Janssen, D; Zwartelé, R E; Doets, H C; Verdonschot, N
2010-01-01
Patients suffering from rheumatoid arthritis typically have a poor subchondral bone quality, endangering implant fixation. Using finite element analysis (FEA) an investigation was made to find whether a press-fit acetabular implant with a polar clearance would reduce interfacial micromotions and improve fixation compared with a standard hemispherical design. In addition, the effects of interference fit, friction, and implant material were analysed. Cups were introduced into an FEA model of a human pelvis with simulated subchondral bone plasticity. The models were loaded with a loading configuration simulating two cycles of normal walking, during which contact stresses and interfacial micromotions were monitored. Subsequently, a lever-out simulation was performed to assess the fixation strength of the various cases. A flattened cup with good bone quality produced the lowest interfacial micromotions. Poor bone decreased the fixation strength regardless of the geometry of the cup. Increasing the interference fit of the flattened cup compensated for the loss of fixation strength caused by poor bone quality. In conclusion, a flattened cup did not significantly improve implant fixation over a hemispherical cup in the case of poor bone quality. However, implant fixation can be optimized by increasing interference fit and avoiding inferior frictional properties and low-stiffness implants.
Prevalence of Poor Bone Quality in Women Undergoing Spinal Fusion Using Biomechanical-CT Analysis.
Burch, Shane; Feldstein, Michael; Hoffmann, Paul F; Keaveny, Tony M
2016-02-01
Retrospective, cross-sectional analysis of vertebral bone quality in spine-fusion patients at a single medical center. To characterize the prevalence of osteoporosis and fragile bone strength in a spine-fusion population of women with an age range of 50 years to 70 years. Fragile bone strength is defined as the level of vertebral strength below which a patient is at as high a risk of future vertebral fracture as a patient having bone density-defined osteoporosis. Poor bone quality--defined here as the presence of either osteoporosis or fragile bone strength--is a risk factor for spine-fusion patients that often goes undetected but can now be assessed preoperatively by additional postprocessing of computed tomography (CT) scans originally ordered for perioperative clinical assessment. Utilizing such perioperative CT scans for a cohort of 98 women (age range: 51-70 yr) about to undergo spine fusion, we retrospectively used a phantomless calibration technique and biomechanical-CT postprocessing analysis to measure vertebral trabecular bone mineral density (BMD) (in mg/cm³) and by nonlinear finite element analysis, vertebral compressive strength (in Newtons, N) in the L1 or L2 vertebra. Preestablished validated threshold values were used to define the presence of osteoporosis (trabecular BMD of 80 mg/cm³ or lower) and fragile bone strength (vertebral strength of 4500 N or lower). Fourteen percent of the women tested positive for osteoporosis, 27% tested positive for fragile bone strength, and 29% were classified as having poor bone quality (either osteoporosis or fragile bone strength). Over this narrow age range, neither BMD nor vertebral strength were significantly correlated with age, weight, height, or body mass index (P values 0.14-0.97 for BMD; 0.13-0.51 for strength). Poor bone quality appears to be common in women between ages 50 years and 70 years undergoing spinal fusion surgery. 3.
Rusak, David Alexander; Marsico, Ryan Matthew; Taroli, Brett Louis
2011-10-01
We determined calcium-to-fluorine (Ca/F) signal ratios at the surface and in the depth dimension in approximately 6000-year-old sheep and cattle bones using Ca I 671.8 and F I 685.6 emission lines. Because the bones had been previously analyzed for collagen preservation quality by measurement of C/N ratios at the Oxford Radiocarbon Accelerator Unit, we were able to examine the correlation between our ratios and quality of preservation. In the bones analyzed in this experiment, the Ca I 671.8/F I 685.6 ratio was generally lower and decreased with successive laser pulses into poorly preserved bones while the ratio was generally higher and increased with successive laser pulses into well-preserved bones. After 210 successive pulses, a discriminator value for this ratio (5.70) could be used to distinguish well-preserved and poorly preserved bones regardless of species. © 2011 Society for Applied Spectroscopy
Dole, Neha S.; Mazur, Courtney M.; Acevedo, Claire; ...
2017-11-28
Poor bone quality contributes to bone fragility in diabetes, aging, and osteogenesis imperfecta. However, the mechanisms controlling bone quality are not well understood, contributing to the current lack of strategies to diagnose or treat bone quality deficits. Transforming growth factor beta (TGF-β) signaling is a crucial mechanism known to regulate the material quality of bone, but its cellular target in this regulation is unknown. Studies showing that osteocytes directly remodel their perilacunar/canalicular matrix led us to hypothesize that TGF-β controls bone quality through perilacunar/canalicular remodeling (PLR). Using inhibitors and mice with an osteocyte-intrinsic defect in TGF-β signaling (TβRII ocy-/-), wemore » show that TGF-β regulates PLR in a cell-intrinsic manner to control bone quality. Altogether, this study emphasizes that osteocytes are key in executing the biological control of bone quality through PLR, thereby highlighting the fundamental role of osteocyte-mediated PLR in bone homeostasis and fragility. Resistance to fracture requires healthy bone mass and quality. However, the cellular mechanisms regulating bone quality are unclear. Dole et al. show that osteocyte-intrinsic TGF-β signaling maintains bone quality through perilacunar/canalicular remodeling. Thus, osteocytes mediate perilacunar/canalicular remodeling and osteoclast-directed remodeling to cooperatively maintain bone quality and mass and prevent fragility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dole, Neha S.; Mazur, Courtney M.; Acevedo, Claire
Poor bone quality contributes to bone fragility in diabetes, aging, and osteogenesis imperfecta. However, the mechanisms controlling bone quality are not well understood, contributing to the current lack of strategies to diagnose or treat bone quality deficits. Transforming growth factor beta (TGF-β) signaling is a crucial mechanism known to regulate the material quality of bone, but its cellular target in this regulation is unknown. Studies showing that osteocytes directly remodel their perilacunar/canalicular matrix led us to hypothesize that TGF-β controls bone quality through perilacunar/canalicular remodeling (PLR). Using inhibitors and mice with an osteocyte-intrinsic defect in TGF-β signaling (TβRII ocy-/-), wemore » show that TGF-β regulates PLR in a cell-intrinsic manner to control bone quality. Altogether, this study emphasizes that osteocytes are key in executing the biological control of bone quality through PLR, thereby highlighting the fundamental role of osteocyte-mediated PLR in bone homeostasis and fragility. Resistance to fracture requires healthy bone mass and quality. However, the cellular mechanisms regulating bone quality are unclear. Dole et al. show that osteocyte-intrinsic TGF-β signaling maintains bone quality through perilacunar/canalicular remodeling. Thus, osteocytes mediate perilacunar/canalicular remodeling and osteoclast-directed remodeling to cooperatively maintain bone quality and mass and prevent fragility.« less
Effects of Physical Activity and Muscle Quality on Bone Development in Girls
Farr, Joshua N.; Laddu, Deepika R.; Blew, Robert M.; Lee, Vinson R.; Going, Scott B.
2013-01-01
Poor muscle quality and sedentary behavior are risk factors for metabolic dysfunction in children and adolescents. However, because longitudinal data are scarce, relatively little is known about how changes in muscle quality and physical activity influence bone development. Purpose In a 2-year longitudinal study, we examined the effects of physical activity and changes in muscle quality on bone parameters in young girls. Methods The sample included 248 healthy girls aged 9–12 years at baseline. Peripheral quantitative computed tomography was used to measure calf and thigh muscle density, an indicator of skeletal muscle fat content or muscle quality, as well as bone parameters at diaphyseal and metaphyseal sites of the femur and tibia. Physical activity was assessed using a validated questionnaire specific for youth. Results After controlling for covariates in multiple regression models, increased calf muscle density was independently associated with greater gains in cortical (β = 0.13, P < 0.01) and trabecular (β = 0.25, P < 0.001) volumetric bone mineral density (vBMD) and the bone strength index (BSI; β = 0.25, P < 0.001) of the tibia. Importantly, these relationships were generalized, as similar changes were present at the femur. Associations between physical activity and changes in bone parameters were weaker than those observed for muscle density. Nevertheless, physical activity was significantly (all P < 0.05) associated with greater gains in trabecular vBMD and the BSI of the distal femur. Conclusions These findings suggest that poor muscle quality may put girls at risk for suboptimal bone development. Physical activity is associated with more optimal gains in weight-bearing bone density and strength in girls, but to a lesser extent than changes in muscle quality. PMID:23698240
Influence of trabecular bone quality and implantation direction on press-fit mechanics.
Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E
2017-02-01
Achieving primary stability of uncemented press-fit prostheses in patients with poor quality bone can involve axial implantation forces large enough to cause bone fracture. Radial implantation eliminates intraoperative impaction forces and could prevent this damage. Platens of two commercial implant surfaces ("Beaded" and "Flaked") were implanted onto trabecular bone specimens of varying quality in a press-fit simulator. Samples were implanted with varying interference, either axially (shear) or radially (normal). Push-in and pull-out forces were measured to assess stability. Microstructural changes in the bone were determined from μCT analysis. For force-defined implantation analysis, push-in and pull-out forces both increased proportionally with increasing radial force, independent of implantation direction, bone quality or implant surface. For position-defined implantation analysis, pull-out forces were generally found to increase with interference and to be greater for radial than axial implantation direction, and to be lower for poor quality bone. Bone density increased locally at the tested interface due to implantation, in particular for the Beaded surface under axial implantation. If a safe radial stress can be determined for cortical bone in a particular patient, the associated implantation force, and pull-out force which represents primary stability, can be directly derived, regardless of implantation direction, bone quality or implant surface. Radial implantation delivers primary stability that is no worse than that for axial implantation and may eliminate potentially damaging impaction forces. Development of implant designs based on this principal might improve implant fixation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:224-233, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Chang, Gregory; Honig, Stephen; Liu, Yinxiao; Chen, Cheng; Chu, Kevin K; Rajapakse, Chamith S; Egol, Kenneth; Xia, Ding; Saha, Punam K; Regatte, Ravinder R
2015-05-01
Osteoporosis is a disease of poor bone quality. Bone mineral density (BMD) has limited ability to discriminate between subjects without and with poor bone quality, and assessment of bone microarchitecture may have added value in this regard. Our goals were to use 7 T MRI to: (1) quantify and compare distal femur bone microarchitecture in women without and with poor bone quality (defined clinically by presence of fragility fractures); and (2) determine whether microarchitectural parameters could be used to discriminate between these two groups. This study had institutional review board approval, and we obtained written informed consent from all subjects. We used a 28-channel knee coil to image the distal femur of 31 subjects with fragility fractures and 25 controls without fracture on a 7 T MRI scanner using a 3-D fast low angle shot sequence (0.234 mm × 0.234 mm × 1 mm, parallel imaging factor = 2, acquisition time = 7 min 9 s). We applied digital topological analysis to quantify parameters of bone microarchitecture. All subjects also underwent standard clinical BMD assessment in the hip and spine. Compared to controls, fracture cases demonstrated lower bone volume fraction and markers of trabecular number, plate-like structure, and plate-to-rod ratio, and higher markers of trabecular isolation, rod disruption, and network resorption (p < 0.05 for all). There were no differences in hip or spine BMD T-scores between groups (p > 0.05). In receiver-operating-characteristics analyses, microarchitectural parameters could discriminate cases and controls (AUC = 0.66-0.73, p < 0.05). Hip and spine BMD T-scores could not discriminate cases and controls (AUC = 0.58-0.64, p ≥ 0.08). We conclude that 7 T MRI can detect bone microarchitectural deterioration in women with fragility fractures who do not differ by BMD. Microarchitectural parameters might some day be used as an additional tool to detect patients with poor bone quality who cannot be detected by dual-energy X-ray absorptiometry (DXA).
Gonda, Tomoya; Yasuda, Daiisa; Ikebe, Kazunori; Maeda, Yoshinobu
2014-01-01
Although the risks of using a cantilever to treat missing teeth have been described, the mechanisms remain unclear. This study aimed to reveal these mechanisms from a biomechanical perspective. The effects of various implant sites, number of implants, and superstructural connections on stress distribution in the marginal bone were analyzed with three-dimensional finite element models based on mandibular computed tomography data. Forces from the masseter, temporalis, and internal pterygoid were applied as vectors. Two three-dimensional finite element models were created with the edentulous mandible showing severe and relatively modest residual ridge resorption. Cantilevers of the premolar and molar were simulated in the superstructures in the models. The following conditions were also included as factors in the models to investigate changes: poor bone quality, shortened dental arch, posterior occlusion, lateral occlusion, double force of the masseter, and short implant. Multiple linear regression analysis with a forced-entry method was performed with stress values as the objective variable and the factors as the explanatory variable. When bone mass was high, stress around the implant caused by differences in implantation sites was reduced. When bone mass was low, the presence of a cantilever was a possible risk factor. The stress around the implant increased significantly if bone quality was poor or if increased force (eg, bruxism) was applied. The addition of a cantilever to the superstructure increased stress around implants. When large muscle forces were applied to a superstructure with cantilevers or if bone quality was poor, stress around the implants increased.
Evidence for the adverse effect of starvation on bone quality: a review of the literature.
Kueper, Janina; Beyth, Shaul; Liebergall, Meir; Kaplan, Leon; Schroeder, Josh E
2015-01-01
Malnutrition and starvation's possible adverse impacts on bone health and bone quality first came into the spotlight after the horrors of the Holocaust and the ghettos of World War II. Famine and food restrictions led to a mean caloric intake of 200-800 calories a day in the ghettos and concentration camps, resulting in catabolysis and starvation of the inhabitants and prisoners. Severely increased risks of fracture, poor bone mineral density, and decreased cortical strength were noted in several case series and descriptive reports addressing the medical issues of these individuals. A severe effect of severely diminished food intake and frequently concomitant calcium- and Vitamin D deficiencies was subsequently proven in both animal models and the most common cause of starvation in developed countries is anorexia nervosa. This review attempts to summarize the literature available on the impact of the metabolic response to Starvation on overall bone health and bone quality.
Accelerated and enhanced bone formation on novel simvastatin-loaded porous titanium oxide surfaces.
Nyan, Myat; Hao, Jia; Miyahara, Takayuki; Noritake, Kanako; Rodriguez, Reena; Kasugai, Shohei
2014-10-01
With increasing application of dental implants in poor-quality bones, the need for implant surfaces ensuring accelerated osseointegration and enhanced peri-implant bone regeneration is increased. A study was performed to evaluate the osseointegration and bone formation on novel simvastatin-loaded porous titanium oxide surface. Titanium screws were treated by micro-arc oxidation to form porous oxide surface and 25 or 50 μg of simvastatin was loaded. The nontreated control, micro-arc oxidized, and simvastatin-loaded titanium screws were surgically implanted into the proximal tibia of 16-week-old male Wistar rats (n = 36). Peri-implant bone volume, bone-implant contact, and mineral apposition rates were measured at 2 and 4 weeks. Data were analyzed by one-way analysis of variance followed by Tukey's post hoc test. New bone was formed directly on the implant surface in the bone marrow cavity in simvastatin-loaded groups since 2 weeks. Bone-implant contact values were significantly higher in simvastatin-loaded groups than control and micro-arc oxidized groups at both time points (p < .05). Peri-implant bone volume and mineral apposition rate of simvastatin-loaded groups were significantly higher than control and micro-arc oxidized groups at 2 weeks (p < .05). These data suggested that simvastatin-loaded porous titanium oxide surface provides faster osseointegration and peri-implant bone formation and it would be potentially applicable in poor-quality bones. © 2013 Wiley Periodicals, Inc.
Kim, Ji-Eun; Takanche, Jyoti Shrestha; Kim, Jeong-Seok; Lee, Min-Ho; Jeon, Jae-Gyu; Park, Il-Song; Yi, Ho-Keun
2018-04-12
Poor bone quality and osteolysis are the major causes of implant failure in dentistry. Here, this study tested the effect of phelligridin D-loaded nanotubes titanium (Ti) for bone formation around the dental implants. The purpose of this study was to enhance osseointegration of phelligridin D-loaded implant into the bone for bone formation and prevention of osteolysis. Cell viability, crystal violet staining, Western blot, alizarin red S staining, alkaline phosphatase activity, tartrate-resistant acid phosphatase staining, micro-computed tromography (μ-CT), hematoxylin and eosin (H&E) and immunohistochemical staining were used in vitro and in vivo to test the biocompatibility of phelligridin D. Phelligridin D enhanced osteoblast differentiation and mineralization by increasing bone morphogenic protein-2/7 (BMP-2/7), Osterix, Runx-2, osteoprotegerin (OPG), alkaline phosphatase and inhibited osteoclast differentiation by decreasing receptor activator of nuclear factor kappa-B ligand (RANKL) in MC-3T3 E1 cells. Further, phelligridin D promoted bone regeneration around nanotube Ti implant surface by increasing the levels of BMP-2/7 and OPG in a rat model. Phelligridin D also inhibited osteolysis by suppressing the expression of RANKL. These findings strongly suggest that phelligridin D is a new compound representing a potential therapeutic candidate for implant failure caused by osteolysis and poor bone quality of teeth.
Wang, Tong-Mei; Lee, Ming-Shu; Wang, Juo-Song; Lin, Li-Deh
2015-01-01
This study investigated the effect of implant design and bone quality on insertion torque (IT), implant stability quotient (ISQ), and insertion energy (IE) by monitoring the continuous change in IT and ISQ while implants were inserted in artificial bone blocks that simulate bone of poor or poor-to-medium quality. Polyurethane foam blocks (Sawbones) of 0.16 g/cm³ and 0.32 g/cm³ were respectively used to simulate low density and low- to medium-density cancellous bone. In addition, some test blocks were laminated with a 1-mm 0.80 g/cm³ polyurethane layer to simulate cancellous bone with a thin cortical layer. Four different implants (Nobel Biocare Mk III-3.75, Mk III-4.0, Mk IV-4.0, and NobelActive-4.3) were placed into the different test blocks in accordance with the manufacturer's instructions. The IT and ISQ were recorded at every 0.5-mm of inserted length during implant insertion, and IE was calculated from the torque curve. The peak IT (PIT), final IT (FIT), IE, and final ISQ values were statistically analyzed. All implants showed increasing ISQ values when the implant was inserted more deeply. In contrast to the ISQ, implants with different designs showed dissimilar IT curve patterns during the insertion. All implants showed a significant increase in the PIT, FIT, IE, and ISQ when the test-block density increased or when the 1-mm laminated layer was present. Tapered implants showed FIT or PIT values of more than 40 Ncm for all of the laminated test blocks and for the nonlaminated test blocks of low to medium density. Parallel-wall implants did not exhibit PIT or FIT values of more than 40 Ncm for all of the test blocks. NobelActive-4.3 showed a significantly higher FIT, but a significantly lower IE, than Mk IV-4.0. While the existence of cortical bone or implant designs significantly affects the dynamic IT profiles during implant insertion, it does not affect the ISQ to a similar extent. Certain implant designs are more suitable than others if high IT is required in bone of poor quality. The manner in which IT, IE, and ISQ represent the implant primary stability requires further study.
Miceli, Teresa S.; Colson, Kathleen; Faiman, Beth M.; Miller, Kena; Tariman, Joseph D.
2014-01-01
About 90% of individuals with multiple myeloma will develop osteolytic bone lesions from increased osteoclastic and decreased osteoblastic activity. Severe morbidities from pathologic fractures and other skeletal events can lead to poor circulation, blood clots, muscle wasting, compromised performance status, and overall poor survival. Supportive care targeting bone disease is an essential adjunct to antimyeloma therapy. In addition, the maintenance of bone health in patients with multiple myeloma can significantly improve quality of life. Oncology nurses and other healthcare providers play a central role in the management of bone disease and maintenance throughout the course of treatment. Safe administration of bisphosphonates, promotion of exercise, maintenance of adequate nutrition, vitamin and mineral supplementation, scheduled radiographic examinations, and monitoring of bone complications are among the important functions that oncology nurses and healthcare providers perform in clinical practice. PMID:21816707
Miceli, Teresa S; Colson, Kathleen; Faiman, Beth M; Miller, Kena; Tariman, Joseph D
2011-08-01
About 90% of individuals with multiple myeloma will develop osteolytic bone lesions from increased osteoclastic and decreased osteoblastic activity. Severe morbidities from pathologic fractures and other skeletal events can lead to poor circulation, blood clots, muscle wasting, compromised performance status, and overall poor survival. Supportive care targeting bone disease is an essential adjunct to antimyeloma therapy. In addition, the maintenance of bone health in patients with multiple myeloma can significantly improve quality of life. Oncology nurses and other healthcare providers play a central role in the management of bone disease and maintenance throughout the course of treatment. Safe administration of bisphosphonates, promotion of exercise, maintenance of adequate nutrition, vitamin and mineral supplementation, scheduled radiographic examinations, and monitoring of bone complications are among the important functions that oncology nurses and healthcare providers perform in clinical practice.
Evidence for the Adverse Effect of Starvation on Bone Quality: A Review of the Literature
Kueper, Janina; Beyth, Shaul; Liebergall, Meir; Kaplan, Leon; Schroeder, Josh E.
2015-01-01
Malnutrition and starvation's possible adverse impacts on bone health and bone quality first came into the spotlight after the horrors of the Holocaust and the ghettos of World War II. Famine and food restrictions led to a mean caloric intake of 200–800 calories a day in the ghettos and concentration camps, resulting in catabolysis and starvation of the inhabitants and prisoners. Severely increased risks of fracture, poor bone mineral density, and decreased cortical strength were noted in several case series and descriptive reports addressing the medical issues of these individuals. A severe effect of severely diminished food intake and frequently concomitant calcium- and Vitamin D deficiencies was subsequently proven in both animal models and the most common cause of starvation in developed countries is anorexia nervosa. This review attempts to summarize the literature available on the impact of the metabolic response to Starvation on overall bone health and bone quality. PMID:25810719
Effect of type 2 diabetes-related non-enzymatic glycation on bone biomechanical properties
Karim, Lamya; Bouxsein, Mary L.
2015-01-01
There is clear evidence that patients with type 2 diabetes mellitus (T2D) have increased fracture risk, despite having high bone mineral density (BMD) and body mass index (BMI). Thus, poor bone quality has been implicated as a mechanism contributing to diabetic skeletal fragility. Poor bone quality in T2D may result from the accumulation of advanced glycation end-products (AGEs), which are post-translational modifications of collagen resulting from a spontaneous reaction between extracellular sugars and amino acid residues on collagen fibers. This review discusses what is known and what is not known regarding AGE accumulation and diabetic skeletal fragility, examining evidence from in vitro experiments to simulate a diabetic state, ex vivo studies in normal and diabetic human bone, and diabetic animal models. Key findings in the literature are that AGEs increase with age, affect bone cell behavior, and are altered with changes in bone turnover. Further, they affect bone mechanical properties and microdamage accumulation, and can be inhibited in vitro by various inhibitors and breakers (e.g. aminoguanidine, N-Phenacylthiazolium Bromide, vitamin B6). While a few studies report higher AGEs in diabetic animal models, there is little evidence of AGE accumulation in bone from diabetic patients. There are several limitations and inconsistencies in the literature that should be noted and studied in greater depth including understanding the discrepancies between glycation levels across reported studies, clarifying differences in AGEs in cortical versus cancellous bone, and improving the very limited data available regarding glycation content in diabetic animal and human bone, and its corresponding effect on bone material properties in T2D. PMID:26211993
Beresheim, Amy C; Pfeiffer, Susan K; Grynpas, Marc D; Alblas, Amanda
2018-02-07
The purpose of this study was to provide bone histomorphometric reference data for South Africans of the Western Cape who likely dealt with health issues under the apartheid regime. The 206 adult individuals ( n female = 75, n male = 131, mean = 47.9 ± 15.8 years) from the Kirsten Skeletal Collection, U. Stellenbosch, lived in the Cape Town metropole from the late 1960s to the mid-1990s. To study age-related changes in cortical and trabecular bone microstructure, photomontages of mid-thoracic rib cross-sections were quantitatively examined. Variables include relative cortical area (Rt.Ct.Ar), osteon population density (OPD), osteon area (On.Ar), bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular spacing (Tb.Sp). All cortical variables demonstrated significant relationships with age in both sexes, with women showing stronger overall age associations. Peak bone mass was compromised in some men, possibly reflecting poor nutritional quality and/or substance abuse issues throughout adolescence and early adulthood. In women, greater predicted decrements in On.Ar and Rt.Ct.Ar suggest a structural disadvantage with age, consistent with postmenopausal bone loss. Age-related patterns in trabecular bone microarchitecture are variable and difficult to explain. Except for Tb.Th, there are no statistically significant relationships with age in women. Men demonstrate significant negative correlations between BV/TV, Tb.N, and age, and a significant positive correlation between Tb.Sp and age. This research highlights sex-specific differences in patterns of age-related bone loss, and provides context for discussion of contemporary South African bone health. While the study sample demonstrates indicators of poor bone quality, osteoporosis research continues to be under-prioritized in South Africa. © 2018 Wiley Periodicals, Inc.
The role of fixation and bone quality on the mechanical stability of tibial knee components.
Lee, R W; Volz, R G; Sheridan, D C
1991-12-01
Tibial component loosening remains one of the major causes of failure of cemented and noncemented total knee arthroplasties. In this study, the authors identified the role of implant design, method of fixation, and bone density as it related to implant stability. The physical properties of "good" and "bad" bone were simulated using a "good" and "bad" foam model of the proximal tibia, fabricated in the laboratory from DARO RF-100 foam. A generic tibial component permitting various fixation designs was implanted into "good" and "bad" variable density foam tibial models in both cemented and noncemented modes. The mechanical stability of the implants was determined using a Materials Testing Machine by the application of an eccentrically applied cyclic load. The micromotion (subsidence and lift-off) of the tibial implants was recorded using two Linear Variable Differential Transformers. Statistically significant differences in implant stability were recorded as a function of fixation method. The most rigid implant fixation was achieved using four peripherally placed, 6.5-mm cancellous screws. The addition of a central stem added stability only in the case of "poor" quality foam. The mechanical stability of noncemented implants related directly to the density of the foam. Implant stability was greatly enhanced in "poor" quality foam by the use of cement. The method of implant fixation and bone density are critical determinants to tibial implant stability.
Child Abuse or Osteogenesis Imperfecta?
... Most cases involve a defect in type 1 collagen—the protein “scaffolding” of bone and other connective ... bodies to make either too little type 1 collagen or poor quality type 1 collagen. The result ...
Silva, Mauricio F; Marta, Gustavo N; Lisboa, Felipe P C; Watte, Guilherme; Trippa, Fabio; Maranzano, Ernesto; da Motta, Neiro W; Popovic, Marko; Ha, Tuan; Burmeister, Bryan; Chow, Edward
2017-06-01
Purpose To evaluate the efficacy and safety of hypofractionated radiotherapy (16 Gy in 2 fractions, 1 week apart) in patients with complicated bone metastases and poor performance status. Methods A prospective single-arm phase II clinical trial was conducted from July 2014 to May 2016. The primary endpoint was pain response as defined in the International Consensus on Palliative Radiotherapy Endpoints. Secondary endpoints included quality of life as measured by quality of life questionnaire (QLQ) PAL-15 and QLQ-BM22 European Organisation for Research and Treatment of Cancer guidelines, pain flare, adverse events, re-irradiation, and skeletal complications. Results Fifty patients were enrolled. There were 23 men with a median age of 58 years (range 26-86). Of the 50 patients, 38 had an extraosseous soft tissue component, 18 needed postsurgical radiation, 3 had neuropathic pain, and 3 had an impending fracture in a weight-bearing bone. At 2 months, 33 patients were alive (66%). Four (12.5%) had a complete response and 12 (37.5%) had a partial response. A statistically significant improvement was seen in the functional interference (p = 0.01) and psychosocial aspects (p = 0.03) of the BM22. No patient had spinal cord compression. One patient required surgery for pathologic fracture, and another re-irradiation. Conclusions Hypofractionated radiotherapy (16 Gy in 2 fractions of 8 Gy 1 week apart) achieved satisfactory pain relief and safety results in patients with complicated bone metastases and poor performance status.
Klotz, Matthias C M; Beckmann, Nicholas A; Bitsch, Rudi G; Seebach, Elisabeth; Reiner, Tobias; Jäger, Sebastian
2014-11-13
In cases of poor bone quality, intraoperative torque measurement might be an alternative to preoperative dual-energy X-ray absorptiometry (DXA) to assess bone quality in total hip arthroplasty (THA). Trabecular peak torque measurement was applied in 14 paired fresh frozen human femurs. Here, a 6.5 × 23 mm wingblade was inserted into the proximal femur without harming the lateral cortical bone. Further tests of the proximal femur also evaluated bone strength (DXA, micro-computed tomography (μCT), monoaxial compression test), and the results were compared to the trabecular torque measurement. Student's t-test was used to compare the values of the groups. Pearson product-moment was applied to correlate the values of the peak torque measurement with the bone strength measured by DXA, μCT, and monoaxial compression test. In the femoral head, the mean trabecular peak torque was 4.38 ± 1.86 Nm. These values showed a strong correlation with the values of the DXA, the μCT, and the biomechanical load test (Pearson's product-moment: DXA: 0.86, μCT-BMD: 0.80, load test: 0.85). Furthermore, the torque measurement showed a more pronounced correlation with the biomechanical load test compared to the DXA. The use of this method provides highly diagnostic information about bone quality. Since the approach was adjusted for THA, no harm of the lateral bone stock will result from this measurement during surgery. The results of this initial study employing small sample sizes indicate that this new method is as sensitive as DXA in predicting bone quality and may function as an intraoperative alternative to DXA in THA. Nevertheless, before this method will turn into clinical use, more research and clinical trials are necessary.
Catalano, A; Morabito, N; Di Vieste, G; Pintaudi, B; Cucinotta, D; Lasco, A; Di Benedetto, A
2013-05-01
Several studies have reported increased fracture risk in Type 1 diabetes mellitus (T1DM). Quantitative Ultrasound (QUS) provides information on the structure and elastic properties of bone, which are important determinants of fracture risk, along with bone mineral density. To study phalangeal sites by QUS, examine bone turnover markers and analyze association between these factors with metabolic control in a population of pre-menopausal women with T1DM. Thirty-five T1DM pre-menopausal women (mean age 34.5 ± 6.8 yr) attending the Diabetic Outpatients Clinic in the Department of Internal Medicine, University of Messina, were consecutively enrolled and divided into two groups, taking into account the mean value of glycated hemoglobin in the last three years. Twenty healthy age-matched women served as controls. Phalangeal ultrasound measurements [Amplitude Dependent Speed of Sound (AD-SoS), Ultrasound Bone Profile Index (UBPI), TScore, Z-Score] were performed using a DBM Sonic Bone Profiler. Osteocalcin and deoxypyridinoline served as markers of bone formation and bone resorption, respectively. T1DM women with poor metabolic control showed lower phalangeal QUS values compared to healthy controls (p<0.01) and T1DM women with good metabolic control (p<0.05). No significant differences in QUS measurements were detected between T1DM women with good metabolic control and healthy controls. Lower bone formation and increased bone resorption, although not statistically significant, were observed in patients with poor metabolic control in comparison to patients with good metabolic control. Poor metabolic control may worsen the quality of bone in T1DM. Phalangeal QUS could be considered as a tool to screen T1DM women for osteoporosis in pre-menopausal age.
Offermanns, Vincent; Andersen, Ole Zoffmann; Riede, Gregor; Andersen, Inge Hald; Almtoft, Klaus Pagh; Sørensen, Søren; Sillassen, Michael; Jeppesen, Christian Sloth; Rasse, Michael; Foss, Morten; Kloss, Frank
2016-01-01
Since strontium (Sr) is known for its anabolic and anticatabolic effect on bone, research has been focused on its potential impact on osseointegration. The objective of this study was to investigate the performance of nanotopographic implants with a Sr-functionalized titanium (Ti) coating (Ti–Sr–O) with respect to osseointegration in osteoporotic bone. The trial was designed to examine the effect of sustained-release characteristics of Sr in poor-quality bone. Three Ti–Sr–O groups, which differed from each other in coating thickness, Sr contents, and Sr release, were examined. These were prepared by a magnetron sputtering process and compared to uncoated grade 4 Ti. Composition, morphology, and mechanical stability of the coatings were analyzed, and Sr release data were gained from in vitro washout experiments. In vivo investigation was carried out in an osteoporotic rat model and analyzed histologically, 6 weeks and 12 weeks after implantation. Median values of bone-to-implant contact and new bone formation after 6 weeks were found to be 84.7% and 54.9% (best performing Sr group) as compared to 65.2% and 23.8% (grade 4 Ti reference), respectively. The 12-week observation period revealed 84.3% and 56.5% (best performing Sr group) and 81.3% and 39.4% (grade 4 Ti reference), respectively, for the same measurements. The increase in new bone formation was found to correlate with the amount of Sr released in vitro. The results indicate that sputtered nanostructured Ti–Sr–O coatings showed sustained release of Sr and accelerate osseointegration even in poor-quality bone, and thus, may have impact on practical applications for medical implants. PMID:27313456
Green, Danielle E.; Rubin, Clinton T.
2014-01-01
The rising levels of radiation exposure, specifically for medical treatments and accidental exposures, have added great concern for the long term risks of bone fractures. Both the bone marrow and bone architecture are devastated following radiation exposure. Even sub-lethal doses cause a deficit to the bone marrow microenvironment, including a decline in hematopoietic cells, and this deficit occurs in a dose dependent fashion. Certain cell phenotypes though are more susceptible to radiation damage, with mesenchymal stem cells being more resilient than the hematopoietic stem cells. The decline in total bone marrow hematopoietic cells is accompanied with elevated adipocytes into the marrow cavity, thereby inhibiting hematopoiesis and recovery of the bone marrow microenvironment. Poor bone marrow is also associated with a decline in bone architectural quality. Therefore, the ability to maintain the bone marrow microenvironment would hinder much of the trabecular bone loss caused by radiation exposure, ultimately decreasing some comorbidities in patients exposed to radiation. PMID:24607941
Petrungaro, Paul S; Gonzalez, Santiago; Villegas, Carlos
2018-02-01
As dental implants become more popular for the treatment of partial and total edentulism and treatment of "terminal dentitions," techniques for the management of the atrophic posterior maxillae continue to evolve. Although dental implants carry a high success rate long term, attention must be given to the growing numbers of revisions or retreatment of cases that have had previous dental implant treatment and/or advanced bone replacement procedures that, due to either poor patient compliance, iatrogenic error, or poor quality of the pre-existing alveolar and/or soft tissues, have led to large osseous defects, possibly with deficient soft-tissue volume. In the posterior maxillae, where the poorest quality of bone in the oral cavity exists, achieving regeneration of the alveolar bone and adequate volume of soft tissue remains a complex procedure. This is made even more difficult when dealing with loss of dental implants previously placed, aggressive bone reduction required in various implant procedures, and/or residual sinus infections precluding proper closure of the oral wound margins. The purpose of this article is to outline a technique for the total closure of large oro-antral communications, with underlying osseous defects greater than 15 mm in width and 30 mm in length, for which multiple previous attempts at closure had failed, to achieve not only the reconstruction of adequate volume and quality of soft tissues in the area of the previous fistula, but also total regeneration of the osseous structures in the area of the large void.
Development, validation and characterization of a novel mouse model of Adynamic Bone Disease (ABD).
Ng, Adeline H; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D
2014-11-01
The etiology of Adynamic Bone Disease (ABD) is poorly understood but the hallmark of ABD is a lack of bone turnover. ABD occurs in renal osteodystrophy (ROD) and is suspected to occur in elderly patients on long-term anti-resorptive therapy. A major clinical concern of ABD is diminished bone quality and an increased fracture risk. To our knowledge, experimental animal models for ABD other than ROD-ABD have not been developed or studied. The objectives of this study were to develop a mouse model of ABD without the complications of renal ablation, and to characterize changes in bone quality in ABD relative to controls. To re-create the adynamic bone condition, 4-month old female Col2.3Δtk mice were treated with ganciclovir to specifically ablate osteoblasts, and pamidronate was used to inhibit osteoclastic resorption. Four groups of animals were used to characterize bone quality in ABD: Normal bone controls, No Formation controls, No Resorption controls, and an Adynamic group. After a 6-week treatment period, the animals were sacrificed and the bones were harvested for analyses. Bone quality assessments were conducted using established techniques including bone histology, quantitative backscattered electron imaging (qBEI), dual energy X-ray absorptiometry (DXA), microcomputed tomography (microCT), and biomechanical testing. Histomorphometry confirmed osteoblast-related hallmarks of ABD in our mouse model. Bone formation was near complete suppression in the No Formation and Adynamic specimens. Inhibition of bone resorption in the Adynamic group was confirmed by tartrate-resistant acid phosphatase (TRAP) stain. Normal bone mineral density and architecture were maintained in the Adynamic group, whereas the No Formation group showed a reduction in bone mineral content and trabecular thickness relative to the Adynamic group. As expected, the No Formation group had a more hypomineralized profile and the Adynamic group had a higher mean mineralization profile that is similar to suppressed bone turnover in human. This data confirms successful replication of the adynamic bone condition in a mouse without the complication of renal ablation. Our approach is the first model of ABD that uses pharmacological manipulation in a transgenic mouse to mimic the bone cellular dynamics observed in the human ABD condition. We plan to use our mouse model to investigate the adynamic bone condition in aging and to study changes to bone quality and fracture risk as a consequence of over-suppressed bone turnover. Copyright © 2014 Elsevier Inc. All rights reserved.
Gausden, Elizabeth; Garner, Matthew R; Fabricant, Peter D; Warner, Stephen J; Shaffer, Andre D; Lorich, Dean G
2017-06-01
The operative management of tibial plateau fractures in elderly patients has historically led to inconsistent results, and these clinical outcomes were thought to be associated with poor bone quality often in elderly patients. The goal of this study was to investigate the relationship between bone density and subjective clinical outcome scores after open reduction and internal fixation of tibial plateau fractures. This is a retrospective cohort study from a single-surgeon conducted at an Academic, Level 1 Trauma Center. A preoperative computed tomography (CT) scan was obtained for all patients. Bone density of the distal femur was quantified with Hounsfield units (HU) as measured on axial CT scans. Inter-rater reliability of HU measurements was assessed using interclass correlation coefficients. Regression models controlling for age were used to identify relationships between bone density (HU) and the following variables: articular subsidence and 1-year subjective clinical outcomes scores [Knee Outcome Survey Activities of Daily Living Scale (KOS-ADLS), and Short-Form-36 (SF-36) physical and mental component scores (PCS, MCS)]. Sixty-one patients with a mean age of 59.3 years (range 27-85 years) and a minimum of 12 months of clinical follow-up were included in the study. The majority of the fractures (32 of 61) were classified as Schatzker II tibial plateau fractures, and there were 13 Schatzker V fractures, 11 Schatzker VI fractures, 2 Schatzker IV fractures and 1 Schatzker 1 fracture. HU measurements demonstrated an almost perfect inter-observer reliability (ICC = 0.97). Age was negatively correlated with HU measurements (r = -0.51, p < 0.001), and using a geriatric cut-off of 65 years of age, the geriatric group had a lower mean HU compared to the non-geriatric group (78.2 versus 114.8, p = 0.018). There was no significant relationship between bone quality, as assessed by distal femoral HU, and any subjective clinical outcome score. Inferior bone mineral density alone does not appear to affect clinical outcomes 1 year postoperatively when bone grafting is used to restore osseous voids. Poor bone quality should not be used as an indication for non-operative management of tibial plateau fractures.
Ochman, Sabine; Evers, Julia; Raschke, Michael J; Vordemvenne, Thomas
2012-01-01
The treatment of complex fractures of the distal tibia, ankle, and talus with soft tissue damage, bone loss, and nonreconstructable joints for which the optimal timing for reduction and fixation has been missed is challenging. In such cases primary arthrodesis might be a treatment option. We report a series of multi-injured patients with severe soft tissue damage and bone loss, who were treated with a retrograde tibiotalocalcaneal arthrodesis nail as a minimally invasive treatment option for limb salvage. After a median follow-up of 5.4 years, all patients returned to their former profession. The ankle and bone fusion was complete, with moderate functional results and quality of life. Calcaneotibial arthrodesis using a retrograde nail is a good treatment option for nonreconstructable fractures of the ankle joint with severe bone loss and poor soft tissue quality in selected patients with multiple injuries, in particular, those involving both lower extremities, as a salvage procedure. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Desai, Shrikar R; Singh, Rika; Karthikeyan, I
2013-09-01
The aim of the study is to evaluate the influence implant length on stress distribution at bone implant interface in single immediately loaded implants when placed in D4 bone quality. A 2-dimensional finite element models were developed to simulate two types of implant designs, standard 3.75 mm-diameter tapered body implants of 6 and 10 mm lengths. The implants were placed in D4 bone quality with a cortical bone thickness of 0.5 mm. The implant design incorporated microthreads at the crestal part and the rest of the implant body incorporated Acme threads. The Acme thread form has a 29° thread angle with a thread height half of the pitch; the apex and valley are flat. A 100 N of force was applied vertically and in the oblique direction (at an angle of 45°) to the long axis of the implants. The respective material properties were assigned. Micro-movements and stresses at the bone implant interface were evaluated. The results of total deformation (micro-movement) and Von mises stress were found to be lower for tapered long implant (10 mm) than short implant (6 mm) while using both vertical as well as oblique loading. Short implants can be successfully placed in poor bone quality under immediate loading protocol. The novel approach of the combination of microthreads at the crestal portion and acme threads for body portion of implant fixture gave promising results.
PERIPROSTHETIC FRACTURES IN TOTAL KNEE ARTHROPLASTY
de Alencar, Paulo Gilberto Cimbalista; De Bortoli, Giovani; Ventura Vieira, Inácio Facó; Uliana, Christiano Saliba
2015-01-01
The increasing number of total knee arthroplasties, in combination with the population's longer life expectancy, has led to a greater number of long-term complications. These add to the poor bone quality of elderly patients and often culminate in periprosthetic fractures. This complex orthopedic problem has a great diversity of clinical presentation. It may affect any of the bones in the knee and, because of the difficulty in finding solutions, may lead to disastrous outcomes. Its treatment requires that orthopedists should have broad knowledge both of arthroplasty techniques and of osteosynthesis, as well as an elaborate therapeutic arsenal including, for example, access to a bone bank. PMID:27022546
Xie, Shan Juan; Lu, Yu; Yoon, Sook; Yang, Jucheng; Park, Dong Sun
2015-01-01
Finger vein recognition has been considered one of the most promising biometrics for personal authentication. However, the capacities and percentages of finger tissues (e.g., bone, muscle, ligament, water, fat, etc.) vary person by person. This usually causes poor quality of finger vein images, therefore degrading the performance of finger vein recognition systems (FVRSs). In this paper, the intrinsic factors of finger tissue causing poor quality of finger vein images are analyzed, and an intensity variation (IV) normalization method using guided filter based single scale retinex (GFSSR) is proposed for finger vein image enhancement. The experimental results on two public datasets demonstrate the effectiveness of the proposed method in enhancing the image quality and finger vein recognition accuracy. PMID:26184226
Xie, Shan Juan; Lu, Yu; Yoon, Sook; Yang, Jucheng; Park, Dong Sun
2015-07-14
Finger vein recognition has been considered one of the most promising biometrics for personal authentication. However, the capacities and percentages of finger tissues (e.g., bone, muscle, ligament, water, fat, etc.) vary person by person. This usually causes poor quality of finger vein images, therefore degrading the performance of finger vein recognition systems (FVRSs). In this paper, the intrinsic factors of finger tissue causing poor quality of finger vein images are analyzed, and an intensity variation (IV) normalization method using guided filter based single scale retinex (GFSSR) is proposed for finger vein image enhancement. The experimental results on two public datasets demonstrate the effectiveness of the proposed method in enhancing the image quality and finger vein recognition accuracy.
Stokke, Jamie; Sung, Lillian; Gupta, Abha; Lindberg, Antoinette; Rosenberg, Abby R.
2015-01-01
Background Pediatric, adolescent and young adult (AYA) survivors of bone sarcomas are at risk for poor quality of life (QOL). We conducted a systematic review and meta-analysis to summarize the literature describing QOL in this population and differences in QOL based on local control procedures. Procedure Included studies described ≥5 patients <25 years-old who had completed local control treatment for bone sarcoma, defined QOL as a main outcome, and measured it with a validated instrument. Data extraction and quality assessments were conducted with standardized tools. Meta-analyses compared QOL based on surgical procedure (limb-sparing versus amputation) and were stratified by assessment type (objective physical function, clinician-assessed disability, patient-reported disability and patient-reported QOL). Effect sizes were reported as the Standard Mean Difference when multiple instruments were used within a comparison and Weighted Mean Difference otherwise. All were weighted by inverse variance and modeled with random effects. Results Twenty-two of 452 unique manuscripts were included in qualitative syntheses, 8 of which were included in meta-analyses. Manuscripts were heterogeneous with respect to included patient populations (age, tumor type, time since treatment) and QOL instruments. Prospective studies suggested that QOL improves over time, and that female sex and older age at diagnosis are associated with poor QOL. Meta-analyses showed no differences in outcomes between patients who underwent limb-sparing versus amputation for local control. Conclusion QOL studies among children and AYAs with bone sarcoma are remarkably diverse, making it difficult to detect trends in patient outcomes. Future research should focus on standardized QOL instruments and interpretations. PMID:25820683
Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-01-01
99m Technetium-methylene diphosphonate ( 99m Tc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99m Tc-MDP-bone scan images. A set of 89 low contrast 99m Tc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t -test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful.
Short Implants: New Horizon in Implant Dentistry.
Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan
2016-09-01
The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.
Short Implants: New Horizon in Implant Dentistry
Gulati, Manisha; Garg, Meenu; Pathak, Chetan
2016-01-01
The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration. PMID:27790598
Degidi, Marco; Daprile, Giuseppe; Piattelli, Adriano
2015-06-01
The purpose of this present study was to investigate the relation between implant site underpreparation and primary stability in the presence of poor-quality bone. A study was performed on fresh humid bovine bone; samples presented no cortical layer with a cancellous structure inside and were obtained from the hip. The bones were firmly attached to a base device. Sixty sites were prepared according to the protocol provided by the manufacturer: a 2-mm pilot drill was introduced to the proper depth and then twist drills of 3 and 3.4 mm were used. After site preparation, 20 3.4- × 11-mm (standard protocol group), 20 3.8- × 11-mm (10% undersized group), and 20 4.5- × 11-mm (25% undersized group) implants were inserted at a calibrated maximum torque of 70 N-cm at the predetermined speed of 30 rpm. After implant insertion, variable torque work (VTW), maximum insertion torque (peak IT), and resonance frequency analysis (RFA) values were recorded. The standard protocol group showed a mean VTW of 565.77 ± 219.12 N-cm, a peak IT of 11.3 ± 4.44 N-cm, and an RFA of 69.35 ± 7.35 implant stability quotient (ISQ). The 10% undersized group showed a mean VTW of 1,240.24 ± 407.78 N-cm, a peak IT of 20.26 ± 7.03 N-cm, and an RFA of 73.40 ± 2.33 ISQ. The 25% undersized group showed a mean VTW of 1,254.96 ± 727.49 N-cm, a peak IT of 17.15 ± 10.39 N-cm, and an RFA of 72.30 ± 6.70 ISQ. For VTW, the difference between the standard and undersized protocol values was statistically significant; for peak IT, the difference between the standard and 10% undersized protocol values was statistically significant; no other statistical differences were found between mean values. In the presence of poor-bone quality, a 10% undersized protocol is sufficient to improve the primary stability of the implant; additional decreases do not seem to enhance primary stability values. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems.
Liu, Yuchun; Chan, Jerry K Y; Teoh, Swee-Hin
2015-02-01
Poor angiogenesis within tissue-engineered grafts has been identified as a main challenge limiting the clinical introduction of bone tissue-engineering (BTE) approaches for the repair of large bone defects. Thick BTE grafts often exhibit poor cellular viability particularly at the core, leading to graft failure and lack of integration with host tissues. Various BTE approaches have been explored for improving vascularisation in tissue-engineered constructs and are briefly discussed in this review. Recent investigations relating to co-culture systems of endothelial and osteoblast-like cells have shown evidence of BTE efficacy in increasing vascularization in thick constructs. This review provides an overview of key concepts related to bone formation and then focuses on the current state of engineered vascularized co-culture systems using bone repair as a model. It will also address key questions regarding the generation of clinically relevant vascularized bone constructs as well as potential directions and considerations for research with the objective of pursuing engineered co-culture systems in other disciplines of vascularized regenerative medicine. The final objective is to generate serious and functional long-lasting vessels for sustainable angiogenesis that will enable enhanced cellular survival within thick voluminous bone grafts, thereby aiding in bone formation and remodelling in the long term. However, more evidence about the quality of blood vessels formed and its associated functional improvement in bone formation as well as a mechanistic understanding of their interactions are necessary for designing better therapeutic strategies for translation to clinical settings. Copyright © 2012 John Wiley & Sons, Ltd.
Desai, Shrikar R.; Singh, Rika; Karthikeyan, I.
2013-01-01
Aim: The aim of the study is to evaluate the influence implant length on stress distribution at bone implant interface in single immediately loaded implants when placed in D4 bone quality. Materials and Methods: A 2-dimensional finite element models were developed to simulate two types of implant designs, standard 3.75 mm–diameter tapered body implants of 6 and 10 mm lengths. The implants were placed in D4 bone quality with a cortical bone thickness of 0.5 mm. The implant design incorporated microthreads at the crestal part and the rest of the implant body incorporated Acme threads. The Acme thread form has a 29° thread angle with a thread height half of the pitch; the apex and valley are flat. A 100 N of force was applied vertically and in the oblique direction (at an angle of 45°) to the long axis of the implants. The respective material properties were assigned. Micro-movements and stresses at the bone implant interface were evaluated. Results: The results of total deformation (micro-movement) and Von mises stress were found to be lower for tapered long implant (10 mm) than short implant (6 mm) while using both vertical as well as oblique loading. Conclusion: Short implants can be successfully placed in poor bone quality under immediate loading protocol. The novel approach of the combination of microthreads at the crestal portion and acme threads for body portion of implant fixture gave promising results. PMID:24174759
Customized a Ti6Al4V Bone Plate for Complex Pelvic Fracture by Selective Laser Melting.
Wang, Di; Wang, Yimeng; Wu, Shibiao; Lin, Hui; Yang, Yongqiang; Fan, Shicai; Gu, Cheng; Wang, Jianhua; Song, Changhui
2017-01-04
In pelvic fracture operations, bone plate shaping is challenging and the operation time is long. To address this issue, a customized bone plate was designed and produced using selective laser melting (SLM) technology. The key steps of this study included designing the customized bone plate, metal 3D printing, vacuum heat treatment, surface post-processing, operation rehearsal, and clinical application and evaluation. The joint surface of the bone plate was placed upwards with respect to the build platform to keep it away from the support and to improve the quality of the joint surface. Heat conduction was enhanced by adding a cone-type support beneath the bone plate to prevent low-quality fabrication due to poor heat conductivity of the Ti-6Al-4V powder. The residual stress was eliminated by exposing the SLM-fabricated titanium-alloy bone plate to a vacuum heat treatment. Results indicated that the bone plate has a hardness of HV1 360-HV1 390, an ultimate tensile strength of 1000-1100 MPa, yield strength of 900-950 MPa, and an elongation of 8%-10%. Pre-operative experiments and operation rehearsal were performed using the customized bone plate and the ABC-made pelvic model. Finally, the customized bone plate was clinically applied. The intraoperative C-arm and postoperative X-ray imaging results indicated that the customized bone plate matched well to the damaged pelvis. The customized bone plate fixed the broken bone and guides pelvis restoration while reducing operation time to about two hours. The customized bone plate eliminated the need for preoperative titanium plate pre-bending, thereby greatly reducing surgical wounds and operation time.
Customized a Ti6Al4V Bone Plate for Complex Pelvic Fracture by Selective Laser Melting
Wang, Di; Wang, Yimeng; Wu, Shibiao; Lin, Hui; Yang, Yongqiang; Fan, Shicai; Gu, Cheng; Wang, Jianhua; Song, Changhui
2017-01-01
In pelvic fracture operations, bone plate shaping is challenging and the operation time is long. To address this issue, a customized bone plate was designed and produced using selective laser melting (SLM) technology. The key steps of this study included designing the customized bone plate, metal 3D printing, vacuum heat treatment, surface post-processing, operation rehearsal, and clinical application and evaluation. The joint surface of the bone plate was placed upwards with respect to the build platform to keep it away from the support and to improve the quality of the joint surface. Heat conduction was enhanced by adding a cone-type support beneath the bone plate to prevent low-quality fabrication due to poor heat conductivity of the Ti-6Al-4V powder. The residual stress was eliminated by exposing the SLM-fabricated titanium-alloy bone plate to a vacuum heat treatment. Results indicated that the bone plate has a hardness of HV1 360–HV1 390, an ultimate tensile strength of 1000–1100 MPa, yield strength of 900–950 MPa, and an elongation of 8%–10%. Pre-operative experiments and operation rehearsal were performed using the customized bone plate and the ABC-made pelvic model. Finally, the customized bone plate was clinically applied. The intraoperative C-arm and postoperative X-ray imaging results indicated that the customized bone plate matched well to the damaged pelvis. The customized bone plate fixed the broken bone and guides pelvis restoration while reducing operation time to about two hours. The customized bone plate eliminated the need for preoperative titanium plate pre-bending, thereby greatly reducing surgical wounds and operation time. PMID:28772395
Shanmugarajan, Srinivasan; Swoboda, Kathryn J.; Iannaccone, Susan T.; Ries, William L.; Maria, Bernard L.; Reddy, Sakamuri V.
2009-01-01
Spinal muscular atrophy is the second most common fatal childhood disorder. Core clinical features include muscle weakness caused by degenerating lower motor neurons and a high incidence of bone fractures and hypercalcemia. Fractures further compromise quality of life by progression of joint contractures or additional loss of motor function. Recent observations suggest that bone disease in spinal muscular atrophy may not be attributed entirely to lower motor neuron degeneration. The presence of the spinal muscular atrophy disease-determining survival motor neuron gene (SMN), SMN expression, and differential splicing in bone-resorbing osteoclasts was recently discovered. Its ubiquitous expression and the differential expression of splice variants suggest that SMN has specific roles in bone cell function. SMN protein also interacts with osteoclast stimulatory factor. Mouse models of human spinal muscular atrophy disease suggest a potential role of SMN protein in skeletal development. Dual energy x-ray absorptiometry analysis demonstrated a substantial decrease in total bone area and poorly developed caudal vertebra in the mouse model. These mice also had pelvic bone fractures. Studies delineating SMN signaling mechanisms and gene transcription in a cell-specific manner will provide important molecular insights into the pathogenesis of bone disease in children with spinal muscular atrophy. Moreover, understanding bone remodeling in spinal muscular atrophy may lead to novel therapeutic approaches to enhance skeletal health and quality of life. This article reviews the skeletal complications associated with spinal muscular atrophy and describes a functional role for SMN protein in osteoclast development and bone resorption activity. PMID:17761651
The Impact of Type 2 Diabetes on Bone Fracture Healing
Marin, Carlos; Luyten, Frank P.; Van der Schueren, Bart; Kerckhofs, Greet; Vandamme, Katleen
2018-01-01
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease known by the presence of elevated blood glucose levels. Nowadays, it is perceived as a worldwide epidemic, with a very high socioeconomic impact on public health. Many are the complications caused by this chronic disorder, including a negative impact on the cardiovascular system, kidneys, eyes, muscle, blood vessels, and nervous system. Recently, there has been increasing evidence suggesting that T2DM also adversely affects the skeletal system, causing detrimental bone effects such as bone quality deterioration, loss of bone strength, increased fracture risk, and impaired bone healing. Nevertheless, the precise mechanisms by which T2DM causes detrimental effects on bone tissue are still elusive and remain poorly studied. The aim of this review was to synthesize current knowledge on the different factors influencing the impairment of bone fracture healing under T2DM conditions. Here, we discuss new approaches used in recent studies to unveil the mechanisms and fill the existing gaps in the scientific understanding of the relationship between T2DM, bone tissue, and bone fracture healing. PMID:29416527
Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-01-01
Purpose of the Study: 99mTechnetium-methylene diphosphonate (99mTc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99mTc-MDP-bone scan images. Materials and Methods: A set of 89 low contrast 99mTc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. Results: This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t-test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. Conclusion: GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful. PMID:29142344
Anderson, Ryan T; Pacaccio, Douglas J; Yakacki, Christopher M; Carpenter, R Dana
2016-09-01
Tibio-talo-calcaneal (TTC) arthrodesis is an end-stage treatment for patients with severe degeneration of the ankle joint. This treatment consists of using an intramedullary nail (IM) to fuse the calcaneus, talus, and tibia bones together into one construct. Poor bone quality within the joint prior to surgery is common and thus the procedure has shown complications due to non-union. However, a new FDA-approved IM nail has been released that houses a nickel titanium (NiTi) rod that uses its inherent pseudoelastic material properties to apply active compression across the fusion site. Finite element analysis was performed to model the mechanical response of the NiTi within the device. A bone model was then developed based on a quantitative computed tomography (QCT) image for anatomical geometry and bone material properties. A total bone and device system was modeled to investigate the effect of bone quality change and gather load-sharing properties during gait loading. It was found that during the highest magnitude loading of gait, the load taken by the bone was more than 50% higher than the load taken by the nail. When comparing the load distribution during gait, results from this study would suggest that the device helps to prevent stress shielding by allowing a more even distribution of load between bone and nail. In conditions where bone quality may vary patient-to-patient, the model indicates that a 10% decrease in overall bone modulus (i.e. material stiffness) due to reduced bone mineral density would result in higher stresses in the nail (3.4%) and a marginal decrease in stress for the bone (0.5%). The finite element model presented in this study can be used as a quantitative tool to further understand the stress environment of both bone and device for a TTC fusion. Furthermore, the methodology presented gives insight on how to computationally program and use the unique material properties of NiTi in an active compression state useful for bone fracture healing or fusion treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sachsenmaier, Saskia M.; Ipach, Ingmar; Kluba, Torsten
2015-01-01
Extremity soft tissue and bone sarcomas represent a rare group of bone and connective tissue cancers. In literature, there is little information about psycho-emotional status and impact on quality of life after the diagnosis and treatment of this kind of tumors. The aim of this survey was to define the profile of the patients at risk and their need for psychooncological care. Our self-created questionnaire consists of 71 items related to the individual emotional, mental and physical situation after the diagnosis of soft tissue and bone sarcoma. Sixty-six patients, surgically treated at our department, were included. Only 37.5% of the patients considered themselves to be completely emotional stable. Psychooncological treatment was accepted mostly by female patients, by patients with higher education level and by married patients. Emotional stability and confidence in future were associated with a strong familiar background, with numerous consultations of psychooncological service and also to gender and physical condition. Current quality of life was strongly correlated to physical condition. Thanks to our questionnaire, we disclosed few risk factors for negative emotional outcome after therapy, such as higher age, social isolation, female gender and poor physical status. PMID:26330994
NASA Astrophysics Data System (ADS)
Amouriq, Yves; Guedon, Jeanpierre; Normand, Nicolas; Arlicot, Aurore; Benhdech, Yassine; Weiss, Pierre
2011-03-01
Bone microarchitecture is the predictor of bone quality or bone disease. It can only be measured on a bone biopsy, which is invasive and not available for all clinical situations. Texture analysis on radiographs is a common way to investigate bone microarchitecture. But relationship between three-dimension histomorphometric parameters and two-dimension texture parameters is not always well known, with poor results. The aim of this study is to performed angulated radiographs of the same region of interest and see if a better relationship between texture analysis on several radiographs and histomorphometric parameters can be developed. Computed radiography images of dog (Beagle) mandible section in molar regions were compared with high-resolution micro-CT (Computed-Tomograph) volumes. Four radiographs with 27° angle (up, down, left, right, using Rinn ring and customized arm positioning system) were performed from initial radiograph position. Bone texture parameters were calculated on all images. Texture parameters were also computed from new images obtained by difference between angulated images. Results of fractal values in different trabecular areas give some caracterisation of bone microarchitecture.
Understanding and Addressing the Global Need for Orthopaedic Trauma Care.
Agarwal-Harding, Kiran J; von Keudell, Arvind; Zirkle, Lewis G; Meara, John G; Dyer, George S M
2016-11-02
➤The burden of musculoskeletal trauma is high worldwide, disproportionately affecting the poor, who have the least access to quality orthopaedic trauma care.➤Orthopaedic trauma care is essential, and must be a priority in the horizontal development of global health systems.➤The education of surgeons, nonphysician clinicians, and ancillary staff in low and middle income countries is central to improving access to and quality of care.➤Volunteer surgical missions from rich countries can sustainably expand and strengthen orthopaedic trauma care only when they serve a local need and build local capacity.➤Innovative business models may help to pay for care of the poor. Examples include reducing costs through process improvements and cross-subsidizing from profitable high-volume activities.➤Resource-poor settings may foster innovations in devices or systems with universal applicability in orthopaedics. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Use of Animal Models in Understanding Cancer-induced Bone Pain
Slosky, Lauren M; Largent-Milnes, Tally M; Vanderah, Todd W
2015-01-01
Many common cancers have a propensity to metastasize to bone. Although malignancies often go undetected in their native tissues, bone metastases produce excruciating pain that severely compromises patient quality of life. Cancer-induced bone pain (CIBP) is poorly managed with existing medications, and its multifaceted etiology remains to be fully elucidated. Novel analgesic targets arise as more is learned about this complex and distinct pain state. Over the past two decades, multiple animal models have been developed to study CIBP’s unique pathology and identify therapeutic targets. Here, we review animal models of CIBP and the mechanistic insights gained as these models evolve. Findings from immunocompromised and immunocompetent host systems are discussed separately to highlight the effect of model choice on outcome. Gaining an understanding of the unique neuromolecular profile of cancer pain through the use of appropriate animal models will aid in the development of more effective therapeutics for CIBP. PMID:26339191
Pathogenesis of osteoporotic hip fractures.
McClung, Michael R
2003-01-01
Osteoporosis is characterized late in the course of the disease by an increased risk of fracture, particularly in the elderly. It occurs in both sexes, affecting approximately 8 million women and 2 million men aged > or = 50 years (1). While low bone density is a predictor of fractures, it is not the only determinant of fracture risk. Other factors include advanced age, altered bone quality, a personal or family history of falls, frailty, poor eyesight, debilitating diseases, and high bone turnover. A diet with sufficient calcium and vitamin D is important to minimize bone loss and, along with regular exercise, to maintain muscle strength. Bisphosphonates have been shown to reduce the risk of hip fracture. For elderly patients, the use of hip protectors may be used as a treatment of last resort. Regardless of the age of the patient, individual patient risk factors must be considered to target appropriate treatment and prevent fracture.
Boulier, A; Schwarz, J; Lespesailles, E; Baniel, A; Tomé, D; Blais, A
2016-10-01
Nutritional approaches may help to preserve bone quality. The purpose of our study was to demonstrate the efficiency of an innovative bone health product (BHP) including micellar casein rich in calcium, vitamin D2 and vitamin K2, to improve bone mineral density. The aim of postmenopausal osteoporosis treatment is to decrease bone resorption and/or increase bone formation. Because of the slow bone turnover, osteoporosis prevention and therapies are long-lasting, implying great costs and poor compliance. Even if the effects of nutrition on bone are not as marked as that of pharmaceutical agents, it can be of great help. The purpose of our study was to demonstrate the efficiency of an innovative bone health product (BHP) containing micellar casein rich in calcium, vitamin D2 and vitamin K2, for the improvement of bone mineral density (BMD). An ovariectomized mice model was used to study the effect of different concentrations of the ingredient on BMD and microarchitectural parameters. Blood concentrations of C-terminal telopeptide of type I collagen (CTX), N-terminal propeptide of type 1 procollagene (PINP), alkaline phosphatase (ALP), osteocalcin (OC) and RANKL were also measured to evaluate bone remodelling, To evaluate the efficiency of the product to modulate osteoblast and osteoclast growth and differentiation, primary murine bone cells were used. In vivo studies showed that BMD and microarchitectural parameters were dose-dependently improved after ingestion of the supplement for 3 months. We also report increased osteoblast activity as shown by increased OC activity and decreased osteoclastogenesis as shown by reduced CTX activity. In vitro studies support that BHPs stimulate osteoblast differentiation and mineralization and inhibit osteoclast resorption activity. Our results show that, when chronically ingested, BHPs improve BMD of ovariectomized mice. This work supports that providing an ingredient including micellar casein rich in calcium, vitamin D2 and vitamin K2 is more efficient than the control diet to maintain bone quality.
Smoking and diabetes. Epigenetics involvement in osseointegration.
Razzouk, Sleiman; Sarkis, Rami
2013-03-01
Bone quality is a poorly defined parameter for successful implant placement, which largely depends upon many environmental and genetic factors unique to every individual. Smoking and diabetes are among the environmental factors that most impact osseointegration. However, there is an inter-individual variability of bone response in smokers and diabetic patients. Recent data on gene-environment interactions highlight the major role of epigenetic changes to induce a specific phenotype. Histone acetylation and DNA methylation are the main events that occur and modulate the gene expression. In this paper, we emphasize the impact of epigenetics on diabetes and smoking and describe their significance in bone healing. Also, we underscore the importance of adopting a new approach in clinical management for implant placement by customizing the treatment according to the patient's specific characteristics.
Karim, Lamya; Moulton, Julia; Van Vliet, Miranda; Velie, Kelsey; Robbins, Ann; Malekipour, Fatemeh; Abdeen, Ayesha; Ayres, Douglas; Bouxsein, Mary L
2018-05-29
Skeletal fragility is a major complication of type 2 diabetes mellitus (T2D), but there is a poor understanding of mechanisms underlying T2D skeletal fragility. The increased fracture risk has been suggested to result from deteriorated bone microarchitecture or poor bone quality due to accumulation of advanced glycation end-products (AGEs). We conducted a clinical study to determine whether: 1) bone microarchitecture, AGEs, and bone biomechanical properties are altered in T2D bone, 2) bone AGEs are related to bone biomechanical properties, and 3) serum AGE levels reflect those in bone. To do so, we collected serum and proximal femur specimens from T2D (n = 20) and non-diabetic (n = 33) subjects undergoing total hip replacement surgery. A section from the femoral neck was imaged by microcomputed tomography (microCT), tested by cyclic reference point indentation, and quantified for AGE content. A trabecular core taken from the femoral head was imaged by microCT and subjected to uniaxial unconfined compression tests. T2D subjects had greater HbA 1 c (+23%, p ≤ 0.0001), but no difference in cortical tissue mineral density, cortical porosity, or trabecular microarchitecture compared to non-diabetics. Cyclic reference point indentation revealed that creep indentation distance (+18%, p ≤ 0.05) and indentation distance increase (+20%, p ≤ 0.05) were greater in cortical bone from T2D than in non-diabetics, but no other indentation variables differed. Trabecular bone mechanical properties were similar in both groups, except for yield stress, which tended to be lower in T2D than in non-diabetics. Neither serum pentosidine nor serum total AGEs were different between groups. Cortical, but not trabecular, bone AGEs tended to be higher in T2D subjects (21%, p = 0.09). Serum AGEs and pentosidine were positively correlated with cortical and trabecular bone AGEs. Our study presents new data on biomechanical properties and AGEs in adults with T2D, which are needed to better understand mechanisms contributing to diabetic skeletal fragility. Copyright © 2017. Published by Elsevier Inc.
Zoccali, C; Anelli, V; Chichierchia, G; Erba, F; Biagini, R
2014-01-01
The objective is to reconstruct the subchondral bone after curettage of benign tumors located in the epiphysis, a relevant topic in oncological orthopedics. Several bones substituted are commercially available, yet none of these are suitably moldable to repair or be placed in the bone defect; although autologous bone for little defects and homologous for bigger defects are still considered the standard in reconstruction, we verify the ability to adapt and support articular cartilage through the application of Plexur M (Registered Trademark), a newly engineered biomaterial bone. In the present study, we enrolled the first ten consecutive cases referred to our department, where patients were affected by a benign epiphyseal tumor destroying the subchondral bone through to the articular cartilage. Every patient underwent curettage of the disease, apposition of a newly engineered biomaterial bone and filling with homologous morselized bone. The quality of reconstruction was evaluated by two surgeons and by a radiologist based on the achievement of surgical objectives and comparing pre and postoperative imaging. In seven out of eight cases of lesions located in the lower limbs the quality of reconstruction was considered good, restoring an adequate support to the articular cartilage. The quality of the remaining case was considered poor probably due to the extent of the spread of the disease, which destroyed the entire proximal tibial epiphysis. In the two cases where the disease was located in the upper limbs, the Plexur M application restored support to the articular cartilage sufficiently well. However, in the case of a giant cell tumor of the distal radial epiphysis there was a slight reabsorption of the morselized homologous bone. Our series suggest that Plexur M should be considered a valid option for orthopedic surgeons in restoring adequate mechanical support to the articular cartilage; nevertheless, considering its high cost, its use might be reserved to selected cases until further studies can verify the integration process, the effects on the survival of the articular cartilage and on the prevention of premature osteoarthritis.
A paradigm shift for bone quality in dentistry: A literature review.
Kuroshima, Shinichiro; Kaku, Masaru; Ishimoto, Takuya; Sasaki, Muneteru; Nakano, Takayoshi; Sawase, Takashi
2017-10-01
The aim of this study was to present the current concept of bone quality based on the proposal by the National Institutes of Health (NIH) and some of the cellular and molecular factors that affect bone quality. This is a literature review which focuses on collagen, biological apatite (BAp), and bone cells such as osteoblasts and osteocytes. In dentistry, the term "bone quality" has long been considered to be synonymous with bone mineral density (BMD) based on radiographic and sensible evaluations. In 2000, the NIH proposed the concept of bone quality as "the sum of all characteristics of bone that influence the bone's resistance to fracture," which is completely independent of BMD. The NIH defines bone quality as comprising bone architecture, bone turnover, bone mineralization, and micro-damage accumulation. Moreover, our investigations have demonstrated that BAp, collagen, and bone cells such as osteoblasts and osteocytes play essential roles in controlling the current concept of bone quality in bone around hip and dental implants. The current concept of bone quality is crucial for understanding bone mechanical functions. BAp, collagen and osteocytes are the main factors affecting bone quality. Moreover, mechanical loading dynamically adapts bone quality. Understanding the current concept of bone quality is required in dentistry. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Licata, Angelo A
2015-07-01
Bone loss due to weightlessness is a significant concern for astronauts' mission safety and health upon return to Earth. This problem is monitored with bone densitometry (DXA), the clinical tool used to assess skeletal strength. DXA has served clinicians well in assessing fracture risk and has been particularly useful in diagnosing osteoporosis in the elderly postmenopausal population for which it was originally developed. Over the past 1-2 decades, however, paradoxical and contradictory findings have emerged when this technology was widely employed in caring for diverse populations unlike those for which it was developed. Although DXA was originally considered the surrogate marker for bone strength, it is now considered one part of a constellation of factors-described collectively as bone quality-that makes bone strong and resists fracturing, independent of bone density. These characteristics are beyond the capability of routine DXA to identify, and as a result, DXA can be a poor prognosticator of bone health in many clinical scenarios. New clinical tools are emerging to make measurement of bone strength more accurate. This article reviews the historical timeline of bone density measurement (dual X-ray absorptiometry), expands upon the clinical observations that modified the relationship of DXA and bone strength, discusses some of the new clinical tools to predict fracture risk, and highlights the challenges DXA poses in the assessment of fracture risk in astronauts.
Morbidity of Cushing's Syndrome and Impact of Treatment.
Webb, Susan M; Valassi, Elena
2018-06-01
Cortisol excess in Cushing's syndrome is associated with metabolic, cardiovascular, and cognitive alterations, only partially reversible after resolution of hypercortisolism. Elevated cardiovascular risk may persist after eucortisolism has been achieved. Fractures and low bone mineral density are also described in Cushing's syndrome in remission. Hypercortisolism may induce irreversible structural and functional changes in the brain, leading to neuropsychiatric disorders in the active phase of the disease, which persist. Sustained deterioration of the cardiovascular system, bone remodeling, and cognitive function along with neuropsychological impairment are associated with high morbidity and poor quality of life before and after remission. Copyright © 2018 Elsevier Inc. All rights reserved.
An interdisciplinary consensus on the management of bone metastases from renal cell carcinoma.
Grünwald, Viktor; Eberhardt, Berit; Bex, Axel; Flörcken, Anne; Gauler, Thomas; Derlin, Thorsten; Panzica, Martin; Dürr, Hans Roland; Grötz, Knut Achim; Giles, Rachel H; von Falck, Christian; Graser, Anno; Muacevic, Alexander; Staehler, Michael
2018-06-14
Bone is a major site of haematogenous tumour cell spread in renal cell carcinoma (RCC), and most patients with RCC will develop painful and functionally disabling bone metastases at advanced disease stages. The prognosis of these patients is generally poor and the treatment is, therefore, aimed at palliation. However, RCC-associated bone metastases can be curable in select patients. Current data support a multimodal management strategy that includes wide resection of lesions, radiotherapy, systemic therapy, and other local treatment options, which can improve quality of life and survival. Nevertheless, the optimal approach for metastatic bone disease in RCC has not yet been defined and practical recommendations are rare. To improve the management and outcomes of patients with RCC and bone metastases, the International Kidney Cancer Coalition and the interdisciplinary working group on renal tumours of the German Cancer Society convened a meeting of experts with a global perspective to perform an unstructured review and elaborate on current treatment strategies on the basis of published data and expertise. The panel formulated recommendations for the diagnosis and treatment of patients with RCC and metastasis to the bone. Furthermore, the experts summarized current challenges and unmet patient needs that should be addressed in the future.
Biological Regulation of Bone Quality
Alliston, Tamara
2014-01-01
The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility. PMID:24894149
Direct effects of mitochondrial dysfunction on poor bone health in Leigh syndrome.
Kato, Hiroki; Han, Xu; Yamaza, Haruyoshi; Masuda, Keiji; Hirofuji, Yuta; Sato, Hiroshi; Pham, Thanh Thi Mai; Taguchi, Tomoaki; Nonaka, Kazuaki
2017-11-04
Mitochondrial diseases are the result of aberrant mitochondrial function caused by mutations in either nuclear or mitochondrial DNA. Poor bone health has recently been suggested as a symptom of mitochondrial diseases; however, a direct link between decreased mitochondrial function and poor bone health in mitochondrial disease has not been demonstrated. In this study, stem cells from human exfoliated deciduous teeth (SHED) were isolated from a child with Leigh syndrome (LS), a mitochondrial disease, and the effects of decreased mitochondrial function on poor bone health were analyzed. Compared with control SHED, LS SHED displayed decreased osteoblastic differentiation and calcium mineralization. The intracellular and mitochondrial calcium levels were lower in LS SHED than in control SHED. Furthermore, the mitochondrial activity of LS SHED was decreased compared with control SHED both with and without osteoblastic differentiation. Our results indicate that decreased osteoblast differentiation potential and osteoblast function contribute to poor bone health in mitochondrial diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Troy, Karen L; Edwards, W Brent
2018-05-01
Quantitative CT (QCT) analysis involves the calculation of specific parameters such as bone volume and density from CT image data, and can be a powerful tool for understanding bone quality and quantity. However, without careful attention to detail during all steps of the acquisition and analysis process, data can be of poor- to unusable-quality. Good quality QCT for research requires meticulous attention to detail and standardization of all aspects of data collection and analysis to a degree that is uncommon in a clinical setting. Here, we review the literature to summarize practical and technical considerations for obtaining high quality QCT data, and provide examples of how each recommendation affects calculated variables. We also provide an overview of the QCT analysis technique to illustrate additional opportunities to improve data reproducibility and reliability. Key recommendations include: standardizing the scanner and data acquisition settings, minimizing image artifacts, selecting an appropriate reconstruction algorithm, and maximizing repeatability and objectivity during QCT analysis. The goal of the recommendations is to reduce potential sources of error throughout the analysis, from scan acquisition to the interpretation of results. Copyright © 2018 Elsevier Inc. All rights reserved.
Periprosthetic Fractures Following Total Knee Arthroplasty
Kim, Nam Ki
2015-01-01
Periprosthetic fractures after total knee arthroplasty may occur in any part of the femur, tibia and patella, and the most common pattern involves the supracondylar area of the distal femur. Supracondylar periprosthetic fractures frequently occur above a well-fixed prosthesis, and risk factors include anterior femoral cortical notching and use of the rotational constrained implant. Periprosthetic tibial fractures are frequently associated with loose components and malalignment or malposition of implants. Fractures of the patella are much less common and associated with rheumatoid arthritis, use of steroid, osteonecrosis and malalignment of implants. Most patients with periprosthetic fractures around the knee are the elderly with poor bone quality. There are many difficulties and increased risk of nonunion after treatment because reduction and internal fixation is interfered with by preexisting prosthesis and bone cement. Additionally, previous soft tissue injury is another disadvantageous condition for bone healing. Many authors reported good clinical outcomes after non-operative treatment of undisplaced or minimally displaced periprosthetic fractures; however, open reduction or revision arthroplasty was required in displaced fractures or fractures with unstable prosthesis. Periprosthetic fractures around the knee should be prevented by appropriate technique during total knee arthroplasty. Nevertheless, if a periprosthetic fracture occurs, an appropriate treatment method should be selected considering the stability of the prosthesis, displacement of fracture and bone quality. PMID:25750888
Shen, Jia; James, Aaron W.; Zhang, Xinli; Pang, Shen; Zara, Janette N.; Asatrian, Greg; Chiang, Michael; Lee, Min; Khadarian, Kevork; Nguyen, Alan; Lee, Kevin S.; Siu, Ronald K.; Tetradis, Sotirios; Ting, Kang; Soo, Chia
2017-01-01
The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis. PMID:26772960
Trapezium Bone Density-A Comparison of Measurements by DXA and CT.
Breddam Mosegaard, Sebastian; Breddam Mosegaard, Kamille; Bouteldja, Nadia; Bæk Hansen, Torben; Stilling, Maiken
2018-01-18
Bone density may influence the primary fixation of cementless implants, and poor bone density may increase the risk of implant failure. Before deciding on using total joint replacement as treatment in osteoarthritis of the trapeziometacarpal joint, it is valuable to determine the trapezium bone density. The aim of this study was to: (1) determine the correlation between measurements of bone mineral density of the trapezium obtained by dual-energy X-ray absorptiometry (DXA) scans by a circumference method and a new inner-ellipse method; and (2) to compare those to measurements of bone density obtained by computerized tomography (CT)-scans in Hounsfield units (HU). We included 71 hands from 59 patients with a mean age of 59 years (43-77). All patients had Eaton-Glickel stage II-IV trapeziometacarpal (TM) joint osteoarthritis, were under evaluation for trapeziometacarpal total joint replacement, and underwent DXA and CT wrist scans. There was an excellent correlation (r = 0.94) between DXA bone mineral density measures using the circumference and the inner-ellipse method. There was a moderate correlation between bone density measures obtained by DXA- and CT-scans with (r = 0.49) for the circumference method, and (r = 0.55) for the inner-ellipse method. DXA may be used in pre-operative evaluation of the trapezium bone quality, and the simpler DXA inner-ellipse measurement method can replace the DXA circumference method in estimation of bone density of the trapezium.
Romanos, Georgios E; Basha-Hijazi, Abdulaziz; Gupta, Bhumija; Ren, Yan-Fang; Malmstrom, Hans
2014-04-01
Clinical experience in implant placement is important in order to prevent implant failures. However, the implant design affects the primary implant stability (PS) especially in poor quality bones. Therefore, the aim of this study was to compare the effect of clinician surgical experience on PS, when placing different type of implant designs. A total of 180 implants (90 parallel walled-P and 90 tapered-T) were placed in freshly slaughtered cow ribs. Bone quality was evaluated by two examiners during surgery and considered as 'type IV' bone. Implants (ø 5 mm, length: 15 mm, Osseotite, BIOMET 3i, Palm Beach Gardens, FL, USA) were placed by three different clinicians (master/I, good/II, non-experienced/III, under direct supervision of a manufacturer representative; 30 implants/group). An independent observer assessed the accuracy of placement by resonance frequency analysis (RFA) with implant stability quotient (ISQ) values. Two-way analysis of variance (ANOVA) and Tukey's post hoc test were used to detect the surgical experience of the clinicians and their interaction and effects of implant design on the PS. All implants were mechanically stable. The mean ISQ values were: 49.57(± 18.49) for the P-implants and 67.07(± 8.79) for the T-implants. The two-way ANOVA showed significant effects of implant design (p < .0001), clinician (p < .0001), and their interaction (p < .0001). The Tukey's multiple comparison test showed significant differences in RFA for the clinician group I/II (p = .015) and highly significant (p < .0001) between I/III and II/III. The P-implants presented (for I, II, and III) mean ISQ values 31.25/49.18/68.17 and the T-implants showed higher ISQ values, 70.15/62.08/68.98, respectively. Clinicians I and II did not show extreme differences for T-implants (p = .016). In contrast, clinician III achieved high ISQ values using P- and T-implants following the exact surgical protocol based on the manufacturer guidelines. T-implants provided high stability for experienced clinicians compared with P-implants. T-implants achieved greater PS than the P-implants. All clinicians consistently achieved PS; however, experienced clinicians achieved higher ISQ values with T-implants in poor quality bone. © 2012 Wiley Periodicals, Inc.
Evaluation and Management of Failed Shoulder Instability Surgery.
Cartucho, António; Moura, Nuno; Sarmento, Marco
2017-01-01
Failed shoulder instability surgery is mostly considered to be the recurrence of shoulder dislocation but subluxation, painful or non-reliable shoulder are also reasons for patient dissatisfaction and should be considered in the notion. The authors performed a revision of the literature and online contents on evaluation and management of failed shoulder instability surgery. When we look at the reasons for failure of shoulder instability surgery we point the finger at poor patient selection, technical error and an additional traumatic event. More than 80% of surgical failures, for shoulder instability, are associated with bone loss. Quantification of glenoid bone loss and investigation of an engaging Hill-Sachs lesion are determining facts. Adequate imaging studies are determinant to assess labrum and capsular lesions and to rule out associated pathology as rotator cuff tears. CT-scan is the method of choice to diagnose and quantify bone loss. Arthroscopic soft tissue procedures are indicated in patients with minimal bone loss and no contact sports. Open soft tissue procedures should be performed in patients with small bone defects, with hiperlaxity and practicing contact sports. Soft tissue techniques, as postero-inferior capsular plication and remplissage, may be used in patients with less than 25% of glenoid bone loss and Hill-Sachs lesions. Bone block procedures should be used for glenoid larger bone defects in the presence of an engaging Hill-Sachs lesion or in the presence of poor soft tissue quality. A tricortical iliac crest graft may be used as a primary procedure or as a salvage procedure after failure of a Bristow or a Latarjet procedure. Less frequently, the surgeon has to address the Hill-Sachs lesion. When a 30% loss of humeral head circumference is present a filling graft should be used. Reasons for failure are multifactorial. In order to address this entity, surgeons must correctly identify the causes and tailor the right solution.
Prevent and cure disuse bone loss
NASA Technical Reports Server (NTRS)
Jee, Webster S. S.
1994-01-01
Anabolic agents like parathyroid hormone and postagladin E-like substances were studied in dogs and rats to determine their effectiveness in the prevention and cure of bone loss due to immobilization. It was determined that postagladin E2 administration prevented immobilization while at the same time it added extra bone in a dose responsive manner. Although bone mass returns, poor trabecular architecture remains after normal ambulation recovery from immobilization. Disuse related bone loss and poor trabecular architecture were cured by post-immobilization postagladin E2 treatment.
Delgado-Ruiz, Rafael Arcesio; Calvo Guirado, José Luis; Romanos, Georgios E
2015-05-20
To perform a systematic literature review of the regenerative potential of bone substitutes used to fill critical size defects (CSDs) in rabbit calvariae; to determine the quality of the included studies using ARRIVE guidelines. An Internet search was performed in duplicate using MEDLINE, PubMed and Google Scholar databases (without restrictions on publication date) for studies reporting the regenerative potential of bone substitutes in CSDs in rabbit calvariae. Four parameters were analyzed by histomorphometry: new bone formation (NB); defect closure (DC); residual graft (RG); and connective tissue (CT). Animal Research Reporting in In Vivo Experiments (ARRIVE) guidelines (a list of 20 aspects for scoring texts and ensuring comparison between different experimental studies in animals) were used to evaluate the quality of the selected works. Twenty-one manuscripts were included. CSDs with 15 mm were predominant (57.14%). Only one study described the four histomorphometric parameters. NB formation was analyzed in 15 studies (71.42%) and was higher for particulate autogenous bone grafts (range 52.1-82%) after 12 weeks. DC was evaluated in six studies (28.57%) and was higher for fragmented adipose tissue grafts (range 53.33-93.33%) after 12 weeks. RG was evaluated in four studies (19.04%) and was higher for hydroxyapatite/beta-tricalcium phosphate grafts with silica (HA/ß-TCP + Si) (range 35.78-47.54%) at 12 weeks. CT was evaluated in two studies (9.5%) and was higher for HA/ß-TCP + membrane (44.2%) at 12 weeks. Quality evaluation identified three items (title, introduction/objectives and experimental procedure) (15%) with excellent scores, 10 items (abstract, introduction/background, methods/ethical statement, experimental animals, experimental outcomes, statistics, results/baseline data, outcome/estimation and discussion interpretation/scientific implications) (50%) with average scores, and seven items (housing and husbandry, sample size, allocation, numbers analyzed, adverse effects, general applicability/relevance and funding) (35%) obtained poor scores. Only one manuscript obtained a quality evaluation considered as excellent. Autogenous bone grafts increase NB. DC is enhanced by the use of fragmented adipose tissue. RG remains in the defect for longer when hydroxyapatite/beta-tricalcium phosphate with silica is used, and more CT can be expected when hydroxyapatite/beta-tricalcium phosphate with silica grafts are covered by a membrane. The addition of stem cells of different origins to grafting materials enhances bone formation in early healing periods. The ARRIVE guidelines are still insufficiently used and the overall quality of studies remains low. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Schmoelz, W; Mayr, R; Schlottig, F; Ivanovic, N; Hörmann, R; Goldhahn, J
2016-03-01
Screw anchorage in osteoporotic bone is still limited and makes treatment of osteoporotic fractures challenging for surgeons. Conventional screws fail in poor bone quality due to loosening at the screw-bone interface. A new technology should help to improve this interface. In a novel constant amelioration process technique, a polymer sleeve is melted by ultrasound in the predrilled screw hole prior to screw insertion. The purpose of this study was to investigate in vitro the effect of the constant amelioration process platform technology on primary screw anchorage. Fresh frozen femoral heads (n=6) and vertebrae (n=6) were used to measure the maximum screw insertion torque of reference and constant amelioration process augmented screws. Specimens were cut in cranio-caudal direction, and the screws (reference and constant amelioration process) were implanted in predrilled holes in the trabecular structure on both sides of the cross section. This allowed the pairwise comparison of insertion torque for constant amelioration process and reference screws (femoral heads n=18, vertebrae n=12). Prior to screw insertion, a micro-CT scan was made to ensure comparable bone quality at the screw placement location. The mean insertion torque for the constant amelioration process augmented screws in both, the femoral heads (44.2 Ncm, SD 14.7) and the vertebral bodies (13.5 Ncm, SD 6.3) was significantly higher than for the reference screws of the femoral heads (31.7 Ncm, SD 9.6, p<0.001) and the vertebral bodies (7.1 Ncm, SD 4.5, p<0.001). The interconnection of the melted polymer sleeve with the surrounding trabecular bone in the constant amelioration process technique resulted in a higher screw insertion torque and can improve screw anchorage in osteoporotic trabecular bone. Copyright © 2016 Elsevier Ltd. All rights reserved.
Achievable accuracy of hip screw holding power estimation by insertion torque measurement.
Erani, Paolo; Baleani, Massimiliano
2018-02-01
To ensure stability of proximal femoral fractures, the hip screw must firmly engage into the femoral head. Some studies suggested that screw holding power into trabecular bone could be evaluated, intraoperatively, through measurement of screw insertion torque. However, those studies used synthetic bone, instead of trabecular bone, as host material or they did not evaluate accuracy of predictions. We determined prediction accuracy, also assessing the impact of screw design and host material. We measured, under highly-repeatable experimental conditions, disregarding clinical procedure complexities, insertion torque and pullout strength of four screw designs, both in 120 synthetic and 80 trabecular bone specimens of variable density. For both host materials, we calculated the root-mean-square error and the mean-absolute-percentage error of predictions based on the best fitting model of torque-pullout data, in both single-screw and merged dataset. Predictions based on screw-specific regression models were the most accurate. Host material impacts on prediction accuracy: the replacement of synthetic with trabecular bone decreased both root-mean-square errors, from 0.54 ÷ 0.76 kN to 0.21 ÷ 0.40 kN, and mean-absolute-percentage errors, from 14 ÷ 21% to 10 ÷ 12%. However, holding power predicted on low insertion torque remained inaccurate, with errors up to 40% for torques below 1 Nm. In poor-quality trabecular bone, tissue inhomogeneities likely affect pullout strength and insertion torque to different extents, limiting the predictive power of the latter. This bias decreases when the screw engages good-quality bone. Under this condition, predictions become more accurate although this result must be confirmed by close in-vitro simulation of the clinical procedure. Copyright © 2018 Elsevier Ltd. All rights reserved.
Suda, Hiromi Kimura
2015-10-01
Bone quality, which was defined as "the sum total of characteristics of the bone that influence the bone's resistance to fracture" at the National Institute of Health (NIH) conference in 2001, contributes to bone strength in combination with bone mass. Bone mass is often measured as bone mineral density (BMD) and, consequently, can be quantified easily. On the other hand, bone quality is composed of several factors such as bone structure, bone matrix, calcification degree, microdamage, and bone turnover, and it is not easy to obtain data for the various factors. Therefore, it is difficult to quantify bone quality. We are eager to develop new measurement methods for bone quality that make it possible to determine several factors associated with bone quality at the same time. Analytic methods based on Raman and FTIR spectroscopy have attracted a good deal of attention as they can provide a good deal of chemical information about hydroxyapatite and collagen, which are the main components of bone. A lot of studies on bone quality using Raman and FTIR imaging have been reported following the development of the two imaging systems. Thus, both Raman and FTIR imaging appear to be promising new bone morphometric techniques.
Evaluating bone quality in patients with chronic kidney disease
Malluche, Hartmut H.; Porter, Daniel S.; Pienkowski, David
2013-01-01
Bone of normal quality and quantity can successfully endure physiologically imposed mechanical loads. Chronic kidney disease–mineral and bone disorder (CKD–MBD) adversely affects bone quality through alterations in bone turnover and mineralization, whereas bone quantity is affected through changes in bone volume. Changes in bone quality can be associated with altered bone material, structure, or microdamage, which can result in an elevated rate of fracture in patients with CKD–MBD. Fractures cannot always be explained by reduced bone quantity and, therefore, bone quality should be assessed with a variety of techniques from the macro-organ level to the nanoscale level. In this Review, we demonstrate the importance of evaluating bone from multiple perspectives and hierarchical levels to understand CKD–MBD-related abnormalities in bone quality. Understanding the relationships between variations in material, structure, microdamage, and mechanical properties of bone in patients with CKD–MBD should aid in the development of new modalities to prevent, or treat, these abnormalities. PMID:24100399
Wee, Hwabok; Armstrong, April D; Flint, Wesley W; Kunselman, Allen R; Lewis, Gregory S
2015-11-01
Aseptic loosening of cemented joint replacements is a complex biological and mechanical process, and remains a clinical concern especially in patients with poor bone quality. Utilizing high resolution finite element analysis of a series of implanted cadaver glenoids, the objective of this study was to quantify relationships between construct morphology and resulting mechanical stresses in cement and trabeculae. Eight glenoid cadavers were implanted with a cemented central peg implant. Specimens were imaged by micro-CT, and subject-specific finite element models were developed. Bone volume fraction, glenoid width, implant-cortex distance, cement volume, cement-cortex contact, and cement-bone interface area were measured. Axial loading was applied to the implant of each model and stress distributions were characterized. Correlation analysis was completed across all specimens for pairs of morphological and mechanical variables. The amount of trabecular bone with high stress was strongly negatively correlated with both cement volume and contact between the cement and cortex (r = -0.85 and -0.84, p < 0.05). Bone with high stress was also correlated with both glenoid width and implant-cortex distance. Contact between the cement and underlying cortex may dramatically reduce trabecular bone stresses surrounding the cement, and this contact depends on bone shape, cement amount, and implant positioning. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Validation of a new classification system for interprosthetic femoral fractures.
Pires, Robinson Esteves Santos; Silveira, Marcelo Peixoto Sena; Resende, Alessandra Regina da Silva; Junior, Egidio Oliveira Santana; Campos, Tulio Vinicius Oliveira; Santos, Leandro Emilio Nascimento; Balbachevsky, Daniel; Andrade, Marco Antônio Percope de
2017-07-01
Interprosthetic femoral fracture (IFF) incidence is gradually increasing as the population is progressively ageing. However, treatment remains challenging due to several contributing factors, such as poor bone quality, patient comorbidities, small interprosthetic fragment, and prostheses instability. An effective and specific classification system is essential to optimize treatment management, therefore diminishing complication rates. This study aims to validate a previously described classification system for interprosthetic femoral fractures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thangarajah, Tanujan; Shahbazi, Shirin; Pendegrass, Catherine J; Lambert, Simon; Alexander, Susan; Blunn, Gordon W
2016-01-01
Tendon-bone healing following rotator cuff repairs is mainly impaired by poor tissue quality. Demineralised bone matrix promotes healing of the tendon-bone interface but its role in the treatment of tendon tears with retraction has not been investigated. We hypothesized that cortical demineralised bone matrix used with minimally manipulated mesenchymal stem cells will result in improved function and restoration of the tendon-bone interface with no difference between xenogenic and allogenic scaffolds. In an ovine model, the patellar tendon was detached from the tibial tuberosity and a complete distal tendon transverse defect measuring 1 cm was created. Suture anchors were used to reattach the tendon and xenogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5), or allogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5) were used to bridge the defect. Graft incorporation into the tendon and its effect on regeneration of the enthesis was assessed using histomorphometry. Force plate analysis was used to assess functional recovery. Compared to the xenograft, the allograft was associated with significantly higher functional weight bearing at 6 (P = 0.047), 9 (P = 0.028), and 12 weeks (P = 0.009). In the allogenic group this was accompanied by greater remodeling of the demineralised bone matrix into tendon-like tissue in the region of the defect (p = 0.015), and a more direct type of enthesis characterized by significantly more fibrocartilage (p = 0.039). No failures of tendon-bone healing were noted in either group. Demineralised bone matrix used with minimally manipulated mesenchymal stem cells promotes healing of the tendon-bone interface in an ovine model of acute tendon retraction, with superior mechanical and histological results associated with use of an allograft.
D'Agostino, A; Toffanetti, G; Scala, R; Trevisiol, L; Ferrari, F
2004-04-01
Still today, there is no classification of non-unions in maxillofacial traumatology. There is a broad spectrum of definitions that simultaneously describe the pathological conditions and functional implications determined by the anatomical location of the fractures and the time factor. In this article the authors describe a literature review about bone non-union classification. Weber, in 1973, introduced the term "pseudo-arthrosis" to describe an altered process of bone healing characterised by the presence of fibrous tissue interposed between the fracture segments, that was lined with cartilaginous tissue and joined by a capsule; Spiessl, in 1988, used the term "non-union" to define any alteration of the bone healing process after a time period of more than 6 months from the initial traumatic event; Rosen, in 1990, proposed a new classification of the modes of altered bone healing in fractures, distinguishing 5 categories: delayed consolidation, non-union, non-union vascular, non union avascular, pseudoarthrosis. The authors also talk about "poor bone positioning". This factor describes the incorrect anatomical position of the bone fragments despite perfectly normal healing according to Gruss. In this article they also discuss about the treatment of non-unions and the treatment of occlusal alterations caused by poor post-traumatic bone positioning.
Glycemic Control and Bone Turnover in Older Mexican Americans with Type 2 Diabetes
Smith, Scott M.; Lee, MinJae; Pervin, Hannah; Musgrave, Paul; Watt, Gordon P.; Nader, Shahla; Khosla, Sundeep; Ambrose, Catherine G.; McCormick, Joseph B.; Fisher-Hoch, Susan P.
2018-01-01
Altered bone quality, caused by underlying metabolic changes of type 2 diabetes (T2D), has been hypothesized to cause altered bone strength and turnover leading to increased fracture risk in T2D patients. Current understanding about changes in bone turnover markers in T2D patients is mainly based on studies focused on Caucasian men and women. However, Hispanic populations have the highest prevalence of both T2D and osteoporosis in the US. We investigated associations of glycemic control (in terms of glycated hemoglobin [HbA1c]) and bone turnover rate in 69 older (≥50 years) Mexican American Cameron County Hispanic Cohort (CCHC) participants with T2D. Multivariable analyses were conducted to assess the associations between HbA1c (%), serum osteocalcin (OC), and serum sclerostin. In agreement with published reports from other racial/ethnic populations, our study found that lower bone turnover (indicated by lower serum OC) occurred in Mexican American men with T2D who had poorer glycemic control. For the women in our study, we found no significant association between glycemic control and OC. In contrast, HbA1c was positively associated with sclerostin for women, with near significance (p = 0.07), while no association was found in men. We recommend screening Mexican American individuals with T2D, specifically those with poor glycemic control, for bone loss and fracture risk. PMID:29862008
Kuroshima, Shinichiro; Nakano, Takayoshi; Ishimoto, Takuya; Sasaki, Muneteru; Inoue, Maaya; Yasutake, Munenori; Sawase, Takashi
2017-01-15
The aim was to investigate the effect of groove designs on bone quality under controlled-repetitive load conditions for optimizing dental implant design. Anodized Ti-6Al-4V alloy implants with -60° and +60° grooves around the neck were placed in the proximal tibial metaphysis of rabbits. The application of a repetitive mechanical load was initiated via the implants (50N, 3Hz, 1800 cycles, 2days/week) at 12weeks after surgery for 8weeks. Bone quality, defined as osteocyte density and degree of biological apatite (BAp) c-axis/collagen fibers, was then evaluated. Groove designs did not affect bone quality without mechanical loading; however, repetitive mechanical loading significantly increased bone-to-implant contact, bone mass, and bone mineral density (BMD). In +60° grooves, the BAp c-axis/collagen fibers preferentially aligned along the groove direction with mechanical loading. Moreover, osteocyte density was significantly higher both inside and in the adjacent region of the +60° grooves, but not -60° grooves. These results suggest that the +60° grooves successfully transmitted the load to the bone tissues surrounding implants through the grooves. An optimally oriented groove structure on the implant surface was shown to be a promising way for achieving bone tissue with appropriate bone quality. This is the first report to propose the optimal design of grooves on the necks of dental implants for improving bone quality parameters as well as BMD. The findings suggest that not only BMD, but also bone quality, could be a useful clinical parameter in implant dentistry. Although the paradigm of bone quality has shifted from density-based assessments to structural evaluations of bone, clarifying bone quality based on structural bone evaluations remains challenging in implant dentistry. In this study, we firstly demonstrated that the optimal design of dental implant necks improved bone quality defined as osteocytes and the preferential alignment degree of biological apatite c-axis/collagen fibers using light microscopy, polarized light microscopy, and a microbeam X-ray diffractometer system, after application of controlled mechanical load. Our new findings suggest that bone quality around dental implants could become a new clinical parameter as well as bone mineral density in order to completely account for bone strength in implant dentistry. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ntounis, Athanasios; Geurs, Nico; Vassilopoulos, Philip; Reddy, Michael
2015-01-01
The study was conducted to evaluate the effect of mineralized freeze-dried bone allograft (FDBA), alone or in combination with growth factors in extraction sockets, on subjective assessment of bone quality during implant placement. Forty-one patients whose treatment plan involved extraction of anterior or premolar teeth were randomized into four groups: Group 1, collagen plug (control); Group 2, FDBA/β-tricalcium phosphate (β-TCP)/collagen plug; Group 3, FDBA/β-TCP/platelet-rich plasma (PRP)/collagen plug; Group 4, FDBA/β-TCP/recombinant human platelet-derived growth factor BB (rhPDGF-BB)/collagen plug. After 8 weeks of healing, implants were placed. The clinicians assessed bone quality according to the Misch classification. A benchtop calibration exercise test was conducted to evaluate agreement and accuracy of operators in recognizing different bone qualities. Differences were analyzed using one-way analysis of variance (ANOVA) or chi-square tests for continuous and categorical data. Pairwise comparisons were tested using least squares means (LS means). Spearman correlation coefficients were used to evaluate the relationship of bone growth with potential confounders. P < .05 was considered statistically significant. A simple (not weighted) kappa statistic was used to assess the agreement between raters. To assess accuracy in identifying bone quality, a chi-square test was used to compare the percent correct for each rater. The benchtop calibration exercise test demonstrated agreement among clinicians (0.75 and 0.92 between raters 1 and 2 and raters 1 and 3, respectively). Raters were more likely to identify the correct bone quality (P > .05). Inclusion of bone grafting is associated with a shift from D4 quality to D3 quality bone. Inclusion of PRP in bone grafting eliminates the incidence of D4 bone, establishing D3 and D2 quality bone as prevalent (56% vs. 42%, respectively). Inclusion of rhPDGF-BB and β-TCP in combination with the bone grafting has the same effect, although D2 quality is less prevalent. When compared to sockets grafted with FDBA/β-TCP/collagen plug alone, the sockets with growth factors demonstrated fewer residual bone graft particles. (1) Inclusion of bone grafting enhanced bone quality as assessed during implant placement. (2) Overall inclusion of PRP and rhPDGF-BB enhanced subjective bone quality, eliminating incidence of D4 quality in human extraction sockets. (3) The use of PRP or rhPDGF-BB may enhance healing within extraction sockets and decrease the healing time prior to dental implant placement.
Tsutsumimoto, Takahiro; Williams, Paul; Yoneda, Toshiyuki
2014-01-01
Neuroblastoma (NB), which arises from embryonic neural crest cells, is the most common extra-cranial solid tumor of childhood. Approximately half of NB patients manifest bone metastasis accompanied with bone pain, fractures and bone marrow failure, leading to disturbed quality of life and poor survival. To study the mechanism of bone metastasis of NB, we established an animal model in which intracardiac inoculation of the SK-N-AS human NB cells in nude mice developed osteolytic bone metastases with increased osteoclastogenesis. SK-N-AS cells induced the expression of receptor activator of NF-κB ligand and osteoclastogenesis in mouse bone marrow cells in the co-culture. SK-N-AS cells expressed COX-2 mRNA and produced substantial amounts of prostaglandin E2 (PGE2). In contrast, the SK-N-DZ and SK-N-FI human NB cells failed to develop bone metastases, induce osteoclastogenesis, express COX-2 mRNA and produce PGE2. Immunohistochemical examination of SK-N-AS bone metastasis and subcutaneous tumor showed strong expression of COX-2. The selective COX-2 inhibitor NS-398 inhibited PGE2 production and suppressed bone metastases with reduced osteoclastogenesis. NS-398 also inhibited subcutaneous SK-N-AS tumor development with decreased angiogenesis and vascular endothelial growth factor-A expression. Of interest, metastasis to the adrenal gland, a preferential site for NB development, was also diminished by NS-398. Our results suggest that COX2/PGE2 axis plays a critical role in the pathophysiology of osteolytic bone metastases and tumor development of the SK-NS-AS human NB. Inhibition of angiogenesis by suppressing COX-2/PGE2 may be an effective therapeutic approach for children with NB. PMID:26909300
Barr, Andrew J; Campbell, T Mark; Hopkinson, Devan; Kingsbury, Sarah R; Bowes, Mike A; Conaghan, Philip G
2015-08-25
Bone is an integral part of the osteoarthritis (OA) process. We conducted a systematic literature review in order to understand the relationship between non-conventional radiographic imaging of subchondral bone, pain, structural pathology and joint replacement in peripheral joint OA. A search of the Medline, EMBASE and Cochrane library databases was performed for original articles reporting association between non-conventional radiographic imaging-assessed subchondral bone pathologies and joint replacement, pain or structural progression in knee, hip, hand, ankle and foot OA. Each association was qualitatively characterised by a synthesis of the data from each analysis based upon study design, adequacy of covariate adjustment and quality scoring. In total 2456 abstracts were screened and 139 papers were included (70 cross-sectional, 71 longitudinal analyses; 116 knee, 15 hip, six hand, two ankle and involved 113 MRI, eight DXA, four CT, eight scintigraphic and eight 2D shape analyses). BMLs, osteophytes and bone shape were independently associated with structural progression or joint replacement. BMLs and bone shape were independently associated with longitudinal change in pain and incident frequent knee pain respectively. Subchondral bone features have independent associations with structural progression, pain and joint replacement in peripheral OA in the hip and hand but especially in the knee. For peripheral OA sites other than the knee, there are fewer associations and independent associations of bone pathologies with these important OA outcomes which may reflect fewer studies; for example the foot and ankle were poorly studied. Subchondral OA bone appears to be a relevant therapeutic target. PROSPERO registration number: CRD 42013005009.
Driver, J P; Pesti, G M; Bakalli, R I; Edwards, H M
2006-11-01
There is considerable data on the effect of reducing inorganic Ca and P in broiler finisher diets on carcass quality. However, there is limited information on the effect of reducing dietary Ca and P during the different phases of growout. Two experiments were conducted from 0 to 35 d in floor pens. In both experiments, at least 4 replicates per treatment (50 chicks per replicate) were used. Corn-soybean meal and soybean oil-based diets deficient in Ca and P were fed. During the starter phase (ST), from 0 to 18 d, chicks were fed a 23% CP diet containing 0.60% Ca and 0.47% total P (tP). During the grower-finisher phase (GF), from 19 to 35 d, birds were fed a 19% CP diet containing 0.30% Ca and 0.37% tP. A combination of 1,000 phytase units/kg of Natuphos phytase and 5 microg/kg of 1alpha-hydroxycholecalciferol (P + 1alpha) was supplemented to some of the feed during the ST and GF. Diets containing adequate Ca and P were also fed during the ST (0.90% Ca and 0.68% tP) and GF (0.80% Ca and 0.67% tP). The level of tibia ash and the incidence of bone disease were measured at 18 and 35 d. At the end of the experiments, birds were processed and evaluated for muscle hemorrhages and broken bones. In both experiments, broilers fed diets that were not P + 1alpha supplemented demonstrated poor bone mineralization, considerable leg problems, and a high incidence of broken bones after processing. Broilers fed P + 1alpha throughout had more broken clavicles and femurs compared with birds fed the adequate diets. Day-18 tibia ash was significantly correlated to broken tibias and femurs during processing. Day-35 tibia ash was better correlated to bloody breast meat than to broken bones. It is concluded that carcass quality depends on the levels of Ca and P fed and the age of the bird. Tibia ash, traditionally used as an indication of bone strength, was better correlated to the incidence of bloody breasts.
Orthopaedic Patient Information on the World Wide Web: An Essential Review.
Cassidy, John Tristan; Baker, Joseph F
2016-02-17
Patients increasingly use the Internet to research health-related issues. Internet content, unlike other forms of media, is not regulated. Although information accessed online can impact patients' opinions and expectations, there is limited information about the quality or readability of online orthopaedic information. PubMed, MEDLINE, and Google Scholar were searched using anatomic descriptors and three title keywords ("Internet," "web," and "online"). Articles examining online orthopaedic information from January 1, 2000, until April 1, 2015, were recorded. Articles were assessed for the number of reviewers evaluating the online material, whether the article examined for a link between authorship and quality, and the use of recognized quality and readability assessment tools. To facilitate a contemporary discussion, only publications since January 1, 2010, were considered for analysis. A total of thirty-eight peer-reviewed articles published since 2010 examining the quality and/or readability of online orthopaedic information were reviewed. For information quality, there was marked variation in the quality assessment methods utilized, the number of reviewers, and the manner of reporting. To date, the majority of examined information is of poor quality. Studies examining readability have focused on pages produced by professional orthopaedic societies. The quality and readability of online orthopaedic information are generally poor. For modern practices to adapt to the Internet and to prevent misinformation, the orthopaedic community should develop high-quality, readable online patient information. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Drilling resistance: A method to investigate bone quality.
Lughmani, Waqas A; Farukh, Farukh; Bouazza-Marouf, Kaddour; Ali, Hassan
2017-01-01
Bone drilling is a major part of orthopaedic surgery performed during the internal fixation of fractured bones. At present, information related to drilling force, drilling torque, rate of drill-bit penetration and drill-bit rotational speed is not available to orthopaedic surgeons, clinicians and researchers as bone drilling is performed manually. This study demonstrates that bone drilling force data if recorded in-vivo, during the repair of bone fractures, can provide information about the quality of the bone. To understand the variability and anisotropic behaviour of cortical bone tissue, specimens cut from three anatomic positions of pig and bovine were investigated at the same drilling speed and feed rate. The experimental results showed that the drilling force does not only vary from one animal bone to another, but also vary within the same bone due to its changing microstructure. Drilling force does not give a direct indication of bone quality; therefore it has been correlated with screw pull-out force to provide a realistic estimation of the bone quality. A significantly high value of correlation (r2 = 0.93 for pig bones and r2 = 0.88 for bovine bones) between maximum drilling force and normalised screw pull-out strength was found. The results show that drilling data can be used to indicate bone quality during orthopaedic surgery.
The "caviar" madreporic knee prosthesis.
Kenesi, C
1979-01-01
The madreporic ("caviar") prosthesis is a hinged knee prosthesis that can be inserted without the use of cement. The surfaces of the intramedullary stems are constructed with contiguous spheres one mm in diameter. These spaces are filled by bone trabeculae and haversian bone, providing permanent biologic fixation. Experimental madreporic knee arthroplasties in dogs show that bone probes these surfaces and produces solid attachments. Histologically, the trabeculae remain separated from the metal by a fine layer of fibrous tissue. The method of insertion of the prosthesis is simple. Preparing the epiphyses before any bone resection avoids the possibility of rotational positioning errors. The form of the intramedullary stems offers good positioning in the frontal plane. The analysis of an initial series of 15 cases shows results that are far from outstanding. The 2 deaths, the 2 cases of sepsis, and the recuperation of only mediocre motion can be explained, at least in part, by the advanced age of the patients and the poor bone quality of the rheumatoid patients. Nevertheless, this type of prosthesis has 2 important advantages. It avoids the complications from the use of acrylic cement and allows for a revision operation for cases of failed surface replacement designs. Obviously further experimentation with noncemented designs will continue and definitive studies will be reported later.
Bederman, S Samuel; Bhandari, Mohit; McKee, Michael D; Schemitsch, Emil H
2009-10-01
Fat embolism syndrome (FES) is a potentially lethal condition most commonly seen in polytrauma patients with multiple long-bone fractures. Treatment has centred around supportive care and early fracture fixation. Several small clinical trials have suggested corticosteroids benefit patients with FES, but this treatment remains controversial. Our objective was to determine the effect of corticosteroids in preventing FES in patients with long-bone fractures. We conducted a meta-analysis of published studies of patients with long-bone fractures who were randomly assigned to groups receiving corticosteroids or standard treatment for the prevention of FES (1966-2006). Data were extracted on quality, population, intervention and outcomes. Our primary outcome was the development of FES. We used random-effects models to pool results across studies, assessing for study heterogeneity. Of the 104 studies identified, 7 met our eligibility criteria. Overall, the quality of the trials was poor. Our pooled analysis of 389 patients found that corticosteroids reduced the risk of FES by 78% (95% confidence interval [CI] 43%-92%) and that only 8 patients needed to be treated (95% CI 5-13 patients) to prevent 1 case of FES. Similarly, corticosteroids significantly reduced the risk of hypoxia. We found no differences in the rates of mortality or infection. Rates of avascular necrosis were not reported in any of these studies. Evidence suggests that corticosteroids may be beneficial in preventing FES and hypoxia but not mortality in patients with long-bone fractures. The risk of infection is not increased with the use of corticosteroids. However, methodological limitations of these trials necessitate a large confirmatory randomized trial.
Bederman, S. Samuel; Bhandari, Mohit; McKee, Michael D.; Schemitsch, Emil H.
2009-01-01
Background Fat embolism syndrome (FES) is a potentially lethal condition most commonly seen in polytrauma patients with multiple long-bone fractures. Treatment has centred around supportive care and early fracture fixation. Several small clinical trials have suggested corticosteroids benefit patients with FES, but this treatment remains controversial. Our objective was to determine the effect of corticosteroids in preventing FES in patients with long-bone fractures. Methods We conducted a meta-analysis of published studies of patients with long-bone fractures who were randomly assigned to groups receiving corticosteroids or standard treatment for the prevention of FES (1966–2006). Data were extracted on quality, population, intervention and outcomes. Our primary outcome was the development of FES. We used random-effects models to pool results across studies, assessing for study heterogeneity. Results Of the 104 studies identified, 7 met our eligibility criteria. Overall, the quality of the trials was poor. Our pooled analysis of 389 patients found that corticosteroids reduced the risk of FES by 78% (95% confidence interval [CI] 43%–92%) and that only 8 patients needed to be treated (95% CI 5–13 patients) to prevent 1 case of FES. Similarly, corticosteroids significantly reduced the risk of hypoxia. We found no differences in the rates of mortality or infection. Rates of avascular necrosis were not reported in any of these studies. Conclusion Evidence suggests that corticosteroids may be beneficial in preventing FES and hypoxia but not mortality in patients with long-bone fractures. The risk of infection is not increased with the use of cortisosteroids. However, methodological limitations of these trials necessitate a large confirmatory randomized trial. PMID:19865573
Zhang, Tianlong; Gao, Jiazi; Fang, Juan; Gong, He
2018-03-01
This study aimed to explore the effects of additional weight bearing in combination with low-magnitude high-frequency vibration (LMHFV; 45 Hz, 0.3 g) on bone quality. One hundred twenty rats were randomly divided into ten groups; namely, sedentary (SED), additional weight bearing in which the rat wears a backpack whose weight is x% of the body weight (WBx; x = 5, 12, 19, 26), basic vibration (V), and additional weight bearing in combination with LMHFV in which the rat wears a backpack whose weight is x% of the body weight (Vx; x = 5, 12, 19, 26). The experiment was conducted for 12 weeks, 7 days per week, and 15 min per day. A three-point bending mechanical test, micro computed tomography, and a nanoindentation test were used. Serum samples were analyzed chemically. Failure load in V19 rats was significantly lower than that in SED rats (P < 0.05). Vx (x = 5, 12, 19, 26) rats showed poor microarchitectures. The content of tartrate-resistant acid phosphatase 5b was significantly higher in Vx (x = 5, 12, 19, 26) rats than that in SED rats (P < 0.05). V26 rats demonstrated comparatively better nanomechanical properties of materials than the other vibrational groups. Additional weight bearing in combination with LMHFV negatively affected the macromechanical properties and microarchitecture of bone. Heavy additional weight bearing, such as 26% of body weight, in combination with LMHFV was able to improve the nanomechanical properties of growing bone material compared with LMHFV. A combined mechanical stimulation was used, which may provide useful information to understand the mechanism of this mechanical stimulation on bone.
Differences in Bone Quality between High versus Low Turnover Renal Osteodystrophy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Daniel S.; Pienkowski, David; Faugere, Marie-Claude
2012-01-01
Abnormal bone turnover is common in chronic kidney disease (CKD), but its effects on bone quality remain unclear. This study sought to quantify the relationship between abnormal bone turnover and bone quality. Iliac crest bone biopsies were obtained from CKD-5 patients on dialysis with low (n=18) or high (n=17) turnover, and from volunteers (n=12) with normal turnover and normal kidney function. Histomorphometric methods were used to quantify the microstructural parameters; Fourier transform infrared spectroscopy and nanoindentation were used to quantify the material and mechanical properties in bone. Reduced mineral-to-matrix ratio, mineral crystal size, stiffness and hardness were observed in bonemore » with high turnover compared to bone with normal or low turnover. Decreased cancellous bone volume and trabecular thickness were seen in bone with low turnover compared to bone with normal or high turnover. Bone quality, as defined by its microstructural, material, and mechanical properties, is related to bone turnover. These data suggest that turnover related alterations in bone quality may contribute to the known diminished mechanical competence of bone in CKD patients, albeit from different mechanisms for bone with high (material abnormality) vs. low (microstructural alteration) turnover. The present findings suggest that improved treatments for renal osteodystrophy should seek to avoid low or high bone turnover and aim for turnover rates as close to normal as possible.« less
Bone Health and Associated Metabolic Complications in Neuromuscular Diseases
Joyce, Nanette C.; Hache, Lauren P.; Clemens, Paula R.
2014-01-01
Synopsis This article reviews the recent literature regarding bone health as it relates to the patient living with neuromuscular disease (NMD). Poor bone health with related morbidity is a significant problem for patients with NMD. Although the evidence addressing issues of bone health and osteoporosis have increased as a result of the Bone and Joint Decade, studies defining the scope of bone-related disease in NMD are scant. The available evidence is discussed focusing on abnormal calcium metabolism, increased fracture risk, and the prevalence of both scoliosis and hypovitaminosis D in Duchenne muscular dystrophy, amyotrophic lateral sclerosis and spinal muscular atrophy. These problems appear common. Osteomalacia often complicates disease-related baseline osteoporosis and may reduce fracture risk if treated. Future directions are discussed, including the urgent need for studies to both determine the nature and extent of poor bone health, and to evaluate the therapeutic effect of available osteoporosis treatments in patients with NMD. PMID:23137737
Strontium ranelate: a novel mode of action leading to renewed bone quality.
Ammann, Patrick
2005-01-01
Various bone resorption inhibitors and bone stimulators have been shown to decrease the risk of osteoporotic fractures. However, there is still a need for agents promoting bone formation by inducing positive uncoupling between bone formation and bone resorption. In vitro studies have suggested that strontium ranelate enhances osteoblast cell replication and activity. Simultaneously, strontium ranelate dose-dependently inhibits osteoclast activity. In vivo studies indicate that strontium ranelate stimulates bone formation and inhibits bone resorption and prevents bone loss and/or promotes bone gain. This positive uncoupling between bone formation and bone resorption results in bone gain and improvement in bone geometry and microarchitecture, without affecting the intrinsic bone tissue quality. Thus, all the determinants of bone strength are positively influenced. In conclusion, strontium ranelate, a new treatment of postmenopausal osteoporosis, acts through an innovative mode of action, both stimulating bone formation and inhibiting bone resorption, resulting in the rebalancing of bone turnover in favor of bone formation. Strontium ranelate increases bone mass while preserving the bone mineralization process, resulting in improvement in bone strength and bone quality.
Nackaerts, Olivia; Gijbels, Frieda; Sanna, Anna-Maria; Jacobs, Reinhilde
2008-03-01
The aim was to explore the relation between radiographic bone quality on panoramic radiographs and relative alveolar bone level. Digital panoramic radiographs of 94 female patients were analysed (mean age, 44.5; range, 35-74). Radiographic density of the alveolar bone in the premolar region was determined using Agfa Musica software. Alveolar bone level and bone quality index (BQI) were also assessed. Relationships between bone density and BQI on one hand and the relative loss of alveolar bone level on the other were assessed. Mandibular bone density and loss of alveolar bone level were weakly but significantly negatively correlated for the lower premolar area (r = -.27). The BQI did not show a statistically significant relation to alveolar bone level. Radiographic mandibular bone density on panoramic radiographs shows a weak but significant relation to alveolar bone level, with more periodontal breakdown for less dense alveolar bone.
Clinical Considerations of Adapted Drilling Protocol by Bone Quality Perception.
Toia, Marco; Stocchero, Michele; Cecchinato, Francesca; Corrà, Enrico; Jimbo, Ryo; Cecchinato, Denis
To evaluate insertion torque value (ITV) and marginal bone loss (MBL) of an implant system after a clinically perceived bone quality-adapted drilling. This multicenter retrospective study included patients treated with implants, conventionally loaded, in completely healed sites. Operators customized the osteotomy preparation according to radiographic assessment and their perception of bone quality. Drilling sequence, bone quality, and ITV were recorded at the time of surgery. Radiographs were taken at the time of implant placement and permanent restoration. MBL between implant placement and permanent restoration was calculated. The implant was used as the statistical unit. Demographic and implant characteristics were shown by means of descriptive statistics. Outcome values were compared using analysis of variance (ANOVA) and Kruskal-Wallis tests. Multiple regression models were used to test the effect of independent variables on ITV and MBL. One hundred eighty-eight implants placed in 87 patients were included in the analysis. The mean observation period was 144 ± 59 days. The mean ITV was 30.8 ± 15.1 Ncm. ITV differed significantly based on arches (mandible/maxilla) (P = .001), bone quality (P < .001), implant diameter (P = .032), and drilling protocol (P = .019). Median MBL was 0.05 mm (0.00; 0.24). A significant difference was found between the mandible and maxilla (P = .008) and between drilling protocols (P = .011). In particular, significantly higher MBL was found in the undersized drilling protocol. Multiple regression analysis showed that ITV was influenced by bone quality and implant diameter. MBL was influenced by bone quality, implant diameter, ITV, and the interaction between bone quality and ITV. It was estimated that MBL was greater with increased bone density and ITV. Excessive ITV in dense bone can cause negative marginal bone responses. A presurgical radiographic assessment and the perception of bone quality are necessary to select an optimal drilling protocol and to minimize surgical trauma.
A new quality of bone ultrasound research.
Gluer, C C
2008-07-01
Quantitative ultrasound (QUS) methods have strong power to predict osteoporotic fractures, but they are also very relevant for the assessment of bone quality. A representative sample of recent studies addressing these topics can be found in this special issue. Further pursuit of these methods will establish micro-QUS imaging methods as tools for measuring specific aspects of bone quality. Once this is achieved, we will be able to link such data to the clinical QUS methods used in vivo to determine which aspects of bone quality cause QUS to be a predictor of fracture risk that is independent of bone mineral density (BMD). Potentially this could lead to the development of a new generation of QUS devices for improved and expanded clinical assessment. Good quality of basic science work will thus lead to good quality of clinical patient examinations on the basis of a more detailed assessment of bone quality.
How does bone quality differ between healthy-weight and overweight adolescents and young adults?
Hoy, Christa L; Macdonald, Heather M; McKay, Heather A
2013-04-01
Overweight youth have greater bone mass than their healthy-weight peers but sustain more fractures. However, it is unclear whether and how excess body fat influences bone quality in youth. We determined whether overweight status correlated with three-dimensional aspects of bone quality influencing bone strength in adolescent and young adult females and males. We categorized males (n=103; mean age, 17 years) and females (n=85; mean age, 18 years) into healthy-weight and overweight groups. We measured lean mass (LM) and fat mass (FM) with dual-energy x-ray absorptiometry (DXA). We used high-resolution peripheral quantitative CT to assess the distal radius (7% site) and distal tibia (8% site). Bone quality measures included total bone mineral density (Tt.BMD), total area (Tt.Ar), trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), separation (Tb.Sp), and thickness (Tb.Th). We used multiple regression to compare bone quality between healthy-weight and overweight adolescents adjusting for age, ethnicity, limb length, LM, and FM. Overweight males had higher (10%-21%) Tt.BMD, BV/TV, and Tb.N and lower Tb.Sp at the tibia and lower Tt.Ar at the radius than healthy-weight males. No differences were observed between overweight and healthy-weight females. LM attenuated the differences in bone quality between groups in males while FM negatively predicted Tt.BMD, BV/TV, Tb.N, and Tb.Th. Our data suggest overweight males have enhanced bone quality compared with healthy-weight males; however, when group differences are interpreted in the context of the mechanostat theory, it appears bone quality of overweight adolescents adapts to LM and not to greater FM.
Beer, Andreas; Gahleitner, André; Holm, Anders; Birkfellner, Wolfgang; Homolka, Peter
2007-02-01
The aim of this study was to quantify the effect of adapted preparation on the insertion torque of self-tapping implants in cancellous bone. In adapted preparation, bone condensation - and thus, insertion torque - is controlled by changing the diameter of the drilling. After preparation of cancellous porcine vertebral bone with drills of 2.85, 3, 3.15 or 3.35 mm final diameters, Brånemark sytem Mk III implants (3.75 x 11.5 mm) were inserted in 141 sites. During implantation, the insertion torque was recorded. Prior to implant insertion, bone mineralization (bone mineral density (BMD)) was measured with dental quantative computed tomography. The BMD values measured at the implant position were correlated with insertion torque for varying bone condensation. Based on the average torque recorded during implant insertion into the pre-drilled canals with a diameter of 3 mm, torque increased by approximately 17% on reducing the diameter of the drill by 5% (to 2.85 mm). On increasing the diameter of the osteotomy to 3.15 mm (5%) or 3.35 mm (12%), torque values decreased by approximately 21% and 50%, respectively. The results demonstrate a correlation between primary stability (average insertion torque) and the diameter of the implant bed on using a screw-shaped implant. Thus, using an individualized bone mineralization-dependent drilling technique, optimized torque values could be achieved in all tested bone qualities with BMDs ranging from 330 to 500 mg/cm(3). The results indicate that using a bone-dependent drilling technique, higher torque values can also be achieved in poor bone using an individualized drilling resulting in higher bone condensation. As immediate function is dependent on primary stability (high insertion torque), this indicates that primary stability can be increased using a modified drilling technique in lesser mineralized bone.
Grafe, Ingo; Alexander, Stefanie; Yang, Tao; Lietman, Caressa; Homan, Erica P; Munivez, Elda; Chen, Yuqing; Jiang, Ming Ming; Bertin, Terry; Dawson, Brian; Asuncion, Franklin; Ke, Hua Zhu; Ominsky, Michael S; Lee, Brendan
2016-01-01
Osteogenesis Imperfecta (OI) is characterized by low bone mass, poor bone quality and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl-Ab treatment has not been studied in models of recessive OI. Cartilage associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1 and 6 week old Crtap−/− mice with Scl-Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of “pediatric” and “young adult” recessive OI. Vehicle treated Crtap−/− and wildtype (WT) mice served as controls. Compared with control Crtap−/− mice, microCT analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl-Ab treated Crtap−/− mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl-Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl-Ab improved parameters of whole bone strength in Crtap−/− mice, with more robust effects in the week 6–12 cohort, but did not affect the increased bone brittleness. Additionally, Scl-Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6–12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl-Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen post-translational modification. PMID:26716893
Evaluation of bone quality in osteoporosis model mice by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Ishimaru, Yasumitsu; Oshima, Yusuke; Imai, Yuuki; Iimura, Tadahiro; Takanezawa, Sota; Hino, Kazunori; Miura, Hiromasa
2017-04-01
To evaluate the bone quality in the osteoporosis, we generated sciatic nerve resection (NX) mice as an osteoporosis model and analyzed by Raman spectroscopy. Raman spectra were measured in anterior cortical surface of the proximal tibia at 5 points in each bone. After that, the samples were fixed with 70% ethanol. We then performed DXA and μCT measurement. Raman peak intensity ratios were significantly different between NX and Control. Those changes in the Raman peak intensity ratios may reflect loss of bone quality in the osteoporosis model. Raman spectroscopy is a promising technique for measuring the bone quality and bone strength.
MacDonald, Kevin M; Swanstrom, Morgan M; McCarthy, James J; Nemeth, Blaise A; Guliani, Teresa A; Noonan, Kenneth J
2010-03-01
Recurrent unicameral bone cysts (UBCs) can result in significant morbidity during a child's physical and emotional development. Multiple treatment options are available and a review of the literature fails to clearly define the optimal treatment for UBCs. Recombinant bone morphogenetic protein (BMP) has been used with success in other disorders of poor bone formation. This manuscript is the first to report on the use of recombinant BMP in the treatment of UBCs. Three patients with recurrent UBCs underwent revision surgery with recombinant BMP. Radiographic and medical review was performed and is reported here. In these patients, the use of BMP failed to fully resolve their UBC; 2 patients had complete recurrence that required further surgery. In addition to poor radiographic results, all patients developed exaggerated inflammatory responses in the acute postoperative period. Each child developed clinically significant limb swelling and pain that mimicked infection. On the basis of our poor radiographic results and a paradoxical clinical result, we no longer recommend the use of recombinant BMP in the manner reported here for the treatment of recurrent UBCs. Level IV, case series.
[Principles of management of periprosthetic fractures].
Röderer, G; Gebhard, F; Scola, A
2016-03-01
The increasing numbers of primary total hip and knee replacements have subsequently led to growing rates of periprosthetic fractures. In many cases geriatric patients with osteopenia or osteoporotic bone quality are affected. The goal of treatment is the retention or reconstruction of joint function using open reduction and internal fixation or a revision prosthesis. The aim of this article is a description of the basic principles of treatment of periprosthetic fractures of the lower extremities. An exact description of the fracture using current classification systems with imaging diagnostics is mandatory. This also includes an assessment of the stability of the prosthesis. In the case of a stable prosthesis and a good bone stock open reduction and internal fixation should be performed. In these cases locking plates are standard procedure. If fracture reduction is possible minimally invasive procedures can be performed which help to reduce the surgical trauma and accelerate rehabilitation. If the prosthesis is loose it has to be exchanged for a revision implant. If vast bony defects result they can be augmented using wedges. Conservative treatment plays only a subordinate role in selected cases. Periprosthetic fractures show an increasing incidence and occur more frequently in the geriatric patient population. Due to comorbidities and poor bone quality surgical treatment is a challenge. The fracture must be exactly classified using the appropriate classification system in order to clarify if the prosthesis can be retained or if it has to be exchanged.
Chronic Degeneration Leads to Poor Healing of Repaired Massive Rotator Cuff Tears in Rats.
Killian, Megan L; Cavinatto, Leonardo M; Ward, Samuel R; Havlioglu, Necat; Thomopoulos, Stavros; Galatz, Leesa M
2015-10-01
Chronic rotator cuff tears present a clinical challenge, often with poor outcomes after surgical repair. Degenerative changes to the muscle, tendon, and bone are thought to hinder healing after surgical repair; additionally, the ability to overcome degenerative changes after surgical repair remains unclear. The purpose of this study was to evaluate healing outcomes of muscle, tendon, and bone after tendon repair in a model of chronic rotator cuff disease and to compare these outcomes to those of acute rotator cuff injuries and repair. The hypothesis was that degenerative rotator cuff changes associated with chronic multitendon tears and muscle unloading would lead to poor structural and mechanical outcomes after repair compared with acute injuries and repair. Controlled laboratory study. Chronic rotator cuff injuries, induced via detachment of the supraspinatus (SS) and infraspinatus (IS) tendons and injection of botulinum toxin A into the SS and IS muscle bellies, were created in the shoulders of rats. After 8 weeks of injury, tendons were surgically reattached to the humeral head, and an acute, dual-tendon injury and repair was performed on the contralateral side. After 8 weeks of healing, muscles were examined histologically, and tendon-to-bone samples were examined microscopically, histologically, and biomechanically and via micro-computed tomography. All repairs were intact at the time of dissection, with no evidence of gapping or ruptures. Tendon-to-bone healing after repair in our chronic injury model led to reduced bone quality and morphological disorganization at the repair site compared with acute injuries and repair. SS and IS muscles were atrophic at 8 weeks after repair of chronic injuries, indicating incomplete recovery after repair, whereas SS and IS muscles exhibited less atrophy and degeneration in the acute injury group at 8 weeks after repair. After chronic injuries and repair, humeral heads had decreased total mineral density and an altered trabecular structure, and the repair had decreased strength, stiffness, and toughness, compared with the acute injury and repair group. Chronic degenerative changes in rotator cuff muscles, tendons, and bone led to inferior healing characteristics after repair compared with acute injuries and repair. The changes were not reversible after repair in the time course studied, consistent with clinical impressions. High retear rates after rotator cuff repair are associated with tear size and chronicity. Understanding the mechanisms behind this association may allow for targeted tissue therapy for tissue degeneration that occurs in the setting of chronic tears. © 2015 The Author(s).
Chronic Degeneration Leads to Poor Healing of Repaired Massive Rotator Cuff Tears in Rats
Killian, Megan L.; Cavinatto, Leonardo M.; Ward, Samuel R.; Havlioglu, Necat; Thomopoulos, Stavros; Galatz, Leesa M.
2016-01-01
Background Chronic rotator cuff tears present a clinical challenge, often with poor outcomes after surgical repair. Degenerative changes to the muscle, tendon, and bone are thought to hinder healing after surgical repair; additionally, the ability to overcome degenerative changes after surgical repair remains unclear. Purpose/Hypothesis The purpose of this study was to evaluate healing outcomes of muscle, tendon, and bone after tendon repair in a model of chronic rotator cuff disease and to compare these outcomes to those of acute rotator cuff injuries and repair. The hypothesis was that degenerative rotator cuff changes associated with chronic multitendon tears and muscle unloading would lead to poor structural and mechanical outcomes after repair compared with acute injuries and repair. Study Design Controlled laboratory study. Methods Chronic rotator cuff injuries, induced via detachment of the supraspinatus (SS) and infraspinatus (IS) tendons and injection of botulinum toxin A into the SS and IS muscle bellies, were created in the shoulders of rats. After 8 weeks of injury, tendons were surgically reattached to the humeral head, and an acute, dual-tendon injury and repair was performed on the contralateral side. After 8 weeks of healing, muscles were examined histologically, and tendon-to-bone samples were examined microscopically, histologically, and biomechanically and via micro–computed tomography. Results All repairs were intact at the time of dissection, with no evidence of gapping or ruptures. Tendon-to-bone healing after repair in our chronic injury model led to reduced bone quality and morphological disorganization at the repair site compared with acute injuries and repair. SS and IS muscles were atrophic at 8 weeks after repair of chronic injuries, indicating incomplete recovery after repair, whereas SS and IS muscles exhibited less atrophy and degeneration in the acute injury group at 8 weeks after repair. After chronic injuries and repair, humeral heads had decreased total mineral density and an altered trabecular structure, and the repair had decreased strength, stiffness, and toughness, compared with the acute injury and repair group. Conclusion Chronic degenerative changes in rotator cuff muscles, tendons, and bone led to inferior healing characteristics after repair compared with acute injuries and repair. The changes were not reversible after repair in the time course studied, consistent with clinical impressions. Clinical Relevance High retear rates after rotator cuff repair are associated with tear size and chronicity. Understanding the mechanisms behind this association may allow for targeted tissue therapy for tissue degeneration that occurs in the setting of chronic tears. PMID:26297522
Multiscale imaging of bone microdamage
Poundarik, Atharva A.; Vashishth, Deepak
2015-01-01
Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and functions to dissipate energy and avert fracture. Microdamage formation is a key determinant of bone quality, and through a range of biological and physical mechanisms, accumulates with age and disease. Accumulated microdamage in bone decreases bone strength and increases bone’s propensity to fracture. Thus, a thorough assessment of microdamage, across the hierarchical levels of bone, is crucial to better understand bone quality and bone fracture. This review article details multiple imaging modalities that have been used to study and characterize microdamage; from bulk staining techniques originally developed by Harold Frost to assess linear microcracks, to atomic force microscopy, a modality that revealed mechanistic insights into the formation diffuse damage at the ultrastructural level in bone. New automated techniques using imaging modalities such as microcomputed tomography are also presented for a comprehensive overview. PMID:25664772
Butezloff, Mariana Maloste; Zamarioli, Ariane; Leoni, Graziela Bianchi; Sousa-Neto, Manoel Damião; Volpon, Jose Batista
2015-11-01
To investigate the effect of vibration therapy on the bone callus of fractured femurs and the bone quality of intact femurs in ovariectomized rats. Fifty-six rats aged seven weeks were divided into four groups: control with femoral fracture (CON, n=14), ovariectomized with femoral fracture (OVX, n=14), control with femoral fracture plus vibration therapy (CON+VT, n=14), and ovariectomized with femoral fracture plus vibration therapy (OVX+VT, n=14). Three months after ovariectomy or sham surgery, a complete fracture was produced at the femoral mid-diaphysis and stabilized with a 1-mm-diameter intramedullary Kirschner wire. X-rays confirmed the fracture alignment and fixation. Three days later, the VT groups underwent vibration therapy (1 mm, 60 Hz for 20 minutes, three times per week for 14 or 28 days). The bone and callus quality were assessed by densitometry, three-dimensional microstructure, and mechanical test. Ovariectomized rats exhibited a substantial loss of bone mass and severe impairment in bone microarchitecture, both in the non-fractured femur and the bone callus. Whole-body vibration therapy exerted an important role in ameliorating the bone and fracture callus parameters in the osteoporotic bone. Vibration therapy improved bone quality and the quality of the fracture bone callus in ovariectomized rats.
NASA Astrophysics Data System (ADS)
Karlita, Tita; Yuniarno, Eko Mulyanto; Purnama, I. Ketut Eddy; Purnomo, Mauridhi Hery
2017-06-01
Analyzing ultrasound (US) images to get the shapes and structures of particular anatomical regions is an interesting field of study since US imaging is a non-invasive method to capture internal structures of a human body. However, bone segmentation of US images is still challenging because it is strongly influenced by speckle noises and it has poor image quality. This paper proposes a combination of local phase symmetry and quadratic polynomial fitting methods to extract bone outer contour (BOC) from two dimensional (2D) B-modes US image as initial steps of three-dimensional (3D) bone surface reconstruction. By using local phase symmetry, the bone is initially extracted from US images. BOC is then extracted by scanning one pixel on the bone boundary in each column of the US images using first phase features searching method. Quadratic polynomial fitting is utilized to refine and estimate the pixel location that fails to be detected during the extraction process. Hole filling method is then applied by utilize the polynomial coefficients to fill the gaps with new pixel. The proposed method is able to estimate the new pixel position and ensures smoothness and continuity of the contour path. Evaluations are done using cow and goat bones by comparing the resulted BOCs with the contours produced by manual segmentation and contours produced by canny edge detection. The evaluation shows that our proposed methods produces an excellent result with average MSE before and after hole filling at the value of 0.65.
Research Perspectives: The 2013 AAOS/ORS Research Symposium on Bone Quality and Fracture Prevention
Donnelly, Eve; Lane, Joseph M.; Boskey, Adele L.
2016-01-01
Bone fracture resistance is determined by the amount of bone present (“bone quantity”) and by a number of other geometric and material factors grouped under the term “bone quality.” In May 2013, a workshop was convened among a group of clinicians and basic science investigators to review the current state of the art in Bone Quality and Fracture Prevention and to make recommendations for future directions for research. The AAOS/ORS/OREF workshop was attended by 64 participants, including two representatives of the National Institutes of Arthritis and Musculoskeletal and Skin Diseases and 13 new investigators whose posters stimulated additional interest. A key outcome of the workshop was a set of recommendations regarding clinically relevant aspects of both bone quality and quantity that clinicians can use to inform decisions about patient care and management. The common theme of these recommendations was the need for more education of clinicians in areas of bone quality and for basic science studies to address specific topics of pathophysiology, diagnosis, prevention, and treatment of altered bone quality. In this report, the organizers with the assistance of the speakers and other attendees highlight the major findings of the meeting that justify the recommendations and needs for this field. PMID:24700449
Effects of mechanical repetitive load on bone quality around implants in rat maxillae.
Uto, Yusuke; Kuroshima, Shinichiro; Nakano, Takayoshi; Ishimoto, Takuya; Inaba, Nao; Uchida, Yusuke; Sawase, Takashi
2017-01-01
Greater understanding and acceptance of the new concept "bone quality", which was proposed by the National Institutes of Health and is based on bone cells and collagen fibers, are required. The novel protein Semaphorin3A (Sema3A) is associated with osteoprotection by regulating bone cells. The aims of this study were to investigate the effects of mechanical loads on Sema3A production and bone quality based on bone cells and collagen fibers around implants in rat maxillae. Grade IV-titanium threaded implants were placed at 4 weeks post-extraction in maxillary first molars. Implants received mechanical loads (10 N, 3 Hz for 1800 cycles, 2 days/week) for 5 weeks from 3 weeks post-implant placement to minimize the effects of wound healing processes by implant placement. Bone structures, bone mineral density (BMD), Sema3A production and bone quality based on bone cells and collagen fibers were analyzed using microcomputed tomography, histomorphometry, immunohistomorphometry, polarized light microscopy and birefringence measurement system inside of the first and second thread (designated as thread A and B, respectively), as mechanical stresses are concentrated and differently distributed on the first two threads from the implant neck. Mechanical load significantly increased BMD, but not bone volume around implants. Inside thread B, but not thread A, mechanical load significantly accelerated Sema3A production with increased number of osteoblasts and osteocytes, and enhanced production of both type I and III collagen. Moreover, mechanical load also significantly induced preferential alignment of collagen fibers in the lower flank of thread B. These data demonstrate that mechanical load has different effects on Sema3A production and bone quality based on bone cells and collagen fibers between the inside threads of A and B. Mechanical load-induced Sema3A production may be differentially regulated by the type of bone structure or distinct stress distribution, resulting in control of bone quality around implants in jaw bones.
Spontaneous osteosarcoma of the femur in a non-obese diabetic mouse
Hong, Sunhwa; Lee, Hyun-A; Choe, Ohmok; Chung, Youngho
2011-01-01
An abnormal swelling was identified in the distal portion of the right femur in a 1-year-old non-obese diabetic (NOD) mouse. Grossly, a large mass of the distal femur was observed in the right femur. Lesions were poorly marginated, associated with destruction of the cancellous and cortical elements of the bone, and showed ossification within the soft tissue component. Histologically, the tumor was identified as a poorly differentiated sarcoma. Histopathologic examination of the bone masses revealed invasive proliferation of poorly differentiated neoplastic mesenchymal cells forming streams, bundles, and nests, which resulted in destruction of normal bone. Neoplastic cells exhibited random variation in cellular appearance and arrangement, as well as matrix composition and abundance. Haphazard and often intermingling patterns of osteogenic, chondroblastic, lipoblastic, and angiogenic tissues were present. Larger areas of neoplastic bone and hyaline cartilage contained multiple large areas of hemorrhage and necrosis bordered by neoplastic cells. The mass was diagnosed as an osteosarcoma. To our knowledge, this is the first spontaneous osteosarcoma in an NOD mouse. PMID:21998615
Grafe, Ingo; Alexander, Stefanie; Yang, Tao; Lietman, Caressa; Homan, Erica P; Munivez, Elda; Chen, Yuqing; Jiang, Ming Ming; Bertin, Terry; Dawson, Brian; Asuncion, Franklin; Ke, Hua Zhu; Ominsky, Michael S; Lee, Brendan
2016-05-01
Osteogenesis imperfecta (OI) is characterized by low bone mass, poor bone quality, and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin-neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl-Ab treatment has not been studied in models of recessive OI. Cartilage-associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1-week-old and 6-week-old Crtap(-/-) mice with Scl-Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of "pediatric" and "young adult" recessive OI. Vehicle-treated Crtap(-/-) and wild-type (WT) mice served as controls. Compared with control Crtap(-/-) mice, micro-computed tomography (μCT) analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl-Ab-treated Crtap(-/-) mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl-Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl-Ab improved parameters of whole-bone strength in Crtap(-/-) mice, with more robust effects in the week 6 to 12 cohort, but did not affect the increased bone brittleness. Additionally, Scl-Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6 to 12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl-Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen posttranslational modification. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.
Open reduction of nasal bone fractures through an intercartilaginous incision.
Kim, Ji Heui; Lee, Jun Ho; Hong, Seok Min; Park, Chan Hum
2013-01-01
Open reduction through an intercartilaginous incision was useful for treating delayed-diagnosed nasal bone fractures because it resulted in a successful outcome with minimal complications. Nasal bone fractures are generally managed with closed reduction, which is usually inadequate and results in airway obstruction with a delayed diagnosis of nasal bone fracture when bone healing and fibrotic adhesions around the bone fragment have progressed. This study investigated the surgical outcome of open reduction through an intercartilaginous incision for delayed-diagnosis nasal bone fractures. The study enrolled 18 patients who underwent open reduction through an intercartilaginous incision to correct delayed-diagnosis nasal bone fractures. Three independent otorhinolaryngologists evaluated the outcomes 4-35 months (average 12.7 months) postoperatively as excellent, fair or poor. The time from injury to surgery was 11-39 days (20-39 days in adults and 11-30 days in children). The 18 cases included 16 primary repairs and two revisions. A Kirschner wire was inserted in six (33.3%) patients who had unstable reduced nasal bones. Postoperatively, l5 (83%) patients had excellent results, two (11%) had fair, and one (6%) had a poor outcome. No patient experienced any complication.
Pinto, M; Jepsen, K J; Terranova, C J; Buffenstein
2015-01-01
Sex steroid hormones are major determinants of bone morphology and quality and are responsible for sexually dimorphic skeletal traits. Hypogonadism results in suboptimal skeletal development and may lead to an increased risk of bone fracture later in life. The etiology of delayed puberty and/or hypothalamic amenorrhea is poorly understood, and experimental animal models addressing this issue are predominantly based upon short-term experimental induction of hormonal suppression via gonadotropin releasing hormone antagonists (GnRH-a). This acute change in hormone profile does not necessarily emulate the natural progression of hypogonadic bone disorders. We propose a novel animal model with which to explore the effects of chronic hypogonadism on bone quality, the naked mole-rat (NMR; Heterocephalus glaber). This mouse-size rodent may remain reproductively suppressed throughout its life, if it remains as a subordinate within the eusocial mole-rat colony. NMRs live in large colonies with a single dominant breeding female. She, primarily by using aggressive social contact, naturally suppresses the hypothalamic gonadotropic axis of subordinate NMRs and thereby their reproductive expression. However should an NMR be separated from the dominant breeder, within less than a week reproductive hormones may become elevated and the animal attains breeding status. We questioned if sexual suppression of subordinates impact upon the development and maintenance of the femora, and lead to a sexually indistinct monomorphic skeleton. Femora were obtained from male and female NMRs that were either non-breeders (subordinate) or breeders at the time of sacrifice. Diaphyseal cross-sectional morphology, metaphyseal trabecular micro-architecture and tissue mineral density of the femur was measured using MicroComputed tomography and diaphyseal mechanical properties were assessed by four-point bending tests to failure. Subordinates were sexually monomorphic and showed no significant differences in body weight or femoral bone structure and quality between male and females. Femora of subordinate females differed significantly from that of breeding animals, whereas in males, the divergent trend among breeders and non-breeders did not reach statistical significance. Subordinate NMRs, naturally suppressed from entering puberty, may prove to be a useful model to tease apart the relationship between bone morphology and hypogonadism and evaluate skeletal development during pubertal maturation. PMID:19761882
2015-10-01
quality, and cartilage health in post-traumatic osteoarthritis (PTOA). Few molecular details are known about the regulation of PLR or bone quality...degeneration. 15. SUBJECT TERMS Osteocyte, remodeling, bone, bone quality, post-traumatic osteoarthritis , TGF-beta, mechanical load, matrix...joint health, and their contribution to post-traumatic osteoarthritis (PTOA). Osteocytes sense and respond to mechanical loads, and they are also
High Resolution Peripheral Quantitative Computed Tomography for Assessment of Bone Quality
NASA Astrophysics Data System (ADS)
Kazakia, Galateia
2014-03-01
The study of bone quality is motivated by the high morbidity, mortality, and societal cost of skeletal fractures. Over 10 million people are diagnosed with osteoporosis in the US alone, suffering 1.5 million osteoporotic fractures and costing the health care system over 17 billion annually. Accurate assessment of fracture risk is necessary to ensure that pharmacological and other interventions are appropriately administered. Currently, areal bone mineral density (aBMD) based on 2D dual-energy X-ray absorptiometry (DXA) is used to determine osteoporotic status and predict fracture risk. Though aBMD is a significant predictor of fracture risk, it does not completely explain bone strength or fracture incidence. The major limitation of aBMD is the lack of 3D information, which is necessary to distinguish between cortical and trabecular bone and to quantify bone geometry and microarchitecture. High resolution peripheral quantitative computed tomography (HR-pQCT) enables in vivo assessment of volumetric BMD within specific bone compartments as well as quantification of geometric and microarchitectural measures of bone quality. HR-pQCT studies have documented that trabecular bone microstructure alterations are associated with fracture risk independent of aBMD.... Cortical bone microstructure - specifically porosity - is a major determinant of strength, stiffness, and fracture toughness of cortical tissue and may further explain the aBMD-independent effect of age on bone fragility and fracture risk. The application of finite element analysis (FEA) to HR-pQCT data permits estimation of patient-specific bone strength, shown to be associated with fracture incidence independent of aBMD. This talk will describe the HR-pQCT scanner, established metrics of bone quality derived from HR-pQCT data, and novel analyses of bone quality currently in development. Cross-sectional and longitudinal HR-pQCT studies investigating the impact of aging, disease, injury, gender, race, and therapeutics on bone quality will be discussed.
Lara, Primo N; Ely, Benjamin; Quinn, David I; Mack, Philip C; Tangen, Catherine; Gertz, Erik; Twardowski, Przemyslaw W; Goldkorn, Amir; Hussain, Maha; Vogelzang, Nicholas J; Thompson, Ian M; Van Loan, Marta D
2014-04-01
Prior studies suggest that elevated markers of bone turnover are prognostic for poor survival in castration-resistant prostate cancer (CRPC). The predictive role of these markers relative to bone-targeted therapy is unknown. We prospectively evaluated the prognostic and predictive value of bone biomarkers in sera from CRPC patients treated on a placebo-controlled phase III trial of docetaxel with or without the bone targeted endothelin-A receptor antagonist atrasentan (SWOG S0421). Markers for bone resorption (N-telopeptide and pyridinoline) and formation (C-terminal collagen propeptide and bone alkaline phosphatase) were assayed in pretreatment and serial sera. Cox proportional hazards regression models were fit for overall survival. Models were fit with main effects for marker levels and with/without terms for marker-treatment interaction, adjusted for clinical variables, to assess the prognostic and predictive value of atrasentan. Analysis was adjusted for multiple comparisons. Two-sided P values were calculated using the Wald test. Sera from 778 patients were analyzed. Elevated baseline levels of each of the markers were associated with worse survival (P < .001). Increasing marker levels by week nine of therapy were also associated with subsequent poor survival (P < .001). Patients with the highest marker levels (upper 25th percentile for all markers) not only had a poor prognosis (hazard ratio [HR] = 4.3; 95% confidence interval [CI] = 2.41 to 7.65; P < .001) but also had a survival benefit from atrasentan (HR = 0.33; 95% CI = 0.15 to 0.71; median survival = 13 [atrasentan] vs 5 months [placebo]; P interaction = .005). Serum bone metabolism markers have statistically significant independent prognostic value in CRPC. Importantly, a small group of patients (6%) with highly elevated markers of bone turnover appear to preferentially benefit from atrasentan therapy.
Li, Jian; Xu, Qiang; Teng, Bin; Yu, Chen; Li, Jian; Song, Liang; Lai, Yu-Xiao; Zhang, Jian; Zheng, Wei; Ren, Pei-Gen
2016-09-15
Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. The continuous release of bioactive lentiviral vectors (LV-pdgfb) from the scaffolds could be detected for 5days in vitro. In vivo, the released LV-pdgfb transfected adjacent cells and expressed PDGF-BB, facilitating angiogenesis and enhancing bone regeneration. The expression of both pdgfb and the angiogenesis-related genes vWF and VEGFR2 was significantly increased in the pdgfb gene-carrying scaffold (PHp) group. In addition, microCT scanning and histomorphology results proved that there was more new bone ingrowth in the PHp group than in the PLGA/nHA (PH) and control groups. MicroCT parameters, including BMD, BV/TV, Tb.Sp, and Tb.N indicated that there was significantly more new bone formation in the PHp group than in the other groups. With regard to neovascularization, 8weeks post-implantation, blood vessel areas (BVAs) were 9428±944μm(2), 4090±680.3μm(2), and none in the PHp, PH, and control groups, respectively. At each time point, BVAs in the PHp scaffolds were significantly higher than in the PH scaffolds. To our knowledge, this is the first use of multiphoton microscopy in bone tissue-engineering to investigate angiogenesis in scaffolds in vivo. This method represents a valuable tool for investigating neovascularization in bone scaffolds to determine if a certain scaffold is beneficial to neovascularization. We also proved that delivery of the pdgfb gene alone can improve both angiogenesis and bone regeneration Acronyms. Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. To verify that pdgfb-expressing vectors carried by the scaffolds can promote angiogenesis in 3D-printed scaffolds in vivo, we monitored angiogenesis within the implants by multiphoton microscopy. To our knowledge, this is the first study to dynamically investigate angiogenesis in bone tissue engineering scaffolds in vivo. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Moyer-Mileur, Laurie J; Slater, Hillarie; Jordan, Kristine C; Murray, Mary A
2008-12-01
Children and adolescents with poorly controlled type 1 diabetes mellitus (T1DM) are at risk for decreased bone mass. Growth hormone (GH) and its mediator, IGF-1, promote skeletal growth. Recent observations have suggested that children and adolescents with T1DM are at risk for decreased bone mineral acquisition. We examined the relationships between metabolic control, IGF-1 and its binding proteins (IGFBP-1, -3, -5), and bone mass in T1DM in adolescent girls 12-15 yr of age with T1DM (n = 11) and matched controls (n = 10). Subjects were admitted overnight and given a standardized diet. Periodic blood samples were obtained, and bone measurements were performed. Serum GH, IGFBP-1 and -5, glycosylated hemoglobin (HbA(1c)), glucose, and urine magnesium levels were higher and IGF-1 values were lower in T1DM compared with controls (p < 0.05). Whole body BMC/bone area (BA), femoral neck areal BMD (aBMD) and bone mineral apparent density (BMAD), and tibia cortical BMC were lower in T1DM (p < 0.05). Poor diabetes control predicted lower IGF-1 (r(2) = 0.21) and greater IGFBP-1 (r(2) = 0.39), IGFBP-5 (r(2) = 0.38), and bone-specific alkaline phosphatase (BALP; r(2) = 0.41, p < 0.05). Higher urine magnesium excretion predicted an overall shorter, lighter skeleton, and lower tibia cortical bone size, mineral, and density (r(2) = 0.44-0.75, p < 0.05). In the T1DM cohort, earlier age at diagnosis was predictive of lower IGF-1, higher urine magnesium excretion, and lighter, thinner cortical bone (r(2) >or=0.45, p < 0.01). We conclude that poor metabolic control alters the GH/IGF-1 axis, whereas greater urine magnesium excretion may reflect subtle changes in renal function and/or glucosuria leading to altered bone size and density in adolescent girls with T1DM.
Cizza, Giovanni
2011-01-01
Major depressive disorder (MDD) is one of the most common psychiatric illnesses in the adult population. It is often associated with an increased risk of cardiovascular disease. Osteoporosis is also a major public health threat. Multiple studies have reported an association between depression and low bone mineral density, but a causal link between these two conditions is disputed. Here the most important findings of the POWER (Premenopausal, Osteoporosis Women, Alendronate, Depression) Study, a large prospective study of bone turnover in premenopausal women with major depression, are summarized. The endocrine and immune alterations secondary to depression that might affect bone mass, and the possible role of poor lifestyle in the etiology of osteoporosis in subjects with depression, are also reviewed, as is the potential effect of antidepressants on bone loss. It is proposed that depression induces bone loss and osteoporotic fractures, primarily via specific immune and endocrine mechanisms, with poor lifestyle habits as potential contributory factors. PMID:21485748
Mallinson, Rebecca J; De Souza, Mary Jane
2014-01-01
The Female Athlete Triad (Triad) represents a syndrome of three interrelated conditions that originate from chronically inadequate energy intake to compensate for energy expenditure; this environment results in insufficient stored energy to maintain physiological processes, a condition known as low energy availability. The physiological adaptations associated with low energy availability, in turn, contribute to menstrual cycle disturbances. The downstream effects of both low energy availability and suppressed estrogen concentrations synergistically impair bone health, leading to low bone mineral density, compromised bone structure and microarchitecture, and ultimately, a decrease in bone strength. Unlike the other components of the Triad, poor bone health often does not have overt symptoms, and therefore develops silently, unbeknownst to the athlete. Compromised bone health among female athletes increases the risk of fracture throughout the lifespan, highlighting the long-term health consequences of the Triad. The purpose of this review is to examine the current state of Triad research related to the third component of the Triad, ie, poor bone health, in an effort to summarize what we know, what we are learning, and what remains unknown. PMID:24833922
Chow, Edward; Nguyen, Janet; Zhang, Liying; Tseng, Ling-Ming; Hou, Ming-Feng; Fairchild, Alysa; Vassiliou, Vassilios; Jesus-Garcia, Reynaldo; Alm El-Din, Mohamed A; Kumar, Aswin; Forges, Fabien; Chie, Wei-Chu; Bottomley, Andrew
2012-03-01
The objective of this international field study was to test the reliability, validity, and responsiveness of the European Organization for Research and Treatment of Cancer (EORTC) QLQ-BM22 module to assess health-related quality of life (HRQOL) in patients with bone metastases. Patients undergoing a variety of bone metastases-specific treatments were accrued. The QLQ-BM22 was administered with the QLQ-C30 at baseline and at 1 follow-up time point internationally. A debriefing questionnaire was administered to determine patient acceptability and understanding. Large-scale field testing of the QLQ-BM22 in addition to the QLQ-C30 took place in 7 countries: Brazil, Canada, Cyprus, Egypt, France, India, and Taiwan. A total of 400 patients participated. Multitrait scaling analyses confirmed 4 scales in the 22-item module. The scales were able to discriminate between clinically distinct patient groups, such as between those with a poor and those with a better performance status. The QLQ-BM22 was well received in all 7 countries, and the majority of patients did not recommend any significant changes from the module in its current form. The final QLQ-BM22 module contains 22 items and 4 scales assessing Painful Sites, Painful Characteristics, Functional Interference, and Psychosocial Aspects. Results confirmed the validity, reliability, cross-cultural applicability, and sensitivity of the 22-item EORTC QLQ-BM22. It is therefore recommended that the QLQ-BM22 be used in addition to the QLQ-C30 in clinical trials to assess HRQOL in patients with bone metastases. Copyright © 2011 American Cancer Society.
The influence of local bone quality on fracture pattern in proximal humerus fractures.
Mazzucchelli, Ruben A; Jenny, Katharina; Zdravkovic, Vilijam; Erhardt, Johannes B; Jost, Bernhard; Spross, Christian
2018-02-01
Bone mineral density and fracture morphology are widely discussed and relevant factors when considering the different treatment options for proximal humerus fractures. It was the aim of this study to investigate the influence of local bone quality on fracture patterns of the Neer classification as well as on fracture impaction angle in these injuries. All acute, isolated and non-pathological proximal humerus fractures admitted to our emergency department were included. The fractures were classified according to Neer and the humeral head impaction angle was measured. Local bone quality was assessed using the Deltoid Tuberosity Index (DTI). The distribution between DTI and fracture pattern was analysed. 191 proximal humerus fractures were included (61 men, mean age 59 years; 130 women, mean age 69.5). 77 fractures (40%) were classified as one-part, 72 (38%) were two-part, 24 (13%) were three- and four-part and 18 (9%) were fracture dislocations. 30 fractures (16%) were varus impacted, whereas 45 fractures (24%) were classified as valgus impacted. The mean DTI was 1.48. Valgus impaction significantly correlated with good bone quality (DTI ≥ 1.4; p = 0.047) whereas no such statistical significance was found for the Neer fracture types. We found that valgus impaction significantly depended on good bone quality. However, neither varus impaction nor any of the Neer fracture types correlated with bone quality. We conclude that the better bone quality of valgus impacted fractures may be a reason for their historically benign amenability to ORIF. On the other hand, good local bone quality does not prevent fracture comminution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Primary telangiectatic osteosarcoma of occipital bone: a case report and review of literature.
Patibandla, Mohana Rao; Uppin, Shantveer G; Thotakura, Amit Kumar; Panigrahi, Manas K; Challa, Sundaram
2011-01-01
Telangiectatic osteosarcoma (TOS), an uncommon variant of osteosarcoma, involving skull bones is extremely rare. We present clinico-pathological, imageological and treatment outcome of a primary TOS of occipital bone in a 30-year-old woman and review the previously reported skull bone TOS. We suggest that TOS should be included in the differential diagnosis of destructive lytic lesions involving the skull bones. As radical surgical procedures are not applicable to skull bones, the outcome is poor even with adjuvant chemotherapy.
USDA-ARS?s Scientific Manuscript database
In spite of a high prevalence of vitamin D inadequacy in pregnant women and neonates, relationships among vitamin D status [25(OH)D], parathyroid hormone (PTH), bone specific alkaline phosphatase (BALP), and whole body bone mineral content (WBBMC) in the newborn are poorly characterized. The purpose...
NASA Astrophysics Data System (ADS)
Ishimaru, Yasumitsu; Oshima, Yusuke; Imai, Yuuki; Iimura, Tadahiro; Takanezawa, Sota; Hino, Kazunori; Miura, Hiromasa
2018-02-01
To detect the bone quality loss in osteoporosis, we performed Raman spectroscopic analysis of sciatic nerve resection (NX) mice. Eight months after surgery, lower limbs were collected from the mice and fixed with 70% ethanol. Raman spectra of anterior cortical surface of the proximal tibia at 5 points in each bone were measured by RENISHAW inVia Raman Microscope. Excitation wave length was 785 nm. We also performed DXA and micro CT measurement to confirm the bone mineral density and bone microstructure in the osteoporotic model induced by sciatic nerve resection. In the result of Raman spectroscopy, we detected changes of Raman peak intensity ratio in carbonate/phosphate, mineral/combined proline and hydroxyproline and mineral/phenylalanine. In addition, in the result of micro CT, we found significant changes in VOX BV/TV, Trabecular number, thickness, cancellous bone mineral density, cortical thickness and cortical bone mineral density. The results suggest that not only the bone mineral density but also bone quality reduced in the NX mice. We conclude that Raman spectroscopy is a useful for bone quality assessment as a complementary technique for conventional diagnostics.
Andersen, Mikkel R; Winther, Nikkolaj S; Lind, Thomas; Schrøder, Henrik M; Flivik, Gunnar; Petersen, Michael M
2017-07-01
The fixation of uncemented tibia components in total knee arthroplasty may rely on the bone quality of the tibia; however, no previous studies have shown convincing objective proof of this. Component migration is relevant as it has been shown to predict aseptic loosening. We performed 2-year follow-up of 92 patients who underwent total knee arthroplasty surgery with an uncemented tibia component. Bone mineral density (BMD; g/cm 2 ) of the tibia host bone was measured preoperatively using dual energy X-ray absorptiometry. The proximal tibia was divided into 2 regions of interest (ROI) in the part of the tibia bone where the components were implanted. Radiostereometric analysis was performed postoperatively and after 3, 6, 12, and 24 months. The primary outcome was maximum total point motion (MTPM; mm). Regression analysis was performed to evaluate the relation between preoperative BMD and MTPM. We found low preoperative BMD in ROI1 to be significantly related to high MTPM at all follow-ups: after 3 months (R 2 = 20%, P BMD = 0.017), 6 months (R 2 = 29%, P BMD = 0.003), 12 months (R 2 = 33%, P BMD = 0.001), and 24 months (R 2 = 27%, P BMD = 0.001). We also found a significant relation for low BMD in ROI2 and high MTPM: 3 months (R 2 = 19%, P BMD = 0.042), 6 months (R 2 = 28%, P BMD = 0.04), 12 months (R 2 = 32%, P BMD = 0.004), and 24 months (R 2 = 24%, P BMD = 0.005). Low preoperative BMD in the tibia is related to high MTPM. Thus, high migration of uncemented tibia components is to be expected in patients with poor bone quality. Copyright © 2017 Elsevier Inc. All rights reserved.
The orthopaedic research scene and strategies to improve it.
Rankin, K S; Sprowson, A P; McNamara, I; Akiyama, T; Buchbinder, R; Costa, M L; Rasmussen, S; Nathan, S S; Kumta, S; Rangan, A
2014-12-01
Trauma and orthopaedics is the largest of the surgical specialties and yet attracts a disproportionately small fraction of available national and international funding for health research. With the burden of musculoskeletal disease increasing, high-quality research is required to improve the evidence base for orthopaedic practice. Using the current research landscape in the United Kingdom as an example, but also addressing the international perspective, we highlight the issues surrounding poor levels of research funding in trauma and orthopaedics and indicate avenues for improving the impact and success of surgical musculoskeletal research. ©2014 The British Editorial Society of Bone & Joint Surgery.
Vega, Aurelio; Martín-Ferrero, Miguel Angel; Del Canto, Francisco; Alberca, Mercedes; García, Veronica; Munar, Anna; Orozco, Lluis; Soler, Robert; Fuertes, Juan Jose; Huguet, Marina; Sánchez, Ana; García-Sancho, Javier
2015-08-01
Osteoarthritis is the most prevalent joint disease and a common cause of joint pain, functional loss, and disability. Conventional treatments demonstrate only modest clinical benefits without lesion reversal. Autologous mesenchymal stromal cell (MSC) treatments have shown feasibility, safety, and strong indications for clinical efficacy. We performed a randomized, active control trial to assess the feasibility and safety of treating osteoarthritis with allogeneic MSCs, and we obtain information regarding the efficacy of this treatment. We randomized 30 patients with chronic knee pain unresponsive to conservative treatments and showing radiological evidence of osteoarthritis into 2 groups of 15 patients. The test group was treated with allogeneic bone marrow MSCs by intra-articular injection of 40 × 10(6) cells. The control group received intra-articular hyaluronic acid (60 mg, single dose). Clinical outcomes were followed for 1 year and included evaluations of pain, disability, and quality of life. Articular cartilage quality was assessed by quantitative magnetic resonance imaging T2 mapping. Feasibility and safety were confirmed and indications of clinical efficacy were identified. The MSC-treated patients displayed significant improvement in algofunctional indices versus the active controls treated with hyaluronic acid. Quantification of cartilage quality by T2 relaxation measurements showed a significant decrease in poor cartilage areas, with cartilage quality improvements in MSC-treated patients. Allogeneic MSC therapy may be a valid alternative for the treatment of chronic knee osteoarthritis that is more logistically convenient than autologous MSC treatment. The intervention is simple, does not require surgery, provides pain relief, and significantly improves cartilage quality.
Ilizarov bone transport versus fibular graft for reconstruction of tibial bone defects in children.
Abdelkhalek, Mostafa; El-Alfy, Barakat; Ali, Ayman M
2016-11-01
The aim of this study was to compare the results of treatment of segmental tibial defects in the pediatric age group using an Ilizarov external fixator versus a nonvascularized fibular bone graft. This study included 24 patients (age range from 5.5 to 15 years) with tibial bone defects: 13 patients were treated with bone transport (BT) and 11 patients were treated with a nonvascularized fibular graft (FG). The outcome parameters were bone results (union, deformity, infection, leg-length discrepancy) and functional results: external fixation index and external fixation time. In group A (BT), one patient developed refracture at the regenerate site, whereas, in group B (FG), after removal of the external fixator, one of the FGs developed a stress fracture. The external fixator time in group A was 10.7 months (range 8-14.5) versus 7.8 months (range 4-11.5 months) in group B (FG). In group A (BT), one patient had a limb-length discrepancy (LLD), whereas, in group B (FG), three patients had LLD. The functional and bone results of the Ilizarov BT technique were excellent in 23.1 and 30.8%, good in 38.5 and 46.2, fair in 30.8 and 15.4, and poor in 7.6 and 7.6%, respectively. The poor functional result was related to the poor bone result because of prolonged external fixator time resulting in significant pain, limited ankle motion, whereas the functional and bone results of fibular grafting were excellent in 9.1 and 18.2%, good in 63.6 and 45.5%, fair in 18.2 and 27.2%, and poor in 9.1 and 9.1%, respectively. Segmental tibial defects can be effectively treated with both methods. The FG method provides satisfactory results, with early removal of the external fixator. However, it had a limitation in patients with severe infection and those with LLD. Also, it requires a long duration of limb bracing until adequate hypertrophy of the graft. The Ilizarov method has the advantages of early weight bearing, treatment of postinfection bone defect in a one-stage surgery, and the possibility to treat the associated LLD. However, it has a long external fixation time.
... devices into the broken bone to maintain proper alignment during healing. Other injuries may be treated with ... that extend into the joint and poor bone alignment can cause osteoarthritis years later. If your leg ...
Correlation between bone quality and microvascular damage in systemic sclerosis patients.
Ruaro, Barbara; Casabella, Andrea; Paolino, Sabrina; Pizzorni, Carmen; Alessandri, Elisa; Seriolo, Chiara; Botticella, Giulia; Molfetta, Luigi; Odetti, Patrizio; Smith, Vanessa; Cutolo, Maurizio
2018-05-18
SSc patients are recognized as presenting an increased risk of altered bone mass. The aim of this study was to assess the bone quality, by trabecular bone score (TBS), in SSc patients in correlation with different levels of microvascular damage, as evaluated by nailfold videocapillaroscopy (NVC), and to compare the results regarding bone quality with RA patients and healthy subjects (CNT). Eighty-four SSc patients, 98 RA patients and 60 CNT, were studied. BMD (g/cm2) of the lumbar spine (L1-L4) was analysed by DXA scan. Lumbar spine bone quality was derived from each spine DXA examination using the TBS analysis. NVC patterns were analysed. A total of 56/84 SSc patients (66%) as well as 78/98 RA patients (80%) showed bone loss at DXA and BMD was found to be significantly lower than in the CNT (P < 0.001). Similarly, lumbar spine TBS was found to be significantly lower in SSc and RA patients than in CNT (P < 0.001). TBS values were found to be lower in SSc with a late NVC pattern, compared with the active or early pattern (late vs active and early pattern, P < 0.001). There was no statistically significant difference in the mean lumbar spine TBS between SSc and RA patients (P = 0.238). The data obtained showed significantly lower bone quality (lower TBS and BMD) in SSc and RA patients compared with CNT. The bone quality seemed lower in SSc patients with more altered microvasculature (late NVC pattern).
The effect of antiresorptives on bone quality.
Recker, Robert R; Armas, Laura
2011-08-01
Currently, antiresorptive therapy in the treatment and prevention of osteoporosis includes bisphosphonates, estrogen replacement, selective estrogen receptor modulators (raloxifene), and denosumab (a human antibody that inactivates RANKL). The original paradigm driving the development of antiresorptive therapy was that inhibition of bone resorption would allow bone formation to continue and correct the defect. However, it is now clear increases in bone density account for little of the antifracture effect of these treatments. We examined the antifracture benefit of antiresorptives deriving from bone quality changes. We searched the archive of nearly 30,000 articles accumulated over more than 40 years in our research center library using a software program (Refman™). Approximately 250 publications were identified in locating the 69 cited here. The findings document antiresorptive agents are not primarily anabolic. All cause a modest increase in bone density due to a reduction in the bone remodeling space; however, the majority of their efficacy is due to suppression of the primary cause of osteoporosis, ie, excessive bone remodeling not driven by mechanical need. All of them improve some element(s) of bone quality. Antiresorptive therapy reduces risk of fracture by improving bone quality through halting removal of bone tissue and the resultant destruction of microarchitecture of bone and, perhaps to some extent, by improving the intrinsic material properties of bone tissue. Information presented here may help clinicians to improve selection of patients for antiresorptive therapy by avoiding them in cases clearly not due to excessive bone remodeling.
Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone.
Harvey, Virginia L; Egerton, Victoria M; Chamberlain, Andrew T; Manning, Phillip L; Buckley, Michael
2016-01-01
Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N) and ratio of carbon to nitrogen (C:N). Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification) as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands), chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six (14)C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae), recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP). All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated (14)C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 1(4)C analysis.
Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone
Harvey, Virginia L.; Egerton, Victoria M.; Chamberlain, Andrew T.; Manning, Phillip L.; Buckley, Michael
2016-01-01
Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N) and ratio of carbon to nitrogen (C:N). Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification) as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands), chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six 14C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae), recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP). All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated 14C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 14C analysis. PMID:26938469
Zhou, Hui; Chen, Yuling; Zhuo, Yong; Lv, Gang; Lin, Yan; Feng, Bin; Fang, Zhengfeng; Che, Lianqiang; Li, Jian; Xu, Shengyu; Wu, De
2017-03-01
Twenty primiparous sows were allocated to two treatments to evaluate the effects of maternal 25-hydroxycholecalciferol (25OHD 3 ) supplementation during gestation and lactation on milk quality and serum bone status markers of sows and bone quality of piglets. Immediately after mating, sows were randomly allotted to one of two diets supplemented with 50 µg/kg 25OHD 3 or basal diets without 25OHD 3 . Blood and milk samples were obtained. At birth and weaning, 10 piglets from each treatment were killed for bone quality analysis. 25OHD 3 -fed sows provided one more piglet at farrowing and 1.17 more piglets at weaning than sows fed basal diets. The contents of solids not-fat, protein, fat or lactose were increased in milk from days 7 and 14 of lactation in 25OHD 3 -supplemented sows and 25OHD 3 concentrations in milk were increased by dietary 25OHD 3 supplementation. Dietary 25OHD 3 supplementation increased serum alkaline phosphatase activity but had no effect on serum tartrate-resistant acid phosphatase activity of sows. Maternal 25OHD 3 supplementation improved bone strength, density and ash content of newborn piglets rather than those of weaning piglets. In conclusion, 25OHD 3 supplementation in maternal diets improved reproductive performance, milk quality and bone status of sows as well as bone quality of newborn piglets. © 2016 Japanese Society of Animal Science.
Effects of mechanical repetitive load on bone quality around implants in rat maxillae
Uto, Yusuke; Nakano, Takayoshi; Ishimoto, Takuya; Inaba, Nao; Uchida, Yusuke; Sawase, Takashi
2017-01-01
Greater understanding and acceptance of the new concept “bone quality”, which was proposed by the National Institutes of Health and is based on bone cells and collagen fibers, are required. The novel protein Semaphorin3A (Sema3A) is associated with osteoprotection by regulating bone cells. The aims of this study were to investigate the effects of mechanical loads on Sema3A production and bone quality based on bone cells and collagen fibers around implants in rat maxillae. Grade IV-titanium threaded implants were placed at 4 weeks post-extraction in maxillary first molars. Implants received mechanical loads (10 N, 3 Hz for 1800 cycles, 2 days/week) for 5 weeks from 3 weeks post-implant placement to minimize the effects of wound healing processes by implant placement. Bone structures, bone mineral density (BMD), Sema3A production and bone quality based on bone cells and collagen fibers were analyzed using microcomputed tomography, histomorphometry, immunohistomorphometry, polarized light microscopy and birefringence measurement system inside of the first and second thread (designated as thread A and B, respectively), as mechanical stresses are concentrated and differently distributed on the first two threads from the implant neck. Mechanical load significantly increased BMD, but not bone volume around implants. Inside thread B, but not thread A, mechanical load significantly accelerated Sema3A production with increased number of osteoblasts and osteocytes, and enhanced production of both type I and III collagen. Moreover, mechanical load also significantly induced preferential alignment of collagen fibers in the lower flank of thread B. These data demonstrate that mechanical load has different effects on Sema3A production and bone quality based on bone cells and collagen fibers between the inside threads of A and B. Mechanical load-induced Sema3A production may be differentially regulated by the type of bone structure or distinct stress distribution, resulting in control of bone quality around implants in jaw bones. PMID:29244883
USDA-ARS?s Scientific Manuscript database
Background. Prior studies suggest that elevated markers of bone turnover are prognostic for poor survival in castration resistant prostate cancer (CRPC). The predictive role of these markers relative to bone-targeted therapy is unknown. We prospectively evaluated the prognostic and predictive value ...
Patel, A; Jameson, K A; Edwards, M H; Ward, K; Gale, C R; Cooper, C; Dennison, Elaine M
2018-04-24
This study investigated the association between mild cognitive impairment (MCI) and physical function and bone health in older adults. MCI was associated with poor physical performance but not bone mineral density or bone microarchitecture. Cross-sectional study to investigate the association between mild cognitive impairment (MCI) and physical performance, and bone health, in a community-dwelling cohort of older adults. Cognitive function of 222 men and 221 women (mean age 75.5 and 75.8 years in men and women, respectively) was assessed by the Strawbridge questionnaire and Mini Mental State Exam (MMSE). Participants underwent dual-energy X-ray absorptiometry (DXA), peripheral-quantitative computed tomography (pQCT) and high-resolution peripheral-quantitative computed tomography (HR-pQCT) scans to assess their bone density, strength and microarchitecture. Their physical function was assessed and a physical performance (PP) score was recorded. In the study, 11.8% of women and 8.1% of men were cognitively impaired on the MMSE (score < 24). On the Strawbridge questionnaire, 24% of women were deemed cognitively impaired compared to 22.3% of men. Cognitive impairment on the Strawbridge questionnaire was associated with poorer physical performance score in men but not in women in the unadjusted analysis. MMSE < 24 was strongly associated with the risk of low physical performance in men (OR 12.9, 95% CI 1.67, 99.8, p = 0.01). Higher MMSE score was associated with better physical performance in both sexes. Poorer cognitive function, whether assessed by the Strawbridge questionnaire, or by MMSE score, was not associated with bone density, shape or microarchitecture, in either sex. MCI in older adults was associated with poor physical performance, but not bone density, shape or microarchitecture.
Palermo, Fernanda Gasparin; Albuquerque, Débora de Paula Soares de Medeiros; Martins, Wellington P; Araujo Júnior, Edward; Bruns, Rafael Frederico
2016-09-01
To establish a structured review process to facilitate the identification of the fetal nasal bone (NB) in the first trimester ultrasound scan to improve the quality images. We conducted a retrospective observational study in fetal NB images obtained during ultrasound exams of singleton pregnancies that underwent first trimester screening (crown-rump length 45-84 mm). When the images were obtained the examiner was not aware of the study. Audit was conducted by an examiner according criteria established by the Fetal Medicine Foundation. Fetal NB images were assessed regarding adequate magnification, mid-sagittal view and transducer held parallel to the direction of the nose. The transvaginal and transabdominal as well as anterior and posterior fetal back groups were compared using χ(2) test. We considered 874 fetal NB images for auditing. Fetal NB was considered present in 865 images (99%). During the audit process, we identified 72 (8.2%) cases of disagreement between examiner and auditor assessments. Disagreement was higher when image quality was poor (62 cases = 7%). Transvaginal approach performed better in the following criteria: adequate magnification (p < 0.001), midline (p < 0.001) and completely adequate (p < 0.001). A peer reviewed audit program for fetal NB is feasible in a clinical scenario. Image quality appears to play an important role in compliance to image standards audited and in agreement between examiner and auditor.
NASA Astrophysics Data System (ADS)
Oshima, Yusuke; Iimura, Tadahiro; Saitou, Takashi; Imamura, Takeshi
2015-02-01
Osteoporosis is a major bone disease that connotes the risk of fragility fractures resulting from alterations to bone quantity and/or quality to mechanical competence. Bone strength arises from both bone quantity and quality. Assessment of bone quality and bone quantity is important for prediction of fracture risk. In spite of the two factors contribute to maintain the bone strength, only one factor, bone mineral density is used to determine the bone strength in the current diagnosis of osteoporosis. On the other hand, there is no practical method to measure chemical composition of bone tissue including hydroxyapatite and collagen non-invasively. Raman spectroscopy is a powerful technique to analyze chemical composition and material properties of bone matrix non-invasively. Here we demonstrated Raman spectroscopic analysis of the bone matrix in osteoporosis model rat. Ovariectomized (OVX) rat was made and the decalcified sections of tibias were analyzed by a Raman microscope. In the results, Raman bands of typical collagen appeared in the obtained spectra. Although the typical mineral bands at 960 cm-1 (Phosphate) was absent due to decalcified processing, we found that Raman peak intensities of amide I and C-C stretching bands were significantly different between OVX and sham-operated specimens. These differences on the Raman spectra were statistically compared by multivariate analyses, principal component analysis (PCA) and liner discrimination analysis (LDA). Our analyses suggest that amide I and C-C stretching bands can be related to stability of bone matrix which reflects bone quality.
Moderate chronic kidney disease impairs bone quality in C57Bl/6J mice.
Heveran, Chelsea M; Ortega, Alicia M; Cureton, Andrew; Clark, Ryan; Livingston, Eric W; Bateman, Ted A; Levi, Moshe; King, Karen B; Ferguson, Virginia L
2016-05-01
Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone tissue. In this study, 11-week-old male C57Bl/6J mice underwent either 5/6th nephrectomy (5/6 Nx) or sham surgeries. Mice were fed a normal chow diet and euthanized 11weeks post-surgery. Moderate CKD with high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture and whole bone strength were also evaluated. We found that moderate CKD minimally affected bone microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60μm of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction was also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. The observed lower bone material quality may play a role in the decreased fracture resistance that is clinically associated with human CKD. Copyright © 2016 Elsevier Inc. All rights reserved.
Moderate Chronic Kidney Disease Impairs Bone Quality in C57Bl/6J Mice
Heveran, Chelsea M.; Ortega, Alicia M.; Cureton, Andrew; Clark, Ryan; Livingston, Eric; Bateman, Ted; Levi, Moshe; King, Karen B.; Ferguson, Virginia L.
2016-01-01
Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone tissue. In this study, 11-week old male C57Bl/6J mice underwent either 5/6th nephrectomy (5/6 Nx) or sham procedures. Mice were fed a normal chow diet and euthanized 11 weeks post-surgery. Moderate CKD with high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture (μCT) and whole bone strength were also evaluated. We found that moderate CKD minimally affected bone microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60 micrometers of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction were also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. The observed lower bone material quality may play a role in the decreased fracture resistance that is clinically associated with human CKD. PMID:26860048
Taché, Alex; Gan, Lu; Deporter, Douglas; Pilliar, Robert M
2004-01-01
The effect of adding a thin sol-gel-formed calcium phosphate (CaP) coating to sintered porous-surfaced titanium alloy (Ti-6Al-4V) implants on rates of initial bone ingrowth was investigated. Control implants (as manufactured) and similar implants with sol-gel CaP coatings were randomly placed in distal femoral rabbit condyles (1 implant/leg). After healing for 6, 9, 12, and 16 days, 8 of 10 rabbits in each time group were assessed for maximum implant pullout force (N) and interface stiffness (N/mm). Selected extracted implants also were examined by secondary electron imaging to characterize affected surfaces. The implants of the remaining 2 rabbits in each group were examined by backscattered scanning electron microscopy (BSEM). Significantly greater pullout forces and interface stiffness were found for CaP-coated implants at 6 and 9 days. At 6 days, BSEM revealed bone ingrowth on CaP-coated implants but not on control implants. Secondary electron imaging and BSEM observations also suggested greater bone ingrowth with CaP-coated porous implants at 9, 12, and 16 days. Sol-gel-formed CaP surface films significantly enhance rates of bone ingrowth into sintered porous-surfaced implants. This surface treatment may have a number of clinical benefits, including shortening the period prior to functional loading of such implants and improving treatment outcomes in situations of poor bone quality and/or quantity. (More than 50 references).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westhoff, Paulien G., E-mail: p.g.westhoff@umcutrecht.nl; Department of Radiotherapy, Radboud University Medical Center, Nijmegen; Verdam, Mathilde G.E.
Purpose: To study the course of quality of life (QoL) after radiation therapy for painful bone metastases. Patients and Methods: The Dutch Bone Metastasis Study randomized 1157 patients with painful bone metastases between a single fraction of 8 Gy and 6 fractions of 4 Gy between 1996 and 1998. The study showed a comparable pain response of 74%. Patients filled out weekly questionnaires for 13 weeks, then monthly for 2 years. In these analyses, physical, psychosocial, and functional QoL domain scores and a score of general health were studied. Mixed modeling was used to model the course of QoL and to study the influence ofmore » several characteristics. Results: In general, QoL stabilized after 1 month. Psychosocial QoL improved after treatment. The level of QoL remained stable, steeply deteriorating at the end of life. For most QoL domains, a high pain score and intake of opioids were associated with worse QoL, with small effect sizes (−0.11 to −0.27). A poor performance score was associated with worse functional QoL, with a medium effect size (0.41). There is no difference in QoL between patients receiving a single fraction of 8 Gy and 6 fractions of 4 Gy, except for a temporary worsening of physical QoL after 6 fractions. Conclusion: Although radiation therapy for painful bone metastases leads to a meaningful pain response, most domains of QoL do not improve after treatment. Only psychosocial QoL improves slightly after treatment. The level of QoL is related to the actual survival, with a rather stable course of QoL for most of the remaining survival time and afterward a sharp decrease, starting only a few weeks before the end of life. Six fractions of 4 Gy lead to a temporary worse physical QoL compared with a single fraction of 8 Gy.« less
[Clinical usefulness of bone turnover markers in the management of osteoporosis].
Yano, Shozo
2013-09-01
Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future.
Krafft, Tim; Winter, Werner; Wichmann, Manfred; Karl, Matthias
2012-07-01
Alveolar bone quality is considered to be an important prognostic factor in dental implant stability. Although numerous methods have been described, no technique allows for reliable diagnostics. The purpose of this study was to determine if strain measurements on the shaft of a contra angle handpiece during implant bed preparation could be used for the determination of bone quality. Experiments in polyurethane foam and human cadaver bone were conducted to investigate whether strain measurements could be correlated with other diagnostic parameters, such as the surgeon's tactile sensation during drilling, implant insertion torque, implant stability, elastic modulus of bone and bone quality as assessed radiographically. Tests were also performed to determine if strain measurements could be used to distinguish various types of bone. As axial feed and contact pressure during the drilling process could not be standardized under simulated clinical conditions, substantial deviations in the time needed to complete the drilling occurred. Under controlled circumstances using polyurethane foam, this problem could be addressed by a normalization procedure, but great variations occurred in human cadaver bone. As bone quality could not be reliably determined, especially when a cortical layer was present, strain measurements on a contra angle handpiece appears to be inappropriate for this purpose. Copyright © 2011 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
2014-01-01
Background Hormone-refractory breast cancer metastatic to bone is a clinically challenging disease associated with high morbidity, poor prognosis, and impaired quality of life owing to pain and skeletal-related events. In a preclinical study using a mouse model of breast cancer and bone metastases, Ra-223 dichloride was incorporated into bone matrix and inhibited proliferation of breast cancer cells and differentiation of osteoblasts and osteoclasts (all P values < .001) in vitro. Ra-223 dichloride also induced double-strand DNA breaks in cancer cells in vivo. Methods The US Food and Drug Administration recently approved radium-223 (Ra-223) dichloride (Ra-223; Xofigo injection) alpha-particle therapy for the treatment of symptomatic bone metastases in patients with castration-resistant prostate cancer. On the basis of a strong preclinical rationale, we used Ra-223 dichloride to treat bone metastases in a patient with breast cancer. Results A 44-year-old white woman with metastatic breast cancer who was estrogen receptor–positive, BRCA1-negative, BRCA2-negative, PIK3CA mutation (p.His1047Arg) positive presented with diffuse bony metastases and bone pain. She had hormone refractory and chemotherapy refractory breast cancer. After Ra-223 therapy initiation her bone pain improved, with corresponding decrease in tumor markers and mixed response in 18F-FDG PET/CT and 18F-NaF bone PET/CT. The patient derived clinical benefit from therapy. Conclusion We have shown that Ra-223 dichloride can be safely administered in a patient with hormone-refractory bone metastasis from breast cancer at the US FDA–approved dose for prostate cancer. Furthermore, because the treatment did not cause any drop in hematologic parameters, it has the potential to be combined with other radiosensitizing therapies, which may include chemotherapy or targeted therapies. Given that Ra-223 dichloride is already commercially available, this case report may help future patients and provide a rationale for initiating clinical research in the use of Ra-223 dichloride to treat bone metastasis from breast cancer. A randomized clinical trial is needed to provide evidence of efficacy, safety, and good outcomes. PMID:25243101
Study of tissue engineered bone nodules by Fourier transform infrared spectroscopy.
Aydin, Halil Murat; Hu, Bin; Suso, Josep Sulé; El Haj, Alicia; Yang, Ying
2011-02-21
The key criteria for assessing the success of bone tissue engineering are the quality and quantity of the produced minerals within the cultured constructs. The accumulation of calcium ions and inorganic phosphates in culture medium serves as nucleating agents for the formation of hydroxyapatite, which is the main inorganic component of bone. Bone nodule formation is one of the hallmarks of mineralization in such cell cultures. In this study, we developed a new two-step procedure to accelerate bone formation in which mouse bone cell aggregates were produced first on various chemically treated non-adhesive substrates. After this step, the bone cells' growth and mineralization were followed in conventional culture plates. The number and size of cell aggregates were studied with light microscopy. The minerals' formation in the form of nodules produced by the cell aggregates and the bone crystal quality were studied with Fourier Transform Infrared (FTIR) spectroscopy. The FTIR spectra of the ash specimens (mineral phase only) from thermal gravimetric analysis (TGA) provided valuable information of the quality of the minerals. The υ(4) PO(4) region (550-650 cm(-1)), which reveals apatitic and non-apatitic HPO(4) or PO(4) environments, and phosphate region (910-1180 cm(-1)) were examined for the minerals produced in the form of nodules. The peak position and intensity of the spectra demonstrate that the quality of the bone produced by cell aggregates, especially from the bigger ones, which were formed on Plunoric treated substrates, exhibit a composition more similar to that of native bone. This work establishes a new protocol for high quality bone formation and characterization, with the potential to be applied to bone tissue engineering.
Defective Bone Repair in C57Bl6 Mice With Acute Systemic Inflammation.
Behrends, D A; Hui, D; Gao, C; Awlia, A; Al-Saran, Y; Li, A; Henderson, J E; Martineau, P A
2017-03-01
Bone repair is initiated with a local inflammatory response to injury. The presence of systemic inflammation impairs bone healing and often leads to malunion, although the underlying mechanisms remain poorly defined. Our research objective was to use a mouse model of cortical bone repair to determine the effect of systemic inflammation on cells in the bone healing microenvironment. QUESTION/PURPOSES: (1) Does systemic inflammation, induced by lipopolysaccharide (LPS) administration affect the quantity and quality of regenerating bone in primary bone healing? (2) Does systemic inflammation alter vascularization and the number or activity of inflammatory cells, osteoblasts, and osteoclasts in the bone healing microenvironment? Cortical defects were drilled in the femoral diaphysis of female and male C57BL/6 mice aged 5 to 9 months that were treated with daily systemic injections of LPS or physiologic saline as control for 7 days. Mice were euthanized at 1 week (Control, n = 7; LPS, n = 8), 2 weeks (Control, n = 7; LPS, n = 8), and 6 weeks (Control, n = 9; LPS, n = 8) after surgery. The quantity (bone volume per tissue volume [BV/TV]) and microarchitecture (trabecular separation and thickness, porosity) of bone in the defect were quantified with time using microCT. The presence or activity of vascular endothelial cells (CD34), macrophages (F4/80), osteoblasts (alkaline phosphatase [ALP]), and osteoclasts (tartrate-resistant acid phosphatase [TRAP]) were evaluated using histochemical analyses. Only one of eight defects was bridged completely 6 weeks after surgery in LPS-injected mouse bones compared with seven of nine defects in the control mouse bones (odds ratio [OR], 0.04; 95% CI, 0.003-0.560; p = 0.007). The decrease in cortical bone in LPS-treated mice was reflected in reduced BV/TV (21% ± 4% vs 39% ± 10%; p < 0.01), increased trabecular separation (240 ± 36 μm vs 171 ± 29 μm; p < 0.01), decreased trabecular thickness (81 ± 18 μm vs 110 ± 22 μm; p = 0.02), and porosity (79% ± 4% vs 60% ± 10%; p < 0.01) at 6 weeks postoperative. Defective healing was accompanied by decreased CD34 (1.1 ± 0.6 vs 3.4 ± 0.9; p < 0.01), ALP (1.9 ± 0.9 vs 6.1 ± 3.2; p = 0.03), and TRAP (3.3 ± 4.7 vs 7.2 ± 4.0; p = 0.01) activity, and increased F4/80 (13 ± 2.6 vs 6.8 ± 1.7; p < 0.01) activity at 2 weeks postoperative. The results indicate that LPS-induced systemic inflammation reduced the amount and impaired the quality of bone regenerated in mouse femurs. The effects were associated with impaired revascularization, decreased bone turnover by osteoblasts and osteoclasts, and by increased catabolic activity by macrophages. Results from this preclinical study support clinical observations of impaired primary bone healing in patients with systemic inflammation. Based on our data, local administration of VEGF in the callus to stimulate revascularization, or transplantation of stem cells to enhance bone turnover represent potentially feasible approaches to improve outcomes in clinical practice.
Liu, Hao; Li, Wei; Liu, Can; Tan, Jie; Wang, Hong; Hai, Bao; Cai, Hong; Leng, Hui-Jie; Liu, Zhong-Jun; Song, Chun-Li
2016-10-27
Three-dimensional porous titanium alloys printed via electron beam melting have low stiffness similar to that of cortical bone and are promising scaffolds for orthopedic applications. However, the bio-inert nature of titanium alloy is poorly compatible with bone ingrowth. We previously observed that simvastatin/poloxamer 407 thermosensitive hydrogel induces endogenous angiogenic/osteogenic growth factors and promotes angiogenesis and osteogenesis, but the mechanical properties of this hydrogel are poor. The purpose of this study was to construct 3D-printed porous titanium scaffolds (pTi scaffolds) filled with simvastatin/hydrogel and evaluate the effects of this composite on osseointegration, bone ingrowth and neovascularization using a tibial defect rabbit model. Four and eight weeks after implantation, the bone volume, bone mineral density, mineral apposition rate, and push-in maximum force of the pTi scaffolds filled with simvastatin/hydrogel were significantly higher than those without simvastatin (p < 0.05). Moreover, filling with simvastatin/hydrogel significantly enhanced vascularization in and around the pTi scaffolds, and a significant correlation was observed between the volume of new bone and neovascularization (p < 0.01). In conclusion, incorporating simvastatin/poloxamer 407 hydrogel into pTi scaffolds significantly improves neovascularization, osseointegration and bone ingrowth.
Inbred Strain-Specific Effects of Exercise in Wild Type and Biglycan Deficient Mice
Wallace, Joseph M.; Golcuk, Kurtulus; Morris, Michael D.; Kohn, David H.
2010-01-01
Biglycan (bgn)-deficient mice (KO) have defective osteoblasts which lead to changes in the amount and quality of bone. Altered tissue strength in C57BL6/129 (B6;129) KO mice, a property which is independent of tissue quantity, suggests that deficiencies in tissue quality are responsible. However, the response to bgn-deficiency is inbred strain-specific. Mechanical loading influences bone matrix quality in addition to any increase in bone mass or change in bone formation activity. Since many diseases influence the mechanical integrity of bone through altered tissue quality, loading may be a way to prevent and treat extracellular matrix deficiencies. C3H/He (C3H) mice consistently have a less vigorous response to mechanical loading vs. other inbred strains. It was therefore hypothesized that the bones from both wild type (WT) and KO B6;129 mice would be more responsive to exercise than the bones from C3H mice. To test these hypotheses at 11 weeks of age, following 21 consecutive days of exercise, we investigated cross-sectional geometry, mechanical properties, and tissue composition in the tibiae of male mice bred on B6;129 and C3H backgrounds. This study demonstrated inbred strain-specific compositional and mechanical changes following exercise in WT and KO mice, and showed evidence of genotype-specific changes in bone in response to loading in a gene disruption model. This study further shows that exercise can influence bone tissue composition and/or mechanical integrity without changes in bone geometry. Together, these data suggest that exercise may represent a possible means to alter tissue quality and mechanical deficiencies caused by many diseases of bone. PMID:20033775
Šťastný, E; Trč, T; Frýdl, J; Kopečný, Z; Philippou, T; Lisý, J
2017-01-01
INTRODUCTION The purpose of our paper is to evaluate the mid-term to long-term results and to confirm the basic criteria of a high-quality revision implant: safe bridging of bone defects, achievement of reliable primary fixation of revision acetabular cup, achievement of good secondary stability with documentable osteointegration of cup and demonstration of remodelling of transplanted bone tissue in the area of defects and in spaces between the implant ribs. MATERIAL AND METHODS Altogether 36 patients (38 cups) were evaluated who had undergone revision hip arthroplasty in the period from 2004 to 2010. The mean follow-up was 8.2 years (5.1-11.6 years after the reimplantation, more than 10 years in 16 patients who underwent surgery). The position and osseointegration of the implant were assessed by digital radiography, the remodelling of transplanted bone tissues in the area of defects and between the implant ribs by computed tomography with reducing artefacts around the metal implant (Aquilion 64 - Toshiba Medical Systems), and for the clinical outcomes the Harris Hip Score was used. RESULTS Preoperatively, the condition of the hip joint based on the Harris Hip Score was in 30 cases evaluated as poor, in 8 patients as satisfactory. At the time of final evaluation, 8 patients achieved excellent results, in 19 patients the condition of the joint was very good (in 2 patients bilaterally), in 6 patients it was considered satisfactory and in 3 patients poor. The mean value for HHS increased from 39.5 to 84.5. Based on the radiography evaluation, in 27 patients (in 2 patients bilaterally) the osseointegration of the revision cup was good, in 8 cases with a radiolucent line of 2-4 mm in width in DeLee zone III, in one case proximal migration of the cup occurred caused by deep infection. The informed consent form for pelvic CT was signed by 25 patients of our cohort. Remodelling of bone tissue in the space between the ribs of the implant was always detected, the presence of bone cysts was not reported, the bone defects following the application of autologous spongioplasty in the monitored patients were healed. In 6 patients, an ingrowth of fibrous tissue of 2-4 mm in width in the convexity of the cup was detected. The mean survival of the revision oval-shaped cup - TC type with a follow-up of 8.2 years after the reimplantation based on Kaplan-Meier analysis was 91.4 %. DISCUSSION The number of revision total hip arthroplasties due to a younger age of patients who undergo alloplasty keeps growing. The choice of a revision implant should always match the intraoperative finding and the bone tissue quality. The standard uncemented implants with osteoactive surface can be opted for when anterior and posterior column of the acetabulum are intact (IIA and IIB according to Paprosky). Starting from type IIC, also the proximal part of acetabulum shall be considered. At our department, preference is given to the revision cup - TC type. The oval shape facilitates a lower degree of bone resection and easier restoration of the anatomical centre of rotation. Careful debridement of granulating and necrotic tissue, thorough treatment of bone defects and osteoactive surface of implants in case of adequate primary fixation of the cup substantially contribute to the quality of its osseointegration. Greater rigidity of fixation verified by pull-out tests enables to insert angular stable screws into the gaps in the proximal part of the cup. There is still room for improvement in treating the bone defect. The application of allogenic bone grafts into the defects and spaces between the ribs of the TC cup is more challenging than the use of augmentation in the systems with trabecular titanium. Based on the evaluation of CT scans, remodelling of the transplanted bone occurs, therefore the defect zone is reduced. CONCLUSIONS The oval-shaped uncemented cup - type TC meets the requirements placed on a state-of the art revision implant, moreover its specific construction helps improve the conditions where another re-operation of acetabulum is necessary. By evaluating mid-term to long-term results of non-homogenous group of 36 patients (38 cups) we have obtained data on joint function comparable to similar groups with revision uncemented implants presented in our and foreign literature. Key words: revision oval-shaped cup, bone remodelling, pull-out tests, angular stable screws, computed tomography.
CBCT-based bone quality assessment: are Hounsfield units applicable?
Jacobs, R; Singer, S R; Mupparapu, M
2015-01-01
CBCT is a widely applied imaging modality in dentistry. It enables the visualization of high-contrast structures of the oral region (bone, teeth, air cavities) at a high resolution. CBCT is now commonly used for the assessment of bone quality, primarily for pre-operative implant planning. Traditionally, bone quality parameters and classifications were primarily based on bone density, which could be estimated through the use of Hounsfield units derived from multidetector CT (MDCT) data sets. However, there are crucial differences between MDCT and CBCT, which complicates the use of quantitative gray values (GVs) for the latter. From experimental as well as clinical research, it can be seen that great variability of GVs can exist on CBCT images owing to various reasons that are inherently associated with this technique (i.e. the limited field size, relatively high amount of scattered radiation and limitations of currently applied reconstruction algorithms). Although attempts have been made to correct for GV variability, it can be postulated that the quantitative use of GVs in CBCT should be generally avoided at this time. In addition, recent research and clinical findings have shifted the paradigm of bone quality from a density-based analysis to a structural evaluation of the bone. The ever-improving image quality of CBCT allows it to display trabecular bone patterns, indicating that it may be possible to apply structural analysis methods that are commonly used in micro-CT and histology. PMID:25315442
Sureshbabu, Angara; Doty, Steve B.; Zhu, Yuan-Shan; Patino, Edwin; Cunningham-Rundles, Susanna; Choi, Mary E.; Boskey, Adele; Rivella, Stefano
2016-01-01
Growth delay is common in children with chronic kidney disease (CKD), often associated with poor quality of life. The role of anemia in uremic growth delay is poorly understood. Here we describe an induction of uremic growth retardation by a 0.2% adenine diet in wild-type (WT) and hepcidin gene (Hamp) knockout (KO) mice, compared with their respective littermates fed a regular diet. Experiments were started at weaning (3 wk). After 8 wk, blood was collected and mice were euthanized. Adenine-fed WT mice developed CKD (blood urea nitrogen 82.8 ± 11.6 mg/dl and creatinine 0.57 ± 0.07 mg/dl) and were 2.1 cm shorter compared with WT controls. WT adenine-fed mice were anemic and had low serum iron, elevated Hamp, and elevated IL6 and TNF-α. WT adenine-fed mice had advanced mineral bone disease (serum phosphorus 16.9 ± 3.1 mg/dl and FGF23 204.0 ± 115.0 ng/ml) with loss of cortical and trabecular bone volume seen on microcomputed tomography. Hamp disruption rescued the anemia phenotype resulting in improved growth rate in mice with CKD, thus providing direct experimental evidence of the relationship between Hamp pathway and growth impairment in CKD. Hamp disruption ameliorated CKD-induced growth hormone-insulin-like growth factor 1 axis derangements and growth plate alterations. Disruption of Hamp did not mitigate the development of uremia, inflammation, and mineral and bone disease in this model. Taken together, these results indicate that an adenine diet can be successfully used to study growth in mice with CKD. Hepcidin appears to be related to pathways of growth retardation in CKD suggesting that investigation of hepcidin-lowering therapies in juvenile CKD is warranted. PMID:27440777
Kyle, Kimberly A; Willett, Thomas L; Baggio, Laurie L; Drucker, Daniel J; Grynpas, Marc D
2011-02-01
Patients with type 2 diabetes mellitus have an increased risk of fracture that can be further exacerbated by thiazolidinediones. A new class of antidiabetic agents control glucose through reduction of dipeptidyl peptidase-4 (DPP-4) activity; however the importance of DPP-4 for the control of bone quality has not been extensively characterized. We compared the effects of the thiazolidinedione pioglitazone and the DPP-4 inhibitor sitagliptin on bone quality in high-fat diet (HFD)-fed wild-type mice. In complementary studies, we examined bone quality in Dpp4(+/+) vs. Dpp4(-/-) mice. Pioglitazone produced yellow bones with greater bone marrow adiposity and significantly reduced vertebral bone mechanics in male, female, and ovariectomized (OVX) HFD fed female mice. Pioglitazone negatively affected vertebral volumetric bone mineral density, trabecular architecture, and mineral apposition rate in male mice. Sitagliptin treatment of HFD-fed wild-type mice significantly improved vertebral volumetric bone mineral density and trabecular architecture in female mice, but these improvements were lost in females after OVX. Genetic inactivation of Dpp4 did not produce a major bone phenotype in male and female Dpp4(-/-) mice; however, OVX Dpp4(-/-) mice exhibited significantly reduced femoral size and mechanics. These findings delineate the skeletal consequences of pharmacological and genetic reduction of DPP-4 activity and reveal significant differences in the effects of pioglitazone vs. sitagliptin vs. genetic Dpp4 inactivation on bone mechanics in mice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Cristal S.; Xie, LiQin; Hatsell, Sarah
Type 1 diabetes mellitus (T1DM) patients have osteopenia and impaired fracture healing due to decreased osteoblast activity. Further, no adequate treatments are currently available that can restore impaired healing in T1DM; hence a significant need exists to investigate new therapeutics for treatment of orthopedic complications. Sclerostin (SOST), a WNT antagonist, negatively regulates bone formation, and SostAb is a potent bone anabolic agent. To determine whether SOST antibody (SostAb) treatment improves fracture healing in streptozotocin (STZ) induced T1DM mice, we administered SostAb twice weekly for up to 21 days post-fracture, and examined bone quality and callus outcomes at 21 days andmore » 42 days post-fracture (11 and 14 weeks of age, respectively). Here we show that SostAb treatment improves bone parameters; these improvements persist after cessation of antibody treatment. Markers of osteoblast differentiation such as Runx2, collagen I, osteocalcin, and DMP1 were reduced, while an abundant number of SP7/osterix-positive early osteoblasts were observed on the bone surface of STZ calluses. These results suggest that STZ calluses have poor osteogenesis resulting from failure of osteoblasts to fully differentiate and produce mineralized matrix, which produces a less mineralized callus. SostAb treatment enhanced fracture healing in both normal and STZ groups, and in STZ + SostAb mice, also reversed the lower mineralization seen in STZ calluses. Micro-CT analysis of calluses revealed improved bone parameters with SostAb treatment, and the mineralized bone was comparable to Controls. Additionally, we found sclerostin levels to be elevated in STZ mice and β-catenin activity to be reduced. Consistent with its function as a WNT antagonist, SostAb treatment enhanced β-catenin activity, but also increased the levels of SOST in the callus and in circulation. Lastly, our results indicate that SostAb treatment rescues the impaired osteogenesis seen in the STZ induced T1DM fracture model by facilitating osteoblast differentiation and mineralization of bone.« less
Lucassen, Eliane A; de Mutsert, Renée; le Cessie, Saskia; Appelman-Dijkstra, Natasha M; Rosendaal, Frits R; van Heemst, Diana; den Heijer, Martin; Biermasz, Nienke R
2017-01-01
Sleep deprivation has detrimental metabolic consequences. Osteopenia and sarcopenia usually occur together and increase risk of fractures and disease. Results from studies linking sleep parameters to osteopenia or sarcopenia are scarce and inconsistent. To examine the associations of sleep parameters with osteopenia and sarcopenia, considering the influence of sex and menopause. Cross-sectional analysis of 915 participants (45-65 years, 56% women, BMI 26 (range: 18-56) kg/m2) in the Netherlands Epidemiology of Obesity (NEO) study, a population-based cohort study. Sleep duration, quality, and timing were assessed with the Pittsburgh Sleep Quality Index (PSQI); bone mineral density and relative appendicular muscle mass were measured by DXA scans. Linear and logistic regressions were performed to associate sleep parameters to bone mineral density, relative appendicular muscle mass, osteopenia (t-score between -1 and -2.5) and sarcopenia (1 SD below average muscle mass). After adjustment for confounding factors, one unit increase in PSQI score (OR and 95% CI, 1.09, 1.03-1.14), declined self-rated sleep quality (1.76, 1.03-3.01), sleep latency (1.18, 1.06-1.31), and a one hour later sleep timing (1.51, 1.08-2.11), but not sleep duration (1.05, 0.90-1.23), were associated with osteopenia. PSQI score (1.10, 1.02-1.19) was also associated with sarcopenia; OR's of sleep latency and later mid-sleep time with sarcopenia were 1.14 (0.99-1.31) and 1.54 (0.91-2.61), respectively. Associations were somewhat stronger in women and varied per menopausal status. These results suggest that decreased sleep quality and a later sleep timing are risk factors for osteopenia and sarcopenia in middle aged individuals.
Fu, Min-Wen; Fu, Earl; Lin, Fu-Gong; Chang, Wei-Jeng; Hsieh, Yao-Dung; Shen, E-Chin
To evaluate whether primary implant stability could be used to predict bone quality, the association between the implant stability quotient (ISQ) value and the bone type at the implant site was evaluated. Ninety-five implant sites in 50 patients were included. Bone type (categorized by Lekholm and Zarb) at the implant site was initially assessed using presurgical dental radiography. During the preparation of the implant site, a bone core specimen was carefully obtained. The bone type was assessed by tactile sensation during the drilling operation, according to the Misch criteria. The primary stability of the inserted implant was evaluated by resonance frequency analysis (RFA). The ISQ value was recorded. The bone core specimen was then examined by stereomicroscopy or microcomputed tomography (micro-CT), and the bone type was determined by the surface characteristics of the specimen, based on Lekholm and Zarb classification. Agreement between the bone quality assessed by the four methods (ie, presurgical radiography, tactile sensation, stereomicroscopy, and micro-CT) was tested by Cohen's kappa statistics, whereas the association between the ISQ value and the bone type was evaluated by the generalized linear regression model. The mean ISQ score was 72.6, and the score was significantly influenced by the maxillary or mandibular arch (P = .001). The bone type at the implant sites varied according to the assessment method. However, a significant influence of the arch was repeatedly noted when using radiography or tactile sensation. Among the four bone-quality assessment methods, a weak agreement existed only between stereomicroscopy and micro-CT, especially in the maxilla (κ = 0.469). A negative association between the ISQ value and the bone type assessed by stereomicroscopy or by micro-CT was significant in the maxilla, but not in the mandible, after adjustments for sex, age, and right/left side (P = .013 and P = .027 for stereomicroscopy and micro-CT, respectively). The ISQ value was weakly associated with the bone type when assessed by stereomicroscopy or micro-CT in the maxilla. Caution is necessary if RFA is used as a tool to evaluate bone quality at the implant site, especially in the mandible.
Cai, Jing; Wu, Yan; Xie, Kangning; Wu, Xiaoming; Tang, Chi; Liu, Juan; Guo, Wei; Shen, Guanghao; Luo, Erping
2013-01-01
Growing evidence has demonstrated that pulsed electromagnetic field (PEMF), as an alternative noninvasive method, could promote remarkable in vivo and in vitro osteogenesis. However, the exact mechanism of PEMF on osteopenia/osteoporosis is still poorly understood, which further limits the extensive clinical application of PEMF. In the present study, the efficiency of PEMF on osteoporotic bone microarchitecture and bone quality together with its associated signaling pathway mechanisms was systematically investigated in ovariectomized (OVX) rats. Thirty rats were equally assigned to the Control, OVX and OVX+PEMF groups. The OVX+PEMF group was subjected to daily 8-hour PEMF exposure with 15 Hz, 2.4 mT (peak value). After 10 weeks, the OVX+PEMF group exhibited significantly improved bone mass and bone architecture, evidenced by increased BMD, Tb.N, Tb.Th and BV/TV, and suppressed Tb.Sp and SMI levels in the MicroCT analysis. Three-point bending test suggests that PEMF attenuated the biomechanical strength deterioration of the OVX rat femora, evidenced by increased maximum load and elastic modulus. RT-PCR analysis demonstrated that PEMF exposure significantly promoted the overall gene expressions of Wnt1, LRP5 and β-catenin in the canonical Wnt signaling, but did not exhibit obvious impact on either RANKL or RANK gene expressions. Together, our present findings highlight that PEMF attenuated OVX-induced deterioration of bone microarchitecture and strength in rats by promoting the activation of Wnt/LRP5/β-catenin signaling rather than by inhibiting RANKL-RANK signaling. This study enriches our basic knowledge to the osteogenetic activity of PEMF, and may lead to more efficient and scientific clinical application of PEMF in inhibiting osteopenia/osteoporosis. PMID:24244491
Roukis, Thomas S; Kang, Rachel B
2016-01-01
Tibiotalocalcaneal arthrodesis stabilized with retrograde intramedullary nail fixation is associated with a high incidence of complications. This is especially true when performed with a bulk structural allograft and poor soft tissue quality. In select high-risk limb salvage cases, we have augmented tibiotalocalcaneal arthrodesis procedures stabilized using retrograde intramedullary nail fixation with a vascularized pedicled fibular onlay bone graft. We present the data from 10 such procedures with a mean follow-up period of 10.9 ± 5.4 (range 6 to 20) months involving 10 patients (9 males and 1 female). The etiology was avascular osteonecrosis of the talus and/or distal tibia and a resultant large volume cavitary bone defect (8 ankles), severe equinocavovarus contracture (1 ankle), and failed total ankle replacement (1 ankle). A frozen femoral head bulk allograft was used twice, a whole frozen talus allograft once, and a freeze-dried calcaneal allograft once. The fibula was mobilized with intact musculoperiosteal perforating branches of the peroneal artery as a vascularized pedicle onlay bone graft fixated with a screw and washer construct. The mean fibular graft length was 10.2 ± 2.3 cm. The mean interval to radiographic fusion was 2.6 ± 0.6 months and to weightbearing was 3.1 ± 1.4 months. Two stable bulk allograft-host bone and fibular graft-host bone nonunions occurred after intramedullary nail hardware failure. Tibiotalocalcaneal arthrodesis augmented by vascularized pedicled fibular graft stabilized with retrograde compression intramedullary nail fixation offers a reliable option for complex salvage situations when few other options exist. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
The Meaning of Adolescents’ Eating Experiences During Bone Marrow Transplant Recovery
Rodgers, Cheryl; Young, Anne; Hockenberry, Marilyn; Binder, Brenda; Symes, Lene
2010-01-01
Bone marrow transplant (BMT) is a common treatment option for adolescents with various diseases; however, the aggressive therapy often causes significant side effects that can lead to poor eating. There is little documentation of eating experiences and necessary support needed after the initial BMT hospitalization. This phenomenological study, guided by Martin Heidegger’s philosophical influences, revealed the meaning of adolescents’ eating experiences, eating strategies, and the impact of eating on the adolescents’ quality of life during the first 100 days post-BMT. Individual interviews were conducted at 50 and 100 days post-BMT. Data analysis used the hermeneutic circle and revealed 5 themes. Adolescents discussed the slow return of eating, barriers that affected their eating, personal eating strategies, significance of eating, and feelings regarding eating. Eating issues do not end when a BMT patient is discharged from the hospital, and caregivers need to have a better understanding of the ongoing issues affecting adolescents throughout the BMT recovery phase. PMID:20176916
Prosthodontic perspective to all-on-4® concept for dental implants.
Taruna, M; Chittaranjan, B; Sudheer, N; Tella, Suchita; Abusaad, Md
2014-10-01
The clinical success and longevity of endosteal dental implants as load bearing abutments are controlled largely by the mechanical setting in which they function. The treatment plan is responsible for the design, number and position of the implants. In biomechanically compromised environment such as poor quality bone, strain to the crestal bone can be reduced by increasing the anterioposterior spread of implants, placement of longer implants and maximizing the number of implants. The All-on-4(®) concept is one such treatment procedure which enlightens us for its use in the completely edentulous patients and which also leaves behind the routine treatment alternative of conventional dentures with successful outcome in the short term, long term and the retrospective studies that have been done in the past. The area of concern for any treatment alternative lies in the success of the prosthesis and its prosthodontic perspective involving the principles of occlusion. This article reviews the All-on-4(®) concept and its prosthodontic aspects.
Hip prostheses in young adults. Surface prostheses and short-stem prostheses.
Gallart, X; Riba, J; Fernández-Valencia, J A; Bori, G; Muñoz-Mahamud, E; Combalia, A
The poor results obtained in young patients when using a conventional prosthesis led to the resurgence of hip resurfacing to find less invasive implants for the bone. Young patients present a demand for additional activity, which makes them a serious challenge for the survival of implants. In addition, new information technologies contribute decisively to the preference for non-cemented prostheses. Maintaining quality of life, preserving the bone and soft tissues, as well as achieving a very stable implant, are the goals of every hip orthopaedic surgeon for these patients. The results in research point to the use of smaller prostheses, which use the metaphyseal zone more and less the diaphyseal zone, and hence the large number of the abovementioned short stem prostheses. Both models are principally indicated in the young adult. Their revision should be a more simple operation, but this is only true for hip resurfacing, not for short stems. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.
Prosthodontic Perspective to All-On-4® Concept for Dental Implants
Chittaranjan, B; Sudheer, N; Tella, Suchita; Abusaad, Md.
2014-01-01
The clinical success and longevity of endosteal dental implants as load bearing abutments are controlled largely by the mechanical setting in which they function. The treatment plan is responsible for the design, number and position of the implants. In biomechanically compromised environment such as poor quality bone, strain to the crestal bone can be reduced by increasing the anterioposterior spread of implants, placement of longer implants and maximizing the number of implants. The All-on-4® concept is one such treatment procedure which enlightens us for its use in the completely edentulous patients and which also leaves behind the routine treatment alternative of conventional dentures with successful outcome in the short term, long term and the retrospective studies that have been done in the past. The area of concern for any treatment alternative lies in the success of the prosthesis and its prosthodontic perspective involving the principles of occlusion. This article reviews the All-on-4® concept and its prosthodontic aspects. PMID:25478475
Demehri, S; Muhit, A; Zbijewski, W; Stayman, J W; Yorkston, J; Packard, N; Senn, R; Yang, D; Foos, D; Thawait, G K; Fayad, L M; Chhabra, A; Carrino, J A; Siewerdsen, J H
2015-06-01
To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80 kVp-108mAs for CBCT; 120 kVp- 300 mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated "excellent" or "good" (median scores 5 and 4) for "bone" and "soft tissue" visualization tasks. Hand CBCT images were rated "excellent" or "adequate" (median scores 5 and 3) for "bone" and "soft tissue" visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26-0.92), and interobserver agreement was fair to moderate (κ ~ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. • CBCT provided adequate image quality for diagnostic tasks in extremity imaging. • CBCT images were "excellent" for "bone" and "good/adequate" for "soft tissue" visualization tasks. • CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.
The Effect of Rosiglitazone on Bone Quality in a Rat Model of Insulin Resistance and Osteoporosis
NASA Astrophysics Data System (ADS)
Sardone, Laura Donata
Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat Type 2 Diabetes Mellitus (T2DM). Clinical trials show that women taking RSG experience more limb fractures than patients taking other T2DM drugs. The purpose of this study is to understand how RSG (3mg/kg/day and 10mg/kg/day) and the bisphosphonate alendronate (0.7mg/kg/week) alter bone quality in the male, female and female ovariectomized (OVX) Zucker fatty rat model over a 12 week period. Bone quality was evaluated by mechanical testing of cortical and trabecular bone. Microarchitecture, bone mineral density (BMD), cortical bone porosity, bone formation/resorption and mineralization were also measured. Female OVX RSG10mg/kg rats had significantly lower vertebral BMD and compromised trabecular architecture versus OVX controls. Increased cortical porosity and decreased mechanical properties occurred in these rats. ALN treatment prevented these negative effects in the OVX RSG model. Evidence of reduced bone formation and excess bone resorption was detected in female RSG-treated rats.
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-10-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-01-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors. PMID:28042512
Määttä, M.; Macdonald, H. M.; Mulpuri, K.
2016-01-01
Summary Forearm fractures are common during growth. We studied bone strength in youth with a recent forearm fracture. In girls, suboptimal bone strength was associated with fractures. In boys, poor balance and physical inactivity may lead to fractures. Prospective studies will confirm these relationships and identify targets for prevention strategies. Introduction The etiology of pediatric forearm fractures is unclear. Thus, we examined distal radius bone strength, microstructure, and density in children and adolescents with a recent low- or moderate-energy forearm fracture and those without forearm fractures. Methods We assessed the non-dominant (controls) and non-fractured (cases) distal radius (7 % site) using high-resolution peripheral quantitative computed tomography (HR-pQCT) (Scanco Medical AG) in 270 participants (girls: cases n=47, controls n=61 and boys: cases n=88, controls n=74) aged 8–16 years. We assessed standard anthropometry, maturity, body composition (dual energy X-ray absorptiometry (DXA), Hologic QDR 4500 W) physical activity, and balance. We fit sex-specific logistic regression models for each bone outcome adjusting for maturity, ethnicity, height, and percent body fat. Results In girls, impaired bone strength (failure load, ultimate stress) and a high load-to-strength ratio were associated with low-energy fractures (odds ratios (OR) 2.8–4.3). Low total bone mineral density (Tt.BMD), bone volume ratio, trabecular thickness, and cortical BMD and thickness were also associated with low-energy fractures (ORs 2.0–7.0). In boys, low Tt.BMD, but not bone strength, was associated with low-energy fractures (OR=1.8). Boys with low-energy fractures had poor balance and higher percent body fat compared with controls (p<0.05). Boys with fractures (both types) were less active than controls (p<0.05). Conclusions Forearm fracture etiology appears to be sex-specific. In girls, deficits in bone strength are associated with fractures. In boys, a combination of poor balance, excess body fat, and low physical activity may lead to fractures. Prospective studies are needed to confirm these relationships and clarify targets for prevention strategies. PMID:25572041
Glycemic control and alveolar bone loss progression in type 2 diabetes.
Taylor, G W; Burt, B A; Becker, M P; Genco, R J; Shlossman, M
1998-07-01
This study tested the hypothesis that the risk for alveolar bone loss is greater, and bone loss progression more severe, for subjects with poorly controlled (PC) type 2 diabetes mellitus (type 2 DM) compared to those without type 2 DM or with better controlled (BC) type 2 DM. The PC group had glycosylated hemoglobin (HbA1) > or = 9%; the BC group had HbA1 < 9%. Data from the longitudinal study of the oral health of residents of the Gila River Indian Community were analyzed. Of the 359 subjects, aged 15 to 57 with less than 25% radiographic bone loss at baseline, 338 did not have type 2 DM, 14 were BC, and 7 were PC. Panoramic radiographs were used to assess interproximal bone level. Bone scores (scale 0-4) corresponding to bone loss of 0%, 1% to 24%, 25% to 49%, 50% to 74%, or > or = 75% were used to identify the worst bone score (WBS) in the dentition. Change in worst bone score at follow-up, the outcome, was specified on a 4-category ordinal scale as no change, or a 1-, 2-, 3-, or 4-category increase over baseline WBS (WBS1). Poorly controlled diabetes, age, calculus, time to follow-up examination, and WBS1 were statistically significant explanatory variables in ordinal logistic regression models. Poorly controlled type 2 DM was positively associated with greater risk for a change in bone score (compared to subjects without type 2 DM) when the covariates were included in the model. The cumulative odds ratio (COR) at each threshold of the ordered response was 11.4 (95% CI = 2.5, 53.3). When contrasted with subjects with BC type 2 DM, the COR for those in the PC group was 5.3 (95% CI = 0.8, 53.3). The COR for subjects with BC type 2 DM was 2.2 (95% CI = 0.7, 6.5), when contrasted to those without type 2 DM. These results suggest that poorer glycemic control leads to both an increased risk for alveolar bone loss and more severe progression over those without type 2 DM, and that there may be a gradient, with the risk for bone loss progression for those with better controlled type 2 DM intermediate to the other 2 groups.
Pereira, L C; Kerr, J; Jolles, B M
2016-08-01
Using a systematic review, we investigated whether there is an increased risk of post-operative infection in patients who have received an intra-articular corticosteroid injection to the hip for osteoarthritis prior to total hip arthroplasty (THA). Studies dealing with an intra-articular corticosteroid injection to the hip and infection following subsequent THA were identified from databases for the period between 1990 to 2013. Retrieved articles were independently assessed for their methodological quality. A total of nine studies met the inclusion criteria. Two recommended against a steroid injection prior to THA and seven found no risk with an injection. No prospective controlled trials were identified. Most studies were retrospective. Lack of information about the methodology was a consistent flaw. The literature in this area is scarce and the evidence is weak. Most studies were retrospective, and confounding factors were poorly defined or not addressed. There is thus currently insufficient evidence to conclude that an intra-articular corticosteroid injection administered prior to THA increases the rate of infection. High quality, multicentre randomised trials are needed to address this issue. Cite this article: Bone Joint J 2016;98-B:1027-35. ©2016 The British Editorial Society of Bone & Joint Surgery.
Anabolic agents and bone quality.
Sibai, Tarek; Morgan, Elise F; Einhorn, Thomas A
2011-08-01
The definition of bone quality is evolving particularly from the perspective of anabolic agents that can enhance not only bone mineral density but also bone microarchitecture, composition, morphology, amount of microdamage, and remodeling dynamics. This review summarizes the molecular pathways and physiologic effects of current and potential anabolic drugs. From a MEDLINE search (1996-2010), articles were identified by the search terms "bone quality" (1851 articles), "anabolic agent" (5044 articles), "PTH or parathyroid hormone" (32,229 articles), "strontium" or "strontium ranelate" (283 articles), "prostaglandin" (77,539 articles), and "statin" or "statins" (14,233 articles). The search strategy included combining each with the phrase "bone quality." Another more limited search aimed at finding more novel potential agents. Parathyroid hormone is the only US Food and Drug Administration-approved bone anabolic agent in the United States and has been the most extensively studied in in vitro animal and human trials. Strontium ranelate is approved in Europe but has not undergone Food and Drug Administration trials in the United States. All the studies on prostaglandin agonists have used in vivo animal models and there are no human trials examining prostaglandin agonist effects. The advantages of statins include the long-established advantages and safety profile, but they are limited by their bioavailability in bone. Other potential pathways include proline-rich tyrosine kinase 2 (PYK2) and sclerostin (SOST) inhibition, among others. The ongoing research to enhance the anabolic potential of current agents, identify new agents, and develop better delivery systems will greatly enhance the management of bone quality-related injuries and diseases in the future.
Maiorana, C; Speroni, S; Herford, A S; Cicciù, M
2012-01-01
Approaching bone defects of jaws treatments, hard and soft tissue augmentation could be considered as a goal for clinicians when performing dental implant placement. The increase in patients who want cosmetic treatment puts practitioners in an awkward position when choosing the best therapy to obtain the most desirable results. A private dentist referred a young patient to the Department of Implantology in Milan in order to place implants in the upper jaw. Radiographic evaluation of the two upper anterior incisors confirmed that the teeth had a poor prognosis The anterior ridge volume was clinically analyzed and several therapeutic choices were evaluated. Rapid extractions and immediate implant positioning were not considered due to the vertical and horizontal components of the bone defect. Therefore, the surgical team decided on increasing the bone volume by using slow orthodontic teeth extrusion technique. After 3 months of orthodontic treatment, the angular intra-bony defects of 1.1 tooth was completely healed. Implant guided positioning, associated with a small bone graft, showed optimal results at the time of healing screw placement. The soft tissue conditioning was obtained by a provisional acrylic crown. The final application of two integral ceramic crowns showed excellent aesthetic results. Radiographic investigation at a 24 month follow-up confirmed the integration of the dental implants and the recovery of the bone defects. Several safe surgical techniques are available today for reconstructing atrophic jaws. However, the same technique applied on the posterior area did not give the same predictable results as in the anterior areas of the jaw. PMID:23056158
Jung, Myung-Ok; Choi, Jung-Seok
2016-01-01
This study was conducted to investigate the effects of mixed bone and brisket meat on the quality characteristics and nutritional components of shank bone extract and rib extract from Hanwoo. The pH values were influenced by the raw bones, mixed bone, brisket meat and their interactions (p<0.05). The salinity, sugar content, turbidity, and essential amino acid values increased significantly with addition of mixed bone and brisket meat. All attributes of sensory evaluation score were the highest in T6 (Rib 500 g + Mixed bone 500 g + Brisket meat 400 g) (p<0.05). The mixed bone significantly increased the saturated fatty acids of shank bone extract (p<0.001). Thus, the addition of mixed bone and brisket meat had a positive effect on the quality and nutritional components in shank and rib extracts of Hanwoo cattle. PMID:27499665
Morphometric analysis - Cone beam computed tomography to predict bone quality and quantity.
Hohlweg-Majert, B; Metzger, M C; Kummer, T; Schulze, D
2011-07-01
Modified quantitative computed tomography is a method used to predict bone quality and quantify the bone mass of the jaw. The aim of this study was to determine whether bone quantity or quality was detected by cone beam computed tomography (CBCT) combined with image analysis. MATERIALS AND PROCEDURES: Different measurements recorded on two phantoms (Siemens phantom, Comac phantom) were evaluated on images taken with the Somatom VolumeZoom (Siemens Medical Solutions, Erlangen, Germany) and the NewTom 9000 (NIM s.r.l., Verona, Italy) in order to calculate a calibration curve. The spatial relationships of six sample cylinders and the repositioning from four pig skull halves relative to adjacent defined anatomical structures were assessed by means of three-dimensional visualization software. The calibration curves for computer tomography (CT) and cone beam computer tomography (CBCT) using the Siemens phantom showed linear correlation in both modalities between the Hounsfield Units (HU) and bone morphology. A correction factor for CBCT was calculated. Exact information about the micromorphology of the bone cylinders was only available using of micro computer tomography. Cone-beam computer tomography is a suitable choice for analysing bone mass, but, it does not give any information about bone quality. 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Mansur, Sity Aishah; Mieczkowska, Aleksandra; Flatt, Peter R; Bouvard, Beatrice; Chappard, Daniel; Irwin, Nigel; Mabilleau, Guillaume
2016-06-01
Obesity and type 2 diabetes mellitus (T2DM) progress worldwide with detrimental effects on several physiological systems including bone tissue mainly by affecting bone quality. Several gut hormones analogues have been proven potent in ameliorating bone quality. In the present study, we used the leptin receptor-deficient db/db mice as a model of obesity and severe T2DM to assess the extent of bone quality alterations at the organ and tissue levels. We also examined the beneficial effects of gut hormone therapy in this model by using a new triple agonist ([d-Ala(2)]GIP-Oxm) active at the GIP, GLP-1 and glucagon receptors. As expected, db/db mice presented with dramatic alterations of bone strength at the organ level associated with deterioration of trabecular and cortical microarchitectures and an augmentation in osteoclast numbers. At the tissue level, these animals presented also with alterations of bone strength (reduced hardness, indentation modulus and dissipated energy) with modifications of tissue mineral distribution, collagen glycation and collagen maturity. The use of [d-Ala(2)]GIP-Oxm considerably improved bone strength at the organ level with modest effects on trabecular microarchitecture. At the tissue level, [d-Ala(2)]GIP-Oxm ameliorated bone strength reductions with positive effects on collagen glycation and collagen maturity. This study provides support for including gut hormone analogues as possible new therapeutic strategies for improving bone quality in bone complications associated to T2DM. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nixon, Alan J.; Roth, Jerry E.; Krook, Lennart P.
1991-05-01
A pulsed carbon dioxide laser was used to vaporize articular cartilage in four horses, and perforate the cartilage and subchondral bone in four horses. Both intercarpal joints were examined arthroscopically and either a 1 cm cartilage crater or a series of holes was created in the third carpal bone of one joint. The contralateral carpus served as a control. The horses were evaluated clinically for 8 weeks, euthanatized and the joints examined radiographically, grossly, and histologically. Pulsed carbon dioxide laser vaporized cartilage readily but penetrated bone poorly. Cartilage vaporization resulted in no greater swelling, heat, pain on flexion, lameness, or synovial fluid reaction than the sham procedure. Laser drilling resulted in a shallow, charred hole with a tenacious carbon residue, and in combination with the thermal damage to deeper bone, resulted in increased swelling, mild lameness and a low-grade, but persistent synovitis. Cartilage removal by laser vaporization resulted in rapid regrowth with fibrous and fibrovascular tissue and occasional regions of fibrocartilage at week 8. The subchondral bone, synovial membrane, and draining lymph nodes appeared essentially unaffected by the laser cartilage vaporization procedure. Conversely, carbon dioxide laser drilling of subchondral bone resulted in poor penetration, extensive areas of thermal necrosis of bone, and significant secondary damage to the apposing articular surface of the radial carpal bone. The carbon dioxide laser is a useful intraarticular instrument for removal of cartilage and has potential application in inaccessible regions of diarthrodial joints. It does not penetrate bone sufficiently to have application in subchondral drilling.
Otosclerosis: Temporal Bone Pathology.
Quesnel, Alicia M; Ishai, Reuven; McKenna, Michael J
2018-04-01
Otosclerosis is pathologically characterized by abnormal bony remodeling, which includes bone resorption, new bone deposition, and vascular proliferation in the temporal bone. Sensorineural hearing loss in otosclerosis is associated with extension of otosclerosis to the cochlear endosteum and deposition of collagen throughout the spiral ligament. Persistent or recurrent conductive hearing loss after stapedectomy has been associated with incomplete footplate fenestration, poor incus-prosthesis connection, and incus resorption in temporal bone specimens. Human temporal bone pathology has helped to define the role of computed tomography imaging for otosclerosis, confirming that computed tomography is highly sensitive for diagnosis, yet limited in assessing cochlear endosteal involvement. Copyright © 2017 Elsevier Inc. All rights reserved.
Iizumi, Sakura; Shimoi, Tatsunori; Nishikawa, Tadaaki; Kitano, Atsuko; Sasada, Shinsuke; Shimomura, Akihiko; Noguchi, Emi; Yunokawa, Mayu; Yonemori, Kan; Shimizu, Chikako; Fujiwara, Yasuhiro; Tamura, Kenji
2017-11-01
Hypocalcemia is a significant adverse effect of denosumab. We herein report a case of prolonged hypocalcemia in a patient with multiple risk factors for hypocalcemia, including gastrectomy, increased bone turnover, and a poor performance status. Hypocalcemia developed after denosumab treatment for diffuse bone metastasis of gastric cancer, despite oral supplementation with vitamin D and calcium. To avoid serious prolonged hypocalcemia, a thorough assessment of the bone calcium metabolism is required before initiating denosumab treatment.
Iizumi, Sakura; Shimoi, Tatsunori; Nishikawa, Tadaaki; Kitano, Atsuko; Sasada, Shinsuke; Shimomura, Akihiko; Noguchi, Emi; Yunokawa, Mayu; Yonemori, Kan; Shimizu, Chikako; Fujiwara, Yasuhiro; Tamura, Kenji
2017-01-01
Hypocalcemia is a significant adverse effect of denosumab. We herein report a case of prolonged hypocalcemia in a patient with multiple risk factors for hypocalcemia, including gastrectomy, increased bone turnover, and a poor performance status. Hypocalcemia developed after denosumab treatment for diffuse bone metastasis of gastric cancer, despite oral supplementation with vitamin D and calcium. To avoid serious prolonged hypocalcemia, a thorough assessment of the bone calcium metabolism is required before initiating denosumab treatment. PMID:28943574
Du, Zhibin; Xiao, Yin; Hashimi, Saeed; Hamlet, Stephen M; Ivanovski, Saso
2016-09-15
Compromised bone quality and/or healing in osteoporosis are recognised risk factors for impaired dental implant osseointegration. This study examined the effects of (1) experimentally induced osteoporosis on titanium implant osseointegration and (2) the effect of modified implant surface topography on osseointegration under osteoporosis-like conditions. Machined and micro-roughened surface implants were placed into the maxillary first molar root socket of 64 ovariectomised and sham-operated Sprague-Dawley rats. Subsequent histological and SEM observations showed tissue maturation on the micro-rough surfaced implants in ovariectomised animals as early as 3days post-implantation. The degree of osseointegration was also significantly higher around the micro-rough implants in ovariectomised animals after 14days of healing although by day 28, similar levels of osseointegration were found for all test groups. The micro-rough implants significantly increased the early (day 3) gene expression of alkaline phosphatase, osteocalcin, receptor activator of nuclear factor kappa-B ligand and dentin matrix protein 1 in implant adherent cells. By day 7, the expression of inflammatory genes decreased while the expression of the osteogenic markers increased further although there were few statistically significant differences between the micro-rough and machined surfaces. Osteocyte morphology was also affected by estrogen deficiency with the size of the cells being reduced in trabecular bone. In conclusion, estrogen deficiency induced osteoporotic conditions negatively influenced the early osseointegration of machined implants while micro-rough implants compensated for these deleterious effects by enhancing osteogenic cell differentiation on the implant surface. Lower bone density, poor bone quality and osseous microstructural changes are all features characteristic of osteoporosis that may impair the osseointegration of dental implants. Using a clinically relevant trabecular bone model in the rat maxilla, we demonstrated histologically that the negative effects of surgically-induced osteoporosis on osseointegration could be ameliorated by the biomaterial's surface topography. Furthermore, gene expression analysis suggests this may be a result of enhanced osteogenic cell differentiation on the implant surface. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Fritscher, Karl; Grunerbl, Agnes; Hanni, Markus; Suhm, Norbert; Hengg, Clemens; Schubert, Rainer
2009-10-01
Currently, conventional X-ray and CT images as well as invasive methods performed during the surgical intervention are used to judge the local quality of a fractured proximal femur. However, these approaches are either dependent on the surgeon's experience or cannot assist diagnostic and planning tasks preoperatively. Therefore, in this work a method for the individual analysis of local bone quality in the proximal femur based on model-based analysis of CT- and X-ray images of femur specimen will be proposed. A combined representation of shape and spatial intensity distribution of an object and different statistical approaches for dimensionality reduction are used to create a statistical appearance model in order to assess the local bone quality in CT and X-ray images. The developed algorithms are tested and evaluated on 28 femur specimen. It will be shown that the tools and algorithms presented herein are highly adequate to automatically and objectively predict bone mineral density values as well as a biomechanical parameter of the bone that can be measured intraoperatively.
Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis
Karunaratne, A.; Xi, L.; Bentley, L.; Sykes, D.; Boyde, A.; Esapa, C.T.; Terrill, N.J.; Brown, S.D.M.; Cox, R.D.; Thakker, R.V.; Gupta, H.S.
2016-01-01
A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh− 120/+) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh− 120/+ mice. We also find a much larger fibril strain/tissue strain ratio in Crh− 120/+ mice (~ 1.5) compared to the wild-type mice (~ 0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis. PMID:26657825
Diabetic Complications and Amputation Prevention
... because of two complications of diabetes: nerve damage (neuropathy) and poor circulation. Neuropathy causes loss of feeling in your feet, taking ... to the bone. Because of poor circulation and neuropathy in the feet, cuts or blisters can easily ...
Sclerostin Antibody Treatment Enhances Rotator Cuff Tendon-to-Bone Healing in an Animal Model.
Shah, Shivam A; Kormpakis, Ioannis; Havlioglu, Necat; Ominsky, Michael S; Galatz, Leesa M; Thomopoulos, Stavros
2017-05-17
Rotator cuff tears are a common source of pain and disability, and poor healing after repair leads to high retear rates. Bone loss in the humeral head before and after repair has been associated with poor healing. The purpose of the current study was to mitigate bone loss near the repaired cuff and improve healing outcomes. Sclerostin antibody (Scl-Ab) treatment, previously shown to increase bone formation and strength in the setting of osteoporosis, was used in the current study to address bone loss and enhance rotator cuff healing in an animal model. Scl-Ab was administered subcutaneously at the time of rotator cuff repair and every 2 weeks until the animals were sacrificed. The effect of Scl-Ab treatment was evaluated after 2, 4, and 8 weeks of healing, using bone morphometric analysis, biomechanical evaluation, histological analysis, and gene expression outcomes. Injury and repair led to a reduction in bone mineral density after 2 and 4 weeks of healing in the control and Scl-Ab treatment groups. After 8 weeks of healing, animals receiving Scl-Ab treatment had 30% greater bone mineral density than the controls. A decrease in biomechanical properties was observed in both groups after 4 weeks of healing compared with healthy tendon-to-bone attachments. After 8 weeks of healing, Scl-Ab-treated animals had improved strength (38%) and stiffness (43%) compared with control animals. Histological assessment showed that Scl-Ab promoted better integration of tendon and bone by 8 weeks of healing. Scl-Ab had significant effects on gene expression in bone, indicative of enhanced bone formation, and no effect on the expression of genes in tendon. This study provides evidence that Scl-Ab treatment improves tendon-to-bone healing at the rotator cuff by increasing attachment-site bone mineral density, leading to improved biomechanical properties. Scl-Ab treatment may improve outcomes after rotator cuff repair.
Du, Qing; Zhou, Xuan; Li, Jian A; He, Xiao H; Liang, Ju P; Zhao, Li; Yang, Xiao Y; Chen, Nan; Zhang, Shu X; Chen, Pei J
2015-01-01
The aims of this study were to compare the speed-of-sound (SOS) between adolescent idiopathic scoliosis (AIS) patients and controls using quantitative ultrasound examination and to further analyze the relationship between the SOS and curve type, curve magnitude, maturation status and Risser's sign in AIS patients compared to controls. Seventy-eight female AIS patients and 58 healthy female controls 10 to 16 years of age were recruited to participate. Quantitative ultrasound measurements were performed at the non-dominant distal end of the radius. The standard method for estimating the SOS and z-score was used. Comparisons were made between the SOS values and z-score in AIS patients and age-matched Asian adolescents. The SOS values of the patients were significantly lower than the controls (P < .01). The percentage of cases with low bone quality was 25% in the entire AIS sample. The prevalence of low bone quality in AIS patients was 20.5%. However, there were no correlations between the SOS and types of scoliosis (P > .05). The SOS values among different severity groups were significant, particularly between the 10° to 19° and 20° to 39° groups as well as between 10° to 19° and ≥40° groups. However, there was no significant correlation between the SOS and Cobb angles. Significant correlations were also found between the pre- and post-menarchy status in patients. There was a significant difference in the SOS values for different Rissers' signs (P < .05). Compared to nonscoliotic controls, subjects with AIS had a generally lower SOS, indicating lower bone quality. The age, Risser's sign, or maturation status, may have an effect on the bone quality; however, the curve type and magnitude do not affect the bone quality. The results of this study indicate that slower bone maturation may affect the bone quality in adolescents with AIS. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.
Rodriguez, Lucas C.; Chari, Jonathan; Aghyarian, Shant; Gindri, Izabelle M.; Kosmopoulos, Victor; Rodrigues, Danieli C.
2014-01-01
Powder-liquid poly (methyl methacrylate) (PMMA) bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cement viscosity, poor handling and reduced mechanical performance. This has limited the use of such cements in applications requiring delivery through small cannulas and in load bearing. The goal of this study is to design an alternative cement system that can better accommodate calcium-phosphate additives while preserving cement rheological properties and performance. In the present work, a number of brushite-filled two-solution bone cements were prepared and characterized by studying their complex viscosity-versus-test frequency, extrusion stress, clumping tendency during injection through a syringe, extent of fill of a machined void in cortical bone analog specimens, and compressive strength. The addition of brushite into the two-solution cement formulations investigated did not affect the pseudoplastic behavior and handling properties of the materials as demonstrated by rheological experiments. Extrusion stress was observed to vary with brushite concentration with values lower or in the range of control PMMA-based cements. The materials were observed to completely fill pre-formed voids in bone analog specimens. Cement compressive strength was observed to decrease with increasing concentration of fillers; however, the materials exhibited high enough strength for consideration in load bearing applications. The results indicated that partially substituting the PMMA phase of the two-solution cement with brushite at a 40% by mass concentration provided the best combination of the properties investigated. This alternative material may find applications in systems requiring highly injectable and viscous cements such as in the treatment of spinal fractures and bone defects. PMID:28788212
A double-plating approach to distal femur fracture: A clinical study.
Steinberg, Ely L; Elis, Jacov; Steinberg, Yohai; Salai, Moshe; Ben-Tov, Tomer
2017-10-01
Locked plating is one of the latest innovative options for treating supracondylar femur fractures with relatively low failure rates. Single lateral plating was often found to have a relative higher failure rate. No clinical studies of double-plating distal femur fixation have thus far been reported. The aim of this study is to present our clinical experience with this surgical approach. Thirty-two patients (26 females and 6 males, mean age 76 years, range 44-101) were included in the study. Eight of them patients had a periprosthetic stable implant fracture and two patients were treated for a nonunion. All fractures, excluding one that needed bone grafting and one refracture, healed within 12 weeks. One patient needed bone grafting for delayed union and one patient needed fixation exchange due to femur re-fracture at the site of the most proximal screw. Two patients developed superficial wound infection and one patient required medial plate removal after union due to deep infection. Based on these promising results, we propose that the double-plating technique should be considered in the surgeon's armamentarium for the treatment of supracondylar femur fractures, particularly in patients with poor bone quality, comminuted fractures and very low periprosthetic fractures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oral Rehabilitation with Implant-Retained Overdenture in a Patient with Down Syndrome.
Altintas, Nuray Yilmaz; Kilic, Serdar; Altintas, Subutay Han
2017-01-24
Down syndrome, known as trisomy 21, is the most common chromosomal disorder. The disorder affects mental and systemic development as well as oral structure, including dental anomalies, high susceptibility of periodontal disease, and poor quality of alveolar bone. This report presents a case of dental rehabilitation by means of dental implants of a patient with Down syndrome. Two titanium dental implants were placed in the maxilla, and three titanium dental implants were installed in the mandible. One implant was lost during the osseointegration period. The prosthetic rehabilitation was performed with implant-retained maxillary and mandibular overdentures with the Locator attachment system. After a 2-year follow-up period, the patient was doing well, and all implants were clinically stable with no signs of bone loss or inflammation. The present study emphasizes that implant-retained overdentures with Locator attachment system could be a therapeutic option even for patients with Down syndrome. This therapy prevents crestal bone loss around the implants, improves functional and esthetic outcomes, and provides optimum oral hygiene for patients with mild mental impairment. Careful patient selection and education of patients and caregivers are essential considerations for a successful and safe treatment with dental implants in Down syndrome patients. © 2017 by the American College of Prosthodontists.
Kahle, Jason T; Highsmith, M Jason; Kenney, John; Ruth, Tim; Lunseth, Paul A; Ertl, Janos
2017-06-01
This literature review was undertaken to determine if commonly held views about the benefits of a bone bridge technique are supported by the literature. Four databases were searched for articles pertaining to surgical strategies specific to a bone bridge technique of the transtibial amputee. A total of 35 articles were identified as potential articles. Authors included methodology that was applied to separate topics. Following identification, articles were excluded if they were determined to be low quality evidence or not pertinent. Nine articles were identified to be pertinent to one of the topics: Perioperative Care, Acute Care, Subjective Analysis and Function. Two articles sorted into multiple topics. Two articles were sorted into the Perioperative Care topic, 4 articles sorted into the Acute Care topic, 2 articles into the Subjective Analysis topic and 5 articles into the Function topic. There are no high quality (level one or two) clinical trials reporting comparisons of the bone bridge technique to traditional methods. There is limited evidence supporting the clinical outcomes of the bone bridge technique. There is no agreement supporting or discouraging the perioperative and acute care aspects of the bone bridge technique. There is no evidence defining an interventional comparison of the bone bridge technique. Current level III evidence supports a bone bridge technique as an equivalent option to the non-bone bridge transtibial amputation technique. Formal level I and II clinical trials will need to be considered in the future to guide clinical practice. Clinical relevance Clinical Practice Guidelines are evidence based. This systematic literature review identifies the highest quality evidence to date which reports a consensus of outcomes agreeing bone bridge is as safe and effective as alternatives. The clinical relevance is understanding bone bridge could additionally provide a mechanistic advantage for the transtibial amputee.
Navigating Survival: Quality of Life Following Bone Marrow Transplantation.
1991-01-01
This study explored the quality of life of adult Bone Marrow Transplantation (BMT) survivors and processes involved in maintaining or enhancing life...quality were identified. Ground theory methodology was used to explore quality of life from the survivor’s perspective. Five adults, 87 to 578 days...processes employed by BMT survivors to manage quality of life disruptions. BMT survivors identified disruptions in quality of life during the rapid
Bone density loss after allogeneic hematopoietic stem cell transplantation: a prospective study.
Stern, J M; Sullivan, K M; Ott, S M; Seidel, K; Fink, J C; Longton, G; Sherrard, D J
2001-01-01
The incidence and course of bone density abnormalities following hematopoietic stem cell transplantation are poorly understood and complicated by the impact of multiple factors. Hip, spine, and wrist bone mineral densities (BMDs) were measured in 104 adults (54 women, 54 men; mean age, 40 years [range, 18-64 years]) at 3 and 12 months after allogeneic transplantation. Clinical and laboratory variables were evaluated using univariate and multivariate analyses to determine risk factors for osteoporosis, fracture, and avascular necrosis. At 3 months posttransplantation, combined (male and female) hip, spine, and wrist z scores were -0.35, -0.42, and +0.04 standard deviations, respectively. At 12 months both men and women experienced significant loss of hip BMD (4.2%, P < .0001); changes in the spine and wrist were minimal. The cumulative dose and number of days of glucocorticoid therapy and the number of days of cyclosporine or tacrolimus therapy showed significant associations with loss of BMD; age, total body irradiation, diagnosis, and donor type did not. Nontraumatic fractures occurred in 10.6% of patients and avascular necrosis in 9.6% within 3 years posttransplantation. The decrease in height between pretransplantation and 12 months posttransplantation was significant (P = .0001). Results indicate that loss of BMD after allogeneic stem cell transplantation is common and accelerated by the length of immunosuppressive therapy and cumulative dose of glucocorticoid. An increased incidence of fracture and avascular necrosis may adversely impact long-term quality of life. Prevention of bone demineralization appears warranted after stem cell transplantation.
Sexual function in adolescent and young adult survivors of lower extremity bone tumors.
Barrera, Maru; Teall, Tanya; Barr, Ronald; Silva, Mariana; Greenberg, Mark
2010-12-15
Improving survival rates and new surgical options have led to increased interest regarding late effects and quality of life in adolescent and young adult survivors of bone cancers, including their sexual functioning. This study investigated sexual functioning in adolescent and young adult survivors of lower limb bone tumors, in relation to surgical treatments, gender differences, depressive symptoms, global self worth, and physical disability. Twenty-eight participants (age range 18-32 years) completed measures of gender specific sexual function, depressive symptoms, global self worth, and physical disability. For analysis, surgical intervention was grouped into limb sparing surgeries (LS; allograft fusion and endoprosthesis) and amputation or Van Nes rotationplasty (AMP). Male survivors reported significantly higher scores than females on total sexual function scores (P = 0.050), sexual drive (P = 0.002), and frequency of sexual thoughts, fantasies or erotic dreams (P = 0.021). Men also reported significantly better physical functioning scores than women (P = 0.012). LS scored significantly lower on frequency of sexual thoughts, fantasies and erotic dreams (P = 0.048) and frequency of sexual experiences (P = 0.016) compared with AMP. In addition, LS reported significantly more depressive symptoms scores (P = 0.004) and lower self worth scores (P = 0.037), than AMP. These results suggest that male survivors of lower extremity bone tumors experience better sexual functioning than women. Survivors of limb sparing surgeries struggle with sexual function, depressive symptoms, and poor self-perception compared to Van Nes rotationplasty and amputation survivors. Copyright © 2010 Wiley-Liss, Inc.
Malouf, Reem; Ashraf, Asma; Hadjinicolaou, Andreas V; Doree, Carolyn; Hopewell, Sally; Estcourt, Lise J
2018-05-14
Bone marrow disorders encompass a group of diseases characterised by reduced production of red cells, white cells, and platelets, or defects in their function, or both. The most common bone marrow disorder is myelodysplastic syndrome. Thrombocytopenia, a low platelet count, commonly occurs in people with bone marrow failure. Platetet transfusions are routinely used in people with thrombocytopenia secondary to bone marrow failure disorders to treat or prevent bleeding. Myelodysplastic syndrome is currently the most common reason for receiving a platelet transfusion in some Western countries. To determine whether a therapeutic-only platelet transfusion policy (transfusion given when patient is bleeding) is as effective and safe as a prophylactic platelet transfusion policy (transfusion given to prevent bleeding according to a prespecified platelet threshold) in people with congenital or acquired bone marrow failure disorders. We searched for randomised controlled trials (RCTs), non-RCTs, and controlled before-after studies (CBAs) in the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2017, Issue 9), Ovid MEDLINE (from 1946), Ovid Embase (from 1974), PubMed (e-publications only), the Transfusion Evidence Library (from 1950), and ongoing trial databases to 12 October 2017. We included RCTs, non-RCTs, and CBAs that involved the transfusion of platelet concentrates (prepared either from individual units of whole blood or by apheresis any dose, frequency, or transfusion trigger) and given to treat or prevent bleeding among people with congenital or acquired bone marrow failure disorders.We excluded uncontrolled studies, cross-sectional studies, and case-control studies. We excluded cluster-RCTs, non-randomised cluster trials, and CBAs with fewer than two intervention sites and two control sites due to the risk of confounding. We included all people with long-term bone marrow failure disorders that require platelet transfusions, including neonates. We excluded studies of alternatives to platelet transfusion, or studies of people receiving intensive chemotherapy or a stem cell transplant. We used the standard methodological procedures outlined by Cochrane. Due to the absence of evidence we were unable to report on any of the review outcomes. We identified one RCT that met the inclusion criteria for this review. The study enrolled only nine adults with MDS over a three-year study duration period. The trial was terminated due to poor recruitment rate (planned recruitment 60 participants over two years). Assessment of the risk of bias was not possible for all domains. The trial was a single-centre, single-blind trial. The clinical and demographic characteristics of the participants were never disclosed. The trial outcomes relevant to this review were bleeding assessments, mortality, quality of life, and length of hospital stay, but no data were available to report on any of these outcomes.We identified no completed non-RCTs or CBAs.We identified no ongoing RCTs, non-RCTs, or CBAs. We found no evidence to determine the safety and efficacy of therapeutic platelet transfusion compared with prophylactic platelet transfusion for people with long-term bone marrow failure disorders. This review underscores the urgency of prioritising research in this area. People with bone marrow failure depend on long-term platelet transfusion support, but the only trial that assessed a therapeutic strategy was halted. There is a need for good-quality studies comparing a therapeutic platelet transfusion strategy with a prophylactic platelet transfusion strategy; such trials should include outcomes that are important to patients, such as quality of life, length of hospital admission, and risk of bleeding.
Lewandowski, Krzysztof; Kurpierz, Katarzyna; Sledzinska, Anna
2015-10-01
Bone marrow macroscopic examination remains one of the most difficult and subjective laboratory assessments in hematology. Only a few external quality assurance programs in the field are present worldwide. We have developed an external quality assurance program EQAhem that allows assessment of the whole process of bone marrow examination. The program participants assess blood and bone marrow smears from the patient, identify selected cells from photographs provided to them, and interpret the microscopic results. In this article, the results of the EQAhem program in Poland from 6 years are summarized. During this time, 62 labs were assessed in total, and positive results were achieved by 89.25 % labs, taking into account all tests. Correct responses with respect to the percentage of cell count were provided by ca. 77.5 % labs. Slightly worse results were obtained when megakaryocyte count and cell identification from photographs were tested. The worst results were obtained in case of dysplasia assessment and clinical interpretation of microscopic examination (54.1 and 58.6 % correct responses, respectively). EQAhem delivers precise information about the quality of bone marrow examinations performed in Poland and has a substantial educational value. We believe that after 6 years, EQAhem has significantly improved the quality of bone marrow microscopic examinations performed in Poland.
Advances in imaging: impact on studying craniofacial bone structure.
Majumdar, S
2003-01-01
Methods for measuring the structure of craniofacial bones are discussed in this paper. In addition to the three-dimensional macro-structure of the craniofacial skeleton, there is considerable interest in imaging the bone at a microscopic resolution in order to depict the micro-architecture of the trabecular bone itself. In addition to the density of the bone, the microarchitecture reflects bone quality. An understanding of bone quality and density changes has implications for a number of craniofacial pathologies, as well as for implant design and understanding the biomechanical function and loading of the jaw. Trabecular bone micro-architecture has been recently imaged using imaging methods such as micro-computed tomography, magnetic resonance imaging, and the images have been used in finite element models to assess bone mechanical properties. In this paper, some of the recent advances in micro-computed tomography and magnetic resonance imaging are reviewed, and their potential for imaging the trabecular bone in mandibular bones is presented. Examples of in vitro and in vivo images are presented.
Cheung, T F; Cheuk, K Y; Yu, F W P; Hung, V W Y; Ho, C S; Zhu, T Y; Ng, B K W; Lee, K M; Qin, L; Ho, S S Y; Wong, G W K; Cheng, J C Y; Lam, T P
2016-08-01
Vitamin D deficiency and insufficiency are highly prevalent among adolescents in Hong Kong, which is a sub-tropical city with ample sunshine. Vitamin D level is significantly correlated with key bone density and bone quality parameters. Further interventional studies are warranted to define the role of vitamin D supplementation for improvement of bone health among adolescents. The relationship between bone quality parameters and vitamin D (Vit-D) status remains undefined among adolescents. The aims of this study were to evaluate Vit-D status and its association with both bone density and bone quality parameters among adolescents. Three hundred thirty-three girls and 230 boys (12-16 years old) with normal health were recruited in summer and winter separately from local schools. Serum 25(OH) Vit-D level, bone density and quality parameters by Dual Energy X-ray Absorptiometry (DXA) and High-Resolution peripheral Quantitative Computed Tomography (HR-pQCT), dietary calcium intake, and physical activity level were assessed. Sixty-four point seven percent and 11.4 % of subjects were insufficient [25 ≤ 25(OH)Vit-D ≤ 50 nmol/L] and deficient [25(OH)Vit-D < 25 nmol/L] in Vit-D, respectively. The mean level of serum 25(OH)Vit-D in summer was significantly higher than that in winter (44.7 ± 13.6 and 35.9 ± 12.6 nmol/L, respectively) without obvious gender difference. In girls, areal bone mineral density (aBMD) and bone mineral content (BMC) of bilateral femoral necks, cortical area, cortical thickness, total volumetric bone mineral density (vBMD), and trabecular thickness were significantly correlated with 25(OH)Vit-D levels. In boys, aBMD of bilateral femoral necks, BMC of the dominant femoral neck, cortical area, cortical thickness, total vBMD, trabecular vBMD, BV/TV, and trabecular separation were significantly correlated with 25(OH)Vit-D levels. Vit-D insufficiency was highly prevalent among adolescents in Hong Kong with significant correlation between Vit-D levels and key bone density and bone quality parameters being detected in this study. Given that this is a cross-sectional study and causality relationship cannot be inferred, further interventional studies investigating the role of Vit-D supplementation on improving bone health among adolescents are warranted.
Draenert, F G; Gebhart, F; Berthold, M; Gosau, M; Wagner, W
2010-07-01
The objective of this study was to determine the ability of two flat panel cone beam CT (CBCT) devices to identify demineralized bone and bone transplants in vivo and in vitro. Datasets from patients with autologous bone grafts (n = 9, KaVo 3DeXam (KaVo, Biberach, Germany); n = 38, Accuitomo 40 (Morita, Osaka, Japan)) were retrospectively evaluated. Demineralized and non-demineralized porcine cancellous bone blocks were examined with the two CBCT devices. A SawBone skull (Pacific Research Laboratories, Vashon, WA) was used as a positioning tool for the bone blocks. Descriptive evaluation and image quality assessment were conducted on the KaVo 3DeXam data (voxel size 0.3 mm) using the OsiriX viewer as well as on the Morita Accuitomo data (voxel size 0.25 mm) using proprietary viewer software. Both in vivo and in vitro, the descriptive analysis of the images of the two devices showed well-visualized bone transplants with clearly defined cancellous bones and well-defined single bone trabeculae in all cross-sections. In vitro, demineralized samples showed lower radiographic opacity but no significant loss of quality compared with fresh bone (P = 0.070). Single cancellous bone trabeculae were significantly better visualized with the Morita 3D Accuitomo device than with the KaVo 3DeXam device (P = 0.038). Both the KaVo 3DeXam and Morita 3D Accuitomo devices produce good-quality images of cancellous bones in in vivo remodelling as well as after in vitro demineralization.
Kague, E; Witten, P E; Soenens, M; Campos, C L; Lubiana, T; Fisher, S; Hammond, C; Brown, K Robson; Passos-Bueno, M R; Huysseune, A
2018-03-15
The capacity to fully replace teeth continuously makes zebrafish an attractive model to explore regeneration and tooth development. The requirement of attachment bone for the appearance of replacement teeth has been hypothesized but not yet investigated. The transcription factor sp7 (osterix) is known in mammals to play an important role during odontoblast differentiation and root formation. Here we study tooth replacement in the absence of attachment bone using sp7 zebrafish mutants. We analysed the pattern of tooth replacement at different stages of development and demonstrated that in zebrafish lacking sp7, attachment bone is never present, independent of the stage of tooth development or fish age, yet replacement is not interrupted. Without bone of attachment we observed abnormal orientation of teeth, and abnormal connection of pulp cavities of predecessor and replacement teeth. Mutants lacking sp7 show arrested dentinogenesis, with non-polarization of odontoblasts and only a thin layer of dentin deposited. Osteoclast activity was observed in sp7 mutants; due to the lack of bone of attachment, remodelling was diminished but nevertheless present along the pharyngeal bone. We conclude that tooth replacement is ongoing in the sp7 mutant despite poor differentiation and defective attachment. Without bone of attachment tooth orientation and pulp organization are compromised. Copyright © 2018 Elsevier Inc. All rights reserved.
Trained nurses can obtain satisfactory bone marrow aspirates and trephine biopsies.
Lawson, S; Aston, S; Baker, L; Fegan, C D; Milligan, D W
1999-01-01
AIMS: To assess the feasibility of training nurse practitioners to perform bone marrow aspiration and trephine biopsy, and to compare the quality of these samples with those obtained by medical staff. METHODS: A retrospective audit was undertaken of nurse practitioner and medical staff performance in bone marrow procedures in a busy haematology day unit. RESULTS: Nurse practitioners fared favourably in comparison with medical staff in performing bone marrow trephine biopsies, with mean biopsy lengths of 11 mm and 10.7 mm respectively. However, only 78% of the smears obtained by the nurses were judged technically satisfactory, compared with 91% prepared by doctors. This discrepancy was thought to be due largely to the quality of slide spreading. CONCLUSIONS: With motivated staff and a structured educational and training programme it is possible for nurse practitioners to perform the techniques of bone marrow aspiration and biopsy, and obtain specimens of satisfactory quality, thus improving efficiency of the haematology day unit and increasing quality of patient care. Images PMID:10396248
Bone metabolism in anorexia nervosa and hypothalamic amenorrhea.
Chou, Sharon H; Mantzoros, Christos
2018-03-01
Anorexia nervosa (AN) and hypothalamic amenorrhea (HA) are states of chronic energy deprivation associated with severely compromised bone health. Poor bone accrual during adolescence followed by increased bone loss results in lifelong low bone density, degraded bone architecture, and higher risk of fractures, despite recovery from AN/HA. Amenorrhea is only one of several compensatory responses to the negative energy balance. Other hypothalamic-pituitary hormones are affected and contribute to bone deficits, including activation of hypothalamic-pituitary-adrenal axis and growth hormone resistance. Adipokines, particularly leptin, provide information on fat/energy stores, and gut hormones play a role in the regulation of appetite and food intake. Alterations in all these hormones influence bone metabolism. Restricted in scope, current pharmacologic approaches to improve bone health have had overall limited success. Copyright © 2017 Elsevier Inc. All rights reserved.
Ardawi, M-S M; Qari, M H; Rouzi, A A; Maimani, A A; Raddadi, R M
2011-02-01
The various factors that may contribute to vitamin D deficiency or insufficiency were examined among healthy Saudi pre- and postmenopausal women. Vitamin D deficiency was highly prevalent among studied Saudi women with obesity, poor sunlight exposure, poor dietary vitamin D supplementation and age as the main risk factors. The various factors that may contribute to vitamin D deficiency or insufficiency in relation to bone health among Saudi women are not known. The main objectives of the present study were to determine the factors influencing vitamin D status in relation to serum 25-hydroxyvitamin D (25(OH)D), intact parathyroid hormone (PTH), bone turnover markers (BTMs), bone mineral density (BMD), and vitamin D receptor genotype (VDR) in healthy Saudi pre- and postmenopausal women. A total number of 1,172 healthy Saudi women living in the Jeddah area were randomly selected and studied. Anthropometric parameters, socioeconomic status, sun exposure index together with serum levels of 25(OH)D, calcitriol, intact PTH, Ca, PO4, Mg, creatinine, albumin, and biochemical BTMs were measured. BMD was measured by a dual energy X-ray absorptiometry and VDR genotypes were also determined. About 80.0% of Saudi women studied exhibited vitamin D deficiency (serum 25(OH)D<50.0 nmol/L) with only 11.8% of all women were considered with adequate vitamin D status (serum 25(OH)D>75 nmol/L). Secondary hyperparathyroidism was evident in 18.5% and 24.6% in pre- and postmenopausal women with 25(OH)D<50 nmol/L. Serum 25(OH)D was lower (P<0.001) and intact PTH higher (P<0.001) in the upper quintiles of body mass index (BMI) and waist-to-hip ratio (WHR). Multiple linear regression analysis showed that BMI, sun exposure index, poor dietary vitamin D supplementation, WHR, and age were independent positive predictors of serum 25(OH)D values. Vitamin D deficiency is highly prevalent among healthy Saudi pre-and postmenopausal women and largely attributed to obesity, poor exposure to sunlight, poor dietary vitamin D supplementation, and age.
2007-01-01
including scoliosis and pseudoarthrosis, which are compounded by osteoporosis and poor bone healing. Corrective orthopaedic intervention often fails...3 - Introduction: A large proportion of patients with Neurofibromatosis Type 1 display skeletal abnormalities including scoliosis and...abnormalities including alterations in bone size and shape, the presence of scoliosis , and a tendency to develop pseudoarthrosis. These skeletal
Clinical application of locked plating system in children. An orthopaedic view
Zafra-Jimenez, Jose Alberto; Rodriguez Martin, Juan
2010-01-01
In recent years, the locked plating system has gained favour in the treatment of certain fractures in adults; however, there is not much information regarding its use in children. We think there could be some advantages and applications such as: an alternative to external fixation, the bridge plating technique, unicortical screws, removal of hardware, metadiaphyseal fractures, periarticular fractures, poor quality bone, and allograft fixation. However, there are some disadvantages to keep in mind and the final decision for using it should be based on the osteosynthesis method principle the surgeon would like to apply. In this review article we discuss the up-to-date possible clinical applications and issues of this system. PMID:20162415
Polymeric membranes for guided bone regeneration.
Gentile, Piergiorgio; Chiono, Valeria; Tonda-Turo, Chiara; Ferreira, Ana M; Ciardelli, Gianluca
2011-10-01
In this review, different barrier membranes for guided bone regeneration (GBR) are described as a useful surgical technique to enhance bone regeneration in damaged alveolar sites before performing implants and fitting other dental appliances. The GBR procedure encourages bone regeneration through cellular exclusion and avoids the invasion of epithelial and connective tissues that grow at the defective site instead of bone tissue. The barrier membrane should satisfy various properties, such as biocompatibility, non-immunogenicity, non-toxicity, and a degradation rate that is long enough to permit mechanical support during bone formation. Other characteristics such as tissue integration, nutrient transfer, space maintenance and manageability are also of interest. In this review, various non-resorbable and resorbable commercially available membranes are described, based on expanded polytetrafluoroethylene, poly(lactic acid), poly(glycolic acid) and their copolymers. The polyester-based membranes are biodegradable, permit a single-stage procedure, and have higher manageability than non-resorbable membranes; however, they have shown poor biocompatibility. In contrast, membranes based on natural materials, such as collagen, are biocompatible but are characterized by poor mechanical properties and stability due to their early degradation. Moreover, new approaches are described, such as the use of multi-layered, graft-copolymer-based and composite membranes containing osteoconductive ceramic fillers as alternatives to conventional membranes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Verbeke, Sofie L J; Fletcher, Christopher D M; Alberghini, Marco; Daugaard, Søren; Flanagan, Adrienne M; Parratt, Tim; Kroon, Herman M; Hogendoorn, Pancras C W; Bovée, Judith V M G
2010-06-01
Hemangiopericytoma (HPC) was first described as a neoplasm with distinct morphologic features, presumably composed of pericytes. In soft tissue, it is accepted that most such lesions are solitary fibrous tumors (SFTs), monophasic synovial sarcomas (SSs), or myofibromatoses. It is unclear whether HPC of bone exists. We reviewed 9 primary "HPC" of bone from 4 institutions diagnosed between 1952 and 2002. Immunohistochemistry was performed for CD31, CD34, von Willebrand factor, smooth muscle actin, keratin AE1/AE3, and epithelial membrane antigen. There were 4 male and 5 female patients between 21 and 73 years. All tumors were located within bone, either sited within spine or extremities. All tumors showed thin-walled branching vessels surrounded by undifferentiated spindle or round cells. These cells showed variation in their morphologic pattern: 6 tumors showed a pattern-less architecture and varying cellularity, consistent with SFT; 3 of 5 cases examined were CD34-positive. Three tumors showed more densely packed sheets and fascicles of poorly differentiated cells, resembling SS, of which 2 showed focal staining for keratin AE1/AE3 or epithelial membrane antigen. Fluorescent in-situ hybridization confirmed the presence of SS18 rearrangement in 1 of 2 tumors examined. In conclusion, similar to their soft-tissue counterpart, HPC-like features in bone are a nonspecific growth pattern rather than a true diagnosis. We confirm the existence of 2 entities: SFT and SS of bone. Both are characterized by distinct morphology and immunohistochemical profile. SFT of bone is located within spine and has a better prognosis, whereas SS of bone is located within long bones having a poor prognosis.
Peng, T C; Kusy, R P; Garner, S C; Hirsch, P F; De Blanco, M C
1987-06-01
The quality of bone was assessed from femurs of rats both during lactation and after pregnancy + lactation. Mechanical properties of stiffness, strength, toughness, and ductility were measured, along with standard measurements of dry weight, ash weight, and total bone mineral. No changes occurred during the first week of lactation. During the second and third weeks of lactation all bone parameters except ductility decreased significantly. These data are consistent with bone losing mineral in order to supplement the dietary calcium intake necessary for milk production. In other experiments, femurs were collected from nulliparous rats and from rats that had previously undergone 1-3 pregnancy + lactations. The largest changes in bone mineral and mechanical properties occurred after a single pregnancy + lactation period, although significant further decreases in stiffness and strength occurred after the second pregnancy + lactation. No additional losses occurred following the third pregnancy + lactation. Even 5 months after only one pregnancy + lactation period, the bone quality was still impaired as all bone properties were lower than in nulliparous controls. Because the changes, especially stiffness and strength, were relatively larger than the changes in dry and ash weights of bone, measurements of these mechanical properties provide a more sensitive method to evaluate the quality of bone.
NASA Astrophysics Data System (ADS)
Xia, Yi
Fractures and associated bone fragility induced by osteoporosis and osteopenia are widespread health threat to current society. Early detection of fracture risk associated with bone quantity and quality is important for both the prevention and treatment of osteoporosis and consequent complications. Quantitative ultrasound (QUS) is an engineering technology for monitoring bone quantity and quality of humans on earth and astronauts subjected to long duration microgravity. Factors currently limiting the acceptance of QUS technology involve precision, accuracy, single index and standardization. The objective of this study was to improve the accuracy and precision of an image-based QUS technique for non-invasive evaluation of trabecular bone quantity and quality by developing new techniques and understanding ultrasound/tissue interaction. Several new techniques have been developed in this dissertation study, including the automatic identification of irregular region of interest (iROI) in bone, surface topology mapping (STM) and mean scattering spacing (MSS) estimation for evaluating trabecular bone structure. In vitro results have shown that (1) the inter- and intra-observer errors in QUS measurement were reduced two to five fold by iROI compared to previous results; (2) the accuracy of QUS parameter, e.g., ultrasound velocity (UV) through bone, was improved 16% by STM; and (3) the averaged trabecular spacing can be estimated by MSS technique (r2=0.72, p<0.01). The measurement errors of BUA and UV introduced by the soft tissue and cortical shells in vivo can be quantified by developed foot model and simplified cortical-trabecular-cortical sandwich model, which were verified by the experimental results. The mechanisms of the errors induced by the cortical and soft tissues were revealed by the model. With developed new techniques and understanding of sound-tissue interaction, in vivo clinical trail and bed rest study were preformed to evaluate the performance of QUS in clinical applications. It has been demonstrated that the QUS has similar performance for in vivo bone density measurement compared to current gold-standard method, i.e., DXA, while additional information are obtained by the QUS for predicting fracture risk by monitoring of bone's quality. The developed QUS imaging technique can be used to assess bone's quantity and quality with improved accuracy and precision.
Dyusupov, A; Dyusupov, A; Manarbekov, E; Bukatov, A; Serikbaev, A
2018-02-01
The aim of the study is a comparative analysis of the quality of life in the treatment of fractures of the bones of the lower extremities of various localizations using transosseous and submerged osteosynthesis. We examined 397 patients with injuries of the lower segment of the lower extremity (patellar fractures - 81, multiple bones fractures of the tibia - 84 and fractures of the ankles, accompanied by a dislocation of the foot - 232). Patients were distributed in the subgroups depending on the treatment. The main group was performed using transosseous osteosynthesis, the comparison group - submerged osteosynthesis. The quality of life was examined using a general questionnaire SF-36 and specialized KOOS (with patella fractures) and FOAS (fractures of the bones of the lower leg and ankles). In patients with all localizations of fractures the quality of life was exceeded in the subgroups of the transosseous osteosynthesis group over the parameters of the comparison group. The most significant differences with the use of specialized questionnaires were revealed 6-9 months after trauma with a tendency to leveling to the end of the study (1 year). A more pronounced excess of the quality of life in the main group was seen in fractures of the shin bones. The study of the quality of life allows us to recommend the use of transosseous osteosynthesis for the treatment of lower segment of the lower limb bone fractures.
USDA-ARS?s Scientific Manuscript database
Beneficial effects of soy protein consumption on bone quality have been reported. The effects of other dietary protein sources such as whey protein hydrolysate (WPH) and rice protein isolate (RPI) on bone growth has been less well examined. The current study compared effects of feeding soy protein i...
Drilling force and temperature of bone under dry and physiological drilling conditions
NASA Astrophysics Data System (ADS)
Xu, Linlin; Wang, Chengyong; Jiang, Min; He, Huiyu; Song, Yuexian; Chen, Hanyuan; Shen, Jingnan; Zhang, Jiayong
2014-11-01
Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systematic study of mid- and high-speed drilling under dry and physiological conditions(injection of saline). Furthermore, there is no consensus on optimal drilling parameters. To study these parameters under dry and physiological drilling conditions, pig humerus bones are drilled with medical twist drills operated using a wide range of drilling speeds and feed rates. Drilling force and temperature are measured using a YDZ-II01W dynamometer and a NEC TVS-500EX thermal infrared imager, respectively, to evaluate internal bone damage. To evaluate drilling quality, bone debris and hole morphology are observed by SEM(scanning electron microscopy). Changes in drilling force and temperature give similar results during drilling such that the value of each parameter peaks just before the drill penetrates through the osteon of the compact bone into the trabeculae of the spongy bone. Drilling temperatures under physiological conditions are much lower than those observed under dry conditions, while a larger drilling force occurs under physiological conditions than dry conditions. Drilling speed and feed rate have a significant influence on drilling force, temperature, bone debris and hole morphology. The investigation of the effect of drilling force and temperature on internal bone damage reveals that a drilling speed of 4500 r/min and a feed rate of 50 mm/min are recommended for bone drilling under physiological conditions. Drilling quality peaks under these optimal parameter conditions. This paper proposes the optimal drilling parameters under mid- and high-speed surgical drilling, considering internal bone damage and drilling quality, which can be looked as a reference for surgeons performing orthopedic operations.
Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B.; Spevak, Lyudmila; Boskey, Adele L.; Jepsen, Karl J.
2009-01-01
Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways. PMID:18855037
Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B; Spevak, Lyudmila; Boskey, Adele L; Jepsen, Karl J
2008-11-01
Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways.
Kazanci, M; Fratzl, P; Klaushofer, K; Paschalis, E P
2006-11-01
In addition to mechanical functions, bones have an essential role in metabolic activity as mineral reservoirs that are able to absorb and release ions. Bioapatite, considered the major component in the mineralized part of mammalian bones, is a calcium phosphate mineral with a structure that closely resembles hydroxyapatite (HA, Ca10[PO4]6[OH]2) with variable chemical substitutions. It is important to note that it continues to be chemically active long after it has been initially deposited. Detailed understanding of changes in the mineral phase as HA matures is essential for understanding how normal bone achieves its remarkable mechanical performance, how it is altered in disease, as well as the effects of therapeutic interventions. A model system for investigation of the in vivo maturation of HA is available, namely, the in vitro conversion of amorphous calcium phosphate (ACP) to HA in a supersaturated solution of calcium and phosphate ions. In the present study, this system was employed to correlate with the changes in chemistry and poorly crystalline HAP crystal size, shape, and habit. The results of the X-ray diffraction as well as Raman analyses showed that as the crystallites mature in the 002 and 310 directions both the full width at half-height and wavelength at maximum of the Raman peaks change as a function of reaction extent and crystallite maturation, size, and shape. Moreover, such analyses can be performed in intact bone specimens through Raman microspectroscopic and imaging analyses with a spatial resolution of 0.6-1 mu, by far superior to the one offered by other microspectroscopic techniques, thus potentially yielding important new information on the organization and mineral quality of normal and fragile bone.
Obesity is a concern for bone health with aging.
Shapses, Sue A; Pop, L Claudia; Wang, Yang
2017-03-01
Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. Copyright © 2017 Elsevier Inc. All rights reserved.
Obesity is a concern for bone health with aging
Shapses, Sue A.; Pop, L. Claudia; Wang, Yang
2017-01-01
Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. PMID:28385284
Effect of hot-boned pork on the keeping quality of fresh pork sausage.
Guerrero Legarreta, I; Usborne, W R; Ashton, G C
1987-01-01
The first experiment evaluated the effect of solid carbon dioxide (dry ice) addition to hot-boned meat, in different proportions, upon the keeping quality of fresh pork sausage patties. Dry ice had some negative effects at levels of 20% to 40%, such as hardening and colour fading of samples, although it increased water-holding capacity of the sausage. In the second experiment three proportions of hot-boned meat and chilled meat were evaluated as a means to extend the retail storage time of fresh pork sausage links. Hot-boned pork was treated by three methods: freezing the meat before grinding, salting and freezing, and salting plus dry ice addition. The results favoured the use of 50% hot-boned meat and 50% chilled meat, for which the lowest hardness and oxidation values were obtained. Microbial counts and hue values showed no significant variation among the three treatments. Salting and freezing hot-boned meat before grinding was the method which produced the best overall quality. Copyright © 1987. Published by Elsevier Ltd.
Santos Armentia, E; Tardáguila de la Fuente, G; Castellón Plaza, D; Delgado Sánchez-Gracián, C; Prada González, R; Fernández Fernández, L; Tardáguila Montero, F
2014-01-01
To study the differences in vascular image quality, bone subtraction, and dose of radiation of dual energy CT angiography of the supraaortic trunks using different tube voltages. We reviewed the CT angiograms of the supraaortic trunks in 46 patients acquired with a 128-slice dual source CT scanner using two voltage protocols (80/140 kV and 100/140 kV). The "head bone removal" tool was used for postprocessing. We divided the arteries into 15 segments. In each segment, we evaluated the image quality of the vessels and the effectiveness of bone removal in multiplanar reconstructions (MPR) and in maximum intensity projections (MIP) with each protocol, analyzing the trabecular and cortical bones separately. We also evaluated the dose of radiation received. Of the 46 patients, 13 were studied using 80/140 kV and 33 with 100/140 kV. There were no significant differences between the two groups in age or sex. Image quality in four segments was better in the group examined with 100/140 kV. Cortical bone removal in MPR and MIP and trabecular bone removal in MIP were also better in the group examined with 100/140 kV. The dose of radiation received was significantly higher in the group examined with 100/140 kV (1.16 mSv with 80/140 kV vs. 1.59 mSv with 100/140 kV). Using 100/140 kV increases the dose of radiation but improves the quality of the study of arterial segments and bone subtraction. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.
The use of a magnesium-based bone adhesive for flexor tendon-to-bone healing
Stavros, Thomopoulos; Emmanouil, Zampiakis; Rosalina, Das; Hyun-Min, Kim; J., Silva, Matthew; Necat, Havlioglu; H., Gelberman, Richard
2010-01-01
Purpose Our previous studies in a canine animal model demonstrated that the flexor tendon-to-bone insertion site has a poor capacity to heal. Magnesium based adhesives have the potential to improve tendon-to-bone healing. Therefore, we hypothesized that magnesium based bone adhesive (MBA) will improve the tendon-to-bone biomechanical properties initially and in the early period after repair. Methods Flexor digitorum profundus tendons were injured and repaired into bone tunnels in the distal phalanges of dogs. The bone tunnels were either filled with MBA prior to completing the repair or left empty (CTL). Histologic appearance, tensile properties, range of motion, and bone density were examined at time zero and 21 days after the repair. Results There was no histologic evidence of acute inflammation. There appeared to be more mast cells in the MBA group than in the CTL group. Chronic inflammatory infiltrate and fibrosis was slightly higher in the MBA group compared to the CTL group. Tensile properties at time zero were significantly higher in the MBA group compared to the CTL group. However, tensile properties were significantly lower in the MBA group compared to the CTL group at 21 days. Range of motion and bone density were significantly lower in the MBA and CTL groups compared to normal (i.e., uninjured) at 21 days; no differences were seen when comparing MBA to CTL. Conclusions We found that the initial biomechanical properties of flexor tendon-to-bone repairs can be improved with MBA. However, MBA use in vivo led to a decrease in the biomechanical properties of the repair. There was no effect of MBA on bone density or range of motion in the early period after repair. Our histologic analysis suggests that the poor healing in the MBA group may have been due to an allergic response or to increased chronic inflammation due to the foreign material. PMID:19643291
European network using fish as osteoporosis research models (ENFORM)
NASA Astrophysics Data System (ADS)
Goerlich, R.; Renn, J.; Alestrom, P.; Nouizadeh-Lillabadi, R.; Schartl, M.; Winkler, C.; Muller, M.; Midtyng, P. J.; Eberius, M.; Slenzka, K.
2005-08-01
Osteoporosis, characterised by loss of bone density, is one of the most important bone diseases of humans worldwide. It causes problems in post-menopausal women, in astronauts during long-term spaceflights and in industrial animal production. Bone alterations leading to osteoporosis are well-documented at the cellular level, but the underlying molecular events are still poorly understood and most of our knowledge is derived from in vitro studies using cell culture systems. Recent findings indicate a remarkable conservation of the key regulators of bone development and homeostasis between mammals and fish. Medaka (Oryzias latipes) and zebrafish (Danio rerio) offer experimental advantages that can be exploited for bone research.
Quality of life in survivors of a primary bone tumour: a systematic review.
Eiser, C; Grimer, R J
1999-01-01
Purpose. We conducted a systematic search of published literature, to assess (i) quality of life (QoL) for survivors of a bone tumour compared with the normal population; (ii) QoL implications following amputation, successful or failed limb salvage; (iii) adaptation of young children to amputation compared with older children or adolescents.Methods. Electronic databases were searched including Medline, PsycLIT and Cinahl covering the years 1982- 1998.Results. We identified 11 studies. Regardless of treatment, physical functioning was poor compared with population norms or healthy siblings.There was less consistent evidence regarding emotional functioning. Seven studies compared functioning in amputees and limb salvage patients.Two reported advantages in physical function for the limb salvage group, one for the amputees and the rest no differences. Evidence about social functioning or marriage is inconclusive, but there are suggestions that amputees report more job discrimination.Discussion. The literature is inconclusive, largely because of methodological problems. These include small and non-representative samples, and lack of sensitive and appropriate measures. Specific gaps in the literature include very little work concerned with psychological outcomes for children, or for those experiencing failed limb salvage. More attention needs to be given to gender differences in emotional response to traumatic surgery.The implications of the results for helping families balance the merits of different treatments are discussed.
Marinozzi, Franco; Marinozzi, Andrea; Bini, Fabiano; Zuppante, Francesca; Pecci, Raffaella; Bedini, Rossella
2012-01-01
Morphometric and architectural bone parameters change in diseases such as osteoarthritis and osteoporosis. The mechanical strength of bone is primarily influenced by bone quantity and quality. Bone quality is defined by parameters such as trabecular thickness, trabecular separation, trabecular density and degree of anisotropy that describe the micro-architectural structure of bone. Recently, many studies have validated microtomography as a valuable investigative technique to assess bone morphometry, thanks to micro-CT non-destructive, non-invasive and reliability features, in comparison to traditional techniques such as histology. The aim of this study is the analysis by micro-computed tomography of six specimens, extracted from patients affected by osteoarthritis and osteoporosis, in order to observe the tridimensional structure and calculate several morphometric parameters.
Sclerostin antibody treatment improves fracture outcomes in a Type I diabetic mouse model
Yee, Cristal S.; Xie, LiQin; Hatsell, Sarah; ...
2015-05-04
Type 1 diabetes mellitus (T1DM) patients have osteopenia and impaired fracture healing due to decreased osteoblast activity. Further, no adequate treatments are currently available that can restore impaired healing in T1DM; hence a significant need exists to investigate new therapeutics for treatment of orthopedic complications. Sclerostin (SOST), a WNT antagonist, negatively regulates bone formation, and SostAb is a potent bone anabolic agent. To determine whether SOST antibody (SostAb) treatment improves fracture healing in streptozotocin (STZ) induced T1DM mice, we administered SostAb twice weekly for up to 21 days post-fracture, and examined bone quality and callus outcomes at 21 days andmore » 42 days post-fracture (11 and 14 weeks of age, respectively). Here we show that SostAb treatment improves bone parameters; these improvements persist after cessation of antibody treatment. Markers of osteoblast differentiation such as Runx2, collagen I, osteocalcin, and DMP1 were reduced, while an abundant number of SP7/osterix-positive early osteoblasts were observed on the bone surface of STZ calluses. These results suggest that STZ calluses have poor osteogenesis resulting from failure of osteoblasts to fully differentiate and produce mineralized matrix, which produces a less mineralized callus. SostAb treatment enhanced fracture healing in both normal and STZ groups, and in STZ + SostAb mice, also reversed the lower mineralization seen in STZ calluses. Micro-CT analysis of calluses revealed improved bone parameters with SostAb treatment, and the mineralized bone was comparable to Controls. Additionally, we found sclerostin levels to be elevated in STZ mice and β-catenin activity to be reduced. Consistent with its function as a WNT antagonist, SostAb treatment enhanced β-catenin activity, but also increased the levels of SOST in the callus and in circulation. Lastly, our results indicate that SostAb treatment rescues the impaired osteogenesis seen in the STZ induced T1DM fracture model by facilitating osteoblast differentiation and mineralization of bone.« less
Callegari, Emma T; Reavley, Nicola; Garland, Suzanne M; Gorelik, Alexandra; Wark, John D
2015-11-17
Vitamin D deficiency has been associated with both poor bone health and mental ill-health. More recently, a number of studies have found individuals with depressive symptoms tend to have reduced bone mineral density. To explore the interrelationships between vitamin D status, bone mineral density and mental-ill health we are assessing a range of clinical, behavioural and lifestyle factors in young women (Part A of the Safe-D study). Part A of the Safe-D study is a cross-sectional study aiming to recruit 468 young females aged 16-25 years living in Victoria, Australia, through Facebook advertising. Participants are required to complete an extensive, online questionnaire, wear an ultra-violet dosimeter for 14 consecutive days and attend a study site visit. Outcome measures include areal bone mineral measures at the lumbar spine, total hip and whole body, as well as soft tissue composition using dual energy x-ray absorptiometry. Trabecular and cortical volumetric bone density at the tibia is measured using peripheral quantitative computed tomography. Other tests include serum 25-hydroxyvitamin D, serum biochemistry and a range of health markers. Details of mood disorder/s and depressive and anxiety symptoms are obtained by self-report. Cutaneous melanin density is measured by spectrophotometry. The findings of this cross-sectional study will have implications for health promotion in young women and for clinical care of those with vitamin D deficiency and/or mental ill-health. Optimising both vitamin D status and mental health may protect against poor bone health and fractures in later life. Significance for public healthVitamin D deficiency, depression and osteoporosis are all major public health issues. Vitamin D deficiency has been associated with both reduced bone mineral density and depressive symptoms. Moreover, cohort studies have found that subjects with depression have lower bone mineral density when compared to healthy controls. Early adulthood is a critical time in young woman's lives as their independence, behaviours and lifestyle choices are established. These choices made as a young adult lay down the foundation for future health trajectories for not only for themselves but also for their potential partners and families. Addressing vitamin D deficiency, poor bone health and mental ill-health at a younger age may ultimately improve their wellbeing, productivity and long-term health outcomes. This study is of particular significance as the interplay between vitamin D, depression and bone health is currently uncertain and such knowledge is crucial for understanding, prevention and treatment of these conditions.
NASA Astrophysics Data System (ADS)
Katkova, Olena; Rodionova, Natalia; Shevel, Ivan
2016-07-01
Microgravity and long-term hypokinesia induce reduction both in bone mass and mineral saturation, which can lead to the development of osteoporosis and osteopenia. (Oganov, 2003). Reorganizations and adaptive remodeling processes in the skeleton bones occur in the topographical interconnection with blood capillaries and perivascular cells. Radioautographic studies with 3H- thymidine (Kimmel, Fee, 1980; Rodionova, 1989, 2006) have shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic. Hence the study of populations of perivascular stromal cells in areas of destructive changes is actual. Perivascular cells from metaphysis of the rat femoral bones under conditions of modeling microgravity were studied using electron microscopy and cytochemistry (hindlimb unloading, 28 days duration) and biosatellite «Bion-M1» (duration of flight from April 19 till May 19, 2013 on C57, black mice). It was revealed that both control and test groups populations of the perivascular cells are not homogeneous in remodeling adaptive zones. These populations comprise of adjacent to endothelium poorly differentiated forms and isolated cells with signs of differentiation (specific increased volume of rough endoplasmic reticulum in cytoplasm). Majority of the perivascular cells in the control group (modeling microgravity) reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In poorly differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of experimental animals reaction to the alkaline phosphatase is registered not in all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. Under microgravity some poorly differentiated perivascular cells reveal signs of destruction. Thus it was found that number of the alkaline phosphatase containing cells (i.e. osteogenic cells) declines in perivascular cells population. It is one of the mechanisms of the osteogenic process decrease of intensity in bones because of lessening support loading on the bone skeleton. In the adaptive remodeling zones of bone tissue (near the vascular canals) in experiments fibroblasts and fibrosis zones were found - areas filled with non-mineralized collagen fibrils on the bones surfaces. Hence it should be considered that decrease (removal) of support loading slows down osteogenic differentiation of the part of perivascular cells and stimulates differentiation of the fibroblast cells. Obtained data is considered as one of the cellular mechanisms of the adaptive reactions development in spongy bone under microgravity which could lead to the bone mass loss.
Bone quality changes associated with aging and disease: a review.
Boskey, Adele L; Imbert, Laurianne
2017-12-01
Bone quality encompasses all the characteristics of bone that, in addition to density, contribute to its resistance to fracture. In this review, we consider changes in architecture, porosity, and composition, including collagen structure, mineral composition, and crystal size. These factors all are known to vary with tissue and animal ages, and health status. Bone morphology and presence of microcracks, which also contribute to bone quality, will not be discussed in this review. Correlations with mechanical performance for collagen cross-linking, crystallinity, and carbonate content are contrasted with mineral content. Age-dependent changes in humans and rodents are discussed in relation to rodent models of disease. Examples are osteoporosis, osteomalacia, osteogenesis imperfecta (OI), and osteopetrosis in both humans and animal models. Each of these conditions, along with aging, is associated with increased fracture risk for distinct reasons. © 2017 New York Academy of Sciences.
Patient satisfaction with nursing staff in bone marrow transplantation and hematology units.
Piras, A; Poddigue, M; Angelucci, E
2010-01-01
Several validated questionnaires for assessment of hospitalized patient satisfaction have been reported in the literature. Many have been designed specifically for patients with cancer. User satisfaction is one indicator of service quality and benefits. Thus, we conducted a small qualitative survey managed by nursing staff in our Bone Marrow Transplantation Unit and Acute Leukemia Unit, with the objectives of assessing patient satisfaction, determining critical existing problems, and developing required interventions. The sample was not probabilistic. A questionnaire was developed using the Delphi method in a pilot study with 30 patients. Analysis of the data suggested a good level of patient satisfaction with medical and nursing staffs (100%), but poor satisfaction with food (48%), services (38%), and amenities (31%). Limitations of the study were that the questionnaire was unvalidated and the sample was small. However, for the first time, patient satisfaction was directly measured at our hospital. Another qualitative study will be conducted after correction of the critical points that emerged during this initial study, in a larger sample of patients. Copyright 2010 Elsevier Inc. All rights reserved.
Methods for assessment of keel bone damage in poultry.
Casey-Trott, T; Heerkens, J L T; Petrik, M; Regmi, P; Schrader, L; Toscano, M J; Widowski, T
2015-10-01
Keel bone damage (KBD) is a critical issue facing the laying hen industry today as a result of the likely pain leading to compromised welfare and the potential for reduced productivity. Recent reports suggest that damage, while highly variable and likely dependent on a host of factors, extends to all systems (including battery cages, furnished cages, and non-cage systems), genetic lines, and management styles. Despite the extent of the problem, the research community remains uncertain as to the causes and influencing factors of KBD. Although progress has been made investigating these factors, the overall effort is hindered by several issues related to the assessment of KBD, including quality and variation in the methods used between research groups. These issues prevent effective comparison of studies, as well as difficulties in identifying the presence of damage leading to poor accuracy and reliability. The current manuscript seeks to resolve these issues by offering precise definitions for types of KBD, reviewing methods for assessment, and providing recommendations that can improve the accuracy and reliability of those assessments. © 2015 Poultry Science Association Inc.
Sreenivasan, D; Watson, M; Callon, K; Dray, M; Das, R; Grey, A; Cornish, J; Fernandez, J
2013-12-01
In this study we evaluate the influence of low-dose fluoride treatment on 23 patient biopsies. Computational finite element (FE) models of each biopsy were subjected to a range of loads including compression, shear and torsion. The modelling framework was validated against three 3D printed models with known material properties subjected to compression till failure using an Instron machine. The primary outcomes from this study were that mechanical strength was not significantly correlated to low-dose (<10 mg/day) of fluoride levels (one-way ANOVA, P-values of 0.78, 0.69 and 0.62 for compression, shear and torsion, respectively). However, when bulk bone material properties were derived from DXA bone mineral density (BMD) from each patient's proximal femur a non-significant linear decline in mechanical strength with increase in fluoride was predicted. When the same material property was used for all bones (to evaluate bone architecture influence) then mechanical strength showed a characteristic concave upwards trend, consistent with the variation of micro CT derived percentage bone volume (BV/TV). The secondary outcomes from this study were that in compression, BV/TV was observed to be a strong surrogate measure for mechanical strength (R(2) = 0.83), while bone surface density (R(2)=0.6), trabecular thickness (R(2) = 0.5) and intersection surface (R(2) = 0.6) also explained the variation of mechanical strength well. However, trabecular separation and trabecular number were mildly correlated with mechanical strength (R(2) of 0.31 and 0.35, respectively). Compression was the loading mode most strongly correlated to micro CT indices. Material properties adapted from the proximal femur reduced the CT index correlations by up to 58% indicating that bulk density from a near proximity is a poor representation of specific localised density. Substituting the 3D micro CT indices with 2D histomorphometric data decreased correlations by at least 33% indicating that structural identification on a plane is not representative of the full 3D architecture necessary for a complete bone strength analysis. The presented computational framework may be used to assess the roles that bone architecture and loading modes play in bone quality, and which micro CT indices are good surrogate measures for mechanical strength. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health.
Black, Ruth E; Williams, Sheila M; Jones, Ianthe E; Goulding, Ailsa
2002-09-01
Information concerning the adequacy of bone mineralization in children who customarily avoid drinking cow milk is sparse. The objective was to evaluate dietary calcium intakes, anthropometric measures, and bone health in prepubertal children with a history of long-term milk avoidance. We recruited 50 milk avoiders (30 girls, 20 boys) aged 3-10 y by advertisement. We measured current dietary calcium intakes with a food-frequency questionnaire and body composition and bone mineral density with dual-energy X-ray absorptiometry and compared the results with those of 200 milk-drinking control children. The reasons for milk avoidance were intolerance (40%), bad taste (42%), and lifestyle choice (18%). Dietary calcium intakes were low (443 +/- 230 mg Ca/d), and few children consumed substitute calcium-rich drinks or mineral supplements. Although 9 children (18%) were obese, the milk avoiders were shorter (P < 0.01), had smaller skeletons (P < 0.01), had a lower total-body bone mineral content (P < 0.01), and had lower z scores (P < 0.05) for areal bone mineral density at the femoral neck, hip trochanter, lumbar spine, ultradistal radius, and 33% radius than did control children of the same age and sex from the same community. The z scores for volumetric (size-adjusted) bone mineral density (g/cm(3)) were -0.72 +/- 1.17 for the lumbar spine and -0.72 +/- 1.35 for the 33% radius (P < 0.001). Twelve children (24%) had previously broken bones. In growing children, long-term avoidance of cow milk is associated with small stature and poor bone health. This is a major concern that warrants further study.
[Issues related to secondary osteoporosis associated with growth hormone deficiency in adulthood].
Kužma, Martin; Jackuliak, Peter; Killinger, Zdenko; Vaňuga, Peter; Payer, Juraj
Growth hormone (GH) increases linear bone growth through complex hormonal reactions, mainly mediated by insulin like growth factor 1 (IGF1) that is produced mostly by hepatocytes under influence of GH and stimulates differentiation of epiphyseal prechondrocytes. IGF1 and GH play a key role in the linear bone growth after birth and regulation of bone remodelation during the entire lifespan. It is known that adult GH deficient (GHD) patients have decreased BMD and increased risk of low-impact fractures. Most data gathered thus far on the effect of GH replacement on bone status comprise the measurement of quantitative changes of bone mass. Some animal studies with GHD showed that the bone microarchitecture, measured using computed tomography methods, is significantly compromised and improve after GH replacement. However, human studies did not show significantly decreased bone microarchitecture, but limited methodological quality does not allow firm conclusions on this subject.Key words: bone mass - bone quality - fracture - growth hormone - IGF1.
NASA Technical Reports Server (NTRS)
Zerwekh, J. E.; Antich, P. P.; Sakhaee, K.; Prior, J.; Gonzales, J.; Gottschalk, F.; Pak, C. Y.
1992-01-01
We evaluated the effects of intermittent slow-release sodium fluoride (SRNaF) and continuous calcium citrate therapy on cortical bone histology, reflection ultrasound velocity (material strength) and back-scattered electron image analysis (BEI) in 26 osteoporotic patients before and following therapy. All measurements were made on transiliac crest bone biopsies obtained before and following 2 years of therapy in each patient. For all 26 patients there were no significant changes in cortical bone histomorphometric parameters. In 15 patients in whom bone material quality was assessed by reflection ultrasound, there was no change in velocity (4000 +/- 227 SD to 4013 +/- 240 m/s). BEI disclosed no mineralization defects or the presence of woven bone. Mean atomic number (density) of bone increased slightly, but significantly (9.261 +/- 0.311 to 9.457 +/- 0.223, P = 0.031). While these changes are less marked than those observed for cancellous bone, they indicate that this form of therapy does not adversely affect cortical bone remodelling.
Osteoporosis, Fractures, and Diabetes
2014-01-01
It is well established that osteoporosis and diabetes are prevalent diseases with significant associated morbidity and mortality. Patients with diabetes mellitus have an increased risk of bone fractures. In type 1 diabetes, the risk is increased by ∼6 times and is due to low bone mass. Despite increased bone mineral density (BMD), in patients with type 2 diabetes the risk is increased (which is about twice the risk in the general population) due to the inferior quality of bone. Bone fragility in type 2 diabetes, which is not reflected by bone mineral density, depends on bone quality deterioration rather than bone mass reduction. Thus, surrogate markers and examination methods are needed to replace the insensitivity of BMD in assessing fracture risks of T2DM patients. One of these methods can be trabecular bone score. The aim of the paper is to present the present state of scientific knowledge about the osteoporosis risk in diabetic patient. The review also discusses the possibility of problematic using the study conclusions in real clinical practice. PMID:25050121
Arslan, Cagatay; Sen, Cenk Ahmet; Ortac, Ragip
2015-06-01
Novel systemic therapies and modern surgical and ablative approaches have improved the survival rates for the patients with metastatic colorectal cancer. However, there are still patients with poor prognosis and underlying mechanisms that could not be defined clearly. Metastatic colorectal cancer patients with skin metastasis have a poor prognosis. A 45-year-old man, who presented with large bowel obstruction, was diagnosed with metastatic rectal adenocarcinoma. Unresectable liver metastases were found at diagnosis. FOLFOX plus bevacizumab treatment was started, but the patient developed bowel obstruction after the third cycle. Therefore, ileostomy was performed. Multiple skin, lung, liver and bone metastases appeared during that time. Bone marrow biopsy demonstrated diffuse infiltration by adenocarcinoma cells. Even though partial remission was achieved after 4 cycles of FOLFIRI-cetuximab, the disease progressed after the 8th cycle. The patient lost his life due to disease progression 8 months after the diagnosis. Bone marrow and skin are unusual sites of metastasis for colorectal carcinoma. Metastases in bone marrow and skin develop at later stages of metastatic disease. This patient lived only 4 months after the development of skin and bone marrow metastases. Skin and bone marrow metastases may be the harbingers of short survival. Biopsy of metastatic sites is crucial for diagnosis and detailed molecular analysis. Molecular pathway alterations underlying worse disease course may be found, and hence probable targets for drug improvement may be indicated.
Nguyen, Huynh; Cassady, Alan I; Bennett, Michael B; Gineyts, Evelyne; Wu, Andy; Morgan, David A F; Forwood, Mark R
2013-11-01
Bone allografts carry a risk of infection, so terminal sterilization by gamma irradiation at 25kGy is recommended; but is deleterious to bone quality. Contemporary bone banking significantly reduces initial allograft bioburden, questioning the need to sterilize at 25kGy. We inoculated allograft bone with Staphylococcus epidermidis and Bacillus pumilus, then exposed them to gamma irradiation at 0, 5, 10, 15, 20 and 25kGy. Mechanical and biological properties of allografts were also assessed. Our aim was to determine an optimal dose that achieves sterility assurance while minimizing deleterious effects on allograft tissue. 20-25kGy eliminated both organisms at concentrations from 10(1) to 10(3)CFU, while 10-15kGy sterilized bone samples to a bioburden concentration of 10(2)CFU. Irradiation did not generate pro-inflammatory bone surfaces, as evidenced by macrophage activation, nor did it affect attachment or proliferation of osteoblasts. At doses ≥10kGy, the toughness of cortical bone was reduced (P<0.05), and attachment and fusion of osteoclasts onto irradiated bone declined at 20 and 25kGy (P<0.05). There was no change in collagen cross-links, but a significant dose-response increase in denatured collagen (P<0.05). Our mechanical and cell biological data converge on 15kGy as a threshold for radiation sterilization of bone allografts. Between 5 and 15kGy, bone banks can undertake validation that provides allografts with an acceptable sterility assurance level, improving their strength and biocompatibility significantly. The application of radiation sterilization doses between 5 and 15kGy will improve bone allograft mechanical performance and promote integration, while retaining sterility assurance levels. Improved quality of allograft bone will promote superior clinical outcomes. © 2013.
Paschalis, Eleftherios P; Fratzl, Peter; Gamsjaeger, Sonja; Hassler, Norbert; Brozek, Wolfgang; Eriksen, Erik F; Rauch, Frank; Glorieux, Francis H; Shane, Elizabeth; Dempster, David; Cohen, Adi; Recker, Robert; Klaushofer, Klaus
2016-02-01
Bone strength depends on the amount of bone, typically expressed as bone mineral density (BMD), determined by dual-energy X-ray absorptiometry (DXA), and on bone quality. Bone quality is a multifactorial entity including bone structural and material compositional properties. The purpose of the present study was to examine whether bone material composition properties at actively-forming trabecular bone surfaces in health are dependent on subject age, and to contrast them with postmenopausal osteoporosis patients. To achieve this, we analyzed by Raman microspectroscopy iliac crest biopsy samples from healthy subjects aged 1.5 to 45.7 years, paired biopsy samples from females before and immediately after menopause aged 46.7 to 53.6 years, and biopsy samples from placebo-treated postmenopausal osteoporotic patients aged 66 to 84 years. The monitored parameters were as follows: the mineral/matrix ratio; the mineral maturity/crystallinity (MMC); nanoporosity; the glycosaminoglycan (GAG) content; the lipid content; and the pyridinoline (Pyd) content. The results indicate that these bone quality parameters in healthy, actively-forming trabecular bone surfaces are dependent on subject age at constant tissue age, suggesting that with advancing age the kinetics of maturation (either accumulation, or posttranslational modifications, or both) change. For most parameters, the extrapolation of models fitted to the individual age dependence of bone in healthy individuals was in rough agreement with their values in postmenopausal osteoporotic patients, except for MMC, lipid, and Pyd content. Among these three, Pyd content showed the greatest deviation between healthy aging and disease, highlighting its potential to be used as a discriminating factor. © 2015 American Society for Bone and Mineral Research.
Poon, Eric Tsz-Chun; O'Reilly, John; Sheridan, Sinead; Cai, Michelle Mingjing; Wong, Stephen Heung-Sang
2018-04-28
Weight-making practices, regularly engaged in by horse racing jockeys, have been suggested to impair both physiological and mental health. This study aimed to assess bone health markers, nutritional intake, bone-specific physical activity (PA) habits, and quality of life of professional jockeys in Hong Kong (n = 14), with gender-, age-, and body mass index-matched controls (n = 14). Anthropometric measurements, serum hormonal biomarkers, bone mineral density, bone-specific PA habits, nutritional intake, and quality of life were assessed in all participants. The jockey group displayed significantly lower bone mineral density at both calcanei than the control group (left: 0.50 ± 0.06 vs. 0.63 ± 0.07 g/cm 2 ; right: 0.51 ± 0.07 vs. 0.64 ± 0.10 g/cm 2 , both ps < .01). Thirteen of the 14 jockeys (93%) showed either osteopenia or osteoporosis in at least one of their calcanei. No significant difference in bone mineral density was detected for either forearm between the groups. The current bone-specific PA questionnaire score was lower in the jockey group than the control group (5.61 ± 1.82 vs. 8.27 ± 2.91, p < .05). Daily energy intake was lower in the jockeys than the controls (1,360 ± 515 vs. 1,985 ± 1,046 kcal/day, p < .01). No significant group difference was found for micronutrient intake assessed by the bone-specific food frequency questionnaire, blood hormonal markers, and quality of life scores. Our results revealed suboptimal bone conditions at calcanei and insufficient energy intake and bone-loading PAs among professional jockeys in Hong Kong compared with healthy age-, gender-, and body mass index-matched controls. Further research is warranted to examine the effect of improved bone-loading PAs and nutritional habits on the musculoskeletal health of professional jockeys.
Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics
NASA Astrophysics Data System (ADS)
King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.
2011-03-01
The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.
Correlation between gamma glutamyltransferase fractions and bone quality.
Franzini, M; Nesti, A; Panetta, D; Fierabracci, V; Marchetti, S; Parchi, P D; Caponi, L; Paolicchi, A; Musetti, V; Salvadori, P; Edmin, M; Pucci, A; Bonicoli, E; Scaglione, M; Piolanti, N
Gamma-glutamyltransferase (GGT) has been recently identified as a bone-resorbing factor. The aim of this study was to investigate the association between plasma GGT fractions levels and bone quality. Plasma GGT fractions were analysed by gel-filtration chromatography. Bone quality was established quantitatively by two micro-CT derived microarchitectural parameters: the BV/TV (mineralised bone volume/total volume), and the SMI (structure model index) that describes the rod-like (low resistant) or plate-like (high-resistant) shape of bone trabeculae. We enrolled 93 patients hospitalised for elective total hip replacement (group Arthrosis, n=46) or for proximal femoral fracture (group Fracture, n=47). Patients within the first quartile of BV/TV (Q1, osteoporotic patients, n=6) showed higher levels of b-GGT fraction [median (min-max): 3.37 (1.42–6.81)] compared to patients with normal bone density (fourth quartile Q4, n=10; 1.40 (0.83–4.36); p=0.0393]. Also, according to SMI, b-GGT value was higher in the subgroup with bone fragility [Q1, n=8: 1.36 (0.43–4.36); Q4, n=8: 5.10 (1.4 –7.60); p=0.0117]. In conclusion, patients characterised by fragile bone structure showed specifically higher levels of plasma b-GGT activity thus suggesting fractional GGT analysis as a possible biomarker in the diagnosis of osteoporosis.
Fiedler, Imke A K; Schmidt, Felix N; Wölfel, Eva M; Plumeyer, Christine; Milovanovic, Petar; Gioia, Roberta; Tonelli, Francesca; Bale, Hrishikesh A; Jähn, Katharina; Besio, Roberta; Forlino, Antonella; Busse, Björn
2018-04-17
Excessive skeletal deformations and brittle fractures in the vast majority of patients suffering from osteogenesis imperfecta (OI) are a result of substantially reduced bone quality. Since the mechanical competence of bone is dependent on the tissue characteristics at small length scales, it is of crucial importance to assess how osteogenesis imperfecta manifests at the micro- and nanoscale of bone. In this context, the Chihuahua (Chi/ +) zebrafish, carrying a heterozygous glycine substitution in the α1 chain of collagen type I, has recently been proposed as suitable animal model of classical dominant OI, showing skeletal deformities, altered mineralization patterns and a smaller body size. This study assessed the bone quality properties of Chi/+ at multiple length scales using micro-computed tomography (micro-CT), histomorphometry, quantitative back-scattered electron imaging, Fourier transform infrared spectroscopy, nanoindentation and X-ray microscopy. At the skeletal level, Chi/+ display smaller body size, deformities and fracture calli in the ribs. Morphological changes at the whole bone level showed that the vertebrae in Chi/+ had a smaller size, smaller thickness and distorted shape. At the tissue level, Chi/+ displayed a higher degree of mineralization, lower collagen maturity, lower mineral maturity, altered osteoblast morphology, and lower osteocyte lacunar density compared to WT. The alterations in the cellular, compositional and structural properties of Chi/+ bones bear an explanation for the impaired local mechanical properties, which promote an increase in overall bone fragility in Chi/ +. The quantitative assessment of bone quality in Chi/+ thus further validates this mutant as an important model reflecting osseous characteristics associated with human classical dominant osteogenesis imperfecta. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Carlson, Kristian J; Pickering, Travis Rayne
2003-04-01
Plio-Pleistocene faunal assemblages from Swartkrans Cave (South Africa) preserve large numbers of primate remains. Brain, C.K., 1981. The Hunters or the Hunted? An Introduction to African Cave Taphonomy. University of Chicago Press, Chicago suggested that these primate subassemblages might have resulted from a focus by carnivores on primate predation and bone accumulation. Brain's hypothesis prompted us to investigate, in a previous study, this taphonomic issue as it relates to density-mediated destruction of primate bones (J. Archaeol. Sci. 29, 2002, 883). Here we extend our investigation of Brain's hypothesis by examining additional intrinsic qualities of baboon bones and their role as mediators of skeletal element representation in carnivore-created assemblages. Using three modern adult baboon skeletons, we collected data on four intrinsic bone qualities (bulk bone mineral density, maximum length, volume, and cross-sectional area) for approximately 81 bones per baboon skeleton. We investigated the relationship between these intrinsic bone qualities and a measure of skeletal part representation (the percentage minimum animal unit) for baboon bones in carnivore refuse and scat assemblages. Refuse assemblages consist of baboon bones not ingested during ten separate experimental feeding episodes in which individual baboon carcasses were fed to individual captive leopards and a spotted hyena. Scat assemblages consist of those baboon bones recovered in carnivore regurgitations and feces resulting from the feeding episodes. In refuse assemblages, volume (i.e., size) was consistently the best predictor of element representation, while cross-sectional area was the poorest predictor in the leopard refuse assemblage and bulk bone mineral density (i.e., a measure of the proportion of cortical to trabecular bone) was the poorest predictor in the hyena refuse assemblage. In light of previous documentation of carnivore-induced density-mediated destruction to bone assemblages, we interpret the current findings as suggestive of the secondary importance of bulk bone mineral density to other intrinsic qualities of skeletal elements (e.g., size, maximum dimension, and average cross-sectional area). It is only when skeletal elements are too large for consumption (e.g., many long bones) that they are fragmented following intra-element patterns of density-mediated carnivore destruction. There appears to be a size threshold beneath which bulk bone mineral density contributes little to mediating carnivore destruction of carcasses. Thus, depending on body size of the predator, body size of the prey, and specific size of the element, bulk bone mineral density may play little or no role of primary importance in mediating the destruction of skeletal elements. We compare patterns in modern comparative assemblages to patterns in primate fossil assemblages from Swartkrans. One of the fossil assemblages, Swartkrans Member 1, Hanging Remnant, most closely approximates a hyena (possibly refuse) assemblage pattern, while the Swartkrans Member 2 assemblage most closely approximates a leopard (possibly scat) assemblage pattern. The Swartkrans Member 1, Lower Bank, assemblage does not closely approximate any of our modern comparative assemblage patterns.
2013-01-01
Background Currently it is uncertain how to define osteoporosis and who to treat after a hip fracture. There is little to support the universal treatment of all such patients but how to select those most in need of treatment is not clear. In this study we have compared cortical and trabecular bone status between patients with spinal fractures and those with hip fracture with or without spinal fracture with the aim to begin to identify, by a simple clinical method (spine x-ray), a group of hip fracture patients likely to be more responsive to treatment with current antiresorptive agents. Methods Comparison of convenience samples of three groups of 50 patients, one with spinal fractures, one with a hip fracture, and one with both. Measurements consist of bone mineral density at the lumbar spine, at the four standard hip sites, number, distribution and severity of spinal fractures by the method of Genant, cortical bone thickness at the infero-medial femoral neck site, femoral neck and axis length and femoral neck width. Results Patients with spinal fractures alone have the most deficient bones at both trabecular and cortical sites: those with hip fracture and no spinal fractures the best at trabecular bone and most cortical bone sites: and those with both hip and spinal fractures intermediate in most measurements. Hip axis length and neck width did not differ between groups. Conclusion The presence of the spinal fracture indicates poor trabecular bone status in hip fracture patients. Hip fracture patients without spinal fractures have a bone mass similar to the reference range for their age and gender. Poor trabecular bone in hip fracture patients may point to a category of patient more likely to benefit from therapy and may be indicated by the presence of spinal fractures. PMID:23432767
Röderer, Götz; Scola, Alexander; Schmölz, Werner; Gebhard, Florian; Windolf, Markus; Hofmann-Fliri, Ladina
2013-10-01
Proximal humerus fracture fixation can be difficult because of osteoporosis making it difficult to achieve stable implant anchorage in the weak bone stock even when using locking plates. This may cause implant failure requiring revision surgery. Cement augmentation has, in principle, been shown to improve stability. The aim of this study was to investigate whether augmentation of particular screws of a locking plate aimed at a region of low bone quality is effective in improving stability in a proximal humerus fracture model. Twelve paired human humerus specimens were included. Quantitative computed tomography was performed to determine bone mineral density (BMD). Local bone quality in the direction of the six proximal screws of a standard locking plate (PHILOS, Synthes) was assessed using mechanical means (DensiProbe™). A three-part fracture model with a metaphyseal defect was simulated and fixed with the plate. Within each pair of humeri the two screws aimed at the region of the lowest bone quality according to the DensiProbe™ were augmented in a randomised manner. For augmentation, 0.5 ml of bone cement was injected in a screw with multiple outlets at its tip under fluoroscopic control. A cyclic varus-bending test with increasing upper load magnitude was performed until failure of the screw-bone fixation. The augmented group withstood significantly more load cycles. The correlation of BMD with load cycles until failure and BMD with paired difference in load cycles to failure showed that augmentation could compensate for a low BMD. The results demonstrate that augmentation of screws in locked plating in a proximal humerus fracture model is effective in improving primary stability in a cyclic varus-bending test. The augmentation of two particular screws aimed at a region of low bone quality within the humeral head was almost as effective as four screws with twice the amount of bone cement. Screw augmentation combined with a knowledge of the local bone quality could be more effective in enhancing the primary stability of a proximal humerus locking plate because the effect of augmentation can be exploited more effectively limiting it to the degree required. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nilsson, Anna G; Sundh, Daniel; Johansson, Lisa; Nilsson, Martin; Mellström, Dan; Rudäng, Robert; Zoulakis, Michail; Wallander, Märit; Darelid, Anna; Lorentzon, Mattias
2017-05-01
Type 2 diabetes mellitus (T2DM) is associated with an increased risk of fractures according to several studies. The underlying mechanisms remain unclear, although small case-control studies indicate poor quality of the cortical bone. We have studied a population-based sample of women aged 75 to 80 years in Gothenburg, randomly invited from the population register. Areal bone mineral density (aBMD) was measured by dual-energy X-ray absorptiometry (Hologic Discovery A), bone microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT; ExtremeCT from Scanco Medical AG), and reference point indentation was performed with Osteoprobe (Active Life Scientific). Women with T2DM (n = 99) had higher aBMD compared to controls (n = 954). Ultradistal tibial and radial trabecular bone volume fraction (+11% and +15%, respectively), distal cortical volumetric BMD (+1.6% and +1.7%), cortical area (+11.5% and +9.3%), and failure load (+7.7% and +12.9%) were higher in diabetics than in controls. Cortical porosity was lower (mean ± SD: 1.5% ± 1.1% versus 2.0% ± 1.7%, p = 0.001) in T2DM in the distal radius but not in the ultradistal radius or the tibia. Adjustment for covariates (age, body mass index, glucocorticoid treatment, smoking, physical activity, calcium intake, bone-active drugs) eliminated the differences in aBMD but not in HR-pQCT bone variables. However, bone material strength index (BMSi) by reference point indentation was lower in T2DM (74.6 ± 7.6 versus 78.2 ± 7.5, p < 0.01), also after adjustment, and women with T2DM performed clearly worse in measures of physical function (one leg standing: -26%, 30-s chair-stand test: -7%, timed up and go: +12%, walking speed: +8%; p < 0.05-0.001) compared to controls. In conclusion, we observed a more favorable bone microarchitecture but no difference in adjusted aBMD in elderly women with T2DM in the population compared to nondiabetics. Reduced BMSi and impaired physical function may explain the increased fracture risk in T2DM. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.
Imam, Mohamed A.; Abdelkafy, Ashraf; Dinah, Feroz; Adhikari, Ajeya
2015-01-01
Background: The purpose of the current study was to determine whether a systematic five-step protocol for debridement and evacuation of bone debris during anterior cruciate ligament reconstruction (ACLR) reduces the presence of such debris on post-operative radiographs. Methods: A five-step protocol for removal of bone debris during arthroscopic assisted ACLR was designed. It was applied to 60 patients undergoing ACLR (Group 1), and high-quality digital radiographs were taken post-operatively in each case to assess for the presence of intra-articular bone debris. A control group of 60 consecutive patients in whom no specific bone debris protocol was applied (Group 2) and their post-operative radiographs were also checked for the presence of intra-articular bone debris. Results: In Group 1, only 15% of post-operative radiographs showed residual bone debris, compared to 69% in Group 2 (p < 0.001). Conclusion: A five-step systematic protocol for bone debris removal during arthroscopic assisted ACLR resulted in a significant decrease in residual bone debris seen on high-quality post-operative radiographs. PMID:27163060
Finite Element-Based Mechanical Assessment of Bone Quality on the Basis of In Vivo Images.
Pahr, Dieter H; Zysset, Philippe K
2016-12-01
Beyond bone mineral density (BMD), bone quality designates the mechanical integrity of bone tissue. In vivo images based on X-ray attenuation, such as CT reconstructions, provide size, shape, and local BMD distribution and may be exploited as input for finite element analysis (FEA) to assess bone fragility. Further key input parameters of FEA are the material properties of bone tissue. This review discusses the main determinants of bone mechanical properties and emphasizes the added value, as well as the important assumptions underlying finite element analysis. Bone tissue is a sophisticated, multiscale composite material that undergoes remodeling but exhibits a rather narrow band of tissue mineralization. Mechanically, bone tissue behaves elastically under physiologic loads and yields by cracking beyond critical strain levels. Through adequate cell-orchestrated modeling, trabecular bone tunes its mechanical properties by volume fraction and fabric. With proper calibration, these mechanical properties may be incorporated in quantitative CT-based finite element analysis that has been validated extensively with ex vivo experiments and has been applied increasingly in clinical trials to assess treatment efficacy against osteoporosis.
Cochran, G V; Dell, D G; Palmieri, V R; Johnson, M W; Otter, M W; Kadaba, M P
1989-01-01
Streaming potentials are generated by mechanical stress in wet bone and may constitute a control mechanism for bone remodeling. Measurement of streaming potentials in bone has attracted considerable effort in past years but quantitative studies have been hampered by relatively poor repeatability when using Ag.AgCl electrodes which contact bone via a wick moistened with electrolyte. Improvement now has been achieved with an electrode design that limits the specific area of contact of an agar/salt bridge by means of a silastic seal, thus permitting the same equipotential surface to be contacted for each set of measurements. This reduces variations caused by bone structure and impedance, and facilitates quantitative comparisons of the response of bone samples to selected variables. The new design also permits considerable qualitative improvement in recordings made from bone during locomotor function in experimental animals in vivo.
Bone mineral as an electrical energy reservoir.
Nakamura, Miho; Hiratai, Rumi; Yamashita, Kimihiro
2012-05-01
Mechanical stress in bone induces an electrical potential generated by piezoelectricity arising from displacement of collagen fibrils. Where and for how long the potential is stored in bone; however, are still poorly understood. We investigated the electrical properties of collagen fibrils and apatite minerals and found that bone, when polarized electrically by applying an external voltage, depolarizes by two mechanisms. Plots of thermally stimulated depolarization current show two significant peaks: one at 100°C, attributed to collagen fibrils because decalcified bone exhibits depolarization peak at 100°C, and the other at 500°C, attributed to apatite minerals because calcined bone exhibits depolarization peak at 500°C and has activation energy similar to that for synthesized apatite. The crystallographic c-axis orientation of calcined bone depends on the direction in which the bone is cut, either transverse or longitudinal, and strongly affects the polarization efficacy. Copyright © 2012 Wiley Periodicals, Inc.
Pharmacotherapy of bone metastases in breast cancer patients.
Petrut, Bianca; Simmons, Christine; Broom, Reuben; Trinkaus, Mateya; Clemons, Mark
2008-04-01
A diagnosis of bone metastases is often a devastating occurrence in breast cancer patients. Bone metastases are associated with increased morbidity as reflected through pain, reduced quality of life and skeletal-related events. This paper reviews the role of different pharmacotherapeutic agents in the treatment of bone metastases from breast cancer. Randomised controlled trials of osteoclast-inhibiting agents, that is the bisphosphonates, have shown significant patient benefit. The aims of bisphosphonates are to prevent and delay skeletal-related events, reduce bone pain and improve quality of life. However, there are some limitations with bisphosphonate treatment. Biochemical markers of bone turnover seem to be a promising tool in guiding bisphosphonate treatment and future research directions. Hopefully, patient management will be further improved as new agents become available such as denosumab, osteoprotegerin analogues and anti-angiogenic agents.
de Mutsert, Renée; le Cessie, Saskia; Appelman-Dijkstra, Natasha M.; Rosendaal, Frits R.; van Heemst, Diana; den Heijer, Martin; Biermasz, Nienke R.
2017-01-01
Context Sleep deprivation has detrimental metabolic consequences. Osteopenia and sarcopenia usually occur together and increase risk of fractures and disease. Results from studies linking sleep parameters to osteopenia or sarcopenia are scarce and inconsistent. Objective To examine the associations of sleep parameters with osteopenia and sarcopenia, considering the influence of sex and menopause. Design, setting and participants Cross-sectional analysis of 915 participants (45–65 years, 56% women, BMI 26 (range: 18–56) kg/m2) in the Netherlands Epidemiology of Obesity (NEO) study, a population-based cohort study. Sleep duration, quality, and timing were assessed with the Pittsburgh Sleep Quality Index (PSQI); bone mineral density and relative appendicular muscle mass were measured by DXA scans. Linear and logistic regressions were performed to associate sleep parameters to bone mineral density, relative appendicular muscle mass, osteopenia (t-score between -1 and -2.5) and sarcopenia (1 SD below average muscle mass). Results After adjustment for confounding factors, one unit increase in PSQI score (OR and 95% CI, 1.09, 1.03–1.14), declined self-rated sleep quality (1.76, 1.03–3.01), sleep latency (1.18, 1.06–1.31), and a one hour later sleep timing (1.51, 1.08–2.11), but not sleep duration (1.05, 0.90–1.23), were associated with osteopenia. PSQI score (1.10, 1.02–1.19) was also associated with sarcopenia; OR’s of sleep latency and later mid-sleep time with sarcopenia were 1.14 (0.99–1.31) and 1.54 (0.91–2.61), respectively. Associations were somewhat stronger in women and varied per menopausal status. Conclusions These results suggest that decreased sleep quality and a later sleep timing are risk factors for osteopenia and sarcopenia in middle aged individuals. PMID:28459884
Mechanisms of, and Adjuvants for, Bone Pain.
Figura, Nicholas; Smith, Joshua; Yu, Hsiang-Hsuan Michael
2018-06-01
Metastatic bone pain is a complex, poorly understood process. Understanding the unique mechanisms causing cancer-induced bone pain may lead to potential therapeutic targets. This article discusses the effects of osteoclast overstimulation within the tumor microenvironment; the role of inflammatory factors at the tumor-nociceptor interface; the development of structural instability, causing mechanical nerve damage; and, ultimately, the neuroplastic changes in the setting of sustained pain. Several adjuvant therapies are available to attenuate metastatic bone pain. This article discusses the role of pharmacologic therapies, surgery, kyphoplasty, vertebroplasty, and radiofrequency ablation. Copyright © 2018 Elsevier Inc. All rights reserved.
Bardakhchyan, Samvel; Kager, Leo; Danielyan, Samvel; Avagyan, Armen; Karamyan, Nerses; Vardevanyan, Hovhannes; Mkhitaryan, Sergey; Papyan, Ruzanna; Zohrabyan, Davit; Safaryan, Liana; Sargsyan, Lilit; Harutyunyan, Lilit; Hakobyan, Lusine; Iskanyan, Samvel; Tamamyan, Gevorg
2017-03-29
Giant cell tumor of bone (GCT) is a rare primary bone tumor, which can metastasize and undergo malignant transformation. The standard treatment of GCT is surgery. In patients with unresectable or metastatic disease, additional therapeutic options are available. These include blocking of the receptor activator of NF-kappa B ligand (RANKL) signaling pathway, which plays a role in the pathogenesis of GCT of bone, via the anti-RANKL monoclonal antibody denosumab. Herein we report on a female teenager who presented in a very poor clinical condition (cachexia, diplopia, strabismus, dysphonia with palsy of cranial nerves V, VI, VIII, IX, X, XI and XII) due to progressive disease, after incomplete resection and adjuvant radiotherapy, of a GCT which affected the cervical spine (C1 and C2) as well as the skull base; and who had an impressive clinical response to denosumab therapy. To the best of our knowledge, this is the youngest patient ever reported with a skull base tumor treated with denosumab. In situations when surgery can be postponed and local aggressiveness of the tumor does not urge for acute surgical intervention, upfront use of denosumab in order to reduce the tumor size might be considered. Principally, the goal of denosumab therapy is to reduce tumor size as much as possible, with the ultimate goal to make local surgery (or as in our case re-surgery) amenable. However, improvement in quality of life, as demonstrated in our patient, is also an important aspect of such targeted therapies.
Crowther, Mark
2009-08-01
The relationship between glutamine and malignancy can be traced back to the 1950s and the requirement for glutamine for malignant-cell growth in culture. Later studies demonstrated an association between the rate of proliferation of the malignant cells and glutamine usage. The excessive use of glutamine by malignant cells was seen as an opportunity for the development of a treatment using glutamine analogues, but unfortunately excessive toxicity was observed during clinical studies. In animal models glutamine supplementation, initially thought to increase tumour growth, actually causes tumour regression as a result of improved immune clearance of the tumour and appears to reduce the severity of the side effects of chemo- and radiotherapy. This finding led to human studies in both traditional cancer therapy and bone-marrow transplantation, which are reviewed here. Unfortunately, the majority of the studies performed are small and have poor methodological reporting. There is clinical heterogeneity in terms of routes of administration, dosing schedules, chemotherapy regimens and diseases. Studies of glutamine in non-bone-marrow transplantation chemo- and/or radiotherapy treatment suggest a possible trend towards reductions in objective mucositis but no effect on subjective symptoms. There is no evidence for its effect on other clinical outcomes. For bone-marrow transplantation there appears to be some benefit from oral glutamine in reducing mucositis and graft v. host disease, while intravenous glutamine may reduce infections but at the expense of an increased relapse rate. Good-quality studies are required in this area.
Does chemical composition of antler bone reflect the physiological effort made to grow it?
Landete-Castillejos, T; Estevez, J A; Martínez, A; Ceacero, F; Garcia, A; Gallego, L
2007-04-01
In a previous study, antler bone chemical composition was found to differ between base and tip. If such variation is in part due to the physiological effort made to grow the antler, composition trends should differ between antlers from deer population differing in mineral or food availability, or body reserves. To assess this, we examined cortical thickness and bone composition along the antler shaft, and compared trends between antlers from two populations: captive, well-fed, health-managed deer (n=15), and free-ranging deer with lower food quality and no health treatment (n=10). Significant and clear divergent trends supporting greater physiological exhaustion in free-ranging deer and high or moderate predictive models were found for cortical thickness (R(2)=61.8%), content of Na (R(2)=68.6%), Mg (R(2)=56.3%), K (R(2)=40.0%), and Zn (34.6%); lower predictive power was found for protein (R(2)=25.6%) and ash content (R(2)=19.5%); and poor predictive power was found for Ca (R(2)=4.3%), Fe (R(2)=11.1%), and Si (R(2)=4.7%). A second part of the study assessed similar antler structures grown at the beginning (brow tine) and end (top tine) of antler growth within captive deer. Greater cortical thickness and ash content was found for brow tine, as well as a smaller protein, K and Mg content. In contrast, no difference was found for Ca, Na, Zn, Fe or Si. The results suggest that thickness and mineral composition reflect the physiological effort made to build antler bone.
USDA-ARS?s Scientific Manuscript database
Chronic consumption by experimental animals of a typical Western diet high in saturated fats and cholesterol during postnatal life has been demonstrated to impair skeletal development. However, the underlying mechanism by which high fat, energy dense diets affect bone-forming cell phenotypes is poor...
USDA-ARS?s Scientific Manuscript database
Chronic consumption by experimental animals of a typical Western diet high in saturated fats and cholesterol during postnatal life has been demonstrated to impair skeletal development. However, underlying mechanism by which high fat, energy dense diets affect bone forming cell phenotypes is poorly u...
Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco
2013-02-01
It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.
Image analysis for dental bone quality assessment using CBCT imaging
NASA Astrophysics Data System (ADS)
Suprijanto; Epsilawati, L.; Hajarini, M. S.; Juliastuti, E.; Susanti, H.
2016-03-01
Cone beam computerized tomography (CBCT) is one of X-ray imaging modalities that are applied in dentistry. Its modality can visualize the oral region in 3D and in a high resolution. CBCT jaw image has potential information for the assessment of bone quality that often used for pre-operative implant planning. We propose comparison method based on normalized histogram (NH) on the region of inter-dental septum and premolar teeth. Furthermore, the NH characteristic from normal and abnormal bone condition are compared and analyzed. Four test parameters are proposed, i.e. the difference between teeth and bone average intensity (s), the ratio between bone and teeth average intensity (n) of NH, the difference between teeth and bone peak value (Δp) of NH, and the ratio between teeth and bone of NH range (r). The results showed that n, s, and Δp have potential to be the classification parameters of dental calcium density.
Impaired rib bone mass and quality in end-stage cystic fibrosis patients.
Mailhot, Geneviève; Dion, Natalie; Farlay, Delphine; Rizzo, Sébastien; Bureau, Nathalie J; Jomphe, Valérie; Sankhe, Safiétou; Boivin, Georges; Lands, Larry C; Ferraro, Pasquale; Ste-Marie, Louis-Georges
2017-05-01
Advancements in research and clinical care have considerably extended the life expectancy of cystic fibrosis (CF) patients. However, with this extended survival come comorbidities. One of the leading co-morbidities is CF-related bone disease (CFBD), which progresses with disease severity and places patients at high risk for fractures, particularly of the ribs and vertebrae. Evidence that CF patients with vertebral fractures had higher bone mineral density (BMD) than the nonfracture group led us to postulate that bone quality is impaired in these patients. We therefore examined rib specimens resected at the time of lung transplant in CF patients to measure parameters of bone quantity and quality. In this exploratory study, we analysed 19 end-stage CF and 13 control rib specimens resected from otherwise healthy lung donors. BMD, bone microarchitecture, static parameters of bone formation and resorption and microcrack density of rib specimens were quantified by imaging, histomorphometric and histological methods. Variables reflecting the mineralization of ribs were assessed by digitized microradiography. The degree of bone mineralization (g/cm 3 ) and the heterogeneity index of the mineralization (g/cm 3 ) were calculated for trabecular and cortical bone. Compared to controls, CF ribs exhibited lower areal and trabecular volumetric BMD, decreased trabecular thickness and osteoid parameters, and increased microcrack density, that was particularly pronounced in specimens from patients with CF-related diabetes. Static parameters of bone resorption were similar in both groups. Degree of mineralization of total bone, but not heterogeneity index, was increased in CF specimens. The combination of reduced bone mass, altered microarchitecture, imbalanced bone remodeling (maintained bone resorption but decreased formation), increased microdamage and a small increase of the degree of mineralization, may lead to decreased bone strength, which, when coupled with chronic coughing and chest physical therapy, may provide an explanation for the increased incidence of rib fractures previously reported in this population. Copyright © 2017 Elsevier Inc. All rights reserved.
Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas
2012-03-01
The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols.
[Bone quantitative ultrasound].
Matsukawa, Mami
2016-01-01
The conventional ultrasonic bone densitometry system can give us information of bone as ultrasonic wave velocity and attenuation. However, the data reflect both structural and material properties of bone. In order to focus only on the bone matrix properties without the effect of bone structure, studies of microscopic Brillouin scattering technique are introduced. The wave velocity in a trabecula was anisotropic and depended on the position and structure of the cancellous bone. The glycation also affected on the wave velocities in bone. As a new bone quality, the piezoelectricity of bone is also discussed.
A novel liposomal drug delivery system for PMMA bone cements
Birchall, James C.; Evans, Samuel L.; Denyer, Stephen P.
2015-01-01
Abstract The population in developed countries is ageing and the number of people experiencing joint‐related conditions, such as osteoarthritis, is expected to increase. Joint replacements are currently the most effective treatment for severe joint conditions and although many of these procedures are successful, infection developing after the procedure is still an issue, requiring complex and expensive revisions. Whilst incorporating a powdered antibiotic within the bone cement can reduce infection rates, the powder frequently agglomerates, resulting in poor antibiotic release characteristics and compromised mechanical performance of the cement. To overcome these issues, a novel delivery system consisting of antibiotic‐loaded nano‐sized liposomes was developed for inclusion into polymethyl methacrylate (PMMA) bone cement. This system was tested in a commercial cement (Palacos R) and consistently delivered a higher percentage (22%) of the incorporated antibiotic when compared to the powdered antibiotic cement (9%), meaning less antibiotic needs to be incorporated than with conventional cement. The novel system resulted in a controlled and gradual release of antibiotic over a longer, 30‐day period and enhanced the toughness, bending strength and Vickers hardness of the cement, without altering its polymerization or molecular structure. This new material has the potential to significantly reduce infections in cemented joint replacements leading to enhanced patient quality of life and reduced healthcare costs. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1510–1524, 2016. PMID:26256271
Sinder, Benjamin P.; Lloyd, William R.; Salemi, Joseph D.; Marini, Joan C.; Caird, Michelle S.; Morris, Michael D.; Kozloff, Kenneth M.
2016-01-01
Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as Osteogenesis Imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly→Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5 weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2–4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages >3wk) and rapidly growing Brtl/+ (at tissue ages > 4wk) mice compared to WT. At identical tissue ages defined by fluorescent labels adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and animal age on bone quality. PMID:26769006
Sinder, Benjamin P; Lloyd, William R; Salemi, Joseph D; Marini, Joan C; Caird, Michelle S; Morris, Michael D; Kozloff, Kenneth M
2016-03-01
Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly➔Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2-4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages>3wks) and rapidly growing Brtl/+ (at tissue ages>4wks) mice compared to WT. At identical tissue ages defined by fluorescent labels, adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and animal age on bone quality. Copyright © 2016 Elsevier Inc. All rights reserved.
Varela, Aurore; Chouinard, Luc; Lesage, Elisabeth; Guldberg, Robert; Smith, Susan Y; Kostenuik, Paul J; Hattersley, Gary
2017-02-01
Abaloparatide is a novel 34 amino acid peptide selected to be a potent and selective activator of the parathyroid hormone receptor 1 (PTHR1) signaling pathway. The effects of 12months of abaloparatide treatment on bone mass, bone strength and bone quality was assessed in osteopenic ovariectomized (OVX) rats. SD rats were subjected to OVX or sham surgery at 6months of age and left untreated for 3months to allow OVX-induced bone loss. Eighteen OVX rats were sacrificed after this bone depletion period, and the remaining OVX rats received daily s.c. injections of vehicle (n=18) or abaloparatide at 1, 5 or 25μg/kg/d (n=18/dose level) for 12months. Sham controls (n=18) received vehicle daily. Bone changes were assessed by DXA and pQCT after 0, 3, 6 or 12months of treatment, and destructive biomechanical testing was conducted at month 12 to assess bone strength and bone quality. Abaloparatide dose-dependently increased bone mass at the lumbar spine and at the proximal and diaphyseal regions of the tibia and femur. pQCT revealed that increased cortical bone volume at the tibia was a result of periosteal expansion and endocortical bone apposition. Abaloparatide dose-dependently increased structural strength of L4-L5 vertebral bodies, the femur diaphysis, and the femur neck. Increments in peak load for lumbar spine and the femur diaphysis of abaloparatide-treated rats persisted even after adjusting for treatment-related increments in BMC, and estimated material properties were maintained or increased at the femur diaphysis with abaloparatide. The abaloparatide groups also exhibited significant and positive correlations between bone mass and bone strength at these sites. These data indicate that gains in cortical and trabecular bone mass with abaloparatide are accompanied by and correlated with improvements in bone strength, resulting in maintenance or improvement in bone quality. Thus, this study demonstrated that long-term daily administration of abaloparatide to osteopenic OVX rats led to dose-dependent improvements in bone mass, geometry and strength. Copyright © 2016. Published by Elsevier Inc.
García-Martín, Antonia; Quesada Charneco, Miguel; Alvárez Guisado, Alejandro; Jiménez Moleón, José Juan; Fonollá Joya, Juristo; Muñoz-Torres, Manuel
2012-02-04
To analyze the effects of nutritional intervention with a milk product enriched with soy isoflavones on quality of life and bone metabolism in postmenopausal Spanish women. We performed a double-blind controlled randomized trial in ninety-nine postmenopausal women. Group S women (n=48) were randomized to consume milk product enriched with soy isoflavone (50 mg/day) while group C (n=51) consumed product control for 12 months. Parameters of quality of life (Cervantes scale), markers of bone metabolism and bone mass estimated by ultrasound of the calcaneus (QUS) were evaluated. Overall, there was an improvement in the domains menopause (P=.015) and vasomotor symptoms (P<.001). S group emphasized the assessment of vasomotor symptoms (P=.001) and differed positively from group C in health (P=.019), sex (P=.021) and partner (P=.002). Serum levels TRAP (P<.001) and OPG (P=.007) decreased and concentrations of 25-OH-vitamin D increased (P<.001) without differences between groups. In the assessment of QUS, there was an increase in estimated bone mineral density in group S (P=.040), whereas in group C there were no significant differences. Daily consumption of these milk products increases levels of 25-OH-vitamin D and decreases bone metabolism markers. Additional supplementation with soy isoflavones seems to improve quality of life and bone mass in Spanish postmenopausal women. Copyright © 2010 Elsevier España, S.L. All rights reserved.
A Load-Sharing Rip-Stop Fixation Construct for Arthroscopic Rotator Cuff Repair
Denard, Patrick J.; Burkhart, Stephen S.
2012-01-01
Despite advancements in arthroscopic rotator cuff repair techniques, achieving tendon-to-bone healing can be difficult in the setting of poor-quality tendon. Moreover, medial tendon tears or tears with lateral tendon loss may preclude standard techniques. Rip-stop suture configurations have been shown to improve load to failure compared with simple or mattress stitch patterns and may be particularly valuable in these settings. The purpose of this report is to describe a technical modification of a rip-stop rotator cuff repair that combines the advantages of a rip-stop suture (by providing resistance to tissue cutout) and a double row of load-sharing suture anchors (minimizing the load per anchor and therefore the load per suture within each anchor). PMID:23766972
Kirchhoff, Chlodwig; Braunstein, Volker; Milz, Stefan; Sprecher, Christoph M; Fischer, Florian; Tami, Andrea; Ahrens, Philipp; Imhoff, Andreas B; Hinterwimmer, Stefan
2010-03-01
Tears of the rotator cuff are highly prevalent in patients older than 60 years, thereby presenting a population also suffering from osteopenia or osteoporosis. Suture fixation in the bone depends on the holding strength of the anchoring technique, whether a bone tunnel or suture anchor is selected. Because of osteopenic or osteoporotic bone changes, suture anchors in the older patient might pull out, resulting in failure of repair. The aim of our study was to analyze the bone quality within the tuberosities of the osteoporotic humeral head using high-resolution quantitative computed tomography (HR-pQCT). Descriptive laboratory study. Thirty-six human cadaveric shoulders were analyzed using HR-pQCT. The mean bone volume to total volume (BV/TV) as well as trabecular bone mineral densities (trabBMDs) of the greater tuberosity (GT) and the lesser tuberosity (LT) were determined. Within the GT, 6 volumes of interest (VOIs) within the LT, and 2 VOIs and 1 control volume within the subchondral area beyond the articular surface were set. Comparing BV/TV of the medial and the lateral row, significantly higher values were found medially (P < .001). The highest BV/TV, 0.030% + or - 0.027%, was found in the posteromedial portion of the GT (P < .05). Regarding the analysis of the LT, no difference was found comparing the superior (BV/TV: 0.024% + or - 0.022%) and the inferior (BV/TV: 0.019% + or - 0.016%) portion. Analyzing trabBMD, equal proportions were found. An inverse correlation with a correlation coefficient of -0.68 was found regarding BV/TV of the posterior portion of the GT and age (P < .05). Significant regional differences of trabecular microarchitecture were found in our HR-pQCT study. The volume of highest bone quality resulted for the posteromedial aspect of the GT. Moreover, a significant correlation of bone quality within the GT and age was found, while the bone quality within the LT seems to be independent from it. The shape of the rotator cuff tear largely determines the bony site of tendon reattachment, although the surgeon has distinct options to modify anchor positioning. According to our results, placement of suture anchors in a medialized way at the border to the articular surface might guarantee a better structural bone stock.
Goossens, Liesbet; Vanderoost, Jef; Jaecques, Siegfried; Boonen, Steven; D'hooge, Jan; Lauriks, Walter; Van der Perre, Georges
2008-01-01
For the clinical assessment of osteoporosis (i.e., a degenerative bone disease associated with increased fracture risk), ultrasound has been proposed as an alternative or supplement to the dual-energy X-ray absorptiometry (DEXA) technique. However, the interaction of ultrasound waves with (trabecular) bone remains relatively poorly understood. The present study aimed to improve this understanding by simulating ultrasound wave propagation in 15 trabecular bone samples from the human lumbar spine, using microcomputed tomography-based finite-element modeling. The model included only the solid bone, without the bone marrow. Two structural parameters were calculated: the bone volume fraction (BV/TV) and the structural (apparent) elastic modulus (E(s)), and the ultrasound propagation parameter speed of sound (SOS). Relations between BV/TV and E(s) were similar to published experimental relations. At 1 MHz, correlations between SOS and the structural parameters BV/TV and Es were rather weak, but the results can be explained from the specific features of the trabecular structure and the intrinsic material elastic modulus E(i). In particular, the systematic differences between the three main directions provide information on the trabecular structure. In addition, at 1 MHz the correlation found between the simulated SOS values and those calculated from the simple bar equation was poor when the three directions are considered separately. Hence, under these conditions, the homogenization approach-including the bar equation-is not valid. However, at lower frequencies (50-300 kHz) this correlation significantly improved. It is concluded that detailed analysis of ultrasound wave propagation through the solid structure in various directions and with various frequencies, can yield much information on the structural and mechanical properties of trabecular bone.
Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Olesen, Morten Lykke; Hede, Kris Chadwick; Lind, Martin
2016-06-01
Osteochondral injuries have poor endogenous healing potential, and no standard treatment has been established. The use of combined layered autologous bone and cartilage chips for treatment of osteochondral defects has shown promising short-term clinical results. This study aimed to investigate the role of cartilage chips by comparing combined layered autologous bone and cartilage chips with autologous bone implantation alone in a Göttingen minipig model. The hypothesis was that the presence of cartilage chips would improve the quality of the repair tissue. Controlled laboratory study. Twelve Göttingen minipigs received 2 osteochondral defects in each knee. The defects were randomized to autologous bone graft (ABG) combined with autologous cartilage chips (autologous dual-tissue transplantation [ADTT]) or ABG alone. Six animals were euthanized at 6 months and 6 animals were euthanized at 12 months. Follow-up evaluation consisted of histomorphometry, immunohistochemistry, semiquantitative scoring (International Cartilage Repair Society II), and computed tomography. There was significantly more hyaline cartilage in the ADTT group (25.8%) compared with the ABG group (12.8%) at 6 months after treatment. At 12 months, the fraction of hyaline cartilage in the ABG group had significantly decreased to 4.8%, whereas the fraction of hyaline cartilage in the ADTT group was unchanged (20.1%). At 6 and 12 months, there was significantly more fibrocartilage in the ADTT group (44% and 60.8%) compared with the ABG group (24.5% and 41%). The fraction of fibrous tissue was significantly lower in the ADTT group compared with the ABG group at both 6 and 12 months. The implanted cartilage chips stained >75% positive for collagen type 4 and laminin at both 6 and 12 months. Significant differences were found in a number of International Cartilage Repair Society II subcategories. The volume of the remaining bone defect significantly decreased from 6 to 12 months in both treatment groups; however, no difference in volume was found between the groups at either 6 or 12 months. The presence of cartilage chips in an osteochondral defect facilitated the formation of fibrocartilage as opposed to fibrous tissue at both 6 and 12 months posttreatment. The implanted chips were present in the defect and viable after 12 months. This study substantiates the chondrogenic role of cartilage chips in osteochondral defects. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Slane, Joshua A.
Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly increase the cumulative antibiotic release from acrylic cement, and (3) silver nanoparticles are a potential alternative to traditional antibiotics in cement, such as gentamicin.
Worm, Paulo Valdeci; Ferreira, Nelson Pires; Ferreira, Marcelo Paglioli; Kraemer, Jorge Luiz; Lenhardt, Rene; Alves, Ronnie Peterson Marcondes; Wunderlich, Ricardo Castilho; Collares, Marcus Vinicius Martins
2012-05-01
Current methods to evaluate the biologic development of bone grafts in human beings do not quantify results accurately. Cranial burr holes are standardized critical bone defects, and the differences between bone powder and bone grafts have been determined in numerous experimental studies. This study evaluated quantitative computed tomography (QCT) as a method to objectively measure cranial bone density after cranial reconstruction with autografts. In each of 8 patients, 2 of 4 surgical burr holes were reconstructed with autogenous wet bone powder collected during skull trephination, and the other 2 holes, with a circular cortical bone fragment removed from the inner table of the cranial bone flap. After 12 months, the reconstructed areas and a sample of normal bone were studied using three-dimensional QCT; bone density was measured in Hounsfield units (HU). Mean (SD) bone density was 1535.89 (141) HU for normal bone (P < 0.0001), 964 (176) HU for bone fragments, and 453 (241) HU for bone powder (P < 0.001). As expected, the density of the bone fragment graft was consistently greater than that of bone powder. Results confirm the accuracy and reproducibility of QCT, already demonstrated for bone in other locations, and suggest that it is an adequate tool to evaluate cranial reconstructions. The combination of QCT and cranial burr holes is an excellent model to accurately measure the quality of new bone in cranial reconstructions and also seems to be an appropriate choice of experimental model to clinically test any cranial bone or bone substitute reconstruction.
Distraction by a monotube fixator to achieve limb lengthening: predictive factors for tibia trauma
2013-01-01
Background Management of post trauma tibia bone gap varied with orthopedic surgeons’ experience and tools available. Study aims to determine predictive factors for distraction by a monotube fixator (DMF) outcome in post tibia trauma limb length discrepancy. Methods A prospective descriptive cross sectional study of post traumatized tibia bone gap and limb length discrepancy patients at tertiary hospitals. Patient’s informed consent and institutional ethical committee approval were obtained. Bio-data, clinical and healing indexes were documented. DMF was applied for patient that met inclusion criteria. The Statistic tests used included the Chi-square, the Student’s two-tailed t test, and the Wilcox on rank-sum test when appropriate. Mantel-Haenszel Common Odds Ratio (OR) and 95% confidence intervals for poor outcome potential risk factors were recorded. Bivariate correlation and logistic regression were evaluated. Significance level was set at a p value <0.05. Results Thirty-six patients with mean age, 37.2 ± 10.3 year and male/female ratio of 1:1.25 had DMF applied. Motorcycle accident accounted for 50.0% of patients and diaphyseal segment was most commonly affected 25 (69.4%). The mean bone lengthened was 10.1 ± 4.0 cm (range: 5-21 cm) and mean duration of bone transport was 105.6 ± 38.2 days. The means of rate of distraction, healing index and percentage of lengthening were 0.99 ± 0.14 mm/day, 15.6 ± 4.3 days/cm and 38.0 ± 14.3 respectively. The mean follow up was 9.7 ±4.9 months (range: 2–17.0). Per operative complications varied and outcome was satisfactory in 30 (83.3%). Obesity (p <0.0001), multiple surgery (p = 0.012) and transfusion (p = 0.001) correlated to poor outcome. Percentage lengthening ≥ 50%, bone gap >10 cm, anemia, blood transfusion, general anesthesia administration, distraction rate >1 mm/day, osteomyelitis and prolong partial weight bearing were significant predictive factors for poor outcome in post traumatic tibia distraction. Conclusion Distraction by a monotube fixator appears effective in achieving correction >38.0% original tibia lengthening following traumatic bone gap. Predictive factors for poor outcome were useful for prognostication. PMID:23672599
Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D; Davies, John E; Stanford, William L
2016-05-01
Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance--replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. ©AlphaMed Press.
Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D.
2016-01-01
Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance—replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. Significance This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. PMID:26987353
Kato, Hatsumi; Kuroshima, Shinichiro; Inaba, Nao; Uto, Yusuke; Sawase, Takashi
2018-02-01
The aim of this study was to clarify whether marginal grooves on dental implants affect osseointegration, bone structure, and the alignment of collagen fibers to determine bone quality under loaded conditions. Anodized Ti-6Al-4V alloy dental implants, with and without marginal grooves (test and control implants, respectively), were used (3.7 × 8.0 mm). Fourth premolars and first molars of 6 beagle mandibles were extracted. Two control and test implants were placed in randomly selected healed sites at 12 weeks after tooth extraction. Screw-retained single crowns for first molars were fabricated. Euthanasia was performed at 8 weeks after the application of occlusal forces. Implant marginal bone level, bone to implant contact (BIC), bone structure around dental implants, and the alignment of collagen fibers determining bone quality were analyzed. The marginal bone level in test implants was significantly higher than that in control implants. Occlusal forces significantly increased BIC in test implants ( P = .007), whereas BIC did not change in control implants, irrespective of occlusal forces ( P = .303). Moreover, occlusal forces significantly increased BIC in test implants compared with control implants ( P = .032). Additionally, occlusal forces preferentially aligned collagen fibers in test implants, but not control implants. Hence, marginal grooves on dental implants have positive effects on increased osseointegration and adapted bone quality based on the preferential alignment of collagen fibers around dental implants under loaded conditions.
Kagami, Hideaki; Agata, Hideki; Inoue, Minoru; Asahina, Izumi; Tojo, Arinobu; Yamashita, Naohide; Imai, Kohzoh
2014-06-01
Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. Human bone marrow stromal cells (BMSCs) are the most commonly used cell source for bone tissue engineering. Although it is known that cell culture and induction protocols significantly affect the in vivo bone forming ability of BMSCs, the responsible factors of clinical outcome are poorly understood. The results from recent studies using human BMSCs have shown that factors such as passage number and length of osteogenic induction significantly affect ectopic bone formation, although such differences hardly affected the alkaline phosphatase activity or gene expression of osteogenic markers. Application of basic fibroblast growth factor helped to maintain the in vivo osteogenic ability of BMSCs. Importantly, responsiveness of those factors should be tested under clinical circumstances to improve the bone tissue engineering further. In this review, clinical application of bone tissue engineering was reviewed with putative underlying mechanisms.
Interventions for treating simple bone cysts in the long bones of children.
Zhao, Jia-Guo; Wang, Jia; Huang, Wan-Jie; Zhang, Peng; Ding, Ning; Shang, Jian
2017-02-04
Simple bone cysts, also known as a unicameral bone cysts or solitary bone cysts, are the most common type of benign bone lesion in growing children. Cysts may lead to repeated pathological fracture (fracture that occurs in an area of bone weakened by a disease process). Occasionally, these fractures may result in symptomatic malunion. The main goals of treatment are to decrease the risk of pathological fracture, enhance cyst healing and resolve pain. Despite the numerous treatment methods that have been used for simple bone cysts in long bones of children, there is no consensus on the best procedure. This is an update of a Cochrane review first published in 2014. To assess the effects (benefits and harms) of interventions for treating simple bone cysts in the long bones of children, including adolescents.We intended the following main comparisons: invasive (e.g. injections, curettage, surgical fixation) versus non-invasive interventions (e.g. observation, plaster cast, restricted activity); different categories of invasive interventions (i.e. injections, curettage, drilling holes and decompression, surgical fixation and continued decompression); different variations of each category of invasive intervention (e.g. different injection substances: autologous bone marrow versus steroid). We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, the China National Knowledge Infrastructure Platform, trial registers, conference proceedings and reference lists. Date of last search: April 2016. Randomised and quasi-randomised controlled trials evaluating methods for treating simple bone cysts in the long bones of children. Two review authors independently screened search results and performed study selection. We resolved differences in opinion between review authors by discussion and by consulting a third review author. Two review authors independently assessed risk of bias and data extraction. We summarised data using risk ratios (RRs) or mean differences (MDs), as appropriate, and 95% confidence intervals (CIs). We used the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the overall quality of the evidence. In this update in 2017, we did not identify any new randomised controlled trials (RCT) for inclusion. We identified one ongoing trial that we are likely to include in a future update. Accordingly, our results are unchanged. The only included trial is a multicentre RCT conducted at 24 locations in North America and India that compared bone marrow injection with steroid (methylprednisolone acetate) injection for treating simple bone cysts. Up to three injections were planned for participants in each group. The trial involved 90 children (mean age 9.5 years) and presented results for 77 children at two-year follow-up. Although the trial had secure allocation concealment, it was at high risk of performance bias and from major imbalances in baseline characteristics. Reflecting these study limitations, we downgraded the quality of evidence by two levels to 'low' for most outcomes, meaning that we are unsure about the estimates of effect. For outcomes where there was serious imprecision, we downgraded the quality of evidence by a further level to 'very low'.The trial provided very low quality evidence that fewer children in the bone marrow injection group had radiographically assessed healing of bone cysts at two years than in the steroid injection group (9/39 versus 16/38; RR 0.55 favouring steroid injection, 95% CI 0.28 to 1.09). However, the result was uncertain and may be compatible with no difference or small benefit favouring bone marrow injection. Based on an illustrative success rate of 421 children with healed bone cysts per 1000 children treated with steroid injections, this equates to 189 fewer (95% CI 303 fewer to 38 more) children with healed bone cysts per 1000 children treated with bone marrow injections. There was low quality evidence of a lack of difference between the two interventions at two years in functional outcome, based on the Activity Scale for Kids function score (0 to 100; higher scores equate to better outcome: MD -0.90; 95% CI -4.26 to 2.46) or in pain assessed using the Oucher pain score. There was very low quality evidence of a lack of differences between the two interventions for adverse events: subsequent pathological fracture (9/39 versus 11/38; RR 0.80, 95% CI 0.37 to 1.70) or superficial infection (two cases in the bone marrow group). Recurrence of bone cyst, unacceptable malunion, return to normal activities, and participant satisfaction were not reported. The available evidence is insufficient to determine the relative effects of bone marrow versus steroid injections, although the bone marrow injections are more invasive. Noteably, the rate of radiographically assessed healing of the bone cyst at two years was well under 50% for both interventions. Overall, there is a lack of evidence to determine the best method for treating simple bone cysts in the long bones of children. Further RCTs of sufficient size and quality are needed to guide clinical practice.
Sherk, Vanessa D; Bemben, Michael G; Bemben, Debra A
2010-09-01
The nature of muscular contractions and episodes of impact loading during technical rock climbing are often varied and complex, and the resulting effects on bone health are unclear. The purpose of this study was to compare total body, lumbar spine, proximal femur, and forearm areal bone mineral density (aBMD) and tibia and forearm bone quality in male rock climbers (RC) (n = 15), resistance trained men (RT) (n = 16), and untrained male controls (CTR) (n = 16). Total body, anteroposterior (AP) lumbar spine, proximal femur, and forearm aBMD and body composition were measured using dual-energy X-ray absorptiometry (DXA) (Lunar Prodigy, v. 10.50.086; GE Healthcare, Waukesha, Wisconsin, U.S.A.). Volumetric BMD (vBMD), bone content, bone area, and muscle cross-sectional area (MCSA) of the tibia and forearm were measured using pQCT (peripheral quantitative computed tomography; Stratec XCT 3000, Pforzheim, Germany). No significant group differences were seen in bone-free lean body mass. CTR had significantly (p < 0.05) greater body fat % than RC and RT and significantly (p < 0.05) greater fat mass than RC. Lumbar spine and femoral neck aBMD were significantly (p < 0.05) greater in RT compared to both RC and CTR. RC had significantly (p < 0.05) lower aBMD at the 33% radius site than CTR. Forearm MCSA was significantly (p < 0.05) lower in CTR than in the other groups. No significant differences were seen between groups for vBMD or bone area of the tibia and forearm. In conclusion, resistance-trained men had higher bone density at the central skeletal sites than rock climbers; however, bone quality variables of the peripheral limbs were similar in rock climber and resistance-trained groups.
Pathogenesis, diagnosis and management of osteomalacia.
Walker, Jennie
2014-07-01
Osteomalacia is a musculoskeletal condition that results in soft bones due to ineffective mineralisation. Nurses have a unique opportunity to improve awareness of osteomalacia and reduce its incidence through health education. Multidisciplinary management is important to minimise the effect of osteomalacia on activities of daily living and reduce the risk of fracture due to poor mineralisation of the bones.
USDA-ARS?s Scientific Manuscript database
In both rodents and humans, excessive consumption of diets high in saturated fat and cholesterol during postnatal life is known to result in global energy imbalance, obesity, and insulin resistance. However, the effects of such a "Western diet" (WD) on bone development and remodeling is poorly under...
Guimarães, Ana Paula Franttini Garcia Moreno; Butezloff, Mariana Maloste; Zamarioli, Ariane; Issa, João Paulo Mardegan; Volpon, José Batista
2017-11-01
To evaluate the influence of nandrolone decanoate on fracture healing and bone quality in normal rats. Male rats were assigned to four groups (n=28/group): Control group consisting of animals without any intervention, Nandrolone decanoate (DN) group consisting of animals that received intramuscular injection of nandrolone decanoate, Fracture group consisting of animals with a fracture at the mid-diaphysis of the femur, and Fracture and nandrolone decanoate group consisting of animals with a femur fracture and treatment with nandrolone decanoate. Fractures were created at the mid-diaphysis of the right femur by a blunt trauma and internally fixed using an intramedullary steel wire. The DN was injected intramuscularly twice per week (10 mg/kg of body mass). The femurs were measured and evaluated by densitometry and mechanical resistance after animal euthanasia. The newly formed bone and collagen type I levels were quantified in the callus. The treated animals had longer femurs after 28 days. The quality of the intact bone was not significantly different between groups. The bone callus did show a larger mass in the treated rats. The administration of nandrolone decanoate did not affect the quality of the intact bone, but might have enhanced the bone callus formation.
Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu
2016-01-01
Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814
Decreased heterotopic osteogenesis in vitamin-D-deficient, but normocalcemic guinea pigs
NASA Technical Reports Server (NTRS)
Dziedzic-Goclawska, A.; Toverud, S. U.; Kaminski, A.; Boass, A.; Yamauchi, M.
1992-01-01
The effect of vitamin D deficiency unhampered by hypocalcemia on de novo bone formation was studied in guinea pigs. Heterotopic induction of osteogenesis was evaluated 4 weeks after intramuscular transplantation of allogenic urinary bladder transitional epithelium from vitamin-D-repleted (+D) donors into +D and -D recipients. In -D recipients the frequency of osteogenesis and the amount of induced bone were significantly diminished; induced bone was less mature, scantly cellular woven bone poorly repopulated with bone marrow. No effect of vitamin D deficiency on orthotopic bone growth and on mineralization of orthotopic and heterotopically induced bone was observed. It is proposed that in addition to inducing factors (BMPs, growth factors) which may be responsible for transformation of mesenchymal cells to osteoprogenitor cells, normal concentrations of 1,25-(OH)2D3 may be required for proliferation and further differentiation of these cells into osteoblasts and for expression of genes engaged in extracellular matrix formation and maturation.
Wynn, Robert F; Hart, Claire A; Corradi-Perini, Carla; O'Neill, Liam; Evans, Caroline A; Wraith, J Ed; Fairbairn, Leslie J; Bellantuono, Ilaria
2004-11-01
Homing of bone marrow stromal cells (MSCs) to bone and bone marrow after transplantation, important for the correction of conditions such as metabolic storage disorders, can occur but with poor efficiency. Substantial improvements in engraftment will be required in order to derive a clinical benefit from MSC transplantation. Chemokines are the most important factors controlling cellular migration. Stromal-derived factor-1 (SDF-1) has been shown to be critical in promoting the migration of cells to the bone marrow, via its specific receptor CXCR4. The aim of our study was to investigate CXCR4 expression on MSCs and its role in mediating migration to bone marrow. We show that CXCR4, although present at the surface of a small subset of MSCs, is important for mediating specific migration of these cells to bone marrow.
Increased physical activity ameliorates high fat diet-induced bone resorption in mice
USDA-ARS?s Scientific Manuscript database
It has been recognized that mechanical stresses associated with physical activity (PA) have beneficial effects on increasing bone mineral density (BMD) and improving bone quality. On the other hand, high fat diet (HFD) and obesity increase bone marrow adiposity leading to increased excretion of pro-...
Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing
2016-09-01
Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious anabolic and anticatabolic effects. This study not only enriches our basic knowledge about bone quality and bone turnover mechanisms in leptin receptor-deficient animals, but also advances our understanding of the skeletal sensitivity of leptin-resistant db/db mice in response to external mechanical stimulation. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.
Hammond, Max A; Laine, Tyler J; Berman, Alycia G; Wallace, Joseph M
The specifics of how the nanoscale properties of collagen (e.g., the crosslinking profile) affect the mechanical integrity of bone at larger length scales is poorly understood despite growing evidence that collagen's nanoscale properties are altered with disease. Additionally, mass independent increases in postyield displacement due to exercise suggest loading-induced improvements in bone quality associated with collagen. To test whether disease-induced reductions in bone quality driven by alterations in collagen can be rescued or prevented via exercise-mediated changes to collagen's nanoscale morphology and mechanical properties, the effects of treadmill exercise and β-aminopropionitrile treatment were investigated. Eight week old female C57BL/6 mice were given a daily subcutaneous injection of either 164 mg/kg β-aminopropionitrile or phosphate buffered saline while experiencing either normal cage activity or 30 min of treadmill exercise for 21 consecutive days. Despite differences in D-spacing distribution (P = 0.003) and increased cortical area (tibial: P = 0.005 and femoral: P = 0.015) due to β-aminopropionitrile treatment, an overt mechanical disease state was not achieved as there were no differences in fracture toughness or 4 point bending due to β-aminopropionitrile treatment. While exercise did not alter (P = 0.058) the D-spacing distribution of collagen or prevent (P < 0.001) the β-aminopropionitrile-induced changes present in the unexercised animals, there were differential effects in the distribution of the reduced elastic modulus due to exercise between control and β-aminopropionitrile-treated animals (P < 0.001). Fracture toughness was increased (P = 0.043) as a main effect of exercise, but no significant differences due to exercise were observed using 4 point bending. Future studies should examine the potential for sex specific differences in the dose of β-aminopropionitrile required to induce mechanical effects in mice and the contributions of other nanoscale aspects of bone (e.g., the mineral-collagen interface) to elucidate the mechanism for the exercise-based improvements in fracture toughness observed here and the increased postyield deformation observed in other studies.
Villareal, Dennis T; Kotyk, John J; Armamento-Villareal, Reina C; Kenguva, Venkata; Seaman, Pamela; Shahar, Allon; Wald, Michael J; Kleerekoper, Michael; Fontana, Luigi
2011-02-01
Calorie restriction (CR) reduces bone quantity but not bone quality in rodents. Nothing is known regarding the long-term effects of CR with adequate intake of vitamin and minerals on bone quantity and quality in middle-aged lean individuals. In this study, we evaluated body composition, bone mineral density (BMD), and serum markers of bone turnover and inflammation in 32 volunteers who had been eating a CR diet (approximately 35% less calories than controls) for an average of 6.8 ± 5.2 years (mean age 52.7 ± 10.3 years) and 32 age- and sex-matched sedentary controls eating Western diets (WD). In a subgroup of 10 CR and 10 WD volunteers, we also measured trabecular bone (TB) microarchitecture of the distal radius using high-resolution magnetic resonance imaging. We found that the CR volunteers had significantly lower body mass index than the WD volunteers (18.9 ± 1.2 vs. 26.5 ± 2.2 kg m(-2) ; P = 0.0001). BMD of the lumbar spine (0.870 ± 0.11 vs. 1.138 ± 0.12 g cm(-2) , P = 0.0001) and hip (0.806 ± 0.12 vs. 1.047 ± 0.12 g cm(-2) , P = 0.0001) was also lower in the CR than in the WD group. Serum C-terminal telopeptide and bone-specific alkaline phosphatase concentration were similar between groups, while serum C-reactive protein (0.19 ± 0.26 vs. 1.46 ± 1.56 mg L(-1) , P = 0.0001) was lower in the CR group. Trabecular bone microarchitecture parameters such as the erosion index (0.916 ± 0.087 vs. 0.877 ± 0.088; P = 0.739) and surface-to-curve ratio (10.3 ± 1.4 vs. 12.1 ± 2.1, P = 0.440) were not significantly different between groups. These findings suggest that markedly reduced BMD is not associated with significantly reduced bone quality in middle-aged men and women practicing long-term calorie restriction with adequate nutrition.
Alcohol: A Simple Nutrient with Complex Actions on Bone in the Adult Skeleton
Gaddini, Gino W.; Turner, Russell T.; Grant, Kathleen A.; Iwaniec, Urszula T.
2016-01-01
Background Alcohol is an important nonessential component of diet, but the overall impact of drinking on bone health, especially at moderate levels, is not well understood. Bone health is important because fractures greatly reduce quality of life and are a major cause of morbidity and mortality in the elderly. Regular alcohol consumption is most common following skeletal maturity, emphasizing the importance of understanding the skeletal consequences of drinking in adults. Method This review focuses on describing the complex effects of alcohol on the adult skeleton. Studies assessing the effects of alcohol on bone in adult humans as well as skeletally-mature animal models published since the year 2000 are emphasized. Results Light to moderate alcohol consumption is generally reported to be beneficial, resulting in higher bone mineral density (BMD) and reduced age-related bone loss, whereas heavy alcohol consumption is generally associated with decreased BMD, impaired bone quality and increased fracture risk. Bone remodeling is the principle mechanism for maintaining a healthy skeleton in adults and dysfunction in bone remodeling can lead to bone loss and/or decreased bone quality. Light to moderate alcohol may exert beneficial effects in older individuals by slowing the rate of bone remodeling but the impact of light to moderate alcohol on bone remodeling in younger individuals is less certain. The specific effects of alcohol on bone remodeling in heavy drinkers is even less certain because the effects are often obscured by unhealthy lifestyle choices, alcohol-associated disease, and altered endocrine signaling. Conclusions Although there have been advances in understanding the complex actions of alcohol on bone, much remains to be determined. Limited evidence implicates age, skeletal site evaluated, duration and pattern of drinking as important variables. Few studies systematically evaluating the impact of these factors have been conducted and should be made a priority for future research. In addition, studies performed in skeletally mature animals have potential to reveal mechanistic insights into the precise actions of alcohol and associated co-morbidity factors on bone remodeling. PMID:26971854
Comparison of Bone Grafts From Various Donor Sites in Human Bone Specimens.
Kamal, Mohammad; Gremse, Felix; Rosenhain, Stefanie; Bartella, Alexander K; Hölzle, Frank; Kessler, Peter; Lethaus, Bernd
2018-05-14
The objective of the current study was to compare the three-dimensional (3D) morphometric microstructure in human cadaveric bone specimens taken from various commonly utilized donor sites for autogenous bone grafting. Autogenous bone grafts can be harvested from various anatomic sites and express heterogeneous bone quality with a specific 3D microstructure for each site. The long-term structural integrity and susceptibility to resorption of the graft depend on the selected donor bone. Micro-computed tomography generates high-resolution datasets of bone structures and calcifications making this modality versatile for microarchitecture analysis and quantification of the bone. Six bone specimens, 10 mm in length, where anatomically possible, were obtained from various anatomical sites from 10 human dentate cadavers (4 men, 6 women, mean age 69.5 years). Specimens were scanned using a micro-computed tomography device and volumetrically reconstructed. A virtual cylindrical inclusion was reconstructed to analyze the bone mineral density and structural morphometric analysis using bone indices: relative bone volume, surface density, trabecular thicknesses, and trabecular separation. Calvarial bone specimens showed the highest mineral density, followed by the chin, then mandibular ramus then the tibia, whereas iliac crest and maxillary tuberosity had lower bone mineral densities. The pairwise comparison revealed statistically significant differences in the bone mineral density and relative bone volume index in the calvaria, mandibular ramus, mandibular symphysis groups when compared with those in the iliac crest and maxillary tuberosity, suggesting higher bone quality in the former groups than in the latter; tibial specimens expressed variable results.
Diagnostic imaging of trabecular bone microstructure for oral implants: a literature review.
Ibrahim, N; Parsa, A; Hassan, B; van der Stelt, P; Wismeijer, D
2013-01-01
Several dental implant studies have reported that radiographic evaluation of bone quality can aid in reducing implant failure. Bone quality is assessed in terms of its quantity, density, trabecular characteristics and cells. Current imaging modalities vary widely in their efficiency in assessing trabecular structures, especially in a clinical setting. Most are very costly, require an extensive scanning procedure coupled with a high radiation dose and are only partially suitable for patient use. This review examines the current literature regarding diagnostic imaging assessment of trabecular microstructure prior to oral implant placement and suggests cone beam CT as a method of choice for evaluating trabecular bone microstructure.
Osteoporosis Imaging: State of the Art and Advanced Imaging
2012-01-01
Osteoporosis is becoming an increasingly important public health issue, and effective treatments to prevent fragility fractures are available. Osteoporosis imaging is of critical importance in identifying individuals at risk for fractures who would require pharmacotherapy to reduce fracture risk and also in monitoring response to treatment. Dual x-ray absorptiometry is currently the state-of-the-art technique to measure bone mineral density and to diagnose osteoporosis according to the World Health Organization guidelines. Motivated by a 2000 National Institutes of Health consensus conference, substantial research efforts have focused on assessing bone quality by using advanced imaging techniques. Among these techniques aimed at better characterizing fracture risk and treatment effects, high-resolution peripheral quantitative computed tomography (CT) currently plays a central role, and a large number of recent studies have used this technique to study trabecular and cortical bone architecture. Other techniques to analyze bone quality include multidetector CT, magnetic resonance imaging, and quantitative ultrasonography. In addition to quantitative imaging techniques measuring bone density and quality, imaging needs to be used to diagnose prevalent osteoporotic fractures, such as spine fractures on chest radiographs and sagittal multidetector CT reconstructions. Radiologists need to be sensitized to the fact that the presence of fragility fractures will alter patient care, and these fractures need to be described in the report. This review article covers state-of-the-art imaging techniques to measure bone mineral density, describes novel techniques to study bone quality, and focuses on how standard imaging techniques should be used to diagnose prevalent osteoporotic fractures. © RSNA, 2012 PMID:22438439
Can we improve fixation and outcomes? Use of bone substitutes.
Moroni, Antonio; Larsson, Sune; Hoang Kim, Amy; Gelsomini, Letizia; Giannoudis, Peter V
2009-07-01
Hip fractures secondary to osteoporosis are common in the elderly. Stabilizing these fractures until union is achieved is a challenge due to poor bone stock and insufficient purchase of the implant to the bone. The reported high rate of complications has prompted extensive research in the development of fixation techniques. Furthermore, manipulation of both the local fracture environment in terms of application of growth factors, scaffolds, and mesenchymal cells and the systemic administration of agents promoting bone formation and bone strength has been considered as a treatment option with promising results. There are only a few evidence-based studies reporting on fixation augmentation techniques. This article reports on the efficacy of bone graft substitutes for the fixation of hip fractures, in particular calcium phosphates, which have been used as granules, cements, and implant coatings.
The short-term effects of cisplatin chemotherapy on bone turnover.
Young, D R; Virolainen, P; Inoue, N; Frassica, F J; Chao, E Y
1997-11-01
Cisplatin is an effective agent in the treatment of osteosarcoma of bone but little is known of its effects on normal bone turnover. Twenty-four dogs divided into three study groups were used to study the effect of cisplatin on normal bone turnover at the distant site of surgery. Group 1 served as the control group, group 2 received four cycles of cisplatin every 3 weeks before the surgery, and group 3 received four cycles postoperatively. The bone turnover rate was evaluated by measuring levels of systemic bone markers, osteocalcin, alkaline phospohatase, urine pyridinoline cross-links, and by determination histomorphometric indices. Histomorphological analysis showed poor correlation on bone formation with systemic bone markers at distant sites of surgery. Histomorphometrically normal bone turnover was affected by administration of cisplatin, but the effect was temporary, late, and less significant than what occurred at the surgical site. Our data showed that significant effects of cisplatin are observed at the site of active cellular induction and proliferation, such as implant-host interface, and less effects are seen at the sites of normal bone turnover.
Rothrauff, Benjamin B; Pauyo, Thierry; Debski, Richard E; Rodosky, Mark W; Tuan, Rocky S; Musahl, Volker
2017-08-01
The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.
Schwalbe, H J; Bamfaste, G; Franke, R P
1999-01-01
Quality control in orthopaedic diagnostics according to DIN EN ISO 9000ff requires methods of non-destructive process control, which do not harm the patient by radiation or by invasive examinations. To obtain an improvement in health economy, quality-controlled and non-destructive measurements have to be introduced into the diagnostics and therapy of human joints and bones. A non-invasive evaluation of the state of wear of human joints and of the cracking tendency of bones is, as of today's point of knowledge, not established. The analysis of acoustic emission signals allows the prediction of bone rupture far below the fracture load. The evaluation of dry and wet bone samples revealed that it is possible to conclude from crack initiation to the bone strength and thus to predict the probability of bone rupture.
In vivo outcomes of tissue-engineered osteochondral grafts.
Bal, B Sonny; Rahaman, Mohamed N; Jayabalan, Prakash; Kuroki, Keiichi; Cockrell, Mary K; Yao, Jian Q; Cook, James L
2010-04-01
Tissue-engineered osteochondral grafts have been synthesized from a variety of materials, with some success at repairing chondral defects in animal models. We hypothesized that in tissue-engineered osteochondral grafts synthesized by bonding mesenchymal stem cell-loaded hydrogels to a porous material, the choice of the porous scaffold would affect graft healing to host bone, and the quality of cell restoration at the hyaline cartilage surface. Bone marrow-derived allogeneic mesenchymal stem cells were suspended in hydrogels that were attached to cylinders of porous tantalum metal, allograft bone, or a bioactive glass. The tissue-engineered osteochondral grafts, thus created were implanted into experimental defects in rabbit knees. Subchondral bone restoration, defect fill, bone ingrowth-implant integration, and articular tissue quality were compared between the three subchondral materials at 6 and 12 weeks. Bioactive glass and porous tantalum were superior to bone allograft in integrating to adjacent host bone, regenerating hyaline-like tissue at the graft surface, and expressing type II collagen in the articular cartilage.
Yoon, Pil Whan; Yoo, Jeong Joon; Yoon, Kang Sup; Kim, Hee Joong
2012-03-01
Subchondral stress fractures of the femoral head may be either of the insufficiency-type with poor quality bone or the fatigue-type with normal quality bone but subject to high repetitive stresses. Unlike osteonecrosis, multiple site involvement rarely has been reported for subchondral stress fractures. We describe a case of multifocal subchondral stress fractures involving femoral heads and medial tibial condyles bilaterally within 2 weeks. A 27-year-old military recruit began having left knee pain after 2 weeks of basic training, without any injury. Subsequently, right knee, right hip, and left hip pain developed sequentially within 2 weeks. The diagnosis of multifocal subchondral stress fracture was confirmed by plain radiographs and MR images. Nonoperative treatment of the subchondral stress fractures of both medial tibial condyles and the left uncollapsed femoral head resulted in resolution of symptoms. The collapsed right femoral head was treated with a fibular strut allograft to restore congruity and healed without further collapse. There has been one case report in which an insufficiency-type subchondral stress fracture of the femoral head and medial femoral condyle occurred within a 2-year interval. Because the incidence of bilateral subchondral stress fractures of the femoral head is low and multifocal involvement has not been reported, multifocal subchondral stress fractures can be confused with multifocal osteonecrosis. Our case shows that subchondral stress fractures can occur in multiple sites almost simultaneously.
Desborough, Michael; Hadjinicolaou, Andreas V; Chaimani, Anna; Trivella, Marialena; Vyas, Paresh; Doree, Carolyn; Hopewell, Sally; Stanworth, Simon J; Estcourt, Lise J
2016-10-31
People with thrombocytopenia due to bone marrow failure are vulnerable to bleeding. Platelet transfusions have limited efficacy in this setting and alternative agents that could replace, or reduce platelet transfusion, and are effective at reducing bleeding are needed. To compare the relative efficacy of different interventions for patients with thrombocytopenia due to chronic bone marrow failure and to derive a hierarchy of potential alternative treatments to platelet transfusions. We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (the Cochrane Library 2016, Issue 3), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1980) and ongoing trial databases to 27 April 2016. We included randomised controlled trials in people with thrombocytopenia due to chronic bone marrow failure who were allocated to either an alternative to platelet transfusion (artificial platelet substitutes, platelet-poor plasma, fibrinogen concentrate, recombinant activated factor VII (rFVIIa), desmopressin (DDAVP), recombinant factor XIII (rFXIII), recombinant interleukin (rIL)6 or rIL11, or thrombopoietin (TPO) mimetics) or a comparator (placebo, standard of care or platelet transfusion). We excluded people undergoing intensive chemotherapy or stem cell transfusion. Two review authors independently screened search results, extracted data and assessed trial quality. We estimated summary risk ratios (RR) for dichotomous outcomes. We planned to use summary mean differences (MD) for continuous outcomes. All summary measures are presented with 95% confidence intervals (CI).We could not perform a network meta-analysis because the included studies had important differences in the baseline severity of disease for the participants and in the number of participants undergoing chemotherapy. This raised important concerns about the plausibility of the transitivity assumption in the final dataset and we could not evaluate transitivity statistically because of the small number of trials per comparison. Therefore, we could only perform direct pairwise meta-analyses of included interventions.We employed a random-effects model for all analyses. We assessed statistical heterogeneity using the I 2 statistic and its 95% CI. The risk of bias of each study included was assessed using the Cochrane 'Risk of bias' tool. The quality of the evidence was assessed using GRADE methods. We identified seven completed trials (472 participants), and four ongoing trials (recruiting 837 participants) which are due to be completed by December 2020. Of the seven completed trials, five trials (456 participants) compared a TPO mimetic versus placebo (four romiplostim trials, and one eltrombopag trial), one trial (eight participants) compared DDAVP with placebo and one trial (eight participants) compared tranexamic acid with placebo. In the DDAVP trial, the only outcome reported was the bleeding time. In the tranexamic acid trial there were methodological flaws and bleeding definitions were subject to significant bias. Consequently, these trials could not be incorporated into the quantitative synthesis. No randomised trial of artificial platelet substitutes, platelet-poor plasma, fibrinogen concentrate, rFVIIa, rFXIII, rIL6 or rIL11 was identified.We assessed all five trials of TPO mimetics included in this review to be at high risk of bias because the trials were funded by the manufacturers of the TPO mimetics and the authors had financial stakes in the sponsoring companies.The GRADE quality of the evidence was very low to moderate across the different outcomes.There was insufficient evidence to detect a difference in the number of participants with at least one bleeding episode between TPO mimetics and placebo (RR 0.86, 95% CI 0.56 to 1.31, four trials, 206 participants, low-quality evidence).There was insufficient evidence to detect a difference in the risk of a life-threatening bleed between those treated with a TPO mimetic and placebo (RR 0.31, 95% CI 0.04 to 2.26, one trial, 39 participants, low-quality evidence).There was insufficient evidence to detect a difference in the risk of all-cause mortality between those treated with a TPO mimetic and placebo (RR 0.74, 95%CI 0.52 to 1.05, five trials, 456 participants, very low-quality evidence).There was a significant reduction in the number of participants receiving any platelet transfusion between those treated with TPO mimetics and placebo (RR 0.76, 95% CI 0.61 to 0.95, four trials, 206 participants, moderate-quality evidence).There was no evidence for a difference in the incidence of transfusion reactions between those treated with TPO mimetics and placebo (pOR 0.06, 95% CI 0.00 to 3.44, one trial, 98 participants, very low-quality evidence).There was no evidence for a difference in thromboembolic events between TPO mimetics and placebo (RR 1.41, 95%CI 0.39 to 5.01, five trials, 456 participants, very-low quality evidence).There was no evidence for a difference in drug reactions between TPO mimetics and placebo (RR 1.12, 95% CI 0.83 to 1.51, five trials, 455 participants, low-quality evidence).No trial reported the number of days of bleeding per participant, platelet transfusion episodes, mean red cell transfusions per participant, red cell transfusion episodes, transfusion-transmitted infections, formation of antiplatelet antibodies or platelet refractoriness.In order to demonstrate a reduction in bleeding events from 26 in 100 to 16 in 100 participants, a study would need to recruit 514 participants (80% power, 5% significance). There is insufficient evidence at present for thrombopoietin (TPO) mimetics for the prevention of bleeding for people with thrombocytopenia due to chronic bone marrow failure. There is no randomised controlled trial evidence for artificial platelet substitutes, platelet-poor plasma, fibrinogen concentrate, rFVIIa, rFXIII or rIL6 or rIL11, antifibrinolytics or DDAVP in this setting.
Desborough, Michael; Hadjinicolaou, Andreas V; Chaimani, Anna; Trivella, Marialena; Vyas, Paresh; Doree, Carolyn; Hopewell, Sally; Stanworth, Simon J; Estcourt, Lise J
2017-01-01
Background People with thrombocytopenia due to bone marrow failure are vulnerable to bleeding. Platelet transfusions have limited efficacy in this setting and alternative agents that could replace, or reduce platelet transfusion, and are effective at reducing bleeding are needed. Objectives To compare the relative efficacy of different interventions for patients with thrombocytopenia due to chronic bone marrow failure and to derive a hierarchy of potential alternative treatments to platelet transfusions. Search methods We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (the Cochrane Library 2016, Issue 3), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1980) and ongoing trial databases to 27 April 2016. Selection criteria We included randomised controlled trials in people with thrombocytopenia due to chronic bone marrow failure who were allocated to either an alternative to platelet transfusion (artificial platelet substitutes, platelet-poor plasma, fibrinogen concentrate, recombinant activated factor VII (rFVIIa), desmopressin (DDAVP), recombinant factor XIII (rFXIII), recombinant interleukin (rIL)6 or rIL11, or thrombopoietin (TPO) mimetics) or a comparator (placebo, standard of care or platelet transfusion). We excluded people undergoing intensive chemotherapy or stem cell transfusion. Data collection and analysis Two review authors independently screened search results, extracted data and assessed trial quality. We estimated summary risk ratios (RR) for dichotomous outcomes. We planned to use summary mean differences (MD) for continuous outcomes. All summary measures are presented with 95% confidence intervals (CI). We could not perform a network meta-analysis because the included studies had important differences in the baseline severity of disease for the participants and in the number of participants undergoing chemotherapy. This raised important concerns about the plausibility of the transitivity assumption in the final dataset and we could not evaluate transitivity statistically because of the small number of trials per comparison. Therefore, we could only perform direct pairwise meta-analyses of included interventions. We employed a random-effects model for all analyses. We assessed statistical heterogeneity using the I2 statistic and its 95% CI. The risk of bias of each study included was assessed using the Cochrane ’Risk of bias’ tool. The quality of the evidence was assessed using GRADE methods. Main results We identified seven completed trials (472 participants), and four ongoing trials (recruiting 837 participants) which are due to be completed by December 2020. Of the seven completed trials, five trials (456 participants) compared a TPO mimetic versus placebo (four romiplostim trials, and one eltrombopag trial), one trial (eight participants) compared DDAVP with placebo and one trial (eight participants) compared tranexamic acid with placebo. In the DDAVP trial, the only outcome reported was the bleeding time. In the tranexamic acid trial there were methodological flaws and bleeding definitions were subject to significant bias. Consequently, these trials could not be incorporated into the quantitative synthesis. No randomised trial of artificial platelet substitutes, platelet-poor plasma, fibrinogen concentrate, rFVIIa, rFXIII, rIL6 or rIL11 was identified. We assessed all five trials of TPO mimetics included in this review to be at high risk of bias because the trials were funded by the manufacturers of the TPO mimetics and the authors had financial stakes in the sponsoring companies. The GRADE quality of the evidence was very low to moderate across the different outcomes. There was insufficient evidence to detect a difference in the number of participants with at least one bleeding episode between TPO mimetics and placebo (RR 0.86, 95% CI 0.56 to 1.31, four trials, 206 participants, low-quality evidence). There was insufficient evidence to detect a difference in the risk of a life-threatening bleed between those treated with a TPO mimetic and placebo (RR 0.31, 95% CI 0.04 to 2.26, one trial, 39 participants, low-quality evidence). There was insufficient evidence to detect a difference in the risk of all-cause mortality between those treated with a TPO mimetic and placebo (RR 0.74, 95%CI 0.52 to 1.05, five trials, 456 participants, very low-quality evidence). There was a significant reduction in the number of participants receiving any platelet transfusion between those treated with TPO mimetics and placebo (RR 0.76, 95% CI 0.61 to 0.95, four trials, 206 participants, moderate-quality evidence). There was no evidence for a difference in the incidence of transfusion reactions between those treated with TPO mimetics and placebo (pOR 0.06, 95% CI 0.00 to 3.44, one trial, 98 participants, very low-quality evidence). There was no evidence for a difference in thromboembolic events between TPO mimetics and placebo (RR 1.41, 95%CI 0.39 to 5.01, five trials, 456 participants, very-low quality evidence). There was no evidence for a difference in drug reactions between TPO mimetics and placebo (RR 1.12, 95% CI 0.83 to 1.51, five trials, 455 participants, low-quality evidence). No trial reported the number of days of bleeding per participant, platelet transfusion episodes, mean red cell transfusions per participant, red cell transfusion episodes, transfusion-transmitted infections, formation of antiplatelet antibodies or platelet refractoriness. In order to demonstrate a reduction in bleeding events from 26 in 100 to 16 in 100 participants, a study would need to recruit 514 participants (80% power, 5% significance). Authors’ conclusions There is insufficient evidence at present for thrombopoietin (TPO) mimetics for the prevention of bleeding for people with thrombocytopenia due to chronic bone marrow failure. There is no randomised controlled trial evidence for artificial platelet substitutes, platelet-poor plasma, fibrinogen concentrate, rFVIIa, rFXIII or rIL6 or rIL11, antifibrinolytics or DDAVP in this setting. PMID:27797129
Estrogen Receptors in Breast and Bone: from Virtue of Remodeling to Vileness of Metastasis
Bado, Igor; Gugala, Zbigniew; Fuqua, Suzanne A. W.; Zhang, Xiang H.-F.
2017-01-01
Bone metastasis is a prominent cause of morbidity and mortality in cancer. High rates of bone colonization in breast cancer, especially in the subtype expressing estrogen receptors (ERs), suggests tissue-specific proclivities for metastatic tumor formation. The mechanisms behind this subtype-specific organ-tropism remains largely elusive. Interestingly, as the major driver of ER+ breast cancer, ERs also play important roles in bone development and homeostasis. Thus, any agents targeting ER will also inevitably affect the microenvironment, i.e., the osteoblasts and osteoclasts. Yet, how such microenvironmental effects are integrated with direct therapeutic responses of cancer cells remain poorly understood. Recent findings on ER mutations, especially their enrichment in bone metastasis, raised even more provocative questions on the role of ER in cancer-bone interaction. In this review, we evaluate the importance of estrogen receptors (ERs) in bone metastasis and discuss new avenues of investigation for bone metastasis treatment based on current knowledge. PMID:28368409
Osterix/Sp7 limits cranial bone initiation sites and is required for formation of sutures
Kague, Erika; Roy, Paula; Asselin, Garrett; Hu, Gui; Stanley, Alexandra; Albertson, Craig; Simonet, Jacqueline; Fisher, Shannon
2017-01-01
During growth, individual skull bones overlap at sutures, where osteoblast differentiation and bone deposition occur. Mutations causing skull malformations have revealed some required genes, but many aspects of suture regulation remain poorly understood. We describe a zebrafish mutation in osterix/sp7, which causes a generalized delay in osteoblast maturation. While most of the skeleton is patterned normally, mutants have specific defects in the anterior skull and upper jaw, and the top of the skull comprises a random mosaic of bones derived from individual initiation sites. Osteoblasts at the edges of the bones are highly proliferative and fail to differentiate, consistent with global changes in gene expression. We propose that signals from the bone itself are required for orderly recruitment of precursor cells and growth along the edges. The delay in bone maturation caused by loss of Sp7 leads to unregulated bone formation, revealing a new mechanism for patterning the skull and sutures. PMID:26992365
Plumb, Darren; Vo, Phoung; Shah, Mittal; Staines, Katherine; Sampson, Alexandra; Shefelbine, Sandra; Pitsillides, Andrew A.; Bou-Gharios, George
2016-01-01
Bone development and length relies on the growth plate formation, which is dependent on degradative enzymes such as MMPs. Indeed, deletion of specific members of this enzyme family in mice results in important joint and bone abnormalities, suggesting a role in skeletal development. As such, the control of MMP activity is vital in the complex process of bone formation and growth. We generated a transgenic mouse line to overexpress TIMP3 in mouse chondrocytes using the Col2a1-chondrocyte promoter. This overexpression in cartilage resulted in a transient shortening of growth plate in homozygote mice but bone length was restored at eight weeks of age. However, tibial bone structure and mechanical properties remained compromised. Despite no transgene expression in adult osteoblasts from transgenic mice in vitro, their differentiation capacity was decreased. Neonates, however, did show transgene expression in a subset of bone cells. Our data demonstrate for the first time that transgene function persists in the chondro-osseous lineage continuum and exert influence upon bone quantity and quality. PMID:28002442
A Novel Videography Method for Generating Crack-Extension Resistance Curves in Small Bone Samples
Katsamenis, Orestis L.; Jenkins, Thomas; Quinci, Federico; Michopoulou, Sofia; Sinclair, Ian; Thurner, Philipp J.
2013-01-01
Assessment of bone quality is an emerging solution for quantifying the effects of bone pathology or treatment. Perhaps one of the most important parameters characterising bone quality is the toughness behaviour of bone. Particularly, fracture toughness, is becoming a popular means for evaluating bone quality. The method is moving from a single value approach that models bone as a linear-elastic material (using the stress intensity factor, K) towards full crack extension resistance curves (R-curves) using a non-linear model (the strain energy release rate in J-R curves). However, for explanted human bone or small animal bones, there are difficulties in measuring crack-extension resistance curves due to size constraints at the millimetre and sub-millimetre scale. This research proposes a novel “whitening front tracking” method that uses videography to generate full fracture resistance curves in small bone samples where crack propagation cannot typically be observed. Here we present this method on sharp edge notched samples (<1 mm×1 mm×Length) prepared from four human femora tested in three-point bending. Each sample was loaded in a mechanical tester with the crack propagation recorded using videography and analysed using an algorithm to track the whitening (damage) zone. Using the “whitening front tracking” method, full R-curves and J-R curves could be generated for these samples. The curves for this antiplane longitudinal orientation were similar to those found in the literature, being between the published longitudinal and transverse orientations. The proposed technique shows the ability to generate full “crack” extension resistance curves by tracking the whitening front propagation to overcome the small size limitations and the single value approach. PMID:23405186
A neural network technique for remeshing of bone microstructure.
Fischer, Anath; Holdstein, Yaron
2012-01-01
Today, there is major interest within the biomedical community in developing accurate noninvasive means for the evaluation of bone microstructure and bone quality. Recent improvements in 3D imaging technology, among them development of micro-CT and micro-MRI scanners, allow in-vivo 3D high-resolution scanning and reconstruction of large specimens or even whole bone models. Thus, the tendency today is to evaluate bone features using 3D assessment techniques rather than traditional 2D methods. For this purpose, high-quality meshing methods are required. However, the 3D meshes produced from current commercial systems usually are of low quality with respect to analysis and rapid prototyping. 3D model reconstruction of bone is difficult due to the complexity of bone microstructure. The small bone features lead to a great deal of neighborhood ambiguity near each vertex. The relatively new neural network method for mesh reconstruction has the potential to create or remesh 3D models accurately and quickly. A neural network (NN), which resembles an artificial intelligence (AI) algorithm, is a set of interconnected neurons, where each neuron is capable of making an autonomous arithmetic calculation. Moreover, each neuron is affected by its surrounding neurons through the structure of the network. This paper proposes an extension of the growing neural gas (GNN) neural network technique for remeshing a triangular manifold mesh that represents bone microstructure. This method has the advantage of reconstructing the surface of a genus-n freeform object without a priori knowledge regarding the original object, its topology, or its shape.
Tang, S.Y.; Vashishth, D.
2010-01-01
The risk of fracture increases with age due to the decline of bone mass and bone quality. One of the age-related changes in bone quality occurs through the formation and accumulation of advanced glycation end-products (AGEs) due to non-enzymatic glycation (NEG). However as a number of other changes including increased porosity occur with age and affect bone fragility, the relative contribution of AGEs on the fracture resistance of aging bone is unknown. Using a high-resolution nonlinear finite element model that incorporate cohesive elements and micro-computed tomography-based 3d meshes, we investigated the contribution of AGEs and cortical porosity on the fracture toughness of human bone. The results show that NEG caused a 52% reduction in propagation fracture toughness (R-curve slope). The combined effects of porosity and AGEs resulted in an 88% reduction in propagation toughness. These findings are consistent with previous experimental results. The model captured the age-related changes in the R-curve toughening by incorporating bone quantity and bone quality changes, and these simulations demonstrate the ability of the cohesive models to account for the irreversible dynamic crack growth processes affected by the changes in post-yield material behavior. By decoupling the matrix-level effects due to NEG and intracortical porosity, we are able to directly determine the effects of NEG on fracture toughness. The outcome of this study suggests that it may be important to include the age-related changes in the material level properties by using finite element analysis towards the prediction of fracture risk. PMID:21056419
The Bony Side of Endothelial Cells in Prostate Cancer.
Peng, Jia; Kang, Yibin
2017-06-05
Prostate cancer bone metastases are primarily osteoblastic, but the source of bone-forming cells in these lesions remains poorly defined. In this issue of Developmental Cell, Lin et al. (2017) demonstrate that tumor-associated endothelial cells can give rise to osteoblasts in prostate cancer through endothelial-to-osteoblast (EC-to-OSB) conversion. Copyright © 2017 Elsevier Inc. All rights reserved.
Quality standards for bone conduction implants.
Gavilan, Javier; Adunka, Oliver; Agrawal, Sumit; Atlas, Marcus; Baumgartner, Wolf-Dieter; Brill, Stefan; Bruce, Iain; Buchman, Craig; Caversaccio, Marco; De Bodt, Marc T; Dillon, Meg; Godey, Benoit; Green, Kevin; Gstoettner, Wolfgang; Hagen, Rudolf; Hagr, Abdulrahman; Han, Demin; Kameswaran, Mohan; Karltorp, Eva; Kompis, Martin; Kuzovkov, Vlad; Lassaletta, Luis; Li, Yongxin; Lorens, Artur; Martin, Jane; Manoj, Manikoth; Mertens, Griet; Mlynski, Robert; Mueller, Joachim; O'Driscoll, Martin; Parnes, Lorne; Pulibalathingal, Sasidharan; Radeloff, Andreas; Raine, Christopher H; Rajan, Gunesh; Rajeswaran, Ranjith; Schmutzhard, Joachim; Skarzynski, Henryk; Skarzynski, Piotr; Sprinzl, Georg; Staecker, Hinrich; Stephan, Kurt; Sugarova, Serafima; Tavora, Dayse; Usami, Shin-Ichi; Yanov, Yuri; Zernotti, Mario; Zorowka, Patrick; de Heyning, Paul Van
2015-01-01
Bone conduction implants are useful in patients with conductive and mixed hearing loss for whom conventional surgery or hearing aids are no longer an option. They may also be used in patients affected by single-sided deafness. To establish a consensus on the quality standards required for centers willing to create a bone conduction implant program. To ensure a consistently high level of service and to provide patients with the best possible solution the members of the HEARRING network have established a set of quality standards for bone conduction implants. These standards constitute a realistic minimum attainable by all implant clinics and should be employed alongside current best practice guidelines. Fifteen items are thoroughly analyzed. They include team structure, accommodation and clinical facilities, selection criteria, evaluation process, complete preoperative and surgical information, postoperative fitting and assessment, follow-up, device failure, clinical management, transfer of care and patient complaints.
Segura-Castillo, José L; Aguirre-Camacho, Humberto; González-Ojeda, Alejandro; Michel-Perez, Jorge
2005-01-01
A major complication in 30% to 75% of cases of surgical treatment of alveolar cleft is resorption of the bone graft. A treatment alternative is the application of fibrin glue, which has the capacity to favor the integration of the graft. The main objective of the study was to evaluate if the use of the fibrin glue reduces bone resorption when it is applied locally. The authors designed a randomized clinical trial. Patients were divided into two groups: group 1, fibrin glue; and group 2, control. Pre- and postoperative graft volume, bone density, bone quality (Lekholm and Zarb, and Norton and Gamble classifications), and postoperative complications were evaluated. The follow-up for all patients was 3 months after discharge. Twenty-seven patients were surgically treated, 13 in group 1 and 14 in group 2. Group 1 had increased graft volume compared with group 2 (64.32 cm v 21.70 cm; P < 0.0001). Bone density was higher in group 1 than in group 2 (396.57 v 245.68; P > 0.076). Bone quality was type 1, 2 and 3 and 4 in group 1. Resorption in group 2 was 62.26%; in group 1, it was 29.72% (P > 0.081). The observed complications were infection and dehiscence of sutures (P > 0.537). The authors conclude that the fibrin glue significantly diminishes bone resorption, allowing improved graft integration and quality.
Low bone mineral density in ambulatory persons with cerebral palsy? A systematic review.
Mus-Peters, Cindy T R; Huisstede, Bionka M A; Noten, Suzie; Hitters, Minou W M G C; van der Slot, Wilma M A; van den Berg-Emons, Rita J G
2018-05-22
Non-ambulatory persons with cerebral palsy are prone to low bone mineral density. In ambulatory persons with cerebral palsy, bone mineral density deficits are expected to be small or absent, but a consensus conclusion is lacking. In this systematic review bone mineral density in ambulatory persons with cerebral palsy (Gross Motor Function Classification Scales I-III) was studied. Medline, Embase, and Web of Science were searched. According to international guidelines, low bone mineral density was defined as Z-score ≤ -2.0. In addition, we focused on Z-score ≤ -1.0 because this may indicate a tendency towards low bone mineral density. We included 16 studies, comprising 465 patients aged 1-65 years. Moderate and conflicting evidence for low bone mineral density (Z-score ≤ -2.0) was found for several body parts (total proximal femur, total body, distal femur, lumbar spine) in children with Gross Motor Function Classification Scales II and III. We found no evidence for low bone mineral density in children with Gross Motor Function Classification Scale I or adults, although there was a tendency towards low bone mineral density (Z-score ≤ -1.0) for several body parts. Although more high-quality research is needed, results indicate that deficits in bone mineral density are not restricted to non-ambulatory people with cerebral palsy. Implications for Rehabilitation Although more high-quality research is needed, including adults and fracture risk assessment, the current study indicates that deficits in bone mineral density are not restricted to non-ambulatory people with CP. Health care professionals should be aware that optimal nutrition, supplements on indication, and an active lifestyle, preferably with weight-bearing activities, are important in ambulatory people with CP, also from a bone quality point-of-view. If indicated, medication and fall prevention training should be prescribed.
PDGFBB promotes PDGFR{alpha}-positive cell migration into artificial bone in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Shigeyuki; Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582; Iwasaki, Ryotaro
2012-05-18
Highlights: Black-Right-Pointing-Pointer We examined effects of PDGFBB in PDGFR{alpha} positive cell migration in artificial bones. Black-Right-Pointing-Pointer PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. Black-Right-Pointing-Pointer PDGFBB promoted PDGFR{alpha} positive cell migration into artificial bones but not osteoblast proliferation. Black-Right-Pointing-Pointer PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure.more » Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor {alpha} (PDGFR{alpha})-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGF{beta}) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.« less
Synchronous occurrence of prostate carcinoma and multiple myeloma: a case report.
Sehgal, Tushar; Sharma, Sudha; Naseem, Shano; Varma, Neelam; Das, Ashim; Sharma, S C
2014-09-01
We describe a rare case of metastatic prostate cancer to bone marrow and synchronous multiple myeloma as the second malignant disease. Various diagnostic procedures, including cytomorphology and immunohistochemistry analyses together contributed to the detection of metastasis of prostate cancer and synchronous plasma cell proliferation in the bone marrow. The association between these two disorders is poorly understood however, some studies show that bone marrow microenvironment may play a crucial role. The need for further research in this regard is required to unfold this fascinating association.
Augmentation of Rotator Cuff Repair With Soft Tissue Scaffolds
Thangarajah, Tanujan; Pendegrass, Catherine J.; Shahbazi, Shirin; Lambert, Simon; Alexander, Susan; Blunn, Gordon W.
2015-01-01
Background Tears of the rotator cuff are one of the most common tendon disorders. Treatment often includes surgical repair, but the rate of failure to gain or maintain healing has been reported to be as high as 94%. This has been substantially attributed to the inadequate capacity of tendon to heal once damaged, particularly to bone at the enthesis. A number of strategies have been developed to improve tendon-bone healing, tendon-tendon healing, and tendon regeneration. Scaffolds have received considerable attention for replacement, reconstruction, or reinforcement of tendon defects but may not possess situation-specific or durable mechanical and biological characteristics. Purpose To provide an overview of the biology of tendon-bone healing and the current scaffolds used to augment rotator cuff repairs. Study Design Systematic review; Level of evidence, 4. Methods A preliminary literature search of MEDLINE and Embase databases was performed using the terms rotator cuff scaffolds, rotator cuff augmentation, allografts for rotator cuff repair, xenografts for rotator cuff repair, and synthetic grafts for rotator cuff repair. Results The search identified 438 unique articles. Of these, 214 articles were irrelevant to the topic and were therefore excluded. This left a total of 224 studies that were suitable for analysis. Conclusion A number of novel biomaterials have been developed into biologically and mechanically favorable scaffolds. Few clinical trials have examined their effect on tendon-bone healing in well-designed, long-term follow-up studies with appropriate control groups. While there is still considerable work to be done before scaffolds are introduced into routine clinical practice, there does appear to be a clear indication for their use as an interpositional graft for large and massive retracted rotator cuff tears and when repairing a poor-quality degenerative tendon. PMID:26665095
USASOC Injury Prevention/Performance Optimization Musculoskeletal Screening Initiative
2012-11-01
gluteus medius) Poor gait pattern/ Overpronation Tibial Stress Fracture Overloading the bone due to excessive running...Excessively tight iliotibial band Hip musculature weakness (e.g. gluteus medius) Poor gait pattern/ Overpronation Tibial Stress Fracture ...Anatomic Location Specific Injuries Probable Causes All lower extremity is at risk for injury during this exercise Foot fractures Improper
Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage.
Landis, W J
1979-01-01
The use of electron probe x-ray microanalysis in previous studies of bone and cartilage has been reviewed with emphasis on the results which have contributed to some of the current concepts of the mechanism of mineralization in these tissues. A number of investigations continuing in the author's laboratory utilizing high spatial resolution x-ray microanalysis and anhydrous methods of specimen preparation are described, including aspects concerning the derivation of calibration curves from synthetic calcium phosphate solids, qualitative and quantitative analyses of calcium and phosphorus in bone from embryonic chicks and in growth plate cartilage from rats, and the role of organically-bound phosphorus in mineralizing tissues. The data obtained have helped identify brushite, CaHPO4-2H2O, as the major crystalline solid phase of calcium phosphate in the earliest mineral deposits of bone tissue, brushite and poorly crystalline hydroxyapatite in bone mineral of increasing age, and poorly crystalline hydroxyapatite in the most mature mineral portions of the tissue. Growth plate cartilage examination has revealed calcium and phosphorus in single mitochondrial granules within chondrocytes and in certain extracellular particles distinct from matrix vesicles. These results have provided important information about the possible roles of cells, extracellular components, and the organic matrix in the regulation of mineralization and about the composition, structure, and organization of the mineral phase as a function of progressively increasing age and maturation of the tissues studied.
The osteoporotic male: Overlooked and undermanaged?
Madeo, Bruno; Zirilli, Lucia; Caffagni, Giovanni; Diazzi, Chiara; Sanguanini, Alessia; Pignatti, Elisa; Carani, Cesare; Rochira, Vincenzo
2007-01-01
Age-related bone loss in men is a poorly understood phenomenon, although increasing data on the pathophysiology of bone in men is becoming available. Most of what we know on bone pathophysiology derives from studies on women. The well-known association between menopause and osteoporosis is far from been disproven. However, male osteoporosis is a relatively new phenomenon. Its novelty is in part compensated for by the number of studies on female osteoporosis and bone pathophysiology. On the other hand, the deeper understanding of female osteoporosis could lead to an underestimation of this condition in the male counterpart. The longer life-span exposes a number of men to the risk of mild-to-severe hypogonadism which in turn we know to be one of the pathogenetic steps toward the loss of bone mineral content in men and in women. Hypogonadism might therefore be one among many corrigible risk factors such as cigarette smoking and alcohol abuse against which clinicians should act in order to prevent osteoporosis and its complications. Treatments with calcium plus vitamin D and bisphophonates are widely used in men, when osteoporosis is documented and hypogonadism has been excluded. The poor knowledge on male osteoporosis accounts for the lack of well shared protocols for the clinical management of the disease. This review focuses on the clinical approach and treatment strategy for osteoporosis in men with particular attention to its relationship with male hypogonadism. PMID:18044181
NASA Astrophysics Data System (ADS)
Masters, Patricia M.
1987-12-01
Preferential preservation of noncollagenous proteins (NCP) in diagenetically altered bone will affect amino acid compositions, inflate D/L aspartic acid ratios, and increase C/N ratios. Human skeletal remains representing both well preserved (collagenous) and diagenetically altered (noncollagenous) bones were selected from several southern California coastal archaeological sites that date from 8400 to 4100 years B.P. Amino acid compositions of the poorly preserved samples resembled NCP, which are probably retained by adsorption to the hydroxyapatite mineral phase of bone whereas collagen is degraded and lost to the environment over time. Since the racemization rate of aspartic acid in NCP is an order of magnitude faster than in collagen, the conservation of NCP in diagenetically altered bone can explain the high D/L aspartic acid ratios, and the erroneous Upper Pleistocene racemization ages calculated from these ratios, for several California Indian burials. Amino acid compositional analyses also indicated a non-amino acid source of nitrogen in the poorly preserved samples, which may account for their lower C/N ratios despite the acidic amino acid profiles typical of NCP. Preservation of NCP rather than collagen also precludes the extraction of a gelatin residue for radiocarbon dating and stable isotope analyses, but remnant NCP can yield apparently accurate radiocarbon dates. As collagen and phosphoprotein purified from a sample of modern human dentin have the same δ 13C and δ 15N values, remnant NCP may also be useful for paleodiet reconstructions based on stable carbon and nitrogen isotope compositions. Dentin collagen appears to be more resistant to diagenetic changes than does bone collagen. Consequently, dentin promises to be a more reliable material than bone for chronometric and stable isotope measurements.
Effects of boning method and postmortem aging on meat quality characteristics of pork loin.
Li, Chunbao; Wu, Juqing; Zhang, Nan; Zhang, Song; Liu, Juan; Li, Jinping; Li, Hongmin; Feng, Xianchao; Han, Yanqing; Zhu, Zhiyuan; Xu, Xinglian; Zhou, Guanghong
2009-10-01
This work investigated the effects of boning method and postmortem aging on pork loin color, shearing value and sensory attributes. Two experiments were assigned. In Experiment I, 30 Chinese native black pigs were slaughtered and their carcasses were divided into three groups: (i) hot-boning: carcasses were fabricated within 45 min postmortem just after dressing; (ii) cold boning at 24 h: carcasses were fabricated after chilling at 0 degrees C for 24 h; (iii) cold boning at 36 h: carcasses were fabricated after chilling at 0 degrees C for 36 h. In Experiment II, right sides of the second group in Experiment I were used and primal cuts were vacuum packed and aged for 1 day, 8 days and 16 days. Pork loins (Longissimus lumborum) were used for color measurement, shearing test, and sensory evaluation. Among three boning methods, cold-boning at 36 h postmortem had the advantages of giving muscles a better color, the lowest cooking loss and cooked shearing value, and the highest sensory tenderness, juiciness, flavor and overall liking. Postmortem aging could improve pork quality characteristics, but it is not the fact that the longer aging time is, the better pork quality would be. Eight days may be enough to obtain an acceptable sensory attribute. These results are meaningful for pork processing and pork consumption.
Beiske, K; Burchill, S A; Cheung, I Y; Hiyama, E; Seeger, R C; Cohn, S L; Pearson, A D J; Matthay, K K
2009-01-01
Disseminating disease is a predictive and prognostic indicator of poor outcome in children with neuroblastoma. Its accurate and sensitive assessment can facilitate optimal treatment decisions. The International Neuroblastoma Risk Group (INRG) Task Force has defined standardised methods for the determination of minimal disease (MD) by immunocytology (IC) and quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) using disialoganglioside GD2 and tyrosine hydroxylase mRNA respectively. The INRG standard operating procedures (SOPs) define methods for collecting, processing and evaluating bone marrow (BM), peripheral blood (PB) and peripheral blood stem cell harvest by IC and QRT-PCR. Sampling PB and BM is recommended at diagnosis, before and after myeloablative therapy and at the end of treatment. Peripheral blood stem cell products should be analysed at the time of harvest. Performing MD detection according to INRG SOPs will enable laboratories throughout the world to compare their results and thus facilitate quality-controlled multi-centre prospective trials to assess the clinical significance of MD and minimal residual disease in heterogeneous patient groups. PMID:19401690
Krenz-Niedbała, Marta; Łukasik, Sylwia
2016-12-01
Maxillary sinuses of 100 subadults from Cedynia, an early-urban site (stronghold), dated to the 10th-14th centuries AD, and of 28 subadults from Słaboszewo, a rural site, dated to the 14th-17th centuries AD, were examined for bone formation indicative of chronic sinusitis in order to explore the effect of urban and rural environments on the occurrence of upper respiratory tract infections in the past. We expected a higher prevalence of sinusitis in subadults from a stronghold than from a village, because of such factors as crowding, rapid spread of infections, and pollution from workshops located in the streets. We found a statistically non-significant tendency toward a higher prevalence of the condition in Cedynia compared to Słaboszewo (18.0% and 7.1%, respectively). The majority of maxillary lesions were classified as spicules. Changes to bone morphology suggestive of sinusitis of dental origin were not found. The development of observed osseous lesions may be attributed to culturally determined risk factors such as low quality of housing, air pollution caused by smoke from the household hearth and street workshops, poor levels of hygiene, and water contamination. Copyright © 2016 Elsevier Inc. All rights reserved.
Edwards, Jennifer Helen; Reilly, Gwendolen Clair
2015-01-01
Due to the increasing burden on healthcare budgets of musculoskeletal system disease and injury, there is a growing need for safe, effective and simple therapies. Conditions such as osteoporosis severely impact on quality of life and result in hundreds of hours of hospital time and resources. There is growing interest in the use of low magnitude, high frequency vibration (LMHFV) to improve bone structure and muscle performance in a variety of different patient groups. The technique has shown promise in a number of different diseases, but is poorly understood in terms of the mechanism of action. Scientific papers concerning both the in vivo and in vitro use of LMHFV are growing fast, but they cover a wide range of study types, outcomes measured and regimens tested. This paper aims to provide an overview of some effects of LMHFV found during in vivo studies. Furthermore we will review research concerning the effects of vibration on the cellular responses, in particular for cells within the musculoskeletal system. This includes both osteogenesis and adipogenesis, as well as the interaction between MSCs and other cell types within bone tissue. PMID:25914764
An update on the recent literature on sickle cell bone disease.
Osunkwo, Ifeyinwa
2013-12-01
To summarize the findings of the recent publications on sickle cell bone disease (SBD). Individuals with sickle cell disease (SCD) are living longer and develop progressive organ damage including SBD with age. Recent studies suggest alternative radiological diagnostics such as ultrasound and scintigraphy can detect and differentiate between different forms of SBD. MRI with or without diffusion-weighted sequences remains the gold standard. Case reports of cranio-orofacial SBD highlight the rarity of this presentation. Vitamin D deficiency is highly prevalent at all ages, but may not be an independent risk factor for avascular necrosis (AVN). Gene polymorphisms of the Annexin A gene may predict AVN in SCD. A recent study demonstrated reduced days with pain and improved physical activity quality of life following high-dose vitamin D therapy. The high rates of osteopenia and osteoporosis in SCD support the need for research addressing this rising public health problem. Lastly, results of total hip arthroplasty for AVN in SCD has improved significantly over time with the use of cementless prosthetic material and improved supportive care. SBD remains poorly studied. Prospective randomized studies targeting predictors, diagnostics, prevention, and treatment options for SBD are sorely needed.
Tokai, Koichi; Miyatani, Hiroyuki; Yoshida, Yukio; Yamada, Shigeki
2012-01-01
A 75-year old man had been diagnosed at 42 years of age as having polycythemia vera and had been monitored at another hospital. Progression of anemia had been recognized at about age 70, and the patient was thus referred to our center in 2008 where secondary myelofibrosis was diagnosed based on bone marrow biopsy findings. Hematemesis due to rupture of esophageal varices occurred in January and February of 2011. The bleeding was stopped by endoscopic variceal ligation. Furthermore, in March of the same year, hematemesis recurred and the patient was transported to our center. He was in irreversible hemorrhagic shock and died. The autopsy showed severe bone marrow fibrosis with mainly argyrophilic fibers, an observation consistent with myelofibrosis. The liver weighed 1856 g the spleen 1572 g, indicating marked hepatosplenomegaly. The liver and spleen both showed extramedullary hemopoiesis. Myelofibrosis is often complicated by portal hypertension and is occasionally associated with gastrointestinal hemorrhage due to esophageal varices. A patient diagnosed as having myelofibrosis needs to be screened for esophageal/gastric varices. Myelofibrosis has a poor prognosis. Therefore, it is necessary to carefully decide the therapeutic strategy in consideration of the patient’s concomitant conditions, treatment invasiveness and quality of life. PMID:22851873
Haudenschild, Dominik R.; Wegner, Adam M.; Klineberg, Eric O.
2017-01-01
Study Design: Review of literature. Objectives: This review of literature investigates the application of mesenchymal stem cells (MSCs) in spinal fusion, highlights potential uses in the development of bone grafts, and discusses limitations based on both preclinical and clinical models. Methods: A review of literature was conducted looking at current studies using stem cells for augmentation of spinal fusion in both animal and human models. Results: Eleven preclinical studies were found that used various animal models. Average fusion rates across studies were 59.8% for autograft and 73.7% for stem cell–based grafts. Outcomes included manual palpation and stressing of the fusion, radiography, micro–computed tomography (μCT), and histological analysis. Fifteen clinical studies, 7 prospective and 8 retrospective, were found. Fusion rates ranged from 60% to 100%, averaging 87.1% in experimental groups and 87.2% in autograft control groups. Conclusions: It appears that there is minimal clinical difference between commercially available stem cells and bone marrow aspirates indicating that MSCs may be a good choice in a patient with poor marrow quality. Overcoming morbidity and limitations of autograft for spinal fusion, remains a significant problem for spinal surgeons and further studies are needed to determine the efficacy of stem cells in augmenting spinal fusion. PMID:29238646
Osteomyelitis in the diabetic foot: diagnosis and management.
Game, Frances L
2013-09-01
Although osteomyelitis of the foot in diabetes remains common in specialist foot clinics across the world, the quality of published work to guide clinicians in the diagnosis and management is generally poor. Diagnosis should be based primarily on clinical signs supported by results of pathologic and radiologic investigations. Although the gold standard comes from the histologic and microbiological examination of bone, clinicians should be aware of the problems of sampling error. This lack of standardization of diagnostic criteria and of consensus on the choice of outcome measures poses further difficulties when seeking evidence to support management decisions. Experts have traditionally recommended surgical removal of infected bone but available evidence suggests that in many cases (excepting those in whom immediate surgery is required to save life or limb) a nonsurgical approach to management of osteomyelitis may be effective for many, if not most, patients with osteomyelitis of the diabetic foot. The benefits and limitations of both approaches need, however, to be established in prospective trials so that appropriate therapy can be offered to appropriate patients at the appropriate time, with the patients' views taken fully into account. Copyright © 2013 Elsevier Inc. All rights reserved.
The Ovariectomized Rat as a Model for Studying Alveolar Bone Loss in Postmenopausal Women
Johnston, Bryan D.; Ward, Wendy E.
2015-01-01
In postmenopausal women, reduced bone mineral density at the hip and spine is associated with an increased risk of tooth loss, possibly due to a loss of alveolar bone. In turn, having fewer natural teeth may lead to compromised food choices resulting in a poor diet that can contribute to chronic disease risk. The tight link between alveolar bone preservation, tooth retention, better nutritional status, and reduced risk of developing a chronic disease begins with the mitigation of postmenopausal bone loss. The ovariectomized rat, a widely used preclinical model for studying postmenopausal bone loss that mimics deterioration of bone tissue in the hip and spine, can also be used to study mineral and structural changes in alveolar bone to develop drug and/or dietary strategies aimed at tooth retention. This review discusses key findings from studies investigating mandible health and alveolar bone in the ovariectomized rat model. Considerations to maximize the benefits of this model are also included. These include the measurement techniques used, the age at ovariectomy, the duration that a rat is studied after ovariectomy and habitual diet consumed. PMID:26060817
Skedros, John G; Holmes, Jennifer L; Vajda, Eric G; Bloebaum, Roy D
2005-09-01
Using qualitative backscattered electron (BSE) imaging and quantitative energy dispersive X-ray (EDX) spectroscopy, some investigators have concluded that cement (reversal) lines located at the periphery of secondary osteons are poorly mineralized viscous interfaces with respect to surrounding bone. This conclusion contradicts historical observations of apparent highly mineralized (or collagen-deficient) cement lines in microradiographs. Such conclusions, however, may stem from unrecognized artifacts that can occur during scanning electron microscopy. These include specimen degradation due to high-energy beams and the sampling of electron interaction volumes that extend beyond target locations during EDX analysis. This study used quantitative BSE imaging and EDX analysis, each with relatively lower-energy beams, to test the hypothesis that cement lines are poorly mineralized. Undemineralized adult human femoral diaphyses (n = 8) and radial diaphyses (n = 5) were sectioned transversely, embedded in polymethyl methacrylate, and imaged in a scanning electron microscope for BSE and EDX analyses. Unembedded samples were also evaluated. Additional thin embedded samples were stained and evaluated with light microscopy and correlated BSE imaging. BSE analyses showed the consistent presence of a bright line (higher atomic number) coincident with the classical location and description of the cement line. This may represent relative hypermineralization or, alternatively, collagen deficiency with respect to surrounding bone. EDX analyses of cement lines showed either higher Ca content or equivalent Ca content when compared to distant osteonal and interstitial bone. These data reject the hypothesis that cement lines of secondary osteons are poorly mineralized. Copyright 2005 Wiley-Liss, Inc
Tunio, Ahmed; Jalila, Abu; Goh, Yong Meng; Shameha-Intan; Shanthi, Ganabadi
2015-06-01
Fracture and bone segment loss are major clinical problems in birds. Achieving bone formation and clinical union in a fracture case is important for the survival of the bird. To evaluate the efficacy of bone grafts for defect healing in birds, 2 different bone grafts were investigated in the healing of a bone defect in 24 healthy pigeons ( Columba livia ). In each bird, a 1-cm critical size defect (CSD) was created in the left ulna, and the fracture was stabilized with external skeletal fixation (ESF). A graft of hydroxyapatite (HA) alone (n = 12 birds) or demineralized bone matrix (DBM) combined with HA (n = 12 birds) was implanted in the CSD. The CSD healing was evaluated at 3 endpoints: 3, 6, and 12 weeks after surgery. Four birds were euthanatized at each endpoint from each treatment group, and bone graft healing in the ulna CSD was evaluated by histologic examination. The CSD and graft implants were evaluated for quality of union, cortex development, and bone graft incorporation. Results showed no graft rejection in any bird, and all birds had connective tissue formation in the defect because of the bone graft application. These results suggest that bone defect healing can be achieved by a combination of osteoinductive and osteoconductive bone graft materials for clinical union and new bone regeneration in birds. The combination of DBM and HA resulted in a better quality bone graft (P < .05) than did HA alone, but there was no significant differences in cortex development or bone graft incorporation at 3, 6, or 12 weeks. From the results of this study, we conclude that HA bone grafts, alone or in combination with DBM, with external skeletal fixation is suitable and safe for bone defect and fracture treatment in pigeons.
Altered paracrine signaling from the injured knee joint impairs postnatal long bone growth.
Roselló-Díez, Alberto; Stephen, Daniel; Joyner, Alexandra L
2017-07-25
Regulation of organ growth is a poorly understood process. In the long bones, the growth plates (GPs) drive elongation by generating a scaffold progressively replaced by bone. Although studies have focused on intrinsic GP regulation, classic and recent experiments suggest that local signals also modulate GP function. We devised a genetic mouse model to study extrinsic long bone growth modulation, in which injury is specifically induced in the left hindlimb, such that the right hindlimb serves as an internal control. Remarkably, when only mesenchyme cells surrounding postnatal GPs were killed, left bone growth was nevertheless reduced. GP signaling was impaired by altered paracrine signals from the knee joint, including activation of the injury response and, in neonates, dampened IGF1 production. Importantly, only the combined prevention of both responses rescued neonatal growth. Thus, we identified signals from the knee joint that modulate bone growth and could underlie establishment of body proportions.
NASA Astrophysics Data System (ADS)
Hui, S. K.; Prior, J.; Gelbart, Z.; Johnson, R. R.; Lentle, B. C.; Paul, M.
2007-06-01
The mechanisms governing calcium fluxes during bone remodeling processes in perimenopausal women are poorly known. Despite higher, albeit erratic, estradiol levels in perimenopause, spine bone loss is greater than during the first five years past the final menstrual flow when estradiol becomes low. Understanding changes during this dynamic transition are important to prevent fragility fractures in midlife and older women. The exploration of long-lived 41Ca (T1/2 = 1.04 × 105 yrs) tracer measurements using accelerator mass spectrometry (AMS) leads to the possibility of monitoring bone remodeling balance. With this new technology, we explored a pilot long-term feasibility study of bone health by measuring the 41Ca trace element in urine for six years from premenopausal to later perimenopausal phases in one midlife woman. We measured bone mineral density in parallel.
Alippi, Rosa M; Picasso, Emilio; Huygens, Patricia; Bozzini, Carlos E; Bozzini, Clarisa
2012-01-01
This study compares the effects of feeding growing rats with increasing concentrations of casein (C) and wheat gluten (G), proteins that show different biological qualities, on the morphometrical and biomechanical properties of the femoral diaphysis. Female rats were fed with one of ten diets containing different concentrations (5-30%) of C and G between the 30th and 90th days of life (Control=C-20%). Biomechanical structural properties of the right femur middiaphysis were estimated using a 3-point bending mechanical test with calculation of some indicators of bone material properties. Body weight and length were affected by treatments, values being highest in rats fed the C-20% diet. G diets affected negatively both parameters. Changes in cross-sectional geometry (mid-diaphyseal cross-sectional and cortical areas, femoral volume, and rectangular moment of inertia) were positively related to the C content of the diet, while they were severely and negatively affected by G diets. Similar behaviors were observed in the bone structural properties (fracture load, yielding load, diaphyseal stiffness and elastic energy absorption). When values of strength and stiffness were normalized for body weight, the differences disappeared. The bone material quality indicators (elastic modulus, yielding stress, elastic energy absorption/volume) did not differ significantly among all studied groups. Femoral calcium concentration in ashes was not significantly different among groups. The clear differences in strength and stiffness of bone beams induced by dietary protein concentration and quality seemed to be the result of an induced subnormal gain in bone structural properties as a consequence of a correlative subnormal gain in bone growth and mass, yet not in bone material properties. Copyright © 2011 SEEN. Published by Elsevier Espana. All rights reserved.
Sieker, J T; Kunz, M; Weißenberger, M; Gilbert, F; Frey, S; Rudert, M; Steinert, A F
2015-03-01
Bone morphogenetic protein 2 (BMP-2, encoded by BMP2) and Indian hedgehog protein (IHH, encoded by IHH) are well known regulators of chondrogenesis and chondrogenic hypertrophy. Despite being a potent chondrogenic factor BMP-2 was observed to induce chondrocyte hypertrophy in osteoarthritis (OA), growth plate cartilage and adult mesenchymal stem cells (MSCs). IHH might induce chondrogenic differentiation through different intracellular signalling pathways without inducing subsequent chondrocyte hypertrophy. The primary objective of this study is to test the efficacy of direct BMP2 and IHH gene delivery via bone marrow coagulates to influence histological repair cartilage quality in vivo. Vector-laden autologous bone marrow coagulates with 10(11) adenoviral vector particles encoding BMP2, IHH or the Green fluorescent protein (GFP) were delivered to 3.2 mm osteochondral defects in the trochlea of rabbit knees. After 13 weeks the histological repair cartilage quality was assessed using the ICRS II scoring system and the type II collagen positive area. IHH treatment resulted in superior histological repair cartilage quality than GFP controls in all of the assessed parameters (with P < 0.05 in five of 14 assessed parameters). Results of BMP2 treatment varied substantially, including severe intralesional bone formation in two of six joints after 13 weeks. IHH gene transfer is effective to improve repair cartilage quality in vivo, whereas BMP2 treatment, carried the risk intralesional bone formation. Therefore IHH protein can be considered as an attractive alternative candidate growth factor for further preclinical research and development towards improved treatments for articular cartilage defects. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Lewiecki, E Michael
2010-01-01
Introduction: Osteoporosis is a disease characterized by low bone mineral density and poor bone quality resulting in reduced bone strength and increased risk of fracture. Oral bisphosphonates, first-line therapy for most patients with osteoporosis, are associated with suboptimal adherence to therapy due to factors that include a complex dosing regimen and gastrointestinal intolerance in some patients. Intravenous bisphosphonates address these limitations through infrequent injectable dosing that assures 100% bioavailability. Intravenous zoledronic acid is the newest bisphosphonate to be approved for the treatment of osteoporosis. Aims: This review assesses the evidence for the therapeutic effects of intravenous zoledronic acid for the treatment of osteoporosis. Evidence review: Zoledronic acid 5 mg administered as an annual 15-min intravenous infusion has been shown to reduce the risk of vertebral fractures, hip fractures, and other fractures in a three-year randomized, double-blind, placebo-controlled trial in women with postmenopausal osteoporosis. In a randomized, double-blind, placebo-controlled trial in women and men with a recent surgical repair of low-trauma hip fracture, it reduced the risk of new clinical fractures and improved survival. In both studies, zoledronic acid was associated with a good safety profile and was generally well tolerated. Zoledronic acid has the potential to improve clinical outcomes by reducing the risk of fracture in patients with osteoporosis. Clinical value: Intravenous zoledronic acid 5 mg every 12 months reduces fracture risk in women with postmenopausal osteoporosis and in women and men with recent low-trauma hip fracture. PMID:20694061
van Vendeloo, S N; Brand, P L P; Verheyen, C C P M
2014-08-01
We aimed to determine quality of life and burnout among Dutch orthopaedic trainees following a modern orthopaedic curriculum, with strict compliance to a 48-hour working week. We also evaluated the effect of the clinical climate of learning on their emotional well-being. We assessed burnout, quality of life and the clinical climate of learning in 105 orthopaedic trainees using the Maslach Burnout Inventory, linear analogue scale self-assessments, and Dutch Residency Educational Climate Test (D-RECT), respectively. A total of 19 trainees (18%) had poor quality of life and 49 (47%) were dissatisfied with the balance between their personal and professional life. Some symptoms of burnout were found in 29 trainees (28%). Higher D-RECT scores (indicating a better climate of learning) were associated with a better quality of life (r = 0.31, p = 0.001), more work-life balance satisfaction (r = 0.31, p = 0.002), fewer symptoms of emotional exhaustion (r = -0.21, p = 0.028) and depersonalisation (r = -0,28, p = 0.04). A reduced quality of life with evidence of burnout were still seen in a significant proportion of orthopaedic trainees despite following a modern curriculum with strict compliance to a 48-hour working week. It is vital that further work is undertaken to improve the quality of life and reduce burnout in this cohort. ©2014 The British Editorial Society of Bone & Joint Surgery.
Gebert, A; Peters, J; Bishop, N E; Westphal, F; Morlock, M M
2009-01-01
Primary stability is essential to the success of uncemented prostheses. It is strongly influenced by implantation technique, implant design and bone quality. The goal of this study was to investigate the effect of press-fit parameters on the primary stability of uncemented femoral head resurfacing prostheses. An in vitro study with human specimens and prototype implants (nominal radial interference 170 and 420 microm) was used to investigate the effect of interference on primary stability. A finite element model was used to assess the influence of interference, friction between implant and bone, and bone quality. Primary stability was represented by the torque capacity of the implant. The model predicted increasing stability with actual interference, bone quality and friction coefficient; plastic deformation of the bone began at interferences of less than 100 microm. Experimentally, however, stability was not related to interference. This may be due to abrasion or the collapse of trabecular bone structures at higher interferences, which could not be captured by the model. High nominal interferences as tested experimentally appear unlikely to result in improved stability clinically. An implantation force of about 2,500 N was estimated to be sufficient to achieve a torque capacity of about 30 N m with a small interference (70 microm).
Removal of bone in CT angiography by multiscale matched mask bone elimination.
Gratama van Andel, H A F; Venema, H W; Streekstra, G J; van Straten, M; Majoie, C B L M; den Heeten, G J; Grimbergen, C A
2007-10-01
For clear visualization of vessels in CT angiography (CTA) images of the head and neck using maximum intensity projection (MIP) or volume rendering (VR) bone has to be removed. In the past we presented a fully automatic method to mask the bone [matched mask bone elimination (MMBE)] for this purpose. A drawback is that vessels adjacent to bone may be partly masked as well. We propose a modification, multiscale MMBE, which reduces this problem by using images at two scales: a higher resolution than usual for image processing and a lower resolution to which the processed images are transformed for use in the diagnostic process. A higher in-plane resolution is obtained by the use of a sharper reconstruction kernel. The out-of-plane resolution is improved by deconvolution or by scanning with narrower collimation. The quality of the mask that is used to remove bone is improved by using images at both scales. After masking, the desired resolution for the normal clinical use of the images is obtained by blurring with Gaussian kernels of appropriate widths. Both methods (multiscale and original) were compared in a phantom study and with clinical CTA data sets. With the multiscale approach the width of the strip of soft tissue adjacent to the bone that is masked can be reduced from 1.0 to 0.2 mm without reducing the quality of the bone removal. The clinical examples show that vessels adjacent to bone are less affected and therefore better visible. Images processed with multiscale MMBE have a slightly higher noise level or slightly reduced resolution compared with images processed by the original method and the reconstruction and processing time is also somewhat increased. Nevertheless, multiscale MMBE offers a way to remove bone automatically from CT angiography images without affecting the integrity of the blood vessels. The overall image quality of MIP or VR images is substantially improved relative to images processed with the original MMBE method.
Pomeroy, Emma; Macintosh, Alison; Wells, Jonathan C K; Cole, Tim J; Stock, Jay T
2018-05-01
Estimating body mass from skeletal dimensions is widely practiced, but methods for estimating its components (lean and fat mass) are poorly developed. The ability to estimate these characteristics would offer new insights into the evolution of body composition and its variation relative to past and present health. This study investigates the potential of long bone cross-sectional properties as predictors of body, lean, and fat mass. Humerus, femur and tibia midshaft cross-sectional properties were measured by peripheral quantitative computed tomography in sample of young adult women (n = 105) characterized by a range of activity levels. Body composition was estimated from bioimpedance analysis. Lean mass correlated most strongly with both upper and lower limb bone properties (r values up to 0.74), while fat mass showed weak correlations (r ≤ 0.29). Estimation equations generated from tibial midshaft properties indicated that lean mass could be estimated relatively reliably, with some improvement using logged data and including bone length in the models (minimum standard error of estimate = 8.9%). Body mass prediction was less reliable and fat mass only poorly predicted (standard errors of estimate ≥11.9% and >33%, respectively). Lean mass can be predicted more reliably than body mass from limb bone cross-sectional properties. The results highlight the potential for studying evolutionary trends in lean mass from skeletal remains, and have implications for understanding the relationship between bone morphology and body mass or composition. © 2018 The Authors. American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.
Endothelial Barrier and Metabolism: New Kids on the Block Regulating Bone Marrow Vascular Niches.
Harjes, Ulrike; Verfaillie, Catherine; Carmeliet, Peter
2016-05-09
The vasculature of the bone marrow remains poorly characterized, yet crucial to maintain hematopoiesis and retain stem cells in a quiescent state. A recent study by Itkin et al. (2016) in Nature reports how vascular barrier integrity and endothelial cell metabolism regulate hematopoietic stem cell quiescence and leukocyte trafficking. Copyright © 2016 Elsevier Inc. All rights reserved.
Hearing rehabilitation in Treacher Collins Syndrome with bone anchored hearing aid
Polanski, José Fernando; Plawiak, Anna Clara; Ribas, Angela
2015-01-01
Objective: To describe a case of hearing rehabilitation with bone anchored hearing aid in a patient with Treacher Collins syndrome. Case description: 3 years old patient, male, with Treacher Collins syndrome and severe complications due to the syndrome, mostly related to the upper airway and hearing. He had bilateral atresia of external auditory canals, and malformation of the pinna. The initial hearing rehabilitation was with bone vibration arch, but there was poor acceptance due the discomfort caused by skull compression. It was prescribed a model of bone-anchored hearing aid, in soft band format. The results were evaluated through behavioral hearing tests and questionnaires Meaningful Use of Speech Scale (MUSS) and Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS). Comments: The patient had a higher acceptance of the bone-anchored hearing aid compared to the traditional bone vibration arch. Audiological tests and the speech and auditory skills assessments also showed better communication and hearing outcomes. The bone-anchored hearing aid is a good option in hearing rehabilitation in this syndrome. PMID:26298651
Kim, Yoon Jeong; Henkin, Jeffrey
2015-04-01
Micro-computed tomography (micro-CT) is a valuable means to evaluate and secure information related to bone density and quality in human necropsy samples and small live animals. The aim of this study was to assess the bone density of the alveolar jaw bones in human cadaver, using micro-CT. The correlation between bone density and three-dimensional micro architecture of trabecular bone was evaluated. Thirty-four human cadaver jaw bone specimens were harvested. Each specimen was scanned with micro-CT at resolution of 10.5 μm. The bone volume fraction (BV/TV) and the bone mineral density (BMD) value within a volume of interest were measured. The three-dimensional micro architecture of trabecular bone was assessed. All the parameters in the maxilla and the mandible were subject to comparison. The variables for the bone density and the three-dimensional micro architecture were analyzed for nonparametric correlation using Spearman's rho at the significance level of p < .05. A wide range of bone density was observed. There was a significant difference between the maxilla and mandible. All micro architecture parameters were consistently higher in the mandible, up to 3.3 times greater than those in the maxilla. The most linear correlation was observed between BV/TV and BMD, with Spearman's rho = 0.99 (p = .01). Both BV/TV and BMD were highly correlated with all micro architecture parameters with Spearman's rho above 0.74 (p = .01). Two aspects of bone density using micro-CT, the BV/TV and BMD, are highly correlated with three-dimensional micro architecture parameters, which represent the quality of trabecular bone. This noninvasive method may adequately enhance evaluation of the alveolar bone. © 2013 Wiley Periodicals, Inc.
Zhang, Pan; Lou, Peian; Chang, Guiqiu; Chen, Peipei; Zhang, Lei; Li, Ting; Qiao, Cheng
2016-04-05
Poor sleep quality and depression negatively impact the health-related quality of life of patients with type 2 diabetes, but the combined effect of the two factors is unknown. This study aimed to assess the interactive effects of poor sleep quality and depression on the quality of life in patients with type 2 diabetes. Patients with type 2 diabetes (n = 944) completed the Diabetes Specificity Quality of Life scale (DSQL) and questionnaires on sleep quality and depression. The products of poor sleep quality and depression were added to the logistic regression model to evaluate their multiplicative interactions, which were expressed as the relative excess risk of interaction (RERI), the attributable proportion (AP) of interaction, and the synergy index (S). Poor sleep quality and depressive symptoms both increased DSQL scores. The co-presence of poor sleep quality and depressive symptoms significantly reduced DSQL scores by a factor of 3.96 on biological interaction measures. The relative excess risk of interaction was 1.08. The combined effect of poor sleep quality and depressive symptoms was observed only in women. Patients with both depressive symptoms and poor sleep quality are at an increased risk of reduction in diabetes-related quality of life, and this risk is particularly high for women due to the interaction effect. Clinicians should screen for and treat sleep difficulties and depressive symptoms in patients with type 2 diabetes.
Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss
NASA Technical Reports Server (NTRS)
Halloran, B.; Weider, T.; Morey-Holton, E.
1999-01-01
The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.
Pandey, Shweta; Bajaj, Bhupender Kumar; Wadhwa, Ankur; Anand, Kuljeet Singh
2016-09-01
Poor sleep quality contributes to the inferior quality of life of patients with Parkinson's disease (PD) despite appropriate treatment of motor symptoms. The literature about the impact of sleep quality on quality of life of patients with PD is as yet sparse. One hundred patients of PD diagnosed as per UK Brain Bank criteria were assessed for severity and stage of PD using UPDRS and modified Hoehn &Yahr scales. The quality of sleep was assessed by Pittsburgh Sleep Quality Index and excessive daytime somnolence (EDS) was evaluated using Epworth Sleepiness Scale. Parkinson's Disease Questionnaire -39 (PDQ-39) was used to determine quality of life of the patients. Comorbid depression and anxiety were assessed using Inventory of Depressive Symptoms-Self Rated and Hamilton Anxiety Rating Scale. Pearson's correlation and multiple linear regressions were used to analyze relation of sleep quality with quality of life of patients. Fifty patients had poor sleep quality. EDS was present in only 9 patients. Co-morbid depression and anxiety were present in 52 and 34 patients respectively. While the motor severity assessed by UPDRS-III was observed to adversely affect quality of life, it did not negatively impact quality of sleep. Higher score on UPDRS-total and UPDRS IV suggesting advanced disease correlated with poor sleep quality. Depression and anxiety were significantly more frequent in patients with poor sleep quality (p<0.01). Patients with poor sleep quality had worse quality of life (r=0.338, p<0.05). Depression and anxiety were also observed to have significant negative impact on quality of life of PD patients (p<0.01). Poor sleep quality was not found to be an independent predictor of quality of life using multiple linear regression analysis. Poor sleep quality along with comorbid depression, anxiety and advanced stage of disease is associated with poor quality of life. Copyright © 2016 Elsevier B.V. All rights reserved.
2014-01-01
Background Bone graft substitutes are widely used for reconstruction of posttraumatic bone defects. However, their clinical significance in comparison to autologous bone grafting, the gold-standard in reconstruction of larger bone defects, still remains under debate. This prospective, randomized, controlled clinical study investigates the differences in pain, quality of life, and cost of care in the treatment of tibia plateau fractures-associated bone defects using either autologous bone grafting or bioresorbable hydroxyapatite/calcium sulphate cement (CERAMENT™|BONE VOID FILLER (CBVF)). Methods/Design CERTiFy (CERament™ Treatment of Fracture defects) is a prospective, multicenter, controlled, randomized trial. We plan to enroll 136 patients with fresh traumatic depression fractures of the proximal tibia (types AO 41-B2 and AO 41-B3) in 13 participating centers in Germany. Patients will be randomized to receive either autologous iliac crest bone graft or CBVF after reduction and osteosynthesis of the fracture to reconstruct the subchondral bone defect and prevent the subsidence of the articular surface. The primary outcome is the SF-12 Physical Component Summary at week 26. The co-primary endpoint is the pain level 26 weeks after surgery measured by a visual analog scale. The SF-12 Mental Component Summary after 26 weeks and costs of care will serve as key secondary endpoints. The study is designed to show non-inferiority of the CBVF treatment to the autologous iliac crest bone graft with respect to the physical component of quality of life. The pain level at 26 weeks after surgery is expected to be lower in the CERAMENT bone void filler treatment group. Discussion CERTiFy is the first randomized multicenter clinical trial designed to compare quality of life, pain, and cost of care in the use of the CBVF and the autologous iliac crest bone graft in the treatment of tibia plateau fractures. The results are expected to influence future treatment recommendations. Trial registration number ClinicalTrials.gov: NCT01828905 PMID:24606670
Dalle Carbonare, L; Bertoldo, F; Lo Cascio, V
2009-01-01
Bisphosphonates are the most commonly prescribed medications for the treatment of osteoporosis. Despite evidence supporting the anti-fracture efficacy of aminobisphosphonates approximately 50% of patients do not follow their prescribed treatment regimen and/or discontinue treatment within the first year. Poor compliance is associated with negative outcomes, including increased fracture risk. Tolerability and safety are among the causes of poor compliance. Intravenous bisphosphonates avoids the gastrointestial intolerance and the complex dosing instruction of the oral route ensuring full compliance which may provide improved efficacy. However, there are some concerns regarding potent intravenous bisphosphonates as zoledronic acid with respect to tolerability, mainly the acute phase response and to safety, mainly a theoretical risk of over suppression of bone turnover, renal toxicity and osteonecrosis of the jaw. In the HORIZON study, 152 patients on active treatment (82) or placebo (70) underwent to a bone biopsy after double tetracycline labeling. Bone biopsies (iliac crest) were obtained at the final visit at month 36, 1 year after the last infusion. The biopsies were analyzed by histomorphometry on bone sections and by micro-CT (microCT) analysis. One hundred forthy-three biopsies (76 zoledronic acid, 67 placebo) had at least one microCT parameter measured and 111 were available for quantitative histomorphometry (59 zoledronic acid, 52 placebo). Micro-CT analysis of bone structure revealed higher trabecular bone volume (BV/TV), decreased trabecular separation (Tb.Sp), and a strong trend towards improvement in connectivity density in biopsies obtained from patients treated with zoledronic acid, indicating preservation of trabecular bone structure with respect to placebo. Histomorphometric analysis obtained from patients treated with zoledronic acid exhibited reduction of bone turnover, as suggested by decreased activation frequency (Ac.F) by 63%, mineralizing surface (MS/BS), bone formation rate (BFR/BV). In addition, mineral appositional rate (MAR), reflecting the bone-forming capacity of osteoblastic teams at the bone multicellular unit (BMU) level, was significantly higher in patients on active treatment. No sign of excessive suppression of bone turnover or mineralization impairment was detected, confirming the safety of the treatment with intravenous zoledronic acid once a year. These interesting findings are discussed in the article, particularly in terms of new histomorphometric results and clinical findings supporting the tolerability and safety of zoledronic acid.
The Role of Hedgehog Signaling in Tumor Induced Bone Disease
Cannonier, Shellese A.; Sterling, Julie A.
2015-01-01
Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors. PMID:26343726
Vitamin E and the Healing of Bone Fracture: The Current State of Evidence
Borhanuddin, Boekhtiar; Mohd Fozi, Nur Farhana; Naina Mohamed, Isa
2012-01-01
Background. The effect of vitamin E on health-related conditions has been extensively researched, with varied results. However, to date, there was no published review of the effect of vitamin E on bone fracture healing. Purpose. This paper systematically audited past studies of the effect of vitamin E on bone fracture healing. Methods. Related articles were identified from Medline, CINAHL, and Scopus databases. Screenings were performed based on the criteria that the study must be an original study that investigated the independent effect of vitamin E on bone fracture healing. Data were extracted using standardised forms, followed by evaluation of quality of reporting using ARRIVE Guidelines, plus recalculation procedure for the effect size and statistical power of the results. Results. Six animal studies fulfilled the selection criteria. The study methods were heterogeneous with mediocre reporting quality and focused on the antioxidant-related mechanism of vitamin E. The metasynthesis showed α-tocopherol may have a significant effect on bone formation during the normal bone remodeling phase of secondary bone healing. Conclusion. In general, the effect of vitamin E on bone fracture healing remained inconclusive due to the small number of heterogeneous and mediocre studies included in this paper. PMID:23304211
Cook, Jeremy J; Summers, N Jake; Cook, Emily A
2015-01-01
Electromagnetic fields and their uses in bone healing have been fairly well studied, with most results showing improvement in healing of both bone and cartilage. Most supportive data are found in relation to the spine, femur, and tibia, but there is increasing evidence for its use in the foot and ankle for treatment of nonunions and as an adjunctive device in arthrodeses, particularly in high-risk populations. There are varying data and a significant variety of quality in the current research and publications concerning the use of electrical bone stimulation in the treatment of the foot and ankle. Thus, there is a definite need for further investigation and high-quality study designs to determine the most effective treatment modalities and pathologies best used with bone stimulation. Bone stimulation should be viewed as an adjunctive procedure in which the surgeon optimizes the high-risk patient both medically or surgically whenever possible. But when used appropriately, bone stimulation has the potential to influence outcomes and aid in bone healing when complications arise and in high-risk populations. Copyright © 2015 Elsevier Inc. All rights reserved.
Hatakeyama, Ichiro; Takahashi, Yukinobu; Omura, Ken
2014-01-01
Alveolar bone resorption generally occurs during healing after tooth extraction. This study aimed to evaluate the effects of platelet-poor plasma (PPP), platelet-rich plasma (PRP), and platelet-rich fibrin (PRF) on healing in a ridge-augmentation model of the canine socket with dehiscence of the buccal wall. The third mandibular premolars of 12 beagle dogs were extracted and a 3 mm buccal dehiscence from the alveolar crest to the buccal wall of the extraction socket was created. These sockets were then divided into four groups on the basis of the material used to fill the sockets: PPP, PRP, PRF, and control (no graft material) groups. Results were evaluated at 4 and 8 weeks after surgery. The ultrastructural morphology and constructs of each blood product were studied by a scanning electron microscope (SEM) or calculating concentrations of platelets, fibrinogen, platelet-derived growth factor, and transforming growth factor-β. A total of five microcomputed tomography images of specimens were selected for measurement, and the area occupied by the newly formed bone as well as the horizontal bone width were measured. Moreover, decalcified tissue specimens from each defect were analyzed histologically. The median area of new bone at 4 and 8 weeks and median horizontal bone width at 8 weeks were the highest in the PPP group. However, bone maturation in the PRF and the PRP groups was more progressed than that in the PPP and control groups. By SEM findings, the PRF group showed a more highly condensed fibrin fiber network that was regularly arranged when compared with the PPP and PRP groups. The growth factors released from platelets in PRP indicated higher concentrations than that in PRF. Under more severe conditions for bone formation, as in this experiment, the growth factors released from platelets had a negative effect on bone formation. This study showed that PPP is an effective material for the preservation of sockets with buccal dehiscence. PMID:24098948
Hatakeyama, Ichiro; Marukawa, Eriko; Takahashi, Yukinobu; Omura, Ken
2014-02-01
Alveolar bone resorption generally occurs during healing after tooth extraction. This study aimed to evaluate the effects of platelet-poor plasma (PPP), platelet-rich plasma (PRP), and platelet-rich fibrin (PRF) on healing in a ridge-augmentation model of the canine socket with dehiscence of the buccal wall. The third mandibular premolars of 12 beagle dogs were extracted and a 3 mm buccal dehiscence from the alveolar crest to the buccal wall of the extraction socket was created. These sockets were then divided into four groups on the basis of the material used to fill the sockets: PPP, PRP, PRF, and control (no graft material) groups. Results were evaluated at 4 and 8 weeks after surgery. The ultrastructural morphology and constructs of each blood product were studied by a scanning electron microscope (SEM) or calculating concentrations of platelets, fibrinogen, platelet-derived growth factor, and transforming growth factor-β. A total of five microcomputed tomography images of specimens were selected for measurement, and the area occupied by the newly formed bone as well as the horizontal bone width were measured. Moreover, decalcified tissue specimens from each defect were analyzed histologically. The median area of new bone at 4 and 8 weeks and median horizontal bone width at 8 weeks were the highest in the PPP group. However, bone maturation in the PRF and the PRP groups was more progressed than that in the PPP and control groups. By SEM findings, the PRF group showed a more highly condensed fibrin fiber network that was regularly arranged when compared with the PPP and PRP groups. The growth factors released from platelets in PRP indicated higher concentrations than that in PRF. Under more severe conditions for bone formation, as in this experiment, the growth factors released from platelets had a negative effect on bone formation. This study showed that PPP is an effective material for the preservation of sockets with buccal dehiscence.
Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis.
Yamaguchi, Masayoshi
2006-11-01
Aging induces a decrease in bone mass, and osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Bone loss with increasing age may be due to decreased bone formation and increased bone resorption. Pharmacologic and nutritional factors may prevent bone loss with aging, although chemical compounds in food and plants which act on bone metabolism are poorly understood. We have found that isoflavones (including genistein and daidzein), which are contained in soybeans, have a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption, thereby increasing bone mass. Menaquinone-7, an analogue of vitamin K(2) which is abundant in fermented soybeans, has been demonstrated to stimulate osteoblastic bone formation and to inhibit osteoclastic bone resorption. Of various carotenoids, beta-cryptoxanthin, which is abundant in Satsuma mandarin (Citrus unchiu MARC), has a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption. The supplementation of these factors has a preventive effect on bone loss induced by ovariectomy in rats, which are an animal model of osteoporosis, and their intake has been shown to have a stimulatory effect on bone mass in humans. Factors with an anabolic effect on bone metabolism were found in extracts obtained from wasabi leafstalk (Wasabi japonica MATSUM), the marine alga Sargassum horneri, and bee pollen Cistus ladaniferus. Phytocomponent p-hydroxycinnamic acid was also found to have an anabolic effect on bone metabolism. Food chemical factors thus play a role in bone health and may be important in the prevention of bone loss with increasing age.
Hoffman, M L; Reed, S A; Pillai, S M; Jones, A K; McFadden, K K; Zinn, S A; Govoni, K E
2017-05-01
Poor maternal nutrition during gestation has been linked to poor growth and development, metabolic dysfunction, impaired health, and reduced productivity of offspring in many species. Poor maternal nutrition can be defined as an excess or restriction of overall nutrients or specific macro- or micronutrients in the diet of the mother during gestation. Interestingly, there are several reports that both restricted- and over-feeding during gestation negatively affect offspring postnatal growth with reduced muscle and bone deposition, increased adipose accumulation, and metabolic dysregulation through reduced leptin and insulin sensitivity. Our laboratory and others have used experimental models of restricted- and over-feeding during gestation to evaluate effects on early postnatal growth of offspring. Restricted- and over-feeding during gestation alters body size, circulating growth factors, and metabolic hormones in offspring postnatally. Both restricted- and over-feeding alter muscle growth, increase lipid content in the muscle, and cause changes in expression of myogenic factors. Although the negative effects of poor maternal nutrition on offspring growth have been well characterized in recent years, the mechanisms contributing to these changes are not well established. Our laboratory has focused on elucidating these mechanisms by evaluating changes in gene and protein expression, and stem cell function. Through RNA-Seq analysis, we observed changes in expression of genes involved in protein synthesis, metabolism, cell function, and signal transduction in muscle tissue. We recently reported that satellite cells, muscle stem cells, have altered expression of myogenic factors in offspring from restricted-fed mothers. Bone marrow derived mesenchymal stem cells, multipotent cells that contribute to development and maintenance of several tissues including bone, muscle, and adipose, have a 50% reduction in cell proliferation and altered metabolism in offspring from both restricted- and over-fed mothers. These findings indicate that poor maternal nutrition may alter offspring postnatal growth by programming stem cell populations. In conclusion, poor maternal nutrition during gestation negatively affects offspring postnatal growth, potentially through impaired stem and satellite cell function. Therefore, determining the mechanisms that contribute to fetal programming is critical to identifying effective management interventions for these offspring and improving efficiency of production.
Casey-Trott, T M; Korver, D R; Guerin, M T; Sandilands, V; Torrey, S; Widowski, T M
2017-08-01
Osteoporosis in laying hens has been a production and welfare concern for several decades. The objective of this study was to determine whether differing opportunities for exercise during pullet rearing influences long-term bone quality characteristics in end-of-lay hens. A secondary objective was to assess whether differing opportunities for exercise in adult housing systems alters bone quality characteristics in end-of-lay hens. Four flock replicates of 588 Lohmann Selected Leghorn-Lite pullets were reared in either conventional cages (Conv) or an aviary rearing system (Avi) and placed into conventional cages (CC), 30-bird furnished cages (FC-S), or 60-bird furnished cages (FC-L) for adult housing. Wing and leg bones were collected at the end-of-lay to quantify bone composition and strength using quantitative computed tomography and bone breaking strength (BBS). At the end-of-lay, Avi hens had greater total and cortical cross-sectional area (P < 0.05) for the radius and tibia, greater total bone mineral content of the radius (P < 0.001), and greater tibial cortical bone mineral content (P = 0.029) than the Conv hens; however, total bone mineral density of the radius (P < 0.001) and cortical bone mineral density of the radius and tibia (P < 0.001) were greater in the Conv hens. Hens in the FC-L had greater total bone mineral density for the radius and tibia (P < 0.05) and greater trabecular bone mineral density for the radius (P = 0.027), compared to hens in the FC-S and CC. Total bone mineral content of the tibia (P = 0.030) and cortical bone mineral content of the radius (P = 0.030) and tibia (P = 0.013) were greater in the FC-L compared to the CC. The humerus of Conv hens had greater BBS than the Avi hens (P < 0.001), and the tibiae of FC-L and FC-S hens had greater BBS than CC hens (P = 0.006). Increased opportunities for exercise offered by the aviary rearing system provided improved bone quality characteristics lasting through to the end-of-lay. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.
Karsdal, Morten A; Qvist, Per; Christiansen, Claus; Tankó, László B
2006-01-01
Accelerated bone turnover with bone resorption exceeding bone formation is a major mechanism underlying postmenopausal bone loss and hence the development of osteoporosis. Accordingly, inhibition of bone resorption is a rational approach for the prevention of osteoporosis. In this context, the most logical option, hormone replacement therapy, reverses the rate of bone turnover to premenopausal levels, whereas the magnitude of inhibition by amino-bisphosphonates and the recently introduced anti-receptor activator of NFkappaB ligand (RANKL) antibody often exceeds this. As bone turnover has crucial implications for the continuous renewal of bone tissue, the over-suppression of bone turnover has potential consequences for bone quality and strength. Long-term treatment with potent bisphosphonates has recently been associated with osteonecrosis of the jaw and dose-dependent increases in micro-crack accumulation in animals. Although these observations are the subject of ongoing discussions, it is timely to discuss whether the over-suppression of bone turnover below premenopausal levels is really our ultimate goal when defining the success criteria for antiresorptive agents. In this review, the implications of high and excessively low bone turnover of endogenous origin for bone quality, fracture risk and integrity of the jaw are discussed. In addition, animal and clinical research revealing initial findings regarding the potential adverse effects of drug-induced suppression of bone remodeling are summarised. The inhibition of bone resorption, which is either transient between doses (e.g. with calcitonin) or does not exceed premenopausal levels (with hormone replacement therapy or selective estrogen receptor modulators), is preferable because it not only provides similar antifracture efficacy but can also assist in the maintenance of the dynamic repair of micro-cracks/micro-fractures.
Alomari, Ali Hamed; Wille, Marie-Luise; Langton, Christian M
2018-02-01
Conventional mechanical testing is the 'gold standard' for assessing the stiffness (N mm -1 ) and strength (MPa) of bone, although it is not applicable in-vivo since it is inherently invasive and destructive. The mechanical integrity of a bone is determined by its quantity and quality; being related primarily to bone density and structure respectively. Several non-destructive, non-invasive, in-vivo techniques have been developed and clinically implemented to estimate bone density, both areal (dual-energy X-ray absorptiometry (DXA)) and volumetric (quantitative computed tomography (QCT)). Quantitative ultrasound (QUS) parameters of velocity and attenuation are dependent upon both bone quantity and bone quality, although it has not been possible to date to transpose one particular QUS parameter into separate estimates of quantity and quality. It has recently been shown that ultrasound transit time spectroscopy (UTTS) may provide an accurate estimate of bone density and hence quantity. We hypothesised that UTTS also has the potential to provide an estimate of bone structure and hence quality. In this in-vitro study, 16 human femoral bone samples were tested utilising three techniques; UTTS, micro computed tomography (μCT), and mechanical testing. UTTS was utilised to estimate bone volume fraction (BV/TV) and two novel structural parameters, inter-quartile range of the derived transit time (UTTS-IQR) and the transit time of maximum proportion of sonic-rays (TTMP). μCT was utilised to derive BV/TV along with several bone structure parameters. A destructive mechanical test was utilised to measure the stiffness and strength (failure load) of the bone samples. BV/TV was calculated from the derived transit time spectrum (TTS); the correlation coefficient (R 2 ) with μCT-BV/TV was 0.885. For predicting mechanical stiffness and strength, BV/TV derived by both μCT and UTTS provided the strongest correlation with mechanical stiffness (R 2 =0.567 and 0.618 respectively) and mechanical strength (R 2 =0.747 and 0.736 respectively). When respective structural parameters were incorporated to BV/TV, multiple regression analysis indicated that none of the μCT histomorphometric parameters could improve the prediction of mechanical stiffness and strength, while for UTTS, adding TTMP to BV/TV increased the prediction of mechanical stiffness to R 2 =0.711 and strength to R 2 =0.827. It is therefore envisaged that UTTS may have the ability to estimate BV/TV along with providing an improved prediction of osteoporotic fracture risk, within routine clinical practice in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Ito, Masako
Structural property of bone includes micro- or nano-structural property of the trabecular and cortical bone, and macroscopic geometry. Radiological technique is useful to analyze the bone structural property;multi-detector row CT(MDCT)or high-resolution peripheral QCT(HR-pQCT)is available to analyze human bone in vivo . For the analysis of hip geometry, CT-based hip structure analysis(HSA)is available as well as DXA-based HSA. These structural parameters are related to biomechanical property, and these assessment tools provide information of pathological changes or the effects of anti-osteoporotic agents on bone.
Osthole inhibits bone metastasis of breast cancer
Guo, Baofeng; Ye, Yiyi; Han, Xianghui; Qin, Yuenong; Liu, Sheng
2017-01-01
Bone is one of the most common sites for breast cancer metastasis, which greatly contributes to patient morbidity and mortality. Osthole, a major extract from Cnidium monnieri (L.), exhibits many biological and pharmacological activities, however, its potential as a therapeutic agent in the treatment of breast cancer bone metastases remain poorly understood. In this study, we set out to investigate whether osthole could inhibit breast cancer metastasis to bone in mice and clarified the potential mechanism of this inhibition. In the murine model of breast cancer osseous metastasis, mice that received osthole developed significantly less bone metastases and displayed decreased tumor burden when compared with mice in the control group. Osthole inhibited breast cancer cell growth, migration, and invasion, and induced apoptosis of breast cancer cells. Additionally, it also regulated OPG/RANKL signals in the interactions between bone cells (osteoblasts and osteoclasts) and cancer cells. Besides, it also inhibited TGF-β/Smads signaling in breast cancer metastasis to bone in MDA-231BO cells. The results of this study suggest that osthole has real potential as a therapeutic candidate in the treatment of breast cancer patients with bone metastases. PMID:28938572
Greenhagen, Robert M; Highlander, Peter D; Burns, Patrick R
2012-01-01
Avulsion fractures of the calcaneal tuberosity represent only 1.3% to 2.7% of calcaneal fractures. These fractures are common pathologically in nature and attributed to decreased bone mineral density. Calcaneal insufficiency avulsion (CIA) fracture in patients with diabetes mellitus is most likely due to Charcot neuroarthropathy (CN) as described by the Brodsky classification (Brodsky 3B). Traditional open reduction and internal fixation is difficult in all calcaneal avulsion fractures because of poor bone quality. The authors report the first known description of the use of fracture fragment excision and double row anchor fixation.A 39-year-old woman with type I diabetes mellitus and a history of CN presented with an avulsion fracture of the calcaneal tuberosity. Excision of the fracture fragment and a gastrocnemius recession and reattachment of the Achilles tendon with double row anchor fixation to the calcaneus were performed. At 1 year, the patient's American Orthopaedic Foot & Ankle Society rearfoot score improved from 27/100 to 88/100. CIA fractures are an infrequently described injury. Because diabetes mellitus is frequently associated with this disease, it most likely represents a CN event. Traditionally, CIA fractures have been operatively treated with open reduction internal fixation. Previous authors have described difficulty with fixation because of poor quality. In the current report, the authors describe a novel operative approach to CIA fractures through the use of double row anchor fixation and excision of the fracture fragments. The authors feel that this previously undescribed treatment is superior to traditional methods and may serve as a new treatment option for all patients who have sustained this unusual pathology regardless of the underlying cause. The current authors provide a novel operative technique that provides inherent advantages to the traditional repair of CIA fractures. We believe CIA fractures represent a CN-type event and care should be taken when evaluating and treating these patients to prevent further sequelae. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Kadric, Lejla; Zylla, Stephanie; Nauck, Matthias; Völzke, Henry; Friedrich, Nele; Hannemann, Anke
2018-06-01
Chemerin is an adipokine associated with parameters of inflammation and the metabolic syndrome. Small observational studies suggested that high circulating chemerin levels are also related to bone erosion. We aimed to determine whether plasma chemerin levels are related to bone quality in the general population and to investigate the influence of body mass index (BMI) on that relation. For our analyses, we obtained data from 3583 adults who participated in the population-based Study of Health in Pomerania-Trend. The participants were divided into three groups according to their BMI: lean (<25 kg/m2), overweight (25 to 30 kg/m2), and obese (≥30 kg/m2). Chemerin concentrations were determined in EDTA plasma. Bone quality was assessed using quantitative ultrasound at the heel. Broadband ultrasound attenuation (BUA), speed of sound (SOS), stiffness index, and osteoporotic fracture risk were derived from this measurement. Sex- and BMI-specific linear regression models revealed inverse associations between chemerin levels and BUA in obese men. In obese women, inverse relations between chemerin levels and SOS or stiffness index were found. Logistic regression models revealed positive associations between chemerin levels and osteoporotic fracture risk. In lean or overweight subjects, no statistically significant associations were found. Our sex- and BMI-specific analyses showed that inverse associations between chemerin levels and bone quality are restricted to obese men and women. The observed association may be due to a chemerin-induced negative affect on bone metabolism, possibly due to abrogation of osteoblastogenesis or stimulation of adipogenesis.
Heating or freezing bone. Effects on angiogenesis induction and growth potential in mice.
Leunig, M; Yuan, F; Berk, D A; Gerweck, L E; Jain, R K
1996-08-01
We have characterized the effect of bone graft treatment by heating or freezing (with or without dimethyl sulfoxide (DMSO)). Tissue culture and dorsal skin-fold chambers in mice were used as sites to quantify the effect on angiogenesis, growth and calcification of neonatal femora. Fresh femora increased in both length and cartilage diameter (calcification in vivo only), but cryopreservation or heating abolished the increase in femoral dimensions. In vivo, femora of all experimental groups elicited an angiogenic response from the host tissue, which was most pronounced for fresh femora, weaker for DMSO-preserved frozen bone and poor for unprotected frozen bone and boiled femora. Freezing in the presence of a cryopreservative (DMSO) was found to preserve the angiogenic potential of frozen bone, whereas unprotected heating or freezing significantly impaired angiogenesis induction and growth potential.
Why does starvation make bones fat?
Devlin, Maureen J.
2011-01-01
Body fat, or adipose tissue, is a crucial energetic buffer against starvation in humans and other mammals, and reserves of white adipose tissue (WAT) rise and fall in parallel with food intake. Much less is known about the function of bone marrow adipose tissue (BMAT), which are fat cells found in bone marrow. BMAT mass actually increases during starvation, even as other fat depots are being mobilized for energy. Here I review the possible reasons for this poorly understood phenomenon. Is BMAT a passive filler that occupies spaces left by dying bone cells, a pathological consequence of suppressed bone formation, or potentially an adaptation for surviving starvation? To evaluate these possibilities, here I review what is known about the effects of starvation on the body, particularly the skeleton, and the mechanisms involved in storing and metabolizing BMAT during negative energy balance. PMID:21793093
Why does starvation make bones fat?
Devlin, Maureen J
2011-01-01
Body fat, or adipose tissue, is a crucial energetic buffer against starvation in humans and other mammals, and reserves of white adipose tissue (WAT) rise and fall in parallel with food intake. Much less is known about the function of bone marrow adipose tissue (BMAT), which are fat cells found in bone marrow. BMAT mass actually increases during starvation, even as other fat depots are being mobilized for energy. This review considers several possible reasons for this poorly understood phenomenon. Is BMAT a passive filler that occupies spaces left by dying bone cells, a pathological consequence of suppressed bone formation, or potentially an adaptation for surviving starvation? These possibilities are evaluated in terms of the effects of starvation on the body, particularly the skeleton, and the mechanisms involved in storing and metabolizing BMAT during negative energy balance. Copyright © 2011 Wiley-Liss, Inc.
Konermann, A; Appel, T; Wenghoefer, M; Sirokay, S; Dirk, C; Jäger, A; Götz, W
2015-05-01
Stability of orthodontic miniscrew implants is prerequisite to their success and durability in orthodontic treatment. As investigations revealed a positive correlation of miniscrew stability to periimplant bone quality, it has been the aim of this study to analyze the bone structure of resection preparations of human mandibles histologically by investigating the samples according to age, gender and exposure to radiotherapy. Inflammation- and tumor-free alveolar bone sections from human mandibles (n = 31) with previously diagnosed carcinoma, chronic osteomyelitis or cysts were analyzed histomorphologically and histomorphometrically as to the dimension of trabeculae in cancellous areas. Group A investigated the impact of a history of radiation therapy, group B of gender and group C contrasted biopsies from individuals aging under 60 or over 60 years. Statistics were performed using the Kruskal-Wallis-test. Radiation, gender and age did not significantly influence bone density. The mean bone density averaged 40.7 ± 15.0% of spongiosa for the total collective with a median age of 58.4 years ± 14.7 years. Our findings provide new information on bone quality, thus contributing to a more precise evaluation of the parameters affecting and those not affecting miniscrew implant stability. On the basis of these results, the formulation of clinical guidelines for risk assessment of therapeutic approaches in patients prior to insertion of orthodontic skeletal anchorage devices seems to be conceivable. Copyright © 2014 Elsevier GmbH. All rights reserved.
Chapurlat, Roland; Pialat, Jean-Baptiste; Merle, Blandine; Confavreux, Elisabeth; Duvert, Florence; Fontanges, Elisabeth; Khacef, Farida; Peres, Sylvie Loiseau; Schott, Anne-Marie; Lespessailles, Eric
2017-12-27
The diagnostic performance of densitometry is inadequate. New techniques of non-invasive evaluation of bone quality may improve fracture risk prediction. Testing the value of these techniques is the goal of the QUALYOR cohort. The bone mineral density (BMD) of postmenopausal women who sustain osteoporotic fracture is generally above the World Health Organization definition for osteoporosis. Therefore, new approaches to improve the detection of women at high risk for fracture are warranted. We have designed and recruited a new cohort to assess the predictive value of several techniques to assess bone quality, including high-resolution peripheral quantitative computerized tomography (HRpQCT), hip QCT, calcaneus texture analysis, and biochemical markers. We have enrolled 1575 postmenopausal women, aged at least 50, with an areal BMD femoral neck or lumbar spine T-score between - 1.0 and - 3.0. Clinical risk factors for fracture have been collected along with serum and blood samples. We describe the design of the QUALYOR study. Among these 1575 women, 80% were aged at least 60. The mean femoral neck T-score was - 1.6 and the mean lumbar spine T-score was -1.2. This cohort is currently being followed up. QUALYOR will provide important information on the relationship between bone quality variables and fracture risk in women with moderately decreased BMD.
Anders, Jane Cristina; Lima, Regina Aparecida Garcia de
2004-01-01
Nowadays, various knowledge areas take an increasing interest in the discussion about the quality of life of people submitted to bone marrow transplantation-BMT. This study aims to describe the experiences of children and adolescents who survived this kind of transplantation and to discover how this therapy mode influenced their quality of life. Study participants were 14 children/adolescents who survived BMT. In this qualitative research, data were collected by means of interviews, which were held at the participants' homes or when they returned to hospital. We identified their life as permeated by insecurity, changed body image, physical and emotional problems. These data indicate the importance of understanding the experience of children/adolescents living with bone marrow transplantation, seeking to identify aspects for the intervention and planning of nursing care, so as to contribute to their reinsertion and a better quality of life.
Meltzer, Hagar; Milrad, Moran; Brenner, Ori; Atkins, Ayelet; Shahar, Ron
2014-01-01
Chronic kidney disease (CKD) is a growing public health concern worldwide, and is associated with marked increase of bone fragility. Previous studies assessing the effect of CKD on bone quality were based on biopsies from human patients or on laboratory animal models. Such studies provide information of limited relevance due to the small size of the samples (biopsies) or the non-physiologic CKD syndrome studied (rodent models with artificially induced CKD). Furthermore, the type, architecture, structure and biology of the bone of rodents are remarkably different from human bones; therefore similar clinicopathologic circumstances may affect their bones differently. We describe the effects of naturally occurring CKD with features resembling human CKD on the skeleton of cats, whose bone biology, structure and composition are remarkably similar to those of humans. We show that CKD causes significant increase of resorption cavity density compared with healthy controls, as well as significantly lower cortical mineral density, cortical cross-sectional area and cortical cross-sectional thickness. Young's modulus, yield stress, and ultimate stress of the cortical bone material were all significantly decreased in the skeleton of CKD cats. Cancellous bone was also affected, having significantly lower trabecular thickness and bone volume over total volume in CKD cats compared with controls. This study shows that naturally occurring CKD has deleterious effects on bone quality and strength. Since many similarities exist between human and feline CKD patients, including the clinicopathologic features of the syndrome and bone microarchitecture and biology, these results contribute to better understanding of bone abnormalities associated with CKD. PMID:25333360
[Bone structure in rheumatoid arthritis].
Ono, Kumiko; Ohashi, Satoru; Tanaka, Sakae; Matsumoto, Takuya
2013-07-01
In rheumatoid arthritis (RA) , the osteoclast pathway is activated by abnormal immune conditions accompanied by chronic inflammation, resulting in periarticular osteoporosis and local bone destruction around joints. In addition, multiple factors, including reduced physical activity and pharmacotherapies such as steroids, lead to systemic osteoporosis. These conditions cause decreasing bone mineral density and deterioration of bone quality, and expose patients to increased risk of fracture. Understanding the bone structures of RA and evaluating fracture risk are central to the treatment of RA.
Molecular mechanisms underlying the actions of dietary factors on the skeleton
USDA-ARS?s Scientific Manuscript database
This book chapter summarizes the current state of knowledge on molecular mechanisms whereby nutritional status and dietary factors found in fruits, vegetables, and grains affect bone turnover and skeletal quality. The Wnt-beta catenin and bone morphogenic protein (BMP) pathways in osteoblast bone ce...
Oksztulska-Kolanek, Ewa; Znorko, Beata; Michałowska, Małgorzata; Pawlak, Krystyna
2016-01-01
Mineral metabolism disturbances are common in chronic kidney disease (CKD) and have been classified as a new clinical entity, also known as CKD-mineral and bone disorders (CKD-MBD). A decrease in the bone strength, whose clinical manifestation is a tendency for fracture, has been recognized as an important component of CKD-MBD. Because of ethical issues, measurements of the bone strength in the human body are usually limited to noninvasive techniques, such as radiography, dual-energy X-ray absorptiometry and the assays of bone turnover biomarkers. However, it has been postulated recently that the evidence concerning bone strength based solely on the determination of the bone quantity may be insufficient and that bone quality should also be examined. In this regard, an animal model of CKD can represent an experimental tool to test the effectiveness of new therapeutic strategies. Despite the many available methods that are used to diagnose metabolic bone disorders and predict fracture risk especially in small rodents with CKD, it turns out that the most appropriate are biomechanical tests, which can provide information about the structural and material properties of bone. The present review summarizes and discusses the principles for carrying out selected biomechanical tests (3-point bending test and compression test) and their application in clinical practice. © 2015 S. Karger AG, Basel.
Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella
2018-01-17
Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat 'brighter' than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.
Duff, W.R.D.; Björkman, K.M.; Kawalilak, C.E.; Kehrig, A.M.; Wiebe, S.; Kontulainen, S.
2017-01-01
Objectives: To define pQCT precision errors, least-significant-changes, and identify associated factors for bone outcomes at the radius and tibia in children. Methods: We obtained duplicate radius and tibia pQCT scans from 35 children (8-14yrs). We report root-mean-squared coefficient of variation (CV%RMS) and 95% limits-of-agreement to characterize repeatability across scan quality and least-significant-changes for bone outcomes at distal (total and trabecular area, content and density; and compressive bone strength) and shaft sites (total area and content; cortical area content, density and thickness; and torsional bone strength). We used Spearman’s rho to identify associations between CV% and time between measurements, child’s age or anthropometrics. Results: After excluding unanalyzable scans (6-10% of scans per bone site), CV%RMS ranged from 4% (total density) to 19% (trabecular content) at the distal radius, 4% (cortical content) to 8% (cortical thickness) at the radius shaft, 2% (total density) to 14% (trabecular content) at the distal tibia and from 2% (cortical content) to 6% (bone strength) at the tibia shaft. Precision errors were within 95% limits-of-agreement across scan quality. Age was associated (rho -0.4 to -0.5, p <0.05) with CV% at the tibia. Conclusion: Bone density outcomes and cortical bone properties appeared most precise (CV%RMS <5%) in children. PMID:28574412
NASA Astrophysics Data System (ADS)
Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella
2018-01-01
Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat ‘brighter’ than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.
Briot, Karine
2018-06-01
Corticosteroid-induced osteoporosis is the most common form of secondary osteoporosis and the most frequent cause of osteoporosis in young people. Bone loss and fracture risk increase rapidly after the initiation of corticosteroid therapy and are proportional to dose and treatment duration. The increase in fracture risk is not fully assessed by bone mineral density measurement, as it is also related to impaired bone quality and increased risk of falls. Prevention should be considered in all patients beginning corticosteroid therapy, especially as the underlying inflammation in itself impairs bone quality. Bisphosphonates and teriparatide have shown efficacy in the treatment of corticosteroid-induced osteoporosis. Several national and international guidelines are available to improve management of corticosteroid-induced osteoporosis, which remains inadequate. Duration of anti-osteoporotic treatment should be discussed at the individual level, depending on the subject's characteristics and on the progression of the underlying inflammation. Copyright © 2018. Published by Elsevier Masson SAS.
Lee, Jee-Wook; Kobayashi, Akio; Nakano, Takayoshi
2017-05-01
The aim of the present study was to investigate the preferred orientation of biological apatite (BAp) as a new index of the quality of subchondral bone (SB) in knee joint osteoarthritis (OA). Ten OA and five normal knee joints were obtained. Thickness, quantity and bone mineral density (BMD) of SB were analyzed at the medial condyle of the femur in dry conditions by peripheral quantitative computed tomography. In addition, the preferred crystallographic orientation of the c-axis of BAp was evaluated as bone quality parameter using a microbeam X-ray diffractometer technique. BMD and thickness of SB were significantly increased in OA specimens compared to normal knee specimens (P < 0.01), and the preferred orientation of the c-axis of BAp along the normal direction of SB surface was significantly higher in OA specimens (P < 0.01), reflecting the change in stress of concentration in the pathological portion without cartilage. SB sclerosis in OA results in both proliferation of bone tissues and enhanced degree of preferential alignment of the c-axis of BAp. Our findings could have major implications for the diagnosis of clinical studies, including pathologic elucidation in OA.
Shokry, Mohamed; Aboelsaad, Nayer
2016-01-01
The purpose of this study was to test the effect of the surgical removal of impacted mandibular third molars using piezosurgery versus the conventional surgical technique on postoperative sequelae and bone healing. Material and Methods. This study was carried out as a randomized controlled clinical trial: split mouth design. Twenty patients with bilateral mandibular third molar mesioangular impaction class II position B indicated for surgical extraction were treated randomly using either the piezosurgery or the conventional bur technique on each site. Duration of the procedure, postoperative edema, trismus, pain, healing, and bone density and quantity were evaluated up to 6 months postoperatively. Results. Test and control sites were compared using paired t-test. There was statistical significance in reduction of pain and swelling in test sites, where the time of the procedure was statistically increased in test site. For bone quantity and quality, statistical difference was found where test site showed better results. Conclusion. Piezosurgery technique improves quality of patient's life in form of decrease of postoperative pain, trismus, and swelling. Furthermore, it enhances bone quality within the extraction socket and bone quantity along the distal aspect of the mandibular second molar. PMID:27597866
USDA-ARS?s Scientific Manuscript database
High protein diets may attenuate bone loss during energy restriction (ER). The objective of the current study was to determine whether high protein diets suppress bone turnover and improve bone quality in rats during ER and whether dietary protein source affects this relationship. Eighty 12-week o...
Wilhelm, Birgit; Kann, Peter Herbert
2004-10-15
Subnormal bone mineral density (BMD) and increased fracture risk are described in patients with growth hormone deficiency (GHD). Growth hormone (GH) has been reported to have beneficial effects on bone in GHD. The aim of this study was to investigate the long-term effects of GH replacement therapy on bone metabolism, BMD, and bone quality in patients with GHD. 20 adult patients with GHD (eleven male, nine female, mean age 42.5 years) were included in the study and randomized to either GH or placebo in a dose of 0.25 U/kg body weight/week. After 6 months all patients received GH. After a 1-year double-blind, placebo-controlled study the patients were followed for another 72 months in an open study. The patients were compared to 20 age- und sex-matched healthy controls. Bone turnover was determined by ICTP (type I collagen carboxyterminal cross-linked telopeptide) as parameter of bone resorption and PICP (carboxyterminal propeptide of type I procollagen) as marker of bone formation. BMD was measured at the lumbar spine by dual-photon absorptiometry (DPA) and at the forearm by single-photon absorptiometry (SPA). Apparent phalangeal ultrasound transmission velocity (APU) was assessed as parameter of bone quality independent of BMD. At the beginning of the study BMD at both measuring sites was lower in patients with GHD than in healthy controls. During the 1st year of GH replacement therapy BMD decreased, followed by a continuous increase in BMD (about 12%) up to 60 months which remained unchanged thereafter, building up a plateau. After 72 months no significant difference between the patients and the healthy controls could be detected. Concerning parameters of bone turnover, first ICTP as marker of bone resorption showed a significant increase, later on the marker of bone formation increased as well. APU decreased during the first 6 months of treatment, but had returned to its baseline value after 24 months and remained unchanged throughout the rest of the study. BMD is subnormal in adults with GHD. GH replacement therapy stimulates bone turnover in patients with GHD and in the long term such stimulation results in an increased BMD. Thereby, GH shows a triphasic action on BMD: an initial decrease in BMD during the 1st year, followed by a continuous increase in BMD with buildup of a stable plateau after 60 months. The newly formed bone seems to have normal bone elasticity.
Maxillary bone epithelial cyst in an adult miniature schnauzer.
Lin, Chung-Tien; Tasi, Wen-Chih; Hu, Chun-Kun; Lin, Nien-Ting; Huang, Pei-Yun; Yeh, Lih-Seng
2008-09-01
Maxillary bone epithelial cyst is rare in dogs. A 5-year-old, spayed female miniature schnauzer developed a swelling below the nasal canthus of left eye. Plain radiograph demonstrated a 1.5 cm diameter of radiolucent lesion on the maxillary bone anteroventral to the eye, and contrast dacryocystorhinography confirmed an obstructed nasolarcrimal duct. The swelling showed poor response to antibiotic treatment but responded well to oral prednisolone. Exploratory surgery revealed a cyst-like structure filled with brown serous fluid. Histopathological examination of the removed cyst revealed a double cuboidal epithelial cyst. The dog recovered rapidly after surgery, and the swelling had not recurred for a 36-month follow-up. It is the first case of periorbital bone epithelial cyst reported in an adult miniature schnauzer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdez, V.A.; Jacobstein, J.G.
Bone scans were performed with Tc-99m stannous polyphosphate on four patients with thalassemia major. Three of the scans show generalized decrease in skeletal uptake of the radiopharmaceutical, associated with renal enlargement and markedly increased renal radioactivity. The skeletal findings are consistent with the known bone abnormalities in thalassemia major, which are secondary to the extensive marrow hyperplasia and include loss of trabeculae and cortical thinning with consequent loss of bone mass. The increased renal uptake is probably due in part to the increased renal excretion (secondary to the poor bone uptake) and in part to the tubular dilatation and renalmore » enlargement associated with thalassemia major. In addition, the presence of excessive amounts of iron in these patients may play a role in both the skeletal and renal findings.« less
Aronin, Caren E Petrie; Shin, Soo J; Naden, Kimberly B; Rios, Peter D; Sefcik, Lauren S; Zawodny, Sarah R; Bagayoko, Namory D; Cui, Quanjun; Khan, Yusuf
2010-01-01
Poor vascularization coupled with mechanical instability is the leading cause of post-operative complications and poor functional prognosis of massive bone allografts. To address this limitation, we designed a novel continuous polymer coating system to provide sustained localized delivery of pharmacological agent, FTY720, a selective agonist for sphingosine 1-phosphate receptors, within massive tibial defects. In vitro drug release studies validated 64% loading efficiency with complete release of compound following 14 days. Mechanical evaluation following six weeks of healing suggested significant enhancement of mechanical stability in FTY720 treatment groups compared with unloaded controls. Furthermore, superior osseous integration across the host-graft interface, significant enhancement in smooth muscle cell investment, and reduction in leukocyte recruitment was evident in FTY720 treated groups compared with untreated groups. Using this approach, we can capitalize on the existing mechanical and biomaterial properties of devitalized bone, add a controllable delivery system while maintaining overall porous structure, and deliver a small molecule compound to constitutively target vascular remodeling, osseous remodeling, and minimize fibrous encapsulation within the allograft-host bone interface. Such results support continued evaluation of drug-eluting allografts as a viable strategy to improve functional outcome and long-term success of massive cortical allograft implants. PMID:20621764
Martínez, Constanza E; González, Sergio A; Palma, Verónica; Smith, Patricio C
2016-02-01
Plasma-derived fractions have been used as an autologous source of growth factors; however, limited knowledge concerning their biologic effects has hampered their clinical application. In this study, the authors analyze the content and specific effect of both platelet-rich plasma (PRP) and platelet-poor plasma (PPP) on osteoblastic differentiation using primary cultures of human periodontal ligament stem cells (HPLSCs). The authors evaluated the growth factor content of PRP and PPP using a proteome profiler array and enzyme-linked immunosorbent assay. HPLSCs were characterized by flow cytometry and differentiation assays. The effect of PRP and PPP on HPLSC bone differentiation was analyzed by quantifying calcium deposition after 14 and 21 days of treatment. Albeit at different concentrations, the two fractions had similar profiles of growth factors, the most representative being platelet-derived growth factor (PDGF) isoforms (PDGF-AA, -BB, and -AB), insulin-like growth factor binding protein (IGFBP)-2, and IGFBP-6. Both formulations exerted a comparable stimulus on osteoblastic differentiation even at low doses (2.5%), increasing calcium deposits in HPLSCs. PRP and PPP showed a similar protein profile and exerted comparable effects on bone differentiation. Further studies are needed to characterize and compare the effects of PPP and PRP on bone healing in vivo.
Ives, Rachel; Humphrey, Louise
2017-05-01
Studies of male and female long bone growth in past populations are limited and usually constrained by the lack of personal identification. This article aimed to evaluate long bone growth in a series of mid-19 th century documented burials associated with the urban poor from Bethnal Green, London, UK. Maximum diaphyseal lengths from 74 males and 70 females (2 months to 12 years) were compared to modern reference data from North America. Diaphyseal lengths were expressed as a percentage of expected length and an average percentage value was calculated across all available long bones. An index of growth progression was introduced to explore differences in the progress of males and females towards their projected adult size. Deviation from the expected growth attainment was evident in both sexes in the archaeological series by 2-4 months of age. Only 19.4% (28/144) of the children had attained an average long bone length >90% of the predicted mean in the reference series. The percentage of expected growth attainment decreased steadily in both sexes during infancy and early childhood. Overall, females deviated further from their expected growth progression than males. Growth faltering in both males and females was established during infancy (<1 year) with no evidence for recovery in older age groups. Early weaning and inadequate artificial feeding, together with impoverished living conditions and limited sanitary provision, most likely impacted on childhood growth. © 2017 Wiley Periodicals, Inc.
A Spontaneous 3D Bone-On-a-Chip for Bone Metastasis Study of Breast Cancer Cells.
Hao, Sijie; Ha, Laura; Cheng, Gong; Wan, Yuan; Xia, Yiqiu; Sosnoski, Donna M; Mastro, Andrea M; Zheng, Si-Yang
2018-03-01
Bone metastasis occurs at ≈70% frequency in metastatic breast cancer. The mechanisms used by tumors to hijack the skeleton, promote bone metastases, and confer therapeutic resistance are poorly understood. This has led to the development of various bone models to investigate the interactions between cancer cells and host bone marrow cells and related physiological changes. However, it is challenging to perform bone studies due to the difficulty in periodic sampling. Herein, a bone-on-a-chip (BC) is reported for spontaneous growth of a 3D, mineralized, collagenous bone tissue. Mature osteoblastic tissue of up to 85 µm thickness containing heavily mineralized collagen fibers naturally formed in 720 h without the aid of differentiation agents. Moreover, co-culture of metastatic breast cancer cells is examined with osteoblastic tissues. The new bone-on-a-chip design not only increases experimental throughput by miniaturization, but also maximizes the chances of cancer cell interaction with bone matrix of a concentrated surface area and facilitates easy, frequent observation. As a result, unique hallmarks of breast cancer bone colonization, previously confirmed only in vivo, are observed. The spontaneous 3D BC keeps the promise as a physiologically relevant model for the in vitro study of breast cancer bone metastasis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vascularized Bone Tissue Engineering: Approaches for Potential Improvement
Nguyen, Lonnissa H.; Annabi, Nasim; Nikkhah, Mehdi; Bae, Hojae; Binan, Loïc; Park, Sangwon; Kang, Yunqing
2012-01-01
Significant advances have been made in bone tissue engineering (TE) in the past decade. However, classical bone TE strategies have been hampered mainly due to the lack of vascularization within the engineered bone constructs, resulting in poor implant survival and integration. In an effort toward clinical success of engineered constructs, new TE concepts have arisen to develop bone substitutes that potentially mimic native bone tissue structure and function. Large tissue replacements have failed in the past due to the slow penetration of the host vasculature, leading to necrosis at the central region of the engineered tissues. For this reason, multiple microscale strategies have been developed to induce and incorporate vascular networks within engineered bone constructs before implantation in order to achieve successful integration with the host tissue. Previous attempts to engineer vascularized bone tissue only focused on the effect of a single component among the three main components of TE (scaffold, cells, or signaling cues) and have only achieved limited success. However, with efforts to improve the engineered bone tissue substitutes, bone TE approaches have become more complex by combining multiple strategies simultaneously. The driving force behind combining various TE strategies is to produce bone replacements that more closely recapitulate human physiology. Here, we review and discuss the limitations of current bone TE approaches and possible strategies to improve vascularization in bone tissue substitutes. PMID:22765012
Influence of bone density on the cement fixation of femoral hip resurfacing components.
Bitsch, Rudi G; Jäger, Sebastian; Lürssen, Marcus; Loidolt, Travis; Schmalzried, Thomas P; Clarius, Michael
2010-08-01
In clinical outcome studies, small component sizes, female gender, femoral shape, focal bone defects, bad bone quality, and biomechanics have been associated with failures of resurfacing arthroplasties. We used a well-established experimental setup and human bone specimens to analyze the effects of bone density on cement fixation of femoral hip resurfacing components. Thirty-one fresh frozen femora were prepared for resurfacing using the original instruments. ASR resurfacing prostheses were implanted after dual-energy X-ray densitometer scans. Real-time measurements of pressure and temperature during implantation, analyses of cement penetration, and measurements of micro motions under torque application were performed. The associations of bone density and measurement data were examined calculating regression lines and multiple correlation coefficients; acceptability was tested with ANOVA. We found significant relations between bone density and micro motion, cement penetration, cement mantle thickness, cement pressure, and interface temperature. Mean bone density of the femora was 0.82 +/- 0.13 g/cm(2), t-score was -0.7 +/- 1.0, and mean micro motion between bone and femoral resurfacing component was 17.5 +/- 9.1 microm/Nm. The regression line between bone density and micro motion was equal to -56.7 x bone density + 63.8, R = 0.815 (p < 0.001). Bone density scans are most helpful for patient selection in hip resurfacing, and a better bone quality leads to higher initial component stability. A sophisticated cementing technique is recommended to avoid vigorous impaction and incomplete seating, since increasing bone density also results in higher cement pressures, lower cement penetration, lower interface temperatures, and thicker cement mantles. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.
Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L
2016-01-01
Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.
Estimated Under-Five Deaths Associated with Poor-Quality Antimalarials in Sub-Saharan Africa
Renschler, John P.; Walters, Kelsey M.; Newton, Paul N.; Laxminarayan, Ramanan
2015-01-01
Many antimalarials sold in sub-Saharan Africa are poor-quality (falsified, substandard, or degraded), and the burden of disease caused by this problem is inadequately quantified. In this article, we estimate the number of under-five deaths caused by ineffective treatment of malaria associated with consumption of poor-quality antimalarials in 39 sub-Saharan countries. Using Latin hypercube sampling our estimates were calculated as the product of the number of private sector antimalarials consumed by malaria-positive children in 2013; the proportion of private sector antimalarials consumed that were of poor-quality; and the case fatality rate (CFR) of under-five malaria-positive children who did not receive appropriate treatment. An estimated 122,350 (interquartile range [IQR]: 91,577–154,736) under-five malaria deaths were associated with consumption of poor-quality antimalarials, representing 3.75% (IQR: 2.81–4.75%) of all under-five deaths in our sample of 39 countries. There is considerable uncertainty surrounding our results because of gaps in data on case fatality rates and prevalence of poor-quality antimalarials. Our analysis highlights the need for further investigation into the distribution of poor-quality antimalarials and the need for stronger surveillance and regulatory efforts to prevent the sale of poor-quality antimalarials. PMID:25897068
Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X; McMahon, Donald J; Shane, Elizabeth; Nickolas, Thomas L
2017-04-03
Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid-withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography. Longitudinally, each percentage increase in trabecular bone score was associated with increases in trabecular number (0.35%±1.4%); decreases in trabecular thickness (-0.45%±0.15%), separation (-0.40%±0.15%), and network heterogeneity (-0.48%±0.20%); and increases in failure load (0.22%±0.09%) by high-resolution peripheral computed tomography (all P <0.05). Trabecular bone score may be a useful method to assess and monitor bone quality and strength and classify fracture risk in kidney transplant recipients. Copyright © 2017 by the American Society of Nephrology.
Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K.; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X.; McMahon, Donald J.; Shane, Elizabeth
2017-01-01
Background and objectives Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Design, settings, participants, & measurements Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid–withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. Results At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography. Longitudinally, each percentage increase in trabecular bone score was associated with increases in trabecular number (0.35%±1.4%); decreases in trabecular thickness (−0.45%±0.15%), separation (−0.40%±0.15%), and network heterogeneity (−0.48%±0.20%); and increases in failure load (0.22%±0.09%) by high-resolution peripheral computed tomography (all P<0.05). Conclusions Trabecular bone score may be a useful method to assess and monitor bone quality and strength and classify fracture risk in kidney transplant recipients. PMID:28348031
[Adapted physical activity in the prevention and therapy of osteoporosis].
Bosković, Ksenija; Gava, Branka Protić; Grajić, Mirko; Madić, Dejan; Obradović, Borislav; Todorović, Snezana Tomasević
2013-01-01
Osteoporosis, a disease characterized by the progressive loss of bone tissue, is one of the most common complications of aging. According to some calculations, there were 25% of women and 4% of men older than 50 years with osteoporosis in the world in 2010. It is assumed that the number of patients with osteoporosis will increase by 30% in every 10 years in the 21st century. There are many reasons for that: the world's population is growing older, diet is getting poorer in vitamins and minerals and physical activity is decreasing. THE QUALITY AND QUANTITY OF BONE TISSUE: Developing bones are much more responsive to mechanical loading and physical activity than mature bones. This suggests that training in early childhood may be an important factor in the prevention of osteoporosis in later life. It is important to note that the quality of bone achieved by training at younger age cannot be maintained permanently if it is not supported by physical activity later in life. Adapted physical activity represents physical activity individually tailored according to the psychosomatic capabilities of a person and the goal to be achieved. It can be applied at any age in order to maintain strong bones and reduce the risk of fracture. Adapted physical activity is different for men and women, for different age, as well as for the individuals. Aerobic exercises, which lead to an acceleration of breathing, increased heart rate and mild perspiration, as well as resistance exercises and exercises against resistance done by stretching elastic bands, for hands, legs and torso have been proven to increase bone density and improve bone strength. Coordination and balance exercises are important in an individual workout program. An explanation of the action of adapted physical activity is the basis for the theory of control and modulation of bone loss, muscle strength, coordination and balance. Physical activity is very effective in reducing sclerostin, which is known to inhibit bone formation. In addition, physical training enhances the levels of insulinlike growth factor, which has a very positive effect on bone formation. The aim of adapted physical activity is to improve bone formation in youngsters, to preserve the bone mass in adults and to prevent the bone loss in the elderly thus reducing the risk of falls and resulting fractures; in other words, to minimize the disability caused by fractures and improve the quality of life.
Wolf, Michael; Wurm, Alexander; Heinemann, Friedhelm; Gerber, Thomas; Reichert, Christoph; Jäger, Andreas; Götz, Werner
2014-01-01
Maxillary sinus floor augmentation is a treatment that has been proposed for patients in whom the alveolar bone height is insufficient. This procedure is commonly used in patients aged 40 to 70 years and older. However, little information exists whether the factor of age might influence the outcome of augmentation procedures. The aim of this study was to investigate whether the patient's age has an effect on bone formation and incorporation in maxillary sinus floor augmentation procedures. A fully synthetic nanocrystalline bone augmentation material (NanoBone, Artoss) was used for sinus floor augmentation in patients with a subantral vertical bone height of at least 3 mm and maximum of 7 mm. After 7 months healing time, biopsy specimens were taken and were divided into two groups according to the patient's age. Exclusion criteria were poor general health (eg, severe renal/and or liver disease), history of a radiotherapy in the head region, chemotherapy at the time of surgical procedure, noncompensated diabetes mellitus, symptoms of a maxillary sinus disease, active periodontal or systemic diseases, smoking, and poor oral hygiene. Histologic analyses with hematoxylin-eosin stain were performed. Multinucleated osteoclast-like cells were identified by histochemical staining (tartrate-resistant acid phosphatase [TRAP]). Quantitative and age-dependent assessment of bone formation, residual bone grafting material, and soft tissue formation following sinus augmentation was performed using histomorphometric analysis and the Bonferroni adjustment of the Student t test. Twenty biopsy specimens from 17 patients were taken and divided into two groups according to age (group 1: 41 to 52 years; group 2: 66 to 71 years) containing 10 specimens each, which were analyzed in triplicate resulting in a total of 30 specimens per group. A regeneration process with varying amounts of newly formed bone surrounded by marrow-like tissue was present in all augmented regions. No signs of inflammation or immune reactions were visible. Residual particles of the augmentation material could be observed within the specimens. An age-dependent difference in investigated parameters between the two age groups could not be documented. The histologic examinations confirm that the fully synthetic nanocrystalline bone augmentation material used in this study is biocompatible and allows maxillary sinus augmentation in patients aged 41 to 70 years.
Matsuda, Risa; Kohno, Takashi; Kohsaka, Shun; Fukuoka, Ryoma; Maekawa, Yuichiro; Sano, Motoaki; Takatsuki, Seiji; Fukuda, Keiichi
2017-02-01
Poor sleep quality contributes to the development of various cardiovascular conditions. However, its real-world prevalence among cardiovascular inpatients and association with psychological disturbance is unknown. This study aimed to assess the prevalence of poor sleep quality and its association with depression and anxiety in cardiovascular patients, and explored whether sex and cardiovascular comorbidities modified these associations. A total of 1071 patients hospitalized for a broad spectrum of cardiovascular diseases at a single university hospital were assessed (790 men, mean age 64±14years). We assessed sleep quality during their index hospitalization period using the Pittsburgh Sleep Quality Index (PSQI); poor sleep quality was defined as PSQI>5. Depression and anxiety were assessed with the Hospital Anxiety and Depression Scale (HADS). The median PSQI score was 5.0 [3.0-7.0], and 461 inpatients (43%) had poor sleep quality. Multivariate regression analysis adjusting for patient background, medical risk factors, and laboratory data revealed that poor sleep quality was associated with higher HADS subscores for depression (HADS-depression; odds ratio [OR]: 1.09, 95% confidence interval [CI]: 1.03-1.15) and anxiety (HADS-anxiety; OR: 1.17, 95% CI: 1.11-1.24). Poor sleep quality was associated with markedly higher HADS-depression among women than men (p value for interaction: 0.008). The association between poor sleep quality and HADS-anxiety was more significant among patients without coronary artery diseases (p value for interaction: 0.017). Poor sleep quality was highly prevalent and associated with depression and anxiety in cardiovascular patients. These associations may be modified by sex and the presence of coronary artery diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina
2014-02-01
Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.
Xu, Jin-Hai; Yao, Min; Ye, Jie; Wang, Guo-Dong; Wang, Jing; Cui, Xue-Jun; Mo, Wen
2016-10-01
Ovariectomy (OVX)-induced rats are the most frequently used animal model to research postmenopausal osteoporosis. Our objective was to summarize and critically assess the bone mass improved effect of icariin (ICA) for treatment of postmenopausal osteoporosis in an OVX-induced rat model. The PUBMED, EMBASE, and Chinese databases were searched from their inception date to February 2015. Two reviewers independently selected animal studies that evaluated the bone mass improved effect of ICA compared with control in OVX-induced rats. Extracted data were analyzed by RevMan statistical software, and the methodological quality of each study was assessed. Seven studies with adequate randomization were included in the systematic review. Overall, ICA seemed to significantly improve bone mass as assessed using the bone mineral density (seven studies, n = 169; weighted mean difference, 0.02; 95% CI, 0.01-0.02, I = 77%, P < 0.00001) using a random-effects model. There is no significant difference between ICA and estrogen (E) (six studies, n = 128; weighted mean difference, 0.00; 95% CI, -0.00 to 0.01, I = 54%, P = 0.01). Bone mass improved effect of ICA for postmenopausal osteoporosis was observed in OVX-induced rats. Assessment of the methodological quality of studies involving OVX-induced animal models is required, and good methodological quality should be valued in systematic reviews of animal studies.
Application of quality by design for 3D printed bone prostheses and scaffolds
Martinez-Marquez, Daniel; Mirnajafizadeh, Ali; Carty, Christopher P.
2018-01-01
3D printing is an emergent manufacturing technology recently being applied in the medical field for the development of custom bone prostheses and scaffolds. However, successful industry transformation to this new design and manufacturing approach requires technology integration, concurrent multi-disciplinary collaboration, and a robust quality management framework. This latter change enabler is the focus of this study. While a number of comprehensive quality frameworks have been developed in recent decades to ensure that the manufacturing of medical devices produces reliable products, they are centred on the traditional context of standardised manufacturing techniques. The advent of 3D printing technologies and the prospects for mass customisation provides significant market opportunities, but also presents a serious challenge to regulatory bodies tasked with managing and assuring product quality and safety. Before 3D printing bone prostheses and scaffolds can gain traction, industry stakeholders, such as regulators, clients, medical practitioners, insurers, lawyers, and manufacturers, would all require a high degree of confidence that customised manufacturing can achieve the same quality outcomes as standardised manufacturing. A Quality by Design (QbD) approach to custom 3D printed prostheses can help to ensure that products are designed and manufactured correctly from the beginning without errors. This paper reports on the adaptation of the QbD approach for the development process of 3D printed custom bone prosthesis and scaffolds. This was achieved through the identification of the Critical Quality Attributes of such products, and an extensive review of different design and fabrication methods for 3D printed bone prostheses. Research outcomes include the development of a comprehensive design and fabrication process flow diagram, and categorised risks associated with the design and fabrication processes of such products. An extensive systematic literature review and post-hoc evaluation survey with experts was completed to evaluate the likely effectiveness of the herein suggested QbD framework. PMID:29649231
Application of quality by design for 3D printed bone prostheses and scaffolds.
Martinez-Marquez, Daniel; Mirnajafizadeh, Ali; Carty, Christopher P; Stewart, Rodney A
2018-01-01
3D printing is an emergent manufacturing technology recently being applied in the medical field for the development of custom bone prostheses and scaffolds. However, successful industry transformation to this new design and manufacturing approach requires technology integration, concurrent multi-disciplinary collaboration, and a robust quality management framework. This latter change enabler is the focus of this study. While a number of comprehensive quality frameworks have been developed in recent decades to ensure that the manufacturing of medical devices produces reliable products, they are centred on the traditional context of standardised manufacturing techniques. The advent of 3D printing technologies and the prospects for mass customisation provides significant market opportunities, but also presents a serious challenge to regulatory bodies tasked with managing and assuring product quality and safety. Before 3D printing bone prostheses and scaffolds can gain traction, industry stakeholders, such as regulators, clients, medical practitioners, insurers, lawyers, and manufacturers, would all require a high degree of confidence that customised manufacturing can achieve the same quality outcomes as standardised manufacturing. A Quality by Design (QbD) approach to custom 3D printed prostheses can help to ensure that products are designed and manufactured correctly from the beginning without errors. This paper reports on the adaptation of the QbD approach for the development process of 3D printed custom bone prosthesis and scaffolds. This was achieved through the identification of the Critical Quality Attributes of such products, and an extensive review of different design and fabrication methods for 3D printed bone prostheses. Research outcomes include the development of a comprehensive design and fabrication process flow diagram, and categorised risks associated with the design and fabrication processes of such products. An extensive systematic literature review and post-hoc evaluation survey with experts was completed to evaluate the likely effectiveness of the herein suggested QbD framework.
Starke, Astrid; Corsenca, Alf; Kohler, Thomas; Knubben, Johannes; Kraenzlin, Marius; Uebelhart, Daniel; Wüthrich, Rudolf P; von Rechenberg, Brigitte; Müller, Ralph; Ambühl, Patrice M
2012-09-01
Acidosis and transplantation are associated with increased risk of bone disturbances. This study aimed to assess bone morphology and metabolism in acidotic patients with a renal graft, and to ameliorate bone characteristics by restoration of acid/base homeostasis with potassium citrate. This was a 12-month controlled, randomized, interventional trial that included 30 renal transplant patients with metabolic acidosis (S-[HCO(3)(-)] <24 mmol/L) undergoing treatment with either potassium citrate to maintain S-[HCO(3)(-)] >24 mmol/L, or potassium chloride (control group). Iliac crest bone biopsies and dual-energy X-ray absorptiometry were performed at baseline and after 12 months of treatment. Bone biopsies were analyzed by in vitro micro-computed tomography and histomorphometry, including tetracycline double labeling. Serum biomarkers of bone turnover were measured at baseline and study end. Twenty-three healthy participants with normal kidney function comprised the reference group. Administration of potassium citrate resulted in persisting normalization of S-[HCO(3)(-)] versus potassium chloride. At 12 months, bone surface, connectivity density, cortical thickness, and cortical porosity were better preserved with potassium citrate than with potassium chloride, respectively. Serological biomarkers and bone tetracycline labeling indicate higher bone turnover with potassium citrate versus potassium chloride. In contrast, no relevant changes in bone mineral density were detected by dual-energy X-ray absorptiometry. Treatment with potassium citrate in renal transplant patients is efficient and well tolerated for correction of metabolic acidosis and may be associated with improvement in bone quality. This study is limited by the heterogeneity of the investigated population with regard to age, sex, and transplant vintage.
Raman spectroscopy of bone metastasis
NASA Astrophysics Data System (ADS)
Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan
2012-02-01
Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.
Evidence for a Role for Nanoporosity and Pyridinoline Content in Human Mild Osteogenesis Imperfecta.
Paschalis, Eleftherios P; Gamsjaeger, Sonja; Fratzl-Zelman, Nadja; Roschger, Paul; Masic, Admir; Brozek, Wolfgang; Hassler, Norbert; Glorieux, Francis H; Rauch, Frank; Klaushofer, Klaus; Fratzl, Peter
2016-05-01
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility that arises from decreased bone mass and abnormalities in bone material quality. OI type I represents the milder form of the disease and according to the original Sillence classification is characterized by minimal skeletal deformities and near-normal stature. Raman microspectroscopy is a vibrational spectroscopic technique that allows the determination of bone material properties in bone biopsy blocks with a spatial resolution of ∼1 µm, as a function of tissue age. In the present study, we used Raman microspectroscopy to evaluate bone material quality in transiliac bone biopsies from children with a mild form of OI, either attributable to collagen haploinsufficiency OI type I (OI-Quant; n = 11) or aberrant collagen structure (OI-Qual; n = 5), as a function of tissue age, and compared it against the previously published values established in a cohort of biopsies from healthy children (n = 54, ages 1 to 23 years). The results indicated significant differences in bone material compositional characteristics between OI-Quant patients and healthy controls, whereas fewer were evident in the OI-Qual patients. Differences in both subgroups of OI compared with healthy children were evident for nanoporosity, mineral maturity/crystallinity as determined by maxima of the v1 PO4 Raman band, and pyridinoline (albeit in different direction) content. These alterations in bone material compositional properties most likely contribute to the bone fragility characterizing this disease. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.
Constitutional bone impairment in Noonan syndrome.
Baldassarre, Giuseppina; Mussa, Alessandro; Carli, Diana; Molinatto, Cristina; Ferrero, Giovanni Battista
2017-03-01
Noonan syndrome (NS) is an autosomal dominant trait characterized by genotypic and phenotypic variability. It belongs to the Ras/MAPK pathway disorders collectively named Rasopathies or neurocardiofaciocutaneous syndromes. Phenotype is characterized by short stature, congenital heart defects, facial dysmorphisms, skeletal and ectodermal anomalies, cryptorchidism, mild to moderate developmental delay/learning disability, and tumor predisposition. Short stature and skeletal dysmorphisms are almost constant and several studies hypothesized a role for the RAS pathway in regulating bone metabolism. In this study, we investigated the bone quality assessed by phalangeal quantitative ultrasound (QUS) and the metabolic bone profiling in a group of patients with NS, to determine whether low bone mineralization is primary or secondary to NS characteristics. Thirty-five patients were enrolled, including 20 males (55.6%) and 15 females (44.5%) aged 1.0-17.8 years (mean 6.4 ± 4.5, median 4.9 years). Each patients was submitted to clinical examination, estimation of the bone age, laboratory assays, and QUS assessment. Twenty-five percent of the cohort shows reduced QUS values for their age based on bone transmission time. Bone measurement were adjusted for multiple factors frequently observed in NS patients, such as growth retardation, delayed bone age, retarded puberty, and reduced body mass index, potentially affecting bone quality or its appraisal. In spite of the correction attempts, QUS measurement indicates that bone impairment persists in nearly 15% of the cohort studied. Our results indicate that bone impairment in NS is likely primary and not secondary to any of the phenotypic traits of NS, nor consistent with metabolic disturbances. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Hu, Bin; Tommasini, Steven M.; Courtland, Hayden-William; Price, Christopher; Terranova, Carl J.; Nadeau, Joseph H.
2007-01-01
We examined femora from adult AXB/BXA recombinant inbred (RI) mouse strains to identify skeletal traits that are functionally related and to determine how functional interactions among these traits contribute to genetic variability in whole-bone stiffness, strength, and toughness. Randomization of A/J and C57BL/6J genomic regions resulted in each adult male and female RI strain building mechanically functional femora by assembling unique sets of morphologic and tissue-quality traits. A correlation analysis was conducted using the mean trait values for each RI strain. A third of the 66 correlations examined were significant, indicating that many bone traits covaried or were functionally related. Path analysis revealed important functional interactions among bone slenderness, cortical thickness, and tissue mineral density. The path coefficients describing these functional relations were similar for both sexes. The causal relationship among these three traits suggested that cellular processes during growth simultaneously regulate bone slenderness, cortical thickness, and tissue mineral density so that the combination of traits is sufficiently stiff and strong to satisfy daily loading demands. A disadvantage of these functional interactions was that increases in tissue mineral density also deleteriously affected tissue ductility. Consequently, slender bones with high mineral density may be stiff and strong but they are also brittle. Thus, genetically randomized mouse strains revealed a basic biological paradigm that allows for flexibility in building bones that are functional for daily activities but that creates preferred sets of traits under extreme loading conditions. Genetic or environmental perturbations that alter these functional interactions during growth would be expected to lead to loss of function and suboptimal adult bone quality. PMID:17557179
Shang, Y; Rogiewicz, A; Patterson, R; Slominski, B A; Kim, W K
2015-05-01
An experiment was conducted to investigate the effects of phytase and 2 levels of fructooligosaccharide (FOS) supplementation on growth performance, bone mineralization, and P utilization of broiler chickens. A total of 210 day-old male broiler chickens (Ross) were randomly placed into 7 dietary treatments consisting of 6 replicates with 5 birds per pen. The experiment was designed as an augmented 2 × 3 factorial arrangement with 0 or 500 U/kg of phytase and 0, 0.5% or 1% of FOS added to a reduced Ca (0.8%) and available P (0.25%) negative control diet (NC). A positive control diet (PC) that contained 1% Ca and 0.45% available P was also included. During the entire experimental period, phytase supplementation significantly improved (P < 0.05) the feed conversion ratio (FCR), BW gain (BWG), and feed intake. Birds fed the PC diet showed significantly higher bone mineral density (BMD) and bone mineral content (BMC) in both femur and tibia bones (P < 0.0001) than those fed the NC diet. Phytase supplementation increased femur BMD (P < 0.05), whereas FOS decreased femur BMD and BMC (P < 0.05). Phosphorus utilization was significantly higher for the NC diet (P < 0.0001). Phytase alone and in combination with 0.5% FOS increased P utilization significantly when compared with other treatments (P < 0.05). Fructooligosaccharides, especially at the level of 0.5%, increased P retention. In conclusion, phytase supplementation in low Ca and P diets improved growth performance, bone quality, and P utilization. However, supplementing NC diets with phytase and FOS did not result in bone mineralization values comparable with that of the PC diet. The application of dietary FOS alone had a negative effect on broiler bone quality. © 2015 Poultry Science Association Inc.
Mieczkowska, Aleksandra; Mansur, Sity Aishah; Irwin, Nigel; Flatt, Peter R; Chappard, Daniel; Mabilleau, Guillaume
2015-07-01
Type 1 diabetes mellitus (T1DM) is a severe disorder characterized by hyperglycemia and hypoinsulinemia. A higher occurrence of bone fractures has been reported in T1DM, and although bone mineral density is reduced in this disorder, it is also thought that bone quality may be altered in this chronic pathology. Vibrational microscopies such as Fourier transform infrared microspectroscopy (FTIRM) represent an interesting approach to study bone quality as they allow investigation of the collagen and mineral compartment of the extracellular matrix in a specific bone location. However, as spectral feature arising from the mineral may overlap with those of the organic component, the demineralization of bone sections should be performed for a full investigation of the organic matrix. The aims of the present study were to (i) develop a new approach, based on the demineralization of thin bone tissue section to allow a better characterization of the bone organic component by FTIRM, (ii) to validate collagen glycation and collagen integrity in bone tissue and (iii) to better understand what alterations of tissue material properties in newly forming bone occur in T1DM. The streptozotocin-injected mouse (150 mg/kg body weight, injected at 8 weeks old) was used as T1DM model. Animals were randomly allocated to control (n = 8) or diabetic (n = 10) groups and were sacrificed 4 weeks post-STZ injection. Bones were collected at necropsy, embedded in polymethylmethacrylate and sectioned prior to examination by FTIRM. FTIRM collagen parameters were collagen maturity (area ratio between 1660 and 1690 cm(-1) subbands), collagen glycation (area ratio between the 1032 cm(-1) subband and amide I) and collagen integrity (area ratio between the 1338 cm(-1) subband and amide II). No significant differences in the mineral compartment of the bone matrix could be observed between controls and STZ-injected animals. On the other hand, as compared with controls, STZ-injected animals presented with significant higher value for collagen maturity (17%, p = 0.0048) and collagen glycation (99%, p = 0.0121), while collagen integrity was significantly lower by 170% (p = 0.0121). This study demonstrated the profound effect of early T1DM on the organic compartment of the bone matrix in newly forming bone. Further studies in humans are required to ascertain whether T1DM also lead to similar effect on the quality of the bone matrix. Copyright © 2015 Elsevier Inc. All rights reserved.
Management of complex femoral nonunion with monorail external fixator: A prospective study.
Agrawal, Hemendra Kumar; Garg, Mohit; Singh, Balvinder; Jaiman, Ashish; Khatkar, Vipin; Khare, Shailender; Batra, Sumit; Sharma, Vinod Kumar
2016-01-01
To evaluate 30 patients who underwent distraction osteogenesis with monorail external fixator for complex femoral nonunion. Complex femoral nonunion includes infective non-union, gap nonunion, and limb-length discrepancy secondary to traumatic bone loss, which needs specialized treatment to ensure the functional integrity of femoral bone. 30 patients, including 28 male and 2 female (aged 22-62 years) patients, underwent surgical debridement followed by bone transport with monorail fixator. The lengthening index, radiographic consolidation index, functional status, bone healing, and various problems, obstacles, and complications encountered during the treatment were assessed. Patients underwent a mean of 2.2 (range 1-4) surgeries before presentation. The mean bone defect after surgical debridement was 5.83 cm (range 2-16 cm). The mean treatment duration was 204.7 days (range 113-543 days). The mean lengthening index was 13.06 days/cm with range from 12 to 16 days/cm. Mean maturation index was 23.51 days/cm with range from 17 to 45.5 days/cm. In our study, bone result was excellent in 17, good in 9, fair in 3, and poor in 1 patient. In our study functional outcome is excellent in 9 [30%], good in 14 [46.67%], fair in 5, and poor in 2 patients. In our study, we encountered 34 problems, 17 obstacles, and 8 complications. We concluded that monorail external fixator is an effective treatment option for complex nonunion femoral shaft fracture and its functional outcome is comparable with any other treatment options. Lack of complications and its effectiveness makes monorail external fixator the treatment of choice for complex nonunion femoral shaft.
Machining of a bioactive nanocomposite orthopedic fixation device.
Sparnell, Amie; Aniket; El-Ghannam, Ahmed
2012-08-01
Bioactive ceramics bond to bone and enhance bone formation. However, they have poor mechanical properties which restrict their machinability as well as their application as load bearing implants. The goal of this study was to machine bioactive fixation screws using a silica-calcium phosphate nanocomposite (SCPC50). The effect of compact pressure, holding time, and thermal treatment on the microstructure, machinability, and mechanical properties of SCPC50 cylinders were investigated. Samples prepared by powder metallurgy technique at compact pressure range of 100-300 MPa and treated at 900°C/1 h scored a poor machinability rating of (1/5) due to the significant formation of amorphous silicate phase at the grain boundaries. On the other hand, lowering of compact pressure and sintering temperature to 30 MPa/3 h and 700°C/2 h, respectively, minimized the formation of the amorphous phase and raised the machinability rating to (5/5). The modulus of elasticity and ultimate strength of machinable SCPC50 were 10.8 ± 2.0 GPa and 72.8 ± 22.8 MPa, respectively, which are comparable to the corresponding values for adult human cortical bone. qRT-PCR analyses showed that bone cells attached to SCPC50 significantly upregulated osteocalcin mRNA expression as compared to the cells on Ti-6Al-4V. Moreover, cells attached to SCPC50 produced mineralized bone-like tissue within 8 days. On the other hand, cells attached to Ti-6Al-4V failed to produce bone mineral under the same experimental conditions. Results of the study suggest that machinable SCPC50 has the potential to serve as an attractive new material for orthopedic fixation devices. Copyright © 2012 Wiley Periodicals, Inc.
Feng, Xu; McDonald, Jay M.
2013-01-01
The skeleton provides mechanical support for stature and locomotion, protects vital organs, and controls mineral homeostasis. A healthy skeleton must be maintained by constant bone modeling to carry out these crucial functions throughout life. Bone remodeling involves the removal of old or damaged bone by osteoclasts (bone resorption) and the subsequent replacement of new bone formed by osteoblasts (bone formation). Normal bone remodeling requires a tight coupling of bone resorption to bone formation to guarantee no alteration in bone mass or quality after each remodeling cycle. However, this important physiological process can be derailed by a variety of factors, including menopause-associated hormonal changes, age-related factors, changes in physical activity, drugs, and secondary diseases, which lead to the development of various bone disorders in both women and men. We review the major diseases of bone remodeling, emphasizing our current understanding of the underlying pathophysiological mechanisms. PMID:20936937
Herring, Matthew P; Monroe, Derek C; Kline, Christopher E; O'Connor, Patrick J; MacDonncha, Ciaran
2018-03-05
Physical activity (PA) can improve sleep quality, low energy, and fatigue. Though poor sleep quality may induce feelings of low energy and fatigue, the potential moderating effect of sleep quality on associations between PA and feelings of energy and fatigue among adolescents is unknown. Thus, this study examined the moderating effect of sleep quality on associations between PA frequency and feelings of energy and fatigue among adolescents in Ireland. Adolescents (N = 481; 281 males, 200 females) aged 15.1 ± 1.7 years self-reported PA frequency, feelings of energy and fatigue, and sleep quality (September to December 2015). Two-way ANCOVAs examined variation in feelings of energy and fatigue according to the interaction of PA and sleep quality. Standardized mean difference (d) quantified the magnitude of differences. Poor sleepers with low PA reported greater feelings of fatigue compared to normal sleepers with low PA (d = 1.02; 95% CI 0.60, 1.44), and poor sleepers with moderate PA reported greater feelings of fatigue compared to normal sleepers with moderate PA (d = 0.50; 0.17, 0.82). Poor sleepers with low PA reported greater feelings of fatigue compared to both poor sleepers with moderate PA (d = 0.44; 0.05, 0.83) and poor sleepers with high PA (d = 0.87; 0.46, 1.28). Poor sleepers with moderate PA reported greater feelings of fatigue compared to poor sleepers with high PA (d = 0.52; 0.14, 0.91). Poor sleep did not moderate the association between PA and feelings of energy. Sleep quality moderates the association between PA frequency and feelings of fatigue. Fatigue symptoms improve as PA frequency increases among adolescents with poor sleep quality.
Adult outcomes of childhood-onset rheumatic diseases
Hersh, Aimee; von Scheven, Emily; Yelin, Ed
2013-01-01
A number of studies published over the past 10 years have examined the long-term health, functional and quality of life outcomes of adults with childhood-onset rheumatic diseases such as juvenile idiopathic arthritis, systemic lupus erythematosus, juvenile dermatomyositis and localized scleroderma. As increasing numbers of patients with these conditions survive into adulthood, understanding the adult outcomes of these pediatric conditions has become ever-more important. Identifying modifiable risk factors for poor outcomes is vital to improving care for these patients. In addition, as these conditions and their treatments can affect cardiovascular health, bone health and fertility, particular attention needs to be paid to these outcomes. Preparing patients and their families for a successful transition from pediatric to adult rheumatology care is an important first-step in the long-term management strategy for this expanding patient population. PMID:21487383
NASA Astrophysics Data System (ADS)
Krappe, Sebastian; Benz, Michaela; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian
2015-03-01
The morphological analysis of bone marrow smears is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually with the use of bright field microscope. This is a time consuming, partly subjective and tedious process. Furthermore, repeated examinations of a slide yield intra- and inter-observer variances. For this reason an automation of morphological bone marrow analysis is pursued. This analysis comprises several steps: image acquisition and smear detection, cell localization and segmentation, feature extraction and cell classification. The automated classification of bone marrow cells is depending on the automated cell segmentation and the choice of adequate features extracted from different parts of the cell. In this work we focus on the evaluation of support vector machines (SVMs) and random forests (RFs) for the differentiation of bone marrow cells in 16 different classes, including immature and abnormal cell classes. Data sets of different segmentation quality are used to test the two approaches. Automated solutions for the morphological analysis for bone marrow smears could use such a classifier to pre-classify bone marrow cells and thereby shortening the examination duration.
Feuerstein, Joseph D; Castillo, Natalia E; Siddique, Sana S; Lewandowski, Jeffrey J; Geissler, Kathy; Martinez-Vazquez, Manuel; Thukral, Chandrashekhar; Leffler, Daniel A; Cheifetz, Adam S
2016-03-01
Quality measures are used to standardize health care and monitor quality of care. In 2011, the American Gastroenterological Association established quality measures for inflammatory bowel disease (IBD), but there has been limited documentation of compliance from different practice settings. We reviewed charts from 367 consecutive patients with IBD seen at academic practices, 217 patients seen at community practices, and 199 patients seen at private practices for compliance with 8 outpatient measures. Records were assessed for IBD history, medications, comorbidities, and hospitalizations. We also determined the number of patient visits to gastroenterologists in the past year, whether patients had a primary care physician at the same institution, and whether they were seen by a specialist in IBD or in conjunction with a trainee, and reviewed physician demographics. A univariate and multivariate statistical analysis was performed to determine which factors were associated with compliance of all core measures. Screening for tobacco abuse was the most frequently assessed core measure (89.6% of patients; n = 701 of 783), followed by location of IBD (80.3%; n = 629 of 783), and assessment for corticosteroid-sparing therapy (70.8%; n = 275 of 388). The least-frequently evaluated measures were pneumococcal immunization (16.7% of patients; n = 131 of 783), bone loss (25%; n = 126 of 505), and influenza immunization (28.7%; n = 225 of 783). Only 5.8% of patients (46 of 783) had all applicable core measures documented (24 in academic practice, none in clinical practice, and 22 in private practice). In the multivariate model, year of graduation from fellowship (odds ratio [OR], 2.184; 95% confidence interval [CI], 1.522-3.134; P < .001), year of graduation from medical school (OR, 0.500; 95% CI, 0.352-0.709; P < .001), and total number of comorbidities (OR, 1.089; 95% CI, 1.016-1.168; P = .016) were associated with compliance with all core measures. We found poor documentation of IBD quality measures in academic, clinical, and private gastroenterology practices. Interventions are necessary to improve reporting of quality measures. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Weight loss surgery improves quality of life in pediatric patients with osteogenesis imperfecta
Zani, Augusto; Ford-Adams, Martha; Ratcliff, Megan; Bevan, Denise; Inge, Thomas H.; Desai, Ashish
2018-01-01
Background Osteogenesis imperfecta (OI) is an inherited disorder, which causes brittle bones resulting in recurrent fractures. The associated poor mobility of children with OI increases susceptibility to obesity, and obesity further dramatically limits mobility and increases fracture risk. Objectives The aim of this report was to describe outcomes of weight loss surgery (WLS) in two adolescents with severe obesity and OI. Setting Two University Hospitals (in the United Kingdom and in the United States). Methods Two cases of OI treated with WLS were identified. Pre- and post-operative anthropometric and biochemical data and clinical course were reviewed. Results In these 2 cases, preoperative Body Mass Index (BMI) values were 38 and 46 kg/m2. Following laparoscopic sleeve gastrectomy (LSG), BMI decreased by 55% and 60% by 26 and 24 months, respectively. There were no surgical complications and both patients experienced improvement in their mobility and ability to perform activities of daily living. Conclusions WLS effectively treated severe obesity in two OI patients and substantially improved mobility and quality of life, theoretically reducing fracture risk. PMID:26948942
Saito, Mitsuru; Grynpas, Marc D; Burr, David B; Allen, Matthew R; Smith, Susan Y; Doyle, Nancy; Amizuka, Norio; Hasegawa, Tomoka; Kida, Yoshikuni; Marumo, Keishi; Saito, Hitoshi
2015-04-01
Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6 months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0 mg/mL) and low-density (<2.0 mg/mL) fractions from the ELD-treated groups than in the corresponding fractions in the OVX-vehicle control groups. On the other hand, non-enzymatic crosslinks were lower in both the high- and low-density fractions. These observations indicated that ELD treatment stimulated the enzymatic reaction of collagen crosslinks and bone mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage, and non-enzymatic collagen crosslinks all increase. Bone anabolic agents such as parathyroid hormone decrease bone mineralization and bone microdamage by stimulating bone remodeling. ELD did not fit into either category. Histological analysis indicated that the ELD treatment strongly suppressed bone resorption by reducing the number of osteoclasts, while also stimulating focal bone formation without prior bone resorption (bone minimodeling). These bidirectional activities of ELD may account for its unique effects on bone quality. Copyright © 2014. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, W.J. Jr.
1990-08-15
Wind reports by data buoys are used to demonstrate that these reports have in the past provided useful values for the synoptic scale winds and that at present these reports provide very reliable values for the synoptic scale winds. Past studies of wind reports by ships have revealed that the data are of poor quality, but the causes for this poor quality are not identified. Examples of the poor quality of wind data from ships are obtained by comparing ship reports with buoy reports and comparing reports of different kinds of ships with each other. These comparisons identify many differentmore » reasons for the poor quality of wind data from ships. Suggestions are made for improving the quality of ship data. The consequences of the poor quality of ship winds are described in terms of the effects on weather and wave forecasts. The implications for remotely sensed winds are discussed.« less
Vegt, Paul; Muir, Jeffrey M; Block, Jon E
2014-01-01
The treatment of osteoporotic long bone fractures is difficult due to diminished bone density and compromised biomechanical integrity. The majority of osteoporotic long bone fractures occur in the metaphyseal region, which poses additional problems for surgical repair due to increased intramedullary volume. Treatment with internal fixation using intramedullary nails or plating is associated with poor clinical outcomes in this patient population. Subsequent fractures and complications such as screw pull-out necessitate additional interventions, prolonging recovery and increasing health care costs. The Photodynamic Bone Stabilization System (PBSS) is a minimally invasive surgical technique that allows clinicians to repair bone fractures using a light-curable polymer contained within an inflatable balloon catheter, offering a new treatment option for osteoporotic long bone fractures. The unique polymer compound and catheter application provides a customizable solution for long bone fractures that produces internal stability while maintaining bone length, rotational alignment, and postsurgical mobility. The PBSS has been utilized in a case series of 41 fractures in 33 patients suffering osteoporotic long bone fractures. The initial results indicate that the use of the light-cured polymeric rod for this patient population provides excellent fixation and stability in compromised bone, with a superior complication profile. This paper describes the clinical uses, procedural details, indications for use, and the initial clinical findings of the PBSS.
Vegt, Paul; Muir, Jeffrey M; Block, Jon E
2014-01-01
The treatment of osteoporotic long bone fractures is difficult due to diminished bone density and compromised biomechanical integrity. The majority of osteoporotic long bone fractures occur in the metaphyseal region, which poses additional problems for surgical repair due to increased intramedullary volume. Treatment with internal fixation using intramedullary nails or plating is associated with poor clinical outcomes in this patient population. Subsequent fractures and complications such as screw pull-out necessitate additional interventions, prolonging recovery and increasing health care costs. The Photodynamic Bone Stabilization System (PBSS) is a minimally invasive surgical technique that allows clinicians to repair bone fractures using a light-curable polymer contained within an inflatable balloon catheter, offering a new treatment option for osteoporotic long bone fractures. The unique polymer compound and catheter application provides a customizable solution for long bone fractures that produces internal stability while maintaining bone length, rotational alignment, and postsurgical mobility. The PBSS has been utilized in a case series of 41 fractures in 33 patients suffering osteoporotic long bone fractures. The initial results indicate that the use of the light-cured polymeric rod for this patient population provides excellent fixation and stability in compromised bone, with a superior complication profile. This paper describes the clinical uses, procedural details, indications for use, and the initial clinical findings of the PBSS. PMID:25540600
Spross, Christian; Zeledon, Rebeca; Zdravkovic, Vilijam; Jost, Bernhard
2017-09-01
With the introduction of the deltoid tuberosity index (DTI), a simple radiographic tool has become available to measure bone mineral density of the proximal humerus. The aim of this study was to assess the influence of local bone mineral density on the early failure rate after angular stable open reduction-internal fixation of proximal humeral fractures (PHFs). We retrospectively followed up all patients treated with angular stable implants for PHFs from 2007 to 2014. The fractures were classified according to Neer, and the DTI, metaphyseal head extension (MHE), medial hinge displacement, and quality of reduction were assessed. Failures were defined as head screw cutouts. The study included 146 patients (mean age, 66 years; range, 20-94 years). The mean follow-up period was 11 months (range, 3-94 months). Of the fractures, 91% were classified as 2- or 3-part fractures and 9% as 4-part fractures. The mean DTI was 1.44 (range, 1.19-2.11), and the mean MHE was 12 mm (range, 0-48 mm). The reduction result was at least acceptable in 80% of fractures. Screw cutouts were found in 23%. The DTI and MHE were the most significant preoperative predictors for the reduction result. The DTI (P = .036) and age (P = .02) were independent preoperative factors, and a good reduction (P = .001) was the only intraoperative factor influencing cutout. This study proves that good bone quality and a long MHE are helpful for the reduction. Furthermore, good bone quality, a younger age, and a good reduction prevent later cutout. We conclude that local bone quality is a relevant factor in the treatment plan for PHFs. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Primary Ewing's Sarcoma of the temporal bone in an infant.
Goudarzipour, Kourosh; Shamsian, Shahin; Alavi, Samin; Nourbakhsh, Kazem; Aghakhani, Roxana; Eydian, Zahra; Arzanian, Mohammad Taghi
2015-04-01
Introduction : Ewing's sarcoma is the second most common primary malignant tumor of bone found in children after Osteosarcoma. It accounts for 4-9% of primary malignant bone tumors and it affects bones of the skull or face in only 1-4% of cases. Hence it rarely affects the head and neck. Subject and Method : In this case report, we describe a case of primary Ewing's sarcoma occurring in the temporal bone. The tumor was surgically excised, and the patient underwent chemotherapy for ten months. Results : Neither recurrence nor distant metastasis was noted in these 10 months after surgery but about 18 months after surgery our patient was expired. Conclusion : Although the prognosis of Ewing's sarcoma is generally poor because of early metastasis to the lungs and to other bones, a review of the article suggested that Ewing's sarcoma occurring in the skull can often be successfully managed by intensive therapy with radical excision and chemotherapy. This result was supported by the case reported here.
[Study of mastocytes in 1298 bone biopsies. Relationship between mastocytes and osteoporosis].
Grardel, B; Flautre, B; Sutter, B; Duriez, J; Hardouin, P
1991-11-30
The relationship between the bone damage in systemic mastocytosis and reactional mastocytosis is still poorly understood. The purpose of this study was to determine the incidence of excessive mastocytes in a series of bone biopsies and their significance in cases of osteoporosis. The mastocytes were routinely counted in 1,298 successive biopsies stained with May Grumwald Giemsa: 131 biopsies had more than 5 mastocytes/mm2, i.e., 10% of all samples for all diagnoses combined. In 11 patients (13 bone biopsies) with a large excess of mastocytes (more than 15/mm2) and osteoporosis, the biopsies were examined again to look for mastocytic nodules suggesting bone mastocytosis: mastocytic nodules of this type were found in only 4 cases. The mastocyte is an active cell which may play a role in bone metabolism through the intermediary of its mediators. In osteoporosis, the incidence and significance of excessive mastocytes is not yet understood; this excess of mastocytes appears to correspond to reactive mastocytosis rather than systemic mastocytosis.
Altered paracrine signaling from the injured knee joint impairs postnatal long bone growth
Roselló-Díez, Alberto; Stephen, Daniel; Joyner, Alexandra L
2017-01-01
Regulation of organ growth is a poorly understood process. In the long bones, the growth plates (GPs) drive elongation by generating a scaffold progressively replaced by bone. Although studies have focused on intrinsic GP regulation, classic and recent experiments suggest that local signals also modulate GP function. We devised a genetic mouse model to study extrinsic long bone growth modulation, in which injury is specifically induced in the left hindlimb, such that the right hindlimb serves as an internal control. Remarkably, when only mesenchyme cells surrounding postnatal GPs were killed, left bone growth was nevertheless reduced. GP signaling was impaired by altered paracrine signals from the knee joint, including activation of the injury response and, in neonates, dampened IGF1 production. Importantly, only the combined prevention of both responses rescued neonatal growth. Thus, we identified signals from the knee joint that modulate bone growth and could underlie establishment of body proportions. DOI: http://dx.doi.org/10.7554/eLife.27210.001 PMID:28741471
Platelet-rich plasma for long bone healing
Lenza, Mário; Ferraz, Silvia de Barros; Viola, Dan Carai Maia; dos Santos, Oscar Fernando Pavão; Cendoroglo, Miguel; Ferretti, Mario
2013-01-01
ABSTRACT Objective: To evaluate effectiveness of the use of platelet-rich plasma as coadjuvant for union of long bones. Methods: The search strategy included the Cochrane Library (via Central) and MEDLINE (via PubMed). There were no limits as to language or publication media. The latest search strategy was conducted in December 2011. It included randomized clinical trials that evaluated the use of platelet-rich plasma as coadjuvant medication to accelerate union of long bones (acute fractures, pseudoarthrosis and bone defects). The outcomes of interest for this review include bone regeneration, adverse events, costs, pain, and quality of life. The authors selected eligible studies, evaluated the methodological quality, and extracted the data. It was not possible to perform quantitative analysis of the grouped studies (meta-analyses). Results: Two randomized prospective clinical trials were included, with a total of 148 participants. One of them compared recombinant human morphogenic bone protein-7 versus platelet-rich plasma for the treatment of pseudoarthrosis; the other evaluated the effects of three coadjuvant treatments for union of valgising tibial osteotomies (platelet-rich plasma, platelet-rich plasma plus bone marrow stromal cells, and no coadjuvant treatment). Both had low statistical power and moderate to high risk of bias. Conclusion: There was no conclusive evidence that sustained the use of platelet-rich plasma as a coadjuvant to aid bone regeneration of fractures, pseudoarthrosis, or bone defects. PMID:23579757
Tyllianakis, Minos E; Panagopoulos, Andreas; Giannikas, Dimitrios; Megas, Panagiotis; Lambiris, Elias
2006-02-01
This article compares the functional and radiographic outcomes of intraarticular distal radial fractures treated with augmented external fixation in which autologous cancellous bone grafting or Norian SRS (Norian Corp, Cupertino, Calif) was used for filling the metaphyseal void. Thirty non-randomized patients, 15 in each group, with AO type C distal radius fractures (20 men and 10 women; average age: 48 years) were operatively treated between 1998-2000 and retrospectively evaluated. Radial inclination, radial length, volar tilt, and Modified Mayo Wrist Score were assessed at the most recent follow-up evaluation (average: 33.3 months). Overall, 12 (80%) patients in the Norian group had an excellent or good result, 2 had fair, and 1 had poor. In the autologous iliac bone graft group, the results were excellent or good in 11 (73.3%) patients, fair in 1, and poor in 2. No statistical difference between the two types of grafting was noted. Norian SRS is equally effective to cancellous bone as supplementary graft in comminuted distal radial fractures treated by external and Kirschner-wire fixation.
NASA Astrophysics Data System (ADS)
Bian, Weiguo; Qin, Lian; Li, Dichen; Wang, Jin; Jin, Zhongmin
2010-09-01
The artificial biodegradable osteochondral construct is one of mostly promising lifetime substitute in the joint replacement. And the complex hierarchical structure of natural joint is important in developing the osteochondral construct. However, the architecture features of the interface between cartilage and bone, in particular those at the micro-and nano-structural level, remain poorly understood. This paper investigates these structural data of the cartilage-bone interface by micro computerized tomography (μCT) and Scanning Electron Microscope (SEM). The result of μCT shows that important bone parameters and the density of articular cartilage are all related to the position in the hierarchical structure. The conjunctions of bone and cartilage were defined by SEM. All of the study results would be useful for the design of osteochondral construct further manufactured by nano-tech. A three-dimensional model with gradient porous structure is constructed in the environment of Pro/ENGINEERING software.
The Differentiation Balance of Bone Marrow Mesenchymal Stem Cells Is Crucial to Hematopoiesis
Zhang, Weiwei; Ran, Qian; Xiang, Yang; Zhong, Jiang F.; Li, Shengwen Calvin
2018-01-01
Bone marrow mesenchymal stem cells (BMSCs), the important component and regulator of bone marrow microenvironment, give rise to hematopoietic-supporting stromal cells and form hematopoietic niches for hematopoietic stem cells (HSCs). However, how BMSC differentiation affects hematopoiesis is poorly understood. In this review, we focus on the role of BMSC differentiation in hematopoiesis. We discussed the role of BMSCs and their progeny in hematopoiesis. We also examine the mechanisms that cause differentiation bias of BMSCs in stress conditions including aging, irradiation, and chemotherapy. Moreover, the differentiation balance of BMSCs is crucial to hematopoiesis. We highlight the negative effects of differentiation bias of BMSCs on hematopoietic recovery after bone marrow transplantation. Keeping the differentiation balance of BMSCs is critical for hematopoietic recovery. This review summarises current understanding about how BMSC differentiation affects hematopoiesis and its potential application in improving hematopoietic recovery after bone marrow transplantation. PMID:29765406
Biomechanical implications of cortical elastic properties of the macaque mandible.
Dechow, Paul C; Panagiotopoulou, Olga; Gharpure, Poorva
2017-10-01
Knowledge of the variation in the elastic properties of mandibular cortical bone is essential for modeling bone function. Our aim was to characterize the elastic properties of rhesus macaque mandibular cortical bone and compare these to the elastic properties from mandibles of dentate humans and baboons. Thirty cylindrical samples were harvested from each of six adult female rhesus monkey mandibles. Assuming orthotropy, axes of maximum stiffness in the plane of the cortical plate were derived from ultrasound velocity measurements. Further velocity measurements with longitudinal and transverse ultrasonic transducers along with measurements of bone density were used to compute three-dimensional cortical elastic properties using equations based on Hooke's law. Results showed regional variations in the elastic properties of macaque mandibular cortical bone that have both similarities and differences with that of humans and baboons. So far, the biological and structural basis of these differences is poorly understood. Copyright © 2017 Elsevier GmbH. All rights reserved.
Skeletal maturity and growth of adolescent mothers: relationship to pregnancy outcome.
Stevens-Simon, C; McAnarney, E R
1993-09-01
The purpose of this study was to evaluate the relationship between postpartum maternal bone age and the incidence of obstetric and neonatal complications in adolescent pregnancies. Bone age determinations were obtained on 93 poor, black 12- through 18-year-old adolescents during the puerperium. Results showed maternal bone ages ranging from 15 to 18 years; bone age was less than 18 years in 64 (68.8%) of the 93 adolescent mothers we studied. Maternal bone age correlated significantly with maternal chronologic age (r = 0.70) and prepregnant body size (r = 0.25) but did not correlate with total maternal weight gain and growth during pregnancy, the incidence of obstetric and neonatal complications, or infant birth weight and gestational age. Our findings suggest that many young, pregnant adolescents have the potential to grow during and after pregnancy, but do not support the hypothesis that ongoing maternal growth is an obstetric risk factor during adolescence.
Micro-CT characterization of human trabecular bone in osteogenesis imperfecta
NASA Astrophysics Data System (ADS)
Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald
2011-03-01
Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.
The Consequences of GHRH-R Haplo-Insufficiency for Bone Quality and Insulin resistance
Gois-Jr, Miburge B.; Salvatori, Roberto; Aguiar-Oliveira, Manuel H.; Pereira, Francisco A.; Oliveira, Carla R. P.; Oliveira-Neto, Luiz A.; Pereira, Rossana M. C.; Souza, Anita H.O.; Melo, Enaldo V.; de Paula, Francisco J. A.
2011-01-01
OBJECTIVE Growth hormone (GH)/insulin like growth factor (IGF) axis and insulin are key determinants of bone remodeling. Homozygous mutations in the GH releasing hormone receptor (GHRHR) gene (GHRHR) are a frequent cause of genetic isolated GHD (IGHD). Heterozygosity for GHRHR mutation causes changes in body composition and possibly an increase in insulin sensitivity, but its effects on bone quality are still unknown. The objective of this study was to assess the bone quality and metabolism and its correlation with insulin sensitivity in subjects heterozygous for a null mutation in the GHRHR. PATIENTS AND METHODS A cross-sectional study was performed on 76 normal subjects (68.4% females) (N/N) and 64 individuals (64.1% females) heterozygous for a mutation in the GHRHR (MUT/N). Anthropometric features, quantitative ultrasound (QUS) of the heel, bone markers (osteocalcin and CrossLaps), IGF-I, glucose, and insulin were measured and homeostasis model assessment of insulin resistance (HOMAIR) was calculated. RESULTS There were no differences in age or height between the two groups, but weight (p = 0.007) and BMI (p = 0.001) were lower in MUT/N. There were no differences in serum levels of IGF-I, glucose, T score, or absolute values of stiffness and osteocalcin, but insulin (p = 0.01), HOMAIR (p = 0.01) and CrossLaps (p = 0.01) were lower in MUT/N. There was no correlation between osteocalcin and glucose, osteocalcin and HOMAIR in the140 individuals as a whole or in the separate MUT/N or N/N groups. CONCLUSIONS The present study suggests that one allele mutation in the GHRHR gene has a greater impact on energy metabolism than on bone quality. PMID:21995288
Lifestyle in Multiple Myeloma - a longitudinal cohort study protocol.
Heinrich, M; Fisher, A; Paton, B; McCourt, O; Beeken, R J; Hackshaw, A; Wardle, J; Yong, K
2016-07-04
Deterioration in bone health is one of the presenting symptoms of Multiple Myeloma (MM), a cancer of plasma cells. As a consequence of this condition, patients suffer bone pain and bone damage and report cancer-related fatigue, resulting in deterioration in their quality of life. Evidence in patients with solid tumours shows promise for the positive effects of physical activity on quality of life. However, in the case of patients with MM a better understanding of the association between physical fitness and quality of life factors is still required. Therefore, this cohort study aims to objectively and longitudinally assess activity and fitness levels in patients with MM in order to explore their role in bone health, fatigue and quality of life for this patient population. The study is a prospective cohort study of MM patients in remission to assess physical activity, fatigue and bone health. Clinical markers of health, self-reported measures of psychological and physical well-being, and lifestyle behaviours are assessed at baseline, 3, 6 and 12 months. At each time point, patients complete cardiopulmonary exercise testing (CPET) along with a series of objective tests to assess physical fitness (eg accelerometry) and a number of self-report measures. A complementary qualitative study will be carried out in order to explore patients' desire for lifestyle advice and when in their cancer journey they deem such advice to be useful. This study will be the first to prospectively and longitudinally explore associations between physical fitness and well-being, bone health, and fatigue (along with a number of other physical and clinical outcomes) in a cohort of patients with MM with the use of objective measures. The findings will also help to identify time points within the MM pathway at which physical activity interventions may be introduced for maximum benefit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Lingzhi, E-mail: hlingzhi@gmail.com, E-mail: raymond.muzic@case.edu; Traughber, Melanie; Su, Kuan-Hao
Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstratingmore » the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2{sup ∗} = 1/T2{sup ∗}, was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2{sup ∗} of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2{sup ∗} of human skull was measured as 0.2–0.3 ms{sup −1} depending on the specific region, which is more than ten times greater than the R2{sup ∗} of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in brain. High-quality, bone-enhanced images can be generated using a reduced sampled UTE sequence with no visible compromise in image quality and they preserved bone-to-air contrast with as low as a 25% sampling rate. Conclusions: This UTE strategy with angular undersampling preserves the image quality and contrast of cortical bone, while reducing the total scanning time by as much as 75%. The quantitative results of R2{sup ∗} and the water fraction of skull based on Dixon analysis of UTE images acquired at multiple echo times provide guidance for the clinical adoption and further parameter optimization of the UTE sequence when used for radiation therapy and MR-based PET attenuation correction.« less
Bone involvement in adult patients affected with Ehlers-Danlos syndrome.
Eller-Vainicher, C; Bassotti, A; Imeraj, A; Cairoli, E; Ulivieri, F M; Cortini, F; Dubini, M; Marinelli, B; Spada, A; Chiodini, I
2016-08-01
The Ehlers-Danlos syndrome is characterized by abnormal connective tissue but bone involvement is debated. We found a reduced BMD and bone quality and increased prevalence of asymptomatic vertebral fractures in eugonadal patients with Ehlers-Danlos syndrome. These findings suggest the need of a bone health evaluation in these patients. The Ehlers-Danlos (EDS) syndrome is characterized by abnormalities of the connective tissue leading to ligamentous laxity and skin and tissue fragility. We evaluated the bone metabolism, bone mineral density (BMD) and bone quality (measured by trabecular bone score, TBS), and the prevalence of vertebral fractures (VFx) in a group of eugonadal adult EDS patients. Fifty consecutive Caucasian patients, aged 30-50 years (36 females, 14 males) with classical or hypermobility EDS and 50 age-, gender-, and body mass index (BMI)-matched control subjects were enrolled. In all subjects' calcium-phosphorous metabolism, bone turnover, BMD at the lumbar spine (LS) and femur (femoral neck, FN and total femur, FT) and TBS by dual-energy X-ray absorptiometry, and the VFx presence by spine radiograph were assessed. Patients showed reduced BMD (Z-scores LS -0.45 ± 1.00, FN -0.56 ± 1.01, FT -0.58 ± 0.92) and TBS (1.299 ± 0.111) and increased prevalence of morphometric VFx (32 %) than controls (Z-scores LS 0.09 ± 1.22, FN 0.01 ± 0.97, FT 0.08 ± 0.89; TBS 1.382 ± 0.176; VFx 8 %, p <0.05 for all comparisons), while vitamin D levels, calcium-phosphorous metabolism, and bone turnover were comparable. Fractured EDS patients showed lower TBS values than non-fractured ones (1.245 ± 0.138 vs 1.325 ± 0.086, p < 0.05), despite comparable BMD. In EDS patients, the VFx presence was significantly associated with TBS even after adjusting for sex, age, BMD, EDS type, and falls frequency. EDS patients have reduced BMD and bone quality (as measured by TBS) and increased prevalence of VFx.
Assessment of imaging quality in magnified phase CT of human bone tissue at the nanoscale
NASA Astrophysics Data System (ADS)
Yu, Boliang; Langer, Max; Pacureanu, Alexandra; Gauthier, Remy; Follet, Helene; Mitton, David; Olivier, Cecile; Cloetens, Peter; Peyrin, Francoise
2017-10-01
Bone properties at all length scales have a major impact on the fracture risk in disease such as osteoporosis. However, quantitative 3D data on bone tissue at the cellular scale are still rare. Here we propose to use magnified X-ray phase nano-CT to quantify bone ultra-structure in human bone, on the new setup developed on the beamline ID16A at the ESRF, Grenoble. Obtaining 3D images requires the application of phase retrieval prior to tomographic reconstruction. Phase retrieval is an ill-posed problem for which various approaches have been developed. Since image quality has a strong impact on the further quantification of bone tissue, our aim here is to evaluate different phase retrieval methods for imaging bone samples at the cellular scale. Samples from femurs of female donors were scanned using magnified phase nano-CT at voxel sizes of 120 and 30 nm with an energy of 33 keV. Four CT scans at varying sample-to-detector distances were acquired for each sample. We evaluated three phase retrieval methods adapted to these conditions: Paganin's method at single distance, Paganin's method extended to multiple distances, and the contrast transfer function (CTF) approach for pure phase objects. These methods were used as initialization to an iterative refinement step. Our results based on visual and quantitative assessment show that the use of several distances (as opposed to single one) clearly improves image quality and the two multi-distance phase retrieval methods give similar results. First results on the segmentation of osteocyte lacunae and canaliculi from such images are presented.
A Direct Role of Collagen Glycation in Bone Fracture
Poundarik, Atharva A.; Wu, Ping-Cheng; Evis, Zafer; Sroga, Grazyna E.; Ural, Ani; Rubin, Mishaela; Vashishth, Deepak
2015-01-01
Non-enzymatic glycation (NEG) is an age-related process accelerated by diseases like diabetes, and causes the accumulation of advanced glycation end-products (AGEs). NEG-mediated modification of bone’s organic matrix, principally collagen type-I, has been implicated in impairing skeletal physiology and mechanics. Here, we present evidence, from in vitro and in vivo models, and establish a causal relationship between collagen glycation and alterations in bone fracture at multiple length scales. Through atomic force spectroscopy, we established that NEG impairs collagen’s ability to dissipate energy. Mechanical testing of in vitro glycated human bone specimen revealed that AGE accumulation due to NEG dramatically reduces the capacity of organic and mineralized matrix to creep and caused bone to fracture under impact at low levels of strain (3000–5000 μstrain) typically associated with fall. Fracture mechanics tests of NEG modified human cortical bone of varying ages, and their age-matched controls revealed that NEG disrupted microcracking based toughening mechanisms and reduced bone propagation and initiation fracture toughness across all age groups. A comprehensive mechanistic model, based on experimental and modeling data, was developed to explain how NEG and AGEs are causal to, and predictive of bone fragility. Furthermore, fracture mechanics and indentation testing on diabetic mice bones revealed that diabetes mediated NEG severely disrupts bone matrix quality in vivo. Finally, we show that AGEs are predictive of bone quality in aging humans and have diagnostic applications in fracture risk. PMID:26530231
Algorithm for employing physical forces in metabolic bone diseases.
Massari, Leo
2011-04-01
Metabolic bone diseases, especially osteoporosis, demand a multidisciplinary approach. The physical forces find a rationale in the treatment of local alterations in bone-cartilage metabolism. In integrated treatment of vertebral fractures caused by fragility, stimulation with electrical fields has been observed to be effective in reducing pain and improving patients' quality of life.
Kavousi, Niloofar; Eng, Wilhelm Wei Han; Lee, Yin Peng; Tan, Lian Huat; Thuraisingham, Ravindran; Yule, Catherine M; Gan, Han Ming
2016-03-03
We report here the first high-quality draft genome sequence of Pasteurella multocida sequence type 128, which was isolated from the infected finger bone of an adult female who was bitten by a domestic dog. The draft genome will be a valuable addition to the scarce genomic resources available for P. multocida. Copyright © 2016 Kavousi et al.
NASA Astrophysics Data System (ADS)
Hellmich, Christian; Fritsch, Andreas; Dormieux, Luc
Biomimetics deals with the application of nature-made "design solutions" to the realm of engineering. In the quest to understand mechanical implications of structural hierarchies found in biological materials, multiscale mechanics may hold the key to understand "building plans" inherent to entire material classes, here bone and bone replacement materials. Analyzing a multitude of biophysical hierarchical and biomechanical experiments through homogenization theories for upscaling stiffness and strength properties reveals the following design principles: The elementary component "collagen" induces, right at the nanolevel, the mechanical anisotropy of bone materials, which is amplified by fibrillar collagen-based structures at the 100-nm scale, and by pores in the micrometer-to-millimeter regime. Hydroxyapatite minerals are poorly organized, and provide stiffness and strength in a quasi-brittle manner. Water layers between hydroxyapatite crystals govern the inelastic behavior of the nanocomposite, unless the "collagen reinforcement" breaks. Bone replacement materials should mimic these "microstructural mechanics" features as closely as possible if an imitation of the natural form of bone is desired (Gebeshuber et al., Adv Mater Res 74:265-268, 2009).
Whitlock, J; Dixon, J; Sherlock, C; Tucker, R; Bolt, D M; Weller, R
2016-05-21
Since the 1950s, veterinary practitioners have included two separate dorsoproximal-palmarodistal oblique (DPr-PaDiO) radiographs as part of a standard series of the equine foot. One image is obtained to visualise the distal phalanx and the other to visualise the navicular bone. However, rapid development of computed radiography and digital radiography and their post-processing capabilities could mean that this practice is no longer required. The aim of this study was to determine differences in perceived image quality between DPr-PaDiO radiographs that were acquired with a computerised radiography system with exposures, centring and collimation recommended for the navicular bone versus images acquired for the distal phalanx but were subsequently manipulated post-acquisition to highlight the navicular bone. Thirty images were presented to four clinicians for quality assessment and graded using a 1-3 scale (1=textbook quality, 2=diagnostic quality, 3=non-diagnostic image). No significant difference in diagnostic quality was found between the original navicular bone images and the manipulated distal phalanx images. This finding suggests that a single DPr-PaDiO image of the distal phalanx is sufficient for an equine foot radiographic series, with appropriate post-processing and manipulation. This change in protocol will result in reduced radiographic study time and decreased patient/personnel radiation exposure. British Veterinary Association.
Periodontal tissue repair after sealing of the gap in vertical root fracture.
Sugaya, Tsutomu; Tomita, Mahito; Motoki, Youji; Zaman, Khurshiduz; Miyaji, Hirofumi; Kawanami, Masamitsu
2017-04-01
The aim of this study was to determine whether sealing of fracture gap using adhesive resin through the root canal can prevent inflammation of periodontal tissue, and resealing the incompletely sealed fracture gap from outside can resolve such inflammation in experimentally created vertical root fractures. Vertical root fractures were created in incisor of beagles. In the experimental group, the fracture gap was sealed through the root canal with adhesive resin. After 5 weeks, sites with the clinical attachment level ≥4 mm were further divided randomly into the poor-replanting group and the poor-untreated group. In the poor-replanting group, the tooth was extracted and replanted after resealing the fracture gap with adhesive resin from the outer surface. Sites with clinical attachment level ≤3 mm after 5 weeks were considered as the satisfactory group. The poor-untreated group and the satisfactory group were subjected to no further treatment. The clinical attachment level was evaluated at baseline and after 2, 5, and 9 weeks. After 9 weeks, histological measurements were made to determine the length of the epithelial downgrowth and the area of alveolar bone resorption. The clinical attachment level and the area of bone resorption were significantly smaller in the poor-replanting group and the satisfactory group than in the poor-untreated group (p < 0.05). The results indicate the possibility that periodontal inflammation along the fracture line can be prevented and improved if the fracture gap is sealed.
Exploring Gender Difference in Sleep Quality of Young Adults: Findings from a Large Population Study
Fatima, Yaqoot; Doi, Suhail A.R.; Najman, Jake M.; Mamun, Abdullah Al
2016-01-01
Objectives To explore if gender difference in sleep quality is due to higher prevalence of depression in females, and whether socio-demographic and lifestyle factors have a differential effect on sleep quality in males and females. Methods Youth self-reports and the Pittsburgh Sleep Quality Index were used to assess sleep quality and associated risk factors. Logistic regression analyses were used to analyze the association between various risk factors and poor sleep quality. Results Reports from 3,778 young adults (20.6±0.86 years) indicate a higher prevalence of poor sleep quality in females than males (65.1% vs. 49.8%). It seems that gender difference in poor sleep is independent of depression, socio-demographics, and lifestyle factors, since the higher odds of poor sleep quality in females was robust to adjust for depression, socio-demographics, and lifestyle factors (OR: 1.53, 95% CI: 1.23–1.90). Lifestyle factors (eg, smoking) (OR 1.91; 95% CI 1.05–3.46) were associated with sleep quality in only males. Conclusion Our findings indicate that female vulnerability to poor sleep quality should be explored beyond psycho-social disparities. Perhaps, exploring if the female predisposition to poor sleep quality originates at the biological level could lead to the answer. PMID:28188139
Wakabayashi, Hiroki; Wakisaka, Satoshi; Hiraga, Toru; Hata, Kenji; Nishimura, Riko; Tominaga, Makoto; Yoneda, Toshiyuki
2018-05-01
Bone pain is one of the most common and life-limiting complications of cancer metastasis to bone. Although the mechanism of bone pain still remains poorly understood, bone pain is evoked as a consequence of sensitization and excitation of sensory nerves (SNs) innervating bone by noxious stimuli produced in the microenvironment of bone metastases. We showed that bone is innervated by calcitonin gene-related protein (CGRP) + SNs extending from dorsal root ganglia (DRG), the cell body of SNs, in mice. Mice intratibially injected with Lewis lung cancer (LLC) cells showed progressive bone pain evaluated by mechanical allodynia and flinching with increased CGRP + SNs in bone and augmented SN excitation in DRG as indicated by elevated numbers of pERK- and pCREB-immunoreactive neurons. Immunohistochemical examination of LLC-injected bone revealed that the tumor microenvironment is acidic. Bafilomycin A1, a selective inhibitor of H + secretion from vacuolar proton pump, significantly alleviated bone pain, indicating that the acidic microenvironment contributes to bone pain. We then determined whether the transient receptor potential vanilloid 1 (TRPV1), a major acid-sensing nociceptor predominantly expressed on SNs, plays a role in bone pain by intratibially injecting LLC cells in TRPV1-deficient mice. Bone pain and SN excitation in the DRG and spinal dorsal horn were significantly decreased in TRPV1 -/- mice compared with wild-type mice. Our results suggest that TRPV1 activation on SNs innervating bone by the acidic cancer microenvironment in bone contributes to SN activation and bone pain. Targeting acid-activated TRPV1 is a potential therapeutic approach to cancer-induced bone pain.
Osonoi, Yusuke; Mita, Tomoya; Osonoi, Takeshi; Saito, Miyoko; Tamasawa, Atsuko; Nakayama, Shiho; Someya, Yuki; Ishida, Hidenori; Kanazawa, Akio; Gosho, Masahiko; Fujitani, Yoshio; Watada, Hirotaka
2015-06-18
While poor sleep quality can worsen cardiovascular risk factors such as glucose and lipid profiles in patients with type 2 diabetes mellitus (T2DM), the relationship between sleep quality and atherosclerosis remains largely unknown. The aim of this study was to examine this relationship. The study participants comprised 724 Japanese T2DM outpatients free of history of cardiovascular diseases. The relationships between sleep quality (assessed by the Pittsburgh Sleep Quality Index (PSQI)) and various clinical and laboratory parameters were investigated. The mean PSQI was 5.1 ± 3.0 (±SD). Patients were divided into three groups based on the total PSQI score; subjects with good sleep quality (n = 462), average sleep quality (n = 185), and poor sleep quality (n = 77). In the age/gender-adjusted model, patients with poor sleep quality tended to be obese, evening type and depressed. However, other lifestyles showed no significant trends. Alanine aminotransferase, fasting blood glucose, HbA1c, systolic blood pressure, urinary albumin excretion, and brachial-ankle pulse wave velocity (baPWV) tended to be higher in patients with poor sleep quality. High baPWV was the only parameter that correlated with poor sleep in a model adjusted for several other lifestyle factors. Our study indicates that poor sleep quality in T2DM patients correlates with increased arterial wall stiffness, a marker of atherosclerosis and a risk factor for cardiovascular diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gratama van Andel, H. A. F.; Venema, H. W.; Streekstra, G. J.
For clear visualization of vessels in CT angiography (CTA) images of the head and neck using maximum intensity projection (MIP) or volume rendering (VR) bone has to be removed. In the past we presented a fully automatic method to mask the bone [matched mask bone elimination (MMBE)] for this purpose. A drawback is that vessels adjacent to bone may be partly masked as well. We propose a modification, multiscale MMBE, which reduces this problem by using images at two scales: a higher resolution than usual for image processing and a lower resolution to which the processed images are transformed formore » use in the diagnostic process. A higher in-plane resolution is obtained by the use of a sharper reconstruction kernel. The out-of-plane resolution is improved by deconvolution or by scanning with narrower collimation. The quality of the mask that is used to remove bone is improved by using images at both scales. After masking, the desired resolution for the normal clinical use of the images is obtained by blurring with Gaussian kernels of appropriate widths. Both methods (multiscale and original) were compared in a phantom study and with clinical CTA data sets. With the multiscale approach the width of the strip of soft tissue adjacent to the bone that is masked can be reduced from 1.0 to 0.2 mm without reducing the quality of the bone removal. The clinical examples show that vessels adjacent to bone are less affected and therefore better visible. Images processed with multiscale MMBE have a slightly higher noise level or slightly reduced resolution compared with images processed by the original method and the reconstruction and processing time is also somewhat increased. Nevertheless, multiscale MMBE offers a way to remove bone automatically from CT angiography images without affecting the integrity of the blood vessels. The overall image quality of MIP or VR images is substantially improved relative to images processed with the original MMBE method.« less
Hay, Peter D; Smith, Julie; O'Connor, Richard A
2016-02-01
The aim of this study was to evaluate the benefits to SPECT bone scan image quality when applying resolution recovery (RR) during image reconstruction using software provided by a third-party supplier. Bone SPECT data from 90 clinical studies were reconstructed retrospectively using software supplied independent of the gamma camera manufacturer. The current clinical datasets contain 120×10 s projections and are reconstructed using an iterative method with a Butterworth postfilter. Five further reconstructions were created with the following characteristics: 10 s projections with a Butterworth postfilter (to assess intraobserver variation); 10 s projections with a Gaussian postfilter with and without RR; and 5 s projections with a Gaussian postfilter with and without RR. Two expert observers were asked to rate image quality on a five-point scale relative to our current clinical reconstruction. Datasets were anonymized and presented in random order. The benefits of RR on image scores were evaluated using ordinal logistic regression (visual grading regression). The application of RR during reconstruction increased the probability of both observers of scoring image quality as better than the current clinical reconstruction even where the dataset contained half the normal counts. Type of reconstruction and observer were both statistically significant variables in the ordinal logistic regression model. Visual grading regression was found to be a useful method for validating the local introduction of technological developments in nuclear medicine imaging. RR, as implemented by the independent software supplier, improved bone SPECT image quality when applied during image reconstruction. In the majority of clinical cases, acquisition times for bone SPECT intended for the purposes of localization can safely be halved (from 10 s projections to 5 s) when RR is applied.
Hoyer-Kuhn, Heike; Stark, Christina; Franklin, Jeremy; Schoenau, Eckhard; Semler, Oliver
2017-11-01
Osteogenesis imperfecta (OI) is a rare hereditary skeletal disease leading to recurrent fractures, short stature and impaired mobility. The phenotype varies from mildly affected patients to perinatal lethal forms. In most cases an impaired collagen production due to mutations in COL1A1 or COL1A2 cause this hereditary bone fragility syndrome with an autosomal dominant inheritance. Currently an interdisciplinary therapeutic approach with antiresorptive drugs, physiotherapy and surgical procedures is the state of the art therapy. The effect of such a therapy is evaluated by measuring different surrogate parameters like areal bone mineral density or by using different mobility tests or questionnaires. Up till now the impact of these parameters on quality of life of the patients is not evaluated. Currently pharmacological strategies are based on antiresorptive treatment with bisphosphonates. In this trial we investigated the effect of an antiresorptive therapy with the monoclonal antibody denosumab decreasing the activity of osteoclasts. Denosumab was administered subcutaneously in a dose of 1mg/kg body weight in 10 children with OI (5-10 years of age) every 12 weeks for 48 weeks. Areal bone mineral density, mobility, pain scores and quality of life were measured. The results showed a good effect of the treatment on bone mineral density but this improvement showed no correlation to pain and quality of life. In conclusion further trials have to define parameters to assess interventions which influence activities of daily life of the patients. An interdisciplinary approach including physicians, basic researchers and patient organisation is needed to focus research on topics improving quality of life of patients with severe skeletal diseases. Copyright© of YS Medical Media ltd.
Pandey, Anil K; Bisht, Chandan S; Sharma, Param D; ArunRaj, Sreedharan Thankarajan; Taywade, Sameer; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-11-01
Tc-methylene diphosphonate (Tc-MDP) bone scintigraphy images have limited number of counts per pixel. A noise filtering method based on local statistics of the image produces better results than a linear filter. However, the mask size has a significant effect on image quality. In this study, we have identified the optimal mask size that yields a good smooth bone scan image. Forty four bone scan images were processed using mask sizes 3, 5, 7, 9, 11, 13, and 15 pixels. The input and processed images were reviewed in two steps. In the first step, the images were inspected and the mask sizes that produced images with significant loss of clinical details in comparison with the input image were excluded. In the second step, the image quality of the 40 sets of images (each set had input image, and its corresponding three processed images with 3, 5, and 7-pixel masks) was assessed by two nuclear medicine physicians. They selected one good smooth image from each set of images. The image quality was also assessed quantitatively with a line profile. Fisher's exact test was used to find statistically significant differences in image quality processed with 5 and 7-pixel mask at a 5% cut-off. A statistically significant difference was found between the image quality processed with 5 and 7-pixel mask at P=0.00528. The identified optimal mask size to produce a good smooth image was found to be 7 pixels. The best mask size for the John-Sen Lee filter was found to be 7×7 pixels, which yielded Tc-methylene diphosphonate bone scan images with the highest acceptable smoothness.
Smith, Simon Squire; Kozak, Nahum; Sullivan, Karen Anne
2012-03-01
Loneliness and low mood are associated with significant negative health outcomes including poor sleep, but the strength of the evidence underlying these associations varies. There is strong evidence that poor sleep quality and low mood are linked, but only emerging evidence that loneliness and poor sleep are associated. To independently replicate the finding that loneliness and poor subjective sleep quality are associated and to extend past research by investigating lifestyle regularity as a possible mediator of relationships, since lifestyle regularity has been linked to loneliness and poor sleep. Using a cross-sectional design, 97 adults completed standardized measures of loneliness, lifestyle regularity, subjective sleep quality and mood. Loneliness was a significant predictor of sleep quality. Lifestyle regularity was not a predictor of, nor associated with, mood, sleep quality or loneliness. This study provides an important independent replication of the association between poor sleep and loneliness. However, the mechanism underlying this link remains unclear. A theoretically plausible mechanism for this link, lifestyle regularity, does not explain the relationship between loneliness and poor sleep. The nexus between loneliness and poor sleep is unlikely to be broken by altering the social rhythm of patients who present with poor sleep and loneliness.
NASA Technical Reports Server (NTRS)
Peterman, M.; McCrory, J. L.; Sharkey, N. A.; Piazza, S.; Cavanagh, P. R.
1999-01-01
The human zero-gravity locomotion simulator and the cadaver simulator offer a powerful combination for the study of the implications of exercise for maintaining bone quality during space flight. Such studies, when compared with controlled in-flight exercise programs, could help in the identification of a strain threshold for the prevention of bone loss during space flight.
Impact of endocrine hyperfunction and phosphate wasting on bone in McCune-Albright syndrome.
Lala, R; Matarazzo, P; Andreo, M; Defilippi, C; de Sanctis, C
2002-01-01
Skin dysplasia, as café-au-lait spots, bone fibrous dysplasia and peripheral endocrinopathies are the main clinical features of McCune-Albright syndrome (MAS). This illness is due to activating mutations of the Gsalpha protein and is spread with a mosaic pattern in affected tissues that consist of intermixed areas of normal and mutated cells. Peripheral endocrine secretion, free of hypothalamic pituitary control, is the hallmark of the endocrine syndromes: precocious puberty, Cushing's syndrome, hyperthyroidism and gigantism/acromegaly. In addition, phosphate wasting as hyperphosphaturia is often present. The impact of hormonal hypersecretion and phosphate loss on the bones of patients with MAS is poorly understood both in normal and fibrous bone tissue. As hypercortisolism and hyperthyroidism increase bone resorption, hyperestrogenism and growth hormone hypersecretion stimulate bone growth and mineralization, and phosphate wasting reduces bone mineral content. All these actions can be exerted at varying times and degrees in a single patient on lesional and non-lesional bones. Sonographic evidence of multiple diffused hyperechogenic spots in the testes of patients with MAS do not seem to be related to alterations in calcium-phosphate metabolism but rather to zonal dysplasia/hyperplasia of testicular tissue.
Muccino, Enrico; Porta, Davide; Magli, Francesca; Cigada, Alfredo; Sala, Remo; Gibelli, Daniele; Cattaneo, Cristina
2013-09-01
As literature is poor in functional synthetic cranial models, in this study, synthetic handmade models of cranial vaults were produced in two different materials (a urethane resin and a self-hardening foam), from multiple bone specimens (eight original cranial vaults: four human and four swine), in order to test their resemblance to bone structure in behavior, during fracture formation. All the vaults were mechanically tested with a 2-kg impact weight and filmed with a high-speed camera. Fracture patterns were homogeneous in all swine vaults and heterogeneous in human vaults, with resin fractures more similar to bone fractures. Mean fracture latency time extrapolated by videos were of 0.75 msec (bone), 1.5 msec (resin), 5.12 msec (foam) for human vaults and of 0.625 msec (bone), 1.87 msec (resin), 3.75 msec (foam) for swine vaults. These data showed that resin models are more similar to bone than foam reproductions, but that synthetic material may behave quite differently from bone as concerns fracture latency times. © 2013 American Academy of Forensic Sciences.
Protocadherin-7 induces bone metastasis of breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ai-Min; Tian, Ai-Xian; Zhang, Rui-Xue
2013-07-05
Highlights: •PCDH7 is overexpression in high bone metastatic MDA-MB-231 cells. •PCDH7 is up-regulation in bone metastatic breast cancer tissues. •Suppression of PCDH7 inhibits cell proliferation, migration, and invasion in vitro. •PCDH7 induces breast cancer bone metastasis in vivo. -- Abstract: Breast cancer had a propensity to metastasize to bone, resulting in serious skeletal complications associated with poor outcome. Previous study showed that Protocadherin-7 (PCDH7) play an important role in brain metastatic breast cancer, however, the role of PCDH7 in bone metastatic breast cancer has never been explored. In the present study, we found that PCDH7 expression was up-regulation in bonemore » metastatic breast cancer tissues by real-time PCR and immunohistochemistry assays. Furthermore, suppression of PCDH7 inhibits breast cancer cell proliferation, migration, and invasion in vitro by MTT, scratch, and transwell assays. Most importantly, overexpression of PCDH7 promotes breast cancer cell proliferation and invasion in vitro, and formation of bone metastasis in vivo. These data provide an important insight into the role of PCDH7 in bone metastasis of breast cancer.« less
Disrupted Bone Metabolism in Long-Term Bedridden Patients
Endo, Naoto; Uchiyama, Seiji; Takahashi, Yoshinori; Kawashima, Hiroyuki; Watanabe, Kei
2016-01-01
Background Bedridden patients are at risk of osteoporosis and fractures, although the long-term bone metabolic processes in these patients are poorly understood. Therefore, we aimed to determine how long-term bed confinement affects bone metabolism. Methods This study included 36 patients who had been bedridden from birth due to severe immobility. Bone mineral density and bone metabolism markers were compared to the bedridden period in all study patients. Changes in the bone metabolism markers during a follow-up of 12 years were studied in 17 patients aged <30 years at baseline. Results The bone mineral density was reduced (0.58±0.19 g/cm3), and the osteocalcin (13.9±12.4 ng/mL) and urine N-terminal telopeptide (NTX) levels (146.9±134.0 mM BCE/mM creatinine) were greater than the cutoff value for predicting fracture. Among the bone metabolism markers studied, osteocalcin and NTX were negatively associated with the bedridden period. During the follow-up, osteocalcin and parathyroid hormone were decreased, and the 25(OH) vitamin D was increased. NTX at baseline was negatively associated with bone mineral density after 12 years. Conclusions Unique bone metabolic abnormalities were found in patients who had been bedridden for long periods, and these metabolic abnormalities were altered by further bed confinement. Appropriate treatment based on the unique bone metabolic changes may be important in long-term bedridden patients. PMID:27275738
Disrupted Bone Metabolism in Long-Term Bedridden Patients.
Eimori, Keiko; Endo, Naoto; Uchiyama, Seiji; Takahashi, Yoshinori; Kawashima, Hiroyuki; Watanabe, Kei
2016-01-01
Bedridden patients are at risk of osteoporosis and fractures, although the long-term bone metabolic processes in these patients are poorly understood. Therefore, we aimed to determine how long-term bed confinement affects bone metabolism. This study included 36 patients who had been bedridden from birth due to severe immobility. Bone mineral density and bone metabolism markers were compared to the bedridden period in all study patients. Changes in the bone metabolism markers during a follow-up of 12 years were studied in 17 patients aged <30 years at baseline. The bone mineral density was reduced (0.58±0.19 g/cm3), and the osteocalcin (13.9±12.4 ng/mL) and urine N-terminal telopeptide (NTX) levels (146.9±134.0 mM BCE/mM creatinine) were greater than the cutoff value for predicting fracture. Among the bone metabolism markers studied, osteocalcin and NTX were negatively associated with the bedridden period. During the follow-up, osteocalcin and parathyroid hormone were decreased, and the 25(OH) vitamin D was increased. NTX at baseline was negatively associated with bone mineral density after 12 years. Unique bone metabolic abnormalities were found in patients who had been bedridden for long periods, and these metabolic abnormalities were altered by further bed confinement. Appropriate treatment based on the unique bone metabolic changes may be important in long-term bedridden patients.
Yang, Jing; He, Jin; Wang, Ji; Cao, Yabing; Ling, Jianhua; Qian, Jianfei; Lu, Yong; Li, Haiyan; Zheng, Yuhuan; Lan, Yongsheng; Hong, Sungyoul; Matthews, Jairo; Starbuck, Michael W; Navone, Nora M; Orlowski, Robert Z.; Lin, Pei; Kwak, Larry W.; Yi, Qing
2012-01-01
Bone destruction is a hallmark of multiple myeloma and affects more than 80% of patients. However, current therapy is unable to completely cure and/or prevent bone lesions. Although it is accepted that myeloma cells mediate bone destruction by inhibition of osteoblasts and activation of osteoclasts, the underlying mechanism is still poorly understood. This study demonstrates that constitutive activation of p38 mitogen-activated protein kinase in myeloma cells is responsible for myeloma-induced osteolysis. Our results show that p38 is constitutively activated in most myeloma cell lines and primary myeloma cells from patients. Myeloma cells with high/detectable p38 activity, but not those with low/undetectable p38 activity, injected into SCID or SCID-hu mice caused bone destruction. Inhibition or knockdown of p38 in human myeloma reduced or prevented myeloma-induced osteolytic bone lesions without affecting tumor growth, survival, or homing to bone. Mechanistic studies showed that myeloma cell p38 activity inhibited osteoblastogenesis and bone formation and activated osteoclastogenesis and bone resorption in myeloma-bearing SCID mice. This study elucidates a novel molecular mechanism—sactivation of p38 signaling in myeloma cells—by which myeloma cells induce osteolytic bone lesions and indicates that targeting myeloma cell p38 may be a viable approach to treating or preventing myeloma bone disease. PMID:22425892
Scheffler, Christiane; Gniosdorz, Birgit; Staub, Kaspar; Rühli, Frank
2014-01-01
During the last 10 years, skeletal robustness in children has generally decreased. The reasons for this phenomenon, as well as its outcomes, are undetermined so far. The present study explores the association between anthropometric skeletal measurements, bone quality measurements, and physical activity in young adults. 118 German young men (N = 68; 19-25 years old) and women (N = 50; 19-24 years old) were investigated by anthropometric methods (i.e., height, weight, shoulder, elbow breadth, and pelvic breadth) and quantitative ultrasound measurement (QUS). Strength and stability of Os calcis have been determined by speed of sound (in m/s) and broadband ultrasound attenuation (in dB/Mhz); individual physical activity was analyzed by a pedometer and by questionnaire. The results show a correlation between sports hours per week and bone quality index in males. But no correlation exists between anthropometric data and QUSs for either sexes, as well as no correlation between total steps per day and internal bone quality or external bone dimensions. These results are discussed in the context of generally decreasing physical activity, the outcomes of prevention programs as well as evolutionary adaptation of human phenotypic plasticity in a changing environment. Copyright © 2014 Wiley Periodicals, Inc.
Zhai, Min; Li, Bing; Li, Dehua
2017-09-01
Resonance frequency analysis (RFA) methods are widely used to assess implant stability, particularly the Osstell ® device. The potential effects associated with this method have been discussed in the literature. Torsional RFA (T-RFA), mentioned in our previous study, could represent a new measurement method. The purpose of this study was to simulate T-shaped and Osstell ® transducer-implant-bone system models; compare their vibration modes and corresponding resonance frequencies; and investigate the effects of their parameters, such as the effective implant length (EIL), bone quality, and osseointegration level, on the torsional resonance frequency (TRF) and bending resonance frequency (BRF) using three-dimensional finite element analysis. Following the finite element model validation, the TRFs and BRFs for three different EILs and four types of bone quality were obtained, and the change rates during 25 degrees of osseointegration were observed. The analysis showed that an increase in the EIL and a decrease in bone quality have less effect on the declination rate of TRFs than on that of BRFs. TRFs are highly sensitive to the stiffness of the implant-bone interface during the healing period. It was concluded that T-RFA has better sensitivity and specificity.
Katagiri, Ryoko; Asakura, Keiko; Kobayashi, Satomi; Suga, Hitomi; Sasaki, Satoshi
2014-01-01
Although workers with poor sleep quality are reported to have problems with work performance, few studies have assessed the association between dietary factors and sleep quality using validated indexes. Here, we examined this association using information acquired from validated questionnaires. A total of 3,129 female workers aged 34 to 65 years were analyzed. Dietary intake was assessed using a self-administered diet history questionnaire (DHQ), and subjective sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI). The relationship between the intake of several food groups and nutrients and sleep quality was examined using multivariable logistic regression models. The effect of eating habits on sleep quality was also examined. Poor sleep quality was associated with low intake of vegetables (p for trend 0.002) and fish (p for trend 0.04) and high intake of confectionary (p for trend 0.004) and noodles (p for trend 0.03) after adjustment for potential confounding factors (age, body mass index, physical activity, depression score, employment status, alcohol intake and smoking status). Poor sleep quality was also significantly and positively associated with consumption of energy drinks and sugar-sweetened beverages, skipping breakfast, and eating irregularly. In addition, poor sleep quality was significantly associated with high carbohydrate intake (p for trend 0.03). A low intake of vegetables and fish, high intake of confectionary and noodles and unhealthy eating habits were independently associated with poor sleep quality. Poor sleep quality was also associated with high carbohydrate intake in free-living Japanese middle-aged female workers.
Bell's Palsy: Treatment with Steroids and Antiviral Drugs
... These conditions include: • Poorly controlled diabetes mellitus (type 1 or type 2 diabetes, diabetes from pregnancy) • Morbid obesity (being very overweight) • Osteopenia (low bone density) • A ...
Brain Metastasis from Colorectal Cancer: Predictors and Treatment Outcomes.
Nozawa, Hiroaki; Ishihara, Soichiro; Kawai, Kazushige; Sasaki, Kazuhito; Murono, Koji; Otani, Kensuke; Nishikawa, Takeshi; Tanaka, Toshiaki; Kiyomatsu, Tomomichi; Hata, Keisuke; Watanabe, Toshiaki
2017-01-01
Difficulties are associated with the management of brain metastasis (BM), which portends a poor prognosis in the treatment of colorectal cancer (CRC). The aim of the present study was to identify risk factors for BM in CRC and evaluate the outcomes of various treatment modalities. We retrospectively reviewed data on a total of 2,238 patients with primary CRC who underwent surgical resection at our hospital between 1999 and 2014. Predictive factors for BM and prognostic factors after the diagnosis of BM were examined by univariate and multivariate analyses using Cox proportional hazards models. Three patients (0.1%) had BM at the initial diagnosis, and 23 patients (1.2%) developed metachronous BM during the median follow-up period of 44.6 months. Lung and bone metastases were identified as independent predictive factors for BM. Median survival after the diagnosis of BM was 7.4 months. Stereotactic radiosurgery, administered to 41% of the patients with BM, was associated with a better postdiagnostic survival. CRC patients with metastasis to the lung or bone were at a higher risk of BM. Because the survival is still limited, it is crucial to determine the treatment strategy in consideration of the characteristics of each therapy and quality of life in CRC patients with BM. © 2017 S. Karger AG, Basel.
Transition of Care from Childhood to Adulthood: Congenital Adrenal Hyperplasia.
Bachelot, Anne
2018-01-01
Deficiency of the 21-hydroxylase enzyme is the most common form of congenital adrenal hyperplasia (CAH), accounting for more than 95% of the cases. With the advent of newborn screening and hormone replacement therapy, most children with CAH survive into adulthood. Adolescents and adults with CAH experience a number of complications, including short stature, obesity, infertility, impaired bone mineral density, and reduced quality of life. Transition from pediatric to adult care and management of long-term complications are challenging for both patients and practitioners. In adulthood, the aims of the medical treatment are to substitute cortisol and, when necessary, aldosterone deficiency, to ensure normal fertility, and to avoid the long-term consequences of glucocorticoid use on bone, metabolism, and cardiovascular risk. Recent data suggest that poor health status is likely to begin in adolescence and persist into adulthood, highlighting the importance of this time period in a patient's endocrine care. During transition from pediatric to adult specific care, a shift in treatment goals is thus needed. Successful transition from pediatric to adult health care requires a regular follow-up of patients by a multidisciplinary team including pediatric endocrinologists, urologists, gynecologists, psychiatrists, and adult endocrinologists. All of this could be included in a specific therapeutic education program regarding transition and/or CAH. © 2018 S. Karger AG, Basel.
Are we doing enough to prevent poor-quality antimalarial medicines in the developing world?
Walker, Erin J; Peterson, Gregory M; Grech, James; Paragalli, Evie; Thomas, Jackson
2018-05-15
Malaria is a deadly parasitic disease that affects more than 3 billion people worldwide, in predominantly resource-poor countries. Despite malaria being preventable and treatable, a large number of adults and children, mostly in Africa, die from this disease each year. One contributor to needless morbidity and mortality is the production and distribution of poor-quality antimalarial medicines; indeed, it is estimated that over 122,000 deaths of children under 5 years of age in sub-Saharan countries were caused by poor-quality antimalarial medicines, in 2013 alone. Poor-quality medicines include those that are deliberately falsified for monetary gain and may contain incorrect amounts or even no active ingredients at all, as well as products that are inadequate due to poor compliance to conventional quality standards and medicines that have degraded over time. Across a number of studies it has been reported that 4-92% of antimalarials tested are poor quality. This represents a massive risk to the population subjected to the use of these medicines, in the form of more severe and prolonged illness, additional costs to individuals who already have very little money, and lack of confidence in treatments. The continuing circulation of poor-quality medicines results from a number of factors, including insufficient regulatory capacity in susceptible countries, inadequate funding to perform regulatory functions, poor coordination between regulatory authorities, and inefficient import/export control systems. To combat the distribution of poor-quality medicines a number of organisations have developed guidelines for the procurement of antimalarials, and programs to educate consumers about the risks of poor-quality medicines and incentivise retailers to identify and report falsified medicines. The development of new technologies to quickly identify poor-quality medicines in the field is also essential, and some significant advances have been made. There has been considerable improvement in the delivery of high-quality antimalarials to those who need them; however, there is still an urgent need for a collective response by the international community, political leaders, regulatory bodies, and pharmaceutical companies. This should include political commitment for enhanced research and development funding, such as for new innovative track-and-trace field devices, and international efforts to strengthen and harmonise drug regulation practices.
Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging.
Wagner, A; Sachse, A; Keller, M; Aurich, M; Wetzel, W-D; Hortschansky, P; Schmuck, K; Lohmann, M; Reime, B; Metge, J; Arfelli, F; Menk, R; Rigon, L; Muehleman, C; Bravin, A; Coan, P; Mollenhauer, J
2006-03-07
Diffraction enhanced imaging (DEI) uses refraction of x-rays at edges, which allows pronounced visualization of material borders and rejects scattering which often obscures edges and blurs images. Here, the first evidence is presented that, using DEI, a destruction-free evaluation of the quality of integration of metal implants into bone is possible. Experiments were performed in rabbits and sheep with model implants to investigate the option for DEI as a tool in implant research. The results obtained from DEI were compared to conventional histology obtained from the specimens. DE images allow the identification of the quality of ingrowth of bone into the hydroxyapatite layer of the implant. Incomplete integration of the implant with a remaining gap of less than 0.3 mm caused the presence of a highly refractive edge at the implant/bone border. In contrast, implants with bone fully grown onto the surface did not display a refractive signal. Therefore, the refractive signal could be utilized to diagnose implant healing and/or loosening.
Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging
NASA Astrophysics Data System (ADS)
Wagner, A.; Sachse, A.; Keller, M.; Aurich, M.; Wetzel, W.-D.; Hortschansky, P.; Schmuck, K.; Lohmann, M.; Reime, B.; Metge, J.; Arfelli, F.; Menk, R.; Rigon, L.; Muehleman, C.; Bravin, A.; Coan, P.; Mollenhauer, J.
2006-03-01
Diffraction enhanced imaging (DEI) uses refraction of x-rays at edges, which allows pronounced visualization of material borders and rejects scattering which often obscures edges and blurs images. Here, the first evidence is presented that, using DEI, a destruction-free evaluation of the quality of integration of metal implants into bone is possible. Experiments were performed in rabbits and sheep with model implants to investigate the option for DEI as a tool in implant research. The results obtained from DEI were compared to conventional histology obtained from the specimens. DE images allow the identification of the quality of ingrowth of bone into the hydroxyapatite layer of the implant. Incomplete integration of the implant with a remaining gap of less than 0.3 mm caused the presence of a highly refractive edge at the implant/bone border. In contrast, implants with bone fully grown onto the surface did not display a refractive signal. Therefore, the refractive signal could be utilized to diagnose implant healing and/or loosening.
Lang, Yumiao; Sha, Kun; Zhang, Rui; Xie, Peng; Luo, Xin; Sun, Baozhong; Li, Haipeng; Zhang, Li; Zhang, Songshan; Liu, Xuan
2016-02-01
The objective of this study was to evaluate the effects of electrical stimulation (ES) versus non-electrical stimulation (NES) and type of boning (hot versus cold) on the eating quality of Gannan yak longissimus lumborum. Eighteen Gannan yak bulls were randomly divided into two groups: ES and NES. Hot boning (HB) and cold boning (CB) were applied to the left and right side of the carcasses, respectively. All of the four treatments missed the "ideal" pH/temperature window. HB reduced the rate of pH decline, decreased meat tenderness and water holding capacity. ES increased the rate of pH decline and improved yak meat tenderness (P<0.05); however, ES explained only 1% of the variation in WBSF. HB and ES had no significant effects on cooking loss, L* or b* values of yak meat. Postmortem aging increased yak meat tenderness and improved meat color parameters. HB had negative effects on yak meat quality, while ES could not reverse these deleterious effects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Daghma, Diaa Eldin S; Malhan, Deeksha; Simon, Paul; Stötzel, Sabine; Kern, Stefanie; Hassan, Fathi; Lips, Katrin Susanne; Heiss, Christian; El Khassawna, Thaqif
2018-05-01
Bone loss varies according to disease and age and these variations affect bone cells and extracellular matrix. Osteoporosis rat models are widely investigated to assess mechanical and structural properties of bone; however, bone matrix proteins and their discrepant regulation of diseased and aged bone are often overlooked. The current study considered the spine matrix properties of ovariectomized rats (OVX) against control rats (Sham) at 16 months of age. Diseased bone showed less compact structure with inhomogeneous distribution of type 1 collagen (Col1) and changes in osteocyte morphology. Intriguingly, demineralization patches were noticed in the vicinity of blood vessels in the OVX spine. The organic matrix structure was investigated using computational segmentation of collagen fibril properties. In contrast to the aged bone, diseased bone showed longer fibrils and smaller orientation angles. The study shows the potential of quantifying transmission electron microscopy images to predict the mechanical properties of bone tissue.
Assessing bone banking activities at University of Malaya medical centre.
Mohd, Suhaili; Samsuddin, Sharifah Mazni; Ramalingam, Saravana; Min, Ng Wuey; Yusof, Norimah; Zaman, T Kamarul; Mansor, Azura
2015-12-01
The main advantage of establishing in-house bone banks is its ability to readily provide allograft bones for local surgeries. Bone procurement activities of our university bone bank during the 10 years of operation were reviewed. Socio-demographic data of donors, types of bone procured, cases of rejected bones and types of allograft bones transplanted are presented. From 179 potential donors, 73 % were accepted with 213 procured bones. Femoral head was the common bone transplanted (45 %), as it was also the most common procured (82 %). Bones were rejected mainly due to non-technical reasons (83 %) rather than positive results of microbiological (13 %) and serological (4 %) tests. Comprehensive data could not be obtained for further analysis due to difficulties in retrieving information. Therefore, quality assurance system was improved to establish more systematic documentations, as the basis of good banking practice with process control hence allowing traceability.
Lundblad, Henrik; Karlsson-Thur, Charlotte; Maguire, Gerald Q; Jonsson, Cathrine; Noz, Marilyn E; Zeleznik, Michael P; Weidenhielm, Lars
2017-05-01
When a bone is broken for any reason, it is important for the orthopaedic surgeon to know how bone healing is progressing. There has been resurgence in the use of the fluoride ( 18 F - ) ion to evaluate various bone conditions. This has been made possible by availability of positron emission tomography (PET)/CT hybrid scanners together with cyclotrons. Absorbed on the bone surface from blood flow, 18 F - attaches to the osteoblasts in cancellous bone and acts as a pharmacokinetic agent, which reflects the local physiologic activity of bone. This is important because it shows bone formation indicating that the bone is healing or no bone formation indicating no healing. As 18 F - is extracted from blood in proportion to blood flow and bone formation, it thus enables determination of bone healing progress. The primary objective of this study was to determine whether videos showing the spatiotemporal uptake of 18 F - via PET bone scans could show problematic bone healing in patients with complex tibia conditions. A secondary objective was to determine if semiquantification of radionuclide uptake was consistent with bone healing. This study investigated measurements of tibia bone formation in patients with complex fractures, osteomyelitis, and osteotomies treated with a Taylor Spatial Frame TM (TSF) by comparing clinical healing progress with spatiotemporal fluoride ( 18 F - ) uptake and the semiquantitative standardized uptake value (SUV). This procedure included static and dynamic image acquisition. For intrapatient volumes acquired at different times, the CT and PET data were spatially registered to bring the ends of the bones that were supposed to heal into alignment. To qualitatively observe how and where bone formation was occurring, time-sequenced volumes were reconstructed and viewed as a video. To semiquantify the uptake, the mean and maximum SUVs (SUVmean, SUVmax) were calculated for the ends of the bones that were supposed to heal and for normal bone, using a spherical volume of interest drawn on the registered volumes. To make the semiquantitative data comparable for all patients with multiple examinations, the SUVmean and SUVmax difference per day (SUVmeanDPD and SUVmaxDPD) between the first PET/CT scan and each subsequent one was calculated. Indicators of poor healing progress were (1) uneven distribution of the radionuclide uptake between ends of the bones that were supposed to heal as seen in the video or, (2) low absolute magnitude of the SUV difference data. Twenty-four patients treated between October 2013 and April 2015 with a TSF gave informed consent to be examined with 18 F - PET/CT bone scans. Twenty-two patients successfully completed treatment, one of whom had only one PET/CT scan. Observation of 18 F - uptake was able to identify three patients whose healing progress was poor, indicated by uneven distribution of radionuclide uptake across the ends of the bones that were supposed to heal. An absolute magnitude of the SUVmaxDPD of 0.18 or greater indicated good bone formation progress. This was verified in 10 patients by the days between the operation to attach and to remove the TSF being less than 250 days, whereas other SUVmaxDPD values were ambiguous, with 11 patients achieving successful completion. Observation of the spatiotemporal uptake of 18 F - appears to be a promising method to enable the clinician to assess the progress of bone formation in different parts of the bone. Bone uptake which is uneven across the ends of bone that were supposed to heal or very low bone uptake might indicate impaired bone healing where early intervention may then be needed. However, semiquantification of 18 F - uptake (SUVmaxDPD), SUVmeanDPD) was ambiguous in showing consistency with the bone-healing progress. Level III, diagnostic study.
Garcia, Ana Flávia Quiles Marques; Murakami, Alice Eiko; Duarte, Cristiane Regina do Amaral; Rojas, Iván Camilo Ospina; Picoli, Karla Paola; Puzotti, Maíra Mangili
2013-01-01
The objective of this experiment was to assess the use of different vitamin D metabolites in the feed of broiler chickens and the effects of the metabolites on performance, bone parameters and meat quality. A total of 952 one-day-old male broiler chicks were distributed in a completely randomised design, with four treatments, seven replicates and 34 birds per experimental unit. The treatments consisted of four different sources of vitamin D included in the diet, D3, 25(OH)D3, 1,25(OH)2D3, and 1α(OH)D3, providing 2000 and 1600 IU of vitamin D in the starter (1 to 21 d) and growth phases (22 to 42 d), respectively. Mean weight, feed:gain and weight gain throughout the rearing period were less in animals fed 1α(OH)D3 when compared with the other treatments (p<0.05). No significant differences were noted among the treatments (p>0.05) for various bone parameters. Meat colour differed among the treatments (p>0.05). All of the metabolites used in the diets, with the exception of 1α(OH)D3, can be used for broiler chickens without problems for performance and bone quality, however, some aspects of meat quality were affected. PMID:25049804
Ezat, Sharifa Wan Puteh; Syed Junid, Syed Mohamed Aljunid; Noraziani, Khamis; Zafar, Ahmed; Saperi, Sulong; Nur, Amrizal Muhammad; Aizuddin, Azimatun Noor; Ismail, Fuad; Abdullah, Norlia; Zainuddin, Zulkifli Md; Mohd Kassim, Abdul Yazid; Haflah, Nor Hazla Mohamed
2013-01-01
The human skeleton is the most common organ to be affected by metastatic cancer and bone metastases are a major cause of cancer morbidity. The five most frequent cancers in Malaysia among males includes prostate whereas breast cancer is among those in females, both being associated with skeletal lesions. Bone metastases weaken bone structure, causing a range of symptoms and complications thus developing skeletal-related events (SRE). Patients with SRE may require palliative radiotherapy or surgery to bone for pain, having hypercalcaemia, pathologic fractures, and spinal cord compression. These complications contribute to a decline in patient health- related quality of life. The multidimensional assessment of health-related quality of life for those patients is important other than considering a beneficial treatment impact on patient survival, since the side effects of treatment and disease symptoms can significantly impact health-related quality of life. Cancer treatment could contribute to significant financial implications for the healthcare system. Therefore, it is essential to assess the health-related quality of life and treatment cost, among prostate and breast cancer patients in countries like Malaysia to rationalized cost-effective way for budget allocation or utilization of health care resources, hence helping in providing more personalized treatment for cancer patients.
Exposure to 100% Oxygen Abolishes the Impairment of Fracture Healing after Thoracic Trauma
Kemmler, Julia; Bindl, Ronny; McCook, Oscar; Wagner, Florian; Gröger, Michael; Wagner, Katja; Scheuerle, Angelika; Radermacher, Peter; Ignatius, Anita
2015-01-01
In polytrauma patients a thoracic trauma is one of the most critical injuries and an important trigger of post-traumatic inflammation. About 50% of patients with thoracic trauma are additionally affected by bone fractures. The risk for fracture malunion is considerably increased in such patients, the pathomechanisms being poorly understood. Thoracic trauma causes regional alveolar hypoxia and, subsequently, hypoxemia, which in turn triggers local and systemic inflammation. Therefore, we aimed to unravel the role of oxygen in impaired bone regeneration after thoracic trauma. We hypothesized that short-term breathing of 100% oxygen in the early post-traumatic phase ameliorates inflammation and improves bone regeneration. Mice underwent a femur osteotomy alone or combined with blunt chest trauma 100% oxygen was administered immediately after trauma for two separate 3 hour intervals. Arterial blood gas tensions, microcirculatory perfusion and oxygenation were assessed at 3, 9 and 24 hours after injury. Inflammatory cytokines and markers of oxidative/nitrosative stress were measured in plasma, lung and fracture hematoma. Bone healing was assessed on day 7, 14 and 21. Thoracic trauma induced pulmonary and systemic inflammation and impaired bone healing. Short-term exposure to 100% oxygen in the acute post-traumatic phase significantly attenuated systemic and local inflammatory responses and improved fracture healing without provoking toxic side effects, suggesting that hyperoxia could induce anti-inflammatory and pro-regenerative effects after severe injury. These results suggest that breathing of 100% oxygen in the acute post-traumatic phase might reduce the risk of poorly healing fractures in severely injured patients. PMID:26147725
2014-10-01
histology, and microCT analysis. In the current phase of work he will receive more specialized ` training and orientation to microCT analysis...fibrous connective tissue. • Performed histology on goat autogenous bone graft which demonstrated that the quantity and quality of cancellous bone graft
Li, Xiaojuan; Shet, Keerthi; Xu, Kaipin; Rodríguez, Juan Pablo; Pino, Ana María; Kurhanewicz, John; Schwartz, Ann; Rosen, Clifford J
2017-12-01
There are increasing evidences suggesting bone marrow adiposity tissue (MAT) plays a critical role in affecting both bone quantity and quality. However, very limited studies that have investigated the association between the composition of MAT and bone mineral density (BMD). The goal of this study was to quantify MAT unsaturation profile of marrow samples from post-menopausal women using ex vivo high-resolution magic angle spinning (HRMAS) proton nuclear magnetic resonance ( 1 H NMR) spectroscopy, and to investigate the relationship between MAT composition and BMD. Bone marrow samples were obtained by iliac crest aspiration during surgical procedures from 24 postmenopausal women (65-89years) who had hip surgery due to bone fracture or arthroplasty. Marrow fat composition parameters, in particular, unsaturation level (UL), mono-unsaturation level (MUL) and saturation level (SL), were quantified using HRMAS 1 H NMR spectroscopy. The patients were classified into three groups based on the DXA BMD T-scores: controls, osteopenia and osteoporosis. Marrow fat composition was compared between these three groups as well as between subjects with and without factures using ANOCOVA, adjusted for age. Subjects with lower BMD (n=17) had significantly lower MUL (P=0.003) and UL (P=0.039), and significantly higher SL (P=0.039) compared to controls (n=7). When separating lower BMD into osteopenia (n=9) and osteoporosis (n=8) groups, subjects with osteopenia had significantly lower MUL (P=0.002) and UL (P=0.010), and significantly higher SL (P=0.010) compared to healthy controls. No significant difference was observed between subjects with osteopenia and osteoporosis. Using HRMAS 1 H NMR, significantly lower unsaturation and significantly higher saturation levels were observed in the marrow fat of subjects with lower BMD. HRMAS 1 H NMR was shown to be a powerful tool for identifying novel MR markers of marrow fat composition that are associated with bone quality and potentially fracture, and other bone pathologies and changes after treatment. A better understanding of the relationship between bone marrow composition and bone quality in humans may identify novel treatment targets, and provide guidance on novel interventions and therapeutic strategies for bone preservation. Copyright © 2017 Elsevier Inc. All rights reserved.
Rauner, Martina; Thiele, Sylvia; Fert, Ingrid; Araujo, Luiza M; Layh-Schmitt, Gerlinde; Colbert, Robert A; Hofbauer, Christine; Bernhardt, Ricardo; Bürki, Alexander; Schwiedrzik, Jakob; Zysset, Philippe K; Pietschmann, Peter; Taurog, Joel D; Breban, Maxime; Hofbauer, Lorenz C
2015-06-01
Although osteopenia is frequent in spondyloarthritis (SpA), the underlying cellular mechanisms and association with other symptoms are poorly understood. This study aimed to characterize bone loss during disease progression, determine cellular alterations, and assess the contribution of inflammatory bowel disease (IBD) to bone loss in HLA-B27 transgenic rats. Bones of 2-, 6-, and 12-month-old non-transgenic, disease-free HLA-B7 and disease-associated HLA-B27 transgenic rats were examined using peripheral quantitative computed tomography, μCT, and nanoindentation. Cellular characteristics were determined by histomorphometry and ex vivo cultures. The impact of IBD was determined using [21-3 x 283-2]F1 rats, which develop arthritis and spondylitis, but not IBD. HLA-B27 transgenic rats continuously lost bone mass with increasing age and had impaired bone material properties, leading to a 3-fold decrease in bone strength at 12 months of age. Bone turnover was increased in HLA-B27 transgenic rats, as evidenced by a 3-fold increase in bone formation and a 6-fold increase in bone resorption parameters. Enhanced osteoclastic markers were associated with a larger number of precursors in the bone marrow and a stronger osteoclastogenic response to RANKL or TNFα. Further, IBD-free [21-3 x 283-2]F1 rats also displayed decreased total and trabecular bone density. HLA-B27 transgenic rats lose an increasing amount of bone density and strength with progressing age, which is primarily mediated via increased bone remodeling in favor of bone resorption. Moreover, IBD and bone loss seem to be independent features of SpA in HLA-B27 transgenic rats. Copyright © 2015 Elsevier Inc. All rights reserved.
Bidra, Avinash S
2015-06-01
Bone reduction for maxillary fixed implant-supported prosthodontic treatment is often necessary to either gain prosthetic space or to conceal the prosthesis-tissue junction in patients with excessive gingival display (gummy smile). Inadequate bone reduction is often a cause of prosthetic failure due to material fractures, poor esthetics, or inability to perform oral hygiene procedures due to unfavorable ridge lap prosthetic contours. Various instruments and techniques are available for bone reduction. It would be helpful to have an accurate and efficient method for bone reduction at the time of surgery and subsequently create a smooth bony platform. This article presents a straightforward technique for systematic bone reduction by transferring the patient's maximum smile line, recorded clinically, to a clear radiographic smile guide for treatment planning using cone beam computed tomography (CBCT). The patient's smile line and the amount of required bone reduction are transferred clinically by marking bone with a sterile stationery graphite wood pencil at the time of surgery. This technique can help clinicians to accurately achieve the desired bone reduction during surgery, and provide confidence that the diagnostic and treatment planning goals have been achieved. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui
2010-04-01
Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.
Kaigler, Darnell; Avila-Ortiz, Gustavo; Travan, Suncica; Taut, Andrei D; Padial-Molina, Miguel; Rudek, Ivan; Wang, Feng; Lanis, Alejandro; Giannobile, William V
2015-07-01
Bone engineering of localized craniofacial osseous defects or deficiencies by stem cell therapy offers strong prospects to improve treatment predictability for patient care. The aim of this phase 1/2 randomized, controlled clinical trial was to evaluate reconstruction of bone deficiencies of the maxillary sinus with transplantation of autologous cells enriched with CD90+ stem cells and CD14+ monocytes. Thirty human participants requiring bone augmentation of the maxillary sinus were enrolled. Patients presenting with 50% to 80% bone deficiencies of the maxillary sinus were randomized to receive either stem cells delivered onto a β-tricalcium phosphate scaffold or scaffold alone. Four months after treatment, clinical, radiographic, and histologic analyses were performed to evaluate de novo engineered bone. At the time of alveolar bone core harvest, oral implants were installed in the engineered bone and later functionally restored with dental tooth prostheses. Radiographic analyses showed no difference in the total bone volume gained between treatment groups; however, density of the engineered bone was higher in patients receiving stem cells. Bone core biopsies showed that stem cell therapy provided the greatest benefit in the most severe deficiencies, yielding better bone quality than control patients, as evidenced by higher bone volume fraction (BVF; 0.5 versus 0.4; p = 0.04). Assessment of the relation between degree of CD90+ stem cell enrichment and BVF showed that the higher the CD90 composition of transplanted cells, the greater the BVF of regenerated bone (r = 0.56; p = 0.05). Oral implants were placed and restored with functionally loaded dental restorations in all patients and no treatment-related adverse events were reported at the 1-year follow-up. These results provide evidence that cell-based therapy using enriched CD90+ stem cell populations is safe for maxillary sinus floor reconstruction and offers potential to accelerate and enhance tissue engineered bone quality in other craniofacial bone defects and deficiencies (Clinicaltrials.gov NCT00980278). © 2015 American Society for Bone and Mineral Research.
Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study.
Orozco, Lluis; Munar, Anna; Soler, Robert; Alberca, Mercedes; Soler, Francesc; Huguet, Marina; Sentís, Joan; Sánchez, Ana; García-Sancho, Javier
2013-06-27
Osteoarthritis is the most prevalent joint disease and a frequent cause of joint pain, functional loss, and disability. Osteoarthritis often becomes chronic, and conventional treatments have demonstrated only modest clinical benefits without lesion reversal. Cell-based therapies have shown encouraging results in both animal studies and a few human case reports. We designed a pilot study to assess the feasibility and safety of osteoarthritis treatment with mesenchymal stromal cells (MSCs) in humans and to obtain early efficacy information for this treatment. Twelve patients with chronic knee pain unresponsive to conservative treatments and radiologic evidence of osteoarthritis were treated with autologous expanded bone marrow MSCs by intra-articular injection (40×10 cells). Clinical outcomes were followed for 1 year and included evaluations of pain, disability, and quality of life. Articular cartilage quality was assessed by quantitative magnetic resonance imaging T2 mapping. Feasibility and safety were confirmed, and strong indications of clinical efficacy were identified. Patients exhibited rapid and progressive improvement of algofunctional indices that approached 65% to 78% by 1 year. This outcome compares favorably with the results of conventional treatments. Additionally, quantification of cartilage quality by T2 relaxation measurements demonstrated a highly significant decrease of poor cartilage areas (on average, 27%), with improvement of cartilage quality in 11 of the 12 patients. MSC therapy may be a valid alternative treatment for chronic knee osteoarthritis. The intervention is simple, does not require hospitalization or surgery, provides pain relief, and significantly improves cartilage quality.
Baker, Fiona C; Wolfson, Amy R; Lee, Kathryn A
2009-06-01
To investigate factors associated with poor sleep quality and daytime sleepiness in women living in the United States. Data are presented from the National Sleep Foundation's 2007 Sleep in America Poll that included 959 women (18-64 years of age) surveyed by telephone about their sleep quality, daytime sleepiness, and sociodemographic, health, and lifestyle factors. Poor sleep quality was reported by 27% and daytime sleepiness was reported by 21% of respondents. Logistic multivariate regression analyses revealed that poor sleep quality and daytime sleepiness were both independently associated with poor health, having a sleep disorder, and psychological distress. Also, multivariate analyses showed that women who consumed more caffeinated beverages and those who had more than one job were more likely to report poor sleep quality but not daytime sleepiness. Daytime sleepiness, on the other hand, was independently associated with being black/African American, younger, disabled, having less education, and daytime napping. Poor sleep quality and daytime sleepiness are common in American women and are associated with health-related, as well as sociodemographic, factors. Addressing sleep-related complaints in women is important to improve their daytime functioning and quality of life.
Ferchaud, F; Rony, L; Ducellier, F; Cronier, P; Steiger, V; Hubert, L
2017-11-01
Reconstruction of large diaphyseal bone defect is complex and the complications rate is high. This study aimed to assess a simplified technique of segmental bone transport by monorail external fixator over an intramedullary nail.A prospective study included 7 patients: 2 femoral and 5 tibial defects. Mean age was 31years (range: 16-61years). Mean follow-up was 62 months (range: 46-84months). Defects were post-traumatic, with a mean length of 7.2cm (range: 4 to 9.5cm). For 3 patients, reconstruction followed primary failure. In 4 cases, a covering flap was necessary. Transport used an external fixator guided by an intramedullary nail, at a rate of 1mm per day. One pin was implanted on either side of the distraction zone. The external fixator was removed 1 month after bone contact at the docking site. Mean bone transport time was 11 weeks (range: 7-15 weeks). Mean external fixation time was 5.1months (range: 3.5 to 8months). Full weight-bearing was allowed 5.7months (range: 3.5-13months) after initiation of transport. In one patient, a pin had to be repositioned. In 3 patients, the transported segment re-ascended after external fixatorablation, requiring repeat external fixation and resumption of transport. There was just 1 case of superficial pin infection. Reconstruction quality was considered "excellent" on the Paley-Marr criteria in 6 cases. The present technique provided excellent reconstruction quality in 6 of the 7 cases. External fixation time was shorter and resumption of weight-bearing earlier than with other reconstruction techniques, notably including bone autograft, vascularized bone graft or the induced membrane technique. Nailing facilitated control of limb axis and length. The complications rate was 50%, comparable to other techniques. This study raises the question of systematic internal fixation of the docking site, to avoid any mobilization of the transported segment. The bone quality, axial control and rapidity shown by the present technique make it well-adapted to reconstruction of diaphyseal bone defect. Four-case series. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Ramalingam, Saravana; Mohd, Suhaili; Samsuddin, Sharifah Mazni; Min, N G Wuey; Yusof, Norimah; Mansor, Azura
2015-12-01
Bone allografts have been used widely to fill up essential void in orthopaedic surgeries. The benefit of using allografts to replace and reconstruct musculoskeletal injuries, fractures or disease has obtained overwhelming acceptance from orthopaedic surgeons worldwide. However, bacterial infection and disease transmission through bone allograft transplantation have always been a significant issue. Sterilization by radiation is an effective method to eliminate unwanted microorganisms thus assist in preventing life threatening allograft associated infections. Femoral heads procured from living donors and long bones (femur and tibia) procured from cadaveric donors were sterilized at 25 kGy in compliance with international standard ISO 11137. According to quality requirements, all records of bone banking were evaluated annually. This retrospective study was carried out on annual evaluation of radiation records from 1998 until 2012. The minimum doses absorbed by the bones were ranging from 25.3 to 38.2 kGy while the absorbed maximum doses were from 25.4 to 42.3 kGy. All the bones supplied by our UMMC Bone Bank were sterile at the required minimum dose of 25 kGy. Our analysis on dose variation showed that the dose uniformity ratios in 37 irradiated boxes of 31 radiation batches were in the range of 1.003-1.251, which indicated the doses were well distributed.
Bone Graft Substitute Provides Metaphyseal Fixation for a Stemless Humeral Implant.
Kim, Myung-Sun; Kovacevic, David; Milks, Ryan A; Jun, Bong-Jae; Rodriguez, Eric; DeLozier, Katherine R; Derwin, Kathleen A; Iannotti, Joseph P
2015-07-01
Stemless humeral fixation has become an alternative to traditional total shoulder arthroplasty, but metaphyseal fixation may be compromised by the quality of the trabecular bone that diminishes with age and disease, and augmentation of the fixation may be desirable. The authors hypothesized that a bone graft substitute (BGS) could achieve initial fixation comparable to polymethylmethacrylate (PMMA) bone cement. Fifteen fresh-frozen human male humerii were randomly implanted using a stemless humeral prosthesis, and metaphyseal fixation was augmented with either high-viscosity PMMA bone cement (PMMA group) or a magnesium-based injectable BGS (OsteoCrete; Bone Solutions Inc, Dallas, Texas) (OC group). Both groups were compared with a control group with no augmentation. Initial stiffness, failure load, failure displacement, failure cycle, and total work were compared among groups. The PMMA and OC groups showed markedly higher failure loads, failure displacements, and failure cycles than the control group (P<.01). There were no statistically significant differences in initial stiffness, failure load, failure displacement, failure cycle, or total work between the PMMA and OC groups. The biomechanical properties of magnesium-based BGS fixation compared favorably with PMMA bone cement in the fixation of stemless humeral prostheses and may provide sufficient initial fixation for this clinical application. Future work will investigate the long-term remodeling characteristics and bone quality at the prosthetic-bone interface in an in vivo model to evaluate the clinical efficacy of this approach. Copyright 2015, SLACK Incorporated.
Bone's mechanostat: a 2003 update.
Frost, Harold M
2003-12-01
The still-evolving mechanostat hypothesis for bones inserts tissue-level realities into the former knowledge gap between bone's organ-level and cell-level realities. It concerns load-bearing bones in postnatal free-living bony vertebrates, physiologic bone loading, and how bones adapt their strength to the mechanical loads on them. Voluntary mechanical usage determines most of the postnatal strength of healthy bones in ways that minimize nontraumatic fractures and create a bone-strength safety factor. The mechanostat hypothesis predicts 32 things that occur, including the gross anatomical bone abnormalities in osteogenesis imperfecta; it distinguishes postnatal situations from baseline conditions at birth; it distinguishes bones that carry typical voluntary loads from bones that have other chief functions; and it distinguishes traumatic from nontraumatic fractures. It provides functional definitions of mechanical bone competence, bone quality, osteopenias, and osteoporoses. It includes permissive hormonal and other effects on bones, a marrow mediator mechanism, some limitations of clinical densitometry, a cause of bone "mass" plateaus during treatment, an "adaptational lag" in some children, and some vibration effects on bones. The mechanostat hypothesis may have analogs in nonosseous skeletal organs as well. Copyright 2003 Wiley-Liss, Inc.
Lieben, Liesbet; Masuyama, Ritsuko; Torrekens, Sophie; Van Looveren, Riet; Schrooten, Jan; Baatsen, Pieter; Lafage-Proust, Marie-Hélène; Dresselaers, Tom; Feng, Jian Q.; Bonewald, Lynda F.; Meyer, Mark B.; Pike, J. Wesley; Bouillon, Roger; Carmeliet, Geert
2012-01-01
Serum calcium levels are tightly controlled by an integrated hormone-controlled system that involves active vitamin D [1,25(OH)2D], which can elicit calcium mobilization from bone when intestinal calcium absorption is decreased. The skeletal adaptations, however, are still poorly characterized. To gain insight into these issues, we analyzed the consequences of specific vitamin D receptor (Vdr) inactivation in the intestine and in mature osteoblasts on calcium and bone homeostasis. We report here that decreased intestinal calcium absorption in intestine-specific Vdr knockout mice resulted in severely reduced skeletal calcium levels so as to ensure normal levels of calcium in the serum. Furthermore, increased 1,25(OH)2D levels not only stimulated bone turnover, leading to osteopenia, but also suppressed bone matrix mineralization. This resulted in extensive hyperosteoidosis, also surrounding the osteocytes, and hypomineralization of the entire bone cortex, which may have contributed to the increase in bone fractures. Mechanistically, osteoblastic VDR signaling suppressed calcium incorporation in bone by directly stimulating the transcription of genes encoding mineralization inhibitors. Ablation of skeletal Vdr signaling precluded this calcium transfer from bone to serum, leading to better preservation of bone mass and mineralization. These findings indicate that in mice, maintaining normocalcemia has priority over skeletal integrity, and that to minimize skeletal calcium storage, 1,25(OH)2D not only increases calcium release from bone, but also inhibits calcium incorporation in bone. PMID:22523068
Long Bone Histology and Growth Patterns in Ankylosaurs: Implications for Life History and Evolution
Stein, Martina; Hayashi, Shoji; Sander, P. Martin
2013-01-01
The ankylosaurs are one of the major dinosaur groups and are characterized by unique body armor. Previous studies on other dinosaur taxa have revealed growth patterns, life history and evolutionary mechanisms based on their long bone histology. However, to date nothing is known about long bone histology in the Ankylosauria. This study is the first description of ankylosaurian long bone histology based on several limb elements, which were sampled from different individuals from the Ankylosauridae and Nodosauridae. The histology is compared to that of other dinosaur groups, including other Thyreophora and Sauropodomorpha. Ankylosaur long bone histology is characterized by a fibrolamellar bone architecture. The bone matrix type in ankylosaurs is closest to that of Stegosaurus. A distinctive mixture of woven and parallel-fibered bone together with overall poor vascularization indicates slow growth rates compared to other dinosaurian taxa. Another peculiar characteristic of ankylosaur bone histology is the extensive remodeling in derived North American taxa. In contrast to other taxa, ankylosaurs substitute large amounts of their primary tissue early in ontogeny. This anomaly may be linked to the late ossification of the ankylosaurian body armor. Metabolically driven remodeling processes must have liberated calcium to ossify the protective osteodermal structures in juveniles to subadult stages, which led to further remodeling due to increased mechanical loading. Abundant structural fibers observed in the primary bone and even in remodeled bone may have improved the mechanical properties of the Haversian bone. PMID:23894321
The three-dimensional structure of anosteocytic lamellated bone of fish.
Atkins, Ayelet; Reznikov, Natalie; Ofer, Lior; Masic, Admir; Weiner, Steve; Shahar, Ron
2015-02-01
Fish represent the most diverse and numerous of the vertebrate clades. In contrast to the bones of all tetrapods and evolutionarily primitive fish, many of the evolutionarily more advanced fish have bones that do not contain osteocytes. Here we use a variety of imaging techniques to show that anosteocytic fish bone is composed of a sequence of planar layers containing mainly aligned collagen fibrils, in which the prevailing principal orientation progressively spirals. When the sequence of fibril orientations completes a rotation of around 180°, a thin layer of poorly oriented fibrils is present between it and the next layer. The thick layer of aligned fibrils and the thin layer of non-aligned fibrils constitute a lamella. Although both basic components of mammalian lamellar bone are found here as well, the arrangement is unique, and we therefore call this structure lamellated bone. We further show that the lamellae of anosteocytic fish bone contain an array of dense, small-diameter (1-4 μm) bundles of hypomineralized collagen fibrils that are oriented mostly orthogonal to the lamellar plane. Results of mechanical tests conducted on beams from anosteocytic fish bone and human cortical bone show that the fish bones are less stiff but much tougher than the human bones. We propose that the unique lamellar structure and the orthogonal hypomineralized collagen bundles are responsible for the unusual mechanical properties and mineral distribution in anosteocytic fish bone. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong
2014-07-01
The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fujita, Yuko; Goto, Shota; Ichikawa, Maika; Hamaguchi, Ayako; Maki, Kenshi
2016-12-01
We examined the effects of a low-calcium diet and altered diet hardness on bone architecture and metabolism in the maxilla and mandible. Male rats (n=48, 3 weeks old) were divided into six groups. In total, 24 rats were given a normal-calcium diet and the others were given a low-calcium diet. Each group was then divided into three subgroups, which were fed a 'hard̕ diet for 8 weeks, a 'soft̕ die for 8 weeks, or switched from the soft diet after 4 weeks to the hard diet for 4 weeks. The bone architecture was analyzed using cephalometry and micro-computed tomography, in addition, the bone metabolism was analyzed using serum bone markers and bone histomorphometry in the maxilla and mandible. Moreover, the bone formation patterns were evaluated using histopathologically in the midpalatal suture. The low-calcium diet affected bone architecture by increasing bone turnover and the soft diet affected bone architecture mainly by increasing bone resorption. The soft diet changed the chondrocyte cell layers into fibrous connective tissues in the midpalatal suture. At 4 weeks after the return to a hard diet from a soft diet, recovery of the deterioration in bone architectures was seen in the maxilla and mandible. We demonstrated that mastication with a hard diet is effective for recovering the collapsed equilibrium of jaw bone turnover and the deteriorating jaw bone architectures due to the poor masticatory function during the growing period. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bone Density, Microarchitecture, and Tissue Quality Long-term After Kidney Transplant.
Pérez-Sáez, María José; Herrera, Sabina; Prieto-Alhambra, Daniel; Nogués, Xavier; Vera, María; Redondo-Pachón, Dolores; Mir, Marisa; Güerri, Roberto; Crespo, Marta; Díez-Pérez, Adolfo; Pascual, Julio
2017-06-01
Bone mineral density (BMD) measured by dual-energy x-ray absorptiometry is used to assess bone health in kidney transplant recipients (KTR). Trabecular bone score and in vivo microindentation are novel techniques that directly measure trabecular microarchitecture and mechanical properties of bone at a tissue level and independently predict fracture risk. We tested the bone status of long-term KTR using all 3 techniques. Cross-sectional study including 40 KTR with more than 10 years of follow-up and 94 healthy nontransplanted subjects as controls. Bone mineral density was measured at lumbar spine and the hip. Trabecular bone score was measured by specific software on the dual-energy x-ray absorptiometry scans of lumbar spine in 39 KTR and 77 controls. Microindentation was performed at the anterior tibial face with a reference-point indenter device. Bone measurements were standardized as percentage of a reference value, expressed as bone material strength index (BMSi) units. Multivariable (age, sex, and body mass index-adjusted) linear regression models were fitted to study the association between KTR and BMD/BMSi/trabecular bone score. Bone mineral density was lower at lumbar spine (0.925 ± 0.15 vs 0.982 ± 0.14; P = 0.025), total hip (0.792 ± 0.14 vs 0.902 ± 0.13; P < 0.001), and femoral neck (0.667 ± 0.13 vs 0.775 ± 0.12; P < 0.001) in KTR than in controls. BMSi was also lower in KTR (79.1 ± 7.7 vs 82.9 ± 7.8; P = 0.012) although this difference disappeared after adjusted model (P = 0.145). Trabecular bone score was borderline lower (1.21 ± 0.14 vs 1.3 ± 0.15; adjusted P = 0.072) in KTR. Despite persistent decrease in BMD, trabecular microarchitecture and tissue quality remain normal in long-term KTR, suggesting important recovery of bone health.
Ulivieri, Fabio M; Caudarella, Renata; Camisasca, Marzia; Cabrini, Daniela M; Merli, Ilaria; Messina, Carmelo; Piodi, Luca P
2018-04-20
Osteoporosis is a chronic pathologic condition, particularly of the elderly, in which a reduction of bone mineral density (BMD) weakens bone, leading to the so-called fragility fractures, most often of spine and femur. The gold standard exam for the quantitative measurement of BMD is the dual X-ray photon absorptiometry (DXA), a radiological method. However, a relevant number of fragility fractures occurs in the range of normal BMD values, meaning that also qualitative aspects of bone play a role, namely bone architecture and bone geometry. Bone structure is investigated by microCT and histomorphometry, which necessitate an invasive approach with a biopsy, usually taken at the iliac crest, not the typical site of fragility fractures. New tools, trabecular bone score (TBS) and hip structural analysis (HSA), obtained during DXA, can supply informations about bone structure of spine and femur, respectively, in a not invasive way. Therapy of osteoporosis is based on two types of drugs leading to an increase of BMD: antiresorptive and anabolic treatments. The antiresorptive drugs inhibit the osteoclasts, whereas teriparatide and, in part, strontium ranelate ameliorate bone structure. The present review deals with the relation between the anabolic drugs for osteoporosis and the cited new tools which investigate bone architecture and geometry, in order to clarify if they represent a real advantage in monitoring efficacy of osteoporosis' treatment. Data from the studies show that increases of TBS and HSA values after anabolic therapy are small and very close to their least significant change at the end of the usual period of treatment. Therefore, it is questionable if TBS and HSA are really helpful in monitoring bone quality and in defining reduction of individual fragility fracture risk during osteoporosis treatment with bone anabolic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Optimization of multiple quality characteristics in bone drilling using grey relational analysis
Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar
2014-01-01
Purpose Drilling of bone is common during bone fracture treatment to fix the fractured parts with screws wires or plates. Minimally invasive drilling of the bone has a great demand as it helps in better fixation and quick healing of the broken bones. The purpose of the present investigation is to determine the optimum cutting condition for the minimization of the temperature, force and surface roughness simultaneously during bone drilling. Method In this study, drilling experiments have been performed on bovine bone with different conditions of feed rate and drill rotational speed using full factorial design. Optimal level of the drilling parameters is determined by the grey relational grade (GRG) obtained from the GRA as the performance index of multiple quality characteristics. The effect of each drilling parameter on GRG is determined using analysis of variance (ANOVA) and the results obtained are validated by confirmation experiment. Results Grey relational analysis showed that the investigation with feed rate of 40 mm/min and spindle speed of 500 rpm has the highest grey relational grade and is recommended setting for minimum temperature, force and surface roughness simultaneously during bone drilling. Feed rate has the highest contribution (59.49%) on the multiple performance characteristics followed by the spindle speed (37.69%) as obtained from ANOVA analysis. Conclusions The use of grey relational analysis will simplify the complex process of optimization of the multi response characteristics in bone drilling by converting them into a single grey relational grade. The use of the above suggested methodology can greatly minimize the bone tissue injury during drilling. PMID:25829751
Optimization of multiple quality characteristics in bone drilling using grey relational analysis.
Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar
2015-03-01
Drilling of bone is common during bone fracture treatment to fix the fractured parts with screws wires or plates. Minimally invasive drilling of the bone has a great demand as it helps in better fixation and quick healing of the broken bones. The purpose of the present investigation is to determine the optimum cutting condition for the minimization of the temperature, force and surface roughness simultaneously during bone drilling. In this study, drilling experiments have been performed on bovine bone with different conditions of feed rate and drill rotational speed using full factorial design. Optimal level of the drilling parameters is determined by the grey relational grade (GRG) obtained from the GRA as the performance index of multiple quality characteristics. The effect of each drilling parameter on GRG is determined using analysis of variance (ANOVA) and the results obtained are validated by confirmation experiment. Grey relational analysis showed that the investigation with feed rate of 40 mm/min and spindle speed of 500 rpm has the highest grey relational grade and is recommended setting for minimum temperature, force and surface roughness simultaneously during bone drilling. Feed rate has the highest contribution (59.49%) on the multiple performance characteristics followed by the spindle speed (37.69%) as obtained from ANOVA analysis. The use of grey relational analysis will simplify the complex process of optimization of the multi response characteristics in bone drilling by converting them into a single grey relational grade. The use of the above suggested methodology can greatly minimize the bone tissue injury during drilling.
[New methods for the evaluation of bone quality. Bone anabolic agents and bone quality.
Yamamoto, Norio; Tsuchiya, Hiroyuki
Teriparatide(TPTD)products that can be used clinically in Japan include a daily subcutaneous injection form produced by genetic engineering and a weekly subcutaneous injectable TPTD acetate form produced by chemical synthesis. Published reports indicate that both forms exhibit excellent antifracture efficacy, and as the only anabolic agents that promote osteogenesis, TPTD products now occupy a prominent position. However, the two forms differ considerably, not only in frequency of administration, but also in mechanism of action. The daily form stimulates osteogenesis and accompanying resorption through more radical high bone turnover, and early in the course of treatment, intracortical porosity and apatite crystallization decrease, while immature collagen crosslinking increases. However, because daily formulations also produce an increase in cortical surface area or cortical thickness, the effects are counterbalanced, and bone strength is maintained. In contrast, the weekly form prioritizes osteogenesis, and by concurrently lowering turnover below pretreatment levels, improves trabecular bone mass and structure, and enhances strength without leading to cortical porosity and other undesirable phenomena. Abaloparatide, a PTHrP(1-34)analog that is homologous with the biologically active site of PTH drugs, is currently under development, and we eagerly anticipate further clarification of the mechanism of action of each formulation on bone.
Bijelić, Nikola; Belovari, Tatjana; Stolnik, Dunja; Lovrić, Ivana; Baus Lončar, Mirela
2017-08-01
Trefoil factor family 3 (Tff3) peptide is present during intrauterine endochondral ossification in mice, and its deficiency affects cancellous bone quality in secondary ossification centers of mouse tibiae. The aim of this study was to quantitatively analyze parameters describing the growth plate and primary ossification centers in tibiae of 1-month-old wild-type and Tff3 knock-out mice (n=5 per genotype) by using free and open-source software. Digital photographs of the growth plates and trabecular bone were processed by open-source computer programs GIMP and FIJI. Histomorphometric parameters were calculated using measurements made with FIJI. Tff3 knock-out mice had significantly smaller trabecular number and significantly larger trabecular separation. Trabecular bone volume, trabecular bone surface, and trabecular thickness showed no significant difference between the two groups. Although such histomorphological differences were found in the cancellous bone structure, no significant differences were found in the epiphyseal plate histomorphology. Tff3 peptide probably has an effect on the formation and quality of the cancellous bone in the primary ossification centers, but not through disrupting the epiphyseal plate morphology. This work emphasizes the benefits of using free and open-source programs for morphological studies in life sciences.
Women with previous stress fractures show reduced bone material strength
Duarte Sosa, Daysi; Fink Eriksen, Erik
2016-01-01
Background and purpose — Bone fragility is determined by bone mass, bone architecture, and the material properties of bone. Microindentation has been introduced as a measurement method that reflects bone material properties. The pathogenesis of underlying stress fractures, in particular the role of impaired bone material properties, is still poorly understood. Based on the hypothesis that impaired bone material strength might play a role in the development of stress fractures, we used microindentation in patients with stress fractures and in controls. Patients and methods — We measured bone material strength index (BMSi) by microindentation in 30 women with previous stress fractures and in 30 normal controls. Bone mineral density by DXA and levels of the bone markers C-terminal cross-linking telopeptide of type-1 collagen (CTX) and N-terminal propeptide of type-1 procollagen (P1NP) were also determined. Results — Mean BMSi in stress fracture patients was significantly lower than in the controls (SD 72 (8.7) vs. 77 (7.2); p = 0.02). The fracture subjects also had a significantly lower mean bone mineral density (BMD) than the controls (0.9 (0.02) vs. 1.0 (0.06); p = 0.03). Bone turnover—as reflected in serum levels of the bone marker CTX—was similar in both groups, while P1NP levels were significantly higher in the women with stress fractures (55 μg/L vs. 42 μg/L; p = 0.03). There was no correlation between BMSi and BMD or bone turnover. Interpretation — BMSi was inferior in patients with previous stress fracture, but was unrelated to BMD and bone turnover. The lower values of BMSi in patients with previous stress fracture combined with a lower BMD may contribute to the increased propensity to develop stress fractures in these patients. PMID:27321443
de Margerie, E; Robin, J-P; Verrier, D; Cubo, J; Groscolas, R; Castanet, J
2004-02-01
Microstructure-function relationships remain poorly understood in primary bone tissues. The relationship between bone growth rate and bone tissue type, although documented in some species by previous works, remains somewhat unclear and controversial. We assessed this relationship in a species with extreme adaptations, the king penguin (Aptenodytes patagonicus). These birds have a peculiar growth, interrupted 3 months after hatching by the austral winter. Before this interruption, chicks undergo extremely rapid statural and ponderal growth. We recorded experimentally (by means of fluorescent labelling) the growth rate of bone tissue in four long bones (humerus, radius, femur and tibiotarsus) of four king penguin chicks during their fastest phase of growth (3-5 weeks after hatching) and identified the associated bone tissue types ('laminar', 'longitudinal', 'reticular' or 'radial' fibro-lamellar bone tissue). We found the highest bone tissue growth rate known to date, up to 171 microm day(-1) (mean 55 microm day(-1)). There was a highly significant relationship between bone tissue type and growth rate (P<10(-6)). Highest rates were obtained with the radial microarchitecture of fibro-lamellar bone, where cavities in the woven network are aligned radially. This result supports the heuristic value of a relationship between growth rate and bone primary microstructure. However, we also found that growth rates of bone tissue types vary according to the long bone considered (P<10(-5)) (e.g. growth rates were 38% lower in the radius than in the other long bones), a result that puts some restriction on the applicability of absolute growth rate values (e.g. to fossil species). The biomechanical disadvantages of accelerated bone growth are discussed in relation to the locomotor behaviour of the chicks during their first month of life.
Denosumab for the management of bone disease in patients with solid tumors.
Body, Jean-Jacques
2012-03-01
Many patients with advanced cancer develop bone metastases, which reduces their quality of life. Bone metastases are associated with an increased risk of skeletal-related events, which can lead to increased morbidity and mortality. In patients with bone metastases, tumor cells disrupt the normal process of bone remodeling, leading to increased bone destruction. Denosumab is a fully human monoclonal antibody against receptor activator of NF-κB ligand (RANKL), a key regulatory factor in bone remodeling. By binding to RANKL, denosumab disrupts the cycle of bone destruction. In clinical studies in patients with prostate or breast cancer and bone metastases, denosumab was superior to the current standard of care, zoledronic acid, for delaying skeletal-related events, while in patients with other solid tumors or multiple myeloma, denosumab was noninferior to zoledronic acid. This article examines the pharmacokinetics, efficacy, and safety and tolerability of denosumab for the management of bone events in patients with cancer.
Simon, Ziv; Deporter, Douglas A; Pilliar, Robert M; Clokie, Cameron M
2006-09-01
Coating endosseous dental implants with growth factors such as bone morphogenetic proteins (BMPs) may be one way to accelerate and/or enhance the quality of osseointegration. The purpose of this study was to investigate in the murine muscle pouch model whether sintered porous-surfaced titanium alloy implants coated with BMPs would lead to heterotopic bone formation around and within the implant surface geometry. Porous-surfaced dental implants were coated with partially purified native human BMPs, with or without a carrier of Poloxamer 407 (BASF Corp., Parsippany, NJ), placed in gelatin capsules and implanted into the hindquarter muscles of mice. Mice were euthanized after 28 days. Sections of retrieved specimens were subsequently prepared for morphometric analysis of bone formation using backscatter electron microscopic images. Human BMPs, either with or without the carrier of Poloxamer 407, led to bone formation within and outside of the sintered porous implant surface. When the sintered implant surface region was subdivided into inner and outer halves, similar levels of bone ingrowth and contact were seen in the 2 halves. Evidence of bone formation to the depth of the solid implant core (i.e., the deepest level possible) also was seen. Sintered porous-surfaced dental implants can be used as substrate for partially purified BMPs in the murine muscle pouch model. With the addition of these osteoinductive factors, the porous implant surface supported bone formation within the surface porosity provided, in some instances, all the way to the solid implant core. The addition of growth factors to a sintered porous surface may be an efficient method for altering locally the healing sequence and quality of bone associated with osseointegration of bone-interfacing implants.
Influence of high-altitude grazing on bone metabolism of growing sheep.
Liesegang, A; Hüttenmoser, D; Risteli, J; Leiber, F; Kreuzer, M; Wanner, M
2013-02-01
The objective of this study was to identify the effect of high alpine grazing, associated with varying pasture grass qualities and more pronounced exercise on typically steep slopes, on bone metabolism by improving bone density and enhancing bone turnover in growing sheep. Twenty-four 5-month-old sheep were randomly assigned to two groups. One group was kept at high altitude (HA; 2000-2200 m a.s.l.) for 3 months, and the other group (C; control) remained in the lowlands (400 m a.s.l.). Both groups were kept in grazing pastures with access to good-quality swards. Before the start of the experiment, blood samples were taken, the sheep were weighed, and the left metatarsus of each animal was analysed by quantitative computer tomography. After 1 month, blood samples were taken and body weight was measured, followed by biweekly sampling. Finally, the animals were slaughtered, and the bones were collected for analysis of various bone parameters. Body weight development did not differ between the groups. Concentrations of 25-OH-Vitamin D, carboxy-terminal telopeptide of type I collagen and activities of bone-specific alkaline phosphatase were always higher in the HA group than in the C group, except on the last two sampling dates. Bone mineral content and density increased in both groups during the experiment, but more intensively in the HA group. In addition, the cortical thickness of the HA group increased. The present study demonstrates an increase in bone turnover and mineral content of the bones of the growing sheep grazing in high alpine pastures. The factors associated with HA grazing, therefore, clearly seem to improve bone composition. © 2011 Blackwell Verlag GmbH.
The effect of zolpidem on sleep quality, stress status, and nondipping hypertension.
Huang, Yuli; Mai, Weiyi; Cai, Xiaoyan; Hu, Yunzhao; Song, Yuanbin; Qiu, Ruofeng; Wu, Yanxian; Kuang, Jian
2012-03-01
Poor sleep quality and stress status have previously been shown to be closely associated with higher activation of the sympathetic nervous system and to be independent predictors of nondipping hypertension. This study aimed to evaluate the effects of the non-hypotensive sedative zolpidem on sleep quality, stress status, and nondipping hypertension. A total of 103 nondippers were defined as poor or good sleepers by the Pittsburgh Sleep Quality Index. They were randomized to receive zolpidem or placebo treatment for 30 days. Stress status was assessed by the Perceived Stress Scale, and levels of epinephrine and norepinephrine were examined to investigate the underlying mechanisms. Poor sleepers treated with zolpidem for 30 days showed significant improvements in sleep quality and stress levels (P<0.01). More nondippers were converted to dippers in the group of poor sleepers treated with zolpidem (11 of 22 patients, 50.0%) than in the placebo (2 of 23, 8.7%) (P<0.01). Epinephrine and norepinephrine levels were significantly reduced in poor sleepers treated with zolpidem (P<0.05). The results of this study suggest that zolpidem can improve sleep quality and stress status, and can convert nondippers with poor sleep quality into dippers. It may be an option for treating nondipping hypertensive patients with poor sleep quality. Copyright © 2011 Elsevier B.V. All rights reserved.
Current issues in determining dietary protein quality and metabolic utilization
USDA-ARS?s Scientific Manuscript database
In resource-limited settings, poor dietary quality has a marked negative impact on health, especially during the sensitive periods of pregnancy and first 2 years of life (the first 1000 days) when stunting, poor development and increased risk of later disease develop. Protein quality is often poor o...
Newton, Tamara L; Burns, Vicki Ellison; Miller, James J; Fernandez-Botran, G Rafael
2016-05-01
A marital status of divorced or separated, as opposed to married, predicts increased risk of health problems, but not for all persons. Focusing on one established health risk that has been linked with divorce--poor subjective sleep quality--the present cross-sectional study examined whether a history of physical intimate partner victimization (IPV) helps identify divorced women at potentially greater risk of health problems. Community midlife women with divorce histories, all of whom were free of current IPV, reported on their past month sleep quality and lifetime IPV. The predicted odds of poor sleep quality were significantly greater for women with, versus without, IPV histories. This held after adjusting for socioemotional, medical, or sociodemographic risks. A dose-response relationship between IPV chronicity and poor quality sleep was observed. IPV history may help identify divorced women at increased risk of poor quality sleep and, more broadly, poor health. © The Author(s) 2015.
A new spiral dental implant: a tool for oral rehabilitation of difficult cases
BALAN, I.; CALCATERRA, R.; LAURITANO, D.; GRECCHI, E.; CARINCI, F.
2017-01-01
SUMMARY Spiral dental implant (SDI) is an implant with a conical internal helix that confers the characteristic of self-drilling, self-tapping, and self-bone condensing. These proprieties offer better control during insertion of SDI giving a high primary stabilization, even in poor quality bone. A shorter diameter of SDI results in reduced drilling during insertion and consequently less trauma and minimal bone loss. To address the research purpose, the investigators designed a retrospective cohort study. The study population was composed of 25 patients, 11 males and 14 females that have been treated by Dr. Balan with 187 SDI positioned in mandible and into maxilla bone. The implants were placed during the years 2013 to 2014 in Dr. Balan clinic. All patients underwent the same surgical protocol. Several variables are investigated: demographic (age and gender), anatomic (upper/lower jaws and tooth site), implant (length and diameter and type) variables, edentulism (partial or total), and comorbid status of health (i.e.: hypothyroidism, parodontitis, hypertension, diabetes, presence of cancer, heart disease, hepatitis and rheumatologic disease). Pearson Chi-Square test was used to investigate variables and p < 0.05 was considered statistically significant. Statistically it has been shown that females have a higher possibility of unsuccessful respect of male, with a “p value” of 0.014. Another important impact factor for success of implant insertion has been represented by concomitants pathologies: cancer represents the most negative high factor risk with a percentage of unsuccessful of 50%, followed by heart disease (15%), and diabetes (3.7%). SDIs are reliable tools for difficult cases of oral rehabilitation. They have a higher success and survival rate, which means stable results over time. No differences were detected among SDI lengths, implant/crown ratio. In addition, the insertion of SDIs in banked bone can be performed without adverse effects. Finally, flapless and computer tomography-planned surgery does not significantly increase the clinical outcome of SDIs in complex rehabilitation. Cancer represents the most important variable to consider when a patient wants to do oral rehabilitation because of its high risk of unsuccessful. PMID:29285328