin binding, transcription regulator activity, and other pathways might be further associated with risk of OCD. Unsupervised clustering analysis of the top 3,000 most variable probes revealed two distinct groups with significantly more people with OCD in cluster one compared with controls (67.74% of cases v.s. 27.13% of controls, Chi-square = 26.011, df = 1, P = 3.41E-07). These results strongly suggested that differential DNA methylation might play an important role in etiology of OCD. PMID:27527274

  4. Genome wide analysis of transcript levels after perturbation of the EGFR pathway in the Drosophila ovary.

    PubMed

    Jordan, Katherine C; Hatfield, Steven D; Tworoger, Michael; Ward, Ellen J; Fischer, Karin A; Bowers, Stuart; Ruohola-Baker, Hannele

    2005-03-01

    Defects in the epidermal growth factor receptor (EGFR) pathway can lead to aggressive tumor formation. Activation of this pathway during normal development produces multiple outcomes at the cellular level, leading to cellular differentiation and cell cycle activation. To elucidate the downstream events induced by this pathway, we used genome-wide cDNA microarray technology to identify potential EGFR targets in Drosophila oogenesis. We focused on genes for which the transcriptional responses due to EGFR pathway activation and inactivation were in opposite directions, as this is expected for genes that are directly regulated by the pathway in this tissue type. We perturbed the EGFR pathway in epithelial follicle cells using seven different genetic backgrounds. To activate the pathway, we overexpressed an activated form of the EGFR (UAS-caEGFR), and an activated form of the signal transducer Raf (UAS-caRaf); we also over- or ectopically expressed the downstream homeobox transcription factor Mirror (UAS-mirr) and the ligand-activating serine protease Rhomboid (UAS-rho). To reduce pathway activity we used loss-of-function mutations in the ligand (gurken) and receptor (torpedo). From microarrays containing 6,255 genes, we found 454 genes that responded in an opposite manner in gain-of-function and loss-of-function conditions among which are many Wingless signaling pathway components. Further analysis of two such components, sugarless and pangolin, revealed a function for these genes in late follicle cell patterning. Of interest, components of other signaling pathways were also enriched in the EGFR target group, suggesting that one reason for the pleiotropic effects seen with EGFR activity in cancer progression and development may be its ability to regulate many other signaling pathways. PMID:15704171

  5. Genome-Wide Pathway Analysis Identifies Genetic Pathways Associated with Psoriasis.

    PubMed

    Aterido, Adrià; Julià, Antonio; Ferrándiz, Carlos; Puig, Lluís; Fonseca, Eduardo; Fernández-López, Emilia; Dauden, Esteban; Sánchez-Carazo, José Luís; López-Estebaranz, José Luís; Moreno-Ramírez, David; Vanaclocha, Francisco; Herrera, Enrique; de la Cueva, Pablo; Dand, Nick; Palau, Núria; Alonso, Arnald; López-Lasanta, María; Tortosa, Raül; García-Montero, Andrés; Codó, Laia; Gelpí, Josep Lluís; Bertranpetit, Jaume; Absher, Devin; Capon, Francesca; Myers, Richard M; Barker, Jonathan N; Marsal, Sara

    2016-03-01

    Psoriasis is a chronic inflammatory disease with a complex genetic architecture. To date, the psoriasis heritability is only partially explained. However, there is increasing evidence that the missing heritability in psoriasis could be explained by multiple genetic variants of low effect size from common genetic pathways. The objective of this study was to identify new genetic variation associated with psoriasis risk at the pathway level. We genotyped 598,258 single nucleotide polymorphisms in a discovery cohort of 2,281 case-control individuals from Spain. We performed a genome-wide pathway analysis using 1,053 reference biological pathways. A total of 14 genetic pathways (PFDR ≤ 2.55 × 10(-2)) were found to be significantly associated with psoriasis risk. Using an independent validation cohort of 7,353 individuals from the UK, a total of 6 genetic pathways were significantly replicated (PFDR ≤ 3.46 × 10(-2)). We found genetic pathways that had not been previously associated with psoriasis risk such as retinol metabolism (Pcombined = 1.84 × 10(-4)), the transport of inorganic ions and amino acids (Pcombined = 1.57 × 10(-7)), and post-translational protein modification (Pcombined = 1.57 × 10(-7)). In the latter pathway, MGAT5 showed a strong network centrality, and its association with psoriasis risk was further validated in an additional case-control cohort of 3,429 individuals (P < 0.05). These findings provide insights into the biological mechanisms associated with psoriasis susceptibility.

  6. Genome-wide analysis of alternative transcripts in human breast cancer

    PubMed Central

    Wen, Ji; Toomer, Kevin H.

    2016-01-01

    Transcript variants play a critical role in diversifying gene expression. Alternative splicing is a major mechanism for generating transcript variants. A number of genes have been implicated in breast cancer pathogenesis with their aberrant expression of alternative transcripts. In this study, we performed genome-wide analyses of transcript variant expression in breast cancer. With RNA-Seq data from 105 patients, we characterized the transcriptome of breast tumors, by pairwise comparison of gene expression in the breast tumor versus matched healthy tissue from each patient. We identified 2839 genes, ~10 % of protein-coding genes in the human genome, that had differential expression of transcript variants between tumors and healthy tissues. The validity of the computational analysis was confirmed by quantitative RT-PCR assessment of transcript variant expression from four top candidate genes. The alternative transcript profiling led to classification of breast cancer into two subgroups and yielded a novel molecular signature that could be prognostic of patients’ tumor burden and survival. We uncovered nine splicing factors (FOX2, MBNL1, QKI, PTBP1, ELAVL1, HNRNPC, KHDRBS1, SFRS2, and TIAR) that were involved in aberrant splicing in breast cancer. Network analyses for the coordinative patterns of transcript variant expression identified twelve “hub” genes that differentiated the cancerous and normal transcriptomes. Dysregulated expression of alternative transcripts may reveal novel biomarkers for tumor development. It may also suggest new therapeutic targets, such as the “hub” genes identified through the network analyses of transcript variant expression, or splicing factors implicated in the formation of the tumor transcriptome. PMID:25913416

  7. Genome-wide linkage analysis and physical mapping of the rippling muscle disease gene

    SciTech Connect

    Stephan, D.A.; Buist, N.R.M.; Bhaskar, A.C.

    1994-09-01

    Rippling muscle disease (RMD) is an inherited disorder of skeletal muscle in which mechanical stimuli provoke electrically silent contractions. The patient`s symptoms are muscle cramps, pain, and stiffness, particularly during or following exercise. Clinical signs are balling of muscle following percussion, and a characteristic lateral rolling movement of muscle occurring after contraction followed by stretching. We report a new 44-member pedigree segregating RMD as an autosomal dominant trait. A genome-wide genetic linkage study in this family, using a novel approach of testing closely spaced highly polymorphic markers in affected individuals, localized the responsible gene to the distal end of the long arm of chromosome 1 with a maximum multi-point lod score of 3.56 ({theta}=0). In this family, RMD is localized to a 6 cM region near D1S235. Physical mapping of the linked region yielded several positive YAC clones, one of which spans the entire 6 cM distance. Several candidate genes not present in the YAC contig, but in the region of 1q4, have been excluded as causative by either linkage analysis of intragenic microsatellite repeats (alpha-actinin, angiotensinogen) or by SSCP of exons (skeletal muscle alpha-actinin). We studied two previously reported German families for linkage to the same locus and this same area did not co-segregate with the disease, a finding that shows that different genetic defects can cause a similar clinical phenotype (genetic heterogeneity). An understanding of the defect in contraction control within the muscle fibers in this disease may lead to a better understanding of muscle force transduction, intracellular calcium homeostasis, or both.

  8. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis

    PubMed Central

    Joubert, Bonnie R.; Felix, Janine F.; Yousefi, Paul; Bakulski, Kelly M.; Just, Allan C.; Breton, Carrie; Reese, Sarah E.; Markunas, Christina A.; Richmond, Rebecca C.; Xu, Cheng-Jian; Küpers, Leanne K.; Oh, Sam S.; Hoyo, Cathrine; Gruzieva, Olena; Söderhäll, Cilla; Salas, Lucas A.; Baïz, Nour; Zhang, Hongmei; Lepeule, Johanna; Ruiz, Carlos; Ligthart, Symen; Wang, Tianyuan; Taylor, Jack A.; Duijts, Liesbeth; Sharp, Gemma C.; Jankipersadsing, Soesma A.; Nilsen, Roy M.; Vaez, Ahmad; Fallin, M. Daniele; Hu, Donglei; Litonjua, Augusto A.; Fuemmeler, Bernard F.; Huen, Karen; Kere, Juha; Kull, Inger; Munthe-Kaas, Monica Cheng; Gehring, Ulrike; Bustamante, Mariona; Saurel-Coubizolles, Marie José; Quraishi, Bilal M.; Ren, Jie; Tost, Jörg; Gonzalez, Juan R.; Peters, Marjolein J.; Håberg, Siri E.; Xu, Zongli; van Meurs, Joyce B.; Gaunt, Tom R.; Kerkhof, Marjan; Corpeleijn, Eva; Feinberg, Andrew P.; Eng, Celeste; Baccarelli, Andrea A.; Benjamin Neelon, Sara E.; Bradman, Asa; Merid, Simon Kebede; Bergström, Anna; Herceg, Zdenko; Hernandez-Vargas, Hector; Brunekreef, Bert; Pinart, Mariona; Heude, Barbara; Ewart, Susan; Yao, Jin; Lemonnier, Nathanaël; Franco, Oscar H.; Wu, Michael C.; Hofman, Albert; McArdle, Wendy; Van der Vlies, Pieter; Falahi, Fahimeh; Gillman, Matthew W.; Barcellos, Lisa F.; Kumar, Ashish; Wickman, Magnus; Guerra, Stefano; Charles, Marie-Aline; Holloway, John; Auffray, Charles; Tiemeier, Henning W.; Smith, George Davey; Postma, Dirkje; Hivert, Marie-France; Eskenazi, Brenda; Vrijheid, Martine; Arshad, Hasan; Antó, Josep M.; Dehghan, Abbas; Karmaus, Wilfried; Annesi-Maesano, Isabella; Sunyer, Jordi; Ghantous, Akram; Pershagen, Göran; Holland, Nina; Murphy, Susan K.; DeMeo, Dawn L.; Burchard, Esteban G.; Ladd-Acosta, Christine; Snieder, Harold; Nystad, Wenche; Koppelman, Gerard H.; Relton, Caroline L.; Jaddoe, Vincent W.V.; Wilcox, Allen; Melén, Erik; London, Stephanie J.

    2016-01-01

    Epigenetic modifications, including DNA methylation, represent a potential mechanism for environmental impacts on human disease. Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role. We formed the Pregnancy And Childhood Epigenetics (PACE) consortium and meta-analyzed, across 13 cohorts (n = 6,685), the association between maternal smoking in pregnancy and newborn blood DNA methylation at over 450,000 CpG sites (CpGs) by using the Illumina 450K BeadChip. Over 6,000 CpGs were differentially methylated in relation to maternal smoking at genome-wide statistical significance (false discovery rate, 5%), including 2,965 CpGs corresponding to 2,017 genes not previously related to smoking and methylation in either newborns or adults. Several genes are relevant to diseases that can be caused by maternal smoking (e.g., orofacial clefts and asthma) or adult smoking (e.g., certain cancers). A number of differentially methylated CpGs were associated with gene expression. We observed enrichment in pathways and processes critical to development. In older children (5 cohorts, n = 3,187), 100% of CpGs gave at least nominal levels of significance, far more than expected by chance (p value < 2.2 × 10−16). Results were robust to different normalization methods used across studies and cell type adjustment. In this large scale meta-analysis of methylation data, we identified numerous loci involved in response to maternal smoking in pregnancy with persistence into later childhood and provide insights into mechanisms underlying effects of this important exposure. PMID:27040690

  9. Genome-wide analysis of esophageal adenocarcinoma yields specific copy number aberrations that correlate with prognosis.

    PubMed

    Frankel, Adam; Armour, Nicola; Nancarrow, Derek; Krause, Lutz; Hayward, Nicholas; Lampe, Guy; Smithers, B Mark; Barbour, Andrew

    2014-04-01

    The incidence of esophageal adenocarcinoma (EAC) has been increasing rapidly for the past 3 decades in Western (Caucasian) populations. Curative treatment is based around esophagectomy, which has a major impact on quality of life. For those suitable for treatment with curative intent, 5-year survival is ∼30%. More accurate prognostic tools are therefore needed, and copy number aberrations (CNAs) may offer the ability to act as prospective biomarkers in this regard. We performed a genome-wide examination of CNAs in 54 samples of EAC using single-nucleotide polymorphism (SNP) arrays. Our aims were to describe frequent regions of CNA, to define driver CNAs, and to identify CNAs that correlated with survival. Regions of frequent amplification included oncogenes such as EGFR, MYC, KLF12, and ERBB2, while frequently deleted regions included tumor suppressor genes such as CDKN2A/B, PTPRD, FHIT, and SMAD4. The genomic identification of significant targets in cancer (GISTIC) algorithm identified 24 regions of gain and 28 regions of loss that were likely to contain driver changes. We discovered 61 genes in five regions that, when stratified by CNA type (gain or loss), correlated with a statistically significant difference in survival. Pathway analysis of the genes residing in both the GISTIC and prognostic regions showed they were significantly enriched for cancer-related networks. Finally, we discovered that copy-neutral loss of heterozygosity is a frequent mechanism of CNA in genes currently targetable by chemotherapy, potentially leading to under-reporting of cases suitable for such treatment.

  10. Genome-Wide Pathway Analysis Identifies Genetic Pathways Associated with Psoriasis.

    PubMed

    Aterido, Adrià; Julià, Antonio; Ferrándiz, Carlos; Puig, Lluís; Fonseca, Eduardo; Fernández-López, Emilia; Dauden, Esteban; Sánchez-Carazo, José Luís; López-Estebaranz, José Luís; Moreno-Ramírez, David; Vanaclocha, Francisco; Herrera, Enrique; de la Cueva, Pablo; Dand, Nick; Palau, Núria; Alonso, Arnald; López-Lasanta, María; Tortosa, Raül; García-Montero, Andrés; Codó, Laia; Gelpí, Josep Lluís; Bertranpetit, Jaume; Absher, Devin; Capon, Francesca; Myers, Richard M; Barker, Jonathan N; Marsal, Sara

    2016-03-01

    Psoriasis is a chronic inflammatory disease with a complex genetic architecture. To date, the psoriasis heritability is only partially explained. However, there is increasing evidence that the missing heritability in psoriasis could be explained by multiple genetic variants of low effect size from common genetic pathways. The objective of this study was to identify new genetic variation associated with psoriasis risk at the pathway level. We genotyped 598,258 single nucleotide polymorphisms in a discovery cohort of 2,281 case-control individuals from Spain. We performed a genome-wide pathway analysis using 1,053 reference biological pathways. A total of 14 genetic pathways (PFDR ≤ 2.55 × 10(-2)) were found to be significantly associated with psoriasis risk. Using an independent validation cohort of 7,353 individuals from the UK, a total of 6 genetic pathways were significantly replicated (PFDR ≤ 3.46 × 10(-2)). We found genetic pathways that had not been previously associated with psoriasis risk such as retinol metabolism (Pcombined = 1.84 × 10(-4)), the transport of inorganic ions and amino acids (Pcombined = 1.57 × 10(-7)), and post-translational protein modification (Pcombined = 1.57 × 10(-7)). In the latter pathway, MGAT5 showed a strong network centrality, and its association with psoriasis risk was further validated in an additional case-control cohort of 3,429 individuals (P < 0.05). These findings provide insights into the biological mechanisms associated with psoriasis susceptibility. PMID:26743605

  11. Genome-wide family-based linkage analysis of exome chip variants and cardiometabolic risk.

    PubMed

    Hellwege, Jacklyn N; Palmer, Nicholette D; Raffield, Laura M; Ng, Maggie C Y; Hawkins, Gregory A; Long, Jirong; Lorenzo, Carlos; Norris, Jill M; Ida Chen, Y-D; Speliotes, Elizabeth K; Rotter, Jerome I; Langefeld, Carl D; Wagenknecht, Lynne E; Bowden, Donald W

    2014-05-01

    Linkage analysis of complex traits has had limited success in identifying trait-influencing loci. Recently, coding variants have been implicated as the basis for some biomedical associations. We tested whether coding variants are the basis for linkage peaks of complex traits in 42 African-American (n = 596) and 90 Hispanic (n = 1,414) families in the Insulin Resistance Atherosclerosis Family Study (IRASFS) using Illumina HumanExome Beadchips. A total of 92,157 variants in African Americans (34%) and 81,559 (31%) in Hispanics were polymorphic and tested using two-point linkage and association analyses with 37 cardiometabolic phenotypes. In African Americans 77 LOD scores greater than 3 were observed. The highest LOD score was 4.91 with the APOE SNP rs7412 (MAF = 0.13) with plasma apolipoprotein B (ApoB). This SNP was associated with ApoB (P-value = 4 × 10(-19)) and accounted for 16.2% of the variance in African Americans. In Hispanic families, 104 LOD scores were greater than 3. The strongest evidence of linkage (LOD = 4.29) was with rs5882 (MAF = 0.46) in CETP with HDL. CETP variants were strongly associated with HDL (0.00049 < P-value <4.6 × 10(-12)), accounting for up to 4.5% of the variance. These loci have previously been shown to have effects on the biomedical traits evaluated here. Thus, evidence of strong linkage in this genome wide survey of primarily coding variants was uncommon. Loci with strong evidence of linkage was characterized by large contributions to the variance, and, in these cases, are common variants. Less compelling evidence of linkage and association was observed with additional loci that may require larger family sets to confirm.

  12. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis.

    PubMed

    Joubert, Bonnie R; Felix, Janine F; Yousefi, Paul; Bakulski, Kelly M; Just, Allan C; Breton, Carrie; Reese, Sarah E; Markunas, Christina A; Richmond, Rebecca C; Xu, Cheng-Jian; Küpers, Leanne K; Oh, Sam S; Hoyo, Cathrine; Gruzieva, Olena; Söderhäll, Cilla; Salas, Lucas A; Baïz, Nour; Zhang, Hongmei; Lepeule, Johanna; Ruiz, Carlos; Ligthart, Symen; Wang, Tianyuan; Taylor, Jack A; Duijts, Liesbeth; Sharp, Gemma C; Jankipersadsing, Soesma A; Nilsen, Roy M; Vaez, Ahmad; Fallin, M Daniele; Hu, Donglei; Litonjua, Augusto A; Fuemmeler, Bernard F; Huen, Karen; Kere, Juha; Kull, Inger; Munthe-Kaas, Monica Cheng; Gehring, Ulrike; Bustamante, Mariona; Saurel-Coubizolles, Marie José; Quraishi, Bilal M; Ren, Jie; Tost, Jörg; Gonzalez, Juan R; Peters, Marjolein J; Håberg, Siri E; Xu, Zongli; van Meurs, Joyce B; Gaunt, Tom R; Kerkhof, Marjan; Corpeleijn, Eva; Feinberg, Andrew P; Eng, Celeste; Baccarelli, Andrea A; Benjamin Neelon, Sara E; Bradman, Asa; Merid, Simon Kebede; Bergström, Anna; Herceg, Zdenko; Hernandez-Vargas, Hector; Brunekreef, Bert; Pinart, Mariona; Heude, Barbara; Ewart, Susan; Yao, Jin; Lemonnier, Nathanaël; Franco, Oscar H; Wu, Michael C; Hofman, Albert; McArdle, Wendy; Van der Vlies, Pieter; Falahi, Fahimeh; Gillman, Matthew W; Barcellos, Lisa F; Kumar, Ashish; Wickman, Magnus; Guerra, Stefano; Charles, Marie-Aline; Holloway, John; Auffray, Charles; Tiemeier, Henning W; Smith, George Davey; Postma, Dirkje; Hivert, Marie-France; Eskenazi, Brenda; Vrijheid, Martine; Arshad, Hasan; Antó, Josep M; Dehghan, Abbas; Karmaus, Wilfried; Annesi-Maesano, Isabella; Sunyer, Jordi; Ghantous, Akram; Pershagen, Göran; Holland, Nina; Murphy, Susan K; DeMeo, Dawn L; Burchard, Esteban G; Ladd-Acosta, Christine; Snieder, Harold; Nystad, Wenche; Koppelman, Gerard H; Relton, Caroline L; Jaddoe, Vincent W V; Wilcox, Allen; Melén, Erik; London, Stephanie J

    2016-04-01

    Epigenetic modifications, including DNA methylation, represent a potential mechanism for environmental impacts on human disease. Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role. We formed the Pregnancy And Childhood Epigenetics (PACE) consortium and meta-analyzed, across 13 cohorts (n = 6,685), the association between maternal smoking in pregnancy and newborn blood DNA methylation at over 450,000 CpG sites (CpGs) by using the Illumina 450K BeadChip. Over 6,000 CpGs were differentially methylated in relation to maternal smoking at genome-wide statistical significance (false discovery rate, 5%), including 2,965 CpGs corresponding to 2,017 genes not previously related to smoking and methylation in either newborns or adults. Several genes are relevant to diseases that can be caused by maternal smoking (e.g., orofacial clefts and asthma) or adult smoking (e.g., certain cancers). A number of differentially methylated CpGs were associated with gene expression. We observed enrichment in pathways and processes critical to development. In older children (5 cohorts, n = 3,187), 100% of CpGs gave at least nominal levels of significance, far more than expected by chance (p value < 2.2 × 10(-16)). Results were robust to different normalization methods used across studies and cell type adjustment. In this large scale meta-analysis of methylation data, we identified numerous loci involved in response to maternal smoking in pregnancy with persistence into later childhood and provide insights into mechanisms underlying effects of this important exposure. PMID:27040690

  13. Genome-wide DNA methylation analysis in obsessive-compulsive disorder patients

    PubMed Central

    Yue, Weihua; Cheng, Weiqiu; Liu, Zhaorui; Tang, Yi; Lu, Tianlan; Zhang, Dai; Tang, Muni; Huang, Yueqin

    2016-01-01

    Literatures have suggested that not only genetic but also environmental factors, interactively accounted for susceptibility of obsessive-compulsive disorder (OCD). DNA methylation may regulate expression of genes as the heritable epigenetic modification. The examination for genome-wide DNA methylation was performed on blood samples from 65 patients with OCD, as well as 96 healthy control subjects. The DNA methylation was examined at over 485,000 CpG sites using the Illumina Infinium Human Methylation450 BeadChip. As a result, 8,417 probes corresponding to 2,190 unique genes were found to be differentially methylated between OCD and healthy control subjects. Of those genes, 4,013 loci were located in CpG islands and 2,478 were in promoter regions. These included BCYRN1, BCOR, FGF13, HLA-DRB1, ARX, etc., which have previously been reported to be associated with OCD. Pathway analyses indicated that regulation of actin cytoskeleton, cell adhesion molecules (CAMs), actin binding, transcription regulator activity, and other pathways might be further associated with risk of OCD. Unsupervised clustering analysis of the top 3,000 most variable probes revealed two distinct groups with significantly more people with OCD in cluster one compared with controls (67.74% of cases v.s. 27.13% of controls, Chi-square = 26.011, df = 1, P = 3.41E-07). These results strongly suggested that differential DNA methylation might play an important role in etiology of OCD. PMID:27527274

  14. Genome-wide analysis and molecular dissection of the SPL gene family in Salvia miltiorrhiza.

    PubMed

    Zhang, Linsu; Wu, Bin; Zhao, Degang; Li, Caili; Shao, Fenjuan; Lu, Shanfa

    2014-01-01

    SQUAMOSA promoter binding protein-likes (SPLs) are plant-specific transcription factors playing vital regulatory roles in plant growth and development. There is no information about SPLs in Salvia miltiorrhiza (Danshen), a significant medicinal plant widely used in Traditional Chinese medicine (TCM) for >1,700 years and an emerging model plant for TCM studies. Through genome-wide identification and subsequent molecular cloning, we identified a total 15 SmSPLs with divergent sequence features, gene structures, and motifs. Comparative analysis showed sequence conservation between SmSPLs and their Arabidopsis counterparts. A phylogenetic tree clusters SmSPLs into six groups. Many of the motifs identified commonly exist in a group/subgroup, implying their functional redundancy. Eight SmSPLs were predicted and experimentally validated to be targets of miR156/157. SmSPLs were differentially expressed in various tissues of S. milltiorrhiza. The expression of miR156/157-targeted SmSPLs was increased with the maturation of S. miltiorrhiza, whereas the expression of miR156/157 was decreased, confirming the regulatory roles of miR156/157 in SmSPLs and suggesting the functions of SmSPLs in S. miltiorrhiza development. The expression of miR156/157 was negatively correlated with miR172 during the maturation of S. miltiorrhiza. The results indicate the significance and complexity of SmSPL-, miR156-, and miR172-mediated regulation of developmental timing in S. miltiorrhiza. PMID:24112769

  15. Genome wide analysis of transcript levels after perturbation of the EGFR pathway in the Drosophila ovary.

    PubMed

    Jordan, Katherine C; Hatfield, Steven D; Tworoger, Michael; Ward, Ellen J; Fischer, Karin A; Bowers, Stuart; Ruohola-Baker, Hannele

    2005-03-01

    Defects in the epidermal growth factor receptor (EGFR) pathway can lead to aggressive tumor formation. Activation of this pathway during normal development produces multiple outcomes at the cellular level, leading to cellular differentiation and cell cycle activation. To elucidate the downstream events induced by this pathway, we used genome-wide cDNA microarray technology to identify potential EGFR targets in Drosophila oogenesis. We focused on genes for which the transcriptional responses due to EGFR pathway activation and inactivation were in opposite directions, as this is expected for genes that are directly regulated by the pathway in this tissue type. We perturbed the EGFR pathway in epithelial follicle cells using seven different genetic backgrounds. To activate the pathway, we overexpressed an activated form of the EGFR (UAS-caEGFR), and an activated form of the signal transducer Raf (UAS-caRaf); we also over- or ectopically expressed the downstream homeobox transcription factor Mirror (UAS-mirr) and the ligand-activating serine protease Rhomboid (UAS-rho). To reduce pathway activity we used loss-of-function mutations in the ligand (gurken) and receptor (torpedo). From microarrays containing 6,255 genes, we found 454 genes that responded in an opposite manner in gain-of-function and loss-of-function conditions among which are many Wingless signaling pathway components. Further analysis of two such components, sugarless and pangolin, revealed a function for these genes in late follicle cell patterning. Of interest, components of other signaling pathways were also enriched in the EGFR target group, suggesting that one reason for the pleiotropic effects seen with EGFR activity in cancer progression and development may be its ability to regulate many other signaling pathways.

  16. Genome-wide analysis identifies a role for common copy number variants in specific language impairment

    PubMed Central

    Simpson, Nuala H; Ceroni, Fabiola; Reader, Rose H; Covill, Laura E; Knight, Julian C; Nudel, R; Monaco, A P; Simonoff, E; Bolton, P F; Pickles, A; Slonims, V; Dworzynski, K; Everitt, A; Clark, A; Watson, J; Seckl, J; Cowie, H; Cohen, W; Nasir, J; Bishop, D V M; Simkin, Z; Hennessy, Elizabeth R; Bolton, Patrick F; Conti-Ramsden, Gina; O'Hare, Anne; Baird, Gillian; Fisher, Simon E; Newbury, Dianne F

    2015-01-01

    An exploratory genome-wide copy number variant (CNV) study was performed in 127 independent cases with specific language impairment (SLI), their first-degree relatives (385 individuals) and 269 population controls. Language-impaired cases showed an increased CNV burden in terms of the average number of events (11.28 vs 10.01, empirical P=0.003), the total length of CNVs (717 vs 513 Kb, empirical P=0.0001), the average CNV size (63.75 vs 51.6 Kb, empirical P=0.0005) and the number of genes spanned (14.29 vs 10.34, empirical P=0.0007) when compared with population controls, suggesting that CNVs may contribute to SLI risk. A similar trend was observed in first-degree relatives regardless of affection status. The increased burden found in our study was not driven by large or de novo events, which have been described as causative in other neurodevelopmental disorders. Nevertheless, de novo CNVs might be important on a case-by-case basis, as indicated by identification of events affecting relevant genes, such as ACTR2 and CSNK1A1, and small events within known micro-deletion/-duplication syndrome regions, such as chr8p23.1. Pathway analysis of the genes present within the CNVs of the independent cases identified significant overrepresentation of acetylcholine binding, cyclic-nucleotide phosphodiesterase activity and MHC proteins as compared with controls. Taken together, our data suggest that the majority of the risk conferred by CNVs in SLI is via common, inherited events within a ‘common disorder–common variant' model. Therefore the risk conferred by CNVs will depend upon the combination of events inherited (both CNVs and SNPs), the genetic background of the individual and the environmental factors. PMID:25585696

  17. Bivariate Genome-Wide Association Analysis of the Growth and Intake Components of Feed Efficiency

    PubMed Central

    Beever, Jonathan E.; Bollero, Germán A.; Southey, Bruce R.; Faulkner, Daniel B.; Rodriguez-Zas, Sandra L.

    2013-01-01

    Single nucleotide polymorphisms (SNPs) associated with average daily gain (ADG) and dry matter intake (DMI), two major components of feed efficiency in cattle, were identified in a genome-wide association study (GWAS). Uni- and multi-SNP models were used to describe feed efficiency in a training data set and the results were confirmed in a validation data set. Results from the univariate and bivariate analyses of ADG and DMI, adjusted by the feedlot beef steer maintenance requirements, were compared. The bivariate uni-SNP analysis identified (P-value <0.0001) 11 SNPs, meanwhile the univariate analyses of ADG and DMI identified 8 and 9 SNPs, respectively. Among the six SNPs confirmed in the validation data set, five SNPs were mapped to KDELC2, PHOX2A, and TMEM40. Findings from the uni-SNP models were used to develop highly accurate predictive multi-SNP models in the training data set. Despite the substantially smaller size of the validation data set, the training multi-SNP models had slightly lower predictive ability when applied to the validation data set. Six Gene Ontology molecular functions related to ion transport activity were enriched (P-value <0.001) among the genes associated with the detected SNPs. The findings from this study demonstrate the complementary value of the uni- and multi-SNP models, and univariate and bivariate GWAS analyses. The identified SNPs can be used for genome-enabled improvement of feed efficiency in feedlot beef cattle, and can aid in the design of empirical studies to further confirm the associations. PMID:24205251

  18. Genome-wide analysis of the maternal-to-zygotic transition in Drosophila primordial germ cells

    PubMed Central

    2012-01-01

    Background During the maternal-to-zygotic transition (MZT) vast changes in the embryonic transcriptome are produced by a combination of two processes: elimination of maternally provided mRNAs and synthesis of new transcripts from the zygotic genome. Previous genome-wide analyses of the MZT have been restricted to whole embryos. Here we report the first such analysis for primordial germ cells (PGCs), the progenitors of the germ-line stem cells. Results We purified PGCs from Drosophila embryos, defined their proteome and transcriptome, and assessed the content, scale and dynamics of their MZT. Transcripts encoding proteins that implement particular types of biological functions group into nine distinct expression profiles, reflecting coordinate control at the transcriptional and posttranscriptional levels. mRNAs encoding germ-plasm components and cell-cell signaling molecules are rapidly degraded while new transcription produces mRNAs encoding the core transcriptional and protein synthetic machineries. The RNA-binding protein Smaug is essential for the PGC MZT, clearing transcripts encoding proteins that regulate stem cell behavior, transcriptional and posttranscriptional processes. Computational analyses suggest that Smaug and AU-rich element binding proteins function independently to control transcript elimination. Conclusions The scale of the MZT is similar in the soma and PGCs. However, the timing and content of their MZTs differ, reflecting the distinct developmental imperatives of these cell types. The PGC MZT is delayed relative to that in the soma, likely because relief of PGC-specific transcriptional silencing is required for zygotic genome activation as well as for efficient maternal transcript clearance. PMID:22348290

  19. Genome-Wide Analysis of Salicylate and Dibenzofuran Metabolism in Sphingomonas Wittichii RW1

    PubMed Central

    Coronado, Edith; Roggo, Clémence; Johnson, David R.; van der Meer, Jan Roelof

    2012-01-01

    Sphingomonas wittichii RW1 is a bacterium isolated for its ability to degrade the xenobiotic compounds dibenzodioxin and dibenzofuran (DBF). A number of genes involved in DBF degradation have been previously characterized, such as the dxn cluster, dbfB, and the electron transfer components fdx1, fdx3, and redA2. Here we use a combination of whole genome transcriptome analysis and transposon library screening to characterize RW1 catabolic and other genes implicated in the reaction to or degradation of DBF. To detect differentially expressed genes upon exposure to DBF, we applied three different growth exposure experiments, using either short DBF exposures to actively growing cells or growing them with DBF as sole carbon and energy source. Genome-wide gene expression was examined using a custom-made microarray. In addition, proportional abundance determination of transposon insertions in RW1 libraries grown on salicylate or DBF by ultra-high throughput sequencing was used to infer genes whose interruption caused a fitness loss for growth on DBF. Expression patterns showed that batch and chemostat growth conditions, and short or long exposure of cells to DBF produced very different responses. Numerous other uncharacterized catabolic gene clusters putatively involved in aromatic compound metabolism increased expression in response to DBF. In addition, only very few transposon insertions completely abolished growth on DBF. Some of those (e.g., in dxnA1) were expected, whereas others (in a gene cluster for phenylacetate degradation) were not. Both transcriptomic data and transposon screening suggest operation of multiple redundant and parallel aromatic pathways, depending on DBF exposure. In addition, increased expression of other non-catabolic genes suggests that during initial exposure, S. wittichii RW1 perceives DBF as a stressor, whereas after longer exposure, the compound is recognized as a carbon source and metabolized using several pathways in parallel. PMID

  20. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa

    PubMed Central

    Rameneni, Jana Jeevan; Li, Xiaonan; Sivanandhan, Ganesan; Choi, Su Ryun; Pang, Wenxing; Im, Subin; Lim, Yong Pyo

    2016-01-01

    Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA—BrIAA) and 36 cross species (BrIAA—AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa. PMID

  1. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa.

    PubMed

    Paul, Parameswari; Dhandapani, Vignesh; Rameneni, Jana Jeevan; Li, Xiaonan; Sivanandhan, Ganesan; Choi, Su Ryun; Pang, Wenxing; Im, Subin; Lim, Yong Pyo

    2016-01-01

    Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA-BrIAA) and 36 cross species (BrIAA-AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa.

  2. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa.

    PubMed

    Paul, Parameswari; Dhandapani, Vignesh; Rameneni, Jana Jeevan; Li, Xiaonan; Sivanandhan, Ganesan; Choi, Su Ryun; Pang, Wenxing; Im, Subin; Lim, Yong Pyo

    2016-01-01

    Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA-BrIAA) and 36 cross species (BrIAA-AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa. PMID

  3. Common genetic variation and survival after colorectal cancer diagnosis: a genome-wide analysis.

    PubMed

    Phipps, Amanda I; Passarelli, Michael N; Chan, Andrew T; Harrison, Tabitha A; Jeon, Jihyoun; Hutter, Carolyn M; Berndt, Sonja I; Brenner, Hermann; Caan, Bette J; Campbell, Peter T; Chang-Claude, Jenny; Chanock, Stephen J; Cheadle, Jeremy P; Curtis, Keith R; Duggan, David; Fisher, David; Fuchs, Charles S; Gala, Manish; Giovannucci, Edward L; Hayes, Richard B; Hoffmeister, Michael; Hsu, Li; Jacobs, Eric J; Jansen, Lina; Kaplan, Richard; Kap, Elisabeth J; Maughan, Timothy S; Potter, John D; Schoen, Robert E; Seminara, Daniela; Slattery, Martha L; West, Hannah; White, Emily; Peters, Ulrike; Newcomb, Polly A

    2016-01-01

    Genome-wide association studies have identified several germline single nucleotide polymorphisms (SNPs) significantly associated with colorectal cancer (CRC) incidence. Common germline genetic variation may also be related to CRC survival. We used a discovery-based approach to identify SNPs related to survival outcomes after CRC diagnosis. Genome-wide genotyping arrays were conducted for 3494 individuals with invasive CRC enrolled in six prospective cohort studies (median study-specific follow-up = 4.2-8.1 years). In pooled analyses, we used Cox regression to assess SNP-specific associations with CRC-specific and overall survival, with additional analyses stratified by stage at diagnosis. Top findings were followed-up in independent studies. A P value threshold of P < 5×10(-8) in analyses combining discovery and follow-up studies was required for genome-wide significance. Among individuals with distant-metastatic CRC, several SNPs at 6p12.1, nearest the ELOVL5 gene, were statistically significantly associated with poorer survival, with the strongest associations noted for rs209489 [hazard ratio (HR) = 1.8, P = 7.6×10(-10) and HR = 1.8, P = 3.7×10(-9) for CRC-specific and overall survival, respectively). No SNPs were statistically significantly associated with survival among all cases combined or in cases without distant-metastases. SNPs in 6p12.1/ELOVL5 were associated with survival outcomes in individuals with distant-metastatic CRC, and merit further follow-up for functional significance. Findings from this genome-wide association study highlight the potential importance of genetic variation in CRC prognosis and provide clues to genomic regions of potential interest. PMID:26586795

  4. Genetic architecture dissection by genome-wide association analysis reveals avian eggshell ultrastructure traits

    PubMed Central

    Duan, Zhongyi; Sun, Congjiao; Shen, ManMan; Wang, Kehua; Yang, Ning; Zheng, Jiangxia; Xu, Guiyun

    2016-01-01

    The ultrastructure of an eggshell is considered the major determinant of eggshell quality, which has biological and economic significance for the avian and poultry industries. However, the interrelationships and genome-wide architecture of eggshell ultrastructure remain to be elucidated. Herein, we measured eggshell thickness (EST), effective layer thickness (ET), mammillary layer thickness (MT), and mammillary density (MD) and conducted genome-wide association studies in 927 F2 hens. The SNP-based heritabilities of eggshell ultrastructure traits were estimated to be 0.39, 0.36, 0.17 and 0.19 for EST, ET, MT and MD, respectively, and a total of 719, 784, 1 and 10 genome-wide significant SNPs were associated with EST, ET, MT and MD, respectively. ABCC9, ITPR2, KCNJ8 and WNK1, which are involved in ion transport, were suggested to be the key genes regulating EST and ET. ITM2C and KNDC1 likely affect MT and MD, respectively. Additionally, there were linear relationships between the chromosome lengths and the variance explained per chromosome for EST (R2 = 0.57) and ET (R2 = 0.67). In conclusion, the interrelationships and genetic architecture of eggshell ultrastructure traits revealed in this study are valuable for our understanding of the avian eggshell and contribute to research on a variety of other calcified shells. PMID:27456605

  5. Genetic architecture dissection by genome-wide association analysis reveals avian eggshell ultrastructure traits.

    PubMed

    Duan, Zhongyi; Sun, Congjiao; Shen, ManMan; Wang, Kehua; Yang, Ning; Zheng, Jiangxia; Xu, Guiyun

    2016-01-01

    The ultrastructure of an eggshell is considered the major determinant of eggshell quality, which has biological and economic significance for the avian and poultry industries. However, the interrelationships and genome-wide architecture of eggshell ultrastructure remain to be elucidated. Herein, we measured eggshell thickness (EST), effective layer thickness (ET), mammillary layer thickness (MT), and mammillary density (MD) and conducted genome-wide association studies in 927 F2 hens. The SNP-based heritabilities of eggshell ultrastructure traits were estimated to be 0.39, 0.36, 0.17 and 0.19 for EST, ET, MT and MD, respectively, and a total of 719, 784, 1 and 10 genome-wide significant SNPs were associated with EST, ET, MT and MD, respectively. ABCC9, ITPR2, KCNJ8 and WNK1, which are involved in ion transport, were suggested to be the key genes regulating EST and ET. ITM2C and KNDC1 likely affect MT and MD, respectively. Additionally, there were linear relationships between the chromosome lengths and the variance explained per chromosome for EST (R(2) = 0.57) and ET (R(2) = 0.67). In conclusion, the interrelationships and genetic architecture of eggshell ultrastructure traits revealed in this study are valuable for our understanding of the avian eggshell and contribute to research on a variety of other calcified shells. PMID:27456605

  6. Creative Activities in Music--A Genome-Wide Linkage Analysis.

    PubMed

    Oikkonen, Jaana; Kuusi, Tuire; Peltonen, Petri; Raijas, Pirre; Ukkola-Vuoti, Liisa; Karma, Kai; Onkamo, Päivi; Järvelä, Irma

    2016-01-01

    Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose

  7. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    DOE PAGES

    Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.; Inmon, Jay J.; Millhollon, Jon C.; Liechty, Zach; Page, Justin T.; Jenks, Matthew A.; Chapman, Kent D.; Udall, Joshua A.; et al

    2014-11-18

    The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterizemore » the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species (G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes (FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes (FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior

  8. Creative Activities in Music – A Genome-Wide Linkage Analysis

    PubMed Central

    Oikkonen, Jaana; Kuusi, Tuire; Peltonen, Petri; Raijas, Pirre; Ukkola-Vuoti, Liisa; Karma, Kai; Onkamo, Päivi; Järvelä, Irma

    2016-01-01

    Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose

  9. Creative Activities in Music--A Genome-Wide Linkage Analysis.

    PubMed

    Oikkonen, Jaana; Kuusi, Tuire; Peltonen, Petri; Raijas, Pirre; Ukkola-Vuoti, Liisa; Karma, Kai; Onkamo, Päivi; Järvelä, Irma

    2016-01-01

    Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose

  10. Pharmacogenomic Genome-Wide Meta-Analysis of Blood Pressure Response to β-Blockers in Hypertensive African Americans.

    PubMed

    Gong, Yan; Wang, Zhiying; Beitelshees, Amber L; McDonough, Caitrin W; Langaee, Taimour Y; Hall, Karen; Schmidt, Siegfried O F; Curry, Robert W; Gums, John G; Bailey, Kent R; Boerwinkle, Eric; Chapman, Arlene B; Turner, Stephen T; Cooper-DeHoff, Rhonda M; Johnson, Julie A

    2016-03-01

    African Americans suffer a higher prevalence of hypertension compared with other racial/ethnic groups. In this study, we performed a pharmacogenomic genome-wide association study of blood pressure (BP) response to β-blockers in African Americans with uncomplicated hypertension. Genome-wide meta-analysis was performed in 318 African American hypertensive participants in the 2 Pharmacogenomic Evaluation of Antihypertensive Responses studies: 150 treated with atenolol monotherapy and 168 treated with metoprolol monotherapy. The analysis adjusted for age, sex, baseline BP and principal components for ancestry. Genome-wide significant variants with P<5×10(-8) and suggestive variants with P<5×10(-7) were evaluated in an additional cohort of 141 African Americans treated with the addition of atenolol to hydrochlorothiazide treatment. The validated variants were then meta-analyzed in these 3 groups of African Americans. Two variants discovered in the monotherapy meta-analysis were validated in the add-on therapy. African American participants heterozygous for SLC25A31 rs201279313 deletion versus wild-type genotype had better diastolic BP response to atenolol monotherapy, metoprolol monotherapy, and atenolol add-on therapy: -9.3 versus -4.6, -9.6 versus -4.8, and -9.7 versus -6.4 mm Hg, respectively (3-group meta-analysis P=2.5×10(-8), β=-4.42 mm Hg per variant allele). Similarly, LRRC15 rs11313667 was validated for systolic BP response to β-blocker therapy with 3-group meta-analysis P=7.2×10(-8) and β=-3.65 mm Hg per variant allele. In this first pharmacogenomic genome-wide meta-analysis of BP response to β-blockers in African Americans, we identified novel variants that may provide valuable information for personalized antihypertensive treatment in this group. PMID:26729753

  11. Genome-Wide Association Study to Identify Common Variants Associated with Brachial Circumference: A Meta-Analysis of 14 Cohorts

    PubMed Central

    Boraska, Vesna; Day-Williams, Aaron; Franklin, Christopher S.; Elliott, Katherine S.; Panoutsopoulou, Kalliope; Tachmazidou, Ioanna; Albrecht, Eva; Bandinelli, Stefania; Beilin, Lawrence J.; Bochud, Murielle; Cadby, Gemma; Ernst, Florian; Evans, David M.; Hayward, Caroline; Hicks, Andrew A.; Huffman, Jennifer; Huth, Cornelia; James, Alan L.; Klopp, Norman; Kolcic, Ivana; Kutalik, Zoltán; Lawlor, Debbie A.; Musk, Arthur W.; Pehlic, Marina; Pennell, Craig E.; Perry, John R. B.; Peters, Annette; Polasek, Ozren; Pourcain, Beate St; Ring, Susan M.; Salvi, Erika; Schipf, Sabine; Staessen, Jan A.; Teumer, Alexander; Timpson, Nicholas; Vitart, Veronique; Warrington, Nicole M.; Yaghootkar, Hanieh; Zemunik, Tatijana; Zgaga, Lina; An, Ping; Anttila, Verneri; Borecki, Ingrid B.; Holmen, Jostein; Ntalla, Ioanna; Palotie, Aarno; Pietiläinen, Kirsi H.; Wedenoja, Juho; Winsvold, Bendik S.; Dedoussis, George V.; Kaprio, Jaakko; Province, Michael A.; Zwart, John-Anker; Burnier, Michel; Campbell, Harry; Cusi, Daniele; Davey Smith, George; Frayling, Timothy M.; Gieger, Christian; Palmer, Lyle J.; Pramstaller, Peter P.; Rudan, Igor; Völzke, Henry; Wichmann, H. -Erich; Wright, Alan F.; Zeggini, Eleftheria

    2012-01-01

    Brachial circumference (BC), also known as upper arm or mid arm circumference, can be used as an indicator of muscle mass and fat tissue, which are distributed differently in men and women. Analysis of anthropometric measures of peripheral fat distribution such as BC could help in understanding the complex pathophysiology behind overweight and obesity. The purpose of this study is to identify genetic variants associated with BC through a large-scale genome-wide association scan (GWAS) meta-analysis. We used fixed-effects meta-analysis to synthesise summary results across 14 GWAS discovery and 4 replication cohorts comprising overall 22,376 individuals (12,031 women and 10,345 men) of European ancestry. Individual analyses were carried out for men, women, and combined across sexes using linear regression and an additive genetic model: adjusted for age and adjusted for age and BMI. We prioritised signals for follow-up in two-stages. We did not detect any signals reaching genome-wide significance. The FTO rs9939609 SNP showed nominal evidence for association (p<0.05) in the age-adjusted strata for men and across both sexes. In this first GWAS meta-analysis for BC to date, we have not identified any genome-wide significant signals and do not observe robust association of previously established obesity loci with BC. Large-scale collaborations will be necessary to achieve higher power to detect loci underlying BC. PMID:22479309

  12. Comprehensive analysis of genome-wide DNA methylation across human polycystic ovary syndrome ovary granulosa cell

    PubMed Central

    Peng, Zhaofeng; Wang, Linlin; Du, Linqing; Niu, Wenbin; Sun, Yingpu

    2016-01-01

    Polycystic ovary syndrome (PCOS) affects approximately 7% of the reproductive-age women. A growing body of evidence indicated that epigenetic mechanisms contributed to the development of PCOS. The role of DNA modification in human PCOS ovary granulosa cell is still unknown in PCOS progression. Global DNA methylation and hydroxymethylation were detected between PCOS’ and controls’ granulosa cell. Genome-wide DNA methylation was profiled to investigate the putative function of DNA methylaiton. Selected genes expressions were analyzed between PCOS’ and controls’ granulosa cell. Our results showed that the granulosa cell global DNA methylation of PCOS patients was significant higher than the controls’. The global DNA hydroxymethylation showed low level and no statistical difference between PCOS and control. 6936 differentially methylated CpG sites were identified between control and PCOS-obesity. 12245 differential methylated CpG sites were detected between control and PCOS-nonobesity group. 5202 methylated CpG sites were significantly differential between PCOS-obesity and PCOS-nonobesity group. Our results showed that DNA methylation not hydroxymethylation altered genome-wide in PCOS granulosa cell. The different methylation genes were enriched in development protein, transcription factor activity, alternative splicing, sequence-specific DNA binding and embryonic morphogenesis. YWHAQ, NCF2, DHRS9 and SCNA were up-regulation in PCOS-obesity patients with no significance different between control and PCOS-nonobesity patients, which may be activated by lower DNA methylaiton. Global and genome-wide DNA methylation alteration may contribute to different genes expression and PCOS clinical pathology. PMID:27056885

  13. Genome-wide analysis of methylation in bovine clones by methylated DNA immunoprecipitation (MeDIP).

    PubMed

    Kiefer, Hélène

    2015-01-01

    Methylated DNA immunoprecipitation (MeDIP), when coupled to high-throughput sequencing or microarray hybridization, allows for the identification of methylated loci at a genome-wide scale. Genomic regions affected by incomplete reprogramming after nuclear transfer can potentially be delineated by comparing the MeDIP profiles of bovine clones and non-clones. This chapter presents a MeDIP protocol largely inspired from Mohn and colleagues (Mohn et al., Methods Mol Biol 507:55-64, 2009), with PCR primers specific for cattle, and when possible, overviews of experimental designs adapted to the comparison between clones and non-clones.

  14. Genome-wide analysis and identification of genes related to expansin gene family in indica rice.

    PubMed

    Hemalatha, N; Rajesh, M K; Narayanan, N K

    2011-01-01

    In this study, we carried out genome-wide analyses to explore expansin gene family in the genome of indica rice. Reference nucleotides were chosen as query sequences for searches in the indica rice genome database. Clones having genomic sequences similar to expansin were taken and converted to amino acid sequences. Putative sequences were subjected to PROSITE and Pfam databases, and 21 signature-sequences-related expansin gene family was obtained. The presence of transmembrane domains was also predicted for all 21 expansin proteins. A phylogenetic tree was generated from the alignments of the proteins sequences to examine the phylogenetic relationship of indica rice expansin proteins.

  15. Genome-Wide Association Analysis of Blood Biomarkers in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Kim, Deog Kyeom; Cho, Michael H.; Hersh, Craig P.; Lomas, David A.; Miller, Bruce E.; Kong, Xiangyang; Bakke, Per; Gulsvik, Amund; Agustí, Alvar; Wouters, Emiel; Celli, Bartolome; Coxson, Harvey; Vestbo, Jørgen; MacNee, William; Yates, Julie C.; Rennard, Stephen; Litonjua, Augusto; Qiu, Weiliang; Beaty, Terri H.; Crapo, James D.; Riley, John H.; Tal-Singer, Ruth

    2012-01-01

    Rationale: A genome-wide association study (GWAS) for circulating chronic obstructive pulmonary disease (COPD) biomarkers could identify genetic determinants of biomarker levels and COPD susceptibility. Objectives: To identify genetic variants of circulating protein biomarkers and novel genetic determinants of COPD. Methods: GWAS was performed for two pneumoproteins, Clara cell secretory protein (CC16) and surfactant protein D (SP-D), and five systemic inflammatory markers (C-reactive protein, fibrinogen, IL-6, IL-8, and tumor necrosis factor-α) in 1,951 subjects with COPD. For genome-wide significant single nucleotide polymorphisms (SNPs) (P < 1 × 10−8), association with COPD susceptibility was tested in 2,939 cases with COPD and 1,380 smoking control subjects. The association of candidate SNPs with mRNA expression in induced sputum was also elucidated. Measurements and Main Results: Genome-wide significant susceptibility loci affecting biomarker levels were found only for the two pneumoproteins. Two discrete loci affecting CC16, one region near the CC16 coding gene (SCGB1A1) on chromosome 11 and another locus approximately 25 Mb away from SCGB1A1, were identified, whereas multiple SNPs on chromosomes 6 and 16, in addition to SNPs near SFTPD, had genome-wide significant associations with SP-D levels. Several SNPs affecting circulating CC16 levels were significantly associated with sputum mRNA expression of SCGB1A1 (P = 0.009–0.03). Several SNPs highly associated with CC16 or SP-D levels were nominally associated with COPD in a collaborative GWAS (P = 0.001–0.049), although these COPD associations were not replicated in two additional cohorts. Conclusions: Distant genetic loci and biomarker-coding genes affect circulating levels of COPD-related pneumoproteins. A subset of these protein quantitative trait loci may influence their gene expression in the lung and/or COPD susceptibility. Clinical trial registered with www.clinicaltrials.gov (NCT 00292552). PMID

  16. Genome-Wide Analysis Identifies Germ-Line Risk Factors Associated with Canine Mammary Tumours

    PubMed Central

    Melin, Malin; Murén, Eva; Gustafson, Ulla; Starkey, Mike; Borge, Kaja Sverdrup; Lingaas, Frode; Saellström, Sara; Rönnberg, Henrik; Lindblad-Toh, Kerstin

    2016-01-01

    Canine mammary tumours (CMT) are the most common neoplasia in unspayed female dogs. CMTs are suitable naturally occurring models for human breast cancer and share many characteristics, indicating that the genetic causes could also be shared. We have performed a genome-wide association study (GWAS) in English Springer Spaniel dogs and identified a genome-wide significant locus on chromosome 11 (praw = 5.6x10-7, pperm = 0.019). The most associated haplotype spans a 446 kb region overlapping the CDK5RAP2 gene. The CDK5RAP2 protein has a function in cell cycle regulation and could potentially have an impact on response to chemotherapy treatment. Two additional loci, both on chromosome 27, were nominally associated (praw = 1.97x10-5 and praw = 8.30x10-6). The three loci explain 28.1±10.0% of the phenotypic variation seen in the cohort, whereas the top ten associated regions account for 38.2±10.8% of the risk. Furthermore, the ten GWAS loci and regions with reduced genetic variability are significantly enriched for snoRNAs and tumour-associated antigen genes, suggesting a role for these genes in CMT development. We have identified several candidate genes associated with canine mammary tumours, including CDK5RAP2. Our findings enable further comparative studies to investigate the genes and pathways in human breast cancer patients. PMID:27158822

  17. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells

    PubMed Central

    Pirola, Luciano; Balcerczyk, Aneta; Tothill, Richard W.; Haviv, Izhak; Kaspi, Antony; Lunke, Sebastian; Ziemann, Mark; Karagiannis, Tom; Tonna, Stephen; Kowalczyk, Adam; Beresford-Smith, Bryan; Macintyre, Geoff; Kelong, Ma; Hongyu, Zhang; Zhu, Jingde; El-Osta, Assam

    2011-01-01

    Emerging evidence suggests that poor glycemic control mediates post-translational modifications to the H3 histone tail. We are only beginning to understand the dynamic role of some of the diverse epigenetic changes mediated by hyperglycemia at single loci, yet elevated glucose levels are thought to regulate genome-wide changes, and this still remains poorly understood. In this article we describe genome-wide histone H3K9/K14 hyperacetylation and DNA methylation maps conferred by hyperglycemia in primary human vascular cells. Chromatin immunoprecipitation (ChIP) as well as CpG methylation (CpG) assays, followed by massive parallel sequencing (ChIP-seq and CpG-seq) identified unique hyperacetylation and CpG methylation signatures with proximal and distal patterns of regionalization associative with gene expression. Ingenuity knowledge-based pathway and gene ontology analyses indicate that hyperglycemia significantly affects human vascular chromatin with the transcriptional up-regulation of genes involved in metabolic and cardiovascular disease. We have generated the first installment of a reference collection of hyperglycemia-induced chromatin modifications using robust and reproducible platforms that allow parallel sequencing-by-synthesis of immunopurified content. We uncover that hyperglycemia-mediated induction of genes and pathways associated with endothelial dysfunction occur through modulation of acetylated H3K9/K14 inversely correlated with methyl-CpG content. PMID:21890681

  18. Genome-Wide Analysis Identifies Germ-Line Risk Factors Associated with Canine Mammary Tumours.

    PubMed

    Melin, Malin; Rivera, Patricio; Arendt, Maja; Elvers, Ingegerd; Murén, Eva; Gustafson, Ulla; Starkey, Mike; Borge, Kaja Sverdrup; Lingaas, Frode; Häggström, Jens; Saellström, Sara; Rönnberg, Henrik; Lindblad-Toh, Kerstin

    2016-05-01

    Canine mammary tumours (CMT) are the most common neoplasia in unspayed female dogs. CMTs are suitable naturally occurring models for human breast cancer and share many characteristics, indicating that the genetic causes could also be shared. We have performed a genome-wide association study (GWAS) in English Springer Spaniel dogs and identified a genome-wide significant locus on chromosome 11 (praw = 5.6x10-7, pperm = 0.019). The most associated haplotype spans a 446 kb region overlapping the CDK5RAP2 gene. The CDK5RAP2 protein has a function in cell cycle regulation and could potentially have an impact on response to chemotherapy treatment. Two additional loci, both on chromosome 27, were nominally associated (praw = 1.97x10-5 and praw = 8.30x10-6). The three loci explain 28.1±10.0% of the phenotypic variation seen in the cohort, whereas the top ten associated regions account for 38.2±10.8% of the risk. Furthermore, the ten GWAS loci and regions with reduced genetic variability are significantly enriched for snoRNAs and tumour-associated antigen genes, suggesting a role for these genes in CMT development. We have identified several candidate genes associated with canine mammary tumours, including CDK5RAP2. Our findings enable further comparative studies to investigate the genes and pathways in human breast cancer patients. PMID:27158822

  19. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese.

    PubMed

    Li, Changgui; Li, Zhiqiang; Liu, Shiguo; Wang, Can; Han, Lin; Cui, Lingling; Zhou, Jingguo; Zou, Hejian; Liu, Zhen; Chen, Jianhua; Cheng, Xiaoyu; Zhou, Zhaowei; Ding, Chengcheng; Wang, Meng; Chen, Tong; Cui, Ying; He, Hongmei; Zhang, Keke; Yin, Congcong; Wang, Yunlong; Xing, Shichao; Li, Baojie; Ji, Jue; Jia, Zhaotong; Ma, Lidan; Niu, Jiapeng; Xin, Ying; Liu, Tian; Chu, Nan; Yu, Qing; Ren, Wei; Wang, Xuefeng; Zhang, Aiqing; Sun, Yuping; Wang, Haili; Lu, Jie; Li, Yuanyuan; Qing, Yufeng; Chen, Gang; Wang, Yangang; Zhou, Li; Niu, Haitao; Liang, Jun; Dong, Qian; Li, Xinde; Mi, Qing-Sheng; Shi, Yongyong

    2015-05-13

    Gout is one of the most common types of inflammatory arthritis, caused by the deposition of monosodium urate crystals in and around the joints. Previous genome-wide association studies (GWASs) have identified many genetic loci associated with raised serum urate concentrations. However, hyperuricemia alone is not sufficient for the development of gout arthritis. Here we conduct a multistage GWAS in Han Chinese using 4,275 male gout patients and 6,272 normal male controls (1,255 cases and 1,848 controls were genome-wide genotyped), with an additional 1,644 hyperuricemic controls. We discover three new risk loci, 17q23.2 (rs11653176, P=1.36 × 10(-13), BCAS3), 9p24.2 (rs12236871, P=1.48 × 10(-10), RFX3) and 11p15.5 (rs179785, P=1.28 × 10(-8), KCNQ1), which contain inflammatory candidate genes. Our results suggest that these loci are most likely related to the progression from hyperuricemia to inflammatory gout, which will provide new insights into the pathogenesis of gout arthritis.

  20. Joint analysis of three genome-wide association studies of esophageal squamous cell carcinoma in Chinese populations.

    PubMed

    Wu, Chen; Wang, Zhaoming; Song, Xin; Feng, Xiao-Shan; Abnet, Christian C; He, Jie; Hu, Nan; Zuo, Xian-Bo; Tan, Wen; Zhan, Qimin; Hu, Zhibin; He, Zhonghu; Jia, Weihua; Zhou, Yifeng; Yu, Kai; Shu, Xiao-Ou; Yuan, Jian-Min; Zheng, Wei; Zhao, Xue-Ke; Gao, She-Gan; Yuan, Zhi-Qing; Zhou, Fu-You; Fan, Zong-Min; Cui, Ji-Li; Lin, Hong-Li; Han, Xue-Na; Li, Bei; Chen, Xi; Dawsey, Sanford M; Liao, Linda; Lee, Maxwell P; Ding, Ti; Qiao, You-Lin; Liu, Zhihua; Liu, Yu; Yu, Dianke; Chang, Jiang; Wei, Lixuan; Gao, Yu-Tang; Koh, Woon-Puay; Xiang, Yong-Bing; Tang, Ze-Zhong; Fan, Jin-Hu; Han, Jing-Jing; Zhou, Sheng-Li; Zhang, Peng; Zhang, Dong-Yun; Yuan, Yuan; Huang, Ying; Liu, Chunling; Zhai, Kan; Qiao, Yan; Jin, Guangfu; Guo, Chuanhai; Fu, Jianhua; Miao, Xiaoping; Lu, Changdong; Yang, Haijun; Wang, Chaoyu; Wheeler, William A; Gail, Mitchell; Yeager, Meredith; Yuenger, Jeff; Guo, Er-Tao; Li, Ai-Li; Zhang, Wei; Li, Xue-Min; Sun, Liang-Dan; Ma, Bao-Gen; Li, Yan; Tang, Sa; Peng, Xiu-Qing; Liu, Jing; Hutchinson, Amy; Jacobs, Kevin; Giffen, Carol; Burdette, Laurie; Fraumeni, Joseph F; Shen, Hongbing; Ke, Yang; Zeng, Yixin; Wu, Tangchun; Kraft, Peter; Chung, Charles C; Tucker, Margaret A; Hou, Zhi-Chao; Liu, Ya-Li; Hu, Yan-Long; Liu, Yu; Wang, Li; Yuan, Guo; Chen, Li-Sha; Liu, Xiao; Ma, Teng; Meng, Hui; Sun, Li; Li, Xin-Min; Li, Xiu-Min; Ku, Jian-Wei; Zhou, Ying-Fa; Yang, Liu-Qin; Wang, Zhou; Li, Yin; Qige, Qirenwang; Yang, Wen-Jun; Lei, Guang-Yan; Chen, Long-Qi; Li, En-Min; Yuan, Ling; Yue, Wen-Bin; Wang, Ran; Wang, Lu-Wen; Fan, Xue-Ping; Zhu, Fang-Heng; Zhao, Wei-Xing; Mao, Yi-Min; Zhang, Mei; Xing, Guo-Lan; Li, Ji-Lin; Han, Min; Ren, Jing-Li; Liu, Bin; Ren, Shu-Wei; Kong, Qing-Peng; Li, Feng; Sheyhidin, Ilyar; Wei, Wu; Zhang, Yan-Rui; Feng, Chang-Wei; Wang, Jin; Yang, Yu-Hua; Hao, Hong-Zhang; Bao, Qi-De; Liu, Bao-Chi; Wu, Ai-Qun; Xie, Dong; Yang, Wan-Cai; Wang, Liang; Zhao, Xiao-Hang; Chen, Shu-Qing; Hong, Jun-Yan; Zhang, Xue-Jun; Freedman, Neal D; Goldstein, Alisa M; Lin, Dongxin; Taylor, Philip R; Wang, Li-Dong; Chanock, Stephen J

    2014-09-01

    We conducted a joint (pooled) analysis of three genome-wide association studies (GWAS) of esophageal squamous cell carcinoma (ESCC) in individuals of Chinese ancestry (5,337 ESCC cases and 5,787 controls) with 9,654 ESCC cases and 10,058 controls for follow-up. In a logistic regression model adjusted for age, sex, study and two eigenvectors, two new loci achieved genome-wide significance, marked by rs7447927 at 5q31.2 (per-allele odds ratio (OR) = 0.85, 95% confidence interval (CI) = 0.82-0.88; P = 7.72 × 10(-20)) and rs1642764 at 17p13.1 (per-allele OR = 0.88, 95% CI = 0.85-0.91; P = 3.10 × 10(-13)). rs7447927 is a synonymous SNP in TMEM173, and rs1642764 is an intronic SNP in ATP1B2, near TP53. Furthermore, a locus in the HLA class II region at 6p21.32 (rs35597309) achieved genome-wide significance in the two populations at highest risk for ESSC (OR = 1.33, 95% CI = 1.22-1.46; P = 1.99 × 10(-10)). Our joint analysis identifies new ESCC susceptibility loci overall as well as a new locus unique to the population in the Taihang Mountain region at high risk of ESCC. PMID:25129146

  1. Joint analysis of three genome-wide association studies of esophageal squamous cell carcinoma in Chinese populations.

    PubMed

    Wu, Chen; Wang, Zhaoming; Song, Xin; Feng, Xiao-Shan; Abnet, Christian C; He, Jie; Hu, Nan; Zuo, Xian-Bo; Tan, Wen; Zhan, Qimin; Hu, Zhibin; He, Zhonghu; Jia, Weihua; Zhou, Yifeng; Yu, Kai; Shu, Xiao-Ou; Yuan, Jian-Min; Zheng, Wei; Zhao, Xue-Ke; Gao, She-Gan; Yuan, Zhi-Qing; Zhou, Fu-You; Fan, Zong-Min; Cui, Ji-Li; Lin, Hong-Li; Han, Xue-Na; Li, Bei; Chen, Xi; Dawsey, Sanford M; Liao, Linda; Lee, Maxwell P; Ding, Ti; Qiao, You-Lin; Liu, Zhihua; Liu, Yu; Yu, Dianke; Chang, Jiang; Wei, Lixuan; Gao, Yu-Tang; Koh, Woon-Puay; Xiang, Yong-Bing; Tang, Ze-Zhong; Fan, Jin-Hu; Han, Jing-Jing; Zhou, Sheng-Li; Zhang, Peng; Zhang, Dong-Yun; Yuan, Yuan; Huang, Ying; Liu, Chunling; Zhai, Kan; Qiao, Yan; Jin, Guangfu; Guo, Chuanhai; Fu, Jianhua; Miao, Xiaoping; Lu, Changdong; Yang, Haijun; Wang, Chaoyu; Wheeler, William A; Gail, Mitchell; Yeager, Meredith; Yuenger, Jeff; Guo, Er-Tao; Li, Ai-Li; Zhang, Wei; Li, Xue-Min; Sun, Liang-Dan; Ma, Bao-Gen; Li, Yan; Tang, Sa; Peng, Xiu-Qing; Liu, Jing; Hutchinson, Amy; Jacobs, Kevin; Giffen, Carol; Burdette, Laurie; Fraumeni, Joseph F; Shen, Hongbing; Ke, Yang; Zeng, Yixin; Wu, Tangchun; Kraft, Peter; Chung, Charles C; Tucker, Margaret A; Hou, Zhi-Chao; Liu, Ya-Li; Hu, Yan-Long; Liu, Yu; Wang, Li; Yuan, Guo; Chen, Li-Sha; Liu, Xiao; Ma, Teng; Meng, Hui; Sun, Li; Li, Xin-Min; Li, Xiu-Min; Ku, Jian-Wei; Zhou, Ying-Fa; Yang, Liu-Qin; Wang, Zhou; Li, Yin; Qige, Qirenwang; Yang, Wen-Jun; Lei, Guang-Yan; Chen, Long-Qi; Li, En-Min; Yuan, Ling; Yue, Wen-Bin; Wang, Ran; Wang, Lu-Wen; Fan, Xue-Ping; Zhu, Fang-Heng; Zhao, Wei-Xing; Mao, Yi-Min; Zhang, Mei; Xing, Guo-Lan; Li, Ji-Lin; Han, Min; Ren, Jing-Li; Liu, Bin; Ren, Shu-Wei; Kong, Qing-Peng; Li, Feng; Sheyhidin, Ilyar; Wei, Wu; Zhang, Yan-Rui; Feng, Chang-Wei; Wang, Jin; Yang, Yu-Hua; Hao, Hong-Zhang; Bao, Qi-De; Liu, Bao-Chi; Wu, Ai-Qun; Xie, Dong; Yang, Wan-Cai; Wang, Liang; Zhao, Xiao-Hang; Chen, Shu-Qing; Hong, Jun-Yan; Zhang, Xue-Jun; Freedman, Neal D; Goldstein, Alisa M; Lin, Dongxin; Taylor, Philip R; Wang, Li-Dong; Chanock, Stephen J

    2014-09-01

    We conducted a joint (pooled) analysis of three genome-wide association studies (GWAS) of esophageal squamous cell carcinoma (ESCC) in individuals of Chinese ancestry (5,337 ESCC cases and 5,787 controls) with 9,654 ESCC cases and 10,058 controls for follow-up. In a logistic regression model adjusted for age, sex, study and two eigenvectors, two new loci achieved genome-wide significance, marked by rs7447927 at 5q31.2 (per-allele odds ratio (OR) = 0.85, 95% confidence interval (CI) = 0.82-0.88; P = 7.72 × 10(-20)) and rs1642764 at 17p13.1 (per-allele OR = 0.88, 95% CI = 0.85-0.91; P = 3.10 × 10(-13)). rs7447927 is a synonymous SNP in TMEM173, and rs1642764 is an intronic SNP in ATP1B2, near TP53. Furthermore, a locus in the HLA class II region at 6p21.32 (rs35597309) achieved genome-wide significance in the two populations at highest risk for ESSC (OR = 1.33, 95% CI = 1.22-1.46; P = 1.99 × 10(-10)). Our joint analysis identifies new ESCC susceptibility loci overall as well as a new locus unique to the population in the Taihang Mountain region at high risk of ESCC.

  2. Genome-wide association study of swine farrowing traits. Part II: Bayesian analysis of marker data.

    PubMed

    Schneider, J F; Rempel, L A; Snelling, W M; Wiedmann, R T; Nonneman, D J; Rohrer, G A

    2012-10-01

    Reproductive efficiency has a great impact on the economic success of pork (sus scrofa) production. Number born alive (NBA) and average piglet birth weight (ABW) contribute greatly to reproductive efficiency. To better understand the underlying genetics of birth traits, a genome-wide association study (GWAS) was undertaken. Samples of DNA were collected and tested using the Illumina PorcineSNP60 BeadChip from 1,152 first parity gilts. Traits included total number born (TNB), NBA, number born dead (NBD), number stillborn (NSB), number of mummies (MUM), total litter birth weight (LBW), and ABW. A total of 41,151 SNP were tested using a Bayesian approach. Beginning with the first 5 SNP on SSC1 and ending with the last 5 SNP on the SSCX, SNP were assigned to groups of 5 consecutive SNP by chromosome-position order and analyzed again using a Bayesian approach. From that analysis, 5-SNP groups were selected having no overlap with another 5-SNP groups and no overlap across chromosomes. These selected 5-SNP non-overlapping groups were defined as QTL. Of the available 8,814 QTL, 124 were found to be statistically significant (P < 0.01). Multiple testing was considered using the probability of false positives. Eleven QTL were found for TNB, 3 on SSC1, 3 on SSC4, 1 on SSC13, 1 on SSC14, 2 on SSC15, and 1 on SSC17. Statistical testing for NBA identified 14 QTL, 4 on SSC1, 1 on SSC4, 1 on SSC6, 1 on SSC10, 1on SSC13, 3 on SSC15, and 3 on SSC17. A single NBD QTL was found on SSC11. No QTL were identified for NSB or MUM. Thirty-three QTL were found for LBW, 3 on SSC1, 1 on SSC2, 1 on SSC3, 5 on SSC4, 2 on SSC5, 5 on SSC6, 3 on SSC7, 2 on SSC9, 1 on SSC10, 2 on SSC14, 6 on SSC15, and 2 on SSC17. A total of 65 QTL were found for ABW, 9 on SSC1, 3 on SSC2, 9 on SSC5, 5 on SSC6, 1 on SSC7, 2 on SSC8, 2 on SSC9, 3 on SSC10, 1 on SSC11, 3 on SSC12, 2 on SSC13, 8 on SSC14, 8 on SSC15, 1 on SSC17, and 8 on SSC18. Several candidate genes have been identified that overlap QTL locations

  3. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis

    PubMed Central

    Cho, Michael H.; McDonald, Merry-Lynn N.; Zhou, Xiaobo; Mattheisen, Manuel; Castaldi, Peter J.; Hersh, Craig P.; DeMeo, Dawn L.; Sylvia, Jody S.; Ziniti, John; Laird, Nan M.; Lange, Christoph; Litonjua, Augusto A.; Sparrow, David; Casaburi, Richard; Barr, R. Graham; Regan, Elizabeth A.; Make, Barry J.; Hokanson, John E.; Lutz, Sharon; Murray, Tanda; Farzadegan, Homayoon; Hetmanski, Jacqueline B.; Tal-Singer, Ruth; Lomas, David A.; Bakke, Per; Gulsvik, Amund; Crapo, James D.; Silverman, Edwin K.; Beaty, Terri H.

    2014-01-01

    Background The genetic risk factors for susceptibility to chronic obstructive pulmonary disease (COPD) are still largely unknown. Additional genetic variants are likely to be identified by genome-wide association studies in larger cohorts or specific subgroups. Methods Genome-wide association analysis in COPDGene (non-Hispanic whites and African-Americans) was combined with existing data from the ECLIPSE, NETT/NAS, and GenKOLS (Norway) studies. Analyses were performed both using all moderate-to-severe cases and the subset of severe cases. Top loci not previously described as genome-wide significant were genotyped in the ICGN study, and results combined in a joint meta-analysis. Findings Analysis of a total of 6,633 moderate-to-severe cases and 5,704 controls confirmed association at three known loci: CHRNA3/CHRNA5/IREB2, FAM13A, and HHIP (10−12 < P < 10−14), and also showed significant evidence of association at a novel locus near RIN3 (overall P, including ICGN = 5•4×10−9). In the severe COPD analysis (n=3,497), the effects at two of three previously described loci were significantly stronger; we also identified two additional loci previously reported to affect gene expression of MMP12 and TGFB2 (overall P = 2•6x10−9 and 8•3×10−9). RIN3 and TGFB2 expression levels were reduced in a set of Lung Tissue Research Consortium COPD lung tissue samples compared with controls. Interpretation In a genome-wide study of COPD, we confirmed associations at three known loci and found additional genome-wide significant associations with moderate-to-severe COPD near RIN3 and with severe COPD near MMP12 and TGFB2. Genetic variants, apart from alpha-1 antitrypsin deficiency, increase the risk of COPD. Our analysis of severe COPD suggests additional genetic variants may be identified by focusing on this subgroup. Funding National Heart, Lung, and Blood Institute; the COPD Foundation through contributions from AstraZeneca, Boehringer Ingelheim, Novartis, and Sepracor

  4. A method for detecting epistasis in genome-wide studies using case-control multi-locus association analysis

    PubMed Central

    Gayán, Javier; González-Pérez, Antonio; Bermudo, Fernando; Sáez, María Eugenia; Royo, Jose Luis; Quintas, Antonio; Galan, Jose Jorge; Morón, Francisco Jesús; Ramirez-Lorca, Reposo; Real, Luis Miguel; Ruiz, Agustín

    2008-01-01

    Background The difficulty in elucidating the genetic basis of complex diseases roots in the many factors that can affect the development of a disease. Some of these genetic effects may interact in complex ways, proving undetectable by current single-locus methodology. Results We have developed an analysis tool called Hypothesis Free Clinical Cloning (HFCC) to search for genome-wide epistasis in a case-control design. HFCC combines a relatively fast computing algorithm for genome-wide epistasis detection, with the flexibility to test a variety of different epistatic models in multi-locus combinations. HFCC has good power to detect multi-locus interactions simulated under a variety of genetic models and noise conditions. Most importantly, HFCC can accomplish exhaustive genome-wide epistasis search with large datasets as demonstrated with a 400,000 SNP set typed on a cohort of Parkinson's disease patients and controls. Conclusion With the current availability of genetic studies with large numbers of individuals and genetic markers, HFCC can have a great impact in the identification of epistatic effects that escape the standard single-locus association analyses. PMID:18667089

  5. Impact of vitamin D on immune function: lessons learned from genome-wide analysis.

    PubMed

    Chun, Rene F; Liu, Philip T; Modlin, Robert L; Adams, John S; Hewison, Martin

    2014-01-01

    Immunomodulatory responses to the active form of vitamin D (1,25-dihydroxyvitamin D, 1,25D) have been recognized for many years, but it is only in the last 5 years that the potential role of this in normal human immune function has been recognized. Genome-wide analyses have played a pivotal role in redefining our perspective on vitamin D and immunity. The description of increased vitamin D receptor (VDR) and 1α-hydroxylase (CYP27B1) expression in macrophages following a pathogen challenge, has underlined the importance of intracrine vitamin D as key mediator of innate immune function. It is now clear that both macrophages and dendritic cells (DCs) are able to respond to 25-hydroxyvitamin D (25D), the major circulating vitamin D metabolite, thereby providing a link between the function of these cells and the variations in vitamin D status common to many humans. The identification of hundreds of primary 1,25D target genes in immune cells has also provided new insight into the role of vitamin D in the adaptive immune system, such as the modulation of antigen-presentation and T cells proliferation and phenotype, with the over-arching effects being to suppress inflammation and promote immune tolerance. In macrophages 1,25D promotes antimicrobial responses through the induction of antibacterial proteins, and stimulation of autophagy and autophagosome activity. In this way variations in 25D levels have the potential to influence both innate and adaptive immune responses. More recent genome-wide analyses have highlighted how cytokine signaling pathways can influence the intracrine vitamin D system and either enhance or abrogate responses to 25D. The current review will discuss the impact of intracrine vitamin D metabolism on both innate and adaptive immunity, whilst introducing the concept of disease-specific corruption of vitamin D metabolism and how this may alter the requirements for vitamin D in maintaining a healthy immune system in humans.

  6. Genome-wide linkage analysis for celiac disease in North American families.

    PubMed

    Neuhausen, Susan L; Feolo, Mike; Camp, Nicola J; Farnham, James; Book, Linda; Zone, John J

    2002-07-22

    Celiac disease (CD) is an autoimmune disease caused by sensitivity to the dietary protein gluten. It has a prevalence of 1 in 250 in the United States. Multiple-case families are common with a risk to siblings from 10-12%. Previous linkage studies have found no significant evidence for linkage other than to HLA. In this study, we performed a genome-wide search on 62 families with at least two cases of CD to identify non-HLA loci for CD. Two-point and multipoint parametric and nonparametric analyses were performed on the entire set of families and on sets stratified by the HLA genotype. Accounting for multiple testing, we found genome-wide intermediate linkage evidence at 18q (heterogeneity LOD (HLOD) = 3.6) and at 3p (HLOD = 3.2) and suggestive evidence at 5p (HLOD = 2.7). Good consensus between two-point and multipoint evidence was not found, and after genotyping with new markers in these regions, our results were inconclusive. The 18q region had intermediate two-point evidence, but weak multipoint evidence. At 3p and 5p, the addition of follow-up markers added flanking support, yet multipoint evidence was still lacking. Our results indicate that multipoint analyses may be hindered by the complexity of CD. Multipoint analyses are not robust to model misspecification, and further development of models is needed. Additional study of these and other families is necessary to validate or rule out the regions implicated in this study.

  7. Impact of vitamin D on immune function: lessons learned from genome-wide analysis

    PubMed Central

    Chun, Rene F.; Liu, Philip T.; Modlin, Robert L.; Adams, John S.; Hewison, Martin

    2014-01-01

    Immunomodulatory responses to the active form of vitamin D (1,25-dihydroxyvitamin D, 1,25D) have been recognized for many years, but it is only in the last 5 years that the potential role of this in normal human immune function has been recognized. Genome-wide analyses have played a pivotal role in redefining our perspective on vitamin D and immunity. The description of increased vitamin D receptor (VDR) and 1α-hydroxylase (CYP27B1) expression in macrophages following a pathogen challenge, has underlined the importance of intracrine vitamin D as key mediator of innate immune function. It is now clear that both macrophages and dendritic cells (DCs) are able to respond to 25-hydroxyvitamin D (25D), the major circulating vitamin D metabolite, thereby providing a link between the function of these cells and the variations in vitamin D status common to many humans. The identification of hundreds of primary 1,25D target genes in immune cells has also provided new insight into the role of vitamin D in the adaptive immune system, such as the modulation of antigen-presentation and T cells proliferation and phenotype, with the over-arching effects being to suppress inflammation and promote immune tolerance. In macrophages 1,25D promotes antimicrobial responses through the induction of antibacterial proteins, and stimulation of autophagy and autophagosome activity. In this way variations in 25D levels have the potential to influence both innate and adaptive immune responses. More recent genome-wide analyses have highlighted how cytokine signaling pathways can influence the intracrine vitamin D system and either enhance or abrogate responses to 25D. The current review will discuss the impact of intracrine vitamin D metabolism on both innate and adaptive immunity, whilst introducing the concept of disease-specific corruption of vitamin D metabolism and how this may alter the requirements for vitamin D in maintaining a healthy immune system in humans. PMID:24795646

  8. Identification of a novel susceptibility locus for juvenile idiopathic arthritis by genome-wide association analysis

    PubMed Central

    Hinks, Anne; Barton, Anne; Shephard, Neil; Eyre, Steve; Bowes, John; Cargill, Michele; Wang, Eric; Ke, Xiayi; Kennedy, Giulia C; John, Sally; Worthington, Jane; Thomson, Wendy

    2009-01-01

    Objective Juvenile idiopathic arthritis (JIA) is a chronic rheumatic disease of childhood. Two well-established genetic factors known to contribute to JIA susceptibility, HLA and PTPN22, account for less than half of the genetic susceptibility to disease; therefore, additional genetic factors have yet to be identified. The purpose of this study was to perform a systematic search of the genome to identify novel susceptibility loci for JIA. Methods A genome-wide association study using Affymetrix GeneChip 100K arrays was performed in a discovery cohort (279 cases and 184 controls). Single-nucleotide polymorphisms (SNPs) showing the most significant differences between cases and controls were then genotyped in a validation sample of cases (n = 321) and controls, combined with control data from the 1958 UK birth cohort (n = 2,024). In one region in which association was confirmed, fine-mapping was performed (654 cases and 1,847 controls). Results Of the 112 SNPs that were significantly associated with JIA in the discovery cohort, 6 SNPs were associated with JIA in the independent validation cohort. The most strongly associated SNP mapped to the HLA region, while the second strongest association was with a SNP within the VTCN1 gene. Fine-mapping of that gene was performed, and 10 SNPs were found to be associated with JIA. Conclusion This study is the first to successfully apply a SNP-based genome-wide association approach to the investigation of JIA. The replicated association with markers in the VTCN1 gene defined an additional susceptibility locus for JIA and implicates a novel pathway in the pathogenesis of this chronic disease of childhood. PMID:19116933

  9. Meta-analysis of genome-wide association data identifies novel susceptibility loci for obesity

    PubMed Central

    Pei, Yu-Fang; Zhang, Lei; Liu, Yongjun; Li, Jian; Shen, Hui; Liu, Yao-Zhong; Tian, Qing; He, Hao; Wu, Shuyan; Ran, Shu; Han, Yingying; Hai, Rong; Lin, Yong; Zhu, Jingying; Zhu, Xue-Zhen; Papasian, Christopher J.; Deng, Hong-Wen

    2014-01-01

    Obesity is a major public health problem with strong genetic determination. Multiple genetic variants have been implicated for obesity by conducting genome-wide association (GWA) studies, primarily focused on body mass index (BMI). Fat body mass (FBM) is phenotypically more homogeneous than BMI and is more appropriate for obesity research; however, relatively few studies have been conducted on FBM. Aiming to identify variants associated with obesity, we carried out meta-analyses of seven GWA studies for BMI-related traits including FBM, and followed these analyses by de novo replication. The discovery cohorts consisted of 21 969 individuals from diverse ethnic populations and a total of over 4 million genotyped or imputed SNPs. The de novo replication cohorts consisted of 6663 subjects from two independent samples. To complement individual SNP-based association analyses, we also carried out gene-based GWA analyses in which all variations within a gene were considered jointly. Individual SNP-based association analyses identified a novel locus 1q21 [rs2230061, CTSS (Cathepsin S)] that was associated with FBM after the adjustment of lean body mass (LBM) (P = 3.57 × 10−8) at the genome-wide significance level. Gene-based association analyses identified a novel gene NLK (nemo-like kinase) in 17q11 that was significantly associated with FBM adjusted by LBM. In addition, we confirmed three previously reported obesity susceptibility loci: 16q12 [rs62033400, P = 1.97 × 10−14, FTO (fat mass and obesity associated)], 18q22 [rs6567160, P = 8.09 × 10−19, MC4R (melanocortin 4 receptor)] and 2p25 [rs939583, P = 1.07 × 10−7, TMEM18 (transmembrane protein 18)]. We also found that rs6567160 may exert pleiotropic effects to both FBM and LBM. Our results provide additional insights into the molecular genetic basis of obesity and may provide future targets for effective prevention and therapeutic intervention. PMID:24064335

  10. Genome-wide and fine-resolution association analysis of malaria in West Africa.

    PubMed

    Jallow, Muminatou; Teo, Yik Ying; Small, Kerrin S; Rockett, Kirk A; Deloukas, Panos; Clark, Taane G; Kivinen, Katja; Bojang, Kalifa A; Conway, David J; Pinder, Margaret; Sirugo, Giorgio; Sisay-Joof, Fatou; Usen, Stanley; Auburn, Sarah; Bumpstead, Suzannah J; Campino, Susana; Coffey, Alison; Dunham, Andrew; Fry, Andrew E; Green, Angela; Gwilliam, Rhian; Hunt, Sarah E; Inouye, Michael; Jeffreys, Anna E; Mendy, Alieu; Palotie, Aarno; Potter, Simon; Ragoussis, Jiannis; Rogers, Jane; Rowlands, Kate; Somaskantharajah, Elilan; Whittaker, Pamela; Widden, Claire; Donnelly, Peter; Howie, Bryan; Marchini, Jonathan; Morris, Andrew; SanJoaquin, Miguel; Achidi, Eric Akum; Agbenyega, Tsiri; Allen, Angela; Amodu, Olukemi; Corran, Patrick; Djimde, Abdoulaye; Dolo, Amagana; Doumbo, Ogobara K; Drakeley, Chris; Dunstan, Sarah; Evans, Jennifer; Farrar, Jeremy; Fernando, Deepika; Hien, Tran Tinh; Horstmann, Rolf D; Ibrahim, Muntaser; Karunaweera, Nadira; Kokwaro, Gilbert; Koram, Kwadwo A; Lemnge, Martha; Makani, Julie; Marsh, Kevin; Michon, Pascal; Modiano, David; Molyneux, Malcolm E; Mueller, Ivo; Parker, Michael; Peshu, Norbert; Plowe, Christopher V; Puijalon, Odile; Reeder, John; Reyburn, Hugh; Riley, Eleanor M; Sakuntabhai, Anavaj; Singhasivanon, Pratap; Sirima, Sodiomon; Tall, Adama; Taylor, Terrie E; Thera, Mahamadou; Troye-Blomberg, Marita; Williams, Thomas N; Wilson, Michael; Kwiatkowski, Dominic P

    2009-06-01

    We report a genome-wide association (GWA) study of severe malaria in The Gambia. The initial GWA scan included 2,500 children genotyped on the Affymetrix 500K GeneChip, and a replication study included 3,400 children. We used this to examine the performance of GWA methods in Africa. We found considerable population stratification, and also that signals of association at known malaria resistance loci were greatly attenuated owing to weak linkage disequilibrium (LD). To investigate possible solutions to the problem of low LD, we focused on the HbS locus, sequencing this region of the genome in 62 Gambian individuals and then using these data to conduct multipoint imputation in the GWA samples. This increased the signal of association, from P = 4 × 10(-7) to P = 4 × 10(-14), with the peak of the signal located precisely at the HbS causal variant. Our findings provide proof of principle that fine-resolution multipoint imputation, based on population-specific sequencing data, can substantially boost authentic GWA signals and enable fine mapping of causal variants in African populations. PMID:19465909

  11. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution

    PubMed Central

    Liu, Chang; Wang, Congmao; Wang, George; Becker, Claude; Zaidem, Maricris; Weigel, Detlef

    2016-01-01

    The three-dimensional packing of the genome plays an important role in regulating gene expression. We have used Hi-C, a genome-wide chromatin conformation capture (3C) method, to analyze Arabidopsis thaliana chromosomes dissected into subkilobase segments, which is required for gene-level resolution in this species with a gene-dense genome. We found that the repressive H3K27me3 histone mark is overrepresented in the promoter regions of genes that are in conformational linkage over long distances. In line with the globally dispersed distribution of RNA polymerase II in A. thaliana nuclear space, actively transcribed genes do not show a strong tendency to associate with each other. In general, there are often contacts between 5′ and 3′ ends of genes, forming local chromatin loops. Such self-loop structures of genes are more likely to occur in more highly expressed genes, although they can also be found in silent genes. Silent genes with local chromatin loops are highly enriched for the histone variant H3.3 at their 5′ and 3′ ends but depleted of repressive marks such as heterochromatic histone modifications and DNA methylation in flanking regions. Our results suggest that, different from animals, a major theme of genome folding in A. thaliana is the formation of structural units that correspond to gene bodies. PMID:27225844

  12. Genome-wide chromatin occupancy analysis reveals a role for ASH2 in transcriptional pausing.

    PubMed

    Pérez-Lluch, Sílvia; Blanco, Enrique; Carbonell, Albert; Raha, Debasish; Snyder, Michael; Serras, Florenci; Corominas, Montserrat

    2011-06-01

    An important mechanism for gene regulation involves chromatin changes via histone modification. One such modification is histone H3 lysine 4 trimethylation (H3K4me3), which requires histone methyltranferase complexes (HMT) containing the trithorax-group (trxG) protein ASH2. Mutations in ash2 cause a variety of pattern formation defects in the Drosophila wing. We have identified genome-wide binding of ASH2 in wing imaginal discs using chromatin immunoprecipitation combined with sequencing (ChIP-Seq). Our results show that genes with functions in development and transcriptional regulation are activated by ASH2 via H3K4 trimethylation in nearby nucleosomes. We have characterized the occupancy of phosphorylated forms of RNA Polymerase II and histone marks associated with activation and repression of transcription. ASH2 occupancy correlates with phosphorylated forms of RNA Polymerase II and histone activating marks in expressed genes. Additionally, RNA Polymerase II phosphorylation on serine 5 and H3K4me3 are reduced in ash2 mutants in comparison to wild-type flies. Finally, we have identified specific motifs associated with ASH2 binding in genes that are differentially expressed in ash2 mutants. Our data suggest that recruitment of the ASH2-containing HMT complexes is context specific and points to a function of ASH2 and H3K4me3 in transcriptional pausing control.

  13. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.

    PubMed

    Kilpeläinen, Tuomas O; Carli, Jayne F Martin; Skowronski, Alicja A; Sun, Qi; Kriebel, Jennifer; Feitosa, Mary F; Hedman, Åsa K; Drong, Alexander W; Hayes, James E; Zhao, Jinghua; Pers, Tune H; Schick, Ursula; Grarup, Niels; Kutalik, Zoltán; Trompet, Stella; Mangino, Massimo; Kristiansson, Kati; Beekman, Marian; Lyytikäinen, Leo-Pekka; Eriksson, Joel; Henneman, Peter; Lahti, Jari; Tanaka, Toshiko; Luan, Jian'an; Del Greco M, Fabiola; Pasko, Dorota; Renström, Frida; Willems, Sara M; Mahajan, Anubha; Rose, Lynda M; Guo, Xiuqing; Liu, Yongmei; Kleber, Marcus E; Pérusse, Louis; Gaunt, Tom; Ahluwalia, Tarunveer S; Ju Sung, Yun; Ramos, Yolande F; Amin, Najaf; Amuzu, Antoinette; Barroso, Inês; Bellis, Claire; Blangero, John; Buckley, Brendan M; Böhringer, Stefan; I Chen, Yii-Der; de Craen, Anton J N; Crosslin, David R; Dale, Caroline E; Dastani, Zari; Day, Felix R; Deelen, Joris; Delgado, Graciela E; Demirkan, Ayse; Finucane, Francis M; Ford, Ian; Garcia, Melissa E; Gieger, Christian; Gustafsson, Stefan; Hallmans, Göran; Hankinson, Susan E; Havulinna, Aki S; Herder, Christian; Hernandez, Dena; Hicks, Andrew A; Hunter, David J; Illig, Thomas; Ingelsson, Erik; Ioan-Facsinay, Andreea; Jansson, John-Olov; Jenny, Nancy S; Jørgensen, Marit E; Jørgensen, Torben; Karlsson, Magnus; Koenig, Wolfgang; Kraft, Peter; Kwekkeboom, Joanneke; Laatikainen, Tiina; Ladwig, Karl-Heinz; LeDuc, Charles A; Lowe, Gordon; Lu, Yingchang; Marques-Vidal, Pedro; Meisinger, Christa; Menni, Cristina; Morris, Andrew P; Myers, Richard H; Männistö, Satu; Nalls, Mike A; Paternoster, Lavinia; Peters, Annette; Pradhan, Aruna D; Rankinen, Tuomo; Rasmussen-Torvik, Laura J; Rathmann, Wolfgang; Rice, Treva K; Brent Richards, J; Ridker, Paul M; Sattar, Naveed; Savage, David B; Söderberg, Stefan; Timpson, Nicholas J; Vandenput, Liesbeth; van Heemst, Diana; Uh, Hae-Won; Vohl, Marie-Claude; Walker, Mark; Wichmann, Heinz-Erich; Widén, Elisabeth; Wood, Andrew R; Yao, Jie; Zeller, Tanja; Zhang, Yiying; Meulenbelt, Ingrid; Kloppenburg, Margreet; Astrup, Arne; Sørensen, Thorkild I A; Sarzynski, Mark A; Rao, D C; Jousilahti, Pekka; Vartiainen, Erkki; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G; Kajantie, Eero; Osmond, Clive; Palotie, Aarno; Eriksson, Johan G; Heliövaara, Markku; Knekt, Paul B; Koskinen, Seppo; Jula, Antti; Perola, Markus; Huupponen, Risto K; Viikari, Jorma S; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T; Mellström, Dan; Lorentzon, Mattias; Casas, Juan P; Bandinelli, Stefanie; März, Winfried; Isaacs, Aaron; van Dijk, Ko W; van Duijn, Cornelia M; Harris, Tamara B; Bouchard, Claude; Allison, Matthew A; Chasman, Daniel I; Ohlsson, Claes; Lind, Lars; Scott, Robert A; Langenberg, Claudia; Wareham, Nicholas J; Ferrucci, Luigi; Frayling, Timothy M; Pramstaller, Peter P; Borecki, Ingrid B; Waterworth, Dawn M; Bergmann, Sven; Waeber, Gérard; Vollenweider, Peter; Vestergaard, Henrik; Hansen, Torben; Pedersen, Oluf; Hu, Frank B; Eline Slagboom, P; Grallert, Harald; Spector, Tim D; Jukema, J W; Klein, Robert J; Schadt, Erik E; Franks, Paul W; Lindgren, Cecilia M; Leibel, Rudolph L; Loos, Ruth J F

    2016-01-01

    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health. PMID:26833098

  14. Genome-wide SNP analysis explains coral diversity and recovery in the Ryukyu Archipelago.

    PubMed

    Shinzato, Chuya; Mungpakdee, Sutada; Arakaki, Nana; Satoh, Noriyuki

    2015-12-10

    Following a global coral bleaching event in 1998, Acropora corals surrounding most of Okinawa island (OI) were devastated, although they are now gradually recovering. In contrast, the Kerama Islands (KIs) only 30 km west of OI, have continuously hosted a great variety of healthy corals. Taking advantage of the decoded Acropora digitifera genome and using genome-wide SNP analyses, we clarified Acropora population structure in the southern Ryukyu Archipelago (sRA). Despite small genetic distances, we identified distinct clusters corresponding to specific island groups, suggesting infrequent long-distance dispersal within the sRA. Although the KIs were believed to supply coral larvae to OI, admixture analyses showed that such dispersal is much more limited than previously realized, indicating independent recovery of OI coral populations and the necessity of local conservation efforts for each region. We detected strong historical migration from the Yaeyama Islands (YIs) to OI, and suggest that the YIs are the original source of OI corals. In addition, migration edges to the KIs suggest that they are a historical sink population in the sRA, resulting in high diversity. This population genomics study provides the highest resolution data to date regarding coral population structure and history.

  15. A genome-wide association analysis for susceptibility of pigs to enterotoxigenic Escherichia coli F41.

    PubMed

    Ji, H Y; Yang, B; Zhang, Z Y; Ouyang, J; Yang, M; Zhang, X F; Zhang, W C; Su, Y; Zhao, K W; Xiao, S J; Yan, X M; Ren, J; Huang, L S

    2016-10-01

    Enterotoxigenic Escherichia coli (ETEC) is a type of pathogenic bacteria that cause diarrhea in piglets through colonizing pig small intestine epithelial cells by their surface fimbriae. Different fimbriae type of ETEC including F4, F18, K99 and F41 have been isolated from diarrheal pigs. In this study, we performed a genome-wide association study to map the loci associated with the susceptibility of pigs to ETEC F41 using 39454 single nucleotide polymorphisms (SNPs) in 667 F2 pigs from a White Duroc×Erhualian F2 cross. The most significant SNP (ALGA0022658, P=5.59×10-13) located at 6.95 Mb on chromosome 4. ALGA0022658 was in high linkage disequilibrium (r 2>0.5) with surrounding SNPs that span a 1.21 Mb interval. Within this 1.21 Mb region, we investigated ZFAT as a positional candidate gene. We re-sequenced cDNA of ZFAT in four pigs with different susceptibility phenotypes, and identified seven coding variants. We genotyped these seven variants in 287 unrelated pigs from 15 diverse breeds that were measured with ETEC F41 susceptibility phenotype. Five variants showed nominal significant association (P<0.05) with ETEC F41 susceptibility phenotype in International commercial pigs. This study provided refined region associated with susceptibility of pigs to ETEC F41 than that reported previously. Further works are needed to uncover the underlying causal mutation(s).

  16. Genome-wide association analysis of feed intake and residual feed intake in Nellore cattle

    PubMed Central

    2014-01-01

    Background Feed intake plays an important economic role in beef cattle, and is related with feed efficiency, weight gain and carcass traits. However, the phenotypes collected for dry matter intake and feed efficiency are scarce when compared with other measures such as weight gain and carcass traits. The use of genomic information can improve the power of inference of studies on these measures, identifying genomic regions that affect these phenotypes. This work performed the genome-wide association study (GWAS) for dry matter intake (DMI) and residual feed intake (RFI) of 720 Nellore cattle (Bos taurus indicus). Results In general, no genomic region extremely associated with both phenotypic traits was observed, as expected for the variables that have their regulation controlled by many genes. Three SNPs surpassed the threshold for the Bonferroni multiple test for DMI and two SNPs for RFI. These markers are located on chromosomes 4, 8, 14 and 21 in regions near genes regulating appetite and ion transport and close to important QTL as previously reported to RFI and DMI, thus corroborating the literature that points these two processes as important in the physiological regulation of intake and feed efficiency. Conclusions This study showed the first GWAS of DMI to identify genomic regions associated with feed intake and efficiency in Nellore cattle. Some genes and QTLs previously described for DMI and RFI, in other subspecies (Bos taurus taurus), that influences these phenotypes are confirmed in this study. PMID:24517472

  17. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    PubMed Central

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki; Turnbull, Clare; Schmidt, Marjanka K; Dicks, Ed; Dennis, Joe; Wang, Qin; Humphreys, Manjeet K; Luccarini, Craig; Baynes, Caroline; Conroy, Don; Maranian, Melanie; Ahmed, Shahana; Driver, Kristy; Johnson, Nichola; Orr, Nicholas; Silva, Isabel dos Santos; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Uitterlinden, Andre G.; Rivadeneira, Fernando; Hall, Per; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Chang-Claude, Jenny; Hein, Rebecca; Nickels, Stefan; Flesch-Janys, Dieter; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Hopper, John L; Apicella, Carmel; Park, Daniel J; Southey, Melissa; Hunter, David J; Chanock, Stephen J; Broeks, Annegien; Verhoef, Senno; Hogervorst, Frans BL; Fasching, Peter A.; Lux, Michael P.; Beckmann, Matthias W.; Ekici, Arif B.; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Cordina-Duverger, Emilie; Menegaux, Florence; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L.; Alonso, M. Rosario; González-Neira, Anna; Benítez, Javier; Anton-Culver, Hoda; Ziogas, Argyrios; Bernstein, Leslie; Dur, Christina Clarke; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Justenhoven, Christina; Brauch, Hiltrud; Brüning, Thomas; Wang-Gohrke, Shan; Eilber, Ursula; Dörk, Thilo; Schürmann, Peter; Bremer, Michael; Hillemanns, Peter; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Rogov, Yuri I.; Karstens, Johann H.; Bermisheva, Marina; Prokofieva, Darya; Khusnutdinova, Elza; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Lambrechts, Diether; Yesilyurt, Betul T.; Floris, Giuseppe; Leunen, Karin; Manoukian, Siranoush; Bonanni, Bernardo; Fortuzzi, Stefano; Peterlongo, Paolo; Couch, Fergus J; Wang, Xianshu; Stevens, Kristen; Lee, Adam; Giles, Graham G.; Baglietto, Laura; Severi, Gianluca; McLean, Catriona; Alnæs, Grethe Grenaker; Kristensen, Vessela; Børrensen-Dale, Anne-Lise; John, Esther M.; Miron, Alexander; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Andrulis, Irene L.; Glendon, Gord; Mulligan, Anna Marie; Devilee, Peter; van Asperen, Christie J.; Tollenaar, Rob A.E.M.; Seynaeve, Caroline; Figueroa, Jonine D; Garcia-Closas, Montserrat; Brinton, Louise; Lissowska, Jolanta; Hooning, Maartje J.; Hollestelle, Antoinette; Oldenburg, Rogier A.; van den Ouweland, Ans M.W.; Cox, Angela; Reed, Malcolm WR; Shah, Mitul; Jakubowska, Ania; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Jones, Michael; Schoemaker, Minouk; Ashworth, Alan; Swerdlow, Anthony; Beesley, Jonathan; Chen, Xiaoqing; Muir, Kenneth R; Lophatananon, Artitaya; Rattanamongkongul, Suthee; Chaiwerawattana, Arkom; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Shen, Chen-Yang; Yu, Jyh-Cherng; Wu, Pei-Ei; Hsiung, Chia-Ni; Perkins, Annie; Swann, Ruth; Velentzis, Louiza; Eccles, Diana M; Tapper, Will J; Gerty, Susan M; Graham, Nikki J; Ponder, Bruce A. J.; Chenevix-Trench, Georgia; Pharoah, Paul D.P.; Lathrop, Mark; Dunning, Alison M.; Rahman, Nazneen; Peto, Julian; Easton, Douglas F

    2013-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ~ 8% of the heritability of the disease. We followed up 72 promising associations from two independent Genome Wide Association Studies (GWAS) in ~70,000 cases and ~68,000 controls from 41 case-control studies and nine breast cancer GWAS. We identified three new breast cancer risk loci on 12p11 (rs10771399; P=2.7 × 10−35), 12q24 (rs1292011; P=4.3×10−19) and 21q21 (rs2823093; P=1.1×10−12). SNP rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) plays a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, while NRIP1 (21q21) encodes an ER co-factor and has a role in the regulation of breast cancer cell growth. PMID:22267197

  18. Genome-wide SNP analysis explains coral diversity and recovery in the Ryukyu Archipelago

    PubMed Central

    Shinzato, Chuya; Mungpakdee, Sutada; Arakaki, Nana; Satoh, Noriyuki

    2015-01-01

    Following a global coral bleaching event in 1998, Acropora corals surrounding most of Okinawa island (OI) were devastated, although they are now gradually recovering. In contrast, the Kerama Islands (KIs) only 30 km west of OI, have continuously hosted a great variety of healthy corals. Taking advantage of the decoded Acropora digitifera genome and using genome-wide SNP analyses, we clarified Acropora population structure in the southern Ryukyu Archipelago (sRA). Despite small genetic distances, we identified distinct clusters corresponding to specific island groups, suggesting infrequent long-distance dispersal within the sRA. Although the KIs were believed to supply coral larvae to OI, admixture analyses showed that such dispersal is much more limited than previously realized, indicating independent recovery of OI coral populations and the necessity of local conservation efforts for each region. We detected strong historical migration from the Yaeyama Islands (YIs) to OI, and suggest that the YIs are the original source of OI corals. In addition, migration edges to the KIs suggest that they are a historical sink population in the sRA, resulting in high diversity. This population genomics study provides the highest resolution data to date regarding coral population structure and history. PMID:26656261

  19. Polysome fractionation and analysis of mammalian translatomes on a genome-wide scale.

    PubMed

    Gandin, Valentina; Sikström, Kristina; Alain, Tommy; Morita, Masahiro; McLaughlan, Shannon; Larsson, Ola; Topisirovic, Ivan

    2014-01-01

    mRNA translation plays a central role in the regulation of gene expression and represents the most energy consuming process in mammalian cells. Accordingly, dysregulation of mRNA translation is considered to play a major role in a variety of pathological states including cancer. Ribosomes also host chaperones, which facilitate folding of nascent polypeptides, thereby modulating function and stability of newly synthesized polypeptides. In addition, emerging data indicate that ribosomes serve as a platform for a repertoire of signaling molecules, which are implicated in a variety of post-translational modifications of newly synthesized polypeptides as they emerge from the ribosome, and/or components of translational machinery. Herein, a well-established method of ribosome fractionation using sucrose density gradient centrifugation is described. In conjunction with the in-house developed "anota" algorithm this method allows direct determination of differential translation of individual mRNAs on a genome-wide scale. Moreover, this versatile protocol can be used for a variety of biochemical studies aiming to dissect the function of ribosome-associated protein complexes, including those that play a central role in folding and degradation of newly synthesized polypeptides.

  20. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.

    PubMed

    Kilpeläinen, Tuomas O; Carli, Jayne F Martin; Skowronski, Alicja A; Sun, Qi; Kriebel, Jennifer; Feitosa, Mary F; Hedman, Åsa K; Drong, Alexander W; Hayes, James E; Zhao, Jinghua; Pers, Tune H; Schick, Ursula; Grarup, Niels; Kutalik, Zoltán; Trompet, Stella; Mangino, Massimo; Kristiansson, Kati; Beekman, Marian; Lyytikäinen, Leo-Pekka; Eriksson, Joel; Henneman, Peter; Lahti, Jari; Tanaka, Toshiko; Luan, Jian'an; Del Greco M, Fabiola; Pasko, Dorota; Renström, Frida; Willems, Sara M; Mahajan, Anubha; Rose, Lynda M; Guo, Xiuqing; Liu, Yongmei; Kleber, Marcus E; Pérusse, Louis; Gaunt, Tom; Ahluwalia, Tarunveer S; Ju Sung, Yun; Ramos, Yolande F; Amin, Najaf; Amuzu, Antoinette; Barroso, Inês; Bellis, Claire; Blangero, John; Buckley, Brendan M; Böhringer, Stefan; I Chen, Yii-Der; de Craen, Anton J N; Crosslin, David R; Dale, Caroline E; Dastani, Zari; Day, Felix R; Deelen, Joris; Delgado, Graciela E; Demirkan, Ayse; Finucane, Francis M; Ford, Ian; Garcia, Melissa E; Gieger, Christian; Gustafsson, Stefan; Hallmans, Göran; Hankinson, Susan E; Havulinna, Aki S; Herder, Christian; Hernandez, Dena; Hicks, Andrew A; Hunter, David J; Illig, Thomas; Ingelsson, Erik; Ioan-Facsinay, Andreea; Jansson, John-Olov; Jenny, Nancy S; Jørgensen, Marit E; Jørgensen, Torben; Karlsson, Magnus; Koenig, Wolfgang; Kraft, Peter; Kwekkeboom, Joanneke; Laatikainen, Tiina; Ladwig, Karl-Heinz; LeDuc, Charles A; Lowe, Gordon; Lu, Yingchang; Marques-Vidal, Pedro; Meisinger, Christa; Menni, Cristina; Morris, Andrew P; Myers, Richard H; Männistö, Satu; Nalls, Mike A; Paternoster, Lavinia; Peters, Annette; Pradhan, Aruna D; Rankinen, Tuomo; Rasmussen-Torvik, Laura J; Rathmann, Wolfgang; Rice, Treva K; Brent Richards, J; Ridker, Paul M; Sattar, Naveed; Savage, David B; Söderberg, Stefan; Timpson, Nicholas J; Vandenput, Liesbeth; van Heemst, Diana; Uh, Hae-Won; Vohl, Marie-Claude; Walker, Mark; Wichmann, Heinz-Erich; Widén, Elisabeth; Wood, Andrew R; Yao, Jie; Zeller, Tanja; Zhang, Yiying; Meulenbelt, Ingrid; Kloppenburg, Margreet; Astrup, Arne; Sørensen, Thorkild I A; Sarzynski, Mark A; Rao, D C; Jousilahti, Pekka; Vartiainen, Erkki; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G; Kajantie, Eero; Osmond, Clive; Palotie, Aarno; Eriksson, Johan G; Heliövaara, Markku; Knekt, Paul B; Koskinen, Seppo; Jula, Antti; Perola, Markus; Huupponen, Risto K; Viikari, Jorma S; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T; Mellström, Dan; Lorentzon, Mattias; Casas, Juan P; Bandinelli, Stefanie; März, Winfried; Isaacs, Aaron; van Dijk, Ko W; van Duijn, Cornelia M; Harris, Tamara B; Bouchard, Claude; Allison, Matthew A; Chasman, Daniel I; Ohlsson, Claes; Lind, Lars; Scott, Robert A; Langenberg, Claudia; Wareham, Nicholas J; Ferrucci, Luigi; Frayling, Timothy M; Pramstaller, Peter P; Borecki, Ingrid B; Waterworth, Dawn M; Bergmann, Sven; Waeber, Gérard; Vollenweider, Peter; Vestergaard, Henrik; Hansen, Torben; Pedersen, Oluf; Hu, Frank B; Eline Slagboom, P; Grallert, Harald; Spector, Tim D; Jukema, J W; Klein, Robert J; Schadt, Erik E; Franks, Paul W; Lindgren, Cecilia M; Leibel, Rudolph L; Loos, Ruth J F

    2016-02-01

    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.

  1. Genome-wide analysis of DNA methylation in obese, lean, and miniature pig breeds

    PubMed Central

    Yang, Yalan; Zhou, Rong; Mu, Yulian; Hou, Xinhua; Tang, Zhonglin; Li, Kui

    2016-01-01

    DNA methylation is a crucial epigenetic modification involved in diverse biological processes. There is significant phenotypic variance between Chinese indigenous and western pig breeds. Here, we surveyed the genome-wide DNA methylation profiles of blood leukocytes from three pig breeds (Tongcheng, Landrace, and Wuzhishan) by methylated DNA immunoprecipitation sequencing. The results showed that DNA methylation was enriched in gene body regions and repetitive sequences. LINE/L1 and SINE/tRNA-Glu were the predominant methylated repeats in pigs. The methylation level in the gene body regions was higher than in the 5′ and 3′ flanking regions of genes. About 15% of CpG islands were methylated in the pig genomes. Additionally, 2,807, 2,969, and 5,547 differentially methylated genes (DMGs) were identified in the Tongcheng vs. Landrace, Tongcheng vs. Wuzhishan, and Landrace vs. Wuzhishan comparisons, respectively. A total of 868 DMGs were shared by the three contrasts. The DMGs were significantly enriched in development- and metabolism-related biological processes and pathways. Finally, we identified 32 candidate DMGs associated with phenotype variance in pigs. Our research provides a DNA methylome resource for pigs and furthers understanding of epigenetically regulated phenotype variance in mammals. PMID:27444743

  2. Implication of the immune system in Alzheimer's disease: evidence from genome-wide pathway analysis.

    PubMed

    Lambert, Jean-Charles; Grenier-Boley, Benjamin; Chouraki, Vincent; Heath, Simon; Zelenika, Diana; Fievet, Nathalie; Hannequin, Didier; Pasquier, Florence; Hanon, Olivier; Brice, Alexis; Epelbaum, Jacques; Berr, Claudine; Dartigues, Jean-Francois; Tzourio, Christophe; Campion, Dominique; Lathrop, Mark; Amouyel, Philippe

    2010-01-01

    The results of several genome-wide association studies (GWASs) in the field of Alzheimer's disease (AD) have recently been published. Although these studies reported in detail on single-nucleotide polymorphisms (SNPs) and the neighboring genes with the strongest evidence of association with AD, little attention was paid to the rest of the genome. However, complementary statistical and bio-informatics approaches now enable the extraction of pertinent information from other SNPs and/or genes which are only nominally associated with the disease risk. Two different tools (the ALIGATOR and GenGen/KEGG software packages) were used to analyze a large GWAS dataset containing 2,032 AD cases and 5,328 controls. Convergent outputs from the two gene set enrichment approaches suggested an immune system dysfunction in AD. Furthermore, although these statistical approaches did not adopt a priori hypotheses concerning a biological function's putative role in the disease process, genes associated with AD risk were overrepresented in the "Alzheimer's disease" KEGG pathway. In conclusion, a systematic search for biological pathways using GWAS data set seems to comfort the primary causes already suspected but may specifically highlight the importance of the immune system in AD.

  3. Quantitative Genome-Wide Analysis of Yeast Deletion Strain Sensitivities to Oxidative and Chemical Stress

    PubMed Central

    Tucker, Chandra L.

    2004-01-01

    Understanding the actions of drugs and toxins in a cell is of critical importance to medicine, yet many of the molecular events involved in chemical resistance are relatively uncharacterized. In order to identify the cellular processes and pathways targeted by chemicals, we took advantage of the haploid Saccharomyces cerevisiae deletion strains (Winzeler et al., 1999). Although ~4800 of the strains are viable, the loss of a gene in a pathway affected by a drug can lead to a synthetic lethal effect in which the combination of a deletion and a normally sublethal dose of a chemical results in loss of viability. WE carried out genome-wide screens to determine quantitative sensitivities of the deletion set to four chemicals: hydrogen peroxide, menadione, ibuprofen and mefloquine. Hydrogen peroxide and menadione induce oxidative stress in the cell, whereas ibuprofen and mefloquine are toxic to yeast by unknown mechanisms. Here we report the sensitivities of 659 deletion strains that are sensitive to one or more of these four compounds, including 163 multichemicalsensitive strains, 394 strains specific to hydrogen peroxide and/or menadione, 47 specific to ibuprofen and 55 specific to mefloquine.We correlate these results with data from other large-scale studies to yield novel insights into cellular function. PMID:18629161

  4. Genome-wide SNP analysis explains coral diversity and recovery in the Ryukyu Archipelago.

    PubMed

    Shinzato, Chuya; Mungpakdee, Sutada; Arakaki, Nana; Satoh, Noriyuki

    2015-01-01

    Following a global coral bleaching event in 1998, Acropora corals surrounding most of Okinawa island (OI) were devastated, although they are now gradually recovering. In contrast, the Kerama Islands (KIs) only 30 km west of OI, have continuously hosted a great variety of healthy corals. Taking advantage of the decoded Acropora digitifera genome and using genome-wide SNP analyses, we clarified Acropora population structure in the southern Ryukyu Archipelago (sRA). Despite small genetic distances, we identified distinct clusters corresponding to specific island groups, suggesting infrequent long-distance dispersal within the sRA. Although the KIs were believed to supply coral larvae to OI, admixture analyses showed that such dispersal is much more limited than previously realized, indicating independent recovery of OI coral populations and the necessity of local conservation efforts for each region. We detected strong historical migration from the Yaeyama Islands (YIs) to OI, and suggest that the YIs are the original source of OI corals. In addition, migration edges to the KIs suggest that they are a historical sink population in the sRA, resulting in high diversity. This population genomics study provides the highest resolution data to date regarding coral population structure and history. PMID:26656261

  5. Genome-wide analysis of genetic susceptibility to language impairment in an isolated Chilean population

    PubMed Central

    Villanueva, Pia; Newbury, Dianne F; Jara, Lilian; De Barbieri, Zulema; Mirza, Ghazala; Palomino, Hernán M; Fernández, María Angélica; Cazier, Jean-Baptiste; Monaco, Anthony P; Palomino, Hernán

    2011-01-01

    Specific language impairment (SLI) is an unexpected deficit in the acquisition of language skills and affects between 5 and 8% of pre-school children. Despite its prevalence and high heritability, our understanding of the aetiology of this disorder is only emerging. In this paper, we apply genome-wide techniques to investigate an isolated Chilean population who exhibit an increased frequency of SLI. Loss of heterozygosity (LOH) mapping and parametric and non-parametric linkage analyses indicate that complex genetic factors are likely to underlie susceptibility to SLI in this population. Across all analyses performed, the most consistently implicated locus was on chromosome 7q. This locus achieved highly significant linkage under all three non-parametric models (max NPL=6.73, P=4.0 × 10−11). In addition, it yielded a HLOD of 1.24 in the recessive parametric linkage analyses and contained a segment that was homozygous in two affected individuals. Further, investigation of this region identified a two-SNP haplotype that occurs at an increased frequency in language-impaired individuals (P=0.008). We hypothesise that the linkage regions identified here, in particular that on chromosome 7, may contain variants that underlie the high prevalence of SLI observed in this isolated population and may be of relevance to other populations affected by language impairments. PMID:21248734

  6. Efficient Genome-Wide Sequencing and Low-Coverage Pedigree Analysis from Noninvasively Collected Samples

    PubMed Central

    Snyder-Mackler, Noah; Majoros, William H.; Yuan, Michael L.; Shaver, Amanda O.; Gordon, Jacob B.; Kopp, Gisela H.; Schlebusch, Stephen A.; Wall, Jeffrey D.; Alberts, Susan C.; Mukherjee, Sayan; Zhou, Xiang; Tung, Jenny

    2016-01-01

    Research on the genetics of natural populations was revolutionized in the 1990s by methods for genotyping noninvasively collected samples. However, these methods have remained largely unchanged for the past 20 years and lag far behind the genomics era. To close this gap, here we report an optimized laboratory protocol for genome-wide capture of endogenous DNA from noninvasively collected samples, coupled with a novel computational approach to reconstruct pedigree links from the resulting low-coverage data. We validated both methods using fecal samples from 62 wild baboons, including 48 from an independently constructed extended pedigree. We enriched fecal-derived DNA samples up to 40-fold for endogenous baboon DNA and reconstructed near-perfect pedigree relationships even with extremely low-coverage sequencing. We anticipate that these methods will be broadly applicable to the many research systems for which only noninvasive samples are available. The lab protocol and software (“WHODAD”) are freely available at www.tung-lab.org/protocols-and-software.html and www.xzlab.org/software.html, respectively. PMID:27098910

  7. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels

    PubMed Central

    Kilpeläinen, Tuomas O.; Carli, Jayne F. Martin; Skowronski, Alicja A.; Sun, Qi; Kriebel, Jennifer; Feitosa, Mary F; Hedman, Åsa K.; Drong, Alexander W.; Hayes, James E.; Zhao, Jinghua; Pers, Tune H.; Schick, Ursula; Grarup, Niels; Kutalik, Zoltán; Trompet, Stella; Mangino, Massimo; Kristiansson, Kati; Beekman, Marian; Lyytikäinen, Leo-Pekka; Eriksson, Joel; Henneman, Peter; Lahti, Jari; Tanaka, Toshiko; Luan, Jian'an; Greco M, Fabiola Del; Pasko, Dorota; Renström, Frida; Willems, Sara M.; Mahajan, Anubha; Rose, Lynda M.; Guo, Xiuqing; Liu, Yongmei; Kleber, Marcus E.; Pérusse, Louis; Gaunt, Tom; Ahluwalia, Tarunveer S.; Ju Sung, Yun; Ramos, Yolande F.; Amin, Najaf; Amuzu, Antoinette; Barroso, Inês; Bellis, Claire; Blangero, John; Buckley, Brendan M.; Böhringer, Stefan; I Chen, Yii-Der; de Craen, Anton J. N.; Crosslin, David R.; Dale, Caroline E.; Dastani, Zari; Day, Felix R.; Deelen, Joris; Delgado, Graciela E.; Demirkan, Ayse; Finucane, Francis M.; Ford, Ian; Garcia, Melissa E.; Gieger, Christian; Gustafsson, Stefan; Hallmans, Göran; Hankinson, Susan E.; Havulinna, Aki S; Herder, Christian; Hernandez, Dena; Hicks, Andrew A.; Hunter, David J.; Illig, Thomas; Ingelsson, Erik; Ioan-Facsinay, Andreea; Jansson, John-Olov; Jenny, Nancy S.; Jørgensen, Marit E.; Jørgensen, Torben; Karlsson, Magnus; Koenig, Wolfgang; Kraft, Peter; Kwekkeboom, Joanneke; Laatikainen, Tiina; Ladwig, Karl-Heinz; LeDuc, Charles A.; Lowe, Gordon; Lu, Yingchang; Marques-Vidal, Pedro; Meisinger, Christa; Menni, Cristina; Morris, Andrew P.; Myers, Richard H.; Männistö, Satu; Nalls, Mike A.; Paternoster, Lavinia; Peters, Annette; Pradhan, Aruna D.; Rankinen, Tuomo; Rasmussen-Torvik, Laura J.; Rathmann, Wolfgang; Rice, Treva K.; Brent Richards, J; Ridker, Paul M.; Sattar, Naveed; Savage, David B.; Söderberg, Stefan; Timpson, Nicholas J.; Vandenput, Liesbeth; van Heemst, Diana; Uh, Hae-Won; Vohl, Marie-Claude; Walker, Mark; Wichmann, Heinz-Erich; Widén, Elisabeth; Wood, Andrew R.; Yao, Jie; Zeller, Tanja; Zhang, Yiying; Meulenbelt, Ingrid; Kloppenburg, Margreet; Astrup, Arne; Sørensen, Thorkild I. A.; Sarzynski, Mark A.; Rao, D. C.; Jousilahti, Pekka; Vartiainen, Erkki; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G.; Kajantie, Eero; Osmond, Clive; Palotie, Aarno; Eriksson, Johan G.; Heliövaara, Markku; Knekt, Paul B.; Koskinen, Seppo; Jula, Antti; Perola, Markus; Huupponen, Risto K.; Viikari, Jorma S.; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T.; Mellström, Dan; Lorentzon, Mattias; Casas, Juan P.; Bandinelli, Stefanie; März, Winfried; Isaacs, Aaron; van Dijk, Ko W.; van Duijn, Cornelia M.; Harris, Tamara B.; Bouchard, Claude; Allison, Matthew A.; Chasman, Daniel I.; Ohlsson, Claes; Lind, Lars; Scott, Robert A.; Langenberg, Claudia; Wareham, Nicholas J.; Ferrucci, Luigi; Frayling, Timothy M.; Pramstaller, Peter P.; Borecki, Ingrid B.; Waterworth, Dawn M.; Bergmann, Sven; Waeber, Gérard; Vollenweider, Peter; Vestergaard, Henrik; Hansen, Torben; Pedersen, Oluf; Hu, Frank B.; Eline Slagboom, P; Grallert, Harald; Spector, Tim D.; Jukema, J.W.; Klein, Robert J.; Schadt, Erik E; Franks, Paul W.; Lindgren, Cecilia M.; Leibel, Rudolph L.; Loos, Ruth J. F.

    2016-01-01

    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10−6 in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10−8) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health. PMID:26833098

  8. Genome-wide identification and in silico analysis of poplar peptide deformylases.

    PubMed

    Liu, Chang-Cai; Liu, Bao-Guang; Yang, Zhi-Wei; Li, Chun-Ming; Wang, Bai-Chen; Yang, Chuan-Ping

    2012-01-01

    Peptide deformylases (PDF) behave as monomeric metal cation hydrolases for the removal of the N-formyl group (Fo). This is an essential step in the N-terminal Met excision (NME) that occurs in these proteins from eukaryotic mitochondria or chloroplasts. Although PDFs have been identified and their structure and function have been characterized in several herbaceous species, it remains as yet unexplored in poplar. Here, we report on the first identification of two genes (PtrPDF1A and PtrPDF1B) respectively encoding two putative PDF polypeptides in Populus trichocarpa by genome-wide investigation. One of them (XP_002300047.1) encoded by PtrPDF1B (XM_002300011.1) was truncated, and then revised into a complete sequence based on its ESTs support with high confidence. We document that the two PDF1s of Populus are evolutionarily divergent, likely as a result of independent duplicated events. Furthermore, in silico simulations demonstrated that PtrPDF1A and PtrPDF1B should act as similar PDF catalytic activities to their corresponding PDF orthologs in Arabidopsis. This result would be value of for further assessment of their biological activities in poplar, and further experiments are now required to confirm them. PMID:22606033

  9. Efficient Genome-Wide Sequencing and Low-Coverage Pedigree Analysis from Noninvasively Collected Samples.

    PubMed

    Snyder-Mackler, Noah; Majoros, William H; Yuan, Michael L; Shaver, Amanda O; Gordon, Jacob B; Kopp, Gisela H; Schlebusch, Stephen A; Wall, Jeffrey D; Alberts, Susan C; Mukherjee, Sayan; Zhou, Xiang; Tung, Jenny

    2016-06-01

    Research on the genetics of natural populations was revolutionized in the 1990s by methods for genotyping noninvasively collected samples. However, these methods have remained largely unchanged for the past 20 years and lag far behind the genomics era. To close this gap, here we report an optimized laboratory protocol for genome-wide capture of endogenous DNA from noninvasively collected samples, coupled with a novel computational approach to reconstruct pedigree links from the resulting low-coverage data. We validated both methods using fecal samples from 62 wild baboons, including 48 from an independently constructed extended pedigree. We enriched fecal-derived DNA samples up to 40-fold for endogenous baboon DNA and reconstructed near-perfect pedigree relationships even with extremely low-coverage sequencing. We anticipate that these methods will be broadly applicable to the many research systems for which only noninvasive samples are available. The lab protocol and software ("WHODAD") are freely available at www.tung-lab.org/protocols-and-software.html and www.xzlab.org/software.html, respectively. PMID:27098910

  10. Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia

    PubMed Central

    Wan, Zi Yi; Xia, Jun Hong; Lin, Grace; Wang, Le; Lin, Valerie C. L.; Yue, Gen Hua

    2016-01-01

    Sexual dimorphism is an interesting biological phenomenon. Previous studies showed that DNA methylation might play a role in sexual dimorphism. However, the overall picture of the genome-wide methylation landscape in sexually dimorphic species remains unclear. We analyzed the DNA methylation landscape and transcriptome in hybrid tilapia (Oreochromis spp.) using whole genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq). We found 4,757 sexually dimorphic differentially methylated regions (DMRs), with significant clusters of DMRs located on chromosomal regions associated with sex determination. CpG methylation in promoter regions was negatively correlated with the gene expression level. MAPK/ERK pathway was upregulated in male tilapia. We also inferred active cis-regulatory regions (ACRs) in skeletal muscle tissues from WGBS datasets, revealing sexually dimorphic cis-regulatory regions. These results suggest that DNA methylation contribute to sex-specific phenotypes and serve as resources for further investigation to analyze the functions of these regions and their contributions towards sexual dimorphisms. PMID:27782217

  11. Genome-wide and fine-resolution association analysis of malaria in West Africa.

    PubMed

    Jallow, Muminatou; Teo, Yik Ying; Small, Kerrin S; Rockett, Kirk A; Deloukas, Panos; Clark, Taane G; Kivinen, Katja; Bojang, Kalifa A; Conway, David J; Pinder, Margaret; Sirugo, Giorgio; Sisay-Joof, Fatou; Usen, Stanley; Auburn, Sarah; Bumpstead, Suzannah J; Campino, Susana; Coffey, Alison; Dunham, Andrew; Fry, Andrew E; Green, Angela; Gwilliam, Rhian; Hunt, Sarah E; Inouye, Michael; Jeffreys, Anna E; Mendy, Alieu; Palotie, Aarno; Potter, Simon; Ragoussis, Jiannis; Rogers, Jane; Rowlands, Kate; Somaskantharajah, Elilan; Whittaker, Pamela; Widden, Claire; Donnelly, Peter; Howie, Bryan; Marchini, Jonathan; Morris, Andrew; SanJoaquin, Miguel; Achidi, Eric Akum; Agbenyega, Tsiri; Allen, Angela; Amodu, Olukemi; Corran, Patrick; Djimde, Abdoulaye; Dolo, Amagana; Doumbo, Ogobara K; Drakeley, Chris; Dunstan, Sarah; Evans, Jennifer; Farrar, Jeremy; Fernando, Deepika; Hien, Tran Tinh; Horstmann, Rolf D; Ibrahim, Muntaser; Karunaweera, Nadira; Kokwaro, Gilbert; Koram, Kwadwo A; Lemnge, Martha; Makani, Julie; Marsh, Kevin; Michon, Pascal; Modiano, David; Molyneux, Malcolm E; Mueller, Ivo; Parker, Michael; Peshu, Norbert; Plowe, Christopher V; Puijalon, Odile; Reeder, John; Reyburn, Hugh; Riley, Eleanor M; Sakuntabhai, Anavaj; Singhasivanon, Pratap; Sirima, Sodiomon; Tall, Adama; Taylor, Terrie E; Thera, Mahamadou; Troye-Blomberg, Marita; Williams, Thomas N; Wilson, Michael; Kwiatkowski, Dominic P

    2009-06-01

    We report a genome-wide association (GWA) study of severe malaria in The Gambia. The initial GWA scan included 2,500 children genotyped on the Affymetrix 500K GeneChip, and a replication study included 3,400 children. We used this to examine the performance of GWA methods in Africa. We found considerable population stratification, and also that signals of association at known malaria resistance loci were greatly attenuated owing to weak linkage disequilibrium (LD). To investigate possible solutions to the problem of low LD, we focused on the HbS locus, sequencing this region of the genome in 62 Gambian individuals and then using these data to conduct multipoint imputation in the GWA samples. This increased the signal of association, from P = 4 × 10(-7) to P = 4 × 10(-14), with the peak of the signal located precisely at the HbS causal variant. Our findings provide proof of principle that fine-resolution multipoint imputation, based on population-specific sequencing data, can substantially boost authentic GWA signals and enable fine mapping of causal variants in African populations.

  12. Genome Wide Analysis of Drug-Induced Torsades de Pointes: Lack of Common Variants with Large Effect Sizes

    PubMed Central

    Behr, Elijah R.; Ritchie, Marylyn D.; Tanaka, Toshihiro; Kääb, Stefan; Crawford, Dana C.; Nicoletti, Paola; Floratos, Aris; Sinner, Moritz F.; Kannankeril, Prince J.; Wilde, Arthur A. M.; Bezzina, Connie R.; Schulze-Bahr, Eric; Zumhagen, Sven; Guicheney, Pascale; Bishopric, Nanette H.; Marshall, Vanessa; Shakir, Saad; Dalageorgou, Chrysoula; Bevan, Steve; Jamshidi, Yalda; Bastiaenen, Rachel; Myerburg, Robert J.; Schott, Jean-Jacques; Camm, A. John; Steinbeck, Gerhard; Norris, Kris; Altman, Russ B.; Tatonetti, Nicholas P.; Jeffery, Steve; Kubo, Michiaki; Nakamura, Yusuke; Shen, Yufeng; George, Alfred L.; Roden, Dan M.

    2013-01-01

    Marked prolongation of the QT interval on the electrocardiogram associated with the polymorphic ventricular tachycardia Torsades de Pointes is a serious adverse event during treatment with antiarrhythmic drugs and other culprit medications, and is a common cause for drug relabeling and withdrawal. Although clinical risk factors have been identified, the syndrome remains unpredictable in an individual patient. Here we used genome-wide association analysis to search for common predisposing genetic variants. Cases of drug-induced Torsades de Pointes (diTdP), treatment tolerant controls, and general population controls were ascertained across multiple sites using common definitions, and genotyped on the Illumina 610k or 1M-Duo BeadChips. Principal Components Analysis was used to select 216 Northwestern European diTdP cases and 771 ancestry-matched controls, including treatment-tolerant and general population subjects. With these sample sizes, there is 80% power to detect a variant at genome-wide significance with minor allele frequency of 10% and conferring an odds ratio of ≥2.7. Tests of association were carried out for each single nucleotide polymorphism (SNP) by logistic regression adjusting for gender and population structure. No SNP reached genome wide-significance; the variant with the lowest P value was rs2276314, a non-synonymous coding variant in C18orf21 (p  =  3×10−7, odds ratio = 2, 95% confidence intervals: 1.5–2.6). The haplotype formed by rs2276314 and a second SNP, rs767531, was significantly more frequent in controls than cases (p  =  3×10−9). Expanding the number of controls and a gene-based analysis did not yield significant associations. This study argues that common genomic variants do not contribute importantly to risk for drug-induced Torsades de Pointes across multiple drugs. PMID:24223155

  13. Integrated genome-wide association, coexpression network, and expression single nucleotide polymorphism analysis identifies novel pathway in allergic rhinitis

    PubMed Central

    2014-01-01

    Background Allergic rhinitis is a common disease whose genetic basis is incompletely explained. We report an integrated genomic analysis of allergic rhinitis. Methods We performed genome wide association studies (GWAS) of allergic rhinitis in 5633 ethnically diverse North American subjects. Next, we profiled gene expression in disease-relevant tissue (peripheral blood CD4+ lymphocytes) collected from subjects who had been genotyped. We then integrated the GWAS and gene expression data using expression single nucleotide (eSNP), coexpression network, and pathway approaches to identify the biologic relevance of our GWAS. Results GWAS revealed ethnicity-specific findings, with 4 genome-wide significant loci among Latinos and 1 genome-wide significant locus in the GWAS meta-analysis across ethnic groups. To identify biologic context for these results, we constructed a coexpression network to define modules of genes with similar patterns of CD4+ gene expression (coexpression modules) that could serve as constructs of broader gene expression. 6 of the 22 GWAS loci with P-value ≤ 1x10−6 tagged one particular coexpression module (4.0-fold enrichment, P-value 0.0029), and this module also had the greatest enrichment (3.4-fold enrichment, P-value 2.6 × 10−24) for allergic rhinitis-associated eSNPs (genetic variants associated with both gene expression and allergic rhinitis). The integrated GWAS, coexpression network, and eSNP results therefore supported this coexpression module as an allergic rhinitis module. Pathway analysis revealed that the module was enriched for mitochondrial pathways (8.6-fold enrichment, P-value 4.5 × 10−72). Conclusions Our results highlight mitochondrial pathways as a target for further investigation of allergic rhinitis mechanism and treatment. Our integrated approach can be applied to provide biologic context for GWAS of other diseases. PMID:25085501

  14. Genome-wide Association Studies of MRI-defined Brain Infarcts: Meta-analysis from the CHARGE Consortium

    PubMed Central

    Debette, Stephanie; Bis, Joshua C.; Fornage, Myriam; Schmidt, Helena; Ikram, M. Arfan; Sigurdsson, Sigurdur; Heiss, Gerardo; Struchalin, Maksim; Smith, Albert V.; van der Lugt, Aad; DeCarli, Charles; Lumley, Thomas; Knopman, David S.; Enzinger, Christian; Eiriksdottir, Gudny; Koudstaal, Peter J.; DeStefano, Anita L.; Psaty, Bruce M.; Dufouil, Carole; Catellier, Diane J.; Fazekas, Franz; Aspelund, Thor; Aulchenko, Yurii S.; Beiser, Alexa; Rotter, Jerome I.; Tzourio, Christophe; Shibata, Dean K.; Tscherner, Maria; Harris, Tamara B.; Rivadeneira, Fernando; Atwood, Larry D.; Rice, Kenneth; Gottesman, Rebecca F.; van Buchem, Mark A.; Uitterlinden, Andre G.; Kelly-Hayes, Margaret; Cushman, Mary; Zhu, Yicheng; Boerwinkle, Eric; Gudnason, Vilmundur; Hofman, Albert; Romero, Jose R.; Lopez, Oscar; van Duijn, Cornelia M.; Au, Rhoda; Heckbert, Susan R.; Wolf, Philip A.; Mosley, Thomas H.; Seshadri, Sudha; Breteler, Monique M.B.; Schmidt, Reinhold; Launer, Lenore J.; Longstreth, WT

    2010-01-01

    Background Previous studies examining genetic associations with MRI-defined brain infarct have yielded inconsistent findings. We investigated genetic variation underlying covert MRI-infarct, in persons without histories of transient ischemic attack or stroke. We performed meta-analysis of genome-wide association studies of white participants in 6 studies comprising the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Methods Using 2.2 million genotyped and imputed SNPs, each study performed cross-sectional genome-wide association analysis of MRI-infarct using age and sex-adjusted logistic regression models. Study-specific findings were combined in an inverse-variance weighted meta-analysis, including 9401 participants with mean age 69.7, 19.4% of whom had ≥1 MRI-infarct. Results The most significant association was found with rs2208454 (minor allele frequency: 20%), located in intron 3 of MACRO Domain Containing 2 gene and in the downstream region of Fibronectin Leucine Rich Transmembrane Protein 3 gene. Each copy of the minor allele was associated with lower risk of MRI-infarcts: odds ratio=0.76, 95% confidence interval=0.68–0.84, p=4.64×10−7. Highly suggestive associations (p<1.0×10−5) were also found for 22 other SNPs in linkage disequilibrium (r2>0.64) with rs2208454. The association with rs2208454 did not replicate in independent samples of 1822 white and 644 African-American participants, although 4 SNPs within 200kb from rs2208454 were associated with MRI-infarcts in African-American sample. Conclusions This first community-based, genome-wide association study on covert MRI-infarcts uncovered novel associations. Although replication of the association with top SNP failed, possibly due to insufficient power, results in the African American sample are encouraging, and further efforts at replication are needed. PMID:20044523

  15. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    PubMed Central

    Cordell, Heather J.; Han, Younghun; Mells, George F.; Li, Yafang; Hirschfield, Gideon M.; Greene, Casey S.; Xie, Gang; Juran, Brian D.; Zhu, Dakai; Qian, David C.; Floyd, James A. B.; Morley, Katherine I.; Prati, Daniele; Lleo, Ana; Cusi, Daniele; Schlicht, Erik M; Lammert, Craig; Atkinson, Elizabeth J; Chan, Landon L; de Andrade, Mariza; Balschun, Tobias; Mason, Andrew L; Myers, Robert P; Zhang, Jinyi; Milkiewicz, Piotr; Qu, Jia; Odin, Joseph A; Luketic, Velimir A; Bacon, Bruce R; Bodenheimer Jr, Henry C; Liakina, Valentina; Vincent, Catherine; Levy, Cynthia; Gregersen, Peter K; Almasio, Piero L; Alvaro, Domenico; Andreone, Pietro; Andriulli, Angelo; Barlassina, Cristina; Battezzati, Pier Maria; Benedetti, Antonio; Bernuzzi, Francesca; Bianchi, Ilaria; Bragazzi, Maria Consiglia; Brunetto, Maurizia; Bruno, Savino; Casella, Giovanni; Coco, Barbara; Colli, Agostino; Colombo, Massimo; Colombo, Silvia; Cursaro, Carmela; Crocè, Lory Saveria; Crosignani, Andrea; Donato, Maria Francesca; Elia, Gianfranco; Fabris, Luca; Ferrari, Carlo; Floreani, Annarosa; Foglieni, Barbara; Fontana, Rosanna; Galli, Andrea; Lazzari, Roberta; Macaluso, Fabio; Malinverno, Federica; Marra, Fabio; Marzioni, Marco; Mattalia, Alberto; Montanari, Renzo; Morini, Lorenzo; Morisco, Filomena; Hani S, Mousa; Muratori, Luigi; Muratori, Paolo; Niro, Grazia A; Palmieri, Vincenzo O; Picciotto, Antonio; Podda, Mauro; Portincasa, Piero; Ronca, Vincenzo; Rosina, Floriano; Rossi, Sonia; Sogno, Ilaria; Spinzi, Giancarlo; Spreafico, Marta; Strazzabosco, Mario; Tarallo, Sonia; Tarocchi, Mirko; Tiribelli, Claudio; Toniutto, Pierluigi; Vinci, Maria; Zuin, Massimo; Ch'ng, Chin Lye; Rahman, Mesbah; Yapp, Tom; Sturgess, Richard; Healey, Christopher; Czajkowski, Marek; Gunasekera, Anton; Gyawali, Pranab; Premchand, Purushothaman; Kapur, Kapil; Marley, Richard; Foster, Graham; Watson, Alan; Dias, Aruna; Subhani, Javaid; Harvey, Rory; McCorry, Roger; Ramanaden, David; Gasem, Jaber; Evans, Richard; Mathialahan, Thiriloganathan; Shorrock, Christopher; Lipscomb, George; Southern, Paul; Tibble, Jeremy; Gorard, David; Palegwala, Altaf; Jones, Susan; Carbone, Marco; Dawwas, Mohamed; Alexander, Graeme; Dolwani, Sunil; Prince, Martin; Foxton, Matthew; Elphick, David; Mitchison, Harriet; Gooding, Ian; Karmo, Mazn; Saksena, Sushma; Mendall, Mike; Patel, Minesh; Ede, Roland; Austin, Andrew; Sayer, Joanna; Hankey, Lorraine; Hovell, Christopher; Fisher, Neil; Carter, Martyn; Koss, Konrad; Piotrowicz, Andrzej; Grimley, Charles; Neal, David; Lim, Guan; Levi, Sass; Ala, Aftab; Broad, Andrea; Saeed, Athar; Wood, Gordon; Brown, Jonathan; Wilkinson, Mark; Gordon, Harriet; Ramage, John; Ridpath, Jo; Ngatchu, Theodore; Grover, Bob; Shaukat, Syed; Shidrawi, Ray; Abouda, George; Ali, Faiz; Rees, Ian; Salam, Imroz; Narain, Mark; Brown, Ashley; Taylor-Robinson, Simon; Williams, Simon; Grellier, Leonie; Banim, Paul; Das, Debashis; Chilton, Andrew; Heneghan, Michael; Curtis, Howard; Gess, Markus; Drake, Ian; Aldersley, Mark; Davies, Mervyn; Jones, Rebecca; McNair, Alastair; Srirajaskanthan, Raj; Pitcher, Maxton; Sen, Sambit; Bird, George; Barnardo, Adrian; Kitchen, Paul; Yoong, Kevin; Chirag, Oza; Sivaramakrishnan, Nurani; MacFaul, George; Jones, David; Shah, Amir; Evans, Chris; Saha, Subrata; Pollock, Katharine; Bramley, Peter; Mukhopadhya, Ashis; Fraser, Andrew; Mills, Peter; Shallcross, Christopher; Campbell, Stewart; Bathgate, Andrew; Shepherd, Alan; Dillon, John; Rushbrook, Simon; Przemioslo, Robert; Macdonald, Christopher; Metcalf, Jane; Shmueli, Udi; Davis, Andrew; Naqvi, Asifabbas; Lee, Tom; Ryder, Stephen D; Collier, Jane; Klass, Howard; Ninkovic, Mary; Cramp, Matthew; Sharer, Nicholas; Aspinall, Richard; Goggin, Patrick; Ghosh, Deb; Douds, Andrew; Hoeroldt, Barbara; Booth, Jonathan; Williams, Earl; Hussaini, Hyder; Stableforth, William; Ayres, Reuben; Thorburn, Douglas; Marshall, Eileen; Burroughs, Andrew; Mann, Steven; Lombard, Martin; Richardson, Paul; Patanwala, Imran; Maltby, Julia; Brookes, Matthew; Mathew, Ray; Vyas, Samir; Singhal, Saket; Gleeson, Dermot; Misra, Sharat; Butterworth, Jeff; George, Keith; Harding, Tim; Douglass, Andrew; Panter, Simon; Shearman, Jeremy; Bray, Gary; Butcher, Graham; Forton, Daniel; Mclindon, John; Cowan, Matthew; Whatley, Gregory; Mandal, Aditya; Gupta, Hemant; Sanghi, Pradeep; Jain, Sanjiv; Pereira, Steve; Prasad, Geeta; Watts, Gill; Wright, Mark; Neuberger, James; Gordon, Fiona; Unitt, Esther; Grant, Allister; Delahooke, Toby; Higham, Andrew; Brind, Alison; Cox, Mark; Ramakrishnan, Subramaniam; King, Alistair; Collins, Carole; Whalley, Simon; Li, Andy; Fraser, Jocelyn; Bell, Andrew; Wong, Voi Shim; Singhal, Amit; Gee, Ian; Ang, Yeng; Ransford, Rupert; Gotto, James; Millson, Charles; Bowles, Jane; Thomas, Caradog; Harrison, Melanie; Galaska, Roman; Kendall, Jennie; Whiteman, Jessica; Lawlor, Caroline; Gray, Catherine; Elliott, Keith; Mulvaney-Jones, Caroline; Hobson, Lucie; Van Duyvenvoorde, Greta; Loftus, Alison; Seward, Katie; Penn, Ruth; Maiden, Jane; Damant, Rose; Hails, Janeane; Cloudsdale, Rebecca; Silvestre, Valeria; Glenn, Sue; Dungca, Eleanor; Wheatley, Natalie; Doyle, Helen; Kent, Melanie; Hamilton, Caroline; Braim, Delyth; Wooldridge, Helen; Abrahams, Rachel; Paton, Alison; Lancaster, Nicola; Gibbins, Andrew; Hogben, Karen; Desousa, Phillipa; Muscariu, Florin; Musselwhite, Janine; McKay, Alexandra; Tan, LaiTing; Foale, Carole; Brighton, Jacqueline; Flahive, Kerry; Nambela, Estelle; Townshend, Paula; Ford, Chris; Holder, Sophie; Palmer, Caroline; Featherstone, James; Nasseri, Mariam; Sadeghian, Joy; Williams, Bronwen; Thomas, Carol; Rolls, Sally-Ann; Hynes, Abigail; Duggan, Claire; Jones, Sarah; Crossey, Mary; Stansfield, Glynis; MacNicol, Carolyn; Wilkins, Joy; Wilhelmsen, Elva; Raymode, Parizade; Lee, Hye-Jeong; Durant, Emma; Bishop, Rebecca; Ncube, Noma; Tripoli, Sherill; Casey, Rebecca; Cowley, Caroline; Miller, Richard; Houghton, Kathryn; Ducker, Samantha; Wright, Fiona; Bird, Bridget; Baxter, Gwen; Keggans, Janie; Hughes, Maggie; Grieve, Emma; Young, Karin; Williams, D; Ocker, Kate; Hines, Frances; Martin, Kirsty; Innes, Caron; Valliani, Talal; Fairlamb, Helen; Thornthwaite, Sarah; Eastick, Anne; Tanqueray, Elizabeth; Morrison, Jennifer; Holbrook, Becky; Browning, Julie; Walker, Kirsten; Congreave, Susan; Verheyden, Juliette; Slininger, Susan; Stafford, Lizzie; O'Donnell, Denise; Ainsworth, Mark; Lord, Susan; Kent, Linda; March, Linda; Dickson, Christine; Simpson, Diane; Longhurst, Beverley; Hayes, Maria; Shpuza, Ervin; White, Nikki; Besley, Sarah; Pearson, Sallyanne; Wright, Alice; Jones, Linda; Gunter, Emma; Dewhurst, Hannah; Fouracres, Anna; Farrington, Liz; Graves, Lyn; Marriott, Suzie; Leoni, Marina; Tyrer, David; Martin, Kate; Dali-kemmery, Lola; Lambourne, Victoria; Green, Marie; Sirdefield, Dawn; Amor, Kelly; Colley, Julie; Shinder, Bal; Jones, Jayne; Mills, Marisa; Carnahan, Mandy; Taylor, Natalie; Boulton, Kerenza; Tregonning, Julie; Brown, Carly; Clifford, Gayle; Archer, Emily; Hamilton, Maria; Curtis, Janette; Shewan, Tracey; Walsh, Sue; Warner, Karen; Netherton, Kimberley; Mupudzi, Mcdonald; Gunson, Bridget; Gitahi, Jane; Gocher, Denise; Batham, Sally; Pateman, Hilary; Desmennu, Senayon; Conder, Jill; Clement, Darren; Gallagher, Susan; Orpe, Jacky; Chan, PuiChing; Currie, Lynn; O'Donohoe, Lynn; Oblak, Metod; Morgan, Lisa; Quinn, Marie; Amey, Isobel; Baird, Yolanda; Cotterill, Donna; Cumlat, Lourdes; Winter, Louise; Greer, Sandra; Spurdle, Katie; Allison, Joanna; Dyer, Simon; Sweeting, Helen; Kordula, Jean; Gershwin, M. Eric; Anderson, Carl A.; Lazaridis, Konstantinos N.; Invernizzi, Pietro; Seldin, Michael F.; Sandford, Richard N.; Amos, Christopher I.; Siminovitch, Katherine A.

    2015-01-01

    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10−8) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine–cytokine pathways, for which relevant therapies exist. PMID:26394269

  16. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    PubMed

    Cordell, Heather J; Han, Younghun; Mells, George F; Li, Yafang; Hirschfield, Gideon M; Greene, Casey S; Xie, Gang; Juran, Brian D; Zhu, Dakai; Qian, David C; Floyd, James A B; Morley, Katherine I; Prati, Daniele; Lleo, Ana; Cusi, Daniele; Gershwin, M Eric; Anderson, Carl A; Lazaridis, Konstantinos N; Invernizzi, Pietro; Seldin, Michael F; Sandford, Richard N; Amos, Christopher I; Siminovitch, Katherine A

    2015-01-01

    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist. PMID:26394269

  17. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    PubMed

    Cordell, Heather J; Han, Younghun; Mells, George F; Li, Yafang; Hirschfield, Gideon M; Greene, Casey S; Xie, Gang; Juran, Brian D; Zhu, Dakai; Qian, David C; Floyd, James A B; Morley, Katherine I; Prati, Daniele; Lleo, Ana; Cusi, Daniele; Gershwin, M Eric; Anderson, Carl A; Lazaridis, Konstantinos N; Invernizzi, Pietro; Seldin, Michael F; Sandford, Richard N; Amos, Christopher I; Siminovitch, Katherine A

    2015-01-01

    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist.

  18. Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress.

    PubMed

    Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K; Asif, Mehar H

    2016-01-01

    The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively. PMID:27014321

  19. Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress

    PubMed Central

    Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K.; Asif, Mehar H.

    2016-01-01

    The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively. PMID:27014321

  20. Genome-Wide Association Analysis Identifies Variants Associated with Nonalcoholic Fatty Liver Disease That Have Distinct Effects on Metabolic Traits

    PubMed Central

    Palmer, Cameron D.; Gudnason, Vilmundur; Eiriksdottir, Gudny; Garcia, Melissa E.; Launer, Lenore J.; Nalls, Michael A.; Clark, Jeanne M.; Mitchell, Braxton D.; Shuldiner, Alan R.; Butler, Johannah L.; Tomas, Marta; Hoffmann, Udo; Hwang, Shih-Jen; Massaro, Joseph M.; O'Donnell, Christopher J.; Sahani, Dushyant V.; Salomaa, Veikko; Schadt, Eric E.; Schwartz, Stephen M.; Siscovick, David S.; Voight, Benjamin F.; Carr, J. Jeffrey; Feitosa, Mary F.; Harris, Tamara B.; Fox, Caroline S.

    2011-01-01

    Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%–27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10−8) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT–assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits. PMID:21423719

  1. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits.

    PubMed

    Speliotes, Elizabeth K; Yerges-Armstrong, Laura M; Wu, Jun; Hernaez, Ruben; Kim, Lauren J; Palmer, Cameron D; Gudnason, Vilmundur; Eiriksdottir, Gudny; Garcia, Melissa E; Launer, Lenore J; Nalls, Michael A; Clark, Jeanne M; Mitchell, Braxton D; Shuldiner, Alan R; Butler, Johannah L; Tomas, Marta; Hoffmann, Udo; Hwang, Shih-Jen; Massaro, Joseph M; O'Donnell, Christopher J; Sahani, Dushyant V; Salomaa, Veikko; Schadt, Eric E; Schwartz, Stephen M; Siscovick, David S; Voight, Benjamin F; Carr, J Jeffrey; Feitosa, Mary F; Harris, Tamara B; Fox, Caroline S; Smith, Albert V; Kao, W H Linda; Hirschhorn, Joel N; Borecki, Ingrid B

    2011-03-01

    Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10(-8)) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT-assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits.

  2. Genome-Wide Analysis of MicroRNA Responses to the Phytohormone Abscisic Acid in Populus euphratica

    PubMed Central

    Duan, Hui; Lu, Xin; Lian, Conglong; An, Yi; Xia, Xinli; Yin, Weilun

    2016-01-01

    MicroRNA (miRNA) is a type of non-coding small RNA with a regulatory function at the posttranscriptional level in plant growth development and in response to abiotic stress. Previous studies have not reported on miRNAs responses to the phytohormone abscisic acid (ABA) at a genome-wide level in Populus euphratica, a model tree for studying abiotic stress responses in woody plants. Here we analyzed the miRNA response to ABA at a genome-wide level in P. euphratica utilizing high-throughput sequencing. To systematically perform a genome-wide analysis of ABA-responsive miRNAs in P. euphratica, nine sRNA libraries derived from three groups (control, treated with ABA for 1 day and treated with ABA for 4 days) were constructed. Each group included three libraries from three individual plantlets as biological replicate. In total, 151 unique mature sequences belonging to 75 conserved miRNA families were identified, and 94 unique sequences were determined to be novel miRNAs, including 56 miRNAs with miRNA* sequences. In all, 31 conserved miRNAs and 31 novel miRNAs response to ABA significantly differed among the groups. In addition, 4132 target genes were predicted for the conserved and novel miRNAs. Confirmed by real-time qPCR, expression changes of miRNAs were inversely correlated with the expression profiles of their putative targets. The Populus special or novel miRNA-target interactions were predicted might be involved in some biological process related stress tolerance. Our analysis provides a comprehensive view of how P. euphratica miRNA respond to ABA, and moreover, different temporal dynamics were observed in different ABA-treated libraries. PMID:27582743

  3. Genome-Wide Analysis of MicroRNA Responses to the Phytohormone Abscisic Acid in Populus euphratica.

    PubMed

    Duan, Hui; Lu, Xin; Lian, Conglong; An, Yi; Xia, Xinli; Yin, Weilun

    2016-01-01

    MicroRNA (miRNA) is a type of non-coding small RNA with a regulatory function at the posttranscriptional level in plant growth development and in response to abiotic stress. Previous studies have not reported on miRNAs responses to the phytohormone abscisic acid (ABA) at a genome-wide level in Populus euphratica, a model tree for studying abiotic stress responses in woody plants. Here we analyzed the miRNA response to ABA at a genome-wide level in P. euphratica utilizing high-throughput sequencing. To systematically perform a genome-wide analysis of ABA-responsive miRNAs in P. euphratica, nine sRNA libraries derived from three groups (control, treated with ABA for 1 day and treated with ABA for 4 days) were constructed. Each group included three libraries from three individual plantlets as biological replicate. In total, 151 unique mature sequences belonging to 75 conserved miRNA families were identified, and 94 unique sequences were determined to be novel miRNAs, including 56 miRNAs with miRNA(*) sequences. In all, 31 conserved miRNAs and 31 novel miRNAs response to ABA significantly differed among the groups. In addition, 4132 target genes were predicted for the conserved and novel miRNAs. Confirmed by real-time qPCR, expression changes of miRNAs were inversely correlated with the expression profiles of their putative targets. The Populus special or novel miRNA-target interactions were predicted might be involved in some biological process related stress tolerance. Our analysis provides a comprehensive view of how P. euphratica miRNA respond to ABA, and moreover, different temporal dynamics were observed in different ABA-treated libraries. PMID:27582743

  4. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits.

    PubMed

    Speliotes, Elizabeth K; Yerges-Armstrong, Laura M; Wu, Jun; Hernaez, Ruben; Kim, Lauren J; Palmer, Cameron D; Gudnason, Vilmundur; Eiriksdottir, Gudny; Garcia, Melissa E; Launer, Lenore J; Nalls, Michael A; Clark, Jeanne M; Mitchell, Braxton D; Shuldiner, Alan R; Butler, Johannah L; Tomas, Marta; Hoffmann, Udo; Hwang, Shih-Jen; Massaro, Joseph M; O'Donnell, Christopher J; Sahani, Dushyant V; Salomaa, Veikko; Schadt, Eric E; Schwartz, Stephen M; Siscovick, David S; Voight, Benjamin F; Carr, J Jeffrey; Feitosa, Mary F; Harris, Tamara B; Fox, Caroline S; Smith, Albert V; Kao, W H Linda; Hirschhorn, Joel N; Borecki, Ingrid B

    2011-03-01

    Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10(-8)) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT-assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits. PMID:21423719

  5. The Challenges of Genome-Wide Interaction Studies: Lessons to Learn from the Analysis of HDL Blood Levels

    PubMed Central

    van Leeuwen, Elisabeth M.; Smouter, Françoise A. S.; Kam-Thong, Tony; Karbalai, Nazanin; Smith, Albert V.; Harris, Tamara B.; Launer, Lenore J.; Sitlani, Colleen M.; Li, Guo; Brody, Jennifer A.; Bis, Joshua C.; White, Charles C.; Jaiswal, Alok; Oostra, Ben A.; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, Andre G.; Boerwinkle, Eric; Ballantyne, Christie M.; Gudnason, Vilmundur; Psaty, Bruce M.; Cupples, L. Adrienne; Järvelin, Marjo-Riitta; Ripatti, Samuli; Isaacs, Aaron; Müller-Myhsok, Bertram; Karssen, Lennart C.; van Duijn, Cornelia M.

    2014-01-01

    Genome-wide association studies (GWAS) have revealed 74 single nucleotide polymorphisms (SNPs) associated with high-density lipoprotein cholesterol (HDL) blood levels. This study is, to our knowledge, the first genome-wide interaction study (GWIS) to identify SNP×SNP interactions associated with HDL levels. We performed a GWIS in the Rotterdam Study (RS) cohort I (RS-I) using the GLIDE tool which leverages the massively parallel computing power of Graphics Processing Units (GPUs) to perform linear regression on all genome-wide pairs of SNPs. By performing a meta-analysis together with Rotterdam Study cohorts II and III (RS-II and RS-III), we were able to filter 181 interaction terms with a p-value<1 · 10−8 that replicated in the two independent cohorts. We were not able to replicate any of these interaction term in the AGES, ARIC, CHS, ERF, FHS and NFBC-66 cohorts (Ntotal = 30,011) when adjusting for multiple testing. Our GWIS resulted in the consistent finding of a possible interaction between rs774801 in ARMC8 (ENSG00000114098) and rs12442098 in SPATA8 (ENSG00000185594) being associated with HDL levels. However, p-values do not reach the preset Bonferroni correction of the p-values. Our study suggest that even for highly genetically determined traits such as HDL the sample sizes needed to detect SNP×SNP interactions are large and the 2-step filtering approaches do not yield a solution. Here we present our analysis plan and our reservations concerning GWIS. PMID:25329471

  6. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians.

    PubMed

    Cho, Yoon Shin; Chen, Chien-Hsiun; Hu, Cheng; Long, Jirong; Ong, Rick Twee Hee; Sim, Xueling; Takeuchi, Fumihiko; Wu, Ying; Go, Min Jin; Yamauchi, Toshimasa; Chang, Yi-Cheng; Kwak, Soo Heon; Ma, Ronald C W; Yamamoto, Ken; Adair, Linda S; Aung, Tin; Cai, Qiuyin; Chang, Li-Ching; Chen, Yuan-Tsong; Gao, Yutang; Hu, Frank B; Kim, Hyung-Lae; Kim, Sangsoo; Kim, Young Jin; Lee, Jeannette Jen-Mai; Lee, Nanette R; Li, Yun; Liu, Jian Jun; Lu, Wei; Nakamura, Jiro; Nakashima, Eitaro; Ng, Daniel Peng-Keat; Tay, Wan Ting; Tsai, Fuu-Jen; Wong, Tien Yin; Yokota, Mitsuhiro; Zheng, Wei; Zhang, Rong; Wang, Congrong; So, Wing Yee; Ohnaka, Keizo; Ikegami, Hiroshi; Hara, Kazuo; Cho, Young Min; Cho, Nam H; Chang, Tien-Jyun; Bao, Yuqian; Hedman, Åsa K; Morris, Andrew P; McCarthy, Mark I; Takayanagi, Ryoichi; Park, Kyong Soo; Jia, Weiping; Chuang, Lee-Ming; Chan, Juliana C N; Maeda, Shiro; Kadowaki, Takashi; Lee, Jong-Young; Wu, Jer-Yuarn; Teo, Yik Ying; Tai, E Shyong; Shu, Xiao Ou; Mohlke, Karen L; Kato, Norihiro; Han, Bok-Ghee; Seielstad, Mark

    2012-01-01

    We conducted a three-stage genetic study to identify susceptibility loci for type 2 diabetes (T2D) in east Asian populations. We followed our stage 1 meta-analysis of eight T2D genome-wide association studies (6,952 cases with T2D and 11,865 controls) with a stage 2 in silico replication analysis (5,843 cases and 4,574 controls) and a stage 3 de novo replication analysis (12,284 cases and 13,172 controls). The combined analysis identified eight new T2D loci reaching genome-wide significance, which mapped in or near GLIS3, PEPD, FITM2-R3HDML-HNF4A, KCNK16, MAEA, GCC1-PAX4, PSMD6 and ZFAND3. GLIS3, which is involved in pancreatic beta cell development and insulin gene expression, is known for its association with fasting glucose levels. The evidence of an association with T2D for PEPD and HNF4A has been shown in previous studies. KCNK16 may regulate glucose-dependent insulin secretion in the pancreas. These findings, derived from an east Asian population, provide new perspectives on the etiology of T2D. PMID:22158537

  7. Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis)

    PubMed Central

    Li, Si-Bei; OuYang, Wei-Zhi; Hou, Xiao-Jin; Xie, Liang-Liang; Hu, Chun-Gen; Zhang, Jin-Zhi

    2015-01-01

    Auxin response factors (ARFs) are an important family of proteins in auxin-mediated response, with key roles in various physiological and biochemical processes. To date, a genome-wide overview of the ARF gene family in citrus was not available. A systematic analysis of this gene family in citrus was begun by carrying out a genome-wide search for the homologs of ARFs. A total of 19 nonredundant ARF genes (CiARF) were found and validated from the sweet orange. A comprehensive overview of the CiARFs was undertaken, including the gene structures, phylogenetic analysis, chromosome locations, conserved motifs of proteins, and cis-elements in promoters of CiARF. Furthermore, expression profiling using real-time PCR revealed many CiARF genes, albeit with different patterns depending on types of tissues and/or developmental stages. Comprehensive expression analysis of these genes was also performed under two hormone treatments using real-time PCR. Indole-3-acetic acid (IAA) and N-1-napthylphthalamic acid (NPA) treatment experiments revealed differential up-regulation and down-regulation, respectively, of the 19 citrus ARF genes in the callus of sweet orange. Our comprehensive analysis of ARF genes further elucidates the roles of CiARF family members during citrus growth and development process. PMID:25870601

  8. Role of DISC1 interacting proteins in schizophrenia risk from genome-wide analysis of missense SNPs.

    PubMed

    Costas, Javier; Suárez-Rama, Jose Javier; Carrera, Noa; Paz, Eduardo; Páramo, Mario; Agra, Santiago; Brenlla, Julio; Ramos-Ríos, Ramón; Arrojo, Manuel

    2013-11-01

    A balanced translocation affecting DISC1 cosegregates with several psychiatric disorders, including schizophrenia, in a Scottish family. DISC1 is a hub protein of a network of protein-protein interactions involved in multiple developmental pathways within the brain. Gene set-based analysis has been proposed as an alternative to individual analysis of single nucleotide polymorphisms (SNPs) to get information from genome-wide association studies. In this work, we tested for an overrepresentation of the DISC1 interacting proteins within the top results of our ranked list of genes based on our previous genome-wide association study of missense SNPs in schizophrenia. Our data set consisted of 5100 common missense SNPs genotyped in 476 schizophrenic patients and 447 control subjects from Galicia, NW Spain. We used a modification of the Gene Set Enrichment Analysis adapted for SNPs, as implemented in the GenGen software. The analysis detected an overrepresentation of the DISC1 interacting proteins (permuted P-value=0.0158), indicative of the role of this gene set in schizophrenia risk. We identified seven leading-edge genes, MACF1, UTRN, DST, DISC1, KIF3A, SYNE1, and AKAP9, responsible for the overrepresentation. These genes are involved in neuronal cytoskeleton organization and intracellular transport through the microtubule cytoskeleton, suggesting that these processes may be impaired in schizophrenia. PMID:23909765

  9. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4

    PubMed Central

    Sklar, Pamela; Ripke, Stephan; Scott, Laura J.; Andreassen, Ole A.; Cichon, Sven; Craddock, Nick; Edenberg, Howard J.; Nurnberger, John I.; Rietschel, Marcella; Blackwood, Douglas; Corvin, Aiden; Flickinger, Matthew; Guan, Weihua; Mattingsdal, Morten; Mcquillin, Andrew; Kwan, Phoenix; Wienker, Thomas F.; Daly, Mark; Dudbridge, Frank; Holmans, Peter A.; Lin, Danyu; Burmeister, Margit; Greenwood, Tiffany A.; Hamshere, Marian L.; Muglia, Pierandrea; Smith, Erin N.; Zandi, Peter P.; Nievergelt, Caroline M.; Mckinney, Rebecca; Shilling, Paul D.; Schork, Nicholas J.; Bloss, Cinnamon S.; Foroud, Tatiana; Koller, Daniel L.; Gershon, Elliot S.; Liu, Chunyu; Badner, Judith A.; Scheftner, William A.; Lawson, William B.; Nwulia, Evaristus A.; Hipolito, Maria; Coryell, William; Rice, John P.; Byerley, William; McMahon, Francis J.; Schulze, Thomas G.; Berrettini, Wade; Lohoff, Falk W.; Potash, James B.; Mahon, Pamela B.; Mcinnis, Melvin G.; Zöllner, Sebastian; Zhang, Peng; Craig, David W.; Szelinger, Szabocls; Barrett, Thomas B.; Breuer, René; Meier, Sandra; Strohmaier, Jana; Witt, Stephanie H.; Tozzi, Federica; Farmer, Anne; McGuffin, Peter; Strauss, John; Xu, Wei; Kennedy, James L.; Vincent, John B.; Matthews, Keith; Day, Richard; Ferreira, Manuel D.C.; O'Dushlaine, Colm; Perlis, Roy; Raychaudhuri, Soumya; Ruderfer, Douglas; Hyoun, Phil L.; Smoller, Jordan W.; Li, Jun; Absher, Devin; Thompson, Robert C.; Meng, Fan Guo; Schatzberg, Alan F.; Bunney, William E.; Barchas, Jack D.; Jones, Edward G.; Watson, Stanley J.; Myers, Richard M.; Akil, Huda; Boehnke, Michael; Chambert, Kim; Moran, Jennifer; Scolnick, Ed; Djurovic, Srdjan; Melle, Ingrid; Morken, Gunnar; Gill, Michael; Morris, Derek; Quinn, Emma; Mühleisen, Thomas W.; Degenhardt, Franziska A.; Mattheisen, Manuel; Schumacher, Johannes; Maier, Wolfgang; Steffens, Michael; Propping, Peter; Nöthen, Markus M.; Anjorin, Adebayo; Bass, Nick; Gurling, Hugh; Kandaswamy, Radhika; Lawrence, Jacob; Mcghee, Kevin; Mcintosh, Andrew; Mclean, Alan W.; Muir, Walter J.; Pickard, Benjamin S.; Breen, Gerome; St Clair, David; Caesar, Sian; Gordon-Smith, Katherine; Jones, Lisa; Fraser, Christine; Green, Elaine K.; Grozeva, Detelina; Jones, Ian R.; Kirov, George; Moskvina, Valentina; Nikolov, Ivan; O'Donovan, Michael C.; Owen, Michael J.; Collier, David A.; Elkin, Amanda; Williamson, Richard; Young, Allan H.; Ferrier, I Nicol; Stefansson, Kari; Stefansson, Hreinn; Porgeirsson, Porgeir; Steinberg, Stacy; Gustafsson, Omar; Bergen, Sarah E.; Nimgaonkar, Vishwajit; hultman, Christina; Landén, Mikael; Lichtenstein, Paul; Sullivan, Patrick; Schalling, Martin; Osby, Urban; Backlund, Lena; Frisén, Louise; Langstrom, Niklas; Jamain, Stéphane; Leboyer, Marion; Etain, Bruno; Bellivier, Frank; Petursson, Hannes; Sigur Sson, Engilbert; Müller-Mysok, Bertram; Lucae, Susanne; Schwarz, Markus; Schofield, Peter R.; Martin, Nick; Montgomery, Grant W.; Lathrop, Mark; Oskarsson, Högni; Bauer, Michael; Wright, Adam; Mitchell, Philip B.; Hautzinger, Martin; Reif, Andreas; Kelsoe, John R.; Purcell, Shaun M.

    2011-01-01

    We conducted a combined genome-wide association (GWAS) analysis of 7,481 individuals affected with bipolar disorder and 9,250 control individuals within the Psychiatric Genomewide Association Study Consortium Bipolar Disorder group (PGC-BD). We performed a replication study in which we tested 34 independent SNPs in 4,493 independent bipolar disorder cases and 42,542 independent controls and found strong evidence for replication. In the replication sample, 18 of 34 SNPs had P value < 0.05, and 31 of 34 SNPs had signals with the same direction of effect (P = 3.8 × 10−7). In the combined analysis of all 63,766 subjects (11,974 cases and 51,792 controls), genome-wide significant evidence for association was confirmed for CACNA1C and found for a novel gene ODZ4. In a combined analysis of non-overlapping schizophrenia and bipolar GWAS samples we observed strong evidence for association with SNPs in CACNA1C and in the region of NEK4/ITIH1,3,4. Pathway analysis identified a pathway comprised of subunits of calcium channels enriched in the bipolar disorder association intervals. The strength of the replication data implies that increasing samples sizes in bipolar disorder will confirm many additional loci. PMID:21926972

  10. Genome-Wide Analysis of Basic/Helix-Loop-Helix Transcription Factor Family in Rice and Arabidopsis1[W

    PubMed Central

    Li, Xiaoxing; Duan, Xuepeng; Jiang, Haixiong; Sun, Yujin; Tang, Yuanping; Yuan, Zheng; Guo, Jingkang; Liang, Wanqi; Chen, Liang; Yin, Jingyuan; Ma, Hong; Wang, Jian; Zhang, Dabing

    2006-01-01

    The basic/helix-loop-helix (bHLH) transcription factors and their homologs form a large family in plant and animal genomes. They are known to play important roles in the specification of tissue types in animals. On the other hand, few plant bHLH proteins have been studied functionally. Recent completion of whole genome sequences of model plants Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) allows genome-wide analysis and comparison of the bHLH family in flowering plants. We have identified 167 bHLH genes in the rice genome, and their phylogenetic analysis indicates that they form well-supported clades, which are defined as subfamilies. In addition, sequence analysis of potential DNA-binding activity, the sequence motifs outside the bHLH domain, and the conservation of intron/exon structural patterns further support the evolutionary relationships among these proteins. The genome distribution of rice bHLH genes strongly supports the hypothesis that genome-wide and tandem duplication contributed to the expansion of the bHLH gene family, consistent with the birth-and-death theory of gene family evolution. Bioinformatics analysis suggests that rice bHLH proteins can potentially participate in a variety of combinatorial interactions, endowing them with the capacity to regulate a multitude of transcriptional programs. In addition, similar expression patterns suggest functional conservation between some rice bHLH genes and their close Arabidopsis homologs. PMID:16896230

  11. Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis).

    PubMed

    Li, Si-Bei; OuYang, Wei-Zhi; Hou, Xiao-Jin; Xie, Liang-Liang; Hu, Chun-Gen; Zhang, Jin-Zhi

    2015-01-01

    Auxin response factors (ARFs) are an important family of proteins in auxin-mediated response, with key roles in various physiological and biochemical processes. To date, a genome-wide overview of the ARF gene family in citrus was not available. A systematic analysis of this gene family in citrus was begun by carrying out a genome-wide search for the homologs of ARFs. A total of 19 nonredundant ARF genes (CiARF) were found and validated from the sweet orange. A comprehensive overview of the CiARFs was undertaken, including the gene structures, phylogenetic analysis, chromosome locations, conserved motifs of proteins, and cis-elements in promoters of CiARF. Furthermore, expression profiling using real-time PCR revealed many CiARF genes, albeit with different patterns depending on types of tissues and/or developmental stages. Comprehensive expression analysis of these genes was also performed under two hormone treatments using real-time PCR. Indole-3-acetic acid (IAA) and N-1-napthylphthalamic acid (NPA) treatment experiments revealed differential up-regulation and down-regulation, respectively, of the 19 citrus ARF genes in the callus of sweet orange. Our comprehensive analysis of ARF genes further elucidates the roles of CiARF family members during citrus growth and development process.

  12. Inverted Low-Copy Repeats and Genome Instability—A Genome-Wide Analysis

    PubMed Central

    Dittwald, Piotr; Gambin, Tomasz; Gonzaga-Jauregui, Claudia; Carvalho, Claudia M.B.; Lupski, James R.; Stankiewicz, Paweł; Gambin, Anna

    2013-01-01

    Inverse paralogous low-copy repeats (IP-LCRs) can cause genome instability by nonallelic homologous recombination (NAHR)-mediated balanced inversions. When disrupting a dosage-sensitive gene(s), balanced inversions can lead to abnormal phenotypes. We delineated the genome-wide distribution of IP-LCRs >1 kB in size with >95% sequence identity and mapped the genes, potentially intersected by an inversion, that overlap at least one of the IP-LCRs. Remarkably, our results show that 12.0% of the human genome is potentially susceptible to such inversions and 942 genes, 99 of which are on the X chromosome, are predicted to be disrupted secondary to such an inversion! In addition, IP-LCRs larger than 800 bp with at least 98% sequence identity (duplication/triplication facilitating IP-LCRs, DTIP-LCRs) were recently implicated in the formation of complex genomic rearrangements with a duplication-inverted triplication–duplication (DUP-TRP/INV-DUP) structure by a replication-based mechanism involving a template switch between such inverted repeats. We identified 1,551 DTIP-LCRs that could facilitate DUP-TRP/INV-DUP formation. Remarkably, 1,445 disease-associated genes are at risk of undergoing copy-number gain as they map to genomic intervals susceptible to the formation of DUP-TRP/INV-DUP complex rearrangements. We implicate inverted LCRs as a human genome architectural feature that could potentially be responsible for genomic instability associated with many human disease traits. PMID:22965494

  13. Autosomal genome-wide linkage analysis to identify loci for gallbladder wall thickness in Mexican Americans.

    PubMed

    Samudrala, Narahari; Farook, Vidya S; Dodd, Gerald D; Puppala, Sobha; Schneider, Jennifer; Fowler, Sharon; Granato, Richard; Dyer, Thomas D; Arya, Rector; Almasy, Laura; Jenkinson, Christopher P; Diehl, Andrew K; Blangero, John; Duggirala, Ravindranath

    2008-02-01

    The significance of gallbladder wall thickness (GBWT) in regard to gallbladder disease (GBD) is not completely understood. Thickening of the gallbladder wall has been observed in patients with acute calculous and acalculous cholecystitis and chronic cholecystitis. However, various pathologic processes, such as gallbladder cancer and nonbiliary disorders such as liver cirrhosis and viral hepatitis, could also cause thickening of the gallbladder wall. To date, there is no report available on the genetic factors influencing GBWT. Therefore we sought to estimate the heritability (h2) of GBWT and to perform a genome-wide search to identify the susceptibility genes for GBWT, using data from the San Antonio Family Diabetes/Gallbladder Study (SAFDGS), a family study of Mexican Americans. GBWT was measured by ultrasound. After adjusting for the significant effects of age, sex, GBD (i.e., asymptomatic gallstones), metabolic syndrome, and duration of type 2 diabetes (T2DM), GBWT was found to be under significant and appreciable additive genetic influences (h2 +/- SE = 0.38 +/- 0.09, P < 0.0001). The strongest evidence for linkage occurred between markers D11S912 and D11S968 on chromosome 11q24-q25 (LOD = 2.7), where we have already shown suggestive evidence for linkage of GBD (LOD = 2.7) in a subset of our SAFDGS data. Potential evidence for linkage occurred at markers D1S1728 (1p31.1; LOD = 1.4) and D16S748 (16p13.1; LOD = 1.4), respectively. In conclusion, our study provides suggestive evidence for linkage of GBWT on chromosome 11q in Mexican Americans, and future tasks of mapping susceptibility gene(s) for GBD and its related traits, such as GBWT, in this chromosomal region can be fruitful. PMID:18505042

  14. Genome-wide analysis of tandem repeats in plants and green algae.

    PubMed

    Zhao, Zhixin; Guo, Cheng; Sutharzan, Sreeskandarajan; Li, Pei; Echt, Craig S; Zhang, Jie; Liang, Chun

    2014-01-01

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among the 31 species, no significant correlation was detected between the TR density and genome size. Interestingly, green alga Chlamydomonas reinhardtii (42,059 bp/Mbp) and castor bean Ricinus communis (55,454 bp/Mbp) showed much higher TR densities than all other species (13,209 bp/Mbp on average). In the 29 land plants, including 22 dicots, 5 monocots, and 2 bryophytes, 5'-UTR and upstream intergenic 200-nt (UI200) regions had the first and second highest TR densities, whereas in the two green algae (C. reinhardtii and Volvox carteri) the first and second highest densities were found in intron and coding sequence (CDS) regions, respectively. In CDS regions, trinucleotide and hexanucleotide motifs were those most frequently represented in all species. In intron regions, especially in the two green algae, significantly more TRs were detected near the intron-exon junctions. Within intergenic regions in dicots and monocots, more TRs were found near both the 5' and 3' ends of genes. GO annotation in two green algae revealed that the genes with TRs in introns are significantly involved in transcriptional and translational processing. As the first systematic examination of TRs in plant and green algal genomes, our study showed that TRs displayed nonrandom distribution for both intragenic and intergenic regions, suggesting that they have potential roles in transcriptional or translational regulation in plants and green algae. PMID:24192840

  15. Genome-wide analysis of H4K5 acetylation associated with fear memory in mice

    PubMed Central

    2013-01-01

    Background Histone acetylation has been implicated in learning and memory in the brain, however, its function at the level of the genome and at individual genetic loci remains poorly investigated. This study examines a key acetylation mark, histone H4 lysine 5 acetylation (H4K5ac), genome-wide and its role in activity-dependent gene transcription in the adult mouse hippocampus following contextual fear conditioning. Results Using ChIP-Seq, we identified 23,235 genes in which H4K5ac correlates with absolute gene expression in the hippocampus. However, in the absence of transcription factor binding sites 150 bp upstream of the transcription start site, genes were associated with higher H4K5ac and expression levels. We further establish H4K5ac as a ubiquitous modification across the genome. Approximately one-third of all genes have above average H4K5ac, of which ~15% are specific to memory formation and ~65% are co-acetylated for H4K12. Although H4K5ac is prevalent across the genome, enrichment of H4K5ac at specific regions in the promoter and coding region are associated with different levels of gene expression. Additionally, unbiased peak calling for genes differentially acetylated for H4K5ac identified 114 unique genes specific to fear memory, over half of which have not previously been associated with memory processes. Conclusions Our data provide novel insights into potential mechanisms of gene priming and bookmarking by histone acetylation following hippocampal memory activation. Specifically, we propose that hyperacetylation of H4K5 may prime genes for rapid expression following activity. More broadly, this study strengthens the importance of histone posttranslational modifications for the differential regulation of transcriptional programs in cognitive processes. PMID:23927422

  16. Genome wide analysis of Silurana (Xenopus) tropicalis development reveals dynamic expression using network enrichment analysis.

    PubMed

    Langlois, Valérie S; Martyniuk, Christopher J

    2013-01-01

    Development involves precise timing of gene expression and coordinated pathways for organogenesis and morphogenesis. Functional and sub-network enrichment analysis provides an integrated approach for identifying networks underlying development. The objectives of this study were to characterize early gene regulatory networks over Silurana tropicalis development from NF stage 2 to 46 using a custom Agilent 4×44K microarray. There were >8000 unique gene probes that were differentially expressed between Nieuwkoop-Faber (NF) stage 2 and stage 16, and >2000 gene probes differentially expressed between NF 34 and 46. Gene ontology revealed that genes involved in nucleosome assembly, cell division, pattern specification, neurotransmission, and general metabolism were increasingly regulated throughout development, consistent with active development. Sub-network enrichment analysis revealed that processes such as membrane hyperpolarisation, retinoic acid, cholesterol, and dopamine metabolic gene networks were activated/inhibited over time. This study identifies RNA transcripts that are potentially maternally inherited in an anuran species, provides evidence that the expression of genes involved in retinoic acid receptor signaling may increase prior to those involved in thyroid receptor signaling, and characterizes novel gene expression networks preceding organogenesis which increases understanding of the spatiotemporal embryonic development in frogs.

  17. Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis.

    PubMed

    Chasman, Daniel I; Paré, Guillaume; Mora, Samia; Hopewell, Jemma C; Peloso, Gina; Clarke, Robert; Cupples, L Adrienne; Hamsten, Anders; Kathiresan, Sekar; Mälarstig, Anders; Ordovas, José M; Ripatti, Samuli; Parker, Alex N; Miletich, Joseph P; Ridker, Paul M

    2009-11-01

    While conventional LDL-C, HDL-C, and triglyceride measurements reflect aggregate properties of plasma lipoprotein fractions, NMR-based measurements more accurately reflect lipoprotein particle concentrations according to class (LDL, HDL, and VLDL) and particle size (small, medium, and large). The concentrations of these lipoprotein sub-fractions may be related to risk of cardiovascular disease and related metabolic disorders. We performed a genome-wide association study of 17 lipoprotein measures determined by NMR together with LDL-C, HDL-C, triglycerides, ApoA1, and ApoB in 17,296 women from the Women's Genome Health Study (WGHS). Among 36 loci with genome-wide significance (P<5x10(-8)) in primary and secondary analysis, ten (PCCB/STAG1 (3q22.3), GMPR/MYLIP (6p22.3), BTNL2 (6p21.32), KLF14 (7q32.2), 8p23.1, JMJD1C (10q21.3), SBF2 (11p15.4), 12q23.2, CCDC92/DNAH10/ZNF664 (12q24.31.B), and WIPI1 (17q24.2)) have not been reported in prior genome-wide association studies for plasma lipid concentration. Associations with mean lipoprotein particle size but not cholesterol content were found for LDL at four loci (7q11.23, LPL (8p21.3), 12q24.31.B, and LIPG (18q21.1)) and for HDL at one locus (GCKR (2p23.3)). In addition, genetic determinants of total IDL and total VLDL concentration were found at many loci, most strongly at LIPC (15q22.1) and APOC-APOE complex (19q13.32), respectively. Associations at seven more loci previously known for effects on conventional plasma lipid measures reveal additional genetic influences on lipoprotein profiles and bring the total number of loci to 43. Thus, genome-wide associations identified novel loci involved with lipoprotein metabolism-including loci that affect the NMR-based measures of concentration or size of LDL, HDL, and VLDL particles-all characteristics of lipoprotein profiles that may impact disease risk but are not available by conventional assay. PMID:19936222

  18. Joint analysis of tightly linked SNPs in screening step of genome-wide association studies leads to increased power

    PubMed Central

    Becker, Tim; Herold, Christine

    2009-01-01

    Recent developments in genome-wide association studies (GWAS) have lead to the localization of disease genes for many complex diseases. The scrutiny of the respective publications reveals, first, that statistical analysis is restricted typically to single-marker analysis in the first step, and that, second, the presence of multiple, independently associated SNPs within the same linkage disequilibrium (LD) region is a common phenomenon. Motivated by this observation, we show through a power simulation study that a simultaneous analysis of tightly linked SNPs in the initial GWAS analysis step would lead to increased power, when compared with that in single-marker analysis. This is true for all the three approaches we considered (implementations in BEAGLE, FAMHAP and UNPHASED). The best performance was obtained using a two-marker haplotype analysis. In conclusion, we would expect additional gene findings for re-analyzing successful GWAS with a multi-marker approach. PMID:19223937

  19. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease.

    PubMed

    Nalls, Mike A; Pankratz, Nathan; Lill, Christina M; Do, Chuong B; Hernandez, Dena G; Saad, Mohamad; DeStefano, Anita L; Kara, Eleanna; Bras, Jose; Sharma, Manu; Schulte, Claudia; Keller, Margaux F; Arepalli, Sampath; Letson, Christopher; Edsall, Connor; Stefansson, Hreinn; Liu, Xinmin; Pliner, Hannah; Lee, Joseph H; Cheng, Rong; Ikram, M Arfan; Ioannidis, John P A; Hadjigeorgiou, Georgios M; Bis, Joshua C; Martinez, Maria; Perlmutter, Joel S; Goate, Alison; Marder, Karen; Fiske, Brian; Sutherland, Margaret; Xiromerisiou, Georgia; Myers, Richard H; Clark, Lorraine N; Stefansson, Kari; Hardy, John A; Heutink, Peter; Chen, Honglei; Wood, Nicholas W; Houlden, Henry; Payami, Haydeh; Brice, Alexis; Scott, William K; Gasser, Thomas; Bertram, Lars; Eriksson, Nicholas; Foroud, Tatiana; Singleton, Andrew B

    2014-09-01

    We conducted a meta-analysis of Parkinson's disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were then tested in an independent set of 5,353 cases and 5,551 controls. Of the 32 tested SNPs, 24 replicated, including 6 newly identified loci. Conditional analyses within loci showed that four loci, including GBA, GAK-DGKQ, SNCA and the HLA region, contain a secondary independent risk variant. In total, we identified and replicated 28 independent risk variants for Parkinson's disease across 24 loci. Although the effect of each individual locus was small, risk profile analysis showed substantial cumulative risk in a comparison of the highest and lowest quintiles of genetic risk (odds ratio (OR) = 3.31, 95% confidence interval (CI) = 2.55-4.30; P = 2 × 10(-16)). We also show six risk loci associated with proximal gene expression or DNA methylation.

  20. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4.

    PubMed

    2011-10-01

    We conducted a combined genome-wide association study (GWAS) of 7,481 individuals with bipolar disorder (cases) and 9,250 controls as part of the Psychiatric GWAS Consortium. Our replication study tested 34 SNPs in 4,496 independent cases with bipolar disorder and 42,422 independent controls and found that 18 of 34 SNPs had P < 0.05, with 31 of 34 SNPs having signals with the same direction of effect (P = 3.8 × 10(-7)). An analysis of all 11,974 bipolar disorder cases and 51,792 controls confirmed genome-wide significant evidence of association for CACNA1C and identified a new intronic variant in ODZ4. We identified a pathway comprised of subunits of calcium channels enriched in bipolar disorder association intervals. Finally, a combined GWAS analysis of schizophrenia and bipolar disorder yielded strong association evidence for SNPs in CACNA1C and in the region of NEK4-ITIH1-ITIH3-ITIH4. Our replication results imply that increasing sample sizes in bipolar disorder will confirm many additional loci. PMID:21926972

  1. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease.

    PubMed

    Nalls, Mike A; Pankratz, Nathan; Lill, Christina M; Do, Chuong B; Hernandez, Dena G; Saad, Mohamad; DeStefano, Anita L; Kara, Eleanna; Bras, Jose; Sharma, Manu; Schulte, Claudia; Keller, Margaux F; Arepalli, Sampath; Letson, Christopher; Edsall, Connor; Stefansson, Hreinn; Liu, Xinmin; Pliner, Hannah; Lee, Joseph H; Cheng, Rong; Ikram, M Arfan; Ioannidis, John P A; Hadjigeorgiou, Georgios M; Bis, Joshua C; Martinez, Maria; Perlmutter, Joel S; Goate, Alison; Marder, Karen; Fiske, Brian; Sutherland, Margaret; Xiromerisiou, Georgia; Myers, Richard H; Clark, Lorraine N; Stefansson, Kari; Hardy, John A; Heutink, Peter; Chen, Honglei; Wood, Nicholas W; Houlden, Henry; Payami, Haydeh; Brice, Alexis; Scott, William K; Gasser, Thomas; Bertram, Lars; Eriksson, Nicholas; Foroud, Tatiana; Singleton, Andrew B

    2014-09-01

    We conducted a meta-analysis of Parkinson's disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were then tested in an independent set of 5,353 cases and 5,551 controls. Of the 32 tested SNPs, 24 replicated, including 6 newly identified loci. Conditional analyses within loci showed that four loci, including GBA, GAK-DGKQ, SNCA and the HLA region, contain a secondary independent risk variant. In total, we identified and replicated 28 independent risk variants for Parkinson's disease across 24 loci. Although the effect of each individual locus was small, risk profile analysis showed substantial cumulative risk in a comparison of the highest and lowest quintiles of genetic risk (odds ratio (OR) = 3.31, 95% confidence interval (CI) = 2.55-4.30; P = 2 × 10(-16)). We also show six risk loci associated with proximal gene expression or DNA methylation. PMID:25064009

  2. META-ANALYSIS OF GENOME-WIDE ASSOCIATION STUDIES IDENTIFIES THREE NEW RISK LOCI FOR ATOPIC DERMATITIS

    PubMed Central

    Paternoster, Lavinia; Standl, Marie; Chen, Chih-Mei; Ramasamy, Adaikalavan; Bønnelykke, Klaus; Duijts, Liesbeth; Ferreira, Manuel A; Alves, Alexessander Couto; Thyssen, Jacob P; Albrecht, Eva; Baurecht, Hansjörg; Feenstra, Bjarke; Sleiman, Patrick MA; Hysi, Pirro; Warrington, Nicole M; Curjuric, Ivan; Myhre, Ronny; Curtin, John A; Groen-Blokhuis, Maria M; Kerkhof, Marjan; Sääf, Annika; Franke, Andre; Ellinghaus, David; Fölster-Holst, Regina; Dermitzakis, Emmanouil; Montgomery, Stephen B; Prokisch, Holger; Heim, Katharina; Hartikainen, Anna-Liisa; Pouta, Anneli; Pekkanen, Juha; Blakemore, Alexandra IF; Buxton, Jessica L; Kaakinen, Marika; Duffy, David L; Madden, Pamela A; Heath, Andrew C; Montgomery, Grant W; Thompson, Philip J; Matheson, Melanie C; Le Souëf, Peter; Pourcain, Beate St; Smith, George Davey; Henderson, John; Kemp, John P; Timpson, Nicholas J; Deloukas, Panos; Ring, Susan M; Wichmann, H-Erich; Müller-Nurasyid, Martina; Novak, Natalija; Klopp, Norman; Rodríguez, Elke; McArdle, Wendy; Linneberg, Allan; Menné, Torkil; Nohr, Ellen A; Hofman, Albert; Uitterlinden, André G; van Duijn, Cornélia M; Rivadeneira, Fernando; de Jongste, Johan C; van der Valk, Ralf JP; Wjst, Matthias; Jogi, Rain; Geller, Frank; Boyd, Heather A; Murray, Jeffrey C; Kim, Cecilia; Mentch, Frank; March, Michael; Mangino, Massimo; Spector, Tim D; Bataille, Veronique; Pennell, Craig E; Holt, Patrick G; Sly, Peter; Tiesler, Carla MT; Thiering, Elisabeth; Illig, Thomas; Imboden, Medea; Nystad, Wenche; Simpson, Angela; Hottenga, Jouke-Jan; Postma, Dirkje; Koppelman, Gerard H; Smit, Henriette A; Söderhäll, Cilla; Chawes, Bo; Kreiner-Møller, Eskil; Bisgaard, Hans; Melén, Erik; Boomsma, Dorret I; Custovic, Adnan; Jacobsson, Bo; Probst-Hensch, Nicole M; Palmer, Lyle J; Glass, Daniel; Hakonarson, Hakon; Melbye, Mads; Jarvis, Deborah L; Jaddoe, Vincent WV; Gieger, Christian; Strachan, David P; Martin, Nicholas G; Jarvelin, Marjo-Riitta; Heinrich, Joachim; Evans, David M; Weidinger, Stephan

    2011-01-01

    Atopic dermatitis (AD) is a common chronic skin disease with high heritability. Apart from filaggrin (FLG), the genes influencing AD are largely unknown. We conducted a genome-wide association meta-analysis of 5,606 cases and 20,565 controls from 16 population-based cohorts and followed up the ten most strongly associated novel markers in a further 5,419 cases and 19,833 controls from 14 studies. Three SNPs met genome-wide significance in the discovery and replication cohorts combined: rs479844 upstream of OVOL1 (OR=0.88, p=1.1×10−13) and rs2164983 near ACTL9 (OR=1.16, p=7.1×10−9), genes which have been implicated in epidermal proliferation and differentiation, as well as rs2897442 in KIF3A within the cytokine cluster on 5q31.1 (OR=1.11, p=3.8×10−8). We also replicated the FLG locus and two recently identified association signals at 11q13.5 (rs7927894, p=0.008) and 20q13.3 (rs6010620, p=0.002). Our results underline the importance of both epidermal barrier function and immune dysregulation in AD pathogenesis. PMID:22197932

  3. Genome-Wide Analysis of Seed Acid Detergent Lignin (ADL) and Hull Content in Rapeseed (Brassica napus L.).

    PubMed

    Wang, Jia; Jian, Hongju; Wei, Lijuan; Qu, Cunmin; Xu, Xinfu; Lu, Kun; Qian, Wei; Li, Jiana; Li, Maoteng; Liu, Liezhao

    2015-01-01

    A stable yellow-seeded variety is the breeding goal for obtaining the ideal rapeseed (Brassica napus L.) plant, and the amount of acid detergent lignin (ADL) in the seeds and the hull content (HC) are often used as yellow-seeded rapeseed screening indices. In this study, a genome-wide association analysis of 520 accessions was performed using the Q + K model with a total of 31,839 single-nucleotide polymorphism (SNP) sites. As a result, three significant associations on the B. napus chromosomes A05, A09, and C05 were detected for seed ADL content. The peak SNPs were within 9.27, 14.22, and 20.86 kb of the key genes BnaA.PAL4, BnaA.CAD2/BnaA.CAD3, and BnaC.CCR1, respectively. Further analyses were performed on the major locus of A05, which was also detected in the seed HC examination. A comparison of our genome-wide association study (GWAS) results and previous linkage mappings revealed a common chromosomal region on A09, which indicates that GWAS can be used as a powerful complementary strategy for dissecting complex traits in B. napus. Genomic selection (GS) utilizing the significant SNP markers based on the GWAS results exhibited increased predictive ability, indicating that the predictive ability of a given model can be substantially improved by using GWAS and GS.

  4. Genome-Wide Analysis of Seed Acid Detergent Lignin (ADL) and Hull Content in Rapeseed (Brassica napus L.).

    PubMed

    Wang, Jia; Jian, Hongju; Wei, Lijuan; Qu, Cunmin; Xu, Xinfu; Lu, Kun; Qian, Wei; Li, Jiana; Li, Maoteng; Liu, Liezhao

    2015-01-01

    A stable yellow-seeded variety is the breeding goal for obtaining the ideal rapeseed (Brassica napus L.) plant, and the amount of acid detergent lignin (ADL) in the seeds and the hull content (HC) are often used as yellow-seeded rapeseed screening indices. In this study, a genome-wide association analysis of 520 accessions was performed using the Q + K model with a total of 31,839 single-nucleotide polymorphism (SNP) sites. As a result, three significant associations on the B. napus chromosomes A05, A09, and C05 were detected for seed ADL content. The peak SNPs were within 9.27, 14.22, and 20.86 kb of the key genes BnaA.PAL4, BnaA.CAD2/BnaA.CAD3, and BnaC.CCR1, respectively. Further analyses were performed on the major locus of A05, which was also detected in the seed HC examination. A comparison of our genome-wide association study (GWAS) results and previous linkage mappings revealed a common chromosomal region on A09, which indicates that GWAS can be used as a powerful complementary strategy for dissecting complex traits in B. napus. Genomic selection (GS) utilizing the significant SNP markers based on the GWAS results exhibited increased predictive ability, indicating that the predictive ability of a given model can be substantially improved by using GWAS and GS. PMID:26673885

  5. Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology

    PubMed Central

    Springelkamp, Henriët; Mishra, Aniket; Hysi, Pirro G.; Gharahkhani, Puya; Höhn, René; Khor, Chiea-Chuen; Cooke Bailey, Jessica N.; Luo, Xiaoyan; Ramdas, Wishal D.; Vithana, Eranga; Koh, Victor; Yazar, Seyhan; Xu, Liang; Forward, Hannah; Kearns, Lisa S.; Amin, Najaf; Iglesias, Adriana I.; Sim, Kar-Seng; van Leeuwen, Elisabeth M.; Demirkan, Ayse; van der Lee, Sven; Loon, Seng-Chee; Rivadeneira, Fernando; Nag, Abhishek; Sanfilippo, Paul G.; Schillert, Arne; de Jong, Paulus T. V. M.; Oostra, Ben A.; Uitterlinden, André G.; Hofman, Albert; Zhou, Tiger; Burdon, Kathryn P.; Spector, Timothy D.; Lackner, Karl J.; Saw, Seang-Mei; Vingerling, Johannes R.; Teo, Yik-Ying; Pasquale, Louis R.; Wolfs, Roger C. W.; Lemij, Hans G.; Tai, E-Shyong; Jonas, Jost B.; Cheng, Ching-Yu; Aung, Tin; Jansonius, Nomdo M.; Klaver, Caroline C. W.; Craig, Jamie E.; Young, Terri L.; Haines, Jonathan L.; MacGregor, Stuart; Mackey, David A.; Pfeiffer, Norbert; Wong, Tien-Yin; Wiggs, Janey L.; Hewitt, Alex W.; van Duijn, Cornelia M.; Hammond, Christopher J.

    2015-01-01

    Primary open-angle glaucoma is the most common optic neuropathy and an important cause of irreversible blindness worldwide. The optic nerve head or optic disc is divided in two parts: a central cup (without nerve fibers) surrounded by the neuroretinal rim (containing axons of the retinal ganglion cells). The International Glaucoma Genetics Consortium conducted a meta-analysis of genome-wide association studies consisting of 17,248 individuals of European ancestry and 6,841 individuals of Asian ancestry. The outcomes of the genome-wide association studies were disc area and cup area. These specific measurements describe optic nerve morphology in another way than the vertical cup-disc ratio, which is a clinically used measurement, and may shed light on new glaucoma mechanisms. We identified 10 new loci associated with disc area (CDC42BPA, F5, DIRC3, RARB, ABI3BP, DCAF4L2, ELP4, TMTC2, NR2F2, and HORMAD2) and another 10 new loci associated with cup area (DHRS3, TRIB2, EFEMP1, FLNB, FAM101, DDHD1, ASB7, KPNB1, BCAS3, and TRIOBP). The new genes participate in a number of pathways and future work is likely to identify more functions related to the pathogenesis of glaucoma. PMID:25631615

  6. Genome-Wide Analysis of Wilms’ Tumor 1-Controlled Gene Expression in Podocytes Reveals Key Regulatory Mechanisms

    PubMed Central

    Kann, Martin; Ettou, Sandrine; Jung, Youngsook L.; Lenz, Maximilian O.; Taglienti, Mary E.; Park, Peter J.; Schermer, Bernhard

    2015-01-01

    The transcription factor Wilms’ tumor suppressor 1 (WT1) is key to podocyte development and viability; however, WT1 transcriptional networks in podocytes remain elusive. We provide a comprehensive analysis of the genome-wide WT1 transcriptional network in podocytes in vivo using chromatin immunoprecipitation followed by sequencing (ChIPseq) and RNA sequencing techniques. Our data show a specific role for WT1 in regulating the podocyte-specific transcriptome through binding to both promoters and enhancers of target genes. Furthermore, we inferred a podocyte transcription factor network consisting of WT1, LMX1B, TCF21, Fox-class and TEAD family transcription factors, and MAFB that uses tissue-specific enhancers to control podocyte gene expression. In addition to previously described WT1-dependent target genes, ChIPseq identified novel WT1-dependent signaling systems. These targets included components of the Hippo signaling system, underscoring the power of genome-wide transcriptional-network analyses. Together, our data elucidate a comprehensive gene regulatory network in podocytes suggesting that WT1 gene regulatory function and podocyte cell-type specification can best be understood in the context of transcription factor-regulatory element network interplay. PMID:25636411

  7. Genome-wide meta-analysis reveals common splice site acceptor variant in CHRNA4 associated with nicotine dependence.

    PubMed

    Hancock, D B; Reginsson, G W; Gaddis, N C; Chen, X; Saccone, N L; Lutz, S M; Qaiser, B; Sherva, R; Steinberg, S; Zink, F; Stacey, S N; Glasheen, C; Chen, J; Gu, F; Frederiksen, B N; Loukola, A; Gudbjartsson, D F; Brüske, I; Landi, M T; Bickeböller, H; Madden, P; Farrer, L; Kaprio, J; Kranzler, H R; Gelernter, J; Baker, T B; Kraft, P; Amos, C I; Caporaso, N E; Hokanson, J E; Bierut, L J; Thorgeirsson, T E; Johnson, E O; Stefansson, K

    2015-01-01

    We conducted a 1000 Genomes-imputed genome-wide association study (GWAS) meta-analysis for nicotine dependence, defined by the Fagerström Test for Nicotine Dependence in 17 074 ever smokers from five European-ancestry samples. We followed up novel variants in 7469 ever smokers from five independent European-ancestry samples. We identified genome-wide significant association in the alpha-4 nicotinic receptor subunit (CHRNA4) gene on chromosome 20q13: lowest P=8.0 × 10(-9) across all the samples for rs2273500-C (frequency=0.15; odds ratio=1.12 and 95% confidence interval=1.08-1.17 for severe vs mild dependence). rs2273500-C, a splice site acceptor variant resulting in an alternate CHRNA4 transcript predicted to be targeted for nonsense-mediated decay, was associated with decreased CHRNA4 expression in physiologically normal human brains (lowest P=7.3 × 10(-4)). Importantly, rs2273500-C was associated with increased lung cancer risk (N=28 998, odds ratio=1.06 and 95% confidence interval=1.00-1.12), likely through its effect on smoking, as rs2273500-C was no longer associated with lung cancer after adjustment for smoking. Using criteria for smoking behavior that encompass more than the single 'cigarettes per day' item, we identified a common CHRNA4 variant with important regulatory properties that contributes to nicotine dependence and smoking-related consequences. PMID:26440539

  8. Genome-Wide Analysis of Seed Acid Detergent Lignin (ADL) and Hull Content in Rapeseed (Brassica napus L.)

    PubMed Central

    Wei, Lijuan; Qu, Cunmin; Xu, Xinfu; Lu, Kun; Qian, Wei; Li, Jiana; Li, Maoteng; Liu, Liezhao

    2015-01-01

    A stable yellow-seeded variety is the breeding goal for obtaining the ideal rapeseed (Brassica napus L.) plant, and the amount of acid detergent lignin (ADL) in the seeds and the hull content (HC) are often used as yellow-seeded rapeseed screening indices. In this study, a genome-wide association analysis of 520 accessions was performed using the Q + K model with a total of 31,839 single-nucleotide polymorphism (SNP) sites. As a result, three significant associations on the B. napus chromosomes A05, A09, and C05 were detected for seed ADL content. The peak SNPs were within 9.27, 14.22, and 20.86 kb of the key genes BnaA.PAL4, BnaA.CAD2/BnaA.CAD3, and BnaC.CCR1, respectively. Further analyses were performed on the major locus of A05, which was also detected in the seed HC examination. A comparison of our genome-wide association study (GWAS) results and previous linkage mappings revealed a common chromosomal region on A09, which indicates that GWAS can be used as a powerful complementary strategy for dissecting complex traits in B. napus. Genomic selection (GS) utilizing the significant SNP markers based on the GWAS results exhibited increased predictive ability, indicating that the predictive ability of a given model can be substantially improved by using GWAS and GS. PMID:26673885

  9. Genome-Wide Survey and Expression Analysis of the Putative Non-Specific Lipid Transfer Proteins in Brassica rapa L

    PubMed Central

    Li, Jun; Gao, Guizhen; Xu, Kun; Chen, Biyun; Yan, Guixin; Li, Feng; Qiao, Jiangwei; Zhang, Tianyao; Wu, Xiaoming

    2014-01-01

    Background Plant non-specific lipid transfer proteins (nsLtps) are small, basic proteins encoded by multigene families and have reported functions in many physiological processes such as mediating phospholipid transfer, defense reactions against phytopathogens, the adaptation of plants to various environmental conditions, and sexual reproduction. To date, no genome-wide overview of the Brassica rapa nsLtp (BrnsLtp) gene family has been performed. Therefore, as the first step and as a helpful strategy to elucidate the functions of BrnsLtps, a genome-wide study for this gene family is necessary. Methodology/Principal Finding In this study, a total of 63 putative BrnsLtp genes were identified through a comprehensive in silico analysis of the whole genome of B. rapa. Based on the sequence similarities, these BrnsLtps was grouped into nine types (I, II, III, IV, V, VI, VIII, IX, and XI). There is no type VII nsLtps in B. rapa, and a new type, XI nsLtps, was identified in B. rapa. Furthermore, nine type II AtLtps have no homologous genes in B. rapa. Gene duplication analysis demonstrated that the conserved collinear block of each BrnsLtp is highly identical to those in Arabidopsis and that both segmental duplications and tandem duplications seem to play equal roles in the diversification of this gene family. Expression analysis indicated that 29 out of the 63 BrnsLtps showed specific expression patterns. After careful comparison and analysis, we hypothesize that some of the type I BrnsLtps may function like Arabidopsis pathogenesis-related-14 (PR-14) proteins to protect the plant from phytopathogen attack. Eleven BrnsLtps with inflorescence-specific expression may play important roles in sexual reproduction. Additionally, BrnsLtpI.3 may have functions similar to Arabidopsis LTP1. Conclusions/Significance The genome-wide identification, bioinformatic analysis and expression analysis of BrnsLtp genes should facilitate research of this gene family and polyploidy evolution

  10. Meta-analysis of genome-wide association studies: no efficiency gain in using individual participant data.

    PubMed

    Lin, D Y; Zeng, D

    2010-01-01

    To identify genetic variants with modest effects on complex human diseases, a growing number of networks or consortia are created for sharing data from multiple genome-wide association studies on the same disease or related disorders. A central question in this enterprise is whether to obtain summary results or individual participant data from relevant studies. We show theoretically and numerically that meta-analysis of summary results is statistically as efficient as joint analysis of individual participant data (provided that both analyses are performed properly under the same modeling assumptions). We illustrate this equivalence with case-control data from the Finland-United States Investigation of NIDDM Genetics (FUSION) study. Collating only summary results will increase the number and representativeness of available studies, simplify data collection and analysis, reduce resource utilization, and accelerate discovery. PMID:19847795

  11. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease

    PubMed Central

    Kyriakou, Theodosios; Nelson, Christopher P; Hopewell, Jemma C; Webb, Thomas R; Zeng, Lingyao; Dehghan, Abbas; Alver, Maris; Armasu, Sebastian M; Auro, Kirsi; Bjonnes, Andrew; Chasman, Daniel I; Chen, Shufeng; Ford, Ian; Franceschini, Nora; Gieger, Christian; Grace, Christopher; Gustafsson, Stefan; Huang, Jie; Hwang, Shih-Jen; Kim, Yun Kyoung; Kleber, Marcus E; Lau, King Wai; Lu, Xiangfeng; Lu, Yingchang; Lyytikäinen, Leo-Pekka; Mihailov, Evelin; Morrison, Alanna C; Pervjakova, Natalia; Qu, Liming; Rose, Lynda M; Salfati, Elias; Saxena, Richa; Scholz, Markus; Smith, Albert V; Tikkanen, Emmi; Uitterlinden, Andre; Yang, Xueli; Zhang, Weihua; Zhao, Wei; de Andrade, Mariza; de Vries, Paul S; van Zuydam, Natalie R; Anand, Sonia S; Bertram, Lars; Beutner, Frank; Dedoussis, George; Frossard, Philippe; Gauguier, Dominique; Goodall, Alison H; Gottesman, Omri; Haber, Marc; Han, Bok-Ghee; Huang, Jianfeng; Jalilzadeh, Shapour; Kessler, Thorsten; König, Inke R; Lannfelt, Lars; Lieb, Wolfgang; Lind, Lars; Lindgren, Cecilia M; Lokki, Marja-Liisa; Magnusson, Patrik K; Mallick, Nadeem H; Mehra, Narinder; Meitinger, Thomas; Memon, Fazal-ur-Rehman; Morris, Andrew P; Nieminen, Markku S; Pedersen, Nancy L; Peters, Annette; Rallidis, Loukianos S; Rasheed, Asif; Samuel, Maria; Shah, Svati H; Sinisalo, Juha; Stirrups, Kathleen E; Trompet, Stella; Wang, Laiyuan; Zaman, Khan S; Ardissino, Diego; Boerwinkle, Eric; Borecki, Ingrid B; Bottinger, Erwin P; Buring, Julie E; Chambers, John C; Collins, Rory; Cupples, L Adrienne; Danesh, John; Demuth, Ilja; Elosua, Roberto; Epstein, Stephen E; Esko, Tõnu; Feitosa, Mary F; Franco, Oscar H; Franzosi, Maria Grazia; Granger, Christopher B; Gu, Dongfeng; Gudnason, Vilmundur; Hall, Alistair S; Hamsten, Anders; Harris, Tamara B; Hazen, Stanley L; Hengstenberg, Christian; Hofman, Albert; Ingelsson, Erik; Iribarren, Carlos; Jukema, J Wouter; Karhunen, Pekka J; Kim, Bong-Jo; Kooner, Jaspal S; Kullo, Iftikhar J; Lehtimäki, Terho; Loos, Ruth J F; Melander, Olle; Metspalu, Andres; März, Winfried; Palmer, Colin N; Perola, Markus; Quertermous, Thomas; Rader, Daniel J; Ridker, Paul M; Ripatti, Samuli; Roberts, Robert; Salomaa, Veikko; Sanghera, Dharambir K; Schwartz, Stephen M; Seedorf, Udo; Stewart, Alexandre F; Stott, David J; Thiery, Joachim; Zalloua, Pierre A; O’Donnell, Christopher J; Reilly, Muredach P; Assimes, Themistocles L; Thompson, John R; Erdmann, Jeanette; Clarke, Robert; Watkins, Hugh; Kathiresan, Sekar; McPherson, Ruth; Deloukas, Panos; Schunkert, Heribert; Samani, Nilesh J; Farrall, Martin

    2015-01-01

    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect size. PMID:26343387

  12. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis

    PubMed Central

    2013-01-01

    Summary Background Findings from family and twin studies suggest that genetic contributions to psychiatric disorders do not in all cases map to present diagnostic categories. We aimed to identify specific variants underlying genetic effects shared between the five disorders in the Psychiatric Genomics Consortium: autism spectrum disorder, attention deficit-hyperactivity disorder, bipolar disorder, major depressive disorder, and schizophrenia. Methods We analysed genome-wide single-nucleotide polymorphism (SNP) data for the five disorders in 33 332 cases and 27 888 controls of European ancestory. To characterise allelic effects on each disorder, we applied a multinomial logistic regression procedure with model selection to identify the best-fitting model of relations between genotype and phenotype. We examined cross-disorder effects of genome-wide significant loci previously identified for bipolar disorder and schizophrenia, and used polygenic risk-score analysis to examine such effects from a broader set of common variants. We undertook pathway analyses to establish the biological associations underlying genetic overlap for the five disorders. We used enrichment analysis of expression quantitative trait loci (eQTL) data to assess whether SNPs with cross-disorder association were enriched for regulatory SNPs in post-mortem brain-tissue samples. Findings SNPs at four loci surpassed the cutoff for genome-wide significance (p<5×10−8) in the primary analysis: regions on chromosomes 3p21 and 10q24, and SNPs within two L-type voltage-gated calcium channel subunits, CACNA1C and CACNB2. Model selection analysis supported effects of these loci for several disorders. Loci previously associated with bipolar disorder or schizophrenia had variable diagnostic specificity. Polygenic risk scores showed cross-disorder associations, notably between adult-onset disorders. Pathway analysis supported a role for calcium channel signalling genes for all five disorders. Finally, SNPs

  13. Genome-Wide Analysis, Classification, Evolution, and Expression Analysis of the Cytochrome P450 93 Family in Land Plants

    PubMed Central

    Du, Hai; Ran, Feng; Dong, Hong-Li; Wen, Jing; Li, Jia-Na; Liang, Zhe

    2016-01-01

    Cytochrome P450 93 family (CYP93) belonging to the cytochrome P450 superfamily plays important roles in diverse plant processes. However, no previous studies have investigated the evolution and expression of the members of this family. In this study, we performed comprehensive genome-wide analysis to identify CYP93 genes in 60 green plants. In all, 214 CYP93 proteins were identified; they were specifically found in flowering plants and could be classified into ten subfamilies—CYP93A–K, with the last two being identified first. CYP93A is the ancestor that was derived in flowering plants, and the remaining showed lineage-specific distribution—CYP93B and CYP93C are present in dicots; CYP93F is distributed only in Poaceae; CYP93G and CYP93J are monocot-specific; CYP93E is unique to legumes; CYP93H and CYP93K are only found in Aquilegia coerulea, and CYP93D is Brassicaceae-specific. Each subfamily generally has conserved gene numbers, structures, and characteristics, indicating functional conservation during evolution. Synonymous nucleotide substitution (dN/dS) analysis showed that CYP93 genes are under strong negative selection. Comparative expression analyses of CYP93 genes in dicots and monocots revealed that they are preferentially expressed in the roots and tend to be induced by biotic and/or abiotic stresses, in accordance with their well-known functions in plant secondary biosynthesis. PMID:27760179

  14. A comprehensive genome-wide analysis of melanoma Breslow thickness identifies interaction between CDC42 and SCIN genetic variants.

    PubMed

    Vaysse, Amaury; Fang, Shenying; Brossard, Myriam; Wei, Qingyi; Chen, Wei V; Mohamdi, Hamida; Vincent-Fetita, Lynda; Margaritte-Jeannin, Patricia; Lavielle, Nolwenn; Maubec, Eve; Lathrop, Mark; Avril, Marie-Françoise; Amos, Christopher I; Lee, Jeffrey E; Demenais, Florence

    2016-11-01

    Breslow thickness (BT) is a major prognostic factor of cutaneous melanoma (CM), the most fatal skin cancer. The genetic component of BT has only been explored by candidate gene studies with inconsistent results. Our objective was to uncover the genetic factors underlying BT using an hypothesis-free genome-wide approach. Our analysis strategy integrated a genome-wide association study (GWAS) of single nucleotide polymorphisms (SNPs) for BT followed by pathway analysis of GWAS outcomes using the gene-set enrichment analysis (GSEA) method and epistasis analysis within BT-associated pathways. This strategy was applied to two large CM datasets with Hapmap3-imputed SNP data: the French MELARISK study for discovery (966 cases) and the MD Anderson Cancer Center study (1,546 cases) for replication. While no marginal effect of individual SNPs was revealed through GWAS, three pathways, defined by gene ontology (GO) categories were significantly enriched in genes associated with BT (false discovery rate ≤5% in both studies): hormone activity, cytokine activity and myeloid cell differentiation. Epistasis analysis, within each significant GO, identified a statistically significant interaction between CDC42 and SCIN SNPs (pmeta-int =2.2 × 10(-6) , which met the overall multiple-testing corrected threshold of 2.5 × 10(-6) ). These two SNPs (and proxies) are strongly associated with CDC42 and SCIN gene expression levels and map to regulatory elements in skin cells. This interaction has important biological relevance since CDC42 and SCIN proteins have opposite effects in actin cytoskeleton organization and dynamics, a key mechanism underlying melanoma cell migration and invasion.

  15. Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process.

    PubMed

    Springelkamp, Henriët; Höhn, René; Mishra, Aniket; Hysi, Pirro G; Khor, Chiea-Chuen; Loomis, Stephanie J; Bailey, Jessica N Cooke; Gibson, Jane; Thorleifsson, Gudmar; Janssen, Sarah F; Luo, Xiaoyan; Ramdas, Wishal D; Vithana, Eranga; Nongpiur, Monisha E; Montgomery, Grant W; Xu, Liang; Mountain, Jenny E; Gharahkhani, Puya; Lu, Yi; Amin, Najaf; Karssen, Lennart C; Sim, Kar-Seng; van Leeuwen, Elisabeth M; Iglesias, Adriana I; Verhoeven, Virginie J M; Hauser, Michael A; Loon, Seng-Chee; Despriet, Dominiek D G; Nag, Abhishek; Venturini, Cristina; Sanfilippo, Paul G; Schillert, Arne; Kang, Jae H; Landers, John; Jonasson, Fridbert; Cree, Angela J; van Koolwijk, Leonieke M E; Rivadeneira, Fernando; Souzeau, Emmanuelle; Jonsson, Vesteinn; Menon, Geeta; Weinreb, Robert N; de Jong, Paulus T V M; Oostra, Ben A; Uitterlinden, André G; Hofman, Albert; Ennis, Sarah; Thorsteinsdottir, Unnur; Burdon, Kathryn P; Spector, Timothy D; Mirshahi, Alireza; Saw, Seang-Mei; Vingerling, Johannes R; Teo, Yik-Ying; Haines, Jonathan L; Wolfs, Roger C W; Lemij, Hans G; Tai, E-Shyong; Jansonius, Nomdo M; Jonas, Jost B; Cheng, Ching-Yu; Aung, Tin; Viswanathan, Ananth C; Klaver, Caroline C W; Craig, Jamie E; Macgregor, Stuart; Mackey, David A; Lotery, Andrew J; Stefansson, Kari; Bergen, Arthur A B; Young, Terri L; Wiggs, Janey L; Pfeiffer, Norbert; Wong, Tien-Yin; Pasquale, Louis R; Hewitt, Alex W; van Duijn, Cornelia M; Hammond, Christopher J

    2014-09-22

    Glaucoma is characterized by irreversible optic nerve degeneration and is the most frequent cause of irreversible blindness worldwide. Here, the International Glaucoma Genetics Consortium conducts a meta-analysis of genome-wide association studies of vertical cup-disc ratio (VCDR), an important disease-related optic nerve parameter. In 21,094 individuals of European ancestry and 6,784 individuals of Asian ancestry, we identify 10 new loci associated with variation in VCDR. In a separate risk-score analysis of five case-control studies, Caucasians in the highest quintile have a 2.5-fold increased risk of primary open-angle glaucoma as compared with those in the lowest quintile. This study has more than doubled the known loci associated with optic disc cupping and will allow greater understanding of mechanisms involved in this common blinding condition.

  16. Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process.

    PubMed

    Springelkamp, Henriët; Höhn, René; Mishra, Aniket; Hysi, Pirro G; Khor, Chiea-Chuen; Loomis, Stephanie J; Bailey, Jessica N Cooke; Gibson, Jane; Thorleifsson, Gudmar; Janssen, Sarah F; Luo, Xiaoyan; Ramdas, Wishal D; Vithana, Eranga; Nongpiur, Monisha E; Montgomery, Grant W; Xu, Liang; Mountain, Jenny E; Gharahkhani, Puya; Lu, Yi; Amin, Najaf; Karssen, Lennart C; Sim, Kar-Seng; van Leeuwen, Elisabeth M; Iglesias, Adriana I; Verhoeven, Virginie J M; Hauser, Michael A; Loon, Seng-Chee; Despriet, Dominiek D G; Nag, Abhishek; Venturini, Cristina; Sanfilippo, Paul G; Schillert, Arne; Kang, Jae H; Landers, John; Jonasson, Fridbert; Cree, Angela J; van Koolwijk, Leonieke M E; Rivadeneira, Fernando; Souzeau, Emmanuelle; Jonsson, Vesteinn; Menon, Geeta; Weinreb, Robert N; de Jong, Paulus T V M; Oostra, Ben A; Uitterlinden, André G; Hofman, Albert; Ennis, Sarah; Thorsteinsdottir, Unnur; Burdon, Kathryn P; Spector, Timothy D; Mirshahi, Alireza; Saw, Seang-Mei; Vingerling, Johannes R; Teo, Yik-Ying; Haines, Jonathan L; Wolfs, Roger C W; Lemij, Hans G; Tai, E-Shyong; Jansonius, Nomdo M; Jonas, Jost B; Cheng, Ching-Yu; Aung, Tin; Viswanathan, Ananth C; Klaver, Caroline C W; Craig, Jamie E; Macgregor, Stuart; Mackey, David A; Lotery, Andrew J; Stefansson, Kari; Bergen, Arthur A B; Young, Terri L; Wiggs, Janey L; Pfeiffer, Norbert; Wong, Tien-Yin; Pasquale, Louis R; Hewitt, Alex W; van Duijn, Cornelia M; Hammond, Christopher J

    2014-01-01

    Glaucoma is characterized by irreversible optic nerve degeneration and is the most frequent cause of irreversible blindness worldwide. Here, the International Glaucoma Genetics Consortium conducts a meta-analysis of genome-wide association studies of vertical cup-disc ratio (VCDR), an important disease-related optic nerve parameter. In 21,094 individuals of European ancestry and 6,784 individuals of Asian ancestry, we identify 10 new loci associated with variation in VCDR. In a separate risk-score analysis of five case-control studies, Caucasians in the highest quintile have a 2.5-fold increased risk of primary open-angle glaucoma as compared with those in the lowest quintile. This study has more than doubled the known loci associated with optic disc cupping and will allow greater understanding of mechanisms involved in this common blinding condition. PMID:25241763

  17. Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process

    PubMed Central

    Springelkamp, Henriët.; Höhn, René; Mishra, Aniket; Hysi, Pirro G.; Khor, Chiea-Chuen; Loomis, Stephanie J.; Bailey, Jessica N. Cooke; Gibson, Jane; Thorleifsson, Gudmar; Janssen, Sarah F.; Luo, Xiaoyan; Ramdas, Wishal D.; Vithana, Eranga; Nongpiur, Monisha E.; Montgomery, Grant W.; Xu, Liang; Mountain, Jenny E.; Gharahkhani, Puya; Lu, Yi; Amin, Najaf; Karssen, Lennart C.; Sim, Kar-Seng; van Leeuwen, Elisabeth M.; Iglesias, Adriana I.; Verhoeven, Virginie J. M.; Hauser, Michael A.; Loon, Seng-Chee; Despriet, Dominiek D. G.; Nag, Abhishek; Venturini, Cristina; Sanfilippo, Paul G.; Schillert, Arne; Kang, Jae H.; Landers, John; Jonasson, Fridbert; Cree, Angela J.; van Koolwijk, Leonieke M. E.; Rivadeneira, Fernando; Souzeau, Emmanuelle; Jonsson, Vesteinn; Menon, Geeta; Mitchell, Paul; Wang, Jie Jin; Rochtchina, Elena; Attia, John; Scott, Rodney; Holliday, Elizabeth G.; Wong, Tien-Yin; Baird, Paul N.; Xie, Jing; Inouye, Michael; Viswanathan, Ananth; Sim, Xueling; Weinreb, Robert N.; de Jong, Paulus T. V. M.; Oostra, Ben A.; Uitterlinden, André G.; Hofman, Albert; Ennis, Sarah; Thorsteinsdottir, Unnur; Burdon, Kathryn P.; Allingham, R. Rand; Brilliant, Murray H.; Budenz, Donald L.; Cooke Bailey, Jessica N.; Christen, William G.; Fingert, John; Friedman, David S.; Gaasterland, Douglas; Gaasterland, Terry; Haines, Jonathan L.; Hauser, Michael A.; Kang, Jae Hee; Kraft, Peter; Lee, Richard K.; Lichter, Paul R.; Liu, Yutao; Loomis, Stephanie J.; Moroi, Sayoko E.; Pasquale, Louis R.; Pericak-Vance, Margaret A.; Realini, Anthony; Richards, Julia E.; Schuman, Joel S.; Scott, William K.; Singh, Kuldev; Sit, Arthur J.; Vollrath, Douglas; Weinreb, Robert N.; Wiggs, Janey L.; Wollstein, Gadi; Zack, Donald J.; Zhang, Kang; Donnelly (Chair), Peter; Barroso (Deputy Chair), Ines; Blackwell, Jenefer M.; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N. A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C. A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Donnelly, Peter; Langford, Cordelia; Hunt, Sarah E.; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Waller, Matthew; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Barroso, Ines; Deloukas, Panos; Mathew (Chair), Christopher G.; Blackwell, Jenefer M.; Brown, Matthew A.; Corvin, Aiden; Spencer, Chris C. A.; Spector, Timothy D.; Mirshahi, Alireza; Saw, Seang-Mei; Vingerling, Johannes R.; Teo, Yik-Ying; Haines, Jonathan L.; Wolfs, Roger C. W.; Lemij, Hans G.; Tai, E-Shyong; Jansonius, Nomdo M.; Jonas, Jost B.; Cheng, Ching-Yu; Aung, Tin; Viswanathan, Ananth C.; Klaver, Caroline C. W.; Craig, Jamie E.; Macgregor, Stuart; Mackey, David A.; Lotery, Andrew J.; Stefansson, Kari; Bergen, Arthur A. B.; Young, Terri L.; Wiggs, Janey L.; Pfeiffer, Norbert; Wong, Tien-Yin; Pasquale, Louis R.; Hewitt, Alex W.; van Duijn, Cornelia M.; Hammond, Christopher J.

    2014-01-01

    Glaucoma is characterized by irreversible optic nerve degeneration and is the most frequent cause of irreversible blindness worldwide. Here, the International Glaucoma Genetics Consortium conducts a meta-analysis of genome-wide association studies of vertical cup-disc ratio (VCDR), an important disease-related optic nerve parameter. In 21,094 individuals of European ancestry and 6,784 individuals of Asian ancestry, we identify 10 new loci associated with variation in VCDR. In a separate risk-score analysis of five case-control studies, Caucasians in the highest quintile have a 2.5-fold increased risk of primary open-angle glaucoma as compared with those in the lowest quintile. This study has more than doubled the known loci associated with optic disc cupping and will allow greater understanding of mechanisms involved in this common blinding condition. PMID:25241763

  18. Analysis of genome-wide structure, diversity and fine mapping of Mendelian traits in traditional and village chickens.

    PubMed

    Wragg, D; Mwacharo, J M; Alcalde, J A; Hocking, P M; Hanotte, O

    2012-07-01

    Extensive phenotypic variation is a common feature among village chickens found throughout much of the developing world, and in traditional chicken breeds that have been artificially selected for traits such as plumage variety. We present here an assessment of traditional and village chicken populations, for fine mapping of Mendelian traits using genome-wide single-nucleotide polymorphism (SNP) genotyping while providing information on their genetic structure and diversity. Bayesian clustering analysis reveals two main genetic backgrounds in traditional breeds, Kenyan, Ethiopian and Chilean village chickens. Analysis of linkage disequilibrium (LD) reveals useful LD (r(2) ≥ 0.3) in both traditional and village chickens at pairwise marker distances of ~10 Kb; while haplotype block analysis indicates a median block size of 11-12 Kb. Association mapping yielded refined mapping intervals for duplex comb (Gga 2:38.55-38.89 Mb) and rose comb (Gga 7:18.41-22.09 Mb) phenotypes in traditional breeds. Combined mapping information from traditional breeds and Chilean village chicken allows the oocyan phenotype to be fine mapped to two small regions (Gga 1:67.25-67.28 Mb, Gga 1:67.28-67.32 Mb) totalling ~75 Kb. Mapping the unmapped earlobe pigmentation phenotype supports previous findings that the trait is sex-linked and polygenic. A critical assessment of the number of SNPs required to map simple traits indicate that between 90 and 110K SNPs are required for full genome-wide analysis of haplotype block structure/ancestry, and for association mapping in both traditional and village chickens. Our results demonstrate the importance and uniqueness of phenotypic diversity and genetic structure of traditional chicken breeds for fine-scale mapping of Mendelian traits in the species, with village chicken populations providing further opportunities to enhance mapping resolutions.

  19. Genome-Wide Meta-Analysis of Myopia and Hyperopia Provides Evidence for Replication of 11 Loci

    PubMed Central

    Simpson, Claire L.; Wojciechowski, Robert; Oexle, Konrad; Murgia, Federico; Portas, Laura; Li, Xiaohui; Verhoeven, Virginie J. M.; Vitart, Veronique; Schache, Maria; Hosseini, S. Mohsen; Hysi, Pirro G.; Raffel, Leslie J.; Cotch, Mary Frances; Chew, Emily; Klein, Barbara E. K.; Klein, Ronald; Wong, Tien Yin; van Duijn, Cornelia M.; Mitchell, Paul; Saw, Seang Mei; Fossarello, Maurizio; Wang, Jie Jin; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Oostra, Ben A.; Uitterlinden, André G.; Hofman, Albert; Rivadeneira, Fernando; Amin, Najaf; Karssen, Lennart C.; Vingerling, Johannes R.; Döring, Angela; Bettecken, Thomas; Bencic, Goran; Gieger, Christian; Wichmann, H.-Erich; Wilson, James F.; Venturini, Cristina; Fleck, Brian; Cumberland, Phillippa M.; Rahi, Jugnoo S.; Hammond, Chris J.; Hayward, Caroline; Wright, Alan F.; Paterson, Andrew D.; Baird, Paul N.; Klaver, Caroline C. W.; Rotter, Jerome I.; Pirastu, Mario; Meitinger, Thomas; Bailey-Wilson, Joan E.; Stambolian, Dwight

    2014-01-01

    Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10−8), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10−11) and 8q12 (minimum p value 1.82×10−11) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. “Replication-level” association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of

  20. Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci.

    PubMed

    Simpson, Claire L; Wojciechowski, Robert; Oexle, Konrad; Murgia, Federico; Portas, Laura; Li, Xiaohui; Verhoeven, Virginie J M; Vitart, Veronique; Schache, Maria; Hosseini, S Mohsen; Hysi, Pirro G; Raffel, Leslie J; Cotch, Mary Frances; Chew, Emily; Klein, Barbara E K; Klein, Ronald; Wong, Tien Yin; van Duijn, Cornelia M; Mitchell, Paul; Saw, Seang Mei; Fossarello, Maurizio; Wang, Jie Jin; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Oostra, Ben A; Uitterlinden, André G; Hofman, Albert; Rivadeneira, Fernando; Amin, Najaf; Karssen, Lennart C; Vingerling, Johannes R; Döring, Angela; Bettecken, Thomas; Bencic, Goran; Gieger, Christian; Wichmann, H-Erich; Wilson, James F; Venturini, Cristina; Fleck, Brian; Cumberland, Phillippa M; Rahi, Jugnoo S; Hammond, Chris J; Hayward, Caroline; Wright, Alan F; Paterson, Andrew D; Baird, Paul N; Klaver, Caroline C W; Rotter, Jerome I; Pirastu, Mario; Meitinger, Thomas; Bailey-Wilson, Joan E; Stambolian, Dwight

    2014-01-01

    Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10(-8)), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10(-11)) and 8q12 (minimum p value 1.82×10(-11)) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. "Replication-level" association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of refractive

  1. Genome-Wide Analysis of the Binding of the Hox Protein Ultrabithorax and the Hox Cofactor Homothorax in Drosophila

    PubMed Central

    Choo, Siew Woh; White, Robert; Russell, Steven

    2011-01-01

    Hox genes encode a family of transcription factors that are key developmental regulators with a highly conserved role in specifying segmental diversity along the metazoan body axis. Although they have been shown to regulate a wide variety of downstream processes, direct transcriptional targets have been difficult to identify and this has been a major obstacle to our understanding of Hox gene function. We report the identification of genome-wide binding sites for the Hox protein Ultrabithorax (Ubx) using a YFP-tagged Drosophila protein-trap line together with chromatin immunoprecipitation and microarray analysis. We identify 1,147 genes bound by Ubx at high confidence in chromatin from the haltere imaginal disc, a prominent site of Ubx function where it specifies haltere versus wing development. The functional relevance of these genes is supported by their overlap with genes differentially expressed between wing and haltere imaginal discs. The Ubx-bound gene set is highly enriched in genes involved in developmental processes and contains both high-level regulators as well as genes involved in more basic cellular functions. Several signalling pathways are highly enriched in the Ubx target gene set and our analysis supports the view that Hox genes regulate many levels of developmental pathways and have targets distributed throughout the gene network. We also performed genome-wide analysis of the binding sites for the Hox cofactor Homothorax (Hth), revealing a striking similarity with the Ubx binding profile. We suggest that these binding profiles may be strongly influenced by chromatin accessibility and provide evidence of a link between Ubx/Hth binding and chromatin state at genes regulated by Polycomb silencing. Overall, we define a set of direct Ubx targets in the haltere imaginal disc and suggest that chromatin accessibility has important implications for Hox target selection and for transcription factor binding in general. PMID:21483667

  2. Genome-wide identification, classification, and expression analysis of sHSP genes in Chinese cabbage (Brassica rapa ssp pekinensis).

    PubMed

    Tao, P; Guo, W L; Li, B Y; Wang, W H; Yue, Z C; Lei, J L; Zhong, X M

    2015-10-05

    Small heat shock proteins (sHSPs) are essential for the plant's normal development and stress responses, especially the heat stress response. The information regarding sHSP genes in Chinese cabbage (Brassica rapa ssp pekinensis) is sparse, hence we performed a genome-wide analysis to identify sHSP genes in this species. We identified 26 non-redundant sHSP genes distributed on all chromosomes, except chromosome A7, with one additional sHSP gene identified from an expressed sequence tag library. Chinese cabbage was found to contain more sHSP genes than Arabidopsis. The 27 sHSP genes were classified into 11 subfamilies. We identified 22 groups of sHSP syntenic orthologous genes between Chinese cabbage and Arabidopsis. In addition, eight groups of paralogous genes were uncovered in Chinese cabbage. Protein structures of the 27 Chinese cabbage sHSPs were modeled using Phyre2, which revealed that all of them contain several conserved β strands across different subfamilies. In general, gene structure was conserved within each subfamily between Chinese cabbage and Arabidopsis, except for peroxisome sHSP. Analysis of promoter motifs showed that most sHSP genes contain heat shock elements or variants. We also found that biased gene loss has occurred during the evolution of the sHSP subfamily in Chinese cabbage. Expression analysis indicated that the greatest transcript abundance of most Chinese cabbage sHSP genes was found in siliques and early cotyledon embryos. Thus, genome-wide identification and characterization of sHSP genes is a first and important step in the investigation of sHSPs in Chinese cabbage.

  3. Genome-wide identification, classification, and expression analysis of sHSP genes in Chinese cabbage (Brassica rapa ssp pekinensis).

    PubMed

    Tao, P; Guo, W L; Li, B Y; Wang, W H; Yue, Z C; Lei, J L; Zhong, X M

    2015-01-01

    Small heat shock proteins (sHSPs) are essential for the plant's normal development and stress responses, especially the heat stress response. The information regarding sHSP genes in Chinese cabbage (Brassica rapa ssp pekinensis) is sparse, hence we performed a genome-wide analysis to identify sHSP genes in this species. We identified 26 non-redundant sHSP genes distributed on all chromosomes, except chromosome A7, with one additional sHSP gene identified from an expressed sequence tag library. Chinese cabbage was found to contain more sHSP genes than Arabidopsis. The 27 sHSP genes were classified into 11 subfamilies. We identified 22 groups of sHSP syntenic orthologous genes between Chinese cabbage and Arabidopsis. In addition, eight groups of paralogous genes were uncovered in Chinese cabbage. Protein structures of the 27 Chinese cabbage sHSPs were modeled using Phyre2, which revealed that all of them contain several conserved β strands across different subfamilies. In general, gene structure was conserved within each subfamily between Chinese cabbage and Arabidopsis, except for peroxisome sHSP. Analysis of promoter motifs showed that most sHSP genes contain heat shock elements or variants. We also found that biased gene loss has occurred during the evolution of the sHSP subfamily in Chinese cabbage. Expression analysis indicated that the greatest transcript abundance of most Chinese cabbage sHSP genes was found in siliques and early cotyledon embryos. Thus, genome-wide identification and characterization of sHSP genes is a first and important step in the investigation of sHSPs in Chinese cabbage. PMID:26505345

  4. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote

    PubMed Central

    Schübeler, Dirk; MacAlpine, David M.; Scalzo, David; Wirbelauer, Christiane; Kooperberg, Charles; van Leeuwen, Fred; Gottschling, Daniel E.; O'Neill, Laura P.; Turner, Bryan M.; Delrow, Jeffrey; Bell, Stephen P.; Groudine, Mark

    2004-01-01

    The covalent modification of nucleosomal histones has emerged as a major determinant of chromatin structure and gene activity. To understand the interplay between various histone modifications, including acetylation and methylation, we performed a genome-wide chromatin structure analysis in a higher eukaryote. We found a binary pattern of histone modifications among euchromatic genes, with active genes being hyperacetylated for H3 and H4 and hypermethylated at Lys 4 and Lys 79 of H3, and inactive genes being hypomethylated and deacetylated at the same residues. Furthermore, the degree of modification correlates with the level of transcription, and modifications are largely restricted to transcribed regions, suggesting that their regulation is tightly linked to polymerase activity. PMID:15175259

  5. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles.

    PubMed

    Akalin, Altuna; Kormaksson, Matthias; Li, Sheng; Garrett-Bakelman, Francine E; Figueroa, Maria E; Melnick, Ari; Mason, Christopher E

    2012-01-01

    DNA methylation is a chemical modification of cytosine bases that is pivotal for gene regulation, cellular specification and cancer development. Here, we describe an R package, methylKit, that rapidly analyzes genome-wide cytosine epigenetic profiles from high-throughput methylation and hydroxymethylation sequencing experiments. methylKit includes functions for clustering, sample quality visualization, differential methylation analysis and annotation features, thus automating and simplifying many of the steps for discerning statistically significant bases or regions of DNA methylation. Finally, we demonstrate methylKit on breast cancer data, in which we find statistically significant regions of differential methylation and stratify tumor subtypes. methylKit is available at http://code.google.com/p/methylkit. PMID:23034086

  6. Genome-wide identification, classification, and analysis of NADP-ME family members from 12 crucifer species.

    PubMed

    Tao, Peng; Guo, Weiling; Li, Biyuan; Wang, Wuhong; Yue, Zhichen; Lei, Juanli; Zhao, Yanting; Zhong, Xinmin

    2016-06-01

    NADP-dependent malic enzymes (NADP-MEs) play essential roles in both normal development and stress responses in plants. Here, genome-wide analysis was performed to identify 65 putative NADP-ME genes from 12 crucifer species. These NADP-ME genes were grouped into five categories of syntenic orthologous genes and were divided into three clades of a phylogenic tree. Promoter motif analysis showed that NADP-ME1 genes in Group IV were more conserved with each other than the other NADP-ME genes in Groups I and II. A nucleotide motif involved in ABA responses, desiccation and seed development was found in the promoters of most NADP-ME1 genes. Generally, the NADP-ME genes of Brassica rapa, B. oleracea and B. napus had less introns than their corresponding Arabidopsis orthologs. In these three Brassica species, the NADP-ME genes derived from the least fractionated subgenome have lost less introns than those from the medium fractionated and most fractionated subgenomes. BrNADP-ME1 showed the highest expression in petals and mature embryos. Two paralogous NADP-ME2 genes (BrNADP-ME2a and BrNADP-ME2b) shared similar expression profiles and differential expression levels. BrNADP-ME3 showed down-regulation during embryogenesis and reached its lowest expression in early cotyledonary embryos. BrNADP-ME4 was expressed widely in multiple organs and showed high expression during the whole embryogenesis process. Different NADP-ME genes of B. rapa showed differential gene expression profiles in young leaves after ABA treatment or cold stress. Our genome-wide identification and characterization of NADP-ME genes extend our understanding of the evolution or function of this family in Brassicaceae.

  7. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi

    PubMed Central

    Li, Caiqin; Wang, Yan; Ying, Peiyuan; Ma, Wuqiang; Li, Jianguo

    2015-01-01

    The high level of physiological fruitlet abscission in litchi (Litchi chinensis Sonn.) causes severe yield loss. Cell separation occurs at the fruit abscission zone (FAZ) and can be triggered by ethylene. However, a deep knowledge of the molecular events occurring in the FAZ is still unknown. Here, genome-wide digital transcript abundance (DTA) analysis of putative fruit abscission related genes regulated by ethephon in litchi were studied. More than 81 million high quality reads from seven ethephon treated and untreated control libraries were obtained by high-throughput sequencing. Through DTA profile analysis in combination with Gene Ontology and KEGG pathway enrichment analyses, a total of 2730 statistically significant candidate genes were involved in the ethephon-promoted litchi fruitlet abscission. Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification. These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data. Ethephon treatment significantly increased fruit abscission and ethylene production of fruitlet. The possible molecular events to control the ethephon-promoted litchi fruitlet abscission were prompted out. The increased ethylene evolution in fruitlet would suppress the synthesis and polar transport of auxin and trigger abscission signaling. To the best of our knowledge, it is the first time to monitor the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon on the genome-wide level. This study will contribute to a better

  8. Genome-wide association analysis for quantitative trait loci influencing Warner–Bratzler shear force in five taurine cattle breeds

    PubMed Central

    McClure, M C; Ramey, H R; Rolf, M M; McKay, S D; Decker, J E; Chapple, R H; Kim, J W; Taxis, T M; Weaber, R L; Schnabel, R D; Taylor, J F

    2012-01-01

    Summary We performed a genome-wide association study for Warner–Bratzler shear force (WBSF), a measure of meat tenderness, by genotyping 3360 animals from five breeds with 54 790 BovineSNP50 and 96 putative single-nucleotide polymorphisms (SNPs) within μ-calpain [HUGO nomenclature calpain 1, (mu/I) large subunit; CAPN1] and calpastatin (CAST). Within- and across-breed analyses estimated SNP allele substitution effects (ASEs) by genomic best linear unbiased prediction (GBLUP) and variance components by restricted maximum likelihood under an animal model incorporating a genomic relationship matrix. GBLUP estimates of ASEs from the across-breed analysis were moderately correlated (0.31–0.66) with those from the individual within-breed analyses, indicating that prediction equations for molecular estimates of breeding value developed from across-breed analyses should be effective for genomic selection within breeds. We identified 79 genomic regions associated with WBSF in at least three breeds, but only eight were detected in all five breeds, suggesting that the within-breed analyses were underpowered, that different quantitative trait loci (QTL) underlie variation between breeds or that the BovineSNP50 SNP density is insufficient to detect common QTL among breeds. In the across-breed analysis, CAPN1 was followed by CAST as the most strongly associated WBSF QTL genome-wide, and associations with both were detected in all five breeds. We show that none of the four commercialized CAST and CAPN1SNP diagnostics are causal for associations with WBSF, and we putatively fine-map the CAPN1 causal mutation to a 4581-bp region. We estimate that variation in CAST and CAPN1 explains 1.02 and 1.85% of the phenotypic variation in WBSF respectively. PMID:22497286

  9. Esophageal Cancer Epigenomics and Integrome Analysis of Genome-Wide Methylation and Expression in High Risk Northeast Indian Population.

    PubMed

    Singh, Virendra; Singh, Laishram Chandreshwor; Vasudevan, Madavan; Chattopadhyay, Indranil; Borthakar, Bibhuti Bhusan; Rai, Avdhesh Kumar; Phukan, Rup Kumar; Sharma, Jagannath; Mahanta, Jagadish; Kataki, Amal Chandra; Kapur, Sujala; Saxena, Sunita

    2015-11-01

    Esophageal cancer is a major global health burden with a strong host-environment interaction component and epigenomics underpinnings that remain to be elucidated further. Certain populations such as the Northeast Indians suffer at a disproportionately higher rate from this devastating disease. Promoter methylation is correlated with transcriptional silencing of various genes in esophageal cancer. Very few studies on genome-wide methylation for esophageal cancer exist and yet, no one has carried out an integromics analysis of methylation and gene expression. In the present study, genome-wide methylation was measured in samples collected from the Northeast Indian population by Infinium 450k array, and integration of the methylation data was performed. To prepare a network of genes displaying enriched pathways, together with the list of genes exhibiting promoter hypermethylation or hypomethylation with inversely correlated expression, we performed an integrome analysis. We identified 23 Integrome network enriched genes with relevance to tumor progression and associated with the processes involved in metastasis such as cell adhesion, integrin signaling, cytoskeleton, and extracellular matrix organizations. These included four genes (PTK2, RND1, RND3, and UBL3) with promoter hypermethylation and downregulation, and 19 genes (SEMG2, CD97, CTNND2, CADM3, OMD, NEFM, FBN2, CTNNB1, DLX6, UGT2B4, CCDC80, PZP, SERPINA4, TNFSF13B, NPC1, COL1A1, TAC3, BMP8A, and IL22RA2) with promoter hypomethylation and upregulation. A Methylation Efficiency Index was further calculated for these genes; the top five gene with the highest index were COL1A1, TAC3, SERPINA4, TNFSF13B, and IL22RA2. In conclusion, we recommend that the circulatory proteins IL22RA2, TNFSF13B, SERPINA4, and TAC3 in serum of patients and disease-free healthy controls can be examined in the future as putative noninvasive biomarkers.

  10. A Genome-Wide Association Analysis Reveals Epistatic Cancellation of Additive Genetic Variance for Root Length in Arabidopsis thaliana.

    PubMed

    Lachowiec, Jennifer; Shen, Xia; Queitsch, Christine; Carlborg, Örjan

    2015-01-01

    Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the genomic narrow-sense heritability for this trait in the examined population was statistically zero. The low amount of additive genetic variance that could be captured by the genome-wide genotypes likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, as the broad-sense heritability for root length was significantly larger, and primarily due to epistasis, we also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. Four interacting pairs of loci were revealed, involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. The genotype-phenotype maps for these pairs revealed epistasis that cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. The statistical epistatic analyses were thus indispensable for confirming known, and identifying new, candidate genes for root length in this population of wild-collected A. thaliana accessions. We also illustrate how epistatic cancellation of the additive genetic variance

  11. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage.

    PubMed

    Woo, Daniel; Falcone, Guido J; Devan, William J; Brown, W Mark; Biffi, Alessandro; Howard, Timothy D; Anderson, Christopher D; Brouwers, H Bart; Valant, Valerie; Battey, Thomas W K; Radmanesh, Farid; Raffeld, Miriam R; Baedorf-Kassis, Sylvia; Deka, Ranjan; Woo, Jessica G; Martin, Lisa J; Haverbusch, Mary; Moomaw, Charles J; Sun, Guangyun; Broderick, Joseph P; Flaherty, Matthew L; Martini, Sharyl R; Kleindorfer, Dawn O; Kissela, Brett; Comeau, Mary E; Jagiella, Jeremiasz M; Schmidt, Helena; Freudenberger, Paul; Pichler, Alexander; Enzinger, Christian; Hansen, Björn M; Norrving, Bo; Jimenez-Conde, Jordi; Giralt-Steinhauer, Eva; Elosua, Roberto; Cuadrado-Godia, Elisa; Soriano, Carolina; Roquer, Jaume; Kraft, Peter; Ayres, Alison M; Schwab, Kristin; McCauley, Jacob L; Pera, Joanna; Urbanik, Andrzej; Rost, Natalia S; Goldstein, Joshua N; Viswanathan, Anand; Stögerer, Eva-Maria; Tirschwell, David L; Selim, Magdy; Brown, Devin L; Silliman, Scott L; Worrall, Bradford B; Meschia, James F; Kidwell, Chelsea S; Montaner, Joan; Fernandez-Cadenas, Israel; Delgado, Pilar; Malik, Rainer; Dichgans, Martin; Greenberg, Steven M; Rothwell, Peter M; Lindgren, Arne; Slowik, Agnieszka; Schmidt, Reinhold; Langefeld, Carl D; Rosand, Jonathan

    2014-04-01

    Intracerebral hemorrhage (ICH) is the stroke subtype with the worst prognosis and has no established acute treatment. ICH is classified as lobar or nonlobar based on the location of ruptured blood vessels within the brain. These different locations also signal different underlying vascular pathologies. Heritability estimates indicate a substantial genetic contribution to risk of ICH in both locations. We report a genome-wide association study of this condition that meta-analyzed data from six studies that enrolled individuals of European ancestry. Case subjects were ascertained by neurologists blinded to genotype data and classified as lobar or nonlobar based on brain computed tomography. ICH-free control subjects were sampled from ambulatory clinics or random digit dialing. Replication of signals identified in the discovery cohort with p < 1 × 10(-6) was pursued in an independent multiethnic sample utilizing both direct and genome-wide genotyping. The discovery phase included a case cohort of 1,545 individuals (664 lobar and 881 nonlobar cases) and a control cohort of 1,481 individuals and identified two susceptibility loci: for lobar ICH, chromosomal region 12q21.1 (rs11179580, odds ratio [OR] = 1.56, p = 7.0 × 10(-8)); and for nonlobar ICH, chromosomal region 1q22 (rs2984613, OR = 1.44, p = 1.6 × 10(-8)). The replication included a case cohort of 1,681 individuals (484 lobar and 1,194 nonlobar cases) and a control cohort of 2,261 individuals and corroborated the association for 1q22 (p = 6.5 × 10(-4); meta-analysis p = 2.2 × 10(-10)) but not for 12q21.1 (p = 0.55; meta-analysis p = 2.6 × 10(-5)). These results demonstrate biological heterogeneity across ICH subtypes and highlight the importance of ascertaining ICH cases accordingly. PMID:24656865

  12. Genome-wide identification, classification, and analysis of NADP-ME family members from 12 crucifer species.

    PubMed

    Tao, Peng; Guo, Weiling; Li, Biyuan; Wang, Wuhong; Yue, Zhichen; Lei, Juanli; Zhao, Yanting; Zhong, Xinmin

    2016-06-01

    NADP-dependent malic enzymes (NADP-MEs) play essential roles in both normal development and stress responses in plants. Here, genome-wide analysis was performed to identify 65 putative NADP-ME genes from 12 crucifer species. These NADP-ME genes were grouped into five categories of syntenic orthologous genes and were divided into three clades of a phylogenic tree. Promoter motif analysis showed that NADP-ME1 genes in Group IV were more conserved with each other than the other NADP-ME genes in Groups I and II. A nucleotide motif involved in ABA responses, desiccation and seed development was found in the promoters of most NADP-ME1 genes. Generally, the NADP-ME genes of Brassica rapa, B. oleracea and B. napus had less introns than their corresponding Arabidopsis orthologs. In these three Brassica species, the NADP-ME genes derived from the least fractionated subgenome have lost less introns than those from the medium fractionated and most fractionated subgenomes. BrNADP-ME1 showed the highest expression in petals and mature embryos. Two paralogous NADP-ME2 genes (BrNADP-ME2a and BrNADP-ME2b) shared similar expression profiles and differential expression levels. BrNADP-ME3 showed down-regulation during embryogenesis and reached its lowest expression in early cotyledonary embryos. BrNADP-ME4 was expressed widely in multiple organs and showed high expression during the whole embryogenesis process. Different NADP-ME genes of B. rapa showed differential gene expression profiles in young leaves after ABA treatment or cold stress. Our genome-wide identification and characterization of NADP-ME genes extend our understanding of the evolution or function of this family in Brassicaceae. PMID:26839002

  13. A Genome-Wide Association Analysis Reveals Epistatic Cancellation of Additive Genetic Variance for Root Length in Arabidopsis thaliana

    PubMed Central

    Lachowiec, Jennifer; Shen, Xia; Queitsch, Christine; Carlborg, Örjan

    2015-01-01

    Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the genomic narrow-sense heritability for this trait in the examined population was statistically zero. The low amount of additive genetic variance that could be captured by the genome-wide genotypes likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, as the broad-sense heritability for root length was significantly larger, and primarily due to epistasis, we also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. Four interacting pairs of loci were revealed, involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. The genotype-phenotype maps for these pairs revealed epistasis that cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. The statistical epistatic analyses were thus indispensable for confirming known, and identifying new, candidate genes for root length in this population of wild-collected A. thaliana accessions. We also illustrate how epistatic cancellation of the additive genetic variance

  14. Genome-wide association study for age-related hearing loss (AHL) in the mouse: a meta-analysis.

    PubMed

    Ohmen, Jeffrey; Kang, Eun Yong; Li, Xin; Joo, Jong Wha; Hormozdiari, Farhad; Zheng, Qing Yin; Davis, Richard C; Lusis, Aldons J; Eskin, Eleazar; Friedman, Rick A

    2014-06-01

    Age-related hearing loss (AHL) is characterized by a symmetric sensorineural hearing loss primarily in high frequencies and individuals have different levels of susceptibility to AHL. Heritability studies have shown that the sources of this variance are both genetic and environmental, with approximately half of the variance attributable to hereditary factors as reported by Huag and Tang (Eur Arch Otorhinolaryngol 267(8):1179-1191, 2010). Only a limited number of large-scale association studies for AHL have been undertaken in humans, to date. An alternate and complementary approach to these human studies is through the use of mouse models. Advantages of mouse models include that the environment can be more carefully controlled, measurements can be replicated in genetically identical animals, and the proportion of the variability explained by genetic variation is increased. Complex traits in mouse strains have been shown to have higher heritability and genetic loci often have stronger effects on the trait compared to humans. Motivated by these advantages, we have performed the first genome-wide association study of its kind in the mouse by combining several data sets in a meta-analysis to identify loci associated with age-related hearing loss. We identified five genome-wide significant loci (<10(-6)). One of these loci confirmed a previously identified locus (ahl8) on distal chromosome 11 and greatly narrowed the candidate region. Specifically, the most significant associated SNP is located 450 kb upstream of Fscn2. These data confirm the utility of this approach and provide new high-resolution mapping information about variation within the mouse genome associated with hearing loss.

  15. Genome-Wide Analysis of Host Responses to Four Different Types of Microorganisms in Bombyx Mori (Lepidoptera: Bombycidae)

    PubMed Central

    Lin, Ping; Huang, Lulin; Wu, Yuqian; Jin, Shengkai; Liu, Chun; Xia, Qingyou

    2016-01-01

    Several pathogenic microorganisms have been used to investigate the genome-wide transcriptional responses of Bombyx mori to infection. However, studies have so far each focused on one microorganism, and systematic genome-wide comparison of transcriptional responses to different pathogenic microorganisms has not been undertaken. Here, we surveyed transcriptional responses of B. mori to its natural bacterial, viral, and fungal pathogens, Bacillus bombyseptieus, B. mori nucleopolyhedrovirus (BmNPV), and Beauveria bassiana, respectively, and to nonpathogenic Escherichia coli, by microarray analysis. In total, the expression of 2,436, 1,804, 1,743, and 912 B. mori genes was modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, and E. coli, respectively. Notably, the expression of 620, 400, 177, or 165 of these genes was only modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, or E. coli, respectively. In contrast to the expression of genes related to juvenile hormone synthesis and metabolism, that of genes encoding juvenile hormone binding proteins was microorganism-specific. Three basal metabolic pathways were modulated by infection with any of the four microorganisms, and 3, 14, 5, and 2 metabolic pathways were specifically modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, and E. coli, respectively. Interestingly, BmNPV infection modulated the JAK/STAT signaling pathway, whereas both the Imd and Toll signaling pathways were modulated by infection with B. bombyseptieus, B. bassiana, or E. coli. These results elucidate potential molecular mechanisms of the host response to different microorganisms, and provide a foundation for further work on host–pathogen interaction. PMID:27382132

  16. Genome Wide Analysis of Flowering Time Trait in Multiple Environments via High-Throughput Genotyping Technique in Brassica napus L.

    PubMed Central

    Dalton-Morgan, Jessica; Batley, Jacqueline; Yu, Longjiang; Meng, Jinling; Li, Maoteng

    2015-01-01

    The prediction of the flowering time (FT) trait in Brassica napus based on genome-wide markers and the detection of underlying genetic factors is important not only for oilseed producers around the world but also for the other crop industry in the rotation system in China. In previous studies the low density and mixture of biomarkers used obstructed genomic selection in B. napus and comprehensive mapping of FT related loci. In this study, a high-density genome-wide SNP set was genotyped from a double-haploid population of B. napus. We first performed genomic prediction of FT traits in B. napus using SNPs across the genome under ten environments of three geographic regions via eight existing genomic predictive models. The results showed that all the models achieved comparably high accuracies, verifying the feasibility of genomic prediction in B. napus. Next, we performed a large-scale mapping of FT related loci among three regions, and found 437 associated SNPs, some of which represented known FT genes, such as AP1 and PHYE. The genes tagged by the associated SNPs were enriched in biological processes involved in the formation of flowers. Epistasis analysis showed that significant interactions were found between detected loci, even among some known FT related genes. All the results showed that our large scale and high-density genotype data are of great practical and scientific values for B. napus. To our best knowledge, this is the first evaluation of genomic selection models in B. napus based on a high-density SNP dataset and large-scale mapping of FT loci. PMID:25790019

  17. Genome-wide meta-analysis reveals common splice site acceptor variant in CHRNA4 associated with nicotine dependence

    PubMed Central

    Hancock, D B; Reginsson, G W; Gaddis, N C; Chen, X; Saccone, N L; Lutz, S M; Qaiser, B; Sherva, R; Steinberg, S; Zink, F; Stacey, S N; Glasheen, C; Chen, J; Gu, F; Frederiksen, B N; Loukola, A; Gudbjartsson, D F; Brüske, I; Landi, M T; Bickeböller, H; Madden, P; Farrer, L; Kaprio, J; Kranzler, H R; Gelernter, J; Baker, T B; Kraft, P; Amos, C I; Caporaso, N E; Hokanson, J E; Bierut, L J; Thorgeirsson, T E; Johnson, E O; Stefansson, K

    2015-01-01

    We conducted a 1000 Genomes–imputed genome-wide association study (GWAS) meta-analysis for nicotine dependence, defined by the Fagerström Test for Nicotine Dependence in 17 074 ever smokers from five European-ancestry samples. We followed up novel variants in 7469 ever smokers from five independent European-ancestry samples. We identified genome-wide significant association in the alpha-4 nicotinic receptor subunit (CHRNA4) gene on chromosome 20q13: lowest P=8.0 × 10−9 across all the samples for rs2273500-C (frequency=0.15; odds ratio=1.12 and 95% confidence interval=1.08–1.17 for severe vs mild dependence). rs2273500-C, a splice site acceptor variant resulting in an alternate CHRNA4 transcript predicted to be targeted for nonsense-mediated decay, was associated with decreased CHRNA4 expression in physiologically normal human brains (lowest P=7.3 × 10−4). Importantly, rs2273500-C was associated with increased lung cancer risk (N=28 998, odds ratio=1.06 and 95% confidence interval=1.00–1.12), likely through its effect on smoking, as rs2273500-C was no longer associated with lung cancer after adjustment for smoking. Using criteria for smoking behavior that encompass more than the single ‘cigarettes per day' item, we identified a common CHRNA4 variant with important regulatory properties that contributes to nicotine dependence and smoking-related consequences. PMID:26440539

  18. Genome wide analysis of flowering time trait in multiple environments via high-throughput genotyping technique in Brassica napus L.

    PubMed

    Li, Lun; Long, Yan; Zhang, Libin; Dalton-Morgan, Jessica; Batley, Jacqueline; Yu, Longjiang; Meng, Jinling; Li, Maoteng

    2015-01-01

    The prediction of the flowering time (FT) trait in Brassica napus based on genome-wide markers and the detection of underlying genetic factors is important not only for oilseed producers around the world but also for the other crop industry in the rotation system in China. In previous studies the low density and mixture of biomarkers used obstructed genomic selection in B. napus and comprehensive mapping of FT related loci. In this study, a high-density genome-wide SNP set was genotyped from a double-haploid population of B. napus. We first performed genomic prediction of FT traits in B. napus using SNPs across the genome under ten environments of three geographic regions via eight existing genomic predictive models. The results showed that all the models achieved comparably high accuracies, verifying the feasibility of genomic prediction in B. napus. Next, we performed a large-scale mapping of FT related loci among three regions, and found 437 associated SNPs, some of which represented known FT genes, such as AP1 and PHYE. The genes tagged by the associated SNPs were enriched in biological processes involved in the formation of flowers. Epistasis analysis showed that significant interactions were found between detected loci, even among some known FT related genes. All the results showed that our large scale and high-density genotype data are of great practical and scientific values for B. napus. To our best knowledge, this is the first evaluation of genomic selection models in B. napus based on a high-density SNP dataset and large-scale mapping of FT loci.

  19. Genome-Wide Analysis of Host Responses to Four Different Types of Microorganisms in Bombyx Mori (Lepidoptera: Bombycidae).

    PubMed

    Cheng, Tingcai; Lin, Ping; Huang, Lulin; Wu, Yuqian; Jin, Shengkai; Liu, Chun; Xia, Qingyou

    2016-01-01

    Several pathogenic microorganisms have been used to investigate the genome-wide transcriptional responses of Bombyx mori to infection. However, studies have so far each focused on one microorganism, and systematic genome-wide comparison of transcriptional responses to different pathogenic microorganisms has not been undertaken. Here, we surveyed transcriptional responses of B. mori to its natural bacterial, viral, and fungal pathogens, Bacillus bombyseptieus, B. mori nucleopolyhedrovirus (BmNPV), and Beauveria bassiana, respectively, and to nonpathogenic Escherichia coli, by microarray analysis. In total, the expression of 2,436, 1,804, 1,743, and 912 B. mori genes was modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, and E. coli, respectively. Notably, the expression of 620, 400, 177, or 165 of these genes was only modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, or E. coli, respectively. In contrast to the expression of genes related to juvenile hormone synthesis and metabolism, that of genes encoding juvenile hormone binding proteins was microorganism-specific. Three basal metabolic pathways were modulated by infection with any of the four microorganisms, and 3, 14, 5, and 2 metabolic pathways were specifically modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, and E. coli, respectively. Interestingly, BmNPV infection modulated the JAK/STAT signaling pathway, whereas both the Imd and Toll signaling pathways were modulated by infection with B. bombyseptieus, B. bassiana, or E. coli These results elucidate potential molecular mechanisms of the host response to different microorganisms, and provide a foundation for further work on host-pathogen interaction. PMID:27382132

  20. Genome-wide gene-gene interaction analysis for next-generation sequencing.

    PubMed

    Zhao, Jinying; Zhu, Yun; Xiong, Momiao

    2016-03-01

    The critical barrier in interaction analysis for next-generation sequencing (NGS) data is that the traditional pairwise interaction analysis that is suitable for common variants is difficult to apply to rare variants because of their prohibitive computational time, large number of tests and low power. The great challenges for successful detection of interactions with NGS data are (1) the demands in the paradigm of changes in interaction analysis; (2) severe multiple testing; and (3) heavy computations. To meet these challenges, we shift the paradigm of interaction analysis between two SNPs to interaction analysis between two genomic regions. In other words, we take a gene as a unit of analysis and use functional data analysis techniques as dimensional reduction tools to develop a novel statistic to collectively test interaction between all possible pairs of SNPs within two genome regions. By intensive simulations, we demonstrate that the functional logistic regression for interaction analysis has the correct type 1 error rates and higher power to detect interaction than the currently used methods. The proposed method was applied to a coronary artery disease dataset from the Wellcome Trust Case Control Consortium (WTCCC) study and the Framingham Heart Study (FHS) dataset, and the early-onset myocardial infarction (EOMI) exome sequence datasets with European origin from the NHLBI's Exome Sequencing Project. We discovered that 6 of 27 pairs of significantly interacted genes in the FHS were replicated in the independent WTCCC study and 24 pairs of significantly interacted genes after applying Bonferroni correction in the EOMI study.

  1. Genome-wide linkage analysis of congenital heart defects using MOD score analysis identifies two novel loci

    PubMed Central

    2013-01-01

    Background Congenital heart defects (CHD) is the most common cause of death from a congenital structure abnormality in newborns and is often associated with fetal loss. There are many types of CHD. Human genetic studies have identified genes that are responsible for the inheritance of a particular type of CHD and for some types of CHD previously thought to be sporadic. However, occasionally different members of the same family might have anatomically distinct defects — for instance, one member with atrial septal defect, one with tetralogy of Fallot, and one with ventricular septal defect. Our objective is to identify susceptibility loci for CHD in families affected by distinct defects. The occurrence of these apparently discordant clinical phenotypes within one family might hint at a genetic framework common to most types of CHD. Results We performed a genome-wide linkage analysis using MOD score analysis in families with diverse CHD. Significant linkage was obtained in two regions, at chromosome 15 (15q26.3, Pempirical = 0.0004) and at chromosome 18 (18q21.2, Pempirical = 0.0005). Conclusions In these two novel regions four candidate genes are located: SELS, SNRPA1, and PCSK6 on 15q26.3, and TCF4 on 18q21.2. The new loci reported here have not previously been described in connection with CHD. Although further studies in other cohorts are needed to confirm these findings, the results presented here together with recent insight into how the heart normally develops will improve the understanding of CHD. PMID:23705960

  2. Genome-Wide Analysis of the Synonymous Codon Usage Patterns in Riemerella anatipestifer.

    PubMed

    Liu, Jibin; Zhu, Dekang; Ma, Guangpeng; Liu, Mafeng; Wang, Mingshu; Jia, Renyong; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2016-01-01

    Riemerella anatipestifer (RA) belongs to the Flavobacteriaceae family and can cause a septicemia disease in poultry. The synonymous codon usage patterns of bacteria reflect a series of evolutionary changes that enable bacteria to improve tolerance of the various environments. We detailed the codon usage patterns of RA isolates from the available 12 sequenced genomes by multiple codon and statistical analysis. Nucleotide compositions and relative synonymous codon usage (RSCU) analysis revealed that A or U ending codons are predominant in RA. Neutrality analysis found no significant correlation between GC12 and GC₃ (p > 0.05). Correspondence analysis and ENc-plot results showed that natural selection dominated over mutation in the codon usage bias. The tree of cluster analysis based on RSCU was concordant with dendrogram based on genomic BLAST by neighbor-joining method. By comparative analysis, about 50 highly expressed genes that were orthologs across all 12 strains were found in the top 5% of high CAI value. Based on these CAI values, we infer that RA contains a number of predicted highly expressed coding sequences, involved in transcriptional regulation and metabolism, reflecting their requirement for dealing with diverse environmental conditions. These results provide some useful information on the mechanisms that contribute to codon usage bias and evolution of RA. PMID:27517915

  3. Genome-Wide Analysis of the Synonymous Codon Usage Patterns in Riemerella anatipestifer

    PubMed Central

    Liu, Jibin; Zhu, Dekang; Ma, Guangpeng; Liu, Mafeng; Wang, Mingshu; Jia, Renyong; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2016-01-01

    Riemerella anatipestifer (RA) belongs to the Flavobacteriaceae family and can cause a septicemia disease in poultry. The synonymous codon usage patterns of bacteria reflect a series of evolutionary changes that enable bacteria to improve tolerance of the various environments. We detailed the codon usage patterns of RA isolates from the available 12 sequenced genomes by multiple codon and statistical analysis. Nucleotide compositions and relative synonymous codon usage (RSCU) analysis revealed that A or U ending codons are predominant in RA. Neutrality analysis found no significant correlation between GC12 and GC3 (p > 0.05). Correspondence analysis and ENc-plot results showed that natural selection dominated over mutation in the codon usage bias. The tree of cluster analysis based on RSCU was concordant with dendrogram based on genomic BLAST by neighbor-joining method. By comparative analysis, about 50 highly expressed genes that were orthologs across all 12 strains were found in the top 5% of high CAI value. Based on these CAI values, we infer that RA contains a number of predicted highly expressed coding sequences, involved in transcriptional regulation and metabolism, reflecting their requirement for dealing with diverse environmental conditions. These results provide some useful information on the mechanisms that contribute to codon usage bias and evolution of RA. PMID:27517915

  4. High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies

    PubMed Central

    2015-01-01

    Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly employed may miss important SNP associations that only appear through multivariate analysis in complex diseases. However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full "Avoca" IBM Blue Gene/Q installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q supercomputer "Sequoia" at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as our results suggest. Given that the implementation used in this study can be further optimised, this runtime means it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS. PMID:25870758

  5. High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies.

    PubMed

    Goudey, Benjamin; Abedini, Mani; Hopper, John L; Inouye, Michael; Makalic, Enes; Schmidt, Daniel F; Wagner, John; Zhou, Zeyu; Zobel, Justin; Reumann, Matthias

    2015-01-01

    Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly employed may miss important SNP associations that only appear through multivariate analysis in complex diseases. However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full "Avoca" IBM Blue Gene/Q installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q supercomputer "Sequoia" at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as our results suggest. Given that the implementation used in this study can be further optimised, this runtime means it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS. PMID:25870758

  6. High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies.

    PubMed

    Goudey, Benjamin; Abedini, Mani; Hopper, John L; Inouye, Michael; Makalic, Enes; Schmidt, Daniel F; Wagner, John; Zhou, Zeyu; Zobel, Justin; Reumann, Matthias

    2015-01-01

    Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly employed may miss important SNP associations that only appear through multivariate analysis in complex diseases. However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full "Avoca" IBM Blue Gene/Q installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q supercomputer "Sequoia" at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as our results suggest. Given that the implementation used in this study can be further optimised, this runtime means it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS.

  7. Multivariate Analysis of Anthropometric Traits Using Summary Statistics of Genome-Wide Association Studies from GIANT Consortium

    PubMed Central

    Zhu, Xiaofeng

    2016-01-01

    Meta-analysis of single trait for multiple cohorts has been used for increasing statistical power in genome-wide association studies (GWASs). Although hundreds of variants have been identified by GWAS, these variants only explain a small fraction of phenotypic variation. Cross-phenotype association analysis (CPASSOC) can further improve statistical power by searching for variants that contribute to multiple traits, which is often relevant to pleiotropy. In this study, we performed CPASSOC analysis on the summary statistics from the Genetic Investigation of ANthropometric Traits (GIANT) consortium using a novel method recently developed by our group. Sex-specific meta-analysis data for height, body mass index (BMI), and waist-to-hip ratio adjusted for BMI (WHRadjBMI) from discovery phase of the GIANT consortium study were combined using CPASSOC for each trait as well as 3 traits together. The conventional meta-analysis results from the discovery phase data of GIANT consortium studies were used to compare with that from CPASSOC analysis. The CPASSOC analysis was able to identify 17 loci associated with anthropometric traits that were missed by conventional meta-analysis. Among these loci, 16 have been reported in literature by including additional samples and 1 is novel. We also demonstrated that CPASSOC is able to detect pleiotropic effects when analyzing multiple traits. PMID:27701450

  8. [Genome-wide identification and expression analysis of the WRKY gene family in peach].

    PubMed

    Yanbing, Gu; Zhirui, Ji; Fumei, Chi; Zhuang, Qiao; Chengnan, Xu; Junxiang, Zhang; Zongshan, Zhou; Qinglong, Dong

    2016-03-01

    The WRKY transcription factors are one of the largest families of transcriptional regulators and play diverse regulatory roles in biotic and abiotic stresses, plant growth and development processes. In this study, the WRKY DNA-binding domain (Pfam Database number: PF03106) downloaded from Pfam protein families database was exploited to identify WRKY genes from the peach (Prunus persica 'Lovell') genome using HMMER 3.0. The obtained amino acid sequences were analyzed with DNAMAN 5.0, WebLogo 3, MEGA 5.1, MapInspect and MEME bioinformatics softwares. Totally 61 peach WRKY genes were found in the peach genome. Our phylogenetic analysis revealed that peach WRKY genes were classified into three Groups: Ⅰ, Ⅱ and Ⅲ. The WRKY N-terminal and C-terminal domains of Group Ⅰ (group I-N and group I-C) were monophyletic. The Group Ⅱ was sub-divided into five distinct clades (groupⅡ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d and Ⅱ-e). Our domain analysis indicated that the WRKY regions contained a highly conserved heptapeptide stretch WRKYGQK at its N-terminus followed by a zinc-finger motif. The chromosome mapping analysis showed that peach WRKY genes were distributed with different densities over 8 chromosomes. The intron-exon structure analysis revealed that structures of the WRKY gene were highly conserved in the peach. The conserved motif analysis showed that the conserved motifs 1, 2 and 3, which specify the WRKY domain, were observed in all peach WRKY proteins, motif 5 as the unknown domain was observed in group Ⅱ-d, two WRKY domains were assigned to GroupⅠ. SqRT-PCR and qRT-PCR results indicated that 16 PpWRKY genes were expressed in roots, stems, leaves, flowers and fruits at various expression levels. Our analysis thus identified the PpWRKY gene families, and future functional studies are needed to reveal its specific roles. PMID:27001479

  9. [Genome-wide identification and expression analysis of the WRKY gene family in peach].

    PubMed

    Yanbing, Gu; Zhirui, Ji; Fumei, Chi; Zhuang, Qiao; Chengnan, Xu; Junxiang, Zhang; Zongshan, Zhou; Qinglong, Dong

    2016-03-01

    The WRKY transcription factors are one of the largest families of transcriptional regulators and play diverse regulatory roles in biotic and abiotic stresses, plant growth and development processes. In this study, the WRKY DNA-binding domain (Pfam Database number: PF03106) downloaded from Pfam protein families database was exploited to identify WRKY genes from the peach (Prunus persica 'Lovell') genome using HMMER 3.0. The obtained amino acid sequences were analyzed with DNAMAN 5.0, WebLogo 3, MEGA 5.1, MapInspect and MEME bioinformatics softwares. Totally 61 peach WRKY genes were found in the peach genome. Our phylogenetic analysis revealed that peach WRKY genes were classified into three Groups: Ⅰ, Ⅱ and Ⅲ. The WRKY N-terminal and C-terminal domains of Group Ⅰ (group I-N and group I-C) were monophyletic. The Group Ⅱ was sub-divided into five distinct clades (groupⅡ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d and Ⅱ-e). Our domain analysis indicated that the WRKY regions contained a highly conserved heptapeptide stretch WRKYGQK at its N-terminus followed by a zinc-finger motif. The chromosome mapping analysis showed that peach WRKY genes were distributed with different densities over 8 chromosomes. The intron-exon structure analysis revealed that structures of the WRKY gene were highly conserved in the peach. The conserved motif analysis showed that the conserved motifs 1, 2 and 3, which specify the WRKY domain, were observed in all peach WRKY proteins, motif 5 as the unknown domain was observed in group Ⅱ-d, two WRKY domains were assigned to GroupⅠ. SqRT-PCR and qRT-PCR results indicated that 16 PpWRKY genes were expressed in roots, stems, leaves, flowers and fruits at various expression levels. Our analysis thus identified the PpWRKY gene families, and future functional studies are needed to reveal its specific roles.

  10. Genome-wide analysis of synonymous codon usage in Huaiyangshan virus and other bunyaviruses.

    PubMed

    Luo, Xuelian; Liu, Qingzhen; Xiong, Yanwen; Ye, Changyun; Jin, Dong; Xu, Jianguo

    2015-12-01

    Huaiyangshan virus (HYSV) is a newly discovered bunyavirus, which is transmitted by ticks and causes hemorrhagic fever-like illness in human. The interplay of codon usage among viruses and their hosts is expected to affect viral survival, evasion from host's immune system and evolution. However, little is known about the codon usage in HYSV genome. In the present study, we analyzed synonymous codon usage in 120 available full-length HYSV sequences and performed a comparative analysis of synonymous codon usage patterns in HYSV and 42 other bunyaviruses. The relative synonymous codon usage (RSCU) analysis showed that the preferred synonymous codons were G/C-ended. A comparative analysis of RSCU between HYSV and its hosts reflected that codon usage patterns of HYSV were mostly coincident with that of its hosts. Our data suggested that although mutational bias dominated codon usage, patterns of codon usage in HYSV were also under the influence of nature selection. Phylogenetic analysis based on RSCU values across different HYSV strains and 42 other bunyaviruses suggested that codon usage pattern in HYSV was the most similar with that of Uukuniemi virus among these bunyaviruses and that viruses belonged to Phlebovirus showed a diversity of codon usage patterns. PMID:26173646

  11. A genome-wide analysis of annexins from parasitic organisms and their vectors

    PubMed Central

    Cantacessi, Cinzia; Seddon, Jennifer M.; Miller, Terrence L.; Leow, Chiuan Yee; Thomas, Laëtitia; Mason, Lyndel; Willis, Charlene; Walker, Giselle; Loukas, Alex; Gasser, Robin B.; Jones, Malcolm K.; Hofmann, Andreas

    2013-01-01

    In this study, we conduct an in-depth analysis of annexin proteins from a diverse range of invertebrate taxa, including the major groups that contain the parasites and vector organisms that are harmful to humans and domestic animals. Using structure-based amino acid sequence alignments and phylogenetic analyses, we present a classification for this protein group and assign names to sequences with ambiguous annotations in public databases. Our analyses reveal six distinct annexin clades, and the mapping of genes encoding annexins to the genome of the human blood fluke Schistosoma mansoni supports the hypothesis of gene duplication as a major evolutionary event in annexin genesis. This study illuminates annexin diversity from a novel perspective using contemporary phylogenetic hypotheses of eukaryote evolution, and will aid the consolidation of annexin protein identities in public databases and provide a foundation for future functional analysis and characterisation of these proteins in parasites of socioeconomic importance. PMID:24113121

  12. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa

    SciTech Connect

    Kalluri, Udaya C; DiFazio, Stephen P; Brunner, A.; Tuskan, Gerald A

    2007-01-01

    Auxin/Indole-3-Acetic Acid (Aux/IAA) and Auxin Response Factor (ARF) transcription factors are key regulators of auxin responses in plants. A total of 35 Aux/IAA and 39 ARF genes were identified in the Populus genome. Comparative phylogenetic analysis revealed that the subgroups PoptrARF2, 6, 9 and 16 and PoptrIAA3, 16, 27 and 29 have differentially expanded in Populus relative to Arabidopsis. Activator ARFs were found to be two fold-overrepresented in the Populus genome. PoptrIAA and PoptrARF gene families appear to have expanded due to high segmental and low tandem duplication events. Furthermore, expression studies showed that genes in the expanded PoptrIAA3 subgroup display differential expression. The gene-family analysis reported here will be useful in conducting future functional genomics studies to understand how the molecular roles of these large gene families translate into a diversity of biologically meaningful auxin effects.

  13. Genome-wide functional analysis of SSR for an edible mushroom Pleurotus ostreatus.

    PubMed

    Qu, Jibin; Huang, Chenyang; Zhang, Jinxia

    2016-01-10

    Simple sequence repeats (SSRs) play specific roles in many biological activities. In this paper, we focused on SSRs in the genome of Pleurotus ostreatus, which is a widely cultivated edible mushroom. The distribution curves of SSRs and exons are opposite throughout the genome, which means that SSRs are mostly located in non-coding regions. A comparative analysis of nine fungi suggests that Agaricomycotina fungi have similar SSR distributions. Functional enrichment analysis on the SSR-containing gene set uncovers enriched functions about environmental interactions and important cellular functions for life. Trinucleotide SSRs account for an extremely high fraction of all SSRs, and in exonic regions, they are equivalent to inserting repeating amino acids (RAAs) into the protein sequences. The RAA indel could partly explain some enriched functions of the genes they modify. Agaricomycotina fungi have similar distributions of RAAs, indicating that this may be a potential common mechanism for some specific functions. PMID:26386282

  14. Comprehensive genome-wide analysis reveals different classes of enigmatic old yellow enzyme in fungi

    PubMed Central

    Nizam, Shadab; Verma, Sandhya; Borah, Nilam Nayan; Gazara, Rajesh Kumar; Verma, Praveen Kumar

    2014-01-01

    In this study, we systematically identify Old Yellow Enzymes (OYEs) from a diverse range of economically important fungi representing different ecology and lifestyle. Using active site residues and sequence alignments, we present a classification for these proteins into three distinct classes including a novel class (Class III) and assign names to sequences. Our in-depth phylogenetic analysis suggests a complex history of lineage-specific expansion and contraction for the OYE gene family in fungi. Comparative analyses reveal remarkable diversity in the number and classes of OYE among fungi. Quantitative real-time PCR (qRT-PCR) of Ascochyta rabiei OYEs indicates differential expression of OYE genes during oxidative stress and plant infection. This study shows relationship of OYE with fungal ecology and lifestyle, and provides a foundation for future functional analysis and characterization of OYE gene family. PMID:24500274

  15. [Genome-wide identification and analysis of heat shock protein 90 in tomato].

    PubMed

    Liu, Yunfei; Wan, Hongjian; Yang, Yuejian; Wei, Yanping; Li, Zhimiao; Ye, Qingjing; Wang, Rongqing; Ruan, Meiying; Yao, Zhuping; Zhou, Guozhi

    2014-10-01

    Heat shock proteins 90 (Hsp90) are a kind of specific proteins in plant which were produced under environmental stresses. By referring to the tomato genome database, we identified and analyzed Hsp90 gene family members using bioinformatics methods. Results indicated that the tomato genome contained at least 7 Hsp90 genes, which were distributed unevenly on 6 chromosomes. Amino acid sequence length of these proteins ranged from 267 to 794aa. Numbers of intron ranged from 2 to 19. Microsynteny analysis showed that two pairs of Hsp90 genes (Hsp90-1and Hsp90-3, Hsp90-5 and Hsp90-7) were identified by segment duplication. In addition, multiple conservation motifs were found in Hsp90 proteins. Phylogenetic analysis revealed that Hsp90 genes from tomato, rice and Arabidopsis can be divided into 5 groups. Three pair of orthologous genes and four pairs of homologous genes were found. Expression analysis based on RNA-seq showed that the expression of three genes (Hsp90-5, Hsp90-6 and Hsp90-7) was high in vegetable and reproductive organs, while the expression of other four genes (Hsp90-1, Hsp90-2, Hsp90-3 and Hsp90-4) was relatively low except for its expression at the breaking stage of fruit. Analysis of promoter regions of Hsp90 genes showed that multiple cis-elements were involved in plant responses to biotic and abiotic stresses. The expression of 7 genes under heat stress was also detected by qRT-PCR. Expression of all Hsp90 genes in tomato leaf was enhanced. The results indicated that these genes could be participated in tomato leaf response to heat stresses. Together, these results will lay a foundation for analyzing Hsp90 gene function and molecular evolution in the future. PMID:25406253

  16. Genome-Wide Transcriptome and Proteome Analysis on Different Developmental Stages of Cordyceps militaris

    PubMed Central

    Yin, Yalin; Yu, Guojun; Chen, Yijie; Jiang, Shuai; Wang, Man; Jin, Yanxia; Lan, Xianqing; Liang, Yi; Sun, Hui

    2012-01-01

    Background Cordyceps militaris, an ascomycete caterpillar fungus, has been used as a traditional Chinese medicine for many years owing to its anticancer and immunomodulatory activities. Currently, artificial culturing of this beneficial fungus has been widely used and can meet the market, but systematic molecular studies on the developmental stages of cultured C. militaris at transcriptional and translational levels have not been determined. Methodology/Principal Findings We utilized high-throughput Illumina sequencing to obtain the transcriptomes of C. militaris mycelium and fruiting body. All clean reads were mapped to C. militaris genome and most of the reads showed perfect coverage. Alternative splicing and novel transcripts were predicted to enrich the database. Gene expression analysis revealed that 2,113 genes were up-regulated in mycelium and 599 in fruiting body. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to analyze the genes with expression differences. Moreover, the putative cordycepin metabolism difference between different developmental stages was studied. In addition, the proteome data of mycelium and fruiting body were obtained by one-dimensional gel electrophoresis (1-DGE) coupled with nano-electrospray ionization liquid chromatography tandem mass spectrometry (nESI-LC-MS/MS). 359 and 214 proteins were detected from mycelium and fruiting body respectively. GO, KEGG and Cluster of Orthologous Groups (COG) analysis were further conducted to better understand their difference. We analyzed the amounts of some noteworthy proteins in these two samples including lectin, superoxide dismutase, glycoside hydrolase and proteins involved in cordycepin metabolism, providing important information for further protein studies. Conclusions/Significance The results reveal the difference in gene expression between the mycelium and fruiting body of artificially cultivated C. militaris by transcriptome and proteome

  17. Genome-wide transcriptome analysis of expression in rice seedling roots in response to supplemental nitrogen.

    PubMed

    Chandran, Anil Kumar Nalini; Priatama, Ryza A; Kumar, Vikranth; Xuan, Yuanhu; Je, Byoung Il; Kim, Chul Min; Jung, Ki-Hong; Han, Chang-Deok

    2016-08-01

    Nitrogen (N) is the most important macronutrient for plant growth and grain yields. For rice crops, nitrate and ammonium are the major N sources. To explore the genomic responses to ammonium supplements in rice roots, we used 17-day-old seedlings grown in the absence of external N that were then exposed to 0.5mM (NH4)2SO4 for 3h. Transcriptomic profiles were examined by microarray experiments. In all, 634 genes were up-regulated at least two-fold by the N-supplement when compared with expression in roots from untreated control plants. Gene Ontology (GO) enrichment analysis revealed that those upregulated genes are associated with 23 GO terms. Among them, metabolic processes for diverse amino acids (i.e., aspartate, threonine, tryptophan, glutamine, l-phenylalanine, and thiamin) as well as nitrogen compounds are highly over-represented, demonstrating that our selected genes are suitable for studying the N-response in roots. This enrichment analysis also indicated that nitrogen is closely linked to diverse transporter activities by primary metabolites, including proteins (amino acids), lipids, and carbohydrates, and is associated with carbohydrate catabolism and cell wall organization. Integration of results from omics analysis of metabolic pathways and transcriptome data using the MapMan tool suggested that the TCA cycle and pathway for mitochondrial electron transport are co-regulated when rice roots are exposed to ammonium. We also investigated the expression of N-responsive marker genes by performing a comparative analysis with root samples from plants grown under different NH4(+) treatments. The diverse responses to such treatment provide useful insight into the global changes related to the shift from an N-deficiency to an enhanced N-supply in rice, a model crop plant. PMID:27340859

  18. Genome-Wide Analysis of the NAC Gene Family in Physic Nut (Jatropha curcas L.).

    PubMed

    Wu, Zhenying; Xu, Xueqin; Xiong, Wangdan; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Wu, Guojiang; Jiang, Huawu

    2015-01-01

    The NAC proteins (NAM, ATAF1/2 and CUC2) are plant-specific transcriptional regulators that have a conserved NAM domain in the N-terminus. They are involved in various biological processes, including both biotic and abiotic stress responses. In the present study, a total of 100 NAC genes (JcNAC) were identified in physic nut (Jatropha curcas L.). Based on phylogenetic analysis and gene structures, 83 JcNAC genes were classified as members of, or proposed to be diverged from, 39 previously predicted orthologous groups (OGs) of NAC sequences. Physic nut has a single intron-containing NAC gene subfamily that has been lost in many plants. The JcNAC genes are non-randomly distributed across the 11 linkage groups of the physic nut genome, and appear to be preferentially retained duplicates that arose from both ancient and recent duplication events. Digital gene expression analysis indicates that some of the JcNAC genes have tissue-specific expression profiles (e.g. in leaves, roots, stem cortex or seeds), and 29 genes differentially respond to abiotic stresses (drought, salinity, phosphorus deficiency and nitrogen deficiency). Our results will be helpful for further functional analysis of the NAC genes in physic nut. PMID:26125188

  19. Topological Data Analysis Generates High-Resolution, Genome-wide Maps of Human Recombination.

    PubMed

    Camara, Pablo G; Rosenbloom, Daniel I S; Emmett, Kevin J; Levine, Arnold J; Rabadan, Raul

    2016-07-01

    Meiotic recombination is a fundamental evolutionary process driving diversity in eukaryotes. In mammals, recombination is known to occur preferentially at specific genomic regions. Using topological data analysis (TDA), a branch of applied topology that extracts global features from large data sets, we developed an efficient method for mapping recombination at fine scales. When compared to standard linkage-based methods, TDA can deal with a larger number of SNPs and genomes without incurring prohibitive computational costs. We applied TDA to 1,000 Genomes Project data and constructed high-resolution whole-genome recombination maps of seven human populations. Our analysis shows that recombination is generally under-represented within transcription start sites. However, the binding sites of specific transcription factors are enriched for sites of recombination. These include transcription factors that regulate the expression of meiosis- and gametogenesis-specific genes, cell cycle progression, and differentiation blockage. Additionally, our analysis identifies an enrichment for sites of recombination at repeat-derived loci matched by piwi-interacting RNAs. PMID:27345159

  20. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.).

    PubMed

    Xiong, Wangdan; Xu, Xueqin; Zhang, Lin; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2013-07-25

    The WRKY proteins, which contain highly conserved WRKYGQK amino acid sequences and zinc-finger-like motifs, constitute a large family of transcription factors in plants. They participate in diverse physiological and developmental processes. WRKY genes have been identified and characterized in a number of plant species. We identified a total of 58 WRKY genes (JcWRKY) in the genome of the physic nut (Jatropha curcas L.). On the basis of their conserved WRKY domain sequences, all of the JcWRKY proteins could be assigned to one of the previously defined groups, I-III. Phylogenetic analysis of JcWRKY genes with Arabidopsis and rice WRKY genes, and separately with castor bean WRKY genes, revealed no evidence of recent gene duplication in JcWRKY gene family. Analysis of transcript abundance of JcWRKY gene products were tested in different tissues under normal growth condition. In addition, 47 WRKY genes responded to at least one abiotic stress (drought, salinity, phosphate starvation and nitrogen starvation) in individual tissues (leaf, root and/or shoot cortex). Our study provides a useful reference data set as the basis for cloning and functional analysis of physic nut WRKY genes. PMID:23644253

  1. Genome-Wide Analysis of the NAC Gene Family in Physic Nut (Jatropha curcas L.)

    PubMed Central

    Wu, Zhenying; Xu, Xueqin; Xiong, Wangdan; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Wu, Guojiang; Jiang, Huawu

    2015-01-01

    The NAC proteins (NAM, ATAF1/2 and CUC2) are plant-specific transcriptional regulators that have a conserved NAM domain in the N-terminus. They are involved in various biological processes, including both biotic and abiotic stress responses. In the present study, a total of 100 NAC genes (JcNAC) were identified in physic nut (Jatropha curcas L.). Based on phylogenetic analysis and gene structures, 83 JcNAC genes were classified as members of, or proposed to be diverged from, 39 previously predicted orthologous groups (OGs) of NAC sequences. Physic nut has a single intron-containing NAC gene subfamily that has been lost in many plants. The JcNAC genes are non-randomly distributed across the 11 linkage groups of the physic nut genome, and appear to be preferentially retained duplicates that arose from both ancient and recent duplication events. Digital gene expression analysis indicates that some of the JcNAC genes have tissue-specific expression profiles (e.g. in leaves, roots, stem cortex or seeds), and 29 genes differentially respond to abiotic stresses (drought, salinity, phosphorus deficiency and nitrogen deficiency). Our results will be helpful for further functional analysis of the NAC genes in physic nut. PMID:26125188

  2. Genome-wide analysis of simple sequence repeats in marine animals-a comparative approach.

    PubMed

    Jiang, Qun; Li, Qi; Yu, Hong; Kong, Lingfeng

    2014-10-01

    Tandem simple sequence repeats (SSRs) are one of the most popular molecular markers in genetic analysis owing to their ubiquitous occurrence,high reproducibility, multiallelic nature, and codominant mode. High mutability makes SSRs play a role in genome evolution and correspondingly show different patterns. Comparative analysis of genomic SSRs in different taxonomic groups usually focuses on land species, while marine animals have been neglected. This study examined the abundance of genomic SSRs with repeated unit lengths of 1-6 bp in 30 marine animals including nine taxonomic groups and further compared with the land species. More than thousands of SSRs were discovered in every organism which provided a huge resource for the development of molecular markers. Thirty marine animals showed profound differences in SSR characteristics, but some group-specific trends were also found. Both similarities and differences of repeat patterns were discovered between the land and marine species. Two taxon-specific SSR types were discovered: the pentanucleotides motif AGAGG in Euteleostei and the hexanucleotide repeats of ATGTAC in Porifera and Echinodermata. Gene ontology (GO) enrichment analysis of two representative species (Amphimedon queenslandica for Porifera and Strongylocentrotus purpuratus for Echinodermata) revealed functional preference of the ATGTAC motif associated genes, and this might hint at evolutionary significance.

  3. Genome-wide analysis of T-DNA integration into the chromosomes of Magnaporthe oryzae

    PubMed Central

    Choi, Jaehyuk; Park, Jongsun; Jeon, Junhyun; Chi, Myoung-Hwan; Goh, Jaeduk; Yoo, Sung-Yong; Park, Jaejin; Jung, Kyongyong; Kim, Hyojeong; Park, Sook-Young; Rho, Hee-Sool; Kim, Soonok; Kim, Byeong Ryun; Han, Seong-Sook; Kang, Seogchan; Lee, Yong-Hwan

    2007-01-01

    Agrobacterium tumefaciens-mediated transformation (ATMT) has become a prevalent tool for functional genomics of fungi, but our understanding of T-DNA integration into the fungal genome remains limited relative to that in plants. Using a model plant-pathogenic fungus, Magnaporthe oryzae, here we report the most comprehensive analysis of T-DNA integration events in fungi and the development of an informatics infrastructure, termed a T-DNA analysis platform (TAP). We identified a total of 1110 T-DNA-tagged locations (TTLs) and processed the resulting data via TAP. Analysis of the TTLs showed that T-DNA integration was biased among chromosomes and preferred the promoter region of genes. In addition, irregular patterns of T-DNA integration, such as chromosomal rearrangement and readthrough of plasmid vectors, were also observed, showing that T-DNA integration patterns into the fungal genome are as diverse as those of their plant counterparts. However, overall the observed junction structures between T-DNA borders and flanking genomic DNA sequences revealed that T-DNA integration into the fungal genome was more canonical than those observed in plants. Our results support the potential of ATMT as a tool for functional genomics of fungi and show that the TAP is an effective informatics platform for handling data from large-scale insertional mutagenesis. PMID:17850257

  4. Nonlinear Analysis of Time Series in Genome-Wide Linkage Disequilibrium Data

    NASA Astrophysics Data System (ADS)

    Hernández-Lemus, Enrique; Estrada-Gil, Jesús K.; Silva-Zolezzi, Irma; Fernández-López, J. Carlos; Hidalgo-Miranda, Alfredo; Jiménez-Sánchez, Gerardo

    2008-02-01

    The statistical study of large scale genomic data has turned out to be a very important tool in population genetics. Quantitative methods are essential to understand and implement association studies in the biomedical and health sciences. Nevertheless, the characterization of recently admixed populations has been an elusive problem due to the presence of a number of complex phenomena. For example, linkage disequilibrium structures are thought to be more complex than their non-recently admixed population counterparts, presenting the so-called ancestry blocks, admixed regions that are not yet smoothed by the effect of genetic recombination. In order to distinguish characteristic features for various populations we have implemented several methods, some of them borrowed or adapted from the analysis of nonlinear time series in statistical physics and quantitative physiology. We calculate the main fractal dimensions (Kolmogorov's capacity, information dimension and correlation dimension, usually named, D0, D1 and D2). We also have made detrended fluctuation analysis and information based similarity index calculations for the probability distribution of correlations of linkage disequilibrium coefficient of six recently admixed (mestizo) populations within the Mexican Genome Diversity Project [1] and for the non-recently admixed populations in the International HapMap Project [2]. Nonlinear correlations showed up as a consequence of internal structure within the haplotype distributions. The analysis of these correlations as well as the scope and limitations of these procedures within the biomedical sciences are discussed.

  5. Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in Cassava.

    PubMed

    Hu, Wei; Wei, Yunxie; Xia, Zhiqiang; Yan, Yan; Hou, Xiaowan; Zou, Meiling; Lu, Cheng; Wang, Wenquan; Peng, Ming

    2015-01-01

    NAC [no apical meristem (NAM), Arabidopsis transcription activation factor [ATAF1/2] and cup-shaped cotyledon (CUC2)] proteins is one of the largest groups of plant specific transcription factors and plays a crucial role in plant growth, development, and adaption to the environment. Currently, no information is known about the NAC family in cassava. In this study, 96 NAC genes (MeNACs) were identified from the cassava genome. Phylogenetic analysis of the NACs from cassava and Arabidopsis showed that MeNAC proteins can be clustered into 16 subgroups. Gene structure analysis found that the number of introns of MeNAC genes varied from 0 to 5, with the majority of MeNAC genes containing two introns, indicating a small gene structure diversity of cassava NAC genes. Conserved motif analysis revealed that all of the identified MeNACs had the conserved NAC domain and/or NAM domain. Global expression analysis suggested that MeNAC genes exhibited different expression profiles in different tissues between wild subspecies and cultivated varieties, indicating their involvement in the functional diversity of different accessions. Transcriptome analysis demonstrated that MeNACs had a widely transcriptional response to drought stress and that they had differential expression profiles in different accessions, implying their contribution to drought stress resistance in cassava. Finally, the expression of twelve MeNAC genes was analyzed under osmotic, salt, cold, ABA, and H2O2 treatments, indicating that cassava NACs may represent convergence points of different signaling pathways. Taken together, this work found some excellent tissue-specific and abiotic stress-responsive candidate MeNAC genes, which would provide a solid foundation for functional investigation of the NAC family, crop improvement and improved understanding of signal transduction in plants. These data bring new insight on the complexity of the transcriptional control of MeNAC genes and support the hypothesis that

  6. Pathway analysis of genome-wide association study for bone mineral density.

    PubMed

    Lee, Young Ho; Choi, Sung Jae; Ji, Jong Dae; Song, Gwan Gyu

    2012-08-01

    The aim of this study was to identify the candidate causal single nucleotide polymorphisms (SNPs) and candidate causal mechanisms that contribute to bone mineral density (BMD) and to generate a SNP to gene to pathway hypothesis using an analytical pathway-based approach. We used hip BMD GWAS data of the genotypes of 301,019 SNPs in 5,715 Europeans. ICSNPathway (identify candidate causal SNPs and pathways) analysis was applied to the BMD GWAS dataset. The first stage involved the pre-selection of candidate causal SNPs by linkage disequilibrium analysis and the functional SNP annotation of the most significant SNPs found. The second stage involved the annotation of biological mechanisms for the pre-selected candidate causal SNPs using improved-gene set enrichment analysis. ICSNPathway analysis identified seven candidate SNPs, eight candidate pathways, and seven hypothetical biological mechanisms. Eight pathways are as follows; gamma-hexachlorocyclohexane degradation (nominal p-value < 0.001, false discovery rate (FDR) <0.001), regulation of the smoothened signaling pathway (nominal p-value < 0.001, FDR = 0.016), TACI and BCMA stimulation of B cell immune response (nominal p-value < 0.001, FDR = 0.021), endonuclease activity (nominal p-value = 0.001, FDR = 0,026), regulation of defense response to virus (nominal p-value = 0.001, FDR = 0.028), serine_type_endopeptidase_inhibitor_activity (nominal p-value = 0.001, FDR = 0.044), endoribonuclease activity (nominal p-value = 0.002, FDR = 0.045), and myeloid leukocyte differentiation (nominal p-value = 0.001, FDR = 0.050). The most significant causal pathway was gamma-hexachlorocyclohexane degradation. CYP3A5, PON2, PON3, CMBL, PON1, ALPL, CYP3A43, CYP3A7, ACP6, ACPP, and ALPI (p < 0.05) are involved in the pathway of gamma-hexachlorocyclohexane degradation. Further examination of the gene contents revealed that DBR1, DICER1, EXO1, FEN1, POP1, POP4, RPP30, and RPP38 were involved in 2 of the 8 pathways (p < 0.05). By

  7. Genetic model selection in genome-wide association studies: robust methods and the use of meta-analysis.

    PubMed

    Bagos, Pantelis G

    2013-06-01

    In genetic association studies (GAS) as well as in genome-wide association studies (GWAS), the mode of inheritance (dominant, additive and recessive) is usually not known a priori. Assuming an incorrect mode of inheritance may lead to substantial loss of power, whereas on the other hand, testing all possible models may result in an increased type I error rate. The situation is even more complicated in the meta-analysis of GAS or GWAS, in which individual studies are synthesized to derive an overall estimate. Meta-analysis increases the power to detect weak genotype effects, but heterogeneity and incompatibility between the included studies complicate things further. In this review, we present a comprehensive summary of the statistical methods used for robust analysis and genetic model selection in GAS and GWAS. We then discuss the application of such methods in the context of meta-analysis. We describe the theoretical properties of the various methods and the foundations on which they are based. We also present the available software implementations of the described methods. Finally, since only few of the available robust methods have been applied in the meta-analysis setting, we present some simple extensions that allow robust meta-analysis of GAS and GWAS. Possible extensions and proposals for future work are also discussed.

  8. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava

    PubMed Central

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava. PMID:26904033

  9. Comparative analysis of genome-wide Mlo gene family in Cajanus cajan and Phaseolus vulgaris.

    PubMed

    Deshmukh, Reena; Singh, V K; Singh, B D

    2016-04-01

    The Mlo gene was discovered in barley because the mutant 'mlo' allele conferred broad-spectrum, non-race-specific resistance to powdery mildew caused by Blumeria graminis f. sp. hordei. The Mlo genes also play important roles in growth and development of plants, and in responses to biotic and abiotic stresses. The Mlo gene family has been characterized in several crop species, but only a single legume species, soybean (Glycine max L.), has been investigated so far. The present report describes in silico identification of 18 CcMlo and 20 PvMlo genes in the important legume crops Cajanus cajan (L.) Millsp. and Phaseolus vulgaris L., respectively. In silico analysis of gene organization, protein properties and conserved domains revealed that the C. cajan and P. vulgaris Mlo gene paralogs are more divergent from each other than from their orthologous pairs. The comparative phylogenetic analysis classified CcMlo and PvMlo genes into three major clades. A comparative analysis of CcMlo and PvMlo proteins with the G. max Mlo proteins indicated close association of one CcMlo, one PvMlo with two GmMlo genes, indicating that there was no further expansion of the Mlo gene family after the separation of these species. Thus, most of the diploid species of eudicots might be expected to contain 15-20 Mlo genes. The genes CcMlo12 and 14, and PvMlo11 and 12 are predicted to participate in powdery mildew resistance. If this prediction were verified, these genes could be targeted by TILLING or CRISPR to isolate powdery mildew resistant mutants. PMID:26961357

  10. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava.

    PubMed

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava. PMID:26904033

  11. Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon.

    PubMed

    Chen, Lihong; Hu, Wei; Tan, Shenglong; Wang, Min; Ma, Zhanbing; Zhou, Shiyi; Deng, Xiaomin; Zhang, Yang; Huang, Chao; Yang, Guangxiao; He, Guangyuan

    2012-01-01

    MAPK cascades are universal signal transduction modules and play important roles in plant growth, development and in response to a variety of biotic and abiotic stresses. Although MAPKs and MAPKKs have been systematically investigated in several plant species including Arabidopsis, rice and poplar, no systematic analysis has been conducted in the emerging monocot model plant Brachypodium distachyon. In the present study, a total of 16 MAPK genes and 12 MAPKK genes were identified from B. distachyon. An analysis of the genomic evolution showed that both tandem and segment duplications contributed significantly to the expansion of MAPK and MAPKK families. Evolutionary relationships within subfamilies were supported by exon-intron organizations and the architectures of conserved protein motifs. Synteny analysis between B. distachyon and the other two plant species of rice and Arabidopsis showed that only one homolog of B. distachyon MAPKs was found in the corresponding syntenic blocks of Arabidopsis, while 13 homologs of B. distachyon MAPKs and MAPKKs were found in that of rice, which was consistent with the speciation process of the three species. In addition, several interactive protein pairs between the two families in B. distachyon were found through yeast two hybrid assay, whereas their orthologs of a pair in Arabidopsis and other plant species were not found to interact with each other. Finally, expression studies of closely related family members among B. distachyon, Arabidopsis and rice showed that even recently duplicated representatives may fulfill different functions and be involved in different signal pathways. Taken together, our data would provide a foundation for evolutionary and functional characterization of MAPK and MAPKK gene families in B. distachyon and other plant species to unravel their biological roles.

  12. Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage).

    PubMed

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Li, Ying

    2015-02-01

    The MADS-box gene family is an ancient and well-studied transcription factor family that functions in almost every developmental process in plants. There are a number of reports about the MADS-box family in different plant species, but systematic analysis of the MADS-box transcription factor family in Brassica rapa (Chinese cabbage) is still lacking. In this study, 160 MADS-box transcription factors were identified from the entire Chinese cabbage genome and compared with the MADS-box factors from 21 other representative plant species. A detailed list of MADS proteins from these 22 species was sorted. Phylogenetic analysis of the BrMADS genes, together with their Arabidopsis and rice counterparts, showed that the BrMADS genes were categorised into type I (Mα, Mβ, Mγ) and type II (MIKC(C), MIKC*) groups, and the MIKC(C) proteins were further divided into 13 subfamilies. The Chinese cabbage type II group has 95 members, which is twice as much as the Arabidopsis type II group, indicating that the Chinese cabbage type II genes have been retained more frequently than the type I genes. Finally, RNA-seq transcriptome data and quantitative real-time PCR analysis revealed that BrMADS genes are expressed in a tissue-specific manner similar to Arabidopsis. Interestingly, a number of BrMIKC genes showed responses to different abiotic stress treatments, suggesting a function for some of the genes in these processes as well. Taken together, the characterization of the B. rapa MADS-box family presented here, will certainly help in the selection of appropriate candidate genes and further facilitate functional studies in Chinese cabbage.

  13. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava.

    PubMed

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  14. Comparative analysis of genome-wide Mlo gene family in Cajanus cajan and Phaseolus vulgaris.

    PubMed

    Deshmukh, Reena; Singh, V K; Singh, B D

    2016-04-01

    The Mlo gene was discovered in barley because the mutant 'mlo' allele conferred broad-spectrum, non-race-specific resistance to powdery mildew caused by Blumeria graminis f. sp. hordei. The Mlo genes also play important roles in growth and development of plants, and in responses to biotic and abiotic stresses. The Mlo gene family has been characterized in several crop species, but only a single legume species, soybean (Glycine max L.), has been investigated so far. The present report describes in silico identification of 18 CcMlo and 20 PvMlo genes in the important legume crops Cajanus cajan (L.) Millsp. and Phaseolus vulgaris L., respectively. In silico analysis of gene organization, protein properties and conserved domains revealed that the C. cajan and P. vulgaris Mlo gene paralogs are more divergent from each other than from their orthologous pairs. The comparative phylogenetic analysis classified CcMlo and PvMlo genes into three major clades. A comparative analysis of CcMlo and PvMlo proteins with the G. max Mlo proteins indicated close association of one CcMlo, one PvMlo with two GmMlo genes, indicating that there was no further expansion of the Mlo gene family after the separation of these species. Thus, most of the diploid species of eudicots might be expected to contain 15-20 Mlo genes. The genes CcMlo12 and 14, and PvMlo11 and 12 are predicted to participate in powdery mildew resistance. If this prediction were verified, these genes could be targeted by TILLING or CRISPR to isolate powdery mildew resistant mutants.

  15. Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum)

    PubMed Central

    Dash, Prasanta K; Cao, Yongguo; Jailani, Abdul K; Gupta, Payal; Venglat, Prakash; Xiang, Daoquan; Rai, Rhitu; Sharma, Rinku; Thirunavukkarasu, Nepolean; Abdin, Malik Z; Yadava, Devendra K; Singh, Nagendra K; Singh, Jas; Selvaraj, Gopalan; Deyholos, Mike; Kumar, Polumetla Ananda; Datla, Raju

    2014-01-01

    A robust phenotypic plasticity to ward off adverse environmental conditions determines performance and productivity in crop plants. Flax (linseed), is an important cash crop produced for natural textile fiber (linen) or oilseed with many health promoting products. This crop is prone to drought stress and yield losses in many parts of the world. Despite recent advances in drought research in a number of important crops, related progress in flax is very limited. Since, response of this plant to drought stress has not been addressed at the molecular level; we conducted microarray analysis to capture transcriptome associated with induced drought in flax. This study identified 183 differentially expressed genes (DEGs) associated with diverse cellular, biophysical and metabolic programs in flax. The analysis also revealed especially the altered regulation of cellular and metabolic pathways governing photosynthesis. Additionally, comparative transcriptome analysis identified a plethora of genes that displayed differential regulation both spatially and temporally. These results revealed co-regulated expression of 26 genes in both shoot and root tissues with implications for drought stress response. Furthermore, the data also showed that more genes are upregulated in roots compared to shoots, suggesting that roots may play important and additional roles in response to drought in flax. With prolonged drought treatment, the number of DEGs increased in both tissue types. Differential expression of selected genes was confirmed by qRT-PCR, thus supporting the suggested functional association of these intrinsic genes in maintaining growth and homeostasis in response to imminent drought stress in flax. Together the present study has developed foundational and new transcriptome data sets for drought stress in flax. PMID:25072186

  16. Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage).

    PubMed

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Li, Ying

    2015-02-01

    The MADS-box gene family is an ancient and well-studied transcription factor family that functions in almost every developmental process in plants. There are a number of reports about the MADS-box family in different plant species, but systematic analysis of the MADS-box transcription factor family in Brassica rapa (Chinese cabbage) is still lacking. In this study, 160 MADS-box transcription factors were identified from the entire Chinese cabbage genome and compared with the MADS-box factors from 21 other representative plant species. A detailed list of MADS proteins from these 22 species was sorted. Phylogenetic analysis of the BrMADS genes, together with their Arabidopsis and rice counterparts, showed that the BrMADS genes were categorised into type I (Mα, Mβ, Mγ) and type II (MIKC(C), MIKC*) groups, and the MIKC(C) proteins were further divided into 13 subfamilies. The Chinese cabbage type II group has 95 members, which is twice as much as the Arabidopsis type II group, indicating that the Chinese cabbage type II genes have been retained more frequently than the type I genes. Finally, RNA-seq transcriptome data and quantitative real-time PCR analysis revealed that BrMADS genes are expressed in a tissue-specific manner similar to Arabidopsis. Interestingly, a number of BrMIKC genes showed responses to different abiotic stress treatments, suggesting a function for some of the genes in these processes as well. Taken together, the characterization of the B. rapa MADS-box family presented here, will certainly help in the selection of appropriate candidate genes and further facilitate functional studies in Chinese cabbage. PMID:25216934

  17. Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum).

    PubMed

    Dash, Prasanta K; Cao, Yongguo; Jailani, Abdul K; Gupta, Payal; Venglat, Prakash; Xiang, Daoquan; Rai, Rhitu; Sharma, Rinku; Thirunavukkarasu, Nepolean; Abdin, Malik Z; Yadava, Devendra K; Singh, Nagendra K; Singh, Jas; Selvaraj, Gopalan; Deyholos, Mike; Kumar, Polumetla Ananda; Datla, Raju

    2014-01-01

    A robust phenotypic plasticity to ward off adverse environmental conditions determines performance and productivity in crop plants. Flax (linseed), is an important cash crop produced for natural textile fiber (linen) or oilseed with many health promoting products. This crop is prone to drought stress and yield losses in many parts of the world. Despite recent advances in drought research in a number of important crops, related progress in flax is very limited. Since, response of this plant to drought stress has not been addressed at the molecular level; we conducted microarray analysis to capture transcriptome associated with induced drought in flax. This study identified 183 differentially expressed genes (DEGs) associated with diverse cellular, biophysical and metabolic programs in flax. The analysis also revealed especially the altered regulation of cellular and metabolic pathways governing photosynthesis. Additionally, comparative transcriptome analysis identified a plethora of genes that displayed differential regulation both spatially and temporally. These results revealed co-regulated expression of 26 genes in both shoot and root tissues with implications for drought stress response. Furthermore, the data also showed that more genes are upregulated in roots compared to shoots, suggesting that roots may play important and additional roles in response to drought in flax. With prolonged drought treatment, the number of DEGs increased in both tissue types. Differential expression of selected genes was confirmed by qRT-PCR, thus supporting the suggested functional association of these intrinsic genes in maintaining growth and homeostasis in response to imminent drought stress in flax. Together the present study has developed foundational and new transcriptome data sets for drought stress in flax.

  18. Genome-wide analysis of caesium and strontium accumulation in Saccharomyces cerevisiae.

    PubMed

    Heuck, Sabine; Gerstmann, Udo C; Michalke, Bernhard; Kanter, Ulrike

    2010-10-01

    (137)Cs and (90)Sr contribute to significant and long-lasting contamination of the environment with radionuclides. Due to their relatively high biological availability, they are transferred rapidly into biotic systems and may enter the food chain. In this study, we analysed 4862 haploid yeast knockout strains of Saccharomyces cerevisiae to identify genes involved in caesium (Cs(+)) and/or strontium (Sr(2+)) accumulation. According to this analysis, 212 mutant strains were associated with reproducible altered Cs(+) and/or Sr(2+) accumulation. These mutants were deficient for a wide range of cellular processes. Among those, the vacuolar function and biogenesis turned out to be crucial for both Cs(+) and Sr(2+) accumulation. Disruption of the vacuole diminished Cs(+) accumulation, whereas Sr(2+) enrichment was enhanced. Further analysis with a subset of the identified candidates were undertaken comparing the accumulation of Cs(+) and Sr(2+) with their essential counterparts potassium (K(+)) and calcium (Ca(2+)). Sr(2+) and Ca(2+) accumulation was highly correlated in yeast excluding the possibility of a differential regulation or uptake mechanisms. In direct contrast, the respective results suggest that Cs(+) uptake is at least partially dependent on mechanisms distinct from K(+) uptake. Single candidates (e.g. KHA1) are presented which might be specifically responsible for Cs(+) homeostasis.

  19. Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis.

    PubMed

    Pourabed, Ehsan; Ghane Golmohamadi, Farzan; Soleymani Monfared, Peyman; Razavi, Seyed Morteza; Shobbar, Zahra-Sadat

    2015-01-01

    The basic leucine zipper (bZIP) family is one of the largest and most diverse transcription factors in eukaryotes participating in many essential plant processes. We identified 141 bZIP proteins encoded by 89 genes from the Hordeum vulgare genome. HvbZIPs were classified into 11 groups based on their DNA-binding motif. Amino acid sequence alignment of the HvbZIPs basic-hinge regions revealed some highly conserved residues within each group. The leucine zipper heptads were analyzed predicting their dimerization properties. 34 conserved motifs were identified outside the bZIP domain. Phylogenetic analysis indicated that major diversification within the bZIP family predated the monocot/dicot divergence, although intra-species duplication and parallel evolution seems to be occurred afterward. Localization of HvbZIPs on the barley chromosomes revealed that different groups have been distributed on seven chromosomes of barley. Six types of intron pattern were detected within the basic-hinge regions. Most of the detected cis-elements in the promoter and UTR sequences were involved in seed development or abiotic stress response. Microarray data analysis revealed differential expression pattern of HvbZIPs in response to ABA treatment, drought, and cold stresses and during barley grain development and germination. This information would be helpful for functional characterization of bZIP transcription factors in barley.

  20. Supercomputing enabling exhaustive statistical analysis of genome wide association study data: Preliminary results.

    PubMed

    Reumann, Matthias; Makalic, Enes; Goudey, Benjamin W; Inouye, Michael; Bickerstaffe, Adrian; Bui, Minh; Park, Daniel J; Kapuscinski, Miroslaw K; Schmidt, Daniel F; Zhou, Zeyu; Qian, Guoqi; Zobel, Justin; Wagner, John; Hopper, John L

    2012-01-01

    Most published GWAS do not examine SNP interactions due to the high computational complexity of computing p-values for the interaction terms. Our aim is to utilize supercomputing resources to apply complex statistical techniques to the world's accumulating GWAS, epidemiology, survival and pathology data to uncover more information about genetic and environmental risk, biology and aetiology. We performed the Bayesian Posterior Probability test on a pseudo data set with 500,000 single nucleotide polymorphism and 100 samples as proof of principle. We carried out strong scaling simulations on 2 to 4,096 processing cores with factor 2 increments in partition size. On two processing cores, the run time is 317h, i.e. almost two weeks, compared to less than 10 minutes on 4,096 processing cores. The speedup factor is 2,020 that is very close to the theoretical value of 2,048. This work demonstrates the feasibility of performing exhaustive higher order analysis of GWAS studies using independence testing for contingency tables. We are now in a position to employ supercomputers with hundreds of thousands of threads for higher order analysis of GWAS data using complex statistics. PMID:23366127

  1. genome-wide analysis and expression profiling of the small heat shock proteins in zebrafish

    PubMed Central

    elicker, kimberly s.; hutson, lara d.

    2008-01-01

    Small Heat Shock Proteins (sHSPs) have important roles in preventing disease and promoting resistance to environmental stressors. Mutations in any one of a number of sHSPs, including HSP27 (HSPB1), HSP22 (HSPB8), αA-crystallin (HSPB4), or αB-crystallin (HSPB5) can result in neuronal degeneration, myopathy, and/or cataract in humans. Ten sHSPs are known in humans, and thirteen have been identified in teleost fish. Here we report the identification of thirteen zebrafish sHSPs. Using a combination of phylogenetic analysis and analysis of synteny, we have determined that ten are likely orthologs of human sHSPs. We have used quantitative RT-PCR to determine the relative expression levels of all thirteen sHSPs during development and in response to heat shock. Our findings indicate that most of the zebrafish sHSPs are expressed during development, and five of these genes are transcriptionally upregulated by heat shock at one or more stages of development. PMID:17888590

  2. [Genome-wide identification and bioinformatic analysis of PPR gene family in tomato].

    PubMed

    Ding, Anming; Li, Ling; Qu, Xu; Sun, Tingting; Chen, Yaqiong; Zong, Peng; Li, Zunqiang; Gong, Daping; Sun, Yuhe

    2014-01-01

    Pentatricopeptide repeats (PPRs) genes constitute one of the largest gene families in plants, which play a broad and essential role in plant growth and development. In this study, the protein sequences annotated by the tomato (S. lycopersicum L.) genome project were screened with the Pfam PPR sequences. A total of 471 putative PPR-encoding genes were identified. Based on the motifs defined in A. thaliana L., protein structure and conserved sequences for each tomato motif were analyzed. We also analyzed phylogenetic relationship, subcellular localization, expression and GO analysis of the identified gene sequences. Our results demonstrate that tomato PPR gene family contains two subfamilies, P and PLS, each accounting for half of the family. PLS subfamily can be divided into four subclasses i.e., PLS, E, E+ and DYW. Each subclass of sequences forms a clade in the phylogenetic tree. The PPR motifs were found highly conserved among plants. The tomato PPR genes were distributed over 12 chromosomes and most of them lack introns. The majority of PPR proteins harbor mitochondrial or chloroplast localization sequences, whereas GO analysis showed that most PPR proteins participate in RNA-related biological processes.

  3. Genome-wide analysis of single-nucleotide polymorphisms in human expressed sequences.

    PubMed

    Irizarry, K; Kustanovich, V; Li, C; Brown, N; Nelson, S; Wong, W; Lee, C J

    2000-10-01

    Single-nucleotide polymorphisms (SNPs) have been explored as a high-resolution marker set for accelerating the mapping of disease genes. Here we report 48,196 candidate SNPs detected by statistical analysis of human expressed sequence tags (ESTs), associated primarily with coding regions of genes. We used Bayesian inference to weigh evidence for true polymorphism versus sequencing error, misalignment or ambiguity, misclustering or chimaeric EST sequences, assessing data such as raw chromatogram height, sharpness, overlap and spacing, sequencing error rates, context-sensitivity and cDNA library origin. Three separate validations-comparison with 54 genes screened for SNPs independently, verification of HLA-A polymorphisms and restriction fragment length polymorphism (RFLP) testing-verified 70%, 89% and 71% of our predicted SNPs, respectively. Our method detects tenfold more true HLA-A SNPs than previous analyses of the EST data. We found SNPs in a large fraction of known disease genes, including some disease-causing mutations (for example, the HbS sickle-cell mutation). Our comprehensive analysis of human coding region polymorphism provides a public resource for mapping of disease genes (available at http://www.bioinformatics.ucla.edu/snp).

  4. Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis.

    PubMed

    Pourabed, Ehsan; Ghane Golmohamadi, Farzan; Soleymani Monfared, Peyman; Razavi, Seyed Morteza; Shobbar, Zahra-Sadat

    2015-01-01

    The basic leucine zipper (bZIP) family is one of the largest and most diverse transcription factors in eukaryotes participating in many essential plant processes. We identified 141 bZIP proteins encoded by 89 genes from the Hordeum vulgare genome. HvbZIPs were classified into 11 groups based on their DNA-binding motif. Amino acid sequence alignment of the HvbZIPs basic-hinge regions revealed some highly conserved residues within each group. The leucine zipper heptads were analyzed predicting their dimerization properties. 34 conserved motifs were identified outside the bZIP domain. Phylogenetic analysis indicated that major diversification within the bZIP family predated the monocot/dicot divergence, although intra-species duplication and parallel evolution seems to be occurred afterward. Localization of HvbZIPs on the barley chromosomes revealed that different groups have been distributed on seven chromosomes of barley. Six types of intron pattern were detected within the basic-hinge regions. Most of the detected cis-elements in the promoter and UTR sequences were involved in seed development or abiotic stress response. Microarray data analysis revealed differential expression pattern of HvbZIPs in response to ABA treatment, drought, and cold stresses and during barley grain development and germination. This information would be helpful for functional characterization of bZIP transcription factors in barley. PMID:25173685

  5. Genome-wide identification of Wig-1 mRNA targets by RIP-Seq analysis

    PubMed Central

    Bersani, Cinzia; Huss, Mikael; Giacomello, Stefania; Xu, Li-Di; Bianchi, Julie; Eriksson, Sofi; Jerhammar, Fredrik; Alexeyenko, Andrey; Vilborg, Anna; Lundeberg, Joakim; Lui, Weng-Onn; Wiman, Klas G.

    2016-01-01

    RNA-binding proteins (RBPs) play important roles in the regulation of gene expression through a variety of post-transcriptional mechanisms. The p53-induced RBP Wig-1 (Zmat3) binds RNA through its zinc finger domains and enhances stability of p53 and N-Myc mRNAs and decreases stability of FAS mRNA. To identify novel Wig-1-bound RNAs, we performed RNA-immunoprecipitation followed by high-throughput sequencing (RIP-Seq) in HCT116 and Saos-2 cells. We identified 286 Wig-1-bound mRNAs common between the two cell lines. Sequence analysis revealed that AU-rich elements (AREs) are highly enriched in the 3′UTR of these Wig-1-bound mRNAs. Network enrichment analysis showed that Wig-1 preferentially binds mRNAs involved in cell cycle regulation. Moreover, we identified a 2D Wig-1 binding motif in HIF1A mRNA. Our findings confirm that Wig-1 is an ARE-BP that regulates cell cycle-related processes and provide a novel view of how Wig-1 may bind mRNA through a putative structural motif. We also significantly extend the repertoire of Wig-1 target mRNAs. Since Wig-1 is a transcriptional target of the tumor suppressor p53, these results have implications for our understanding of p53-dependent stress responses and tumor suppression. PMID:26672765

  6. Genome-wide analysis of the response of Dickeya dadantii 3937 to plant antimicrobial peptides.

    PubMed

    Rio-Alvarez, Isabel; Rodríguez-Herva, Jose J; Cuartas-Lanza, Raquel; Toth, Ian; Pritchard, Leighton; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia

    2012-04-01

    Antimicrobial peptides constitute an important factor in the defense of plants against pathogens, and bacterial resistance to these peptides have previously been shown to be an important virulence factor in Dickeya dadantii, the causal agent of soft-rot disease of vegetables. In order to understand the bacterial response to antimicrobial peptides, a transcriptional microarray analysis was performed upon treatment with sub-lethal concentration of thionins, a widespread plant peptide. In all, 36 genes were found to be overexpressed, and were classified according to their deduced function as i) transcriptional regulators, ii) transport, and iii) modification of the bacterial membrane. One gene encoding a uricase was found to be repressed. The majority of these genes are known to be under the control of the PhoP/PhoQ system. Five genes representing the different functions induced were selected for further analysis. The results obtained indicate that the presence of antimicrobial peptides induces a complex response which includes peptide-specific elements and general stress-response elements contributing differentially to the virulence in different hosts.

  7. Genome-Wide Identification, Characterization and Expression Analysis of the Chalcone Synthase Family in Maize

    PubMed Central

    Han, Yahui; Ding, Ting; Su, Bo; Jiang, Haiyang

    2016-01-01

    Members of the chalcone synthase (CHS) family participate in the synthesis of a series of secondary metabolites in plants, fungi and bacteria. The metabolites play important roles in protecting land plants against various environmental stresses during the evolutionary process. Our research was conducted on comprehensive investigation of CHS genes in maize (Zea mays L.), including their phylogenetic relationships, gene structures, chromosomal locations and expression analysis. Fourteen CHS genes (ZmCHS01–14) were identified in the genome of maize, representing one of the largest numbers of CHS family members identified in one organism to date. The gene family was classified into four major classes (classes I–IV) based on their phylogenetic relationships. Most of them contained two exons and one intron. The 14 genes were unevenly located on six chromosomes. Two segmental duplication events were identified, which might contribute to the expansion of the maize CHS gene family to some extent. In addition, quantitative real-time PCR and microarray data analyses suggested that ZmCHS genes exhibited various expression patterns, indicating functional diversification of the ZmCHS genes. Our results will contribute to future studies of the complexity of the CHS gene family in maize and provide valuable information for the systematic analysis of the functions of the CHS gene family. PMID:26828478

  8. Genome-wide transcriptomic analysis of the sporophyte of the moss Physcomitrella patens.

    PubMed

    O'Donoghue, Martin-Timothy; Chater, Caspar; Wallace, Simon; Gray, Julie E; Beerling, David J; Fleming, Andrew J

    2013-09-01

    Bryophytes, the most basal of the extant land plants, diverged at least 450 million years ago. A major feature of these plants is the biphasic alternation of generations between a dominant haploid gametophyte and a minor diploid sporophyte phase. These dramatic differences in form and function occur in a constant genetic background, raising the question of whether the switch from gametophyte-to-sporophyte development reflects major changes in the spectrum of genes being expressed or alternatively whether only limited changes in gene expression occur and the differences in plant form are due to differences in how the gene products are put together. This study performed replicated microarray analyses of RNA from several thousand dissected and developmentally staged sporophytes of the moss Physcomitrella patens, allowing analysis of the transcriptomes of the sporophyte and early gametophyte, as well as the early stages of moss sporophyte development. The data indicate that more significant changes in transcript profile occur during the switch from gametophyte to sporophyte than recently reported, with over 12% of the entire transcriptome of P. patens being altered during this major developmental transition. Analysis of the types of genes contributing to these differences supports the view of the early sporophyte being energetically and nutritionally dependent on the gametophyte, provides a profile of homologues to genes involved in angiosperm stomatal development and physiology which suggests a deeply conserved mechanism of stomatal control, and identifies a novel series of transcription factors associated with moss sporophyte development.

  9. Genome-Wide Identification, Characterization and Expression Analysis of the Chalcone Synthase Family in Maize.

    PubMed

    Han, Yahui; Ding, Ting; Su, Bo; Jiang, Haiyang

    2016-01-01

    Members of the chalcone synthase (CHS) family participate in the synthesis of a series of secondary metabolites in plants, fungi and bacteria. The metabolites play important roles in protecting land plants against various environmental stresses during the evolutionary process. Our research was conducted on comprehensive investigation of CHS genes in maize (Zea mays L.), including their phylogenetic relationships, gene structures, chromosomal locations and expression analysis. Fourteen CHS genes (ZmCHS01-14) were identified in the genome of maize, representing one of the largest numbers of CHS family members identified in one organism to date. The gene family was classified into four major classes (classes I-IV) based on their phylogenetic relationships. Most of them contained two exons and one intron. The 14 genes were unevenly located on six chromosomes. Two segmental duplication events were identified, which might contribute to the expansion of the maize CHS gene family to some extent. In addition, quantitative real-time PCR and microarray data analyses suggested that ZmCHS genes exhibited various expression patterns, indicating functional diversification of the ZmCHS genes. Our results will contribute to future studies of the complexity of the CHS gene family in maize and provide valuable information for the systematic analysis of the functions of the CHS gene family. PMID:26828478

  10. Genome-wide analysis of respiratory burst oxidase homologs in grape (Vitis vinifera L.).

    PubMed

    Cheng, Chenxia; Xu, Xiaozhao; Gao, Min; Li, Jun; Guo, Chunlei; Song, Junyang; Wang, Xiping

    2013-12-12

    Plant respiratory burst oxidase homolog (rboh) genes appear to play crucial roles in plant development, defense reactions and hormone signaling. In this study, a total of seven rboh genes from grape were identified and characterized. Genomic structure and predicted protein sequence analysis indicated that the sequences of plant rboh genes are highly conserved. Synteny analysis demonstrated that several Vvrboh genes were found in corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of the respective lineages. The expression pattern of Vvrboh genes in different tissues was assessed by qRT-PCR and two were constitutively expressed in all tissues tested. The expression profiles were similarly analyzed following exposure to various stresses and hormone treatments. It was shown that the expression levels of VvrbohA, VvrbohB and VvrbohC1 were significantly increased by salt and drought treatments. VvrbohB, VvrbohC2, and VvrbohD exhibited a dramatic up-regulation after powdery mildew (Uncinula necator (Schw.) Burr.) inoculation, while VvrbohH was down-regulated. Finally, salicylic acid treatment strongly stimulated the expression of VvrbohD and VvrbohH, while abscisic acid treatment induced the expression of VvrbohB and VvrbohH. These results demonstrate that the expression patterns of grape rboh genes exhibit diverse and complex stress-response expression signatures.

  11. Genome-Wide Identification, Evolution and Expression Analysis of mTERF Gene Family in Maize

    PubMed Central

    Zhao, Yanxin; Cai, Manjun; Zhang, Xiaobo; Li, Yurong; Zhang, Jianhua; Zhao, Hailiang; Kong, Fei; Zheng, Yonglian; Qiu, Fazhan

    2014-01-01

    Plant mitochondrial transcription termination factor (mTERF) genes comprise a large family with important roles in regulating organelle gene expression. In this study, a comprehensive database search yielded 31 potential mTERF genes in maize (Zea mays L.) and most of them were targeted to mitochondria or chloroplasts. Maize mTERF were divided into nine main groups based on phylogenetic analysis, and group IX represented the mitochondria and species-specific clade that diverged from other groups. Tandem and segmental duplication both contributed to the expansion of the mTERF gene family in the maize genome. Comprehensive expression analysis of these genes, using microarray data and RNA-seq data, revealed that these genes exhibit a variety of expression patterns. Environmental stimulus experiments revealed differential up or down-regulation expression of maize mTERF genes in seedlings exposed to light/dark, salts and plant hormones, respectively, suggesting various important roles of maize mTERF genes in light acclimation and stress-related responses. These results will be useful for elucidating the roles of mTERF genes in the growth, development and stress response of maize. PMID:24718683

  12. Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis).

    PubMed

    Song, Xiao-Ming; Liu, Tong-Kun; Duan, Wei-Ke; Ma, Qing-Hua; Ren, Jun; Wang, Zhen; Li, Ying; Hou, Xi-Lin

    2014-01-01

    The GRAS gene family is one of the most important families of transcriptional regulators. In this study, 48 GRAS genes are identified from Chinese cabbage, and they are classified into eight groups according to the classification of Arabidopsis. The characterization, classification, gene structure and phylogenetic construction of GRAS proteins are performed. Distribution mapping shows that GRAS proteins are nonrandomly localized in 10 chromosomes. Fifty-five orthologous gene pairs are shared by Chinese cabbage and Arabidopsis, and interaction networks of these orthologous genes are constructed. The expansion of GRAS genes in Chinese cabbage results from genome triplication. Among the 17 species examined, 14 higher plants carry the GRAS genes, whereas two lower plants and one fungi species do not. Furthermore, the expression patterns of GRAS genes exhibit differences in three tissues based on RNA-seq data. Taken together, this comprehensive analysis will provide rich resources for studying GRAS protein functions in Chinese cabbage.

  13. Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive Genes by DELLA Proteins

    PubMed Central

    Marín-de la Rosa, Nora; Pfeiffer, Anne; Hill, Kristine; Locascio, Antonella; Bhalerao, Rishikesh P.; Miskolczi, Pal; Grønlund, Anne L.; Wanchoo-Kohli, Aakriti; Thomas, Stephen G.; Bennett, Malcolm J.; Lohmann, Jan U.; Blázquez, Miguel A.; Alabadí, David

    2015-01-01

    The ability of plants to provide a plastic response to environmental cues relies on the connectivity between signaling pathways. DELLA proteins act as hubs that relay environmental information to the multiple transcriptional circuits that control growth and development through physical interaction with transcription factors from different families. We have analyzed the presence of one DELLA protein at the Arabidopsis genome by chromatin immunoprecipitation coupled to large-scale sequencing and we find that it binds at the promoters of multiple genes. Enrichment analysis shows a strong preference for cis elements recognized by specific transcription factor families. In particular, we demonstrate that DELLA proteins are recruited by type-B ARABIDOPSIS RESPONSE REGULATORS (ARR) to the promoters of cytokinin-regulated genes, where they act as transcriptional co-activators. The biological relevance of this mechanism is underpinned by the necessity of simultaneous presence of DELLAs and ARRs to restrict root meristem growth and to promote photomorphogenesis. PMID:26134422

  14. Genome-wide network analysis of Wnt signaling in three pediatric cancers

    NASA Astrophysics Data System (ADS)

    Bao, Ju; Lee, Ho-Jin; Zheng, Jie J.

    2013-10-01

    Genomic structural alteration is common in pediatric cancers, and analysis of data generated by the Pediatric Cancer Genome Project reveals such tumor-related alterations in many Wnt signaling-associated genes. Most pediatric cancers are thought to arise within developing tissues that undergo substantial expansion during early organ formation, growth and maturation, and Wnt signaling plays an important role in this development. We examined three pediatric tumors--medullobastoma, early T-cell precursor acute lymphoblastic leukemia, and retinoblastoma--that show multiple genomic structural variations within Wnt signaling pathways. We mathematically modeled this pathway to investigate the effects of cancer-related structural variations on Wnt signaling. Surprisingly, we found that an outcome measure of canonical Wnt signaling was consistently similar in matched cancer cells and normal cells, even in the context of different cancers, different mutations, and different Wnt-related genes. Our results suggest that the cancer cells maintain a normal level of Wnt signaling by developing multiple mutations.

  15. Genome wide sequence analysis grants unbiased definition of species boundaries in "Candidatus Phytoplasma".

    PubMed

    Firrao, Giuseppe; Martini, Marta; Ermacora, Paolo; Loi, Nazia; Torelli, Emanuela; Foissac, Xavier; Carle, Patricia; Kirkpatrick, Bruce C; Liefting, Lia; Schneider, Bernd; Marzachì, Cristina; Palmano, Sabrina

    2013-12-01

    The phytoplasmas are currently named using the Candidatus category, as the inability to grow them in vitro prevented (i) the performance of tests, such as DNA-DNA hybridization, that are regarded as necessary to establish species boundaries, and (ii) the deposition of type strains in culture collections. The recent accession to complete or nearly complete genome sequence information disclosed the opportunity to apply to the uncultivable phytoplasmas the same taxonomic approaches used for other bacteria. In this work, the genomes of 14 strains, belonging to the 16SrI, 16SrIII, 16SrV and 16SrX groups, including the species "Ca. P. asteris", "Ca. P. mali", "Ca. P. pyri", "Ca. P. pruni", and "Ca. P. australiense" were analyzed along with Acholeplasma laidlawi, to determine their taxonomic relatedness. Average nucleotide index (ANIm), tetranucleotide signature frequency correlation index (Tetra), and multilocus sequence analysis of 107 shared genes using both phylogenetic inference of concatenated (DNA and amino acid) sequences and consensus networks, were carried out. The results were in large agreement with the previously established 16S rDNA based classification schemes. Moreover, the taxonomic relationships within the 16SrI, 16SrIII and 16SrX groups, that represent clusters of strains whose relatedness could not be determined by 16SrDNA analysis, could be comparatively evaluated with non-subjective criteria. "Ca. P. mali" and "Ca. P. pyri" were found to meet the genome characteristics for the retention into two different, yet strictly related species; representatives of subgroups 16SrI-A and 16SrI-B were also found to meet the standards used in other bacteria to distinguish separate species; the genomes of the strains belonging to 16SrIII were found more closely related, suggesting that their subdivision into Candidatus species should be approached with caution.

  16. Genome-wide analysis of shoot growth-associated alternative splicing in moso bamboo.

    PubMed

    Li, Long; Hu, Tao; Li, Xueping; Mu, Shaohua; Cheng, Zhanchao; Ge, Wei; Gao, Jian

    2016-08-01

    Alternative splicing (AS) significantly enhances transcriptome complexity and is differentially regulated in a wide variety of physiological processes in plants, including shoot growth. Presently, the functional implications and conservation of AS occurrences are not well understood in the moso bamboo genome. To analyze the global changes in AS during moso bamboo shoot growth, fast-growing shoots collected at seven different heights and culms after leaf expansion were sequenced using the Illumina HiSeq™ 2000 sequencing platform. It was found that approximately 60.74 % of all genes were alternatively spliced, with intron retention (IR) being the most frequent AS event (27.43 %). Statistical analysis demonstrated that variations of AS frequency and AS types were significantly correlated with changes in gene features and gene transcriptional level. According to the phylogenetic analysis of isoform expression data and AS frequency, the bamboo shoot growth could be divided into four different growth periods, including winter bamboo shoot (S1), early growth period (S2-S5), late growth period (S6 and S7), and mature period (CK). In addition, our data also showed that the winter bamboo shoot had the highest number of AS events. Twenty-six putative Serine/arginine-rich (SR) proteins were identified, producing a total of 109 transcripts. AS events were frequently and specifically regulated by SR splicing factors throughout shoot growth, resulting in changes to the original open reading frame (ORF) and subsequently changes to conserved domains. The AS product-isoforms showed regular expression change during the whole shoot growth period, thus influencing shoot growth. All together, these data indicate that AS events are adjusted to different growth stages, providing briefness and efficient means of gene regulation. This study will provide a very useful clue for future functional analyses.

  17. Genome-wide comparative analysis of pogo-like transposable elements in different Fusarium species.

    PubMed

    Dufresne, Marie; Lespinet, Olivier; Daboussi, Marie-Josée; Hua-Van, Aurélie

    2011-10-01

    The recent availability of genome sequences of four different Fusarium species offers the opportunity to perform extensive comparative analyses, in particular of repeated sequences. In a recent work, the overall content of such sequences in the genomes of three phylogenetically related Fusarium species, F. graminearum, F. verticillioides, and F. oxysporum f. sp. lycopersici has been estimated. In this study, we present an exhaustive characterization of pogo-like elements, named Fots, in four Fusarium genomes. Overall 10 Fot and two Fot-related miniature inverted-repeat transposable element families were identified, revealing a diversification of multiple lineages of pogo-like elements, some of which accompanied by a gain of introns. This analysis also showed that such elements are present in an unusual high proportion in the genomes of F. oxysporum f. sp. lycopersici and Nectria haematococca (anamorph F. solani f. sp. pisi) in contrast with most other fungal genomes in which retroelements are the most represented. Interestingly, our analysis showed that the most numerous Fot families all contain potentially active or mobilisable copies, thus conferring a mutagenic potential of these transposable elements and consequently a role in strain adaptation and genome evolution. This role is strongly reinforced when examining their genomic distribution which is clearly biased with a high proportion (more than 80%) located on strain- or species-specific regions enriched in genes involved in pathogenicity and/or adaptation. Finally, the different reproductive characteristics of the four Fusarium species allowed us to investigate the impact of the process of repeat-induced point mutations on the expansion and diversification of Fot elements.

  18. Genome-wide identification, characterization, and expression analysis of lineage-specific genes within zebrafish

    PubMed Central

    2013-01-01

    Background The genomic basis of teleost phenotypic complexity remains obscure, despite increasing availability of genome and transcriptome sequence data. Fish-specific genome duplication cannot provide sufficient explanation for the morphological complexity of teleosts, considering the relatively large number of extinct basal ray-finned fishes. Results In this study, we performed comparative genomic analysis to discover the Conserved Teleost-Specific Genes (CTSGs) and orphan genes within zebrafish and found that these two sets of lineage-specific genes may have played important roles during zebrafish embryogenesis. Lineage-specific genes within zebrafish share many of the characteristics of their counterparts in other species: shorter length, fewer exon numbers, higher GC content, and fewer of them have transcript support. Chromosomal location analysis indicated that neither the CTSGs nor the orphan genes were distributed evenly in the chromosomes of zebrafish. The significant enrichment of immunity proteins in CTSGs annotated by gene ontology (GO) or predicted ab initio may imply that defense against pathogens may be an important reason for the diversification of teleosts. The evolutionary origin of the lineage-specific genes was determined and a very high percentage of lineage-specific genes were generated via gene duplications. The temporal and spatial expression profile of lineage-specific genes obtained by expressed sequence tags (EST) and RNA-seq data revealed two novel properties: in addition to being highly tissue-preferred expression, lineage-specific genes are also highly temporally restricted, namely they are expressed in narrower time windows than evolutionarily conserved genes and are specifically enriched in later-stage embryos and early larval stages. Conclusions Our study provides the first systematic identification of two different sets of lineage-specific genes within zebrafish and provides valuable information leading towards a better

  19. Genome-wide analysis of core promoter structures in Schizosaccharomyces pombe with DeepCAGE

    PubMed Central

    Li, Hua; Hou, Jingyi; Bai, Ling; Hu, Chuansheng; Tong, Pan; Kang, Yani; Zhao, Xiaodong; Shao, Zhifeng

    2015-01-01

    The core promoter, which immediately flanks the transcription start site (TSS), plays a critical role in transcriptional regulation of eukaryotes. Recent studies on higher eukaryotes have revealed an unprecedented complexity of core promoter structures that underscores diverse regulatory mechanisms of gene expression. For unicellular eukaryotes, however, the structures of core promoters have not been investigated in detail. As an important model organism, Schizosaccharomyces pombe still lacks the precise annotation for TSSs, thus hampering the analysis of core promoter structures and their relationship to higher eukaryotes. Here we used a deep sequencing-based approach (DeepCAGE) to generate 16 million uniquely mapped tags, corresponding to 93,736 positions in the S. pombe genome. The high-resolution TSS landscape enabled identification of over 8,000 core promoters, characterization of 4 promoter classes and observation of widespread alternative promoters. The landscape also allowed precise determination of the representative TSSs within core promoters, thus redefining the 5' UTR for 82.8% of S. pombe genes. We further identified the consensus initiator (Inr) sequence – PyPyPuN(A/C)(C/A), the TATA-enriched region (between position −25 and −37) and an Inr immediate downstream motif – CC(T/A)(T/C)(T/C/A)(A/G)CCA(A/T/C), all of which were associated with highly expressed promoters. In conclusion, the detailed analysis of core promoters not only significantly improves the genome annotation of S. pombe, but also reveals that this unicellular eukaryote shares a highly similar organization in the core promoters with higher eukaryotes. These findings lend additional evidence for the power of this model system in delineating complex regulatory processes in multicellular organisms, despite its perceived simplicity. PMID:25747261

  20. Genome-wide analysis of shoot growth-associated alternative splicing in moso bamboo.

    PubMed

    Li, Long; Hu, Tao; Li, Xueping; Mu, Shaohua; Cheng, Zhanchao; Ge, Wei; Gao, Jian

    2016-08-01

    Alternative splicing (AS) significantly enhances transcriptome complexity and is differentially regulated in a wide variety of physiological processes in plants, including shoot growth. Presently, the functional implications and conservation of AS occurrences are not well understood in the moso bamboo genome. To analyze the global changes in AS during moso bamboo shoot growth, fast-growing shoots collected at seven different heights and culms after leaf expansion were sequenced using the Illumina HiSeq™ 2000 sequencing platform. It was found that approximately 60.74 % of all genes were alternatively spliced, with intron retention (IR) being the most frequent AS event (27.43 %). Statistical analysis demonstrated that variations of AS frequency and AS types were significantly correlated with changes in gene features and gene transcriptional level. According to the phylogenetic analysis of isoform expression data and AS frequency, the bamboo shoot growth could be divided into four different growth periods, including winter bamboo shoot (S1), early growth period (S2-S5), late growth period (S6 and S7), and mature period (CK). In addition, our data also showed that the winter bamboo shoot had the highest number of AS events. Twenty-six putative Serine/arginine-rich (SR) proteins were identified, producing a total of 109 transcripts. AS events were frequently and specifically regulated by SR splicing factors throughout shoot growth, resulting in changes to the original open reading frame (ORF) and subsequently changes to conserved domains. The AS product-isoforms showed regular expression change during the whole shoot growth period, thus influencing shoot growth. All together, these data indicate that AS events are adjusted to different growth stages, providing briefness and efficient means of gene regulation. This study will provide a very useful clue for future functional analyses. PMID:27170010

  1. Genome-wide identification and expression analysis of SWI1 genes in Boechera species.

    PubMed

    Sezer, Fatih; Yüzbaşioğlu, Gözde; Özbilen, Aslıhan; Taşkin, Kemal M

    2016-06-01

    As a mode of reproduction in plants, apomixis leads to the generation of clones via seeds. Apomictic plants form viable diploid female gametes without meiosis (apomeiosis) and produce embryos without fertilization (parthenogenesis). Apomeiosis, as a major component of apomixis, has recently been reported in some Arabidopsis thaliana mutants; dyad mutants of SWI1 showed developmental processes common to apomeiosis, such as producing functional diploid gametes. However, the orthologs of SWI1 genes in natural apomicts has not been previously reported. To identify the relationship between the SWI1 gene and the apomeiosis process, we isolated and sequenced SWI1 orthologs from Boechera species, including apomictic and sexual species. Boechera species are close relatives of A. thaliana and thus are advantageous model species for apomixis research. The SWI1 cDNAs were obtained by RT-PCR from apomictic and sexual Boechera young flower buds. We sequenced partial SWI1 transcripts that were 650bp for B. holboellii and 684bp for B. stricta. These SWI1-like sequences showed 86% similarity for B. holboellii and 92% for B. stricta to the A. thaliana SWI1 transcript. We also used available genome data and amplified genomic sequences for SWI1 orthologs in B. holboellii and B. stricta. The predicted proteins contain a phospholipase C domain and a nuclear localization signal. Sequence analysis did not show significant mutations related to apomixis, and phylogenetic analysis showed that SWI1-like sequences were common across plant families, regardless of the presence of a sexual or apomictic reproduction system. We also investigated the expression levels of SWI1 mRNA in the B. holboellii and B. stricta young unopened flower buds and found that relatively high levels of expression occurred in apomicts.

  2. Genome-wide identification and expression analysis of SWI1 genes in Boechera species.

    PubMed

    Sezer, Fatih; Yüzbaşioğlu, Gözde; Özbilen, Aslıhan; Taşkin, Kemal M

    2016-06-01

    As a mode of reproduction in plants, apomixis leads to the generation of clones via seeds. Apomictic plants form viable diploid female gametes without meiosis (apomeiosis) and produce embryos without fertilization (parthenogenesis). Apomeiosis, as a major component of apomixis, has recently been reported in some Arabidopsis thaliana mutants; dyad mutants of SWI1 showed developmental processes common to apomeiosis, such as producing functional diploid gametes. However, the orthologs of SWI1 genes in natural apomicts has not been previously reported. To identify the relationship between the SWI1 gene and the apomeiosis process, we isolated and sequenced SWI1 orthologs from Boechera species, including apomictic and sexual species. Boechera species are close relatives of A. thaliana and thus are advantageous model species for apomixis research. The SWI1 cDNAs were obtained by RT-PCR from apomictic and sexual Boechera young flower buds. We sequenced partial SWI1 transcripts that were 650bp for B. holboellii and 684bp for B. stricta. These SWI1-like sequences showed 86% similarity for B. holboellii and 92% for B. stricta to the A. thaliana SWI1 transcript. We also used available genome data and amplified genomic sequences for SWI1 orthologs in B. holboellii and B. stricta. The predicted proteins contain a phospholipase C domain and a nuclear localization signal. Sequence analysis did not show significant mutations related to apomixis, and phylogenetic analysis showed that SWI1-like sequences were common across plant families, regardless of the presence of a sexual or apomictic reproduction system. We also investigated the expression levels of SWI1 mRNA in the B. holboellii and B. stricta young unopened flower buds and found that relatively high levels of expression occurred in apomicts. PMID:27107180

  3. Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neofunctionalisation d