Science.gov

Sample records for poor cloud traced

  1. Cloud draft structure and trace gas transport

    NASA Technical Reports Server (NTRS)

    Scala, John R.; Tao, Wei-Kuo; Thompson, Anne M.; Simpson, Joanne; Garstang, Michael; Pickering, Kenneth E.; Browell, Edward V.; Sachse, Glen W.; Gregory, Gerald L.; Torres, Arnold L.

    1990-01-01

    During the second Amazon Boundary Layer Experiment (ABLE 2B), meteorological observations, chemical measurements, and model simulations are utilized in order to interpret convective cloud draft structure and to analyze its role in transport and vertical distribution of trace gases. One-dimensional photochemical model results suggest that the observed poststorm changes in ozone concentration can be attributed to convective transports rather than photochemical production and the results of a two-dimensional time-dependent cloud model simulation are presented for the May 6, 1987 squall system. The mesoscale convective system exhibited evidence of significant midlevel detrainment in addition to transports to anvil heights. Chemical measurements of O3 and CO obtained in the convective environment are used to predict photochemical production within the troposphere and to corroborate the cloud model results.

  2. Cloud Computing Trace Characterization and Synthetic Workload Generation

    DTIC Science & Technology

    2013-03-01

    to design realistic cloud workloads, which drive the evaluation of Hadoop job schedulers and Hadoop shared storage system performance. The trace...synthesizing realistic workload traces for studying the hadoop ecosystem. Presented at Modeling, Analysis & Simulation of Computer and

  3. Are CO Observations of Interstellar Clouds Tracing the H2?

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Glover, S. C. O.; Klessen, R. S.; Mac Low, M.

    2010-01-01

    Interstellar clouds are commonly observed through the emission of rotational transitions from carbon monoxide (CO). However, the abundance ratio of CO to molecular hydrogen (H2), which is the most abundant molecule in molecular clouds is only about 10-4. This raises the important question of whether the observed CO emission is actually tracing the bulk of the gas in these clouds, and whether it can be used to derive quantities like the total mass of the cloud, the gas density distribution function, the fractal dimension, and the velocity dispersion--size relation. To evaluate the usability and accuracy of CO as a tracer for H2 gas, we generate synthetic observations of hydrodynamical models that include a detailed chemical network to follow the formation and photo-dissociation of H2 and CO. These three-dimensional models of turbulent interstellar cloud formation self-consistently follow the coupled thermal, dynamical and chemical evolution of 32 species, with a particular focus on H2 and CO (Glover et al. 2009). We find that CO primarily traces the dense gas in the clouds, however, with a significant scatter due to turbulent mixing and self-shielding of H2 and CO. The H2 probability distribution function (PDF) is well-described by a log-normal distribution. In contrast, the CO column density PDF has a strongly non-Gaussian low-density wing, not at all consistent with a log-normal distribution. Centroid velocity statistics show that CO is more intermittent than H2, leading to an overestimate of the velocity scaling exponent in the velocity dispersion--size relation. With our systematic comparison of H2 and CO data from the numerical models, we hope to provide a statistical formula to correct for the bias of CO observations. CF acknowledges financial support from a Kade Fellowship of the American Museum of Natural History.

  4. Evaluation of Glaciogenic Cloud Seeding using Trace Chemistry

    NASA Astrophysics Data System (ADS)

    Fisher, J.; Benner, S. G.; Kunkel, M. L.; Blestrud, D.; Holbrook, V. P.; Parkinson, S.

    2015-12-01

    Glaciogenic cloud seeding is an important scientific technology for enhancing water resources across in the Western United States. Cloud seeding enriches orographic super cooled liquid water layers with plumes of ice nuclei, increasing the water yield of a storm event. Weather model assessments of cloud seeding estimate controlled releases of the ice nucleating agent, silver iodide (AgI), increases snow precipitation between 3-15% annually. However, efficacy of cloud seeding programs are difficult to assess using Weather Research and Forecasting (WRF) models alone. Therefore, this study validated the spatial and temporal distribution of AgI predicted by WRF models using ultra-trace snow chemistry data collected in the target area. Field methods utilized in this study are unique to previous trace chemical assessments of cloud seeding in two ways. First, nearly all snow samples were collected within 24 hours of deposition. Focusing on freshly deposited snow was more effective at constraining AgI plume timing and spatial extent with greater precision (via WRF, SNOTEL, and chemistry data). Second, this study employed geostatistics to describe AgI variability on the pit scale, site scale, and regional scale to optimize on the amount of samples to collect. The analysis revealed 4 columns of vials per snow pit and 1 snow pit per sampling site are optimal. Identifying the seeding signature at the regional scale was also successfully accomplished over a 40 mile sampling transect. All 6 sites had an identical AgI seeding signature despite drastic differences in of canopy cover, aspect, and distance from AgI source. The furthest sites from the AgI source were difficult to identify with Ag concentrations alone. Therefore, enrichment factors were essential to locating AgI influence at the most distal sites.

  5. Micelle Mediated Trace Level Sulfide Quantification through Cloud Point Extraction

    PubMed Central

    Devaramani, Samrat; Malingappa, Pandurangappa

    2012-01-01

    A simple cloud point extraction protocol has been proposed for the quantification of sulfide at trace level. The method is based on the reduction of iron (III) to iron (II) by the sulfide and the subsequent complexation of metal ion with nitroso-R salt in alkaline medium. The resulting green-colored complex was extracted through cloud point formation using cationic surfactant, that is, cetylpyridinium chloride, and the obtained surfactant phase was homogenized by ethanol before its absorbance measurement at 710 nm. The reaction variables like metal ion, ligand, surfactant concentration, and medium pH on the cloud point extraction of the metal-ligand complex have been optimized. The interference effect of the common anions and cations was studied. The proposed method has been successfully applied to quantify the trace level sulfide in the leachate samples of the landfill and water samples from bore wells and ponds. The validity of the proposed method has been studied by spiking the samples with known quantities of sulfide as well as comparing with the results obtained by the standard method. PMID:22619597

  6. Image transfer through cirrus clouds. I. Ray trace analysis and wave-front reconstruction.

    PubMed

    Landesman, B T; Kindilien, P J; Matson, C L; Caudill, T R

    2000-10-20

    A new technique for modeling image transfer through cirrus clouds is presented. The technique uses a ray trace to model beam propagation through a three-dimensional volume of polydisperse, hexagonal ice crystals. Beyond the cloud, the technique makes use of standard Huygens-Fresnel propagation methods. At the air-cloud interface, each wave front is resolved into a ray distribution for input to the ray trace software. Similarly, a wave front is reconstructed from the output ray distribution at the cloud-air interface. Simulation output from the ray trace program is presented and the modulation transfer function for stars imaged through cirrus clouds of varying depths is discussed.

  7. Clouding tracing: Visualization of the mixing of fluid elements in convection-diffusion systems

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Smith, Philip J.

    1993-01-01

    This paper describes a highly interactive method for computer visualization of the basic physical process of dispersion and mixing of fluid elements in convection-diffusion systems. It is based on transforming the vector field from a traditionally Eulerian reference frame into a Lagrangian reference frame. Fluid elements are traced through the vector field for the mean path as well as the statistical dispersion of the fluid elements about the mean position by using added scalar information about the root mean square value of the vector field and its Lagrangian time scale. In this way, clouds of fluid elements are traced and are not just mean paths. We have used this method to visualize the simulation of an industrial incinerator to help identify mechanisms for poor mixing.

  8. Cloud identification in atmospheric trace molecule spectroscopy infrared occultation measurements.

    PubMed

    Kahn, Brian H; Eldering, Annmarie; Irion, Fredrick W; Mills, Franklin P; Sen, Bhaswar; Gunson, Michael R

    2002-05-20

    High-resolution infrared nongas absorption spectra derived from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are analyzed for evidence of the presence of cirrus clouds. Several nonspherical ice extinction models based on realistic size distributions and crystal habits along with a stratospheric sulfate aerosol model are fit to the spectra, and comparisons are made with different model combinations. Nonspherical ice models often fit observed transmission spectra better than a spherical Mie ice model, and some discrimination among nonspherical models is noted. The ATMOS lines of sight for eight occultations are superimposed on coincident geostationary satellite infrared imagery, and brightness temperatures along the lines of sight are compared with retrieved vertical temperature profiles. With these comparisons, studies of two cases of clear sky, three cases of opaque cirrus, and three cases of patchy cirrus are discussed.

  9. Particulate matter and trace-gas changes at Beltsville, MD, and influences on cloud condensation nuclei

    NASA Astrophysics Data System (ADS)

    Doughty, David

    This dissertation seeks to further our understanding of how rainfall processes are affected by the 3 complex interactions among trace gases, aerosols, and clouds in semi-urban areas. (Abstract shortened by ProQuest.).

  10. FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.; van der A, R.; Pinardi, G.; van Roozendael, M.

    2008-11-01

    The FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm has been used to retrieve cloud information from measurements of the O2 A-band around 760 nm by GOME, SCIAMACHY and GOME-2. The cloud parameters retrieved by FRESCO are the effective cloud fraction and cloud pressure, which are used for cloud correction in the retrieval of trace gases like O3 and NO2. To improve the cloud pressure retrieval for partly cloudy scenes, single Rayleigh scattering has been included in an improved version of the algorithm, called FRESCO+. We compared FRESCO+ and FRESCO effective cloud fractions and cloud pressures using simulated spectra and one month of GOME measured spectra. As expected, FRESCO+ gives more reliable cloud pressures over partly cloudy pixels. Simulations and comparisons with ground-based radar/lidar measurements of clouds show that the FRESCO+ cloud pressure is about the optical midlevel of the cloud. Globally averaged, the FRESCO+ cloud pressure is about 50 hPa higher than the FRESCO cloud pressure, while the FRESCO+ effective cloud fraction is about 0.01 larger. The effect of FRESCO+ cloud parameters on O3 and NO2 vertical column density (VCD) retrievals is studied using SCIAMACHY data and ground-based DOAS measurements. We find that the FRESCO+ algorithm has a significant effect on tropospheric NO2 retrievals but a minor effect on total O3 retrievals. The retrieved SCIAMACHY tropospheric NO2 VCDs using FRESCO+ cloud parameters (v1.1) are lower than the tropospheric NO2VCDs which used FRESCO cloud parameters (v1.04), in particular over heavily polluted areas with low clouds. The difference between SCIAMACHY tropospheric NO2 VCDs v1.1 and ground-based MAXDOAS measurements performed in Cabauw, The Netherlands, during the DANDELIONS campaign is about -2.12×1014molec cm-2.

  11. Cumulus cloud model estimates of trace gas transports

    NASA Technical Reports Server (NTRS)

    Garstang, Michael; Scala, John; Simpson, Joanne; Tao, Wei-Kuo; Thompson, A.; Pickering, K. E.; Harris, R.

    1989-01-01

    Draft structures in convective clouds are examined with reference to the results of the NASA Amazon Boundary Layer Experiments (ABLE IIa and IIb) and calculations based on a multidimensional time dependent dynamic and microphysical numerical cloud model. It is shown that some aspects of the draft structures can be calculated from measurements of the cloud environment. Estimated residence times in the lower regions of the cloud based on surface observations (divergence and vertical velocities) are within the same order of magnitude (about 20 min) as model trajectory estimates.

  12. Disk of the Small Magellanic Cloud as traced by Cepheids

    NASA Astrophysics Data System (ADS)

    Subramanian, Smitha; Subramaniam, Annapurni

    2015-01-01

    Context. The structure and evolution of the disk of the Small Magellanic Cloud (SMC) are traced by studying the Cepheids. Aims: We aim to estimate the orientation measurements of the disk, such as the inclination, i, and the position angle of the line of nodes (PAlon), φ, and the depth of the disk. We also derive the age of the Cepheids and hence the age distribution of the SMC Cepheids. Methods: We used the V and I band photometric data of the fundamental and first-overtone Cepheids from the Optical Gravitational Lensing Experiment survey. The period-luminosity (PL) relations were used to estimate the relative distance and reddening of each Cepheid. The right ascension, declination, and relative distance from the centroid of each Cepheid were converted into x, y, and z Cartesian coordinates. A weighted least-square plane fitting method was then applied to estimate the structural parameters. The line-of-sight depth and then the orientation corrected depth or thickness of the disk were estimated from the relative distance measurements. The period-age-colour relation of Cepheids were used to derive the age of the Cepheids. Results: A break in the PL relations of both the fundamental mode and first-overtone Cepheids at P ~ 2.95 days and P ~ 1 day are observed. An inclination of 64.̊4±0.̊7 and a PAlon 155°.3 ± 6°.3 are obtained from the full sample. A reddening map of the SMC disk is also presented. The orientation-corrected depth or thickness of the SMC disk is found to be 1.76±0.6 kpc. The scale height is estimated to be 0.82±0.3 kpc. The age distribution of Cepheids matches the SMC cluster age distribution. Conclusions: The radial variation of the disk parameters mildly indicate structures and disturbances in the inner SMC (0.5

  13. Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region.

    PubMed

    Li, Weijun; Wang, Yan; Collett, Jeffrey L; Chen, Jianmin; Zhang, Xiaoye; Wang, Zifa; Wang, Wenxing

    2013-05-07

    Mass concentrations of soluble trace metals and size, number, and mixing properties of nanometal particles in clouds determine their toxicity to ecosystems. Cloud water was found to be acidic, with a pH of 3.52, at Mt. Lu (elevation 1,165 m) in an acid precipitation region in South China. A combination of Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Transmission Electron Microscopy (TEM) for the first time demonstrates that the soluble metal concentrations and solid metal particle number are surprisingly high in acid clouds at Mt. Lu, where daily concentrations of SO2, NO2, and PM10 are 18 μg m(-3), 7 μg m(-3), and 22 μg m(-3). The soluble metals in cloudwater with the highest concentrations were zinc (Zn, 200 μg L(-1)), iron (Fe, 88 μg L(-1)), and lead (Pb, 77 μg L(-1)). TEM reveals that 76% of cloud residues include metal particles that range from 50 nm to 1 μm diameter with a median diameter of 250 nm. Four major metal-associated particle types are Pb-rich (35%), fly ash (27%), Fe-rich (23%), and Zn-rich (15%). Elemental mapping shows that minor soluble metals are distributed within sulfates of cloud residues. Emissions of fine metal particles from large, nonferrous industries and coal-fired power plants with tall stacks were transported upward to this high elevation. Our results suggest that the abundant trace metals in clouds aggravate the impacts of acid clouds or associated precipitation on the ecosystem and human health.

  14. MUSE searches for galaxies near very metal-poor gas clouds at z ˜ 3: new constraints for cold accretion models

    NASA Astrophysics Data System (ADS)

    Fumagalli, Michele; Cantalupo, Sebastiano; Dekel, Avishai; Morris, Simon L.; O'Meara, John M.; Prochaska, J. Xavier; Theuns, Tom

    2016-10-01

    We report on the search for galaxies in the proximity of two very metal-poor gas clouds at z ˜ 3 towards the quasar Q0956+122. With a 5-hour Multi-Unit Spectroscopic Explorer (MUSE) integration in a ˜500 × 500 kpc2 region centred at the quasar position, we achieve a ≥80 per cent complete spectroscopic survey of continuum-detected galaxies with mR ≤ 25 mag and Lyα emitters with luminosity LLyα ≥ 3 × 1041 erg s- 1. We do not identify galaxies at the redshift of a z ˜ 3.2 Lyman limit system (LLS) with log Z/Z⊙ = -3.35 ± 0.05, placing this gas cloud in the intergalactic medium or circumgalactic medium of a galaxy below our sensitivity limits. Conversely, we detect five Lyα emitters at the redshift of a pristine z ˜ 3.1 LLS with log Z/Z⊙ ≤ -3.8, while ˜0.4 sources were expected given the z ˜ 3 Lyα luminosity function. Both this high detection rate and the fact that at least three emitters appear aligned in projection with the LLS suggest that this pristine cloud is tracing a gas filament that is feeding one or multiple galaxies. Our observations uncover two different environments for metal-poor LLSs, implying a complex link between these absorbers and galaxy haloes, which ongoing MUSE surveys will soon explore in detail. Moreover, in agreement with recent MUSE observations, we detected a ˜ 90 kpc Lyα nebula at the quasar redshift and three Lyα emitters reminiscent of a `dark galaxy' population.

  15. Beyond Survival: Tracing Individual Empowerment Processes in a Poor Chilean Settlement

    ERIC Educational Resources Information Center

    Turro, Claudia; Krause, Mariane

    2009-01-01

    Based on the life histories of residents from La Victoria, a poor settlement in Santiago, Chile, this study reconstructed the central biographic elements in individual empowerment processes, linking them with the sociocultural context in which they occurred. Results show the following main characteristics related to individual empowerment:…

  16. Concentrations and solubility of trace elements in fine particles at a mountain site, southern China: regional sources and cloud processing

    NASA Astrophysics Data System (ADS)

    Li, T.; Wang, Y.; Li, W. J.; Chen, J. M.; Wang, T.; Wang, W. X.

    2015-08-01

    The concentrations and solubility of twelve trace elements in PM2.5 at Mt. Lushan, southern China, were investigated during the summer of 2011 and the spring of 2012. The average PM2.5 mass was 55.2 ± 20.1 μg m-3 during the observation period. Temporal variations of all trace elements including total and water-soluble fractions with several dust storm spikes in total fractions of Al and Fe were observed. The enrichment factor (EF) values were 1 order of magnitude higher for the water-soluble fractions versus the total fractions of trace elements. Four major emission sources, namely nonferrous metal mining and smelting (for Cr, As, Ba and parts of Zn), coal combustion (for Pb, Zn, Se, Cu and Mn), crustal materials (for Al and Fe) and municipal solid waste incineration (for Cd and Mo), were classified by principal component analysis (PCA). Trajectory cluster analysis and the potential source contribution function (PSCF) consistently identified the Yangtze River delta (YRD), the Pearl River delta (PRD), and the neighbouring provinces of Mt. Lushan as the major source regions and transport pathways for anthropogenic elements. Northern China was identified as a major source region for crustal elements. It should be noted that apart from the YRD, the area around Mt. Lushan has become the most significant contributor to the solubility of most trace elements. Element solubility can be partially determined by emission sources. However, enhanced solubility of trace elements corresponding to increased concentrations of sulfate after the occurrence of cloud events indicated significant effects of cloud processing on aerosol element dissolution. Metal particles mixed with sulfate in cloud droplet residues were further investigated through transmission electron microscopy (TEM) analysis. Irreversible alteration of particle morphology by cloud processing was confirmed to be highly responsible for the enhancement of trace element solubility. The findings from this study imply an

  17. Concentrations and solubility of trace elements in fine particles at a mountain site, southern China: regional sources and cloud processing

    NASA Astrophysics Data System (ADS)

    Li, T.; Wang, Y.; Li, W. J.; Chen, J. M.; Wang, T.; Wang, W. X.

    2015-05-01

    The concentrations and solubility of twelve trace elements in PM2.5 at Mt. Lushan, southern China, were investigated during the summer of 2011 and the spring of 2012. The average PM2.5 mass was 55.2 ± 20.1 μg m-3 during the observation period. Temporal variations of all trace elements including total and water-soluble fractions with several dust storm spikes for total fraction Al and Fe were observed. The enrichment factor (EF) values were one order of magnitude higher for the water-soluble fractions vs. the total fractions of trace elements. Four major emission sources were classified by principal component analysis (PCA), namely nonferrous metal mining and smelting (for Cr, As, Ba and parts of Zn), coal combustion (for Pb, Zn, Se, Cu and Mn), crustal materials (for Al and Fe) and municipal solid waste incineration (for Cd and Mo). Trajectory cluster analysis and the potential source contribution function (PSCF) consistently identified the Yangtze River Delta (YRD), the Pearl River Delta (PRD) and parts of Hunan and Jiangxi as the major source regions and pathways for anthropogenic elements, while northern China was identified for crustal elements. In contrast, the local Jiangxi area has become the most significant contributor to the solubility of most trace elements, apart from the YRD with severe air pollution. In addition, the solubility alteration of trace elements in cloud events was investigated and transmission electron microscopy (TEM) analysis indicated that the irreversible alteration of particle morphology by cloud processing was highly responsible for the enhancement of element solubility. Our work implies an important role of regional anthropogenic pollution and cloud processing in the evolution of trace element solubility during transport.

  18. Clouds and wet removal as causes of variability in the trace-gas composition of the marine troposphere

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.; Cicerone, R. J.

    1982-01-01

    A modeling study of the effects of clouds and wet removal on the chemistry of the remote marine troposphere is described. Using a time-dependent model with parameterized vertical transport to calculate trace-gas concentrations, it is found that large variations in key species (e.g., HNO3, H2CO, and H2O2) result from simulations of sporadic rainfall, changes in cloud cover, and external inputs such as surface NO sources. Depending on the frequency and intensity of an event, the effects of these perturbations may persist for several days, thereby invalidating assumptions of photochemical equilibrium in the interpretation of measurements. Long-term integrations with fixed boundary conditions and regularly occurring cloud and rain episodes demonstrate a strong sensitivity of the mean concentration of longer-lived soluble gases to precipitation frequency but also confirm the validity of using properly chosen parameterizations of wet removal in steady state calculations.

  19. Clouds and wet removal as causes of variability in the trace-gas composition of the marine troposphere

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Cicerone, R. J.

    1982-10-01

    A modeling study of the effects of clouds and wet removal on the chemistry of the remote marine troposphere is described. Using a time-dependent model with parameterized vertical transport to calculate trace-gas concentrations, it is found that large variations in key species (e.g., HNO3, H2CO, and H2O2) result from simulations of sporadic rainfall, changes in cloud cover, and external inputs such as surface NO sources. Depending on the frequency and intensity of an event, the effects of these perturbations may persist for several days, thereby invalidating assumptions of photochemical equilibrium in the interpretation of measurements. Long-term integrations with fixed boundary conditions and regularly occurring cloud and rain episodes demonstrate a strong sensitivity of the mean concentration of longer-lived soluble gases to precipitation frequency but also confirm the validity of using properly chosen parameterizations of wet removal in steady state calculations.

  20. Cloud point extraction and spectrophotometric determination of mercury species at trace levels in environmental samples.

    PubMed

    Ulusoy, Halil İbrahim; Gürkan, Ramazan; Ulusoy, Songül

    2012-01-15

    A new micelle-mediated separation and preconcentration method was developed for ultra-trace quantities of mercury ions prior to spectrophotometric determination. The method is based on cloud point extraction (CPE) of Hg(II) ions with polyethylene glycol tert-octylphenyl ether (Triton X-114) in the presence of chelating agents such as 1-(2-pyridylazo)-2-naphthol (PAN) and 4-(2-thiazolylazo) resorcinol (TAR). Hg(II) ions react with both PAN and TAR in a surfactant solution yielding a hydrophobic complex at pH 9.0 and 8.0, respectively. The phase separation was accomplished by centrifugation for 5 min at 3500 rpm. The calibration graphs obtained from Hg(II)-PAN and Hg(II)-TAR complexes were linear in the concentration ranges of 10-1000 μg L(-1) and 50-2500 μg L(-1) with detection limits of 1.65 and 14.5 μg L(-1), respectively. The relative standard deviations (RSDs) were 1.85% and 2.35% in determinations of 25 and 250 μg L(-1) Hg(II), respectively. The interference effect of several ions were studied and seen commonly present ions in water samples had no significantly effect on determination of Hg(II). The developed methods were successfully applied to determine mercury concentrations in environmental water samples. The accuracy and validity of the proposed methods were tested by means of five replicate analyses of the certified standard materials such as QC Metal LL3 (VWR, drinking water) and IAEA W-4 (NIST, simulated fresh water).

  1. Effects of Ice-Crystal Structure on Halo Formation: Cirrus Cloud Experimental and Ray-Tracing Modeling Studies

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Knight, Nancy C.; Takano, Yoshihide; Heymsfield, Andrew J.

    1994-01-01

    During the 1986 Project FIRE (First International Satellite Cloud Climatology Project Regional Experiment) field campaign, four 22 deg halo-producing cirrus clouds were studied jointly from a ground-based polarization lidar and an instrumented aircraft. The lidar data show the vertical cloud structure and the relative position of the aircraft, which collected a total of 84 slides by impaction, preserving the ice crystals for later microscopic examination. Although many particles were too fragile to survive impaction intact, a large fraction of the identifiable crystals were columns and radial bullet rosettes, with both displaying internal cavitations and radial plate-column combinations. Particles that were solid or displayed only a slight amount of internal structure were relatively rare, which shows that the usual model postulated by halo theorists, i.e., the randomly oriented, solid hexagonal crystal, is inappropriate for typical cirrus clouds. With the aid of new ray-tracing simulations for hexagonal hollow-ended column and bullet-rosette models, we evaluate the effects of more realistic ice-crystal structures on halo formation and lidar depolarization and consider why the common halo is not more common in cirrus clouds.

  2. Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies.

    PubMed

    Sassen, K; Knight, N C; Takano, Y; Heymsfield, A J

    1994-07-20

    During the 1986 Project FIRE (First International Satellite Cloud Climatology Project Regional Experiment) field campaign, four 22° halo-producing cirrus clouds were studied jointly from a groundbased polarization lidar and an instrumented aircraft. The lidar data show the vertical cloud structure and the relative position of the aircraft, which collected a total of 84 slides by impaction, preserving the ice crystals for later microscopic examination. Although many particles were too fragile to survive impaction intact, a large fraction of the identifiable crystals were columns and radial bullet rosettes, with both displaying internal cavitations, and radial plate-column combinations. Particles that were solid or displayed only a slight amount of internal structure were relatively rare, which shows that the usual model postulated by halo theorists, i.e., the randomly oriented, solid hexagonal crystal, is inappropriate for typical cirrus clouds. With the aid of new ray-tracing simulations for hexagonal hollow ended column and bullet-rosette models, we evaluate the effects of more realistic ice-crystal structures on halo formation and lidar depolarization and consider why the common halo is not more common in cirrus clouds.

  3. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    SciTech Connect

    Pascucci, I.; Simon, M. N.; Edwards, S.; Heyer, M.; Rigliaco, E.; Hillenbrand, L.; Gorti, U.; Hollenbach, D.

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.

  4. Evaluation of trace elements contamination in cloud/fog water at an elevated mountain site in Northern China.

    PubMed

    Liu, Xiao-huan; Wai, Ka-ming; Wang, Yan; Zhou, Jie; Li, Peng-hui; Guo, Jia; Xu, Peng-ju; Wang, Wen-xing

    2012-07-01

    Totally 117 cloud/fog water samples were collected at the summit of Mt. Tai (1534m a.s.l.)-the highest mountain in the Northern China Plain. The results were investigated by a combination of techniques including back trajectory model, regional air quality and dust storm models, satellite observations and Principal Component Analysis. Elemental concentrations were determined by Inductively Coupled Plasma Mass Spectrometry, with stringent quality control measures. Higher elemental concentrations were found at Mt. Tai compared with those reported by other overseas studies. The larger proportions and higher concentrations of toxic elements such as Pb and As in cloud/fog water compared with those in rainwater at Mt. Tai suggests higher potential hazards of cloud/fog water as a source of contamination in polluted areas to the ecosystem. Peak concentrations of trace elements were frequently observed during the onset of cloud/fog events when liquid water contents of cloud/fog water were usually low and large amount of pollutants were accumulated in the ambient air. Inverse relationship between elemental concentrations and liquid water contents were only found in the samples with high electrical conductivities and liquid water contents lower than 0.3gm(-3). Affected mainly by the emissions of steel industries and mining activities, air masses transported from south/southwest of Mt. Tai were frequently associated with higher elemental concentrations. The element Mn is attributed to play an important role in the acidity of cloud/fog water. The composition of cloud/fog water influenced by an Asian dust storm event was reported, which was seldom found in the literature.

  5. Cloud water and throughfall deposition of mercury and trace elements in a high elevation spruce-fir forest at Mt. Mansfield, Vermont.

    PubMed

    Lawson, Sean T; Scherbatskoy, Timothy D; Malcolm, Elizabeth G; Keeler, Gerald J

    2003-08-01

    As part of the Lake Champlain Basin watershed study of mercury (Hg) and pollutant deposition, cloud water and cloud throughfall collections were conducted at the south summit (1204 m) of Mt. Mansfield, Vermont between August 1 and October 31, 1998, for multi-element chemical analysis. A passive Teflon string collector was deployed during non-precipitating events to sample cloud/fog water at timberline, while three sets of paired funnels collected cloud throughfall under the red spruce-balsam fir canopy. Samples were analyzed for concentrations of Hg, major ions, and 10 trace elements. Ultra-clean sampling and analysis techniques were utilized throughout the study. Six events were sampled for cloud water alone and four events were sampled for both cloud water and cloud throughfall. Cloud throughfall chemistry showed substantial modification from incident cloud water. Much higher concentrations of Hg (2.3 x), base cations (Ca2+, K-, Mg2+; 3-18 x) and certain trace elements (Ni, Cu, Mn, Rb, Sr; 2-34 x) were observed in throughfall than in cloud water. These results confirm that cloud water can leach a wide variety of elements from tree foliage and wash off dry deposited elements. Cloud water deposited an average of 0.42 +/- 0.12 mm of water per hour. Estimated cloud water deposition of Hg was 7.4 microg m(-2) for the period August 1-October 31, approximately twice that deposited by rain during this period at a nearby low elevation Hg monitoring site. Our results indicate that cloud water and Hg deposition at Mt. Mansfield are likely to have considerable ecological effects.

  6. GBT Search for HI Clouds Tracing the Nuclear Wind of the Milky Way

    NASA Astrophysics Data System (ADS)

    Corneilus Harrington, Kevin; Lockman, Felix J.; McClure-Griffiths, Naomi M.; Ford, Alyson; Endsley, Ryan

    2016-01-01

    We present 21cm HI observations of the Galactic Center (GC) from a survey that is studying the neutral gas embedded in the Fermi Bubble. Using the 100-meter Green Bank Telescope (GBT), this work expands upon the previous ATCA survey of the central 5x5 sq. deg of the GC. In the GBT data we find almost 300 clouds in HI emission that are likely to be associated with the nuclear wind. This increases the known population by a factor ~3, and includes the highest velocity clouds found at the observed galactic latitudes. Neutral clouds likely associated with the hot wind are found to distances of 1.4 kpc from the nucleus, and the average mass in HI is about 300 Msun. Analysis of the cloud kinematics provide limits on the wind velocity, opening angle, and lifetime of neutral clouds in a hot wind.

  7. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new

  8. Overview of 3D-TRACE, a NASA Initiative in Three-Dimensional Tomography of the Aerosol-Cloud Environment

    NASA Astrophysics Data System (ADS)

    Davis, Anthony; Diner, David; Yanovsky, Igor; Garay, Michael; Xu, Feng; Bal, Guillaume; Schechner, Yoav; Aides, Amit; Qu, Zheng; Emde, Claudia

    2013-04-01

    microphysical properties, can be reconstructed from multi-angle/multi-spectral imaging radiometry and, more and more, polarimetry. Specific technologies of interest are computed tomography (reconstruction from projections), optical tomography (using cross-pixel radiation transport in the diffusion limit), stereoscopy (depth/height retrievals), blind source and scale separation (signal unmixing), and disocclusion (information recovery in the presence of obstructions). Later on, these potentially powerful inverse problem solutions will be fully integrated in a versatile satellite data analysis toolbox. At present, we can report substantial progress at the component level. Specifically, we will focus on the most elementary problems in atmospheric tomography with an emphasis on the vastly under-exploited class of multi-pixel techniques. One basic problem is to infer the outer shape and mean opacity of 3D clouds, along with a bulk measure of cloud particle size. Another is to separate high and low cloud layers based on their characteristically different spatial textures. Yet another is to reconstruct the 3D spatial distribution of aerosol density based on passive imaging. This suite of independent feasibility studies amounts to a compelling proofof- concept for the ambitious 3D-Tomographic Reconstruction of the Aerosol-Cloud Environment (3D-TRACE) project as a whole.

  9. Using CO line ratios to trace the physical properties of molecular clouds

    NASA Astrophysics Data System (ADS)

    Peñaloza, Camilo H.; Clark, Paul C.; Glover, Simon C. O.; Shetty, Rahul; Klessen, Ralf S.

    2017-02-01

    The carbon monoxide (CO) rotational transition lines are the most common tracers of molecular gas within giant molecular clouds (MCs). We study the ratio (R2-1/1-0) between CO's first two emission lines and examine what information it provides about the physical properties of the cloud. To study R2-1/1-0, we perform smooth particle hydrodynamic simulations with time-dependent chemistry (using GADGET-2), along with post-process radiative transfer calculations on an adaptive grid (using RADMC-3D) to create synthetic emission maps of a MC. R2-1/1-0 has a bimodal distribution that is a consequence of the excitation properties of each line, given that J = 1 reaches local thermal equilibrium while J = 2 is still sub-thermally excited in the considered clouds. The bimodality of R2-1/1-0 serves as a tracer of the physical properties of different regions of the cloud, and it helps constrain local temperatures, densities and opacities. Additionally, this bimodal structure shows an important portion of the CO emission comes from diffuse regions of the cloud, suggesting that the commonly used conversion factor of R2-1/1-0 ∼ 0.7 between both lines may need to be studied further.

  10. Reddening and age of six poorly studied star clusters of the Large Magellanic Cloud derived from integrated spectra

    NASA Astrophysics Data System (ADS)

    Minniti, J. H.; Ahumada, A. V.; Clariá, J. J.; Benítez-Llambay, A.

    2014-05-01

    Aims: To increase the number of studied star clusters (SCs) of the Large Magellanic Cloud (LMC), we present flux-calibrated integrated spectra in the optical range (λ = 3700-6800 Å) for six poorly studied LMC SCs of IVA type. This type corresponds to the age range between 200 and 400 Myr. We also aim at creating a new template spectrum representative of this age range at the metallicity level of the LMC. Methods: Foreground reddening E(B - V) values and ages are derived by applying the template matching method that consists of comparing the line strengths and continuum distribution of the cluster spectra with those of template cluster spectra with known properties. The equivalent width (EW) of the Balmer lines and the diagnostic diagrams involving the sum of EWs of selected spectral lines were also employed as age indicators. Results: For the first time, we provide estimates of the clusters' reddenings and ages. As expected, all the clusters appear to be of nearly the same age, their mean value being (400 ± 100) Myr, while the resulting mean E(B - V) values range between 0.00 and 0.10 mag. Conclusions: The present cluster sample complements previous ones in an effort to gather a spectral library with several clusters per age bin. By averaging the reddening-corrected integrated spectra, weighted by their signal-to-noise ratios (S/N), a new high S/N template spectrum of 400 Myr has been created. Integrated spectra for each star cluster are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A49

  11. Implementation of Cloud Retrievals for Tropospheric Emission Spectrometer (TES) Atmospheric Retrievals: Part 1. Description and Characterization of Errors on Trace Gas Retrievals

    NASA Technical Reports Server (NTRS)

    Kulawik, Susan S.; Worden, John; Eldering, Annmarie; Bowman, Kevin; Gunson, Michael; Osterman, Gregory B.; Zhang, Lin; Clough, Shepard A.; Shephard, Mark W.; Beer, Reinhard

    2006-01-01

    We develop an approach to estimate and characterize trace gas retrievals in the presence of clouds in high spectral measurements of upwelling radiance in the infrared spectral region (650-2260/cm). The radiance contribution of clouds is parameterized in terms of a set of frequency-dependent nonscattering optical depths and a cloud height. These cloud parameters are retrieved jointly with surface temperature, emissivity, atmospheric temperature, and trace gases such as ozone from spectral data. We demonstrate the application of this approach using data from the Tropospheric Emission Spectrometer (TES) and test data simulated with a scattering radiative transfer model. We show the value of this approach in that it results in accurate estimates of errors for trace gas retrievals, and the retrieved values improve over the initial guess for a wide range of cloud conditions. Comparisons are made between TES retrievals of ozone, temperature, and water to model fields from the Global Modeling and Assimilation Office (GMAO), temperature retrievals from the Atmospheric Infrared Sounder (AIRS), tropospheric ozone columns from the Goddard Earth Observing System (GEOS) GEOS-Chem, and ozone retrievals from the Total Ozone Mapping Spectrometer (TOMS). In each of these cases, this cloud retrieval approach does not introduce observable biases into TES retrievals.

  12. Tracing the Magnetic Field Morphology of the Lupus I Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Franco, G. A. P.; Alves, F. O.

    2015-07-01

    Deep R-band CCD linear polarimetry collected for fields with lines of sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, almost 2000 of them with a polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large-scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infrared patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 μm dust emission map shows that the principal filament of Lupus I is constituted by three main clumps that are acted on by magnetic fields that have different large-scale structural properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and the cloud’s apparent evolutionary stage. On the other hand, assuming that the magnetic field is composed of large-scale and turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 to 200 μG in these clumps. The intensity increases toward the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales. Based on observations collected at the Observatório do Pico dos Dias, operated by Laboratório Nacional de Astrofísica (LNA/MCTI, Brazil).

  13. TRACING THE MAGNETIC FIELD MORPHOLOGY OF THE LUPUS I MOLECULAR CLOUD

    SciTech Connect

    Franco, G. A. P.; Alves, F. O. E-mail: falves@mpe.mpg.de

    2015-07-01

    Deep R-band CCD linear polarimetry collected for fields with lines of sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, almost 2000 of them with a polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large-scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infrared patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 μm dust emission map shows that the principal filament of Lupus I is constituted by three main clumps that are acted on by magnetic fields that have different large-scale structural properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and the cloud’s apparent evolutionary stage. On the other hand, assuming that the magnetic field is composed of large-scale and turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 to 200 μG in these clumps. The intensity increases toward the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales.

  14. Cloud point extraction for trace inorganic arsenic speciation analysis in water samples by hydride generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Shan; Wang, Mei; Zhong, Yizhou; Zhang, Zehua; Yang, Bingyi

    2015-09-01

    A new cloud point extraction technique was established and used for the determination of trace inorganic arsenic species in water samples combined with hydride generation atomic fluorescence spectrometry (HGAFS). As(III) and As(V) were complexed with ammonium pyrrolidinedithiocarbamate and molybdate, respectively. The complexes were quantitatively extracted with the non-ionic surfactant (Triton X-114) by centrifugation. After addition of antifoam, the surfactant-rich phase containing As(III) was diluted with 5% HCl for HGAFS determination. For As(V) determination, 50% HCl was added to the surfactant-rich phase, and the mixture was placed in an ultrasonic bath at 70 °C for 30 min. As(V) was reduced to As(III) with thiourea-ascorbic acid solution, followed by HGAFS. Under the optimum conditions, limits of detection of 0.009 and 0.012 μg/L were obtained for As(III) and As(V), respectively. Concentration factors of 9.3 and 7.9, respectively, were obtained for a 50 mL sample. The precisions were 2.1% for As(III) and 2.3% for As(V). The proposed method was successfully used for the determination of trace As(III) and As(V) in water samples, with satisfactory recoveries.

  15. Growing evidence for a core formation threshold traced in Herschel Gould Belt survey clouds

    NASA Astrophysics Data System (ADS)

    Könyves , V.; André, Ph.; Schneider, N.; Palmeirim, P.; Arzoumanian, D.; Men'shchikov, A.

    2013-11-01

    It has already been suggested that a threshold in column density - or in visual extinction - may need to be exceeded to form dense cores and then protostars. Based on Herschel Gould Belt survey results in the Aquila and Orion B molecular cloud complexes we observe clear connection between the locations of the detected prestellar cores and their background column density values. This finding appears to support a core formation scenario where such threshold corresponds to the extinction above which interstellar filaments become gravitationally unstable and fragment into cores. In these two actively star-forming regions we find the vast majority of the gravitationally bound prestellar cores above a high column density of about (6-7) × 1021 cm-2 (AV ˜ 6-7). This limit similarly appears in the column density probability distribution function (PDF) of the regions as well. The spatial distribution of the protostars and young stellar objects (YSOs) also shows a tight connection with the densest sites of both clouds, as more than 70 % of them appear above the mentioned AV thresholds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    DOE PAGES

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; ...

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convectivemore » cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it

  17. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    SciTech Connect

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is

  18. Organic carbon, and major and trace element dynamic and fate in a large river subjected to poorly-regulated urban and industrial pressures (Sebou River, Morocco).

    PubMed

    Hayzoun, H; Garnier, C; Durrieu, G; Lenoble, V; Le Poupon, C; Angeletti, B; Ouammou, A; Mounier, S

    2015-01-01

    An annual-basis study of the impacts of the anthropogenic inputs from Fez urban area on the water geochemistry of the Sebou and Fez Rivers was conducted mostly focusing on base flow conditions, in addition to the sampling of industrial wastewater characteristic of the various pressures in the studied environment. The measured trace metals dissolved/particulate partitioning was compared to the ones predicted using the WHAM-VII chemical speciation code. The Sebou River, upstream from Fez city, showed a weakly polluted status. Contrarily, high levels of major ions, organic carbon and trace metals were encountered in the Fez River and the Sebou River downstream the Fez inputs, due to the discharge of urban and industrial untreated and hugely polluted wastewaters. Trace metals were especially enriched in particles with levels even exceeding those recorded in surface sediments. The first group of elements (Al, Fe, Mn, Ti, U and V) showed strong inter-relationships, impoverishment in Fez particles/sediments and stable partition coefficient (Kd), linked to their lithogenic origin from Sebou watershed erosion. Conversely, most of the studied trace metals/metalloids, originated from anthropogenic sources, underwent significant changes of Kd and behaved non-conservatively in the Sebou/Fez water mixing. Dissolved/particulate partitioning was correctly assessed by WHAM-VII modeling for Cu, Pb and Zn, depicting significant differences in chemical speciation in the Fez River when compared to that in the Sebou River. The results of this study demonstrated that a lack of compliance in environmental regulations certainly explained this poor status.

  19. Circumgalactic gas absorption in extremely metal-poor dwarf dalaxies

    NASA Astrophysics Data System (ADS)

    Filho, M. E.; Sánchez Almeida, J.; Muñoz Tuñón, C.

    2017-03-01

    Accretion of metal-poor gas via cold accretion flows has been recently proposed as a means to trigger/sustain star formation in extremely metal-poor dwarf galaxies (XMPs), a scenario in agreement with theoretical predictions. We report on the tentative detection of CaII absorption used to trace the conditions of the gas clouds in the halo of the XMP UGCA 20.

  20. Determination of trace uranium by resonance fluorescence method coupled with photo-catalytic technology and dual cloud point extraction

    NASA Astrophysics Data System (ADS)

    Li, Jiekang; Li, Guirong; Han, Qian

    2016-12-01

    In this paper, two kinds of salophens (Sal) with different solubilities, Sal1 and Sal2, have been respectively synthesized, and they all can combine with uranyl to form stable complexes: [UO22 +-Sal1] and [UO22 +-Sal2]. Among them, [UO22 +-Sal1] was used as ligand to extract uranium in complex samples by dual cloud point extraction (dCPE), and [UO22 +-Sal2] was used as catalyst for the determination of uranium by photocatalytic resonance fluorescence (RF) method. The photocatalytic characteristic of [UO22 +-Sal2] on the oxidized pyronine Y (PRY) by potassium bromate which leads to the decrease of RF intensity of PRY were studied. The reduced value of RF intensity of reaction system (ΔF) is in proportional to the concentration of uranium (c), and a novel photo-catalytic RF method was developed for the determination of trace uranium (VI) after dCPE. The combination of photo-catalytic RF techniques and dCPE procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimal conditions, the linear calibration curves range for 0.067 to 6.57 ng mL- 1, the linear regression equation was ΔF = 438.0 c (ng mL- 1) + 175.6 with the correlation coefficient r = 0.9981. The limit of detection was 0.066 ng mL- 1. The proposed method was successfully applied for the separation and determination of uranium in real samples with the recoveries of 95.0-103.5%. The mechanisms of the indicator reaction and dCPE are discussed.

  1. Determination of trace uranium by resonance fluorescence method coupled with photo-catalytic technology and dual cloud point extraction.

    PubMed

    Li, Jiekang; Li, Guirong; Han, Qian

    2016-12-05

    In this paper, two kinds of salophens (Sal) with different solubilities, Sal1 and Sal2, have been respectively synthesized, and they all can combine with uranyl to form stable complexes: [UO2(2+)-Sal1] and [UO2(2+)-Sal2]. Among them, [UO2(2+)-Sal1] was used as ligand to extract uranium in complex samples by dual cloud point extraction (dCPE), and [UO2(2+)-Sal2] was used as catalyst for the determination of uranium by photocatalytic resonance fluorescence (RF) method. The photocatalytic characteristic of [UO2(2+)-Sal2] on the oxidized pyronine Y (PRY) by potassium bromate which leads to the decrease of RF intensity of PRY were studied. The reduced value of RF intensity of reaction system (ΔF) is in proportional to the concentration of uranium (c), and a novel photo-catalytic RF method was developed for the determination of trace uranium (VI) after dCPE. The combination of photo-catalytic RF techniques and dCPE procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimal conditions, the linear calibration curves range for 0.067 to 6.57ngmL(-1), the linear regression equation was ΔF=438.0 c (ngmL(-1))+175.6 with the correlation coefficient r=0.9981. The limit of detection was 0.066ngmL(-1). The proposed method was successfully applied for the separation and determination of uranium in real samples with the recoveries of 95.0-103.5%. The mechanisms of the indicator reaction and dCPE are discussed.

  2. Atmospheric Trace Gases, Aerosols, and Cloud Data from the EOS Ozone Monitoring Instrument (OMI) on the Aura Satellite

    NASA Astrophysics Data System (ADS)

    Ahmad, S. P.; Levelt, P. F.; Hilsenrath, E.; Tamminen, J.; Bhartia, P.; Veefkind, P. J.; van den Oord, B.; Joiner, J.; Fleig, A.; Johnson, J.; Leptoukh, G.; Kempler, S.

    2005-12-01

    The Ozone Monitoring Instrument (OMI) along with the other three instruments MLS, HIRDLS and TES is flown (July 2004) on the Aura satellite. OMI is a nadir imaging sensor which measures ultraviolet and visible solar and earth-atmosphere radiances in the wavelength range of 270 to 500 nm with a spectral resolution of about 0.5 nm, and a spatial resolution of 13x24 km2 (http://www.knmi.nl/omi). OMI is the primary instrument on Aura for tracking the expected recovery of the ozone layer, the sources of aerosol and its transport over oceans and continents, and trace gases that effect air quality. The primary data product from OMI is total column ozone. The other major products are tropospheric ozone, nitrogen dioxide, sulfur dioxide, and aerosol optical depth (four of the U.S. Environmental Protection Agency's six criteria pollutants), formaldehyde, bromine monoxide, chlorine dioxide, cloud fraction and height, and surface erythemal UV-B irradiances. After preliminary validation (based on limited in-situ observations), some of these products (version 2.0) are released to the public and are available from Goddard Earth Sciences Data and Information Services Center Distributed Active Archive Center (GES DISC DAAC (http://acdisc.gsfc.nasa.gov/). This presentation will provide an overview of the OMI data products and its applications, along with the software and web based on-line tool (OMI Giovanni) that have been developed for the subsetting, manipulation and analysis of these data. Details of the data access and data mining tools will be provided in another presentation (see J. Johnson et al. at this AGU session).

  3. A new laboratory facility to study the interactions of aerosols, cloud droplets/ice crystals, and trace gases in a turbulent environment: The Π Chamber

    NASA Astrophysics Data System (ADS)

    Cantrell, W. H., II; Chang, K.; Ciochetto, D.; Niedermeier, D.; Bench, J.; Shaw, R. A.

    2014-12-01

    A detailed understanding of gas-aerosol-cloud interaction within the turbulent atmosphere is of prime importance for an accurate understanding of Earth's climate system. As one example: While every cloud droplet began as an aerosol particle, not every aerosol particle becomes a cloud droplet. The particle to droplet transformation requires that the particle be exposed to some critical concentration of water vapor, which differs for different combinations of particle size and chemical composition. Similarly, the formation of ice particles in mixed phase clouds is also catalyzed by aerosol particles. Even in the simplest scenarios it is challenging to gain a full understanding of the aerosol activation and ice nucleation processes. At least two other factors contribute significantly to the complexity observed in the atmosphere. First, aerosols and cloud particles are not static entities, but are continuously interacting with their chemical environment, and therefore changing in their properties. Second, clouds are ubiquitously turbulent, so thermodynamic and compositional variables, such as water vapor or other trace gas concentrations, fluctuate in space and time. Indeed, the coupling between turbulence and microphysical processes is one of the major research challenges in cloud physics. We have developed a multiphase, turbulent reaction chamber, (dubbed the Π Chamber, after the internal volume of 3.14 cubic meters) designed to address the problems outlined above. It is capable of pressures ranging from sea level to ~ 100 mbar, and can sustain temperatures of +40 to -55 ºC. We can independently control the temperatures on the surfaces of three heat transfer zones. This allows us to establish a temperature gradient between the floor and ceiling inducing Rayleigh-Benard convection and inducing a turbulent environment. Interior surfaces are electropolished stainless steel to facilitate cleaning before and after chemistry experiments. At present, supporting

  4. Airship measurements of aerosol size distributions, cloud droplet spectra, and trace gas concentrations in the marine boundary layers

    SciTech Connect

    Frick, G.M.; Hoppel, W.A. )

    1993-11-01

    The use of an airship as a platform to conduct atmospheric chemistry, aerosol, and cloud microphysical research is described, and results from demonstration flights made off the Oregon coast are presented. The slow speed of the airship makes it an ideal platform to do high-spatial resolution profiling both vertically and horizontally, and to measure large aerosol and cloud droplet distributions without the difficulties caused by high-speed aircraft sampling. A unique set of data obtained during the demonstration flights show the effect that processing marine boundary layer aerosol through stratus clouds has on the aerosol size distribution. Evidence of new particle formation (nucleation of particles) was also observed on about half the days on which flights were made. 11 refs., 9 figs., 1 tab.

  5. The 1997 El Niño impact on clouds, water vapour, aerosols and reactive trace gases in the troposphere, as measured by the Global Ozone Monitoring Experiment

    NASA Astrophysics Data System (ADS)

    Loyola, D.; Valks, P.; Ruppert, T.; Richter, A.; Wagner, T.; Thomas, W.; van der A, R.; Meisner, R.

    2006-03-01

    The El Niño event of 1997/1998 caused dry conditions over the Indonesian area that were followed by large scale forest and savannah fires over Kalimantan, Sumatra, Java, and parts of Irian Jaya. Biomass burning was most intense between August and October 1997, and large amounts of ozone precursors, such as nitrogen oxides, carbon monoxide and hydrocarbons were emitted into the atmosphere. In this work, we use satellite measurements from the Global Ozone Monitoring Experiment (GOME) sensor to study the teleconnections between the El Niño event of 1997 and the Indonesian fires, clouds, water vapour, aerosols and reactive trace gases (nitrogen dioxide, formaldehyde and ozone) in the troposphere.

  6. CU AMAX-DOAS applications in cloud-free and cloudy atmospheres: innovative Scattered Sun Light observations of trace gases and aerosol extinction

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Baidar, S.; Coburn, S.; Dix, B. K.; Oetjen, H.; Ortega, I.; Sinreich, R.; Atmospeclab

    2011-12-01

    An innovative airborne scanning multi-axis differential optical absorption spectroscopy (CU AMAX-DOAS) instrument has been developed at the University of Colorado, Boulder. The instrument collects scattered sunlight spectra in a sequence of discrete viewing angles, and employs the DOAS method (inherently calibrated, and selective) to simultaneously retrieve multiple trace gases, e.g., nitrogen dioxide (NO2), nitrous acid (HONO), formaldehyde (HCHO), glyoxal (CHOCHO), bromine oxide (BrO), iodine oxide (IO), chlorine dioxide (OClO), water vapor (H2O), and oxygen dimers (O4, at 360nm, 477nm, and 632nm) differential slant column densities (dSCD). Vertical profiles of these gases and multi-spectral aerosol extinction are inferred by combining Monte-Carlo Radiative Transfer Modelling (RTM) and optimal estimation techniques to construct a model atmosphere that can in principle represent 3D clouds and aerosols. The atmospheric state of this model atmosphere is constrained by observations of O4 dSCDs, Raman Scattering Probability (RSP), and intensity ratios, i.e., quantities that depend solely on relative intensity changes, without need for a direct sun view, or absolute radiance calibration. We show results from ongoing validation efforts (NOAA TwinOtter aircraft during CalNex and CARES), and demonstrate vertical profile retrievals (NSF/NCAR GV over the tropical Pacific Ocean) in both cloud-free and cloudy atmospheres.

  7. Dual-cloud point extraction coupled to high performance liquid chromatography for simultaneous determination of trace sulfonamide antimicrobials in urine and water samples.

    PubMed

    Nong, Chunyan; Niu, Zongliang; Li, Pengyao; Wang, Chunping; Li, Wanyu; Wen, Yingying

    2017-03-01

    Dual-cloud point extraction (dCPE) was successfully developed for simultaneous extraction of trace sulfonamides (SAs) including sulfamerazine (SMZ), sulfadoxin (SDX), sulfathiazole (STZ) in urine and water samples. Several parameters affecting the extraction were optimized, such as sample pH, concentration of Triton X-114, extraction temperature and time, centrifugation rate and time, back-extraction solution pH, back-extraction temperature and time, back-extraction centrifugation rate and time. High performance liquid chromatography (HPLC) was applied for the SAs analysis. Under the optimum extraction and detection conditions, successful separation of the SAs was achieved within 9min, and excellent analytical performances were attained. Good linear relationships (R(2)≥0.9990) between peak area and concentration for SMZ and STZ were optimized from 0.02 to 10μg/mL, for SDX from 0.01 to 10μg/mL. Detection limits of 3.0-6.2ng/mL were achieved. Satisfactory recoveries ranging from 85 to 108% were determined with urine, lake and tap water spiked at 0.2, 0.5 and 1μg/mL, respectively, with relative standard deviations (RSDs, n=6) of 1.5-7.7%. This method was demonstrated to be convenient, rapid, cost-effective and environmentally benign, and could be used as an alternative tool to existing methods for analysing trace residues of SAs in urine and water samples.

  8. Determination of trace aluminum in biological and water samples by cloud point extraction preconcentration and graphite furnace atomic absorption spectrometry detection.

    PubMed

    Sang, Hongbo; Liang, Pei; Du, Dan

    2008-06-15

    A cloud point extraction (CPE) method for the preconcentration of trace aluminum prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) has been developed. The CPE method is based on the complex of Al(III) with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP), and then entrapped in non-ionic surfactant Triton X-114. PMBP was used not only as chelating reagent in CPE preconcentration, but also as chemical modifier in GFAAS determination. The main factors affecting CPE efficiency, such as pH of sample solution, concentration of PMBP and Triton X-114, equilibration temperature and time, were investigated in detail. An enrichment factor of 37 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of this method for Al(III) is 0.09 ng mL(-1), and the relative standard deviation is 4.7% at 10 ng mL(-1) Al(III) level (n=7). The proposed method has been applied for determination of trace amount of aluminum in biological and water samples with satisfactory results.

  9. Assessment of the Accuracy of the Conventional Ray-Tracing Technique: Implications in Remote Sensing and Radiative Transfer Involving Ice Clouds.

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; Van Diedenhoven, Bastiaan; Iwabuchi, Hironobu

    2014-01-01

    A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TMþIGOM are considered as a benchmark because the IITM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TMþIGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 micrometers) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical

  10. Determination of trace inorganic mercury species in water samples by cloud point extraction and UV-vis spectrophotometry.

    PubMed

    Ulusoy, Halil Ibrahim

    2014-01-01

    A new micelle-mediated extraction method was developed for preconcentration of ultratrace Hg(II) ions prior to spectrophotometric determination. 2-(2'-Thiazolylazo)-p-cresol (TAC) and Ponpe 7.5 were used as the chelating agent and nonionic surfactant, respectively. Hg(II) ions form a hydrophobic complex with TAC in a micelle medium. The main factors affecting cloud point extraction efficiency, such as pH of the medium, concentrations of TAC and Ponpe 7.5, and equilibration temperature and time, were investigated in detail. An overall preconcentration factor of 33.3 was obtained upon preconcentration of a 50 mL sample. The LOD obtained under the optimal conditions was 0.86 microg/L, and the RSD for five replicate measurements of 100 microg/L Hg(II) was 3.12%. The method was successfully applied to the determination of Hg in environmental water samples.

  11. Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Upgrade to Full Sun-Sky-Cloud-Trace Gas Spectrometry Capability for Airborne Science

    NASA Astrophysics Data System (ADS)

    Dunagan, S. E.; Flynn, C. J.; Johnson, R. R.; Kacenelenbogen, M. S.; Knobelspiesse, K. D.; LeBlanc, S. E.; Livingston, J. M.; Redemann, J.; Russell, P. B.; Schmid, B.; Segal-Rosenhaimer, M.; Shinozuka, Y.

    2014-12-01

    The Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument has been developed at NASA Ames in collaboration with Pacific Northwest National Laboratory (PNNL) and NASA Goddard, supported substantially since 2009 by NASA's Radiation Science Program and Earth Science Technology Office. It combines grating spectrometers with fiber optic links to a tracking, scanning head to enable sun tracking, sky scanning, and zenith viewing. 4STAR builds on the long and productive heritage of the NASA Ames Airborne Tracking Sunphotometers (AATS-6 and -14), which have yielded more than 100 peer-reviewed publications and extensive archived data sets in many NASA Airborne Science campaigns from 1986 to the present. The baseline 4STAR instrument has provided extensive data supporting the TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013), SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys, 2013), and ARISE (Arctic Radiation - IceBridge Sea and Ice Experiment, 2014), field campaigns.This poster presents plans and progress for an upgrade to the 4STAR instrument to achieve full science capability, including (1) direct-beam sun tracking measurements to derive aerosol optical depth spectra, (2) sky radiance measurements to retrieve aerosol absorption and type (via complex refractive index and mode-resolved size distribution), (3) cloud properties via zenith radiance, and (4) trace gas spectrometry. Technical progress in context with the governing physics is reported on several upgrades directed at improved light collection and usage, particularly as related to spectrally and radiometrically stable propagation through the collection light path. In addition, improvements to field calibration and verification, and flight operability and reliability are addressed.

  12. Use of cloud-point preconcentration for spectrophotometric determination of trace amounts of antimony in biological and environmental samples.

    PubMed

    El-Sharjawy, Abdel-Azeem M; Amin, Alaa S

    2016-01-01

    This work presents a cloud-point extraction process using the micelle-mediated extraction method for simultaneous preconcentration and determination of Sb(III) and Sb(V) species in biological and environmental samples as a prior preconcentration step to their spectrophotometric determination. The analytical system is based on the selective reaction between Sb(III) and 3-dichloro-6-(3-carboxy-2-hydroxy-1-naphthylazo)quinoxaline (DCHNAQ) in the presence of cetyltrimethylammonium bromide (CTAB) and potassium iodide at pH 4.5. Total Sb concentration was determined after reduction of Sb(V) to Sb(III) in the presence of potassium iodide and ascorbic acid. The optimal reaction conditions and extraction were studied, and the analytical characteristics of the method (e.g., limits of detection and quantification, linear range, preconcentration, improvement factors) were obtained. Linearity for Sb(III) was obeyed in the range of 0.2-20 ng ml(-1). The detection and quantification limits for the determination of Sb(III) were 0.055 and 0.185 ng ml(-1), respectively. The method has a lower detection limit and wider linear range, inexpensive instrument, and low cost, and is more sensitive compared with most other methods. The interference effect of some anions and cations was also studied. The method was applied to the determination of Sb(III) in the presence of Sb(V) and total antimony in blood plasma, urine, biological, and water samples.

  13. Cloud-point preconcentration and spectrophotometric determination of trace amounts of molybdenum(VI) in steels and water samples.

    PubMed

    Madrakian, Tayyebeh; Ghazizadeh, Fariba

    2008-05-01

    A cloud-point extraction process using micelle of the cationic surfactant CTAB to extract Mo(VI) from aqueous solutions was investigated. The method is based on the color reaction of molybdenum with bromopyrogallol red in the presence of potassium iodide at pH 1.0 glycine/HCl buffer media and micelle-mediated extraction of complex. The optimal extraction and reaction conditions (e.g., surfactant concentration, reagent concentration and effect of time) were studied and the analytical characteristics of the method (e.g., limit of detection, linear range, preconcentration and improvement factors) were obtained. Linearity was obeyed in the range of 0.3-320.0 ng mL(-1) of molybdenum(VI) ion and the detection limit of the method was 0.1 ng mL(-1). The relative standard deviation (R.S.D.) and relative error for five replicate measurements of 65.0 ng mL(-1) Mo(VI) were 1.1% and 1.9%, respectively. The interference effect of some anions and cations was also tested. The method was applied to the determination of molybdenum(VI) in steels and tap water and well water samples.

  14. Trace Gas Measurements in Nascent, Aged and Cloud-processed Smoke from Africa Savanna Fires by Airborne Fourier Transform Infrared Spectroscopy (AFTIR)

    NASA Technical Reports Server (NTRS)

    Yokelson, Robert J.; Bertschi, Isaac T.; Christian, Ted J.; Hobbs, Peter V.; Ward, Darold E.; Hao, Wei Min

    2003-01-01

    We measured stable and reactive trace gases with an airborne Fourier transform infrared spectrometer (AFTIR) on the University of Washington Convair-580 research aircraft in August/September 2000 during the SAFARI 2000 dry season campaign in Southern Africa. The measurements included vertical profiles of C02, CO, H20, and CH4 up to 5.5 km on six occasions above instrumented ground sites and below the TERRA satellite and ER-2 high-flying research aircraft. We also measured the trace gas emissions from 10 African savanna fires. Five of these fires featured extensive ground-based fuel characterization, and two were in the humid savanna ecosystem that accounts for most African biomass burning. The major constituents we detected in nascent CH3OOH, HCHO, CH30H, HCN, NH3, HCOOH, and C2H2. These are the first quantitative measurements of the initial emissions of oxygenated volatile organic compounds (OVOC), NH3, and HCN from African savanna fires. On average, we measured 5.3 g/kg of OVOC and 3.6 g/kg of hydrocarbons (including CH4) in the initial emissions from the fires. Thus, the OVOC will have profound, largely unexplored effects on tropical tropospheric chemistry. The HCN emission factor was only weakly dependent on fire type; the average value (0.53 g/kg) is about 20 times that of a previous recommendation. HCN may be useful as a tracer for savanna fires. Delta O3/Delta CO and Delta CH3COO/Delta CO increased to as much as 9% in <1 h of photochemical processing downwind of fires. Direct measurements showed that cloud processing of smoke greatly reduced CH30H, NH3, CH3COOH, SO2, and NO2 levels, but significantly increased HCHO and NO.

  15. The VMC survey - XV. The Small Magellanic Cloud-Bridge connection history as traced by their star cluster populations

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.; de Grijs, Richard; Rubele, Stefano; Cioni, Maria-Rosa L.; Ripepi, Vincenzo; Kerber, Leandro

    2015-06-01

    We present results based on YJKs photometry of star clusters located in the outermost, eastern region of the Small Magellanic Cloud (SMC). We analysed a total of 51 catalogued clusters whose colour-magnitude diagrams (CMDs), having been cleaned from field-star contamination, were used to assess the clusters' reality and estimate ages of the genuine systems. Based on CMD analysis, 15 catalogued clusters were found to be possible non-genuine aggregates. We investigated the properties of 80 per cent of the catalogued clusters in this part of the SMC by enlarging our sample with previously obtained cluster ages, adopting a homogeneous scale for all. Their spatial distribution suggests that the oldest clusters, log(t yr-1) ≥ 9.6, are in general located at greater distances to the galaxy's centre than their younger counterparts - 9.0 ≤ log(t yr-1) ≤ 9.4 - while two excesses of clusters are seen at log(t yr-1) ˜ 9.2 and log(t yr-1) ˜ 9.7. We found a trail of younger clusters which follow the wing/bridge components. This long spatial sequence does not only harbour very young clusters, log(t yr-1) ˜ 7.3, but it also hosts some of intermediate ages, log(t yr-1) ˜ 9.1. The derived cluster and field-star formation frequencies as a function of age are different. The most surprising feature is an observed excess of clusters with ages of log(t yr-1) < 9.0, which could have been induced by interactions with the LMC.

  16. Origins of the thick disk of the Milky Way Galaxy as traced by the elemental abundances of metal-poor stars

    NASA Astrophysics Data System (ADS)

    Ruchti, Gregory Randal

    2010-12-01

    Understanding the formation and evolution of disks in galaxies in the early universe is very important for understanding the forms of galaxies today. Recent studies of the Milky Way Galaxy, an ideal galaxy for analyzing individual stars within its disk, indicate that the formation of the Galactic disk is very complex. Most of these studies, however, contain very few stars at low metallicities. Metal-poor stars are important, because they are potential survivors of the earliest star formation in the disk of the Milky Way Galaxy. I therefore measured elemental abundances of a statistically significant sample of metal-poor ([Fe/H] ≲ - 1.0) stars in the disk of the Galaxy, chosen from the RAVE survey in order to study the early formation history of the Galactic disk. I report on a sample of 214 red giant branch, 31 red clump/horizontal branch, and 74 dwarf/sub-giant metal-poor thick-disk candidate stars. I found that the [alpha/Fe] ratios are enhanced implying that enrichment proceeded by purely core-collapse supernovae. This requires that star formation in each star forming region had a short duration. The relative lack of scatter in the [alpha/Fe] ratios implies good mixing in the interstellar medium prior to star formation. In addition, the ratios resemble that of the halo, indicating that the halo and thick disk share a similar massive star initial mass function. I further looked for radial or vertical gradients in metallicity or alpha-enhancement for the metal-poor thick disk, never before done for such a sample. I found no radial gradient and a moderate vertical gradient in my derived iron abundance, and only minimal-amplitude gradients in [alpha/Fe]. In addition, I show that the distribution of orbital eccentricities for my metal-poor thick-disk stars requires that the thick disk was formed primarily in situ, with direct accretion being extremely minimal. I conclude that the alpha-enhancement of the metal-poor thick disk, and the lack of obvious radial or

  17. Tracing thalamo-cortical connections in tenrecA further attempt to characterize poorly differentiated neocortical regions, particularly the motor cortex.

    PubMed

    Künzle, Heinz

    2009-02-09

    The hedgehog tenrec (Afrosoricidae) has a very poorly differentiated neocortex. Previously its primary sensory regions have been characterized with hodological and electrophysiological techniques. Unlike the marsupial opossum the tenrec may also have a separate motor area as far as there are cortico-spinal cells located rostral to the primary somatosensory cortex. However, not knowing its thalamic input it may be premature to correlate this area with the true (mirror-image-like) primary motor cortex in higher mammals. For this reason the tenrec's thalamo-cortical connections were studied following tracer injections into various neocortical regions. The main sensory areas were confirmed by their afferents from the principal thalamic nuclei. The dorsal lateral geniculate nucleus, in addition, was connected with the retrosplenial area and a rostromedial visual region. Unlike the somatosensory cortex the presumed motor area did not receive afferents from the ventrobasal thalamus but fibers from the cerebello-thalamic target regions. These projections, however, were not restricted to the motor area, but involved the entire somatosensorimotor field as well as adjacent regions. The projections appeared similar to those arising in the rat thalamic ventromedial nucleus known to have a supporting function rather than a specific motor task. The question was raised whether the input from the basal ganglia might play a crucial role in the evolution of the mammalian motor cortex? Certainly, in the tenrec, the poor differentiation of the motor cortex coincides with the virtual absence of an entopeduncular projection to the ventrolateral thalamus.

  18. Cloud Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell; Einaud, Franco (Technical Monitor)

    2001-01-01

    Numerical cloud models have been developed and applied extensively to study cloud-scale and mesoscale processes during the past four decades. The distinctive aspect of these cloud models is their ability to treat explicitly (or resolve) cloud-scale dynamics. This requires the cloud models to be formulated from the non-hydrostatic equations of motion that explicitly include the vertical acceleration terms since the vertical and horizontal scales of convection are similar. Such models are also necessary in order to allow gravity waves, such as those triggered by clouds, to be resolved explicitly. In contrast, the hydrostatic approximation, usually applied in global or regional models, does allow the presence of gravity waves. In addition, the availability of exponentially increasing computer capabilities has resulted in time integrations increasing from hours to days, domain grids boxes (points) increasing from less than 2000 to more than 2,500,000 grid points with 500 to 1000 m resolution, and 3-D models becoming increasingly prevalent. The cloud resolving model is now at a stage where it can provide reasonably accurate statistical information of the sub-grid, cloud-resolving processes poorly parameterized in climate models and numerical prediction models.

  19. FERMI-LAT OBSERVATIONS OF HIGH- AND INTERMEDIATE-VELOCITY CLOUDS: TRACING COSMIC RAYS IN THE HALO OF THE MILKY WAY

    SciTech Connect

    Tibaldo, L.; Digel, S. W.; Franckowiak, A.; Moskalenko, I. V.; Negro, M.; Orlando, E.; Porter, T. A.; Reimer, O.; Casandjian, J. M.; Grenier, I. A.; Marshall, D. J.; Strong, A. W. E-mail: digel@stanford.edu

    2015-07-10

    It is widely accepted that cosmic rays (CRs) up to at least PeV energies are Galactic in origin. Accelerated particles are injected into the interstellar medium where they propagate to the farthest reaches of the Milky Way, including a surrounding halo. The composition of CRs coming to the solar system can be measured directly and has been used to infer the details of CR propagation that are extrapolated to the whole Galaxy. In contrast, indirect methods, such as observations of γ-ray emission from CR interactions with interstellar gas, have been employed to directly probe the CR densities in distant locations throughout the Galactic plane. In this article we use 73 months of data from the Fermi Large Area Telescope in the energy range between 300 MeV and 10 GeV to search for γ-ray emission produced by CR interactions in several high- and intermediate-velocity clouds (IVCs) located at up to ∼7 kpc above the Galactic plane. We achieve the first detection of IVCs in γ rays and set upper limits on the emission from the remaining targets, thereby tracing the distribution of CR nuclei in the halo for the first time. We find that the γ-ray emissivity per H atom decreases with increasing distance from the plane at 97.5% confidence level. This corroborates the notion that CRs at the relevant energies originate in the Galactic disk. The emissivity of the upper intermediate-velocity Arch hints at a 50% decline of CR densities within 2 kpc from the plane. We compare our results to predictions of CR propagation models.

  20. Accounting for the effects of surface BRDF on satellite cloud and trace-gas retrievals: a new approach based on geometry-dependent Lambertian equivalent reflectivity applied to OMI algorithms

    NASA Astrophysics Data System (ADS)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun-sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the Moderate Resolution Imaging Spectroradiometer (MODIS) over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with geometry-dependent LERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  1. Accounting for the Effects of Surface BRDF on Satellite Cloud and Trace-Gas Retrievals: A New Approach Based on Geometry-Dependent Lambertian-Equivalent Reflectivity Applied to OMI Algorithms

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun-sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the Moderate Resolution Imaging Spectroradiometer (MODIS) over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with geometry-dependent LERs can increase NO2 vertical columns by up to 50% in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  2. Absorption in Extended Inhomogeneous Clouds

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Vasilkov, Alexander; Spurr, Robert; Bhartia, P. K.; Krotkov, Nick

    2008-01-01

    The launch of several different sensors, including CloudSat, into the A-train constellation of satellites allows us for the first time to compute absorption that can occur in realistic vertically inhomogeneous clouds including multiple cloud decks. CloudSat data show that these situations are common. Therefore, understanding vertically inhomogeneous clouds is important from both climate and satellite atmospheric composition remote sensing perspectives. Satellite passive sensors that operate from the near IR to the UV often rely on radiative cloud pressures derived from absorption in oxygen bands (A, B, gamma, or O2-O2 bands) or from rotational-Raman scattering in order to retrieve information about atmospheric trace gases. The radiative cloud pressure is distinct from the physical cloud top derived from thermal infrared measurements. Therefore, the combination of information from different passive sensors yields some information about the cloud vertical profile. When either or both the clouds or atmospheric absorbers (trace gases and aerosols) are vertically inhomogeneous, the use of an effective cloud pressure derived from these approaches may lead to errors. Here, we focus on several scenarios (deep convective clouds and distinct two layer clouds) based on realistic cloud optical depth vertical profiles derived from the CloudSatfMODIS combination. We focus on implications for trace-gas column amount retrievals (specifically ozone and NO2) and derived surface UV irradiance from the Ozone Monitoring Instrument (OMI) on the Atrain Aura platform.

  3. Early-stage star-forming cloud cores in Galactic Legacy Infrared Mid-Plane Survey (GLIMPSE) extended green objects (EGOs) as traced by organic species

    NASA Astrophysics Data System (ADS)

    Ge, J. X.; He, J. H.; Chen, X.; Takahashi, S.

    2014-12-01

    In order to investigate the physical and chemical properties of massive star-forming cores in the early stages, we analyse the excitation and abundance of four organic species, CH3OH, CH3OCH3, HCOOCH3 and CH3CH2CN, towards 29 extended green object (EGO) cloud cores that were observed by our previous single-dish spectral line survey. The EGO cloud cores are found to have similar methanol J3-J2 rotation temperatures of ˜44 K, a typical linear size of ˜0.036 pc and a typical beam-averaged methanol abundance of several 10-9 (the beam-corrected value could reach several 10-7). The abundances of the latter three species, normalized by that of methanol, are also found to be correlated across a large variety of clouds such as EGO cloud cores, hot corinos, massive hot cores and Galactic Centre clouds. The chemical properties of the EGO cloud cores lie between those of hot cores and hot corinos. However, the abundances and abundance ratios of the four species cannot be explained satisfactorily by recent chemical models, either among EGO cloud cores or among the various types of cloud core from literature.

  4. Inference of cloud altitude and optical properties from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Nasse, Jan-Marcus; Zielcke, Johannes; Frieß, Udo; Lampel, Johannes; König-Langlo, Gert; Platt, Ulrich

    2015-04-01

    Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) is a widely used technique for the detection of atmospheric trace gases, e.g. NO2, SO2, BrO, HCHO, but also for the oxygen collision complex O4. The atmospheric distribution of the latter is proportional to the square of the molecular oxygen concentration and thus well known. By comparing measured O4 differential slant column densities (dSCDs) from MAX-DOAS measurements with modeled ones, information on aerosol distributions and optical properties, as well as on clouds can be obtained using an algorithm based on optimal estimation. Here the ability of MAX-DOAS observations to detect cloud altitude and cloud optical properties of different cloud covers based on measurements of O4 will be discussed. The analysis uses measurements made by a ship-borne instrument on two cruises of the German research vessel Polarstern to the Antarctic Weddell Sea from June to October 2013. During this time a broad range of cloud and aerosol conditions was encountered, in particular persistent low cloud cover with a high optical thickness. Aerosol and particle extinction profiles were retrieved with temporal resolutions of up to 15 minutes. For clouds at altitudes up to 2000 m the results show a very good agreement with co-located measurements of a commercial ceilometer and pictures from a cloud camera. Unless visibility was very poor due to fog, even rapid changes in cloud altitude or cover could be detected by MAX-DOAS. These results indicate that under homogeneous cloud cover an accurate retrieval of trace gas vertical profiles can be possible despite the strong influence of clouds on atmospheric light paths. We will discuss advantages and limitations of cloud detection with MAX-DOAS, implications for the subsequent retrieval of trace gas profiles and the possible use of external (ceilometer) data as a priori information for the profile retrieval algorithm.

  5. Diagnostic Study of Atmosphere-Terrain Interaction Leading to the Formation of Dust Clouds and Poor Visibilities over the Near East Desert Areas.

    DTIC Science & Technology

    1985-09-30

    C . 01 so ;k ii-o- ;; % Z, -_ W . - -Z:-, -. D-- a I-AD 0 -t - a X.- c t...1040 ell r02 0 COO W 61 a" J FAL -t -- - - - -:am FAU4 "aw 0-" OVA. NJ .0. d OW 3 in C <Z:y 9. do- SP. do ’ t16 a!- O"a a am a- 0 a, ft00 16...SOWER 0 40 r02 ow 61 as PRi %t PRJ9G SPRING 04 W - *’I ’ T. j 0 a- 0 C .0 N 65 a- 0’. a- E a, 20 30 63 ig Areas in which poor visibility was

  6. Determination of Ultra-trace Rhodium in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Cloud Point Extraction Using 2-(5-Iodo-2-Pyridylazo)-5-Dimethylaminoaniline as a Chelating Agent.

    PubMed

    Han, Quan; Huo, Yanyan; Wu, Jiangyan; He, Yaping; Yang, Xiaohui; Yang, Longhu

    2017-03-24

    A highly sensitive method based on cloud point extraction (CPE) separation/preconcentration and graphite furnace atomic absorption spectrometry (GFAAS) detection has been developed for the determination of ultra-trace amounts of rhodium in water samples. A new reagent, 2-(5-iodo-2-pyridylazo)-5-dimethylaminoaniline (5-I-PADMA), was used as the chelating agent and the nonionic surfactant TritonX-114 was chosen as extractant. In a HAc-NaAc buffer solution at pH 5.5, Rh(III) reacts with 5-I-PADMA to form a stable chelate by heating in a boiling water bath for 10 min. Subsequently, the chelate is extracted into the surfactant phase and separated from bulk water. The factors affecting CPE were investigated. Under the optimized conditions, the calibration graph was linear in the range of 0.1-6.0 ng/mL, the detection limit was 0.023 ng/mL for rhodium and relative standard deviation was 3.67% (c = 1.0 ng/mL, n = 11).The method has been applied to the determination of trace rhodium in water samples with satisfactory results.

  7. Search Cloud

    MedlinePlus

    ... this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this page, ... chest pa and lateral Share the MedlinePlus search cloud with your users by embedding our search cloud ...

  8. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: A multivariate study

    NASA Astrophysics Data System (ADS)

    Arain, Salma Aslam; Kazi, Tasneem G.; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-01

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu2+) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu2+ using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046 μg L-1 and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu2+ in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu2+ in serum samples of different viral hepatitis patients and healthy controls.

  9. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: a multivariate study.

    PubMed

    Arain, Salma Aslam; Kazi, Tasneem G; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-10

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu(2+)) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu(2+) using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046μgL(-1) and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu(2+) in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu(2+) in serum samples of different viral hepatitis patients and healthy controls.

  10. Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Wang, Y.; Eagar, J.; Leaitch, W. R.; Macdonald, A. M.; Valsaraj, K. T.; Herckes, P.

    2012-12-01

    Cloud and fog droplets efficiently scavenge and process water-soluble compounds and thus modify the chemical composition of the gas and particle phases. The concentrations of dissolved organic carbon (DOC) in the aqueous phase reach concentrations on the order of ~10 mg C L-1 which is typically on the same order of magnitude as the sum of inorganic anions. Aldehydes and carboxylic acids typically comprise a large fraction of DOC because of their high solubility. The dissolution of species in the aqueous phase can lead to (i) the removal of species from the gas phase preventing their processing by gas phase reactions (e.g. photolysis of aldehydes) and (ii) the formation of unique products that do not have any efficient gas phase sources (e.g. dicarboxylic acids). We present measurements of DOC and select aldehydes in fog water at high elevation and intercepted clouds in a biogenically-impacted location (Whistler, Canada) and in fog water in a more polluted area (Davis, CA). Concentrations of formaldehyde, glyoxal and methylglyoxal were in the micromolar range and comprised ≤2% each individually of the DOC. Comparison of the DOC and aldehyde concentrations to those at other locations shows good agreement and reveals highest levels for both in anthropogenically impacted regions. Based on this overview, we conclude that the fraction of organic carbon (dissolved and insoluble inclusions) in the aqueous phase comprises 1-~40% of total organic carbon. Higher values are observed to be associated with aged air masses where organics are expected to be more highly oxidized and thus more soluble. Accordingly, the aqueous/gas partitioning ratio expressed here as an effective Henry's law constant for DOC (KH*DOC) increases by an order of magnitude from 7×103 M atm-1 to 7×104 M atm-1 during the ageing of air masses. The measurements are accompanied by photochemical box model simulations. They suggest that the scavenging of aldehydes by the aqueous phase can reduce HO2 gas

  11. Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Wang, Y.; Eagar, J.; Leaitch, W. R.; Macdonald, A. M.; Valsaraj, K. T.; Herckes, P.

    2013-05-01

    Cloud and fog droplets efficiently scavenge and process water-soluble compounds and, thus, modify the chemical composition of the gas and particle phases. The concentrations of dissolved organic carbon (DOC) in the aqueous phase reach concentrations on the order of ~ 10 mgC L-1 which is typically on the same order of magnitude as the sum of inorganic anions. Aldehydes and carboxylic acids typically comprise a large fraction of DOC because of their high solubility. The dissolution of species in the aqueous phase can lead to (i) the removal of species from the gas phase preventing their processing by gas phase reactions (e.g., photolysis of aldehydes) and (ii) the formation of unique products that do not have any efficient gas phase sources (e.g., dicarboxylic acids). We present measurements of DOC and select aldehydes in fog water at high elevation and intercepted clouds at a biogenically-impacted location (Whistler, Canada) and in fog water in a more polluted area (Davis, CA). Concentrations of formaldehyde, glyoxal and methylglyoxal were in the micromolar range and comprised ≤ 2% each individually of the DOC. Comparison of the DOC and aldehyde concentrations to those at other locations shows good agreement and reveals highest levels for both in anthropogenically impacted regions. Based on this overview, we conclude that the fraction of organic carbon (dissolved and insoluble inclusions) in the aqueous phase of clouds or fogs, respectively, comprises 2-~ 40% of total organic carbon. Higher values are observed to be associated with aged air masses where organics are expected to be more highly oxidised and, thus, more soluble. Accordingly, the aqueous/gas partitioning ratio expressed here as an effective Henry's law constant for DOC (KH*DOC) increases by an order of magnitude from 7 × 103 M atm-1 to 7 × 104 M atm-1 during the ageing of air masses. The measurements are accompanied by photochemical box model simulations. These simulations are used to contrast two

  12. Isotopic, major and trace element constraints on the sources of granites in an 1800-Ma-old igneous complex near St. Cloud, Minnesota

    SciTech Connect

    Spencer, K.J.

    1987-01-01

    A suite of basic to granitic rocks was emplaced near St. Cloud, MN about 1800 Ma ago. These are strongly LREE enriched and were derived from LREE enriched sources. Nd-Sm systematics suggest that LREE enrichment occurred during the Early Proterozoic. Initial Pb ratios for basic rocks through granites are similar to inferred 1800 Ma old mantle Pb, and suggest sources that became U/Pb enriched during the Proterozoic or latest Archean. These sources had long-term Th/U ratios similar to inferred mantle or average crustal values. Oxygen isotopes indicate that granitic rocks incorporated a small previous crustal component. Petrogenetic modeling suggest these processes: Granodiorite represents an evolved high Mg-andesite or a partial melt of a basic precursor distinct from the nearby basic rocks. Granites and quartz monzonites were derived at temperatures of ca. 800-950 (e.g. water-undersaturated) and at 15 to 20 km depth. The sources are inferred to have been quartz saturated with respect to tholeiite. Because granites have similar isotopic histories as basic, sources of granites were ultimately derived from the mantle. REE and Nd isotope systematics allow these scenarios: (1) 40-75% of the Nd in the rocks was derived from continental crust recycled into the mantle. (2) The mantle source had a chondritic REE geochemistry but was enriched in LREE shortly before melting. (3) The rocks were in fact derived by melting a basic lower crust that included a small fraction of intercalated sedimentary rocks.

  13. Toward a robust analytical method for separating trace levels of nano-materials in natural waters: cloud point extraction of nano-copper(II) oxide.

    PubMed

    Majedi, Seyed Mohammad; Kelly, Barry C; Lee, Hian Kee

    2014-10-01

    Cloud point extraction (CPE) factors, namely Triton X-114 (TX-114) concentration, pH, ionic strength, incubation time, and temperature, were optimized for the separation of nano-sized copper(II) oxide (nCuO) in aqueous matrices. The kinetics of phase transfer was studied using UV-visible spectroscopy. From the highest separation rate, the most favorable conditions were observed with 0.2 % w/v of TX-114, pH = 9.0, ionic strength of 10 mM NaCl, and incubation at 40 °C for 60 min, yielding an extraction efficiency of 89.2 ± 3.9 % and a preconcentration factor of 86. The aggregate size distribution confirmed the formation of very large nCuO-micelle assemblies (11.9 μm) under these conditions. The surface charge of nCuO was also diminished effectively. An extraction efficiency of 91 % was achieved with a mixture of TX-100 and TX-114 containing 30 wt.% of TX-100. Natural organic and particulate matters, represented by humic acid (30 mg/L) and micron-sized silica particles (50 mg/L), respectively, did not significantly reduce the CPE efficiency (<10 %). The recovery of copper(II) ions (20 mg/L) in the presence of humic acid was low (3-10 %). The spiked natural water samples were analyzed either directly or after CPE by inductively coupled plasma mass spectrometry following acid digestion/microwave irradiation. The results indicated the influence of matrix effects and their reduction by CPE. A delay between spiking nCuO and CPE may also influence the recovery of nCuO due to aggregation and dissolution. A detection limit of 0.04 μg Cu/L was achieved for nCuO.

  14. Experiment S007: Cloud top spectrometry

    NASA Technical Reports Server (NTRS)

    Saiedy, F.; Wark, D. Q.; Morgan, W. A.

    1971-01-01

    During the Gemini 5 mission, 26 spectrographic observations on various cloud types were obtained using the oxygen A band (7600 A). An example of the types of spectrum and photograph involved represents a cloud in the intertropical convergence zone. Densitometer traces of the spectra of three types of clouds (high, medium, and low) are shown. It was apparent qualitatively that radiation transmission in the oxygen band for a high cloud was much greater than that for a low cloud. The results proved the feasibility of cloud altitude measurements from a spacecraft by this method.

  15. Cumulus cloud properties derived using Landsat satellite data

    NASA Technical Reports Server (NTRS)

    Wielicki, B. A.; Welch, R. M.

    1986-01-01

    Landsat Multispectral Scanner (MSS) digital data are used to remotely sense cumulus cloud properties such as cloud fraction and cloud reflectance, along with the distribution of cloud number and cloud fraction as a function of cloud size. The analysis is carried out for four cumulus fields covering regions approximately 150 km square. Results for these initial cloud fields indicate that: (1) the common intuitive model of clouds as nearly uniform reflecting surfaces is a poor representation of cumulus clouds, (2) the cumulus clouds were often multicelled, even for clouds as small as 1 km in diameter, (3) cloud fractional coverage derived using a simple reflectance threshold is sensitive to the chosen threshold even for 57-meter resolution Landsat data, (4) the sensitivity of cloud fraction to changes in satellite sensor resolution is less sensitive than suggested theoretically, and (5) the Landsat derived cloud size distributions show encouraging similarities among the cloud fields examined.

  16. Upgrade of the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) to its Full Science Capability of Sun-Sky-Cloud-Trace Gas Spectrometry in Airborne Science Deployments

    NASA Technical Reports Server (NTRS)

    Johnson, Roy R.; Russell, P.; Dunagan, S.; Redemann, J.; Shinozuka, Y.; Segal-Rosenheimer, M.; LeBlanc, S.; Flynn, C.; Schmid, B.; Livingston, J.

    2014-01-01

    The objectives of this task in the AITT (Airborne Instrument Technology Transition) Program are to (1) upgrade the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument to its full science capability of measuring (a) direct-beam sun transmission to derive aerosol optical depth spectra, (b) sky radiance vs scattering angle to retrieve aerosol absorption and type (via complex refractive index spectra, shape, and mode-resolved size distribution), (c) zenith radiance for cloud properties, and (d) hyperspectral signals for trace gas retrievals, and (2) demonstrate its suitability for deployment in challenging NASA airborne multiinstrument campaigns. 4STAR combines airborne sun tracking, sky scanning, and zenith pointing with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution, radiant energy budgets (hence climate), and remote measurements of Earth's surfaces. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements are intended to tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. 4STAR test flights, as well as science flights in the 2012-13 TCAP (Two-Column Aerosol Project) and 2013 SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have demonstrated that the following are essential for 4STAR to achieve its full science potential: (1) Calibration stability for both direct-beam irradiance and sky radiance, (2) Improved light collection and usage, and (3) Improved flight operability and reliability. A particular challenge

  17. Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A.; Gupta, P.; Bhartia, P. K.; Veefkind, P.; Sneep, M.; de Haan, J.; Polonsky, I.; Spurr, R.

    2012-01-01

    The cloud Optical Centroid Pressure (OCP), also known as the effective cloud pressure, is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosol. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals from the Ozone Monitoring Instrument (OMI) with estimates based on collocated cloud extinction profiles from a combination of CloudS at radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, low altitude clouds missed by CloudSat, and the fact that CloudSat only observes a relatively small fraction of an OMI field-of-view.

  18. The Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES): An Observational Campaign for Determining Role of Clouds, Aerosols and Radiation in Climate System

    NASA Astrophysics Data System (ADS)

    McFarquhar, G. M.; Wood, R.; Bretherton, C. S.; Alexander, S.; Jakob, C.; Marchand, R.; Protat, A.; Quinn, P.; Siems, S. T.; Weller, R. A.

    2014-12-01

    The Southern Ocean (SO) region is one of the cloudiest on Earth, and as such clouds determine its albedo and play a major role in climate. Evidence shows Earth's climate sensitivity and the Intertropical Convergence Zone location depend upon SO clouds. But, climate models are challenged by uncertainties and biases in the simulation of clouds, aerosols, and air-sea exchanges in this region which trace back to a poor process-level understanding. Due to the SO's remote location, there have been sparse observations of clouds, aerosols, precipitation, radiation and the air-sea interface apart from those from satellites. Plans for an upcoming observational program, SOCRATES, are outlined. Based on feedback on observational and modeling requirements from a 2014 workshop conducted at the University of Washington, a plan is described for obtaining a comprehensive dataset on the boundary-layer structure and associated vertical distributions of liquid and mixed-phase cloud and aerosol properties across a range of synoptic settings, especially in the cold sector of cyclonic storms. Four science themes are developed: improved climate model simulation of SO cloud and boundary layer structure in a rapidly varying synoptic setting; understanding seasonal and synoptic variability in SO cloud condensation and ice nucleus concentration and the role of local biogenic sources; understanding supercooled liquid and mixed-phase clouds and their impacts; and advancing retrievals of clouds, precipitation, aerosols, radiation and surface fluxes. Testable hypotheses for each theme are identified. The observational strategy consists of long-term ground-based observations from Macquarie Island and Davis, continuous data collection onboard Antarctic supply ships, satellite retrievals, and a dedicated field campaign covering 2 distinct seasons using in-situ and remote sensors on low- and high-altitude aircraft, UAVs, and a ship-borne platform. A timeline for these activities is proposed.

  19. Cloud Computing

    SciTech Connect

    Pete Beckman and Ian Foster

    2009-12-04

    Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.

  20. Poor Americans: How the Poor White Live.

    ERIC Educational Resources Information Center

    Pilisuk, Marc; Pilisuk, Phyllis

    Contents of this book include the following essays which originally appeared in "Transaction" magazine: (1) "Poor Americans: an introduction," Marc Pilisuk and Phyllis Pilisuk; (2) "How the white poor live," Marc Pilisuk and Phyllis Pilisuk; (3) "The culture of poverty," Oscar Lewis; (4) "Life in Appalachia--the case of Hugh McCaslin," Robert…

  1. Comparison between SAGE II and ISCCP high-level clouds. 2: Locating clouds tops

    NASA Technical Reports Server (NTRS)

    Liao, Xiaohan; Rossow, William B.; Rind, David

    1995-01-01

    A comparison is made of the vertical distribution of high-level cloud tops derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements and from the International Satellite Cloud Climatology Project (ISCCP) for all Julys and Januarys in 1985 to 1990. The results suggest that ISCCP overestimates the pressure of high-level clouds by up to 50-150 mbar, particularly at low latitudes. This is caused by the frequent presence of clouds with diffuse tops (greater than 50% time when cloudy events are observed). The averaged vertical extent of the diffuse top is about 1.5 km. At midlatitudes where the SAGE II and ISCCP cloud top pressure agree best, clouds with distinct tops reach a maximum relative proportion of the total level cloud amount (about 30-40%), and diffuse-topped clouds are reduced to their minimum (30-40%). The ISCCP-defined cloud top pressure should be regarded not as the material physical height of the clouds but as the level which emits the same infrared radiance as observed. SAGE II and ISCCP cloud top pressures agree for clouds with distinct tops. There is also an indication that the cloud top pressures of optically thin clouds not overlying thicker clouds are poorly estimated by ISCCP at middle latitudes. The average vertical extent of these thin clouds is about 2.5 km.

  2. Parameterization of clouds and radiation in climate models

    SciTech Connect

    Roeckner, E.

    1995-09-01

    Clouds are a very important, yet poorly modeled element in the climate system. There are many potential cloud feedbacks, including those related to cloud cover, height, water content, phase change, and droplet concentration and size distribution. As a prerequisite to studying the cloud feedback issue, this research reports on the simulation and validation of cloud radiative forcing under present climate conditions using the ECHAM general circulation model and ERBE top-of-atmosphere radiative fluxes.

  3. Cloud Computing

    DTIC Science & Technology

    2009-11-12

    Eucalyptus Systems • Provides an open-source application that can be used to implement a cloud computing environment on a datacenter • Trying to establish an...Summary Cloud Computing is in essence an economic model • It is a different way to acquire and manage IT resources There are multiple cloud providers...edgeplatform.html • Amazon Elastic Compute Cloud (EC2): http://aws.amazon.com/ec2/ • Amazon Simple Storage Solution (S3): http://aws.amazon.com/s3/ • Eucalyptus

  4. Development of a hybrid cloud parameterization for general circulation models

    SciTech Connect

    Kao, C.Y.J.; Kristjansson, J.E.; Langley, D.L.

    1995-04-01

    We have developed a cloud package with state-of-the-art physical schemes that can parameterize low-level stratus or stratocumulus, penetrative cumulus, and high-level cirrus. Such parameterizations will improve cloud simulations in general circulation models (GCMs). The principal tool in this development comprises the physically based Arakawa-Schubert scheme for convective clouds and the Sundqvist scheme for layered, nonconvective clouds. The term {open_quotes}hybrid{close_quotes} addresses the fact that the generation of high-attitude layered clouds can be associated with preexisting convective clouds. Overall, the cloud parameterization package developed should better determine cloud heating and drying effects in the thermodynamic budget, realistic precipitation patterns, cloud coverage and liquid/ice water content for radiation purposes, and the cloud-induced transport and turbulent diffusion for atmospheric trace gases.

  5. Cloud Control

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2012-01-01

    Your learning curriculum needs a new technological platform, but you don't have the expertise or IT equipment to pull it off in-house. The answer is a learning system that exists online, "in the cloud," where learners can access it anywhere, anytime. For trainers, cloud-based coursework often means greater ease of instruction resulting in greater…

  6. Complex Clouds

    Atmospheric Science Data Center

    2013-04-16

    ...     View Larger Image The complex structure and beauty of polar clouds are highlighted by these images acquired ... corner, the edge of the Antarctic coastline and some sea ice can be seen through some thin, high cirrus clouds. The right-hand panel ...

  7. Cloud Control

    ERIC Educational Resources Information Center

    Ramaswami, Rama; Raths, David; Schaffhauser, Dian; Skelly, Jennifer

    2011-01-01

    For many IT shops, the cloud offers an opportunity not only to improve operations but also to align themselves more closely with their schools' strategic goals. The cloud is not a plug-and-play proposition, however--it is a complex, evolving landscape that demands one's full attention. Security, privacy, contracts, and contingency planning are all…

  8. Cloud Cover

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  9. Arctic Clouds

    Atmospheric Science Data Center

    2013-04-19

    ...   View Larger Image Stratus clouds are common in the Arctic during the summer months, and are important modulators of ... from MISR's two most obliquely forward-viewing cameras. The cold, stable air causes the clouds to persist in stratified layers, and this ...

  10. Fuzzy cloud concepts for assessing radiation feedbacks

    SciTech Connect

    Hanson, H.

    1995-09-01

    The importance of clouds in the climate system is well-known but poorly understood. Modeling and observational studies have suggested that there may be positive feedbacks associated with certain cloud processes, but it is not known how strong these feedbacks are in the context of the overall system. Examples include ice microphysics feedback, as shown by Liou`s model, and the relationship between SST and cloud cover in the tropics, which is the focus of this research. 2 refs., 3 figs.

  11. Cloud Formation

    NASA Astrophysics Data System (ADS)

    Graham, Mark Talmage

    2004-05-01

    Cloud formation is crucial to the heritage of modern physics, and there is a rich literature on this important topic. In 1927, Charles T.R. Wilson was awarded the Nobel Prize in physics for applications of the cloud chamber.2 Wilson was inspired to study cloud formation after working at a meteorological observatory on top of the highest mountain in Scotland, Ben Nevis, and testified near the end of his life, "The whole of my scientific work undoubtedly developed from the experiments I was led to make by what I saw during my fortnight on Ben Nevis in September 1894."3 To form clouds, Wilson used the sudden expansion of humid air.4 Any structure the cloud may have is spoiled by turbulence in the sudden expansion, but in 1912 Wilson got ion tracks to show up by using strobe photography of the chamber immediately upon expansion.5 In the interim, Millikan's study in 1909 of the formation of cloud droplets around individual ions was the first in which the electron charge was isolated. This study led to his famous oil drop experiment.6 To Millikan, as to Wilson, meteorology and physics were professionally indistinct. With his meteorological physics expertise, in WWI Millikan commanded perhaps the first meteorological observation and forecasting team essential to military operation in history.7 But even during peacetime meteorology is so much of a concern to everyone that a regular news segment is dedicated to it. Weather is the universal conversation topic, and life on land could not exist as we know it without clouds. One wonders then, why cloud formation is never covered in physics texts.

  12. Rich Donors, Poor Countries

    ERIC Educational Resources Information Center

    Thomas, M. A.

    2012-01-01

    The shifting ideological winds of foreign aid donors have driven their policy towards governments in poor countries. Donors supported state-led development policies in poor countries from the 1940s to the 1970s; market and private-sector driven reforms during the 1980s and 1990s; and returned their attention to the state with an emphasis on…

  13. Inference in `poor` languages

    SciTech Connect

    Petrov, S.

    1996-10-01

    Languages with a solvable implication problem but without complete and consistent systems of inference rules (`poor` languages) are considered. The problem of existence of finite complete and consistent inference rule system for a ``poor`` language is stated independently of the language or rules syntax. Several properties of the problem arc proved. An application of results to the language of join dependencies is given.

  14. Poorly controlled gout: who is doing poorly?

    PubMed Central

    Chia, Faith Li-Ann

    2016-01-01

    Gout, an inflammatory arthritis caused by the deposition of monosodium urate crystals, is commonly seen in primary care and specialist clinics. In recent years, there has been a resurgence of interest in gout due to advances in therapies and the understanding of pathophysiology, with new guidelines being published by international bodies. However, there is still a gap between the goals of treatment and actual day-to-day practice. Barriers that result in poorly controlled gout include patient factors such as lack of understanding of the disease, stigma and nonadherence to treatment, as well as physician factors such as knowledge gaps, inadequate use of allopurinol and lack of ownership of the disease. The medical profession needs to do more to bridge the gap through physician and patient education, identification of treatment targets with appropriate use of drugs, and dissemination of guidelines. PMID:27549096

  15. CLOUD CHEMISTRY.

    SciTech Connect

    SCHWARTZ,S.E.

    2001-03-01

    Clouds present substantial concentrations of liquid-phase water, which can potentially serve as a medium for dissolution and reaction of atmospheric gases. The important precursors of acid deposition, SO{sub 2} and nitrogen oxides NO and NO{sub 2} are only sparingly soluble in clouds without further oxidation to sulfuric and nitric acids. In the case of SO{sub 2} aqueous-phase reaction with hydrogen peroxide, and to lesser extent ozone, are identified as important processes leading to this oxidation, and methods have been described by which to evaluate the rates of these reactions. The limited solubility of the nitrogen oxides precludes significant aqueous-phase reaction of these species, but gas-phase reactions in clouds can be important especially at night.

  16. Neptune's clouds

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The bright cirrus-like clouds of Neptune change rapidly, often forming and dissipating over periods of several to tens of hours. In this sequence Voyager 2 observed cloud evolution in the region around the Great Dark Spot (GDS). The surprisingly rapid changes which occur separating each panel shows that in this region Neptune's weather is perhaps as dynamic and variable as that of the Earth. However, the scale is immense by our standards -- the Earth and the GDS are of similar size -- and in Neptune's frigid atmosphere, where temperatures are as low as 55 degrees Kelvin (-360 F), the cirrus clouds are composed of frozen methane rather than Earth's crystals of water ice. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications

  17. Our World: Cool Clouds

    NASA Video Gallery

    Learn how clouds are formed and watch an experiment to make a cloud using liquid nitrogen. Find out how scientists classify clouds according to their altitude and how clouds reflect and absorb ligh...

  18. Mars water-ice clouds and precipitation.

    PubMed

    Whiteway, J A; Komguem, L; Dickinson, C; Cook, C; Illnicki, M; Seabrook, J; Popovici, V; Duck, T J; Davy, R; Taylor, P A; Pathak, J; Fisher, D; Carswell, A I; Daly, M; Hipkin, V; Zent, A P; Hecht, M H; Wood, S E; Tamppari, L K; Renno, N; Moores, J E; Lemmon, M T; Daerden, F; Smith, P H

    2009-07-03

    The light detection and ranging instrument on the Phoenix mission observed water-ice clouds in the atmosphere of Mars that were similar to cirrus clouds on Earth. Fall streaks in the cloud structure traced the precipitation of ice crystals toward the ground. Measurements of atmospheric dust indicated that the planetary boundary layer (PBL) on Mars was well mixed, up to heights of around 4 kilometers, by the summer daytime turbulence and convection. The water-ice clouds were detected at the top of the PBL and near the ground each night in late summer after the air temperature started decreasing. The interpretation is that water vapor mixed upward by daytime turbulence and convection forms ice crystal clouds at night that precipitate back toward the surface.

  19. Cloud Front

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02171 Cloud Front

    These clouds formed in the south polar region. The faintness of the cloud system likely indicates that these are mainly ice clouds, with relatively little dust content.

    Image information: VIS instrument. Latitude -86.7N, Longitude 212.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Cloud Arcs

    Atmospheric Science Data Center

    2013-04-19

    ... a sinking motion elsewhere, are very common, the degree of organization exhibited here is relatively rare, as the wind field at different altitudes usually disrupts such patterns. The degree of self organization of this cloud image, whereby three or four such circular events ...

  1. Thin Clouds

    Atmospheric Science Data Center

    2013-04-18

    ... one of a new generation of instruments flying aboard the NASA Earth Observing System's Terra satellite, views Earth with nine cameras ... of thin cirrus minutes after MISR imaged the cloud from space. At the same time, another NASA high-altitude jet, the WB-57, flew right ...

  2. The use of rapidly synergistic cloud point extraction for the separation and preconcentration of trace amounts of Ni (II) ions from food and water samples coupling with flame atomic absorption spectrometry determination.

    PubMed

    Rahnama, Reyhaneh; Najafi, Marzieh

    2016-03-01

    A novel improved preconcentration method known as rapidly synergistic cloud point extraction (RS-CPE) was established for nickel preconcentration and determination prior to its determination by flame atomic absorption spectrometry. In this work, the traditional CPE pattern was changed and greatly simplified in order to be applicable in metal extraction and detection. This method was accomplished in room temperature in 1 min. Non-ionic surfactant Triton X-114 was used as extractant. Octanol worked as cloud point revulsant and synergic reagent. The various parameters affecting the extraction and preconcentration of nickel such as sample pH, 2,2'-Furildioxime concentration, amounts of octanol, amounts of Triton X-114, type of diluting solvent, extraction time, and ionic strength were investigated and optimized. Under optimal conditions, the calibration curve showed an excellent linearity in the concentration range of 2-200 μg L(-1), and the limit of detection was 0.6 μg L(-1) for nickel. The developed method was successfully applied for the determination of nickel in food and water samples. The results showed that, the proposed method can be used as a cheap, rapid, and efficient method for the extraction and preconcentration of nickel from real samples.

  3. Trace Elements in River Waters

    NASA Astrophysics Data System (ADS)

    Gaillardet, J.; Viers, J.; Dupré, B.

    2003-12-01

    satisfactorily model and predict the behavior of most of the trace elements in hydrosystems?An impressive literature has dealt with experimental works on aqueous complexation, uptake of trace elements by surface complexation (inorganic and organic), uptake by living organisms (bioaccumulation) that we have not reported here, except when the results of such studies directly explain natural data. As continental waters encompass a greater range of physical and chemical conditions, we focus on river waters and do not discuss trace elements in groundwaters, lakes, and the ocean. In lakes and in the ocean, the great importance of life processes in regulating trace elements is probably the major difference from rivers.Section 5.09.2 of this chapter reports data. We will review the present-day literature on trace elements in rivers to show that our knowledge is still poor. By comparing with the continental abundances, a global mobility index is calculated for each trace element. The spatial and temporal variability of trace-element concentrations in rivers will be shown to be important. In Section 5.09.3, sources of trace elements in river waters are indicated. We will point out the great diversity of sources and the importance of global anthropogenic contamination for a number of elements. The question of inorganic and organic speciation of trace elements in river water will then be addressed in Section 5.09.4, considering some general relationships between speciation and placement in the periodic table. In Section 5.09.5, we will show that studies on organic-rich rivers have led to an exploration of the "colloidal world" in rivers. Colloids are small particles, passing through the conventional filters used to separate dissolved and suspended loads in rivers. They appear as major carriers of trace elements in rivers and considerably complicate aqueous-speciation calculation. Finally, in Section 5.09.6, the significance of interactions between solutes and solid surfaces in river waters

  4. The Poor Pay More.

    ERIC Educational Resources Information Center

    Folse, Kimberly A.

    2002-01-01

    Describes a sociology experiential learning assignment where students learned why people living in poverty can sometimes pay more for products than people with better incomes. Focuses specifically on the rent to own concept. States students achieved the goal of learning how life constraints of poverty can hinder the poor from overcoming their…

  5. Confronting Poor Performance.

    ERIC Educational Resources Information Center

    Dennis, Bruce L.

    Responsible and effective administrative leadership requires confronting those members of the teaching staff who are a negative influence on the institution. Importantly, the absence of expressed appreciation for good work can have a devastating impact on a principal's image if he or she suddenly begins to confront poor performances. Actually, the…

  6. Liquid Cloud Responses to Soot

    NASA Astrophysics Data System (ADS)

    Koch, D. M.

    2010-12-01

    Although soot absorption warms the atmosphere, soot may cause climate cooling due to its effects on liquid clouds, including contribution to cloud condensation nuclei (CCN) and semi-direct effects. Six global models that include aerosol microphysical schemes conducted three soot experiments. The average model cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.12 Wm-2, comparable in size but opposite in sign to the respective direct atmospheric warming. In a more idealized fossil fuel black carbon only experiment, some models calculated a positive cloud response because the soot provided a deposition sink for sulfate, decreasing formation of more viable CCN. Biofuel soot particles were typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models < ±0.06 Wm-2 from clouds. The net semi-direct effect alone may also be negative in global models, as found by several previous studies. The soot-cloud effects are quite uncertain. The range of model responses was large and interrannual variability for each model can also be large. Furthermore the aerosol microphysical schemes are poorly constrained, and the non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes. However, results so far suggest that soot-induced cloud-cooling effects are comparable in magnitude to the direct warming effects from soot absorption.

  7. Cloud radiative forcing on surface shortwave fluxes: A case study based on Cloud Lidar and Radar Exploratory Test

    SciTech Connect

    Shi, L.

    1994-12-20

    Shortwave downward fluxes for selected stratus, cirrus, and mixed phase cloud cases are analyzed based on cloud and surface radiation measurements from the Cloud Lidar and Radar Exploratory Test conducted in the Denver-Boulder area of Colorado during September-October, 1989. A medium resolution, discrete-ordinate shortwave radiative transfer model is used to provide clear-sky conditions and to examine the cloud shortwave radiative forcing. The model simulation indicates that for stratus clouds the effective radius increases with increasing liquid water path. For cirrus cloud simulation, the model results are within 10% agreement with the surface flux measurements. However, using the one-dimensional plane-parallel model, the model results are in poor agreement for the inhomogeneous mixed phase cloud case. Over the elevated observation site, the reduction in shortwave downward flux by clouds can be as large as 40% for a small cloud water path value of 20 g m{sup {minus}2}. The variation in observed cloud shortwave forcing is highly correlated with the integrated cloud water path. The normalized (by the clear-sky value) cloud shortwave forcing increases rapidly when the cloud water path is small. The rate of increase decreases, and the normalized cloud forcing approaches saturation when cloud water path becomes large. The magnitude of the saturation value depends on cloud optical properties. The variation in observed cloud forcing is consistent with the theoretical curve for cloudy atmospheric albedo variation. At a constant value of cloud water path, the normalized cloud forcing increases with solar zenith angle. The solar zenith angle effect is less significant for larger value of cloud water path. 44 refs., 11 figs.

  8. Letting the poor speak.

    PubMed

    2000-09-29

    This paper comments on two documents prepared by the Washington-based World Bank: the "World Development Report" and the three-volume study "Voices of the Poor." The author provides a brief overview of these documents then examines their potential impact on the delegates to the annual meetings of the World Bank and the International Monetary Fund in Prague on September 19-28, 2000. The author further examines the implication of the new strategies embraced by the global lenders--"opportunity, empowerment, security." Apart from these strategies, the World Bank sets out other strategies like spreading the benefits of technology, as it calls for the elimination of absolute poverty by 2015. However, the most crucial tack is the one illustrated by the way the reports were made: letting the poor speak and responding to their cries.

  9. Southern Clouds

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03026 Southern Clouds

    This image shows a system of clouds just off the margin of the South Polar cap. Taken during the summer season, these clouds contain both water-ice and dust.

    Image information: VIS instrument. Latitude 80.2S, Longitude 57.6E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Linear Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds

    These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.

    Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Evaluation of the Cloud Fields in the UK Met Office HadGEM3-UKCA Model Using the CCCM Satellite Data Product to Advance Our Understanding of the Influence of Clouds on Tropospheric Composition and Chemistry

    NASA Technical Reports Server (NTRS)

    Varma, Sunil; Voulgarakis, Apostolos; Liu, Hongyu; Crawford, James H.; White, James

    2016-01-01

    To determine the role of clouds in driving inter-annual and inter-seasonal variability of trace gases in the troposphere and lower stratosphere with a particular focus on the importance of cloud modification of photolysis. To evaluate the cloud fields and their vertical distribution in the HadGEM3 model utilizing CCCM, a unique 3-D cloud data product merged from multiple A-Train satellites (CERES, CloudSat, CALIPSO, and MODIS) developed at the NASA Langley Research Center.

  12. Approaches to Observe Anthropogenic Aerosol-Cloud Interactions.

    PubMed

    Quaas, Johannes

    Anthropogenic aerosol particles exert an-quantitatively very uncertain-effective radiative forcing due to aerosol-cloud interactions via an immediate altering of cloud albedo on the one hand and via rapid adjustments by alteration of cloud processes and by changes in thermodynamic profiles on the other hand. Large variability in cloud cover and properties and the therefore low signal-to-noise ratio for aerosol-induced perturbations hamper the identification of effects in observations. Six approaches are discussed as a means to isolate the impact of anthropogenic aerosol on clouds from natural cloud variability to estimate or constrain the effective forcing. These are (i) intentional cloud modification, (ii) ship tracks, (iii) differences between the hemispheres, (iv) trace gases, (v) weekly cycles and (vi) trends. Ship track analysis is recommendable for detailed process understanding, and the analysis of weekly cycles and long-term trends is most promising to derive estimates or constraints on the effective radiative forcing.

  13. Cloud Interactions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 1 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere.

    Image information: VIS instrument. Latitude 68.4, Longitude 258.8 East (101.2 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration

  14. The Interstellar Cloud Surrounding the Solar System

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.

    Ultraviolet spectral data of nearby stars indicate that the cloud surrounding the solar system has an average neutral density n(HI)~0.1 cm-3, temperature ~6800 K, and turbulence ~1.7 km/s. Comparisons between the anomalous cosmic ray data and ultraviolet data suggest that the electron density is in the range n(e-)~0.22 to 0.44 cm-3. This cloud is flowing past the Sun from a position centered in the Norma-Lupis region. The cloud properties are consistent with interstellar gas which originated as material evaporated from the surfaces of embedded clouds in the Scorpius-Centaurus Association, and which was then displaced towards the Sun by a supernova event about 4 Myrs ago. The Sun and surrounding cloud velocities are nearly perpendicular in space, and this cloud is sweeping past the Sun. The morphology of this cloud can be reconstructed by assuming that the cloud moves in a direction parallel to the surface normal. With this assumption, the Sun entered the surrounding cloud 2000 to 8000 years ago, and is now about 0.05 to 0.16 pc from the cloud surface. Prior to its recent entry into the surrounding cloud complex, the Sun was embedded in a region of space with average density lower than 0.0002 cm-3. If a denser cloud velocity component seen towards alpha Cen A,B is real, it will encounter the solar system within 50,000 yr. The nearby magnetic field seen upwind has a spatial orientation that is parallel to the cloud surface. The nearby star Sirius is viewed through the wake of the solar system, but this direction also samples the hypothetical cloud interface. Comparisons of anomalous cosmic ray and interstellar absorption line data suggest that trace elements in the surrounding cloud are in ionization equilibrium. Data towards nearby white dwarfs indicate partial helium ionization, N(N(HI)(/N(HeI)>~13.7, which is consistent with pickup ion data within the solar system if less than 40% hydrogen ionization occurs in the heliopause region. However, the white dwarfs may

  15. A statistical study of giant molecular clouds traced by 13CO, C18O, CS, and CH3OH in the disk of NGC 1068 based on ALMA observations

    NASA Astrophysics Data System (ADS)

    Tosaki, Tomoka; Kohno, Kotaro; Harada, Nanase; Tanaka, Kunihiko; Egusa, Fumi; Izumi, Takuma; Takano, Shuro; Nakajima, Taku; Taniguchi, Akio; Tamura, Yoichi

    2017-01-01

    We present 1{^''.}4 (98 pc) resolution ALMA observations of 13CO(J = 1-0), C18O(J = 1-0), CS(J = 2-1), and CH3OH(JK = 2K-1K) molecular rotational lines in the central 1' (4.2 kpc) diameter region of NGC 1068 to study the physical and chemical properties of giant molecular clouds (GMCs) and to test whether these GMC-scale properties are linked to the larger-scale galactic environment. Using the derived 13CO cube, we have identified 187 high-significance (>8 σ) GMCs by employing the CLUMPFIND algorithm. The molecular gas masses of GMCs (M_^{13CO}), derived from the 13CO data, range from 1.8 × 104 M⊙ to 4.2 × 107 M⊙. A mass function of GMCs in NGC 1068 has been obtained for the first time at ˜100 pc resolution. We find the slope of the mass function γ = -1.25 ± 0.07 for a mass range of M_^{13CO} ≥ 105 M⊙. This is shallower than the GMCs in the disk regions of the Milky Way, M 51, and NGC 300. Further, we find that the high mass cut-off of the GMC mass function occurs at M_^{13CO} ˜ 6 × 107 M⊙, which is an order of magnitude larger than that in the nuclear bar region of M 51, indicating that the more massive clouds dominate the mass budget in NGC 1068. The observed C18O(J = 1-0)/13CO(J = 1-0) intensity ratios are found to be fairly uniform (0.27 ± 0.05) among the identified GMCs. In contrast, the CH3OH(JK = 2K-1K)/13CO(J = 1-0) ratios exhibit striking spatial variation across the disk, with the smallest values around the bar-end (<0.03), and larger ratios along the spiral arms (˜0.1-0.2). We find that GMCs with detectable methanol emission tend to have systematically larger velocity widths than those without methanol emission, suggesting that (relatively weak) shocks are responsible for the enhancement of the CH3OH/13CO ratios of GMCs in the disk of NGC 1068.

  16. Estimating Cloud Cover

    ERIC Educational Resources Information Center

    Moseley, Christine

    2007-01-01

    The purpose of this activity was to help students understand the percentage of cloud cover and make more accurate cloud cover observations. Students estimated the percentage of cloud cover represented by simulated clouds and assigned a cloud cover classification to those simulations. (Contains 2 notes and 3 tables.)

  17. Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks

    NASA Technical Reports Server (NTRS)

    Somerville, Richard C. J.; Iacobellis, Sam

    1987-01-01

    The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.

  18. Preliminary investigation of radiatively driven convection in marine stratocumulus clouds

    SciTech Connect

    Norris, P.

    1995-09-01

    Marine stratocumulus play an important yet still poorly modeled role in the climate system. These clouds cool the planet, having a large albedo, but little infrared effect. A fundamental question is whether such clouds will exist at a given time and location. Stratocumulus is often formed at higher latitudes as stratus and advected equatorward until it breaks up. Possible mechanisms for cloud breakup include strong subsidence, cloud top entrainment instability (CTEI), drizzle, solar heating and resultant boundary layer decoupling, and surface forcing. The Atlantic Stratocumulus Transition Experiment (ASTEX) was conducted to investigate these potential cloud breakup mechanisms. 5 refs., 3 figs.

  19. Trace Chemistry

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and

  20. Parametric Trace Slicing

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)

    2014-01-01

    A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.

  1. Development of a simple, sensitive and inexpensive ion-pairing cloud point extraction approach for the determination of trace inorganic arsenic species in spring water, beverage and rice samples by UV-Vis spectrophotometry.

    PubMed

    Gürkan, Ramazan; Kır, Ufuk; Altunay, Nail

    2015-08-01

    The determination of inorganic arsenic species in water, beverages and foods become crucial in recent years, because arsenic species are considered carcinogenic and found at high concentrations in the samples. This communication describes a new cloud-point extraction (CPE) method for the determination of low quantity of arsenic species in the samples, purchased from the local market by UV-Visible Spectrophotometer (UV-Vis). The method is based on selective ternary complex of As(V) with acridine orange (AOH(+)) being a versatile fluorescence cationic dye in presence of tartaric acid and polyethylene glycol tert-octylphenyl ether (Triton X-114) at pH 5.0. Under the optimized conditions, a preconcentration factor of 65 and detection limit (3S blank/m) of 1.14 μg L(-1) was obtained from the calibration curve constructed in the range of 4-450 μg L(-1) with a correlation coefficient of 0.9932 for As(V). The method is validated by the analysis of certified reference materials (CRMs).

  2. Martian Clouds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 28 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during early spring near the North Pole. The linear 'ripples' are transparent water-ice clouds. This linear form is typical for polar clouds. The black regions on the margins of this image are areas of saturation caused by the build up of scattered light from the bright polar material during the long image exposure.

    Image information: VIS instrument. Latitude 68.1, Longitude 147.9 East (212.1 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS

  3. The Oort cloud in transition

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1986-01-01

    The evolution of theoretical and empirical models of the Oort cloud (OC) since it was first proposed by Oort in 1950 is traced, and the main features of current models are discussed, in a general review. Consideration is given to work on the classical OC (Monte Carlo simulations of OC evolution, population and mass estimates, and OC perturbation by passing stars and giant molecular clouds), models of a massive inner OC (simulations of planetesimal-swarm evolution in the Uranus-Neptune zone and IRAS observations of circumstellar dust shells), evidence for random and/or periodic comet showers, and the possible role of the Galactic missing mass. The current OC model comprises an almost spherical outer (10,000-100,000-AU) cloud of mass 7-8 earth mass and population (1.4-2.3) x 10 to the 12th, and a flat disklike inner (40-10,000 AU) cloud of mass 100-200 earth mass and population (1-10) x 10 to the 13th.

  4. Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events

    NASA Astrophysics Data System (ADS)

    Wang, P.; Tuinder, O. N. E.; Tilstra, L. G.; de Graaf, M.; Stammes, P.

    2012-10-01

    Cloud and aerosol information is needed in trace gas retrievals from satellite measurements. The Fast REtrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm employs reflectance spectra of the O2 A band around 760 nm to derive cloud pressure and effective cloud fraction. In general, clouds contribute more to the O2 A band reflectance than aerosols. Therefore, the FRESCO algorithm does not correct for aerosol effects in the retrievals and attributes the retrieved cloud information entirely to the presence of clouds, and not to aerosols. For events with high aerosol loading, aerosols may have a dominant effect, especially for almost cloud free scenes. We have analysed FRESCO cloud data and Absorbing Aerosol Index (AAI) data from the Global Ozone Monitoring Experiment (GOME-2) instrument on the Metop-A satellite for events with typical absorbing aerosol types, such as volcanic ash, desert dust and smoke. We find that the FRESCO effective cloud fractions are correlated with the AAI data for these absorbing aerosol events and that the FRESCO cloud pressure contains information on aerosol layer pressure. For cloud free scenes, the derived FRESCO cloud pressure is close to the aerosol layer pressure, especially for optically thick aerosol layers. For cloudy scenes, if the strongly absorbing aerosols are located above the clouds, then the retrieved FRESCO cloud pressure may represent the height of the aerosol layer rather than the height of the clouds. Combining FRESCO and AAI data, an estimate for the aerosol layer pressure can be given.

  5. Crater Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06085 Crater Clouds

    The crater on the right side of this image is affecting the local wind regime. Note the bright line of clouds streaming off the north rim of the crater.

    Image information: VIS instrument. Latitude -78.8N, Longitude 320.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Poor ovarian reserve

    PubMed Central

    Jirge, Padma Rekha

    2016-01-01

    Poor ovarian reserve (POR) is an important limiting factor for the success of any treatment modality for infertility. It indicates a reduction in quantity and quality of oocytes in women of reproductive age group. It may be age related as seen in advanced years of reproductive life or may occur in young women due to diverse etiological factors. Evaluating ovarian reserve and individualizing the therapeutic strategies are very important for optimizing the success rate. Majority or women with POR need to undergo in vitro fertilization to achieve pregnancy. However, pregnancy rate remains low despite a plethora of interventions and is associated with high pregnancy loss. Early detection and active management are essential to minimize the need for egg donation in these women. PMID:27382229

  7. Cloud-Top Entrainment in Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  8. Satellite retrieval of cloud properties from the O2 A-band for air quality and climate applications

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.; van der A, R.

    2009-04-01

    The FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm has been used to retrieve cloud information from measurements of the O2 A-band around 760 nm by GOME, SCIAMACHY and GOME-2. The cloud parameters retrieved by FRESCO are the effective cloud fraction and cloud pressure, which are used for cloud correction in the retrieval of trace gases like O3 and NO2. To improve the cloud pressure retrieval for partly cloudy scenes, single Rayleigh scattering has been included in an improved version of the algorithm, called FRESCO+. FRESCO+ gives more reliable cloud pressures over partly cloudy pixels. Simulations and comparisons with ground-based radar measurements of clouds shows that the FRESCO+ cloud pressure is about the optical midlevel of the cloud. Globally averaged, the FRESCO+ cloud pressure is about 50 hPa higher than the FRESCO cloud pressure, while the FRESCO+ effective cloud fraction is about 0.01 larger. From ground-based validation (P. Wang et al., Atmos. Chem. Phys., 8, 6565-6576, 2008) it appears that the FRESCO+ cloud retrievals improve the retrieval of tropospheric NO2 as compared to FRESCO. So FRESCO+ contributes to better monitoring of air quality from space. The FRESCO+ cloud algorithm has been applied to GOME and SCIAMACHY measurements since the beginning of the missions. Monthly averaged SCIAMACHY FRESCO+ effective cloud fraction and cloud pressure maps show similar patterns as the ISCCP cloud maps, although there are some differences, due to the different meaning of the cloud products and due to the fact that photons in the O2 A-band penetrate into clouds. The 6-year averaged seasonal cloud maps from SCIAMACHY data have good agreement with the global circulation patterns. Therefore, the FRESCO+ products are not only efficient for cloud correction of trace gas retrievals but also contribute additional information for climate research.

  9. Trace elements in coal ash

    USGS Publications Warehouse

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.

  10. Automatic Cloud Bursting under FermiCloud

    SciTech Connect

    Wu, Hao; Shangping, Ren; Garzoglio, Gabriele; Timm, Steven; Bernabeu, Gerard; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin; Noh, Seo-Young

    2013-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  11. The OMI Cloud Pressure Algorithm Based on UV Measurements

    NASA Astrophysics Data System (ADS)

    Vasilkov, A. P.; Joiner, J.; Flittner, D. E.; Gleason, J. F.; Bhartia, P. K.

    2003-12-01

    The OMI cloud pressure product is deemed "mission-essential" for OMI because the product is necessary for correction of the mission-critical total ozone product. Cloud pressure can be derived from the high frequency structure of top-of-atmosphere reflectance in the UV caused by rotational Raman scattering (RRS) in the atmosphere. RRS results in filling-in of Fraunhofer lines in the backscatter UV spectra (also known as the Ring effect). The magnitude of filling-in of the Fraunhofer lines is roughly proportional to the average number of solar photon scatterings in the atmosphere above the clouds. This property of RRS is used to deduce an effective cloud pressure. The cloud pressure algorithm retrieves the effective cloud pressure and cloud fraction using a concept of the Modified Lambert Equivalent Reflectivity (MLER). The MLER concept is used for several of the OMI algorithms including the retrieval of ozone and other trace gases. Therefore, the cloud pressure algorithm is consistent with other OMI algorithms. Details of the cloud pressure algorithm are discussed including the correction for vibrational Raman scattering in the ocean that also significantly contributes to filling-in of Fraunhofer lines in the backscatter UV spectra over pixels with thin or broken clouds. Examples of retrieving cloud pressure from GOME data are presented.

  12. MAGIC Cloud Properties from Zenith Radiance Data Final Campaign Summary

    SciTech Connect

    Chiu, J. -Y.C.; Gregory, L.; Wagener, R.

    2016-01-01

    Cloud droplet size and optical depth are the most fundamental properties for understanding cloud formation, dissipation and interactions with aerosol and drizzle. They are also a crucial determinant of Earth’s radiative and water-energy balances. However, these properties are poorly predicted in climate models. As a result, the response of clouds to climate change is one of the major sources of uncertainty in climate prediction.

  13. Seasonal and diurnal variability of Mars water-ice clouds

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.; Zurek, Richard W.; Jaramillo, L. L.

    1988-01-01

    The diurnal and seasonal behavior of cloud opacity and frequency of occurrence was studied using an atlas of cloud occurrences compiled from the Viking IRTM (Infrared Thermal Mapper) data set. It was found that in some areas the behavior of water appeared to repeat in the zonal mean. However, this interpretation is complicated by both poor coverage and the variability of dust and clouds. As a result, the extent and nature of interannual variability remains unclear.

  14. Morphosyntax in Poor Comprehenders

    PubMed Central

    Adlof, Suzanne M.; Catts, Hugh W.

    2016-01-01

    Children described as poor comprehenders (PCs) have reading comprehension difficulties in spite of adequate word reading abilities. PCs are known to display weakness with semantics and higher-level aspects of oral language, but less is known about their grammatical skills, especially with regard to morphosyntax. The purpose of this study was to examine morphosyntax in fourth grade PCs and typically developing readers (TDs), using three experimental tasks involving finiteness marking. Participants also completed standardized, norm-referenced assessments of phonological memory, vocabulary, and broader language skills. PCs displayed weakness relative to TDs on all three morphosyntax tasks and on every other assessment of oral language except phonological memory, as indexed by nonword repetition. These findings help to clarify the linguistic profile of PCs, suggesting that their language weaknesses include grammatical weaknesses that cannot be fully explained by semantic factors. Because finiteness markers are usually mastered prior to formal schooling in typical development, we call for future studies to examine whether assessments of morphosyntax could be used for the early identification of children at risk for future reading comprehension difficulty. PMID:27397969

  15. Arthur Ziegler: Prophet of Preservation for the Poor

    ERIC Educational Resources Information Center

    Cliff, Ursula

    1975-01-01

    This article traces the history and development of the Pittsburgh History and Landmarks Foundation. This foundation has been notably successful in preserving neighborhoods for their original inhabitants and now has the first urban renewal program to be based on historic preservation for poor people. (BT)

  16. Image transfer through cirrus clouds. II. Wave-front segmentation and imaging.

    PubMed

    Landesman, Barbara T; Matson, Charles L

    2002-12-20

    A hybrid technique to simulate the imaging of space-based objects through cirrus clouds is presented. The method makes use of standard Huygens-Fresnel propagation beyond the cloud boundary and a novel vector trace approach within the cloud. At the top of the cloud, the wave front is divided into an array of input gradient vectors, which are in turn transmitted through the cloud model by use of the Coherent Illumination Ray Trace and Imaging Software for Cirrus. At the bottom of the cloud, the output vector distribution is used to reconstruct a wave front that continues propagating to the ground receiver. Images of the object as seen through cirrus clouds with different optical depths are compared with a diffraction-limited image. Turbulence effects from the atmospheric propagation are not included.

  17. Evaluation of climate models in terms of relationship between cloud fraction and cloud albedo

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Song, H.; Lin, W.; Wu, W.; Jensen, M. P.; Toto, T.

    2011-12-01

    Cloud fraction and cloud albedo have been investigated extensively but often separately in studying cloud-climate interaction; their quantitative relationship has been much less studied and understood, in both observations and climate models. In this study, we first examine this crucial relationship by empirical analysis of observational data, both surface-based and satellite measurements. We then decipher the key variables/processes that determine the relationship using designed simulations of the single-column model of the NCAR CAM (SCAM). Finally we explore how well or poor this relationship is simulated in the AR4 climate simulations. The preliminary results indicate that all the AR4 models as a group produce a cloud fraction-albedo relationship that is literally opposite to that observed. This stark contrast between model and observational results calls for new strategies and approaches in future development of cloud parameterizations and application of observations as model constraints.

  18. Jovian clouds and haze

    NASA Astrophysics Data System (ADS)

    West, Robert A.; Baines, Kevin H.; Friedson, A. James; Banfield, Don; Ragent, Boris; Taylor, Fred W.

    Tropospheric clouds: thermochemical equilibrium theory and cloud microphysical theory, condensate cloud microphysics, tropospheric cloud and haze distribution - observations, results from the Galileo probe experiments, Galileo NIMS observations and results, Galileo SSE observations and results, recent analyses of ground-based and HST data; Tropospheric clouds and haze: optical and physical properties: partical composition, particle optical properties, size and shape, chromophores; Stratospheric haze: particle distribution, optical properties, size and shape, particle formation.

  19. The Oort cloud

    NASA Technical Reports Server (NTRS)

    Marochnik, Leonid S.; Mukhin, Lev M.; Sagdeev, Roald Z.

    1991-01-01

    Views of the large-scale structure of the solar system, consisting of the Sun, the nine planets and their satellites, changed when Oort demonstrated that a gigantic cloud of comets (the Oort cloud) is located on the periphery of the solar system. The following subject areas are covered: (1) the Oort cloud's mass; (2) Hill's cloud mass; (3) angular momentum distribution in the solar system; and (4) the cometary cloud around other stars.

  20. Can cirrus clouds produce glories?

    PubMed

    Sassen, K; Arnott, W P; Barnett, J M; Aulenbach, S

    1998-03-20

    A vague glory display was photographed over central Utah from an airplane beginning its descent through a cirrus cloud layer with an estimated cloud top temperature of -45 and -55 degrees C. Photographic analysis reveals a single reddish-brown ring of 2.5-3.0 degrees radius around the antisolar point, although a second ring appeared visually to have been present over the brief observation period. Mie and approximate nonspherical theory scattering simulations predict a population of particles with modal diameters between 9 and 15 mum. Although it is concluded that multiple-ringed glories can be accounted for only through the backscattering of light from particles that are strictly spherical in shape, the poor glory colorization in this case could imply the presence of slightly aspherical ice particles. The location of this display over mountainous terrain suggests that it was generated by an orographic wave cloud, which we speculate produced numerous frozen cloud droplets that only gradually took on crystalline characteristics during growth.

  1. Arctic clouds in the ECMWF forecast model: an evaluation of cloud parameterization schemes

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, Georgia; Sedlar, Joseph; Forbes, Richard; Tjernström, Michael

    2016-04-01

    The Arctic is experiencing significant changes and is an important part of the global climate, which needs to be understood and accurately represented in both climate and weather prediction models. Mixed-phase clouds are an integral part of the Arctic system, for precipitation and for their interactions with radiation and the local thermodynamics. Mixed-phase processes are often poorly represented in global models and many use an empirically based diagnostic partition between the liquid and ice phase that is dependent solely on temperature. However, increasingly more complex microphysical parameterizations are being implemented allowing a more physical representation of mixed-phase clouds. This study uses in situ observations from ASCOS campaign in the central Arctic to evaluate the impact of a change from a diagnostic to a prognostic parameterization of mixed-phase cloud and increased vertical resolution in the ECMWF Integrated Forecast System (IFS). The newer cloud scheme improves the representation of the vertical structure of mixed-phase clouds, with supercooled liquid water at cloud top and ice precipitating below, improved further with higher vertical resolution. Increased supercooled liquid water and decreased ice content are both in closer agreement with observations. However, these changes do not result in any substantial improvement in surface radiation and there remains a warm and moist bias in the lowest part of the atmosphere. Both schemes also fail to capture the transitions from overcast to cloud-free conditions. Moreover, whereas the observed cloud layer is frequently decoupled from the surface, in the model the cloud remains coupled to the surface most of the time. The changes to the cloud scheme are an important step forward in improving the representation of Arctic clouds, but improvements in other aspects such as boundary layer turbulence, cloud radiative properties, sensitivity to low aerosol concentrations and representation of the sea

  2. Consequences of Growing Up Poor.

    ERIC Educational Resources Information Center

    Duncan, Greg J., Ed.; Brooks-Gunn, Jeanne, Ed.

    The consequences and correlates of growing up poor as well as the mechanisms through which poverty influences children are explored. This book is organized with a primary focus on research findings and a secondary concern with policy implications. The chapters are: (1) "Poor Families, Poor Outcomes: The Well-Being of Children and Youth" (Jeanne…

  3. Ice Clouds

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Heavy water ice clouds almost completely obscure the surface in Vastitas Borealis.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 69.5, Longitude 283.6 East (76.4 West). 19 meter/pixel resolution.

  4. Cirrus cloud iridescence: a rare case study.

    PubMed

    Sassen, Kenneth

    2003-01-20

    On the evening of 25 November 1998, a cirrus cloud revealing the pastel colors of the iridescence phenomenon was photographed and studied by a polarization lidar system at the University of Utah Facility for Atmospheric Remote Sensing (FARS). The diffraction of sunlight falling on relatively minute cloud particles, which display spatial gradients in size, is the cause of iridescence. According to the 14-year study of midlatitude cirrus clouds at FARS, cirrus rarely produce even poor iridescent patches, making this particularly long-lived and vivid occurrence unique. In this unusually high (13.2-14.4-km) and cold (-69.7 degrees to -75.5 degrees) tropopause-topped cirrus cloud, iridescence was noted from approximately 6.0 degrees to approximately 13.5 degrees from the Sun. On the basis of simple diffraction theory, this indicates the presence of particles of 2.5-5.5-microm effective diameter. The linear depolarization ratios of delta = 0.5 measured by the lidar verify that the cloud particles were nonspherical ice crystals. The demonstration that ice clouds can generate iridescence has led to the conclusion that iridescence is rarely seen in midlatitude cirrus clouds because populations of such small particles do not exist for long in the presence of the relatively high water-vapor supersaturations needed for ice-particle nucleation.

  5. Separation/preconcentration of ultra-trace levels of inorganic Sb and Se from different sample matrices by charge transfer sensitized ion-pairing using ultrasonic-assisted cloud point extraction prior to their speciation and determination by hydride generation AAS.

    PubMed

    Altunay, Nail; Gürkan, Ramazan

    2016-10-01

    In the existing study, a new, simple and low cost process for separation/preconcentration of ultra-trace level of inorganic Sb and Se from natural waters, beverages and foods using ultrasonic-assisted cloud point extraction (UA-CPE) prior to their speciation and determination by hydride generation AAS, is proposed. The process is based on charge transfer sensitized complex formations of Sb(III) and Se(IV) with 3-amino-7-dimethylamino-2-methylphenazine hydrochloride (Neutral red, NRH(+)) in presence of pyrogallol and cetyltrimethylammonium bromide (CTAB) as both sensitivity enhancement and counter ion at pH 6.0. Under the optimized reagent conditions, the calibration curves were highly linear in the ranges of 8-300ngL(-1) and 12-250ngL(-1) (r(2)≥0.993) for Se(IV) and Sb(III), respectively. The limits of detection were 2.45 and 3.60ngL(-1) with sensitivity enhancement factors of 155 and 120, respectively. The recovery rate was higher than 96% with a relative standard deviation lower than 5.3% for five replicate measurements of 25, 75 and 150ngL(-1) Se(IV) and Sb(III), respectively. The method was validated by analysis of two certified reference materials (CRMs), and was successfully applied to the accurate and reliable speciation and determination of the contents of total Sb/Sb(III), and total Se/Se(IV) after UA-CPE of the pretreated sample matrices with and without pre-reduction with a mixture of l-cysteine and tartaric acid. Their Sb(V) and Se(VI) contents were calculated from the differences between total Sb and Sb(III) and/or total Se and Se(IV) levels.

  6. Direct Observations of Excess Solar Absorption by Clouds

    NASA Technical Reports Server (NTRS)

    Pilewskie, Peter; Valero, Francisco P. J.

    1995-01-01

    Aircraft measurements of solar flux in the cloudy tropical atmosphere reveal that solar absorption by clouds is anomalously large when compared to theoretical estimates. The ratio of cloud forcing at an altitude of 20 kilometers to that at the surface is 1.58 rather than 1.0 as predicted by models. These results were derived from a cloud radiation experiment in which identical instrumentation was deployed on coordinated stacked aircraft. These findings indicate a significant difference between measurements and theory and imply that the interaction between clouds and solar radiation is poorly understood.

  7. Limits to Cloud Susceptibility

    NASA Technical Reports Server (NTRS)

    Coakley, James A., Jr.

    2002-01-01

    1-kilometer AVHRR observations of ship tracks in low-level clouds off the west coast of the U S. were used to determine limits for the degree to which clouds might be altered by increases in anthropogenic aerosols. Hundreds of tracks were analyzed to determine whether the changes in droplet radii, visible optical depths, and cloud top altitudes that result from the influx of particles from underlying ships were consistent with expectations based on simple models for the indirect effect of aerosols. The models predict substantial increases in sunlight reflected by polluted clouds due to the increases in droplet numbers and cloud liquid water that result from the elevated particle concentrations. Contrary to the model predictions, the analysis of ship tracks revealed a 15-20% reduction in liquid water for the polluted clouds. Studies performed with a large-eddy cloud simulation model suggested that the shortfall in cloud liquid water found in the satellite observations might be attributed to the restriction that the 1-kilometer pixels be completely covered by either polluted or unpolluted cloud. The simulation model revealed that a substantial fraction of the indirect effect is caused by a horizontal redistribution of cloud water in the polluted clouds. Cloud-free gaps in polluted clouds fill in with cloud water while the cloud-free gaps in the surrounding unpolluted clouds remain cloud-free. By limiting the analysis to only overcast pixels, the current study failed to account for the gap-filling predicted by the simulation model. This finding and an analysis of the spatial variability of marine stratus suggest new ways to analyze ship tracks to determine the limit to which particle pollution will alter the amount of sunlight reflected by clouds.

  8. The polarization lidar technique for cloud research - A review and current assessment

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    1991-01-01

    The development of the polarization lidar technique is reviewed, and the current capabilities and limitations of the technique for the cloud research are discussed. At present, polarization lidar is a key component of climate-research programs designed to characterize the properties of cirrus clouds and is an integral part of multiple remote-sensor studies of mixed-phase cloud systems such as winter mountain storms, making it possible to discriminate between cloud phases and to identify some particle types and orientations. Recent theoretical approaches involving ice crystal ray-tracing and cloud microphysical-model simulations are expected to increase the utility of the polarization lidar technique.

  9. Ice Nuclei Production in Volcanic Clouds

    NASA Astrophysics Data System (ADS)

    Few, A. A.

    2012-12-01

    The paper [Durant et al., 2008] includes a review of research on ice nucleation in explosive volcanic clouds in addition to reporting their own research on laboratory measurements focused on single-particle ice nucleation. Their research as well as the research they reviewed were concerned with the freezing of supercooled water drops (250 to 260 K) by volcanic ash particles acting as ice freezing nuclei. Among their conclusions are: Fine volcanic ash particles are very efficient ice freezing nuclei. Volcanic clouds likely contain fine ash concentrations 104 to 105 times greater than found in meteorological clouds. This overabundance of ice nuclei will produce a cloud with many small ice crystals that will not grow larger as they do in meteorological clouds because the cloud water content is widely distributed among the numerous small ice crystals. The small ice crystals have a small fall velocity, thus volcanic clouds are very stable. The small ice crystals are easily lofted into the stratosphere transporting water and adsorbed trace gasses. In this paper we examine the mechanism for the production of the small ice nuclei and develop a simple model for calculating the size of the ice nuclei based upon the distribution of magma around imbedded bubbles. We also have acquired a volcanic bomb that exhibits bubble remnants on its entire surface. The naturally occurring fragments from the volcanic bomb reveal a size distribution consistent with that predicted by the simple model. Durant, A. J., R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst (2008), Ice nucleation and overseeding of ice in volcanic clouds, J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064.

  10. OMMYDCLD: a New A-train Cloud Product that Co-locates OMI and MODIS Cloud and Radiance Parameters onto the OMI Footprint

    NASA Technical Reports Server (NTRS)

    Fisher, Brad; Joiner, Joanna; Vasilkov, Alexander; Veefkind, Pepijn; Platnick, Steven; Wind, Galina

    2014-01-01

    Clouds cover approximately 60% of the earth's surface. When obscuring the satellite's field of view (FOV), clouds complicate the retrieval of ozone, trace gases and aerosols from data collected by earth observing satellites. Cloud properties associated with optical thickness, cloud pressure, water phase, drop size distribution (DSD), cloud fraction, vertical and areal extent can also change significantly over short spatio-temporal scales. The radiative transfer models used to retrieve column estimates of atmospheric constituents typically do not account for all these properties and their variations. The OMI science team is preparing to release a new data product, OMMYDCLD, which combines the cloud information from sensors on board two earth observing satellites in the NASA A-Train: Aura/OMI and Aqua/MODIS. OMMYDCLD co-locates high resolution cloud and radiance information from MODIS onto the much larger OMI pixel and combines it with parameters derived from the two other OMI cloud products: OMCLDRR and OMCLDO2. The product includes histograms for MODIS scientific data sets (SDS) provided at 1 km resolution. The statistics of key data fields - such as effective particle radius, cloud optical thickness and cloud water path - are further separated into liquid and ice categories using the optical and IR phase information. OMMYDCLD offers users of OMI data cloud information that will be useful for carrying out OMI calibration work, multi-year studies of cloud vertical structure and in the identification and classification of multi-layer clouds.

  11. Cloud Processed CCN Affect Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R., Jr.; Tabor, S. S.

    2015-12-01

    Variations in the bimodality/monomodality of CCN spectra (Hudson et al. 2015) exert opposite effects on cloud microphysics in two aircraft field projects. The figure shows two examples, droplet concentration, Nc, and drizzle liquid water content, Ld, against classification of CCN spectral modality. Low ratings go to balanced separated bimodal spectra, high ratings go to single mode spectra, strictly monomodal 8. Intermediate ratings go merged modes, e.g., one mode a shoulder of another. Bimodality is caused by mass or hygroscopicity increases that go only to CCN that made activated cloud droplets. In the Ice in Clouds Experiment-Tropical (ICE-T) small cumuli with lower Nc, greater droplet mean diameters, MD, effective radii, re, spectral widths, σ, cloud liquid water contents, Lc, and Ld were closer to more bimodal (lower modal ratings) below cloud CCN spectra whereas clouds with higher Nc, smaller MD, re, σ, and Ld were closer to more monomodal CCN (higher modal ratings). In polluted stratus clouds of the MArine Stratus/Stratocumulus Experiment (MASE) clouds that had greater Nc, and smaller MD, re, σ, Lc, and Ld were closer to more bimodal CCN spectra whereas clouds with lower Nc, and greater MD, re, σ, Lc, and Ld were closer to more monomodal CCN. These relationships are opposite because the dominant ICE-T cloud processing was coalescence whereas chemical transformations (e.g., SO2 to SO4) were dominant in MASE. Coalescence reduces Nc and thus also CCN concentrations (NCCN) when droplets evaporate. In subsequent clouds the reduced competition increases MD and σ, which further enhance coalescence and drizzle. Chemical transformations do not change Nc but added sulfate enhances droplet and CCN solubility. Thus, lower critical supersaturation (S) CCN can produce more cloud droplets in subsequent cloud cycles, especially for the low W and effective S of stratus. The increased competition reduces MD, re, and σ, which inhibit coalescence and thus reduce drizzle

  12. Investigation of trace gas to aerosol relationships over biomass burning areas using daily satellite observations

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas; Penning de Vries, Marloes; Zörner, Jan; Beirle, Steffen

    2014-05-01

    The quantification and characterization of aerosols from space is a great challenge. Especially in the presence of clouds and over land surfaces, it is often difficult to distinguish the signals of aerosol scattering from scattering by cloud particles or surface reflection. Instead of deriving aerosol properties directly, satellite observations of tropospheric trace gases, emitted by the same emission sources as the aerosols, can be used to derive additional information on the aerosols. Such observations have two potential advantages: First, from the composition of trace gases, information on the aerosol type can be derived. Second, such observations are possible in the presence of clouds (although usually with reduced sensitivity if the trace gases are located below the cloud). In this feasibility study we investigate the relationship between satellite observations of trace gases (CO, NO2, HCHO, CHOCHO) and AOD (measured from satellite or ground). We also include in our comparison satellite observations of the so called UV aerosol index (UVAI), which is an indicator of the aerosol absorption. Like the trace gas observations, also the UVAI can be retrieved in the presence of clouds. We investigate aerosol-trace gas relationships over biomass burning regions. Depending on their optical properties and altitude distribution such aerosols can have a strong impact on the atmospheric energy budget through direct and indirect effects. We perform correlation analyses for selected AERONET stations and also for larger biomass burning areas by also taking into account satellite observations of fire counts.

  13. Quantum heat traces

    NASA Astrophysics Data System (ADS)

    Avramidi, Ivan G.

    2017-02-01

    We study new invariants of elliptic partial differential operators acting on sections of a vector bundle over a closed Riemannian manifold that we call the relativistic heat trace and the quantum heat traces. We obtain some reduction formulas expressing these new invariants in terms of some integral transforms of the usual classical heat trace and compute the asymptotics of these invariants. The coefficients of these asymptotic expansion are determined by the usual heat trace coefficients (which are locally computable) as well as by some new global invariants.

  14. First Results from the OMI Rotational Raman Scattering Cloud Pressure Algorithm

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Vasilkov, Alexander P.

    2006-01-01

    We have developed an algorithm to retrieve scattering cloud pressures and other cloud properties with the Aura Ozone Monitoring Instrument (OMI). The scattering cloud pressure is retrieved using the effects of rotational Raman scattering (RRS). It is defined as the pressure of a Lambertian surface that would produce the observed amount of RRS consistent with the derived reflectivity of that surface. The independent pixel approximation is used in conjunction with the Lambertian-equivalent reflectivity model to provide an effective radiative cloud fraction and scattering pressure in the presence of broken or thin cloud. The derived cloud pressures will enable accurate retrievals of trace gas mixing ratios, including ozone, in the troposphere within and above clouds. We describe details of the algorithm that will be used for the first release of these products. We compare our scattering cloud pressures with cloud-top pressures and other cloud properties from the Aqua Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument. OMI and MODIS are part of the so-called A-train satellites flying in formation within 30 min of each other. Differences between OMI and MODIS are expected because the MODIS observations in the thermal infrared are more sensitive to the cloud top whereas the backscattered photons in the ultraviolet can penetrate deeper into clouds. Radiative transfer calculations are consistent with the observed differences. The OMI cloud pressures are shown to be correlated with the cirrus reflectance. This relationship indicates that OMI can probe through thin or moderately thick cirrus to lower lying water clouds.

  15. Noctilucent Cloud Sightings

    NASA Video Gallery

    Polar Mesospheric Clouds form during each polar region's summer months in the coldest place in the atmosphere, 50 miles above Earth's surface. Noctilucent Clouds were first observed in 1885 by an a...

  16. Cloud Computing for radiologists.

    PubMed

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  17. Observational evidence for cloud cover enhancement over western European forests

    NASA Astrophysics Data System (ADS)

    Teuling, Adriaan J.; Taylor, Christopher M.; Meirink, Jan Fokke; Melsen, Lieke A.; Miralles, Diego G.; van Heerwaarden, Chiel C.; Vautard, Robert; Stegehuis, Annemiek I.; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau

    2017-01-01

    Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas.

  18. Observational evidence for cloud cover enhancement over western European forests

    PubMed Central

    Teuling, Adriaan J.; Taylor, Christopher M.; Meirink, Jan Fokke; Melsen, Lieke A.; Miralles, Diego G.; van Heerwaarden, Chiel C.; Vautard, Robert; Stegehuis, Annemiek I.; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau

    2017-01-01

    Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas. PMID:28074840

  19. The Kimball Free-Cloud Model: A Failed Innovation in Chemical Education?

    ERIC Educational Resources Information Center

    Jensen, William B.

    2014-01-01

    This historical review traces the origins of the Kimball free-cloud model of the chemical bond, otherwise known as the charge-cloud or tangent-sphere model, and the central role it played in attempts to reform the introductory chemical curriculum at both the high school and college levels in the 1960s. It also critically evaluates the limitations…

  20. Computer animation of clouds

    SciTech Connect

    Max, N.

    1994-01-28

    Computer animation of outdoor scenes is enhanced by realistic clouds. I will discuss several different modeling and rendering schemes for clouds, and show how they evolved in my animation work. These include transparency-textured clouds on a 2-D plane, smooth shaded or textured 3-D clouds surfaces, and 3-D volume rendering. For the volume rendering, I will present various illumination schemes, including the density emitter, single scattering, and multiple scattering models.

  1. Comparing Point Clouds

    DTIC Science & Technology

    2004-04-01

    Point clouds are one of the most primitive and fundamental surface representations. A popular source of point clouds are three dimensional shape...acquisition devices such as laser range scanners. Another important field where point clouds are found is in the representation of high-dimensional...framework for comparing manifolds given by point clouds is presented in this paper. The underlying theory is based on Gromov-Hausdorff distances, leading

  2. Cloud detection and classification based on MAX-DOAS observations

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Dörner, S.; Friess, U.; Remmers, J.; Shaiganfar, R.

    2013-12-01

    Multi-AXis-Differential Optical Absorption Spectroscopy (MAX-DOAS) observations of aerosols and trace gases can be strongly influenced by clouds. Thus it is important to identify clouds and characterise their properties. In this study we investigate the effects of clouds on several quantities which can be derived from MAX-DOAS observations, like the radiance, the colour index (radiance ratio at two selected wavelengths), the absorption of the oxygen dimer O4 and the fraction of inelastically scattered light (Ring effect). To identify clouds, these quantities can be either compared to their corresponding clear sky reference values, or their dependencies on time or viewing direction can be analysed. From the investigation of the temporal variability the influence of clouds can be identified even for individual measurements. Based on our investigations we developed a cloud classification scheme, which can be applied in a flexible way to MAX-DOAS or zenith DOAS observations: in its simplest version, zenith observations of the colour index are used to identify the presence of clouds (or high aerosol load). In more sophisticated versions, also other quantities and viewing directions are considered, which allows sub-classifications like e.g. thin or thick clouds, or fog. We applied our cloud classification scheme to MAX-DOAS observations during the CINDI campaign in the Netherlands in Summer 2009 and found very good agreement with sky images taken from ground.

  3. Cloud detection and classification based on MAX-DOAS observations

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Apituley, A.; Beirle, S.; Dörner, S.; Friess, U.; Remmers, J.; Shaiganfar, R.

    2014-05-01

    Multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations of aerosols and trace gases can be strongly influenced by clouds. Thus, it is important to identify clouds and characterise their properties. In this study we investigate the effects of clouds on several quantities which can be derived from MAX-DOAS observations, like radiance, the colour index (radiance ratio at two selected wavelengths), the absorption of the oxygen dimer O4 and the fraction of inelastically scattered light (Ring effect). To identify clouds, these quantities can be either compared to their corresponding clear-sky reference values, or their dependencies on time or viewing direction can be analysed. From the investigation of the temporal variability the influence of clouds can be identified even for individual measurements. Based on our investigations we developed a cloud classification scheme, which can be applied in a flexible way to MAX-DOAS or zenith DOAS observations: in its simplest version, zenith observations of the colour index are used to identify the presence of clouds (or high aerosol load). In more sophisticated versions, other quantities and viewing directions are also considered, which allows subclassifications like, e.g., thin or thick clouds, or fog. We applied our cloud classification scheme to MAX-DOAS observations during the Cabauw intercomparison campaign of Nitrogen Dioxide measuring instruments (CINDI) campaign in the Netherlands in summer 2009 and found very good agreement with sky images taken from the ground and backscatter profiles from a lidar.

  4. A survey of molecular clouds in the outer Galaxy with the highest spatial resolution

    NASA Astrophysics Data System (ADS)

    Matsuo, Mitsuhiro; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Nishimura, Atsushi; Nakanishi, Hiroyuki; Kuno, Nario; Fujita, Shinji; Tosaki, Tomoka; Tsuda, Yuya; Yamagishi, Mitsuyoshi; Kohno, Mikito; FUGIN team

    2017-03-01

    We report a recent result of the FUGIN project, a Galactic plane CO survey using the Nobeyama 45-m Telescope and the FOREST receiver. In the third galactic quadrant, 42 square degrees are observed and 4752 molecular clouds are detected. Among them, 12 clouds are located at R (distance from the Galactic center) > 16 kpc. Molecular clouds at R < 16 kpc trace the Local, Perseus, and Outer arms.

  5. Cloud Computing Explained

    ERIC Educational Resources Information Center

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  6. Clouds in Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    West, R.

    1999-01-01

    In the terrestrial atmosphere clouds are familiar as vast collections of small water drops or ice cyrstals suspended in the air. The study of clouds touches on many facets of armospheric science. The chemistry of clouds is tied to the chemistry of the surrounding atmosphere.

  7. Security in the cloud.

    PubMed

    Degaspari, John

    2011-08-01

    As more provider organizations look to the cloud computing model, they face a host of security-related questions. What are the appropriate applications for the cloud, what is the best cloud model, and what do they need to know to choose the best vendor? Hospital CIOs and security experts weigh in.

  8. Federal Supervisors and Poor Performers

    DTIC Science & Technology

    1999-07-01

    This report looks at the prevalence of poor performance in the Federal workplace from the perspective of employees and supervisors. The report also...examines what supervisors do about poor performers, the effects of supervisors’ actions, and the factors that influence supervisors’ decisions about how they will handle inadequate performance.

  9. The Etiology of Poor Neighborhoods.

    ERIC Educational Resources Information Center

    Greenberg, Stanley B.

    The inner city aggregations of blacks, Appalachian whites, and Mexicans are not simply the focal points for short-term instability or remedial governmental programs: they are the first native American urban poor. The poor neighborhoods of America's inner city are a result of three great population movements. One originated in the Atlantic Coastal…

  10. Characterisation of cloud properties from MAX-DOAS observations

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas; Remmers, Julia; Beirle, Steffen; Dörner, Steffen; Shaiganfar, Reza; Ziegler, Marc

    2013-04-01

    Multi AXis (MAX-) DOAS observations observe the scattered sun light a various, mostly slant, elevation angles. From MAX-DOAS observations it is possible to retrieve the vertical column density of several important trace gases like NO2, HCHO, SO2, H2O, BrO, and also aerosol extinction. Usually, limited profile information for the lowest atmospheric layers (below about 5 km) can be obtained. Clouds strongly affect the atmospheric radiation transport. Thus they also have a strong effect on the interpretation of MAX-DOAS results. In many cases, especially for high clouds, it is still possible to retrieve reasonable trace gas and aerosol results in the presence of clouds. However, for low clouds and in particular for optically thick and vertically extended clouds, usually no meaningful MAX-DOAS retrievals are possible. Thus accurate information on cloud properties is crucial for the characterisation of the uncertainties of MAX-DOAS observations. In this study we investigate the suitability of several cloud-sensitive quantities, which can be retrieved from the MAX-DOAS observations themselves. Besides the measured radiance, we also analyse the so called colour index (intensity ratio at selected wavelengths), the absorption of the oxygen molecule (O2) and the oxygen dimer (O4) as well as the Ring effect. The effects of clouds on these quantities is investigated in detail and the respective results are related to cloud information based on sky images taken from ground and satellite. In addition also radiative transfer simulations are performed. As a main result of our studies we present recommendations for robust and effective cloud classification schemes based on MAX-DOAS observations.

  11. Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment - Part 1: Distributions and variability

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil; Albrecht, Bruce A.; Feingold, Graham; Jonsson, Haflidi H.; Chuang, Patrick; Donaher, Shaunna L.

    2016-07-01

    Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March-April 2010), which took place off Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter (TO) research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics.The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 in Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 and 10 µm (diameter), particles that are large enough to be effective giant cloud condensation nuclei (CCN). The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer), Africa (Saharan air layer), and mid-latitudes (continental pollution plumes). Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period.The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ˜ 3 km, while most clouds were less than 1 km

  12. Thin Lens Ray Tracing.

    ERIC Educational Resources Information Center

    Gatland, Ian R.

    2002-01-01

    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  13. Probing exoplanet clouds with optical phase curves.

    PubMed

    Muñoz, Antonio García; Isaak, Kate G

    2015-11-03

    Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve--from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4-0.5.

  14. Probing exoplanet clouds with optical phase curves

    PubMed Central

    Muñoz, Antonio García; Isaak, Kate G.

    2015-01-01

    Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve—from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4–0.5. PMID:26489652

  15. INFRARED DARK CLOUDS IN THE SMALL MAGELLANIC CLOUD?

    SciTech Connect

    Lee, Min-Young; Stanimirovic, Snezana; Devine, Kathryn E.; Ott, Juergen; Van Loon, Jacco Th.; Oliveira, Joana M.; Bolatto, Alberto D.; Jones, Paul A.; Cunningham, Maria R. E-mail: sstanimi@astro.wisc.edu E-mail: jott@nrao.edu E-mail: joana@astro.keele.ac.uk E-mail: pjones@phys.unsw.edu.au

    2009-10-15

    We have applied the unsharp-masking technique to the 24 {mu}m image of the Small Magellanic Cloud (SMC), obtained with the Spitzer Space Telescope, to search for high-extinction regions. This technique has been used to locate very dense and cold interstellar clouds in the Galaxy, particularly infrared dark clouds (IRDCs). Fifty-five candidate regions of high extinction, namely, high-contrast regions (HCRs), have been identified from the generated decremental contrast image of the SMC. Most HCRs are located in the southern bar region and mainly distributed in the outskirts of CO clouds, but most likely contain a significant amount of H{sub 2}. HCRs have a peak contrast at 24 {mu}m of 2%-2.5% and a size of 8-14 pc. This corresponds to the size of typical and large Galactic IRDCs, but Galactic IRDCs are 2-3 times darker at 24 {mu}m than our HCRs. To constrain the physical properties of the HCRs, we have performed NH{sub 3}, N{sub 2}H{sup +}, HNC, HCO{sup +}, and HCN observations toward one of the HCRs, HCR LIRS36-east, using the Australia Telescope Compact Array and the Mopra single-dish radio telescope. We did not detect any molecular line emission, however, our upper limits to the column densities of molecular species suggest that HCRs are most likely moderately dense with n {approx} 10{sup 3} cm{sup -3}. This volume density is in agreement with predictions for the cool atomic phase in low-metallicity environments. We suggest that HCRs may be tracing clouds at the transition from atomic to molecule-dominated medium, and could be a powerful way to study early stages of gas condensation in low-metallicity galaxies. Alternatively, if made up of dense molecular clumps <0.5 pc in size, HCRs could be counterparts of Galactic IRDCs, and/or regions with highly unusual abundance of very small dust grains.

  16. Cloud microstructure studies

    NASA Technical Reports Server (NTRS)

    Blau, H. H., Jr.; Fowler, M. G.; Chang, D. T.; Ryan, R. T.

    1972-01-01

    Over two thousand individual cloud droplet size distributions were measured with an optical cloud particle spectrometer flown on the NASA Convair 990 aircraft. Representative droplet spectra and liquid water content, L (gm/cu m) were obtained for oceanic stratiform and cumuliform clouds. For non-precipitating clouds, values of L range from 0.1 gm/cu m to 0.5 gm/cu m; with precipitation, L is often greater than 1 gm/cu m. Measurements were also made in a newly formed contrail and in cirrus clouds.

  17. Non-precipitating cumulus cloud study

    SciTech Connect

    Alkezweeny, A.J.

    1984-10-01

    This document describes the field experiment that was conducted in Kentucky during the period from July 20 to August 24, 1983. The objectives were to determine the vertical transport of acidic pollutants by cumulus convection and formation of acidic substances in non-precipitating clouds. The study is a research component of Task Group C (Atmospheric Processes) of the National Acid Precipitation Assessment Program. To examine the vertical transport, an SF/sub 6/ tracer was released from one aircraft, sampled by another aircraft, and sampled on the ground. The results show that pollutants from the boundary layer are lifted to the cloud layer. From there, they are intermittently transported both to the ground and to higher elevations, possibly in the vertical updrafts of towering cumulus clouds. A series of instrumented aircraft flights around the clouds were conducted to study the formation of acidic aerosols. The concentrations of SO/sub 2/, SO/sub 4/, NO/sub 3/, NH/sub 4/, NH/sub 3/, HNO/sub 3/ and trace metals were measured by filter techniques. Furthermore, NO/sub x/, O/sub 3/, light scattering, and basic meteorological parameters were measured in real-time. Detailed chemical composition of aerosols and NH/sub 3/ was also measured on the ground. Preliminary results show that the molar ratio of SO/sub 2//SO/sub 2/ + SO/sub 4/) at cloud tops is higher than at cloud bases. This indicates that sulfate aerosols were formed in the clouds. The NH/sub 3/ concentration shows higher values at nighttime than daytime and decreases sharply with increasing altitude. 3 references.

  18. Recent Ice Ages on Mars: The role of radiatively active clouds and cloud microphysics

    NASA Astrophysics Data System (ADS)

    Madeleine, J.-B.; Head, J. W.; Forget, F.; Navarro, T.; Millour, E.; Spiga, A.; Colaïtis, A.; Määttänen, A.; Montmessin, F.; Dickson, J. L.

    2014-07-01

    Global climate models (GCMs) have been successfully employed to explain the origin of many glacial deposits on Mars. However, the latitude-dependent mantle (LDM), a dust-ice mantling deposit that is thought to represent a recent "Ice Age," remains poorly explained by GCMs. We reexamine this question by considering the effect of radiatively active water-ice clouds (RACs) and cloud microphysics. We find that when obliquity is set to 35°, as often occurred in the past 2 million years, warming of the atmosphere and polar caps by clouds modifies the water cycle and leads to the formation of a several centimeter-thick ice mantle poleward of 30° in each hemisphere during winter. This mantle can be preserved over the summer if increased atmospheric dust content obscures the surface and provides dust nuclei to low-altitude clouds. We outline a scenario for its deposition and preservation that compares favorably with the characteristics of the LDM.

  19. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds

    DTIC Science & Technology

    2012-09-30

    and cloud observations in trade wind cumulus clouds using the CIRPAS aircraft with the cloud radar was designed and carried out. The observational...gradients in cloud properties off the coast. Further from the South Florida area of fair-weather cumulus clouds (Jan. 2008) where clouds with both...marine and continental characteristics were observed. This was followed by a set of observations made in 2010 of cumulus clouds in off of Barbados

  20. Theoretical development of Monte Carlo codes for modeling cumulus cloud fields

    NASA Technical Reports Server (NTRS)

    Welch, R. M.

    1984-01-01

    Reflected fluxes are calculated for stratocumulus cloud fields as a function of skycover, cloud aspect ratio, and cloud shape. Cloud liquid water volume is held invariant as cloud shape is varied so that the results can be utilized more effectively by general circulation models and climate models. On the basis of required accuracy in the Earth Radiation Budget Experiment program, an order of magnitude value of 10 W/sq m is used to estimate significant differences between plane parallel and broken cloudiness. This limit is exceeded for cloud covers between 10% and 90%, indicating that plane paralel calculations are not satisfactory at most values of cloud cover. The choice of cloud shape also leads to large differences in reflected fluxes. These differences are traced to the anisotropic intensity pattern out the cloud sides, to the size and shape of the holes between clouds, and to variations in cloud area as viewed from the solar direction. An empirical relationship for effective cloud cover is given at solar zenith angle of theta = 60 deg. This relationship allows for the relatively accurate (delta F = 10 - 15 W/sq m.) computation of broken cloud field reflected fluxes from plane parallel calculations.

  1. Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events

    NASA Astrophysics Data System (ADS)

    Wang, P.; Tuinder, O. N. E.; Tilstra, L. G.; Stammes, P.

    2011-12-01

    Cloud and aerosol information is needed in trace gas retrievals from satellite measurements. The Fast REtrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm employs reflectance spectra of the O2 A band around 760 nm to derive cloud pressure and effective cloud fraction. In general, clouds contribute more to the O2 A band reflectance than aerosols. Therefore, the FRESCO algorithm does not correct for aerosol effects in the retrievals and attributes the retrieved cloud information entirely to the presence of clouds, and not to aerosols. For events with high aerosol loading, aerosols may have a dominant effect, especially for almost cloud-free scenes. We have analysed FRESCO cloud data and Absorbing Aerosol Index (AAI) data from the Global Ozone Monitoring Experiment (GOME-2) instrument on the Metop-A satellite for events with typical absorbing aerosol types, such as volcanic ash, desert dust and smoke. We find that the FRESCO effective cloud fractions are correlated with the AAI data for these absorbing aerosol events and that the FRESCO cloud pressures contain information on aerosol layer pressure. For cloud-free scenes, the derived FRESCO cloud pressures are close to those of the aerosol layer for optically thick aerosols. For cloudy scenes, if the strongly absorbing aerosols are located above the clouds, then the retrieved FRESCO cloud pressures may represent the height of the aerosol layer rather than the height of the clouds. Combining FRESCO cloud data and AAI, an estimate for the aerosol layer pressure can be given, which can be beneficial for aviation safety and operations in case of e.g. volcanic ash plumes.

  2. Cloud water composition over the southeastern Pacific

    NASA Astrophysics Data System (ADS)

    Beem, K. B.; Lee, T.; Shen, X.; Li, Y.; Collett, J. L., Jr.

    2010-07-01

    Cloud water was collected over the remote southeastern Pacific off the coast of northern Chile in October and November 2008. Samples were collected with an axial-flow cloud water collector aboard the NSF/NCAR C-130 aircraft. Multiple samples were collected during each flight in a wing pod canister. Sample pH was measured on-site after each flight while samples for peroxide, formaldehyde, a suite of organic acids, total organic carbon, sulfur (IV), trace metals and major ions (Cl-, NO3-, SO42-, Na+, NH4+, K+, Ca2+, and Mg2+) were preserved on-site and analyzed after the field campaign. Over the 5 week study period there were 14 flights and 73 samples collected. Our work provides a set of key cloud chemistry measurements for this remote region of the world. The results presented here will address the chemical composition of marine clouds present in the study region, examine spatial variability in cloud composition, and address the relative importance and rates of aqueous S(IV) oxidation by hydrogen peroxide, by ozone, and by oxygen (catalyzed by iron and manganese). Sample pH varied somewhat significantly over the course of the campaign, the highest pH measured was 7.2 while the lowest was 2.9. Concentrations of major anions and cations also varied significantly from flight to flight and on some flights from sample to sample. Unsurprisingly, an average of all samples indicates that Na+ and Cl comprised the largest fraction of measured anions and cations followed by SO42-, Mg2+, NH4+, Ca2+, NO3-, and K+. In addition, total mass was dominated by inorganic species with organic matter contributing only 4% of the mass. The majority of organic species have not been identified. Of the identified organic species formaldehyde, oxalate, formate, and acetate contributed the most to the mass and combined account for 10% mass of organics. Cloud processing is an important pathway for oxidation of SO2 to sulfate. Aqueous S(IV) oxidation by hydrogen peroxide, by ozone, and by trace

  3. Educational attainment in poor comprehenders

    PubMed Central

    Ricketts, Jessie; Sperring, Rachael; Nation, Kate

    2014-01-01

    To date, only one study has investigated educational attainment in poor (reading) comprehenders, providing evidence of poor performance on national UK school tests at age 11 years relative to peers (Cain and Oakhill, 2006). In the present study, we adopted a longitudinal approach, tracking attainment on such tests from 11 years to the end of compulsory schooling in the UK (age 16 years). We aimed to investigate the proposal that educational weaknesses (defined as poor performance on national assessments) might become more pronounced over time, as the curriculum places increasing demands on reading comprehension. Participants comprised 15 poor comprehenders and 15 controls; groups were matched for chronological age, nonverbal reasoning ability and decoding skill. Children were identified at age 9 years using standardized measures of nonverbal reasoning, decoding and reading comprehension. These measures, along with a measure of oral vocabulary knowledge, were repeated at age 11 years. Data on educational attainment were collected from all participants (n = 30) at age 11 and from a subgroup (n = 21) at 16 years. Compared to controls, educational attainment in poor comprehenders was lower at ages 11 and 16 years, an effect that was significant at 11 years. When poor comprehenders were compared to national performance levels, they showed significantly lower performance at both time points. Low educational attainment was not evident for all poor comprehenders. Nonetheless, our findings point to a link between reading comprehension difficulties in mid to late childhood and poor educational outcomes at ages 11 and 16 years. At these ages, pupils in the UK are making key transitions: they move from primary to secondary schools at 11, and out of compulsory schooling at 16. PMID:24904464

  4. OH 18 cm TRANSITION AS A THERMOMETER FOR MOLECULAR CLOUDS

    SciTech Connect

    Ebisawa, Yuji; Inokuma, Hiroshi; Yamamoto, Satoshi; Sakai, Nami; Menten, Karl M.; Maezawa, Hiroyuki

    2015-12-10

    We have observed the four hyperfine components of the 18 cm OH transition toward the translucent cloud eastward of Heiles Cloud 2 (HCL2E), the cold dark cloud L134N, and the photodissociation region of the ρ-Ophiuchi molecular cloud with the Effelsberg 100 m telescope. We have found intensity anomalies among the hyperfine components in all three regions. In particular, an absorption feature of the 1612 MHz satellite line against the cosmic microwave background has been detected toward HCL2E and two positions of the ρ-Ophiuchi molecular cloud. On the basis of statistical equilibrium calculations, we find that the hyperfine anomalies originate from the non-LTE population of the hyperfine levels, and can be used to determine the kinetic temperature of the gas over a wide range of H{sub 2} densities (10{sup 2}–10{sup 7} cm{sup −3}). Toward the center of HCL2E, the gas kinetic temperature is determined to be 53 ± 1 K, and it increases toward the cloud peripheries (∼60 K). The ortho-to-para ratio of H{sub 2} is determined to be 3.5 ± 0.9 from the averaged spectrum for the eight positions. In L134N, a similar increase of the temperature is also seen toward the periphery. In the ρ-Ophiuchi molecular cloud, the gas kinetic temperature decreases as a function of the distance from the exciting star HD 147889. These results demonstrate a new aspect of the OH 18 cm line that can be used as a good thermometer of molecular cloud envelopes. The OH 18 cm line can be used to trace a new class of warm molecular gas surrounding a molecular cloud, which is not well traced by the emission of CO and its isotopologues.

  5. OH 18 cm Transition as a Thermometer for Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Ebisawa, Yuji; Inokuma, Hiroshi; Sakai, Nami; Menten, Karl M.; Maezawa, Hiroyuki; Yamamoto, Satoshi

    2015-12-01

    We have observed the four hyperfine components of the 18 cm OH transition toward the translucent cloud eastward of Heiles Cloud 2 (HCL2E), the cold dark cloud L134N, and the photodissociation region of the ρ-Ophiuchi molecular cloud with the Effelsberg 100 m telescope. We have found intensity anomalies among the hyperfine components in all three regions. In particular, an absorption feature of the 1612 MHz satellite line against the cosmic microwave background has been detected toward HCL2E and two positions of the ρ-Ophiuchi molecular cloud. On the basis of statistical equilibrium calculations, we find that the hyperfine anomalies originate from the non-LTE population of the hyperfine levels, and can be used to determine the kinetic temperature of the gas over a wide range of H2 densities (102-107 cm-3). Toward the center of HCL2E, the gas kinetic temperature is determined to be 53 ± 1 K, and it increases toward the cloud peripheries (˜60 K). The ortho-to-para ratio of H2 is determined to be 3.5 ± 0.9 from the averaged spectrum for the eight positions. In L134N, a similar increase of the temperature is also seen toward the periphery. In the ρ-Ophiuchi molecular cloud, the gas kinetic temperature decreases as a function of the distance from the exciting star HD 147889. These results demonstrate a new aspect of the OH 18 cm line that can be used as a good thermometer of molecular cloud envelopes. The OH 18 cm line can be used to trace a new class of warm molecular gas surrounding a molecular cloud, which is not well traced by the emission of CO and its isotopologues.

  6. Interpretation of MODIS Cloud Images by CloudSat/CALIPSO Cloud Vertical Profiles

    NASA Astrophysics Data System (ADS)

    Wang, T.; Fetzer, E. J.; Wong, S.; Yue, Q.

    2015-12-01

    Clouds observed by passive remote-sensing imager (Aqua-MODIS) are collocated to cloud vertical profiles observed by active profiling sensors (CloudSat radar and CALIPSO lidar) at the pixel-scale. By comparing different layers of cloud types classified in the 2B-CLDCLASS-LIDAR product from CloudSat+CALIPSO to those cloud properties observed by MODIS, we evaluate the occurrence frequencies of cloud types and cloud-overlap in CloudSat+CALIPSO for each MODIS cloud regime defined by cloud optical depth (τ) and cloud-top pressure (P) histograms. We find that about 70% of MODIS clear sky agrees with the clear category in CloudSat+CALIPSO; whereas the remainder is either single layer (~25%) cirrus (Ci), low-level cumulus (Cu), stratocumulus (Sc), or multi-layer (<5%) clouds in CloudSat+CALIPSO. Under MODIS cloudy conditions, 60%, 28%, and 8% of the occurrences show single-, double-, and triple-layer clouds, respectively in CloudSat+CALIPSO. When MODIS identifies single-layer clouds, 50-60% of the MODIS low-level clouds are categorized as stratus (Sc) in CloudSat+CALIPSO. Over the tropics, ~70% of MODIS high and optically thin clouds (considered as cirrus in the histogram) is also identified as Ci in CloudSat+CALIPSO, and ~40% of MODIS high and optically thick clouds (considered as convective in the histogram) agrees with CloudSat+CALIPSO deep convections (DC). Over mid-latitudes these numbers drop to 45% and 10%, respectively. The best agreement occurs in tropical single-layer cloud regimes, where 90% of MODIS high-thin clouds are identified as Ci by CloudSat+CALIPSO and 60% of MODIS high-thick clouds are identified as DC. Worst agreement is found for multi-layer clouds, where cirrus on top of low- and mid-level clouds in MODIS are frequently categorized as high-thick clouds by passive imaging - among these only 5-12% are DC in CloudSat+CALIPSO. It is encouraging that both MODIS low-level clouds (regardless of optical thickness) and high-level thin clouds are consistently

  7. THE CALIFORNIA MOLECULAR CLOUD

    SciTech Connect

    Lada, Charles J.; Lombardi, Marco; Alves, Joao F. E-mail: mlombard@eso.or

    2009-09-20

    We present an analysis of wide-field infrared extinction maps of a region in Perseus just north of the Taurus-Auriga dark cloud complex. From this analysis we have identified a massive, nearby, but previously unrecognized, giant molecular cloud (GMC). Both a uniform foreground star density and measurements of the cloud's velocity field from CO observations indicate that this cloud is likely a coherent structure at a single distance. From comparison of foreground star counts with Galactic models, we derive a distance of 450 +- 23 pc to the cloud. At this distance the cloud extends over roughly 80 pc and has a mass of {approx} 10{sup 5} M{sub sun}, rivaling the Orion (A) molecular cloud as the largest and most massive GMC in the solar neighborhood. Although surprisingly similar in mass and size to the more famous Orion molecular cloud (OMC) the newly recognized cloud displays significantly less star formation activity with more than an order of magnitude fewer young stellar objects than found in the OMC, suggesting that both the level of star formation and perhaps the star formation rate in this cloud are an order of magnitude or more lower than in the OMC. Analysis of extinction maps of both clouds shows that the new cloud contains only 10% the amount of high extinction (A{sub K} > 1.0 mag) material as is found in the OMC. This, in turn, suggests that the level of star formation activity and perhaps the star formation rate in these two clouds may be directly proportional to the total amount of high extinction material and presumably high density gas within them and that there might be a density threshold for star formation on the order of n(H{sub 2}) {approx} a few x 10{sup 4} cm{sup -3}.

  8. Silicon photonics cloud (SiCloud)

    NASA Astrophysics Data System (ADS)

    DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram

    2015-02-01

    We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.

  9. The response of the Seasat and Magsat infrared horizon scanners to cold clouds

    NASA Technical Reports Server (NTRS)

    Bilanow, S.; Phenneger, M.

    1980-01-01

    Cold clouds over the Earth are shown to be the principal cause of pitch and roll measurement noise in flight data from the infrared horizon scanners onboard Seasat and Magsat. The observed effects of clouds on the fixed threshold horizon detection logic of the Magsat scanner and on the variable threshold detection logic of the Seasat scanner are discussed. National Oceanic and Atmospheric Administration (NOAA) Earth photographs marked with the scanner ground trace clearly confirm the relationship between measurement errors and Earth clouds. A one to one correspondence can be seen between excursion in the pitch and roll data and cloud crossings. The characteristics of the cloud-induced noise are discussed, and the response of the satellite control systems to the cloud errors is described. Changes to the horizon scanner designs that would reduce the effects of clouds are noted.

  10. HI Clouds Near the Galactic Center: Possible Tracers of the Nuclear Wind

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.; McClure-Griffiths, Naomi; DiTeodoro, Enrico

    2017-01-01

    We have used the Green Bank Telescope to discover more than one hundred neutral hydrogen clouds that appear to be embedded in the Fermi Bubble -- the Milky Way’s nuclear wind. With the other members of this population that were previously found with the Australia Telescope Compact Array, we now have a sample of about 200 such clouds. They are identified by their peculiar velocities. The cloud kinematics show no trace of Galactic rotation or association with the Galactic bar. Near longitude zero the clouds can have values of VLSR = +-200 km/s. No clouds have been detected with |VLSR| > 350 km/s. The clouds are concentrated toward the Galactic plane, but some are still found to |b|=10 degrees, or z > 1 kpc at the Galactic Center, where the current surveys end. These clouds are important tracers of conditions in the nuclear wind of the Milky Way.

  11. Trace Elements and Health

    ERIC Educational Resources Information Center

    Pettyjohn, Wayne A.

    1972-01-01

    Summarizes the effects of arsenic, lead, zinc, mercury, and cadmium on human health, indicates the sources of the elements in water, and considers the possibility of students in high schools analyzing water for trace amounts of the elements. (AL)

  12. Trace Organic Analysis

    ERIC Educational Resources Information Center

    Ember, Lois R.

    1978-01-01

    Trace organic analysis (TOA) is seen as a more useful way to quantify environmental pollutants. Current practices and future trends are discussed in detail. Seven steps in TOA are identified: collection, storage, extraction, concentration, isolation, identification, and quantification. (MA)

  13. SMEAT atmosphere trace contaminants.

    NASA Technical Reports Server (NTRS)

    Schornick, J. L.; Heinrich, C. T.; Garcia, G. S., Jr.; Verostko, C. E.

    1973-01-01

    The atmosphere trace contaminant analysis support provided for the Skylab Medical Experiments Altitude Test (SMEAT) which was conducted from July 26 through September 20, 1972, at the JSC Crew Systems Division facility is discussed. Sample acquisition techniques and analytical instrumentation methodology utilized for identification and quantification of the trace contaminants are described. Emphasis is placed on the contaminants found, their occurrence patterns, and possible sources.

  14. What is a Cloud?

    NASA Astrophysics Data System (ADS)

    Long, C. N.; Wu, W.

    2013-12-01

    There are multiple factors that cause disagreements between differing methods using differing instruments to infer cloud amounts. But along with these issues is a fundamental concern that has permeated all comparisons and supersedes such questions as what are the uncertainty estimates of a given retrieval. To wit: what is a cloud? How can uncertainty of a cloud amount measurement be determined when there is no absolute 'truth' on what defines a cloud, as opposed to cloud-free? Recent research comparing a decade of surface- and satellite-based retrievals of cloud amount for the ARM Southern Great Plains site shows significant disagreements. While Total Sky Imager 100-degree FOV, Shortwave (SW) Radiative Flux Analysis, GOES satellite and PATMOS-x satellite amounts agree relatively well, ISCCP satellite and ARSCL time-series cloud amounts are significantly greater, 15% (ISCCP) and 8% (ARSCL) larger in average diurnal variations. In both cases, it appears that optically thin high ice is counted as 'cloud' in ARSCL and ISCCP that is not categorized as cloud by all the others. Additionally, cloud amounts from three methods (ISCCP, ARSCL, and GOES) show an overall increase of 8%-10% in the annually averaged cloud fractions from 1998 to 2009, while those from the other three (TSI, SWFA, PATMOS-x) show little trend for this period. So one wonders: are cloud amounts increasing or not over this period? The SW Flux Analysis used sky imager retrievals as 'truth' in development of the methodology (Long et al, 2006a), where sky imagery itself used human observations as the model (Long et al., 2006b). Min et al. (2008) then used SW Flux Analysis retrievals as 'truth' to develop an MFRSR-based spectral SW retrieval method. Dupont et al. (2008) show that the SW-based retrievals allow up to a visible optical depth of 0.15 (95% of occurrences) under the 'clear-sky' category which primarily consists of sub-visual cirrus, which by ancestry applies to spectral SW, sky imager and human

  15. TraceContract

    NASA Technical Reports Server (NTRS)

    Kavelund, Klaus; Barringer, Howard

    2012-01-01

    TraceContract is an API (Application Programming Interface) for trace analysis. A trace is a sequence of events, and can, for example, be generated by a running program, instrumented appropriately to generate events. An event can be any data object. An example of a trace is a log file containing events that a programmer has found important to record during a program execution. Trace - Contract takes as input such a trace together with a specification formulated using the API and reports on any violations of the specification, potentially calling code (reactions) to be executed when violations are detected. The software is developed as an internal DSL (Domain Specific Language) in the Scala programming language. Scala is a relatively new programming language that is specifically convenient for defining such internal DSLs due to a number of language characteristics. This includes Scala s elegant combination of object-oriented and functional programming, a succinct notation, and an advanced type system. The DSL offers a combination of data-parameterized state machines and temporal logic, which is novel. As an extension of Scala, it is a very expressive and convenient log file analysis framework.

  16. Trace elements in dialysis.

    PubMed

    Filler, Guido; Felder, Sarah

    2014-08-01

    In end-stage chronic kidney disease (CKD), pediatric nephrologists must consider the homeostasis of the multiple water-soluble ions that are influenced by renal replacement therapy (RRT). While certain ions such as potassium and calcium are closely monitored, little is known about the handling of trace elements in pediatric dialysis. RRT may lead to accumulation of toxic trace elements, either due to insufficient elimination or due to contamination, or to excessive removal of essential trace elements. However, trace elements are not routinely monitored in dialysis patients and no mechanism for these deficits or toxicities has been established. This review summarizes the handling of trace elements, with particular attention to pediatric data. The best data describe lead and indicate that there is a higher prevalence of elevated lead (Pb, atomic number 82) levels in children on RRT when compared to adults. Lead is particularly toxic in neurodevelopment and lead levels should therefore be monitored. Monitoring of zinc (Zn, atomic number 30) and selenium (Se, atomic number 34) may be indicated in the monitoring of all pediatric dialysis patients to reduce morbidity from deficiency. Prospective studies evaluating the impact of abnormal trace elements and the possible therapeutic value of intervention are required.

  17. Submm-Wave Radiometry for Cloud/Humidity/Precipitation Sciences

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2011-01-01

    Although active sensors can provide cloud profiles at good vertical resolution, clouds are often coupled with dynamics to form fast and organized structures. Lack of understanding of these organized systems leads to great challenge for numerical models. The deficiency is partly reflected, for example, in poorly modeled intraseasonal variations (e.g., MJD). Remote sensing clouds in the middle and upper troposphere has been challenging from space. Vis/IR sensors are sensitive to the topmost cloud layers whereas low-frequency MW techniques are sensitivity to liquid and precipitation at the bottom of cloud layers. The middle-level clouds, mostly in the ice phase, require a sensor that has moderate penetration and sensitivity to cloud scattering, in order to measure cloud water content. Sensors at submm wavelengths provide promising sensitivity and coverage with the spatial resolution needed to measure cloud water content floating in the upper air. In addition, submm-wave sensors are able to provide better measurements of upper-tropospheric humidity than traditional microwave instruments.

  18. Cloud Forensics Issues

    DTIC Science & Technology

    2014-07-01

    I N S T I T U T E F O R D E F E N S E A N A L Y S E S Cloud Forensics Issues William R. Simpson Coimbatore Chandersekaran 1 July 2014 IDA...252.227-7013 (a)(16) [Sep 2011]. Cloud Forensics Issues William R Simpson and Coimbatore Chandersekaran Abstract— Forensics is...offerings of cloud capabilities have not provided security, monitoring or attribution that would allow an effective forensics investigation. The high

  19. Cryptographic Cloud Storage

    NASA Astrophysics Data System (ADS)

    Kamara, Seny; Lauter, Kristin

    We consider the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer. We describe, at a high level, several architectures that combine recent and non-standard cryptographic primitives in order to achieve our goal. We survey the benefits such an architecture would provide to both customers and service providers and give an overview of recent advances in cryptography motivated specifically by cloud storage.

  20. Ammonia Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Ammonia Ice Clouds on Jupiter

    In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds (appearing as bright blue areas) as they form and disperse over five successive Jupiter 'days.' Scientists noted how the larger cloud travels along with a small, local deep hole.

  1. SparkClouds: visualizing trends in tag clouds.

    PubMed

    Lee, Bongshin; Riche, Nathalie Henry; Karlson, Amy K; Carpendale, Sheelash

    2010-01-01

    Tag clouds have proliferated over the web over the last decade. They provide a visual summary of a collection of texts by visually depicting the tag frequency by font size. In use, tag clouds can evolve as the associated data source changes over time. Interesting discussions around tag clouds often include a series of tag clouds and consider how they evolve over time. However, since tag clouds do not explicitly represent trends or support comparisons, the cognitive demands placed on the person for perceiving trends in multiple tag clouds are high. In this paper, we introduce SparkClouds, which integrate sparklines into a tag cloud to convey trends between multiple tag clouds. We present results from a controlled study that compares SparkClouds with two traditional trend visualizations—multiple line graphs and stacked bar charts—as well as Parallel Tag Clouds. Results show that SparkClouds ability to show trends compares favourably to the alternative visualizations.

  2. Effects of observed horizontal inhomogeneities within cirrus clouds on solar radiative transfer

    NASA Astrophysics Data System (ADS)

    Buschmann, Nicole; McFarquhar, Greg M.; Heymsfield, Andrew J.

    2002-10-01

    In situ microphysical and combined radar and radiometer measurements of 11 cirrus clouds from Central Equatorial Pacific Experiment (CEPEX), European Cloud and Radiation Experiment (EUCREX), investigation of Clouds by Ground-Based and Airborne Radar and Lidar (CARL), and First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) are used to investigate effects of horizontal cloud inhomogeneities on solar radiative transfer. A three-dimensional ray-tracing model (GRIMALDI), based on the Monte Carlo method, is used to calculate upward and downward flux densities and absorption for the spectral range from 0.38 to 4.0 μm. Radiative flux densities are calculated using the inhomogeneous clouds derived from the observations and for horizontally and vertically averaged homogeneous clouds. Horizontally averaged values of radiative flux densities and absorption for heterogeneous clouds can differ by up to 30% from those calculated for the homogeneous clouds for convectively induced tropical cirrus clouds. The midlatitude cases examined tended to be more homogeneous, and hence differences between radiative properties for the homogeneous and heterogeneous clouds did not exceed 10%. For cirrus clouds with mean optical thicknesses smaller than 5 and with relative variances of optical thickness smaller than 0.2, errors caused by the homogeneous assumption are smaller than ±10%.

  3. Retrieval of cloud height from SCIAMACHY using oxygen absorption around 630nm

    NASA Astrophysics Data System (ADS)

    Grzegorski, Michael; Deutschmann, Tim; Platt, Ulrich; Wang, Ping; Wagner, Thomas

    2010-05-01

    The SCanning Imaging Absorption spectrometer for Atmospheric ChartographY (SCIAMACHY) on ENVISAT allows measurements of different atmospheric trace gases (e.g. O3, NO2, SO2, CH4, HCHO, CO, BrO, H2O, O2, O4) using the DOAS technique. The HICRU algorithm retrieves cloud height using the spectral analysis of the oxygen absorption around 630nm combined with results of the Monte-Carlo model TRACY-II and a new SCIAMACHY surface albedo database. The results are compared to: 1.) cloud height retrievals of other satellite instruments (MERIS, MODIS) 2.) ISCCP climatology 3.) SCIAMACHY cloud algorithms (SACURA, FRESCO+) 4.) LIDAR/RADAR measurements. For low clouds, the HICRU algorithm retrieves cloud heights more close to the the top, because of the assumption of an appropriate cloud model with a realistic estimation of the scattering inside the cloud. It is also demonstrated, that none the three SCIAMACHY cloud algorithms HICRU, SACURA and FRESCO+ is able to retrieve the top of high clouds because of principal characteristics of the retrieval methods based on oxygen absorption. But oxygen absorptions can provide important additional information on the vertical cloud structure and multiple cloud layers if the method is combined with cloud-top-retrieval using windows in the thermal infrared. An application of these concepts to the GOSAT instrument will be discussed.

  4. Cloud Computing: An Overview

    NASA Astrophysics Data System (ADS)

    Qian, Ling; Luo, Zhiguo; Du, Yujian; Guo, Leitao

    In order to support the maximum number of user and elastic service with the minimum resource, the Internet service provider invented the cloud computing. within a few years, emerging cloud computing has became the hottest technology. From the publication of core papers by Google since 2003 to the commercialization of Amazon EC2 in 2006, and to the service offering of AT&T Synaptic Hosting, the cloud computing has been evolved from internal IT system to public service, from cost-saving tools to revenue generator, and from ISP to telecom. This paper introduces the concept, history, pros and cons of cloud computing as well as the value chain and standardization effort.

  5. JINR cloud infrastructure evolution

    NASA Astrophysics Data System (ADS)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  6. The management of poor performance

    PubMed Central

    Mayberry, John F

    2007-01-01

    Identification of poor performance is in an integral part of government policy. The suggested approach for the identification of such problems, advocated by the General Medical Council, is that of appraisal. However, traditionally, there has been a reluctance to deal with poor performers, as all doctors have made mistakes and are usually only too ready to forgive and be non‐critical of colleagues. The problems are widespread, and 6% of the senior hospital workforce in any 5‐year period may have problems. PMID:17308213

  7. Blue metal-poor stars

    NASA Astrophysics Data System (ADS)

    Preston, George W.; Sneden, Christopher

    2004-12-01

    We review the discovery of blue metal-poor (BMP) stars and the resolution of this population into blue stragglers and intermediate-age Main-Sequence stars by use of binary fractions. We show that the specific frequencies of blue stragglers in the halo field and in globular clusters differ by an order of magnitude. We attribute this difference to the different modes of production of these two populations. We report carbon and s-process enrichment among very metal-poor field blue stragglers and discuss how this result can be used to further resolve field blue stragglers into groups formed during RGB and AGB evolution of their erstwhile primary companions.

  8. Air-sea interactions and cirrus cloud-radiation feedbacks on climate

    NASA Technical Reports Server (NTRS)

    Somerville, Richard C. J.; Iacobellis, Sam

    1988-01-01

    A single cloud-radiation feedback mechanism, which may play a role in the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases, is described. An improved radiative-convective model was developed and used to study the role of cirrus clouds in the optical thickness feedback mechanism. The model includes prescribed relative humidity and ozone profiles and a surface energy balance. The results suggest that the cloud optical thickness feedback mechanism can cause a substantial reduction in the surface warming due to doubling CO2, even in the presence of cirrus clouds.

  9. Clouds enhance Greenland ice sheet meltwater runoff.

    PubMed

    Van Tricht, K; Lhermitte, S; Lenaerts, J T M; Gorodetskaya, I V; L'Ecuyer, T S; Noël, B; van den Broeke, M R; Turner, D D; van Lipzig, N P M

    2016-01-12

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m(-2). Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  10. Clouds enhance Greenland ice sheet meltwater runoff

    PubMed Central

    Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.; van den Broeke, M. R.; Turner, D. D.; van Lipzig, N. P. M.

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m−2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise. PMID:26756470

  11. Clouds enhance Greenland ice sheet meltwater runoff

    NASA Astrophysics Data System (ADS)

    Van Tricht, Kristof; Lhermitte, Stef; Lenaerts, Jan T. M.; Gorodetskaya, Irina V.; L'Ecuyer, Tristan S.; Noël, Brice; van den Broeke, Michiel R.; Turner, David D.; van Lipzig, Nicole P. M.

    2016-04-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m-2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  12. Rain chemistry and cloud composition and microphysics in a Caribbean tropical montane cloud forest under the influence of African dust

    NASA Astrophysics Data System (ADS)

    Torres-Delgado, Elvis; Valle-Diaz, Carlos J.; Baumgardner, Darrel; McDowell, William H.; González, Grizelle; Mayol-Bracero, Olga L.

    2015-04-01

    It is known that huge amounts of mineral dust travels thousands of kilometers from the Sahara and Sahel regions in Africa over the Atlantic Ocean reaching the Caribbean, northern South America and southern North America; however, not much is understood about how the aging process that takes place during transport changes dust properties, and how the presence of this dust affects cloud's composition and microphysics. This African dust reaches the Caribbean region mostly in the summer time. In order to improve our understanding of the role of long-range transported African dust (LRTAD) in cloud formation processes in a tropical montane cloud forest (TMCF) in the Caribbean region we had field campaigns measuring dust physical and chemical properties in summer 2013, as part of the Puerto Rico African Dust and Cloud Study (PRADACS), and in summer 2014, as a part of the Luquillo Critical Zone Observatory (LCZO) and in collaboration with the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE). Measurements were performed at the TMCF of Pico del Este (PE, 1051 masl) and at the nature reserve of Cabezas de San Juan (CSJ, 60 masl). In both stations we monitored meteorological parameters (e.g., temperature, wind speed, wind direction). At CSJ, we measured light absorption and scattering at three wavelengths (467, 528 and 652 nm). At PE we collected cloud and rainwater and monitored cloud microphysical properties (e.g., liquid water content, droplet size distribution, droplet number concentration, effective diameter and median volume diameter). Data from aerosol models, satellites, and back-trajectories were used together with CSJ measurements to classify air masses and samples collected at PE in the presence or absence of dust. Soluble ions, insoluble trace metals, pH and conductivity were measured for cloud and rainwater. Preliminary results for summer 2013 showed that in the presence of LRTAD (1) the average conductivity of cloud water

  13. HI clouds in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kim, S.

    We present HI and Halpha surveys of the Large Magellanic Cloud (LMC) with the Australia Telescope Compact Array, the Parkes multibeam receiver, and the 16 inch optical telescope at the Siding Spring Observatory (SSO). Using a Fourier-plane technique, we have merged both ATCA and Parkes observations, providing an accurate set of images of the LMC sensitive to structure on scales of 9 pc upward. The spatial dynamic range (2.8 orders of magnitude), velocity resolution (1.649 km/sec per channel) allow for studies of phenomena ranging from the galaxy-wide interaction of the LMC with its close neighbors to the small-scale injection of energy from supernovae and stellar associations into the ISM of the LMC. On the large scale, the HI disk appears to be remarkably symmetric and to have a well-organized and orderly, if somewhat complex, rotational field. The bulk of the HI resides in a disk of 7.3 kpc in diameter. The mass of disk component of the LMC is 2.5 x10^9 M[sun ]and the mass within a radius of 4 kpc is about 3.5 x 10^9 M[sun ]. The structure of the neutral atomic ISM in the LMC is dominated by HI filaments combined with numerous shell, holes, and HI clouds. 23 HI supergiant shells and 103 giant shells are catalogued. Supergiant shells are defined as those regions whose extent is much larger than the HI scale height. The size distribution of HI shells follows a crude power law, N(log R) =AR^-1.5 . The HI clouds have been identified by defining a cloud to be an object composed of all pixels in right ascension, declination, and velocity that are connected and that lie above the threshold brightness temperature. The size spectrum of HI clouds is similar to the typical size spectrum of holes and shells in the HI distribution. The relationship between the size and the velocity dispersion of HI cloud is found to have the power law relationship so called as Larson's scaling law. A slope of the power law varies from 1.2 to 1.6. The virial masses of HI clouds range from 10

  14. The Power of Poor Communications

    ERIC Educational Resources Information Center

    Schaub, Alfred R.

    1975-01-01

    Most breakdowns in communications are the result of the quest for power on behalf of organization members, not the result of poor communications training. Organizational power may be accrued by withholding information, sabotaging communications, refusing to communicate bad news to superiors, and avoiding confrontations by not communicating at all.…

  15. Standard and Poor's Rich Website

    ERIC Educational Resources Information Center

    DiMaria, Frank

    2006-01-01

    To help parents investigate and locate quality school districts and to help policy-makers, principals, and superintendents to make well-informed decisions about education, Standard and Poor's has launched a website called SchoolMatters.com. It is recognized by the U.S. Department of Education and featured on its website (www.ed.gov/parents).…

  16. Prospects for the Working Poor

    ERIC Educational Resources Information Center

    Miller, S. M.

    1970-01-01

    Based on a chapter entitled "Barriers to Employment of the Disadvantaged by Martin Deutsch and S. M. Miller in "Manpower Report of the President, 1968. Discusses the Nixon proposals for remediating poverty in relation to the socioeconomic factors operating to maintain the condition of being poor while working. (JM)

  17. Educating Canada's Urban Poor Children.

    ERIC Educational Resources Information Center

    Maynes, Bill; Foster, Rosemary

    2000-01-01

    Presents six critical thoughts and questions about educating poor urban children in Canada. These thoughts were derived from the development of a directory of Canadian educational poverty programs. Findings from that study emphasize the increasing diversity of the student population, the importance of temporary and large-scale funding, and the…

  18. Lost in Cloud

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Shetye, Sandeep D.; Chilukuri, Sri; Sturken, Ian

    2012-01-01

    Cloud computing can reduce cost significantly because businesses can share computing resources. In recent years Small and Medium Businesses (SMB) have used Cloud effectively for cost saving and for sharing IT expenses. With the success of SMBs, many perceive that the larger enterprises ought to move into Cloud environment as well. Government agency s stove-piped environments are being considered as candidates for potential use of Cloud either as an enterprise entity or pockets of small communities. Cloud Computing is the delivery of computing as a service rather than as a product, whereby shared resources, software, and information are provided to computers and other devices as a utility over a network. Underneath the offered services, there exists a modern infrastructure cost of which is often spread across its services or its investors. As NASA is considered as an Enterprise class organization, like other enterprises, a shift has been occurring in perceiving its IT services as candidates for Cloud services. This paper discusses market trends in cloud computing from an enterprise angle and then addresses the topic of Cloud Computing for NASA in two possible forms. First, in the form of a public Cloud to support it as an enterprise, as well as to share it with the commercial and public at large. Second, as a private Cloud wherein the infrastructure is operated solely for NASA, whether managed internally or by a third-party and hosted internally or externally. The paper addresses the strengths and weaknesses of both paradigms of public and private Clouds, in both internally and externally operated settings. The content of the paper is from a NASA perspective but is applicable to any large enterprise with thousands of employees and contractors.

  19. Cloud-Vegetation Radiative Interaction: What Can We Learn from it about Cloud Optical Properties?

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Evans, Keith; Wiscombe, Warren

    2004-01-01

    Because of their radiative interactions, the vegetation canopy and the atmosphere are coupled together; each serves as a boundary condition to the radative transfer equations in the adjacent medium. To better understand radiative processes in these media we need an accurate description of their interactions. This presentation outlines a technique needed to describe interactions between vegetation and clouds and exploits it to retrieve cloud optical depth from ground-based radiance measurements. measurements of zenith radiance in the RED and NIR spectral regions. In addition to an algebraic combinations of spectral radiances such as Normalized Difference Cloud Index (NDCI) that can result in poor retrievals due to its insensitivity to cloud fraction, both RED and NIR radiances as points on the "RED vs. NIR" plane are proposed to be used for retrieval. The proposed method is applied to a multi-channel sunphotometer (as a part of AERONET) measurements at the ARM site in Oklahoma. In addition to cloud optical depth, the new method also infers a "radiatively effective" cloud fraction.

  20. Trace Fossil Analysis

    NASA Astrophysics Data System (ADS)

    Hasiotis, Stephen T.

    2009-05-01

    Today, the study of trace fossils—ichnology—is an important subdiscipline of geology at the interface of paleontology and sedimentology, mostly because of the efforts of Adolf Seilacher. His ability to synthesize various aspects of ichnology and produce a hierarchy of marine ichna and sedimentary facies has made ichnology useful worldwide in interpreting paleodiversity, rates of sedimentation, oxygenation of bottom water and sediment pore water, and depositional energy. Seilacher's book Trace Fossil Analysis provides a glimpse into the mind, methodology, and insights of the father of modern ichnology, generated from his course notes as a professor and a guest lecturer. The title sounds misleading—readers looking for up-to-date principles and approaches to trace fossil analysis in marine and continental strata will be disappointed. In his preface, however, Seilacher clearly gives direction for the use of his text: “This is a course book—meaning that it is intended to confer not knowledge, but skill.” Thus, it is not meant as a total compilation of all trace fossils, ichnotaxonomy, ichnological interpretations, applications, or the most relevant and up-to-date references. Rather, it takes the reader on a personal journey, explaining how trace fossils are understood in the context of their three-dimensional (3-D) morphology and sedimentary facies.

  1. Are poor Chinese text comprehenders also poor in written composition?

    PubMed

    Guan, Connie Qun; Ye, Feifei; Meng, Wanjin; Leong, Che Kan

    2013-10-01

    We studied the performance in three genres of Chinese written composition (narration, exposition, and argumentation) of 158 grade 4, 5, and 6 poor Chinese text comprehenders compared with 156 good Chinese text comprehenders. We examined text comprehension and written composition relationship. Verbal working memory (verbal span working memory and operation span working memory) and different levels of linguistic tasks-morphological sensitivity (morphological compounding and morphological chain), sentence processing (syntax construction and syntax integrity), and text comprehension (narrative and expository texts)-were used to predict separately narrative, expository, and argumentation written compositions in these students. Grade for grade, the good text comprehenders outperformed the poor text comprehenders in all tasks, except for morphological chain. Hierarchical multiple regression analyses showed differential contribution of the tasks to different genres of writing. In particular, text comprehension made unique contribution to argumentation writing in the poor text comprehenders. Future studies should ask students to read and write parallel passages in the same genre for better comparison and incorporate both instructional and motivational variables.

  2. Simultaneous observations of aerosol-cloud-albedo interactions with three stacked unmanned aerial vehicles.

    PubMed

    Roberts, G C; Ramana, M V; Corrigan, C; Kim, D; Ramanathan, V

    2008-05-27

    Aerosol impacts on climate change are still poorly understood, in part, because the few observations and methods for detecting their effects are not well established. For the first time, the enhancement in cloud albedo is directly measured on a cloud-by-cloud basis and linked to increasing aerosol concentrations by using multiple autonomous unmanned aerial vehicles to simultaneously observe the cloud microphysics, vertical aerosol distribution, and associated solar radiative fluxes. In the presence of long-range transport of dust and anthropogenic pollution, the trade cumuli have higher droplet concentrations and are on average brighter. Our observations suggest a higher sensitivity of radiative forcing by trade cumuli to increases in cloud droplet concentrations than previously reported owing to a constrained droplet radius such that increases in droplet concentrations also increase cloud liquid water content. This aerosol-cloud forcing efficiency is as much as -60 W m(-2) per 100% percent cloud fraction for a doubling of droplet concentrations and associated increase of liquid water content. Finally, we develop a strategy for detecting aerosol-cloud interactions based on a nondimensional scaling analysis that relates the contribution of single clouds to albedo measurements and illustrates the significance of characterizing cloud morphology in resolving radiometric measurements. This study demonstrates that aerosol-cloud-albedo interactions can be directly observed by simultaneous observations below, in, and above the clouds.

  3. Deployment of the third-generation infrared cloud imager: A two-year study of Arctic clouds at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Nugent, Paul Winston

    Cloud cover is an important but poorly understood component of current climate models, and although climate change is most easily observed in the Arctic, cloud data in the Arctic is unreliable or simply unavailable. Ground-based infrared cloud imaging has the potential to fill this gap. This technique uses a thermal infrared camera to observe cloud amount, cloud optical depth, and cloud spatial distribution at a particular location. The Montana State University Optical Remote Sensor Laboratory has developed the ground-based Infrared Cloud Imager (ICI) instrument to measure spatial and temporal cloud data. To build an ICI for Arctic sites required the system to be engineered to overcome the challenges of this environment. Of particular challenge was keeping the system calibration and data processing accurate through the severe temperature changes. Another significant challenge was that weak emission from the cold, dry Arctic atmosphere pushed the camera used in the instrument to its operational limits. To gain an understanding of the operation of the ICI systems for the Arctic and to gather critical data on Arctic clouds, a prototype arctic ICI was deployed in Barrow, AK from July 2012 through July 2014. To understand the long-term operation of an ICI in the arctic, a study was conducted of the ICI system accuracy in relation to co-located active and passive sensors. Understanding the operation of this system in the Arctic environment required careful characterization of the full optical system, including the lens, filter, and detector. Alternative data processing techniques using decision trees and support vector machines were studied to improve data accuracy and reduce dependence on auxiliary instrument data and the resulting accuracy is reported here. The work described in this project was part of the effort to develop a fourth-generation ICI ready to be deployed in the Arctic. This system will serve a critical role in developing our understanding of cloud cover

  4. Fast cloud parameter retrievals of MIPAS/Envisat

    NASA Astrophysics Data System (ADS)

    Spang, R.; Arndt, K.; Dudhia, A.; Höpfner, M.; Hoffmann, L.; Hurley, J.; Grainger, R. G.; Griessbach, S.; Poulsen, C.; Remedios, J. J.; Riese, M.; Sembhi, H.; Siddans, R.; Waterfall, A.; Zehner, C.

    2012-08-01

    The infrared limb spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the Envisat satellite include detailed information on tropospheric clouds and polar stratospheric clouds (PSC). However, no consolidated cloud product is available for the scientific community. Here we describe a fast prototype processor for cloud parameter retrieval from MIPAS (MIPclouds). Retrieval of parameters such as cloud top height, temperature, and extinction are implemented, as well as retrieval of microphysical parameters, e.g. effective radius and the integrated quantities over the limb path (surface area density and volume density). MIPclouds classifies clouds as either liquid or ice cloud in the upper troposphere and polar stratospheric clouds types in the stratosphere based on statistical combinations of colour ratios and brightness temperature differences. Comparison of limb measurements of clouds with model results or cloud parameters from nadir looking instruments is often difficult due to different observation geometries. We therefore introduce a new concept, the limb-integrated surface area density path (ADP). By means of validation and radiative transfer calculations of realistic 2-D cloud fields as input for a blind test retrieval (BTR), we demonstrate that ADP is an extremely valuable parameter for future comparison with model data of ice water content, when applying limb integration (ray tracing) through the model fields. In addition, ADP is used for a more objective definition of detection thresholds of the applied detection methods. Based on BTR, a detection threshold of ADP = 107 μm2 cm-2 and an ice water content of 10-5 g m-3 is estimated, depending on the horizontal and vertical extent of the cloud. Intensive validation of the cloud detection methods shows that the limb-sounding MIPAS instrument has a sensitivity in detecting stratospheric and tropospheric clouds similar to that of space- and ground-based lidars, with a tendency

  5. Learning in the Clouds?

    ERIC Educational Resources Information Center

    Butin, Dan W.

    2013-01-01

    Engaged learning--the type that happens outside textbooks and beyond the four walls of the classroom--moves beyond right and wrong answers to grappling with the uncertainties and contradictions of a complex world. iPhones back up to the "cloud." GoogleDocs is all about "cloud computing." Facebook is as ubiquitous as the sky.…

  6. Weather Fundamentals: Clouds. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in…

  7. On Cloud Nine

    ERIC Educational Resources Information Center

    McCrea, Bridget; Weil, Marty

    2011-01-01

    Across the U.S., innovative collaboration practices are happening in the cloud: Sixth-graders participate in literary salons. Fourth-graders mentor kindergarteners. And teachers use virtual Post-it notes to advise students as they create their own television shows. In other words, cloud computing is no longer just used to manage administrative…

  8. Cloud Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with cloud-resolving models (CRMs). CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (with sizes ranging from about 2-200 km). CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. This paper provides a brief discussion and review of the main characteristics of CRMs as well as some of their major applications. These include the use of CRMs to improve our understanding of: (1) convective organization, (2) cloud temperature and water vapor budgets, and convective momentum transport, (3) diurnal variation of precipitation processes, (4) radiative-convective quasi-equilibrium states, (5) cloud-chemistry interaction, (6) aerosol-precipitation interaction, and (7) improving moist processes in large-scale models. In addition, current and future developments and applications of CRMs will be presented.

  9. Clouds in Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    West, R.; Murdin, P.

    2000-11-01

    What are clouds? The answer to that question is both obvious and subtle. In the terrestrial atmosphere clouds are familiar as vast collections of small water drops or ice crystals suspended in the air. In the atmospheres of Venus, Mars, Jupiter, Saturn, Saturn's moon Titan, Uranus, Neptune, and possibly Pluto, they are composed of several other substances including sulfuric acid, ammonia, hydroge...

  10. Stack Trace Analysis Tool

    SciTech Connect

    2013-02-19

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallell application. STAT uses the MRNet tree based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to from a single call prefix tree. The call prefix tree can be examined to identify tasks with similar function call patterns and to delineate a small set of equivalence slasses. A representative task from each of these classes can then be fed into a full feature debugger like TotalView for root cause analysis.

  11. Intraoral gothic arch tracing.

    PubMed

    Rubel, Barry; Hill, Edward E

    2011-01-01

    In order to create optimum esthetics, function and phonetics in complete denture fabrication, it is necessary to record accurate maxillo-mandibular determinants of occlusion. This requires clinical skill to establish an accurate, verifiable and reproducible vertical dimension of occlusion (VDO) and centric relation (CR). Correct vertical relation depends upon a consideration of several factors, including muscle tone, inter-dental arch space and parallelism of the ridges. Any errors made while taking maxillo-mandibular jaw relation records will result in dentures that are uncomfortable and, possibly, unwearable. The application of a tracing mechanism such as the Gothic arch tracer (a central bearing device) is a demonstrable method of determining centric relation. Intraoral Gothic arch tracers provide the advantage of capturing VDO and CR in an easy-to-use technique for practitioners. Intraoral tracing (Gothic arch tracing) is a preferred method of obtaining consistent positions of the mandible in motion (retrusive, protrusive and lateral) at a comfortable VDO.

  12. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    SciTech Connect

    Liu, Y.; Wu, W.; Jensen, M. P.; Toto, T.

    2011-07-21

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surface-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction, and cloud albedo. The analytical expression is then used to deduce a new approach for inferring cloud albedo from concurrent surface-based measurements of downwelling surface shortwave radiation and cloud fraction. High-resolution decade-long data on cloud albedos are obtained by use of this surface-based approach over the US Department of Energy's Atmospheric Radiaton Measurement (ARM) Program at the Great Southern Plains (SGP) site. The surface-based cloud albedos are further compared against those derived from the coincident GOES satellite measurements. The three long-term (1997-2009) sets of hourly data on shortwave cloud radiative forcing, cloud fraction and cloud albedo collected over the SGP site are analyzed to explore the multiscale (diurnal, annual and inter-annual) variations and covariations. The analytical formulation is useful for diagnosing deficiencies of cloud-radiation parameterizations in climate models.

  13. Polarization of clouds

    NASA Astrophysics Data System (ADS)

    Goloub, Philippe; Herman, Maurice; Parol, Frederic

    1995-12-01

    This paper reports the main results concerning polarization by clouds derived from POLDER (polarization and directionality of earth's reflectances) airborne version. These results tend to confirm the high information content in the polarization (phase, altimetry). The preliminary results of EUCREX'94 (European Cloud Radiation Experiment) evidenced the drastically different polarized signatures for ice crystals and water droplets. Here we report systematic and statistically significative observations over the whole EUCREX data set. The results show that the cirrus exhibit their own signature. Preliminary observations performed during CLEOPATRA'91 (Cloud Experiment Ober Pfaffenhofen And Transport) and EUCREX'94 campaigns have shown the feasibility of cloud altimetry using spectral information (443 nm and 865 nm) of the polarized light over liquid water droplets clouds. Altimetry technique has been generalized on ASTEX-SOFIA'92 and EUCREX'94 data sets. All these results are presented and discussed in this paper.

  14. Prebiotic chemistry in clouds

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Marshall, John; Shen, Thomas

    1991-01-01

    The chemical evolution hypothesis of Woese (1979), according to which prebiotic reactions occurred rapidly in droplets in giant atmospheric reflux columns was criticized by Scherer (1985). This paper proposes a mechanism for prebiotic chemistry in clouds that answers Scherer's concerns and supports Woese's hypothesis. According to this mechanism, rapid prebiotic chemical evolution was facilitated on the primordial earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by, or synthesized during entry of meteorites, comets, and interplanetary dust, would have been scavenged by cloud drops containing clay condensation nuclei and would be polymerized within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops.

  15. Cloud computing security.

    SciTech Connect

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    2010-10-01

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

  16. Atom trap trace analysis

    SciTech Connect

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  17. Tropospheric trace gases

    NASA Technical Reports Server (NTRS)

    Gammon, R.; Wofsy, S. C.; Cicerone, R. J.; Delany, A. C.; Harriss, R. T.; Khalil, M. A. K.; Logan, J. A.; Midgley, P.; Prather, M.

    1985-01-01

    Trace gas concentrations in the atmosphere reflect in part the overall metabolism of the biosphere, and in part the broad range of human activities such as agriculture, production of industrial chemicals, and combustion of fossil fuels and biomass. There is compelling evidence that the composition of the atmosphere is now changing. Observed trends in trace gas levels are reviewed and implications for the chemistry of the atmosphere are discussed. Throughout the discussion, particular emphasis is given to those species which are now increasing in the atmosphere.

  18. Health solutions for the poor.

    PubMed

    Castro, J L; Fujiwara, P I; Bhambal, P; Emaille-Léotard, N; Harries, A D

    2014-03-21

    The International Union Against Tuberculosis and Lung Disease (The Union) is the oldest international non-governmental organisation involved in the fight against tuberculosis. In 2008, the Institute of The Union was challenged to think boldly about the future and to develop a diverse work portfolio covering a wide spectrum of lung health and other disease-related problems. The vision adopted by The Union at that time was 'Health solutions for the poor'. More recently, there has been lengthy debate about the need for the Union to concentrate just on its core mandate of tuberculosis and lung health and for the Union's vision to reflect this narrower spectrum of activity as 'Lung health solutions for the poor'. In this viewpoint article we outline our reasons for believing that this narrower vision is incompatible with The Union's mission statement, and we argue that making such a change would be a mistake.

  19. Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges

    SciTech Connect

    Fan, Jiwen; Wang, Yuan; Rosenfeld, Daniel; Liu, Xiaohong

    2016-11-01

    Over the past decade, the number of studies that investigate aerosol-cloud interactions has increased considerably. Although tremendous progress has been made to improve our understanding of basic physical mechanisms of aerosol-cloud interactions and reduce their uncertainties in climate forcing, we are still in poor understanding of (1) some of the mechanisms that interact with each other over multiple spatial and temporal scales, (2) the feedback between microphysical and dynamical processes and between local-scale processes and large-scale circulations, and (3) the significance of cloud-aerosol interactions on weather systems as well as regional and global climate. This review focuses on recent theoretical studies and important mechanisms on aerosol-cloud interactions, and discusses the significances of aerosol impacts on raditative forcing and precipitation extremes associated with different cloud systems. Despite significant understanding has been gained about aerosol impacts on the main cloud types, there are still many unknowns especially associated with various deep convective systems. Therefore, large efforts are needed to escalate our understanding. Future directions should focus on obtaining concurrent measurements of aerosol properties, cloud microphysical and dynamic properties over a range of temporal and spatial scales collected over typical climate regimes and closure studies, as well as improving understanding and parameterizations of cloud microphysics such as ice nucleation, mixed-phase properties, and hydrometeor size and fall speed

  20. Cloud computing: a new business paradigm for biomedical information sharing.

    PubMed

    Rosenthal, Arnon; Mork, Peter; Li, Maya Hao; Stanford, Jean; Koester, David; Reynolds, Patti

    2010-04-01

    We examine how the biomedical informatics (BMI) community, especially consortia that share data and applications, can take advantage of a new resource called "cloud computing". Clouds generally offer resources on demand. In most clouds, charges are pay per use, based on large farms of inexpensive, dedicated servers, sometimes supporting parallel computing. Substantial economies of scale potentially yield costs much lower than dedicated laboratory systems or even institutional data centers. Overall, even with conservative assumptions, for applications that are not I/O intensive and do not demand a fully mature environment, the numbers suggested that clouds can sometimes provide major improvements, and should be seriously considered for BMI. Methodologically, it was very advantageous to formulate analyses in terms of component technologies; focusing on these specifics enabled us to bypass the cacophony of alternative definitions (e.g., exactly what does a cloud include) and to analyze alternatives that employ some of the component technologies (e.g., an institution's data center). Relative analyses were another great simplifier. Rather than listing the absolute strengths and weaknesses of cloud-based systems (e.g., for security or data preservation), we focus on the changes from a particular starting point, e.g., individual lab systems. We often find a rough parity (in principle), but one needs to examine individual acquisitions--is a loosely managed lab moving to a well managed cloud, or a tightly managed hospital data center moving to a poorly safeguarded cloud?

  1. Physical properties of luminous dust-poor quasars

    SciTech Connect

    Jun, Hyunsung David; Im, Myungshin E-mail: mim@astro.snu.ac.kr

    2013-12-20

    We identify and characterize a population of luminous, dust-poor quasars at 0 < z < 5 that is photometrically similar to objects previously found at z > 6. This class of active galactic nuclei is known to show little IR emission from dusty structure, but it is poorly understood in terms of number evolution and dependence on physical quantities. To better understand the properties of these quasars, we compile a rest-frame UV to IR library of 41,000 optically selected type 1 quasars with L {sub bol} > 10{sup 45.7} erg s{sup –1}. After fitting the broadband spectral energy distributions (SEDs) with accretion disk and dust components, we find 0.6% of our sample to be hot dust-poor, with rest-frame 2.3 μm to 0.51 μm flux density ratios of –0.5 dex or less. The dust-poor SEDs are blue in the UV-optical and weak in the mid-IR, such that their accretion disks are less obscured and the hot dust emission traces that of warm dust down to the dust-poor regime. At a given bolometric luminosity, dust-poor quasars are lower in black hole mass and higher in Eddington ratio than general luminous quasars, suggesting that they are in a rapidly growing evolutionary state in which the dust-poor phase appears as a short or rare phenomenon. The dust-poor fraction increases with redshift, and possible implications for their evolution are discussed.

  2. Interaction between Cassiopeia A and nearby molecular clouds

    SciTech Connect

    Kilpatrick, C. D.; Bieging, J. H.; Rieke, G. H.

    2014-12-01

    We present spectroscopy of the supernova remnant Cassiopeia A (Cas A) observed at infrared wavelengths from 10 to 40 μm with the Spitzer Space Telescope and at millimeter wavelengths in {sup 12}CO and {sup 13}CO J =2-1 (230 and 220 GHz) with the Heinrich Hertz Submillimeter Telescope. The IR spectra demonstrate high-velocity features toward a molecular cloud coincident with a region of bright radio continuum emission along the northern shock front of Cas A. The millimeter observations indicate that CO emission is broadened by a factor of two in some clouds toward Cas A, particularly to the south and west. We believe that these features trace interactions between the Cas A shock front and nearby molecular clouds. In addition, some of the molecular clouds that exhibit broadening in CO lie 1'-2' away from the furthest extent of the supernova remnant shock front. We propose that this material may be accelerated by ejecta with velocity significantly larger than the observed free-expansion velocity of the Cas A shock front. These observations may trace cloud interactions with fast-moving outflows such as the bipolar outflow along the southwest to northeast axis of the Cas A supernova remnant, as well as fast-moving knots seen emerging in other directions.

  3. Effects of cloud optical property feedbacks on the greenhouse warming

    SciTech Connect

    Molnar, G. ); Wang, Weichyung )

    1992-08-01

    Cloud optical properties, in particular the optical thickness [tau] affect the earth-atmosphere radiation budget, and their potential changes associated with climate changes may induce feedback effect. A one-dimensional radiative-convective model was used to illustrate that the difference in the vertical distribution of the radiative forcing between CO[sub 2] increase and changes of solar constant can result in a different [tau] feedback. A general circulation model, done by Wang et al., indicates that these trace gases provide an important radiative energy source for the present climate. Because the radiative-forcing behavior of CO[sub 2] is different from that of these other gases, the simulations also show that different radiative forcing can lead to quite different climatic effects. A one-dimensional model is used to investigate the [tau] feedback associated with trace gases. Because of the different changes in the [tau] vertical distributions, the [tau] feedback is calculated to be a small negative value for a CO[sub 2] increase, larger negative values for increases of trace gases, and the strongest negative feedback for CFCS. Similar experiments were also conducted using a revised version of the Somerville and Remer [tau] scheme. The results indicate that the negative feedback for CO[sub 2] increases for a single cloud layer becomes much smaller when multiple-layer clouds are used. Because this scheme assumes a strong functional dependence of the local temperature, the [tau] feedback is also found to be sensitive to model dimensionality. In addition, the strength of the [tau] feedback calculated from both schemes depend on the vertical distribution of cloud cover for the control climate, indicating the complexity of cloud-radiation interactions. Clearly, more observational and theoretical studies are needed to understand the cloud microphysics and their relation to large-scale climate variables.

  4. Practical tracing traitors

    NASA Astrophysics Data System (ADS)

    Lotspiech, Jeffrey; Jin, Hongxia

    2009-02-01

    In this paper we discuss tracing traitors systems, with a focus on a particular problem we have encountered in building a commercial system. "Tracing traitors" is a cryptographic technology that determines, when an unauthorized copy of copyrighted content is encountered, which user or users were the source of the copy by examining the copy itself. In tracing traitors systems, it has been widely assumed that any two devices in the system should have as few cryptographic keys in common as possible: then, when the variation the key decrypts is discovered in the unauthorized copy, the number of devices that could have produced that variation is minimal. This assumption is so pervasive it often is not even stated explicitly. However, tracing traitors schemes also often ignore the likely next step-once the compromised device(s) are identified, their keys must be revoked so they cannot be further used in the system. In this paper we will show that the traceability of any minimal-key-overlap system inevitably begins to degrade once some of the keys are revoked. This has caused us to question the basic value of minimal key overlap. In fact, we think that very revocation-efficient key schemes, like broadcast-encryption key trees, in which some keys are highly shared, might actually provide better traceability over the life of a practical system with actual revocation.

  5. Spectral Bayesian Knowledge Tracing

    ERIC Educational Resources Information Center

    Falakmasir, Mohammad; Yudelson, Michael; Ritter, Steve; Koedinger, Ken

    2015-01-01

    Bayesian Knowledge Tracing (BKT) has been in wide use for modeling student skill acquisition in Intelligent Tutoring Systems (ITS). BKT tracks and updates student's latent mastery of a skill as a probability distribution of a binary variable. BKT does so by accounting for observed student successes in applying the skill correctly, where success is…

  6. Minorities, the Poor and School Finance Reform. Vol. 8: A History of School Finance Reform Litigation and the Interests of Urban, Poor and Minority Children.

    ERIC Educational Resources Information Center

    Dimond, Paul R.

    As part of a nine-volume, six-state study of the impact of school finance reform on minorities and the poor, this report describes the history of court litigation concerning finance reform. The report's first part traces school finance reform from roughly 1900 through 1971 and summarizes parallel reform efforts by racial and ethnic minorities and…

  7. Towards ab initio extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Ritter, Jeremy S.; Safranek-Shrader, Chalence; Milosavljević, Miloš; Bromm, Volker

    2016-12-01

    Extremely metal-poor stars have been the focus of much recent attention owing to the expectation that their chemical abundances can shed light on the metal and dust yields of the earliest supernovae. We present our most realistic simulation to date of the astrophysical pathway to the first metal-enriched stars. We simulate the radiative and supernova hydrodynamic feedback of a 60 M⊙ Population III star starting from cosmological initial conditions realizing Gaussian density fluctuations. We follow the gravitational hydrodynamics of the supernova remnant at high spatial resolution through its freely expanding, adiabatic, and radiative phases, until gas, now metal-enriched, has resumed runaway gravitational collapse. Our findings are surprising: while the Population III progenitor exploded with a low energy of 1051 erg and injected an ample metal mass of 6 M⊙, the first cloud to collapse after the supernova explosion is a dense surviving primordial cloud on which the supernova blast wave deposited metals only superficially, in a thin, unresolved layer. The first metal-enriched stars can form at a very low metallicity, of only 2-5 × 10-4 Z⊙, and can inherit the parent cloud's highly elliptical, radially extended orbit in the dark matter gravitational potential.

  8. Tropical Warm Pool International Cloud Experiment TWP-ICE Cloud and rain characteristics in the Australian Monsoon

    SciTech Connect

    May, P.T., Jakob, C., and Mather, J.H.

    2004-05-31

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them.

  9. Community Cloud Computing

    NASA Astrophysics Data System (ADS)

    Marinos, Alexandros; Briscoe, Gerard

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.

  10. Interstellar molecular clouds

    NASA Astrophysics Data System (ADS)

    Bally, J.

    1986-04-01

    The physical properties of the molecular phase of the interstellar medium are studied with regard to star formation and the structure of the Galaxy. Most observations of molecular clouds are made with single-dish, high-surface precision radio telescopes, with the best resolution attainable at 0.2 to 1 arcmin; the smallest structures that can be resolved are of order 10 to the 17th cm in diameter. It is now believed that: (1) most of the mass of the Galaxy is in the form of giant molecular clouds; (2) the largest clouds and those responsible for most massive star formation are concentrated in spiral arms; (3) the molecular clouds are the sites of perpetual star formation, and are significant in the chemical evolution of the Galaxy; (4) giant molecular clouds determine the evolution of the kinematic properties of galactic disk stars; (5) the total gas content is diminishing with time; and (6) most clouds have supersonic internal motions and do not form stars on a free-fall time scale. It is concluded that though progress has been made, more advanced instruments are needed to inspect the processes operating within stellar nurseries and to study the distribution of the molecular clouds in more distant galaxies. Instruments presently under construction which are designed to meet these ends are presented.

  11. Optical properties of continental haze and cumulus and orographic clouds based on Space Shuttle polarimetric observations.

    PubMed

    Egan, W G; Israel, S; Sidran, M; Hindman, E E; Johnson, W R; Whitehead, V S

    1993-11-20

    Digitized Space Shuttle imagery in the red, green, and blue spectral regions (0.600, 0.540, and 0.435 µm, respectively) is used to characterize the mean radius and the index of refraction of droplets in cumulus and orographic clouds. The clouds are shown to consist concurrently of submicrometer and supermicrometer droplets, with the percent polarization indicative of the dominant sizes. Cloud development from haze as well as inhomogeneities in the cloud decks can be traced remotely. The absorption properties of clouds can also be determined remotely. An optical depth of continental haze in the same three spectral regions as the clouds is computed from the polarimetric and photometric contributions. Both Mie and Rayleigh scattering are included in the model.

  12. Trace metal speciation and bioavailability in anaerobic digestion: A review.

    PubMed

    Thanh, Pham Minh; Ketheesan, Balachandran; Yan, Zhou; Stuckey, David

    2016-01-01

    Trace metals are essential for the growth of anaerobic microorganisms, however, in practice they are often added to anaerobic digesters in excessive amounts, which can lead to inhibition. The concept of bioavailability of metals in anaerobic digestion has been poorly understood in the past, and a lack of deep understanding of the relationship between trace metal speciation and bioavailability can result in ineffective metal dosing strategies for anaerobic digesters. Sequential extraction schemes are useful for fractionating trace metals into their different forms, and metal sulfides can serve as a store and source for trace metals during anaerobic digestion, while natural/synthetic chelating agents (soluble microbial products-SMPs, extracellular polysaccharides-EPS, and EDTA/NTA) are capable of controlling trace metal bioavailability. Nevertheless, more work is needed to: investigate the speciation and bioavailability of Ca, Mg, Mn, W, and Se; compare the bioavailability of different forms of trace metals e.g. carbonates, sulfides, phosphates to different anaerobic trophic groups; determine what factors influence metal sulfide dissolution; investigate whether chelating agents can increase trace metal bioavailability; develop and adapt specialized analytical techniques, and; determine how trace metal dynamics change in an anaerobic membrane bioreactor (AnMBR).

  13. Flamingos near-infrared study of the Serpens cloud

    NASA Astrophysics Data System (ADS)

    Hasan, Priya

    We present the results of a deep near-infrared imaging survey of the Serpens Cloud made with FLAMINGOS at the 2.1 m telescope at Kitt Peak National Observatory. We study the distribution of young embedded sources using the nearest neighbor method applied to a carefully selected sample of near-infrared excess (NIRX) stars that trace the latest episode of star formation in the complex. Our analysis finds the existence of six clusters, of which three are new in the molecular cloud. We determined a median age for the cluster to be 1-2 Myr at a mean distance of 300 pc.

  14. Stormy Clouds of Star Birth

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Hidden behind a shroud of dust in the constellation Cygnus is an exceptionally bright source of radio emission called DR21. Visible light images reveal no trace of what is happening in this region because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000, 000,000,000,000 (ten thousand trillion heptillion).

    New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud.

    This image shows a 24-micron image mosaic, obtained with the Multiband Imaging Photometer aboard Spitzer (MIPS). This image maps the cooler infrared emission from interstellar dust found throughout the interstellar medium. The DR21 complex is clearly seen near the center of the strip, which covers about twice the area of the IRAC image.

    Perhaps the most fascinating feature in this image is a long and shadowy linear filament extending towards the 10 o'clock position of DR21. This jet of cold and dense gas, nearly 50 light-years in extent, appears in silhouette against a warmer background. This filament is too long and massive to be a stellar jet and may have formed from a pre-existing molecular cloud core sculpted by DR21's strong winds. Regardless of its true nature, this jet and the numerous other arcs and wisps of cool dust signify the interstellar turbulence normally unseen by the human eye.

  15. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds

    DTIC Science & Technology

    2013-09-30

    understanding of the effects of aerosol-cloud interactions and drizzle and entrainment processes in boundary layer clouds for the purpose of developing...thickness, cloud turbulence intensity, and aerosols on precipitation production; 4) study the processing of aerosols by cloud processes ; 5) explore mass...drizzle processes to the artificial introduction of CCN and giant nuclei under differing aerosol backgrounds. In addition, a set of aerosol and cloud

  16. Cloud computing basics for librarians.

    PubMed

    Hoy, Matthew B

    2012-01-01

    "Cloud computing" is the name for the recent trend of moving software and computing resources to an online, shared-service model. This article briefly defines cloud computing, discusses different models, explores the advantages and disadvantages, and describes some of the ways cloud computing can be used in libraries. Examples of cloud services are included at the end of the article.

  17. A Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) supported by a prior surface reflectance database

    NASA Astrophysics Data System (ADS)

    Sun, Lin; Wei, Jing; Wang, Jian; Mi, Xueting; Guo, Yamin; Lv, Yang; Yang, Yikun; Gan, Ping; Zhou, Xueying; Jia, Chen; Tian, Xinpeng

    2016-06-01

    Conventional cloud detection methods are easily affected by mixed pixels, complex surface structures, and atmospheric factors, resulting in poor cloud detection results. To minimize these problems, a new Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) supported by a priori surface reflectance database is proposed in this paper. A monthly surface reflectance database is constructed using long-time-sequenced MODerate resolution Imaging Spectroradiometer surface reflectance product (MOD09A1) to provide the surface reflectance of the underlying surfaces. The relationships between the apparent reflectance changes and the surface reflectance are simulated under different observation and atmospheric conditions with the 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) model, and the dynamic threshold cloud detection models are developed. Two typical remote sensing data with important application significance and different sensor parameters, MODIS and Landsat 8, are selected for cloud detection experiments. The results were validated against the visual interpretation of clouds and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation cloud measurements. The results showed that the UDTCDA can obtain a high precision in cloud detection, correctly identifying cloudy pixels and clear-sky pixels at rates greater than 80% with error rate and missing rate of less than 20%. The UDTCDA cloud product overall shows less estimation uncertainty than the current MODIS cloud mask products. Moreover, the UDTCDA can effectively reduce the effects of atmospheric factors and mixed pixels and can be applied to different satellite sensors to realize long-term, large-scale cloud detection operations.

  18. A Sample of What We Have Learned from A-Train Cloud Measurements

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Vasilkov, Alexander; Ziemke, Jerry; Chandra, Sushil; Spurr, Robert; Bhartia, P. K.; Krotkov, Nick; Sneep, Maarten; Menzel, Paul; Platnick, Steve; Stephens, Graeme; Wennberg, Paul; Avery, Melody; Wentz, Frank; Vanbaunce, Claudine; Pilewski, Peter; Diskin, Glenn; Vay, Stephanie

    2008-01-01

    The A-train active sensors CloudSat and CALIPSO provide detailed information about cloud vertical structure. Coarse vertical information can also be obtained from a combination of passive sensors (e.g. cloud liquid water content from AMSR-E, cloud ice properties from MLS and HIRDLS, cloud-top pressure from MODIS and AIRS, and UVNISINear IR absorption and scattering from OMI, MODIS, and POLDER). In addition, the wide swaths of instruments such as MODIS, AIRS, OMI, POLDER, and AMSR-E can be exploited to create estimates of the three-dimensional cloud extent. We will show how data fusion from A-train sensors can be used, e.g., to detect and map the presence of multiple layer/phase clouds. Ultimately, combined cloud information from Atrain instruments will allow for estimates of heating and radiative flux at the surface as well as UV/VIS/Near IR trace-gas absorption at the overpass time on a near-global daily basis. CloudSat has also dramatically improved our interpretation of visible and UV passive measurements in complex cloudy situations such as deep convection and multiple cloud layers. This has led to new approaches for unique and accurate constituent retrievals from A-train instruments. For example, ozone mixing ratios inside tropical deep convective clouds have recently been estimated using the Aura Ozone Monitoring Instrument (OMI). Field campaign data from TC4 provide additional information about the spatial variability and origin of trace-gases inside convective clouds. We will highlight some of the new applications of remote sensing in cloudy conditions that have been enabled by the synergy between the A-train active and passive sensors.

  19. Cloud Distribution Statistics from LITE

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1998-01-01

    The Lidar In-Space Technology Experiment (LITE) mission has demonstrated the utility of spaceborne lidar in observing multilayer clouds and has provided a dataset showing the distribution of tropospheric clouds and aerosols. These unambiguous observations of the vertical distribution of clouds will allow improved verification of current cloud climatologies and GCM cloud parameterizations. Although there is now great interest in cloud profiling radar, operating in the mm-wave region, for the spacebased observation of cloud heights the results of the LITE mission have shown that satellite lidars can also make significant contributions in this area.

  20. My NASA Data Clouds

    NASA Video Gallery

    This lesson has two activities that help students develop a basic understanding of the relationship between cloud type and the form of precipitation and the relationship between the amount of water...

  1. Methanol in dark clouds

    NASA Technical Reports Server (NTRS)

    Friberg, P.; Hjalmarson, A.; Madden, S. C.; Irvine, W. M.

    1988-01-01

    The first observation of methanol in cold dark clouds TMC 1, L 134 N, and B 335 is reported. In all three clouds, the relative abundance of methanol was found to be in the range of 10 to the -9th (i.e., almost an order of magnitude more abundant than acetaldehyde), with no observable variation between the clouds. Methanol emission showed a complex velocity structure; in TMC 1, clear indications of non-LTE were observed. Dimethyl ether was searched for in L 134 N; the upper limit of the column density of dimethyl ether in L 134 N was estimated to be 4 x 10 to the 12th/sq cm, assuming 5 K rotation temperature and LTE. This limit makes the abundance ratio (CH3)2O/CH3OH not higher than 1/5, indicating that dimethyl ether is not overabundant in this dark cloud.

  2. Noctilucent Clouds in Motion

    NASA Video Gallery

    Swedish photographer Peter Rosén took this close-up, time-lapse movieof Noctilucent Clouds (NLCs) over Stockholm, Sweden on the evening ofJuly 16, 2012. "What looked like a serene view from a di...

  3. GEOS-5 Modeled Clouds

    NASA Video Gallery

    This visualization shows clouds from a simulation using the Goddard Earth Observing System Model, Verison 5 (GEOS-5). The global atmospheric simulation covers a period from Feb 3, 2010 through Feb ...

  4. Cloud Types and Services

    NASA Astrophysics Data System (ADS)

    Jin, Hai; Ibrahim, Shadi; Bell, Tim; Gao, Wei; Huang, Dachuan; Wu, Song

    The increasing popularity of Internet services such as the Amazon Web Services, Google App Engine and Microsoft Azure have drawn a lot of attention to the Cloud Computing paradigm. Although the term "Cloud Computing" is new, the technology is an extension of the remarkable achievements of grid, virtualization, Web 2.0 and Service Oriented Architecture (SOA) technologies, and the convergence of these technologies. Moreover, interest in Cloud Computing has been motivated by many factors such as the prevalence of multi-core processors and the low cost of system hardware, as well as the increasing cost of the energy needed to operate them. As a result, Cloud Computing, in just three years, has risen to the top of the IT revolutionary technologies, and has been announced as the top technology to watch in the year 2010.

  5. Closed Large Cell Clouds

    Atmospheric Science Data Center

    2013-04-19

    article title:  Closed Large Cell Clouds in the South Pacific     ... unperturbed by cyclonic or frontal activity. When the cell centers are cloudy and the main sinking motion is concentrated at cell ...

  6. Electromagnetic scattering in clouds

    NASA Technical Reports Server (NTRS)

    Solakiewicz, Richard

    1992-01-01

    Techniques used to explain the nature of the optical effects of clouds on the light produced by lightning include a Monte Carlo simulation, an equivalent medium approach, and methods based on Boltzmann transport theory. A cuboidal cloud has been considered using transform methods and a diffusion approximation. Many simplifying assumptions have been used by authors to make this problem tractable. In this report, the cloud will have a spherical shape and its interior will consist of a uniform distribution of identical spherical water droplets. The source will be modeled as a Hertz dipole, electric or magnetic, inside or outside the cloud. An impulsive source is used. Superposition may be employed to obtain a sinusoid within an envelope which describes a lightning event. The problem is investigated by transforming to the frequency domain, obtaining Green's functions, and then using the Cagniard-DeHoop method to symbolically recover the time domain solution.

  7. Reconfigurable Martian Data Cloud

    NASA Astrophysics Data System (ADS)

    Sheldon, D. J.; Moeller, R. C.; Pingree, P.; Lay, N.; Reeves, G.

    2012-06-01

    The objective is to develop a constellation of small satellites in orbit around Mars that would provide a highly scalable and dynamically allocatable high performance computing resource. Key is use of Field Programmable Gate Arrays for the cloud.

  8. Ray Tracing with Virtual Objects.

    ERIC Educational Resources Information Center

    Leinoff, Stuart

    1991-01-01

    Introduces the method of ray tracing to analyze the refraction or reflection of real or virtual images from multiple optical devices. Discusses ray-tracing techniques for locating images using convex and concave lenses or mirrors. (MDH)

  9. Humans differ in their personal microbial cloud

    PubMed Central

    Altrichter, Adam E.; Bateman, Ashley C.; Stenson, Jason; Brown, GZ; Green, Jessica L.; Bohannan, Brendan J.M.

    2015-01-01

    Dispersal of microbes between humans and the built environment can occur through direct contact with surfaces or through airborne release; the latter mechanism remains poorly understood. Humans emit upwards of 106 biological particles per hour, and have long been known to transmit pathogens to other individuals and to indoor surfaces. However it has not previously been demonstrated that humans emit a detectible microbial cloud into surrounding indoor air, nor whether such clouds are sufficiently differentiated to allow the identification of individual occupants. We used high-throughput sequencing of 16S rRNA genes to characterize the airborne bacterial contribution of a single person sitting in a sanitized custom experimental climate chamber. We compared that to air sampled in an adjacent, identical, unoccupied chamber, as well as to supply and exhaust air sources. Additionally, we assessed microbial communities in settled particles surrounding each occupant, to investigate the potential long-term fate of airborne microbial emissions. Most occupants could be clearly detected by their airborne bacterial emissions, as well as their contribution to settled particles, within 1.5–4 h. Bacterial clouds from the occupants were statistically distinct, allowing the identification of some individual occupants. Our results confirm that an occupied space is microbially distinct from an unoccupied one, and demonstrate for the first time that individuals release their own personalized microbial cloud. PMID:26417541

  10. Humans differ in their personal microbial cloud.

    PubMed

    Meadow, James F; Altrichter, Adam E; Bateman, Ashley C; Stenson, Jason; Brown, G Z; Green, Jessica L; Bohannan, Brendan J M

    2015-01-01

    Dispersal of microbes between humans and the built environment can occur through direct contact with surfaces or through airborne release; the latter mechanism remains poorly understood. Humans emit upwards of 10(6) biological particles per hour, and have long been known to transmit pathogens to other individuals and to indoor surfaces. However it has not previously been demonstrated that humans emit a detectible microbial cloud into surrounding indoor air, nor whether such clouds are sufficiently differentiated to allow the identification of individual occupants. We used high-throughput sequencing of 16S rRNA genes to characterize the airborne bacterial contribution of a single person sitting in a sanitized custom experimental climate chamber. We compared that to air sampled in an adjacent, identical, unoccupied chamber, as well as to supply and exhaust air sources. Additionally, we assessed microbial communities in settled particles surrounding each occupant, to investigate the potential long-term fate of airborne microbial emissions. Most occupants could be clearly detected by their airborne bacterial emissions, as well as their contribution to settled particles, within 1.5-4 h. Bacterial clouds from the occupants were statistically distinct, allowing the identification of some individual occupants. Our results confirm that an occupied space is microbially distinct from an unoccupied one, and demonstrate for the first time that individuals release their own personalized microbial cloud.

  11. Marine Cloud Brightening

    SciTech Connect

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  12. Marine cloud brightening.

    PubMed

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  13. Cloud Inhomogeneity from MODIS

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Cahalan, Robert F.

    2004-01-01

    Two full months (July 2003 and January 2004) of MODIS Atmosphere Level-3 data from the Terra and Aqua satellites are analyzed in order to characterize the horizontal variability of cloud optical thickness and water path at global scales. Various options to derive cloud variability parameters are discussed. The climatology of cloud inhomogeneity is built by first calculating daily parameter values at spatial scales of l degree x 1 degree, and then at zonal and global scales, followed by averaging over monthly time scales. Geographical, diurnal, and seasonal changes of inhomogeneity parameters are examined separately for the two cloud phases, and separately over land and ocean. We find that cloud inhomogeneity is weaker in summer than in winter, weaker over land than ocean for liquid clouds, weaker for local morning than local afternoon, about the same for liquid and ice clouds on a global scale, but with wider probability distribution functions (PDFs) and larger latitudinal variations for ice, and relatively insensitive to whether water path or optical thickness products are used. Typical mean values at hemispheric and global scales of the inhomogeneity parameter nu (roughly the mean over the standard deviation of water path or optical thickness), range from approximately 2.5 to 3, while for the inhomogeneity parameter chi (the ratio of the logarithmic to linear mean) from approximately 0.7 to 0.8. Values of chi for zonal averages can occasionally fall below 0.6 and for individual gridpoints below 0.5. Our results demonstrate that MODIS is capable of revealing significant fluctuations in cloud horizontal inhomogenity and stress the need to model their global radiative effect in future studies.

  14. Dinosaur Tracks and Traces

    NASA Astrophysics Data System (ADS)

    Gillette, David D.; Lockley, Martin G.

    1991-02-01

    The study of fossilized dinosaur remains, vertebrate paleontology is a well established discipline, but the discovery and rediscovery of numerous and varied dinosaur footprints and nest sites has spurred a renaissance in the associated field of ichnological research. Dinosaur Tracks and Traces is the first book ever to be devoted to this subject, and it represents the work of seventy noted dinosaur ichnologists. Contributors address the history of science and the relevance of dinosaur ichnology to the interpretation of dinosaur behaviour, paleoecology, paleoenvironments, and evolution. Several new preservation, conservation, and documentation techniques are also presented. The book is richly illustrated and is intended for students and professionals in the areas of paleontology, vertebrate zoology, geology, and paleoenvironmental analysis. The historical aspects of the book and the many site descriptions also make Dinosaur Tracks and Traces appealing to amateur fossil collectors and dinosaur enthusiasts.

  15. Address tracing for parallel machines

    NASA Technical Reports Server (NTRS)

    Stunkel, Craig B.; Janssens, Bob; Fuchs, W. Kent

    1991-01-01

    Recently implemented parallel system address-tracing methods based on several metrics are surveyed. The issues specific to collection of traces for both shared and distributed memory parallel computers are highlighted. Five general categories of address-trace collection methods are examined: hardware-captured, interrupt-based, simulation-based, altered microcode-based, and instrumented program-based traces. The problems unique to shared memory and distributed memory multiprocessors are examined separately.

  16. Distributed Tracing of Intruders

    DTIC Science & Technology

    1995-01-01

    place. Matt Bishop shared his wide knowledge of Unix Security and the literature of the eld with me on many oc- casions. Biswanath Mukherjee provided...presently about 20 bytes per iv minute per connection of storage for the thumbprints. In addition, the existing (very limited) literature on the tracing...little attention in the literature . Here we review what is known about it. Firstly, several works describe the exploits of particular hackers and the

  17. FIRE Arctic Clouds Experiment

    NASA Technical Reports Server (NTRS)

    Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.; Gerber, H.; Fairall, C. W.; Garrett, T. J.; Hudson, J.; Intrieri, J. M.; Jakob, C.; Jensen, T.; Lawson, P.; Marcotte, D.; Nguyen, L.

    1998-01-01

    An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.

  18. Anisotropic ray trace

    NASA Astrophysics Data System (ADS)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  19. FORMATION OF MASSIVE MOLECULAR CLOUD CORES BY CLOUD-CLOUD COLLISION

    SciTech Connect

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-09-10

    Recent observations of molecular clouds around rich massive star clusters including NGC 3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by cloud-cloud collision. We find that the massive molecular cloud cores have large effective Jeans mass owing to the enhancement of the magnetic field strength by shock compression and turbulence in the compressed layer. Our results predict that massive molecular cloud cores formed by the cloud-cloud collision are filamentary and threaded by magnetic fields perpendicular to the filament.

  20. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  1. [Drug access in poor countries].

    PubMed

    Sebbag, Robert

    2007-11-01

    As a responsible player in the global pharmaceutical industry, Sanofi-Aventis recognizes its special responsibility to provide poor countries with access to drugs and vaccines. This is a key component of the Group's approach to sustainable development. As such, the Access to Medicines department draws on Sanofi-Aventis' expertise in order to address major public health issues, starting with the treatment of malaria, tuberculosis, sleeping sickness, leishmaniasis and epilepsy, as well as access to vaccines. The department has four main activities: research and development of new drugs; improvement of existing treatments; information, communication and education of patients and healthcare professionals; and development of a differential pricing and distribution policy adapted to patients' income, with a "no profit-no loss" equilibrium.

  2. Serving the world's poor, profitably.

    PubMed

    Prahalad, C K; Hammond, Allen

    2002-09-01

    By stimulating commerce and development at the bottom of the economic pyramid, multi-nationals could radically improve the lives of billions of people and help create a more stable, less dangerous world. Achieving this goal does not require MNCs to spearhead global social-development initiatives for charitable purposes. They need only act in their own self-interest. How? The authors lay out the business case for entering the world's poorest markets. Fully 65% of the world's population earns less than $2,000 per year--that's 4 billion people. But despite the vastness of this market, it remains largely untapped. The reluctance to invest is easy to understand, but it is, by and large, based on outdated assumptions of the developing world. While individual incomes may be low, the aggregate buying power of poor communities is actually quite large, representing a substantial market in many countries for what some might consider luxury goods like satellite television and phone services. Prices, and margins, are often much higher in poor neighborhoods than in their middle-class counterparts. And new technologies are already steadily reducing the effects of corruption, illiteracy, inadequate infrastructure, and other such barriers. Because these markets are in the earliest stages of economic development, revenue growth for multi-nationals entering them can be extremely rapid. MNCs can also lower costs, not only through low-cost labor but by transferring operating efficiencies and innovations developed to serve their existing operations. Certainly, succeeding in such markets requires MNCs to think creatively. The biggest change, though, has to come from executives: Unless business leaders confront their own preconceptions--particularly about the value of high-volume, low-margin businesses--companies are unlikely to master the challenges or reap the rewards of these developing markets.

  3. The chemical evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Iglesias, E.

    1977-01-01

    The nonequilibrium chemistry of dense molecular clouds (10,000 to 1 million hydrogen molecules per cu cm) is studied in the framework of a model that includes the latest published chemical data and most of the recent theoretical advances. In this model the only important external source of ionization is assumed to be high-energy cosmic-ray bombardment; standard charge-transfer reactions are taken into account as well as reactions that transfer charge from molecular ions to trace-metal atoms. Schemes are proposed for the synthesis of such species as NCO, HNCO, and CN. The role played by adsorption and condensation of molecules on the surface of dust grains is investigated, and effects on the chemical evolution of a dense molecular cloud are considered which result from varying the total density or the elemental abundances and from assuming negligible or severe condensation of gaseous species on dust grains. It is shown that the chemical-equilibrium time scale is given approximately by the depletion times of oxygen and nitrogen when the condensation efficiency is negligible; that this time scale is probably in the range from 1 to 4 million years, depending on the elemental composition and initial conditions in the cloud; and that this time scale is insensitive to variations in the total density.

  4. Molecular Complexity in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Acharyya, Kinsuk; Herbst, Eric

    2016-07-01

    Recently, we studied chemical complexity in the Large and Small Magellanic clouds. These are irregular satellite galaxies of the Milky Way. Both are metal- and dust-poor, although the SMC is significantly poorer in both. The dust temperature in these galaxies could also be higher compared to our Galaxy; this can have a profound effect on the synthesis of molecules in these galaxies. Our simulations show that the cold, dense regions of the LMC and SMC can have a rich chemistry. We found major gas phase species, as well as water and CO2 ices, could be found in abundant quantity. In this presentation I will discuss the complex organic molecules that are found in abundant quantity in our Galaxy, and how their abundance varies in the Magellanic clouds. This comparison will help us to understand the role of metallicity and dust grain temperature in the formation of complex organic molecules.

  5. Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan

    SciTech Connect

    Marchand, RT; Protat, A; Alexander, SP

    2015-12-01

    Clouds over the Southern Ocean are poorly represented in present day reanalysis products and global climate model simulations. Errors in top-of-atmosphere (TOA) broadband radiative fluxes in this region are among the largest globally, with large implications for modeling both regional and global scale climate responses (e.g., Trenberth and Fasullo 2010, Ceppi et al. 2012). Recent analyses of model simulations suggest that model radiative errors in the Southern Ocean are due to a lack of low-level postfrontal clouds (including clouds well behind the front) and perhaps a lack of supercooled liquid water that contribute most to the model biases (Bodas-Salcedo et al. 2013, Huang et al. 2014). These assessments of model performance, as well as our knowledge of cloud and aerosol properties over the Southern Ocean, rely heavily on satellite data sets. Satellite data sets are incomplete in that the observations are not continuous (i.e., they are acquired only when the satellite passes nearby), generally do not sample the diurnal cycle, and view primarily the tops of cloud systems (especially for the passive instruments). This is especially problematic for retrievals of aerosol, low-cloud properties, and layers of supercooled water embedded within (rather than at the top of) clouds, as well as estimates of surface shortwave and longwave fluxes based on these properties.

  6. I/O Performance of Virtualized Cloud Environments

    SciTech Connect

    Ghoshal, Devarshi; Canon, Shane; Ramakrishnan, Lavanya

    2011-11-03

    The scientific community is exploring the suitability of cloud infrastructure to handle High Performance Computing (HPC) applications. The goal of Magellan, a project funded through DOE ASCR, is to investigate the potential role of cloud computing to address the computing needs of the Department of Energy?s Office of Science, especially for mid-range computing and data-intensive applications which are not served through existing DOE centers today. Prior work has shown that applications with significant communication orI/O tend to perform poorly in virtualized cloud environments. However, there is a limited understanding of the I/O characteristics in virtualized cloud environments. This paper will present our results in benchmarking the I/O performance over different cloud and HPC platforms to identify the major bottlenecks in existing infrastructure. We compare the I/O performance using IOR benchmark on two cloud platforms - Amazon and Magellan. We analyze the performance of different storage options available, different instance types in multiple availability zones. Finally, we perform large-scale tests in order to analyze the variability in the I/O patterns over time and region. Our results highlight the overhead and variability in I/O performance on both public and private cloud solutions. Our results will help applications decide between the different storage options enabling applications to make effective choices.

  7. GEWEX Cloud Systems Study (GCSS)

    NASA Technical Reports Server (NTRS)

    Moncrieff, Mitch

    1993-01-01

    The Global Energy and Water Cycle Experiment (GEWEX) Cloud Systems Study (GCSS) program seeks to improve the physical understanding of sub-grid scale cloud processes and their representation in parameterization schemes. By improving the description and understanding of key cloud system processes, GCSS aims to develop the necessary parameterizations in climate and numerical weather prediction (NWP) models. GCSS will address these issues mainly through the development and use of cloud-resolving or cumulus ensemble models to generate realizations of a set of archetypal cloud systems. The focus of GCSS is on mesoscale cloud systems, including precipitating convectively-driven cloud systems like MCS's and boundary layer clouds, rather than individual clouds, and on their large-scale effects. Some of the key scientific issues confronting GCSS that particularly relate to research activities in the central U.S. are presented.

  8. Marine cloud brightening

    PubMed Central

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  9. Stratocumulus cloud evolution

    SciTech Connect

    Yang, X.; Rogers, D.P.; Norris, P.M.; Johnson, D.W.; Martin, G.M.

    1994-12-31

    The structure and evolution of the extra-tropical marine atmospheric boundary layer (MABL) depends largely on the variability of stratus and stratocumulus clouds. The typical boundary-layer is capped by a temperature inversion that limits exchange with the free atmosphere. Cloud-top is usually coincident with the base of the inversion. Stratus clouds are generally associated with a well-mixed MABL, whereas daytime observations of stratocumulus-topped boundary-layers indicate that the cloud and subcloud layers are often decoupled due to shortwave radiative heating of the cloud layer. In this case the surface-based mixed layer is separated from the base of the stratocumulus (Sc) by a layer that is stable to dry turbulent mixing. This is sometimes referred to as the transition layer. Often cumulus clouds (Cu) develop in the transition layer. The cumulus tops may remain below the Sc base or they may penetrate into the Sc layer and occasionally through the capping temperature inversion. While this cloud structure is characteristic of the daytime MABL, it may persist at night also. The Cu play an important role in connecting the mixed layer to the Sc layer. If the Cu are active they transport water vapor from the sea surface that maintains the Sc against the dissipating effects of shortwave heating. The Cu, however, are very sensitive to small changes in the heat and moisture in the boundary-layer and are transient features. Here the authors discuss the effect of these small Cu on the turbulent structure of the MABL.

  10. EXCITATION OF C{sub 2} IN DIFFUSE INTERSTELLAR CLOUDS

    SciTech Connect

    Casu, Silvia; Cecchi-Pestellini, Cesare E-mail: ccp@oa-cagliari.inaf.it

    2012-04-10

    We investigate the effects and the implications of incorporating new collision and radiative rates in modeling the excitation of diatomic carbon molecule. The present results suggest that diffuse and translucent interstellar clouds may present a structure in which regions with different densities and kinetic temperatures overlap along the line of sight, such as core-halo clouds, the nested structure of the molecular gas, and clumpiness. Such conclusion reflects the response of the C{sub 2} rotational ladder to the interplay of thermal and radiative conditions, with low and high rotational levels tracing different regions of the parameter space. To relieve constraints to the formation and excitation of C{sub 2} molecules, we propose a scenario in which the chemistry in diffuse clouds is supplemented by chemistry in many transient and tiny perturbations.

  11. Major Characteristics of Southern Ocean Cloud Regimes and Their Effects on the Energy Budget

    NASA Technical Reports Server (NTRS)

    Haynes, John M.; Jakob, Christian; Rossow, William B.; Tselioudis, George; Brown, Josephine

    2011-01-01

    Clouds over the Southern Ocean are often poorly represented by climate models, but they make a significant contribution to the top-of-atmosphere (TOA) radiation balance, particularly in the shortwave portion of the energy spectrum. This study seeks to better quantify the organization and structure of Southern Hemisphere midlatitude clouds by combining measurements from active and passive satellite-based datasets. Geostationary and polar-orbiter satellite data from the International Satellite Cloud Climatology Project (ISCCP) are used to quantify large-scale, recurring modes of cloudiness, and active observations from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) are used to examine vertical structure, radiative heating rates, and precipitation associated with these clouds. It is found that cloud systems are organized into eight distinct regimes and that ISCCP overestimates the midlevel cloudiness of these regimes. All regimes contain a relatively high occurrence of low cloud, with 79%of all cloud layers observed having tops below 3 km, but multiple-layered clouds systems are present in approximately 34% of observed cloud profiles. The spatial distribution of regimes varies according to season, with cloud systems being geometrically thicker, on average, during the austral winter. Those regimes found to be most closely associated with midlatitude cyclones produce precipitation the most frequently, although drizzle is extremely common in low-cloud regimes. The regimes associated with cyclones have the highest in-regime shortwave cloud radiative effect at the TOA, but the low-cloud regimes, by virtue of their high frequency of occurrence over the oceans, dominate both TOA and surface shortwave effects in this region as a whole.

  12. Scientists Trace Adversity's Toll

    ERIC Educational Resources Information Center

    Sparks, Sarah D.

    2012-01-01

    The stress of a spelling bee or a challenging science project can enhance a student's focus and promote learning. But the stress of a dysfunctional or unstable home life can poison a child's cognitive ability for a lifetime, according to new research. Those studies show that stress forms the link between childhood adversity and poor academic…

  13. A Flexible Cloud Generator

    NASA Astrophysics Data System (ADS)

    Benassi, A.; Deguy, S.; Szczap, F.

    2001-05-01

    In this work we propose a flexible cloud generating model as well as a software. This model depends upon 5 quantities: -the cloud fractional coverage -the spectral slope -the mean value -the variance -the internal heterogeneity (intermittency). All these quantities are independantly identifiable on the base of mathematical proofs. This model also depends on a given function, called "morphlet", and on the law of a random variables family. In order to get a positive water contain inside the cloud,we ask the morphlet and the random variables to be positives. The structure of the model is hierarchycal. The vertebral column of this model is a tree: the basic encoding tree of the space where the cloud lives. At each edge of the tree is attached: -a Bernoulli random variable,this for tuning the fractional cover and the intermittency, -a rate of energy loose,giving the spectral slope, -a dilated morphlet. The word flexible is justified by the fact that we can choose to modify some objets on the basic tree in order to adjust the caracteristics of the desired cloud.

  14. Microphysics of Pyrocumulonimbus Clouds

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Ackerman, Andrew S.; Fridlind, Ann

    2004-01-01

    The intense heat from forest fires can generate explosive deep convective cloud systems that inject pollutants to high altitudes. Both satellite and high-altitude aircraft measurements have documented cases in which these pyrocumulonimbus clouds inject large amounts of smoke well into the stratosphere (Fromm and Servranckx 2003; Jost et al. 2004). This smoke can remain in the stratosphere, be transported large distances, and affect lower stratospheric chemistry. In addition recent in situ measurements in pyrocumulus updrafts have shown that the high concentrations of smoke particles have significant impacts on cloud microphysical properties. Very high droplet number densities result in delayed precipitation and may enhance lightning (Andrew et al. 2004). Presumably, the smoke particles will also lead to changes in the properties of anvil cirrus produces by the deep convection, with resulting influences on cloud radiative forcing. In situ sampling near the tops of mature pyrocumulonimbus is difficult due to the high altitude and violence of the storms. In this study, we use large eddy simulations (LES) with size-resolved microphysics to elucidate physical processes in pyrocumulonimbus clouds.

  15. Cloud top entrainment instability and cloud top distributions

    NASA Technical Reports Server (NTRS)

    Boers, Reinout; Spinhirne, James D.

    1990-01-01

    Classical cloud-top entrainment instability condition formulation is discussed. A saturation point diagram is used to investigate the details of mixing in cases where the cloud-top entrainment instability criterion is satisfied.

  16. Cloud condensation nucleus-sulfate mass relationship and cloud albedo

    NASA Technical Reports Server (NTRS)

    Hegg, Dean A.

    1994-01-01

    Analysis of previously published, simultaneous measurements of cloud condensation nucleus number concentration and sulfate mass concentration suggest a nonlinear relationship between the two variables. This nonlinearity reduces the sensitivity of cloud albedo to changes in the sulfur cycle.

  17. Screening of biosurfactants from cloud microorganisms

    NASA Astrophysics Data System (ADS)

    Sancelme, Martine; Canet, Isabelle; Traikia, Mounir; Uhliarikova, Yveta; Capek, Peter; Matulova, Maria; Delort, Anne-Marie; Amato, Pierre

    2015-04-01

    The formation of cloud droplets from aerosol particles in the atmosphere is still not well understood and a main source of uncertainties in the climate budget today. One of the principal parameters in these processes is the surface tension of atmospheric particles, which can be strongly affected by trace compounds called surfactants. Within a project devoted to bring information on atmospheric surfactants and their effects on cloud droplet formation, we focused on surfactants produced by microorganisms present in atmospheric waters. From our unique collection of microorganisms, isolated from cloud water collected at the Puy-de-Dôme (France),1 we undertook a screening of this bank for biosurfactant producers. After extraction of the supernatants of the pure cultures, surface tension of crude extracts was determined by the hanging drop technique. Results showed that a wide variety of microorganisms are able to produce biosurfactants, some of them exhibiting strong surfactant properties as the resulting tension surface decreases to values less then 35 mN.m-1. Preliminary analytical characterization of biosurfactants, obtained after isolation from overproducing cultures of Rhodococcus sp. and Pseudomonas sp., allowed us to identify them as belonging to two main classes, namely glycolipids and glycopeptides. 1. Vaïtilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M.; Deguillaume, L.; Flossmann, A. I.; Amato, P.; Delort, A. M. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos. Environ. 2012, 56, 88-100. Acknowledgements: This work is supported by the French-USA ANR SONATA program and the French-Slovakia programs Stefanik and CNRS exchange.

  18. Reconstruction of cloud geometry using a scanning cloud radar

    NASA Astrophysics Data System (ADS)

    Ewald, F.; Winkler, C.; Zinner, T.

    2015-06-01

    Clouds are one of the main reasons of uncertainties in the forecasts of weather and climate. In part, this is due to limitations of remote sensing of cloud microphysics. Present approaches often use passive spectral measurements for the remote sensing of cloud microphysical parameters. Large uncertainties are introduced by three-dimensional (3-D) radiative transfer effects and cloud inhomogeneities. Such effects are largely caused by unknown orientation of cloud sides or by shadowed areas on the cloud. Passive ground-based remote sensing of cloud properties at high spatial resolution could be crucially improved with this kind of additional knowledge of cloud geometry. To this end, a method for the accurate reconstruction of 3-D cloud geometry from cloud radar measurements is developed in this work. Using a radar simulator and simulated passive measurements of model clouds based on a large eddy simulation (LES), the effects of different radar scan resolutions and varying interpolation methods are evaluated. In reality, a trade-off between scan resolution and scan duration has to be found as clouds change quickly. A reasonable choice is a scan resolution of 1 to 2°. The most suitable interpolation procedure identified is the barycentric interpolation method. The 3-D reconstruction method is demonstrated using radar scans of convective cloud cases with the Munich miraMACS, a 35 GHz scanning cloud radar. As a successful proof of concept, camera imagery collected at the radar location is reproduced for the observed cloud cases via 3-D volume reconstruction and 3-D radiative transfer simulation. Data sets provided by the presented reconstruction method will aid passive spectral ground-based measurements of cloud sides to retrieve microphysical parameters.

  19. CALWATER Overview of the G1 aircraft measurements of cloud-aerosol interactions within winter storms

    NASA Astrophysics Data System (ADS)

    Rosenfeld, D.; Prather, K. A.; Comstock, J. M.; DeMott, P. J.; Cazorla, A.; Chemke, R.; Suski, K.; Freud, E.; Leung, L.

    2011-12-01

    A major component of CalWater 2011 was an aircraft campaign with an extensive suite of cloud physics, aerosol, and trace gases instruments. The aircraft flew nearly 70 hours mainly during winter storms over the Sierra Nevada, Central Valley, the Bay area, coastal range and ocean between 1 Feb and 7 Mar 2011. Some of the unique aspects of this campaign that were the basis for the reported initial findings here were: (1) aerosol time-of flight mass spectrometry (ATOFMS) that provided particle by particle chemical composition; (2) Continuous Flow Diffusion Chamber for detecting ice nuclei; (3) Counterflow virtual impactor (CVI) for sampling the residues of evaporated cloud particles or interstitial aerosol; (4) Cloud drop and hydrometeor probes; (5) 3-D winds and thermodynamic parameters. The aircraft was able to document the clouds from the foothills to the crest of the Sierra Nevada at the section between Sacramento and Fresno during several major winter storms and obtain an unprecedented dataset of the cloud dynamics, microphysics and aerosols during fair weather, atmospheric rivers, barrier jet, pre-frontal, frontal and post frontal conditions. Convective clouds are very often triggered at the foothills of the Sierra Nevada by the start of the rising motion. This triggering is often advanced upwind (westward) due to the blocking effect that is typically associated with a barrier jet. When cloud bases are decoupled from the boundary layer they do not ingest the locally generated aerosols, but rather the pristine air that comes from the ocean. With more southerly back trajectories local decoupling can still bring air pollution from the LA basin, for example. Profound differences in aerosol and cloud microstructure were observed between the coupled and decoupled clouds at the Sierra foothills, where, as expected, the decoupled clouds had a more marine nature. In addition to triggering convective clouds at the foothills, the orographic lifting of the air mass creates

  20. Making clouds in Spacelab

    NASA Technical Reports Server (NTRS)

    Duncan, C.

    1978-01-01

    Improvements in the accuracy of weather predictions and possibilities for changing the weather might depend on a better understanding of the microphysical processes which take place within clouds. A study of these processes on the surface of the earth is difficult in connection with gravitational disturbances. An Atmospheric Cloud Physics Laboratory (ACPL), which is currently being developed, is to be carried into space in the Spacelab in the early 1980's. This facility will provide scientists, for the first time, with the opportunity to study cloud physics without the disturbing gravitational effects. In the ACPL facility, a microscopic element can be suspended without support. The processes of freezing, thawing, collision, electric charging, and temperature changes can be observed and photographed as many times and for as long as necessary.

  1. Winter Clouds Over Mie

    NASA Technical Reports Server (NTRS)

    2004-01-01

    12 March 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red wide angle image shows late winter clouds over the 104 km (65 mi) diameter crater, Mie. Cellular clouds occur in the lower martian atmosphere, surrounding Mie Crater. Their cloudtops are at an altitude that is below the crater rim. Higher than the crater rim occurs a series of lee wave clouds, indicating air circulation moving from west/northwest (left) toward the east/southeast (right). Mie Crater is located in Utopia Planitia, not too far from the Viking 2 landing site, near 48.5 N, 220.4 W. Sunlight illuminates this January 2004 scene from the lower left.

  2. Trace conditioning in insects—keep the trace!

    PubMed Central

    Dylla, Kristina V.; Galili, Dana S.; Szyszka, Paul; Lüdke, Alja

    2013-01-01

    Trace conditioning is a form of associative learning that can be induced by presenting a conditioned stimulus (CS) and an unconditioned stimulus (US) following each other, but separated by a temporal gap. This gap distinguishes trace conditioning from classical delay conditioning, where the CS and US overlap. To bridge the temporal gap between both stimuli and to form an association between CS and US in trace conditioning, the brain must keep a neural representation of the CS after its termination—a stimulus trace. Behavioral and physiological studies on trace and delay conditioning revealed similarities between the two forms of learning, like similar memory decay and similar odor identity perception in invertebrates. On the other hand differences were reported also, like the requirement of distinct brain structures in vertebrates or disparities in molecular mechanisms in both vertebrates and invertebrates. For example, in commonly used vertebrate conditioning paradigms the hippocampus is necessary for trace but not for delay conditioning, and Drosophila delay conditioning requires the Rutabaga adenylyl cyclase (Rut-AC), which is dispensable in trace conditioning. It is still unknown how the brain encodes CS traces and how they are associated with a US in trace conditioning. Insects serve as powerful models to address the mechanisms underlying trace conditioning, due to their simple brain anatomy, behavioral accessibility and established methods of genetic interference. In this review we summarize the recent progress in insect trace conditioning on the behavioral and physiological level and emphasize similarities and differences compared to delay conditioning. Moreover, we examine proposed molecular and computational models and reassess different experimental approaches used for trace conditioning. PMID:23986710

  3. MISR Level 2 Cloud Product Versioning

    Atmospheric Science Data Center

    2016-11-04

      MISR Level 2 Cloud Product Versioning MISR Level 2 Cloud Product Processing Status ESDT Product File ... Quality Designations MIL2TCSP MISR_AM1_TC_CLOUD Stage 3 Validated:  Cloud Top Heights (Without Wind ...

  4. Real World: Global Cloud Observation Day

    NASA Video Gallery

    Learn about precipitation and how clouds are formed. Find out why scientists study clouds and how you can help NASA collect cloud observation data as part of the Students' Cloud Observation OnLine,...

  5. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  6. Ash cloud aviation advisories

    SciTech Connect

    Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.; Nasstrom, J.S.

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  7. Automatic cloud cover mapping.

    NASA Technical Reports Server (NTRS)

    Strong, J. P., III; Rosenfeld, A.

    1971-01-01

    A method of converting a picture into a 'cartoon' or 'map' whose regions correspond to differently textured regions is described. Texture edges in the picture are detected, and solid regions surrounded by these (usually broken) edges are 'colored in' using a propagation process. The resulting map is cleaned by comparing the region colors with the textures of the corresponding regions in the picture, and also by merging some regions with others according to criteria based on topology and size. The method has been applied to the construction of cloud cover maps from cloud cover pictures obtained by satellites.

  8. The Oort cloud

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.

    1990-04-01

    Although the outermost planet, Pluto, is 6 x 10 to the 9th km from the sun, the sun's gravitational sphere of influence extends much further, out to about 2 x 10 to the 13th km. This space is occupied by the Oort cloud, comprising 10 to the 12th-10 to the 13th cometary nuclei, formed in the primordial solar nebula. Observations and computer modeling have contributed to a detailed understanding of the structure and dynamics of the cloud, which is thought to be the source of the long-period comets and possibly comet showers.

  9. The Oort cloud

    NASA Technical Reports Server (NTRS)

    Wessman, Paul R.

    1990-01-01

    Although the outermost planet, Pluto, is 6 x 10 to the 9th km from the sun, the sun's gravitational sphere of influence extends much further, out to about 2 x 10 to the 13th km. This space is occupied by the Oort cloud, comprising 10 to the 12th-10 to the 13th cometary nuclei, formed in the primordial solar nebula. Observations and computer modeling have contributed to a detailed understanding of the structure and dynamics of the cloud, which is thought to be the source of the long-period comets and possibly comet showers.

  10. Opaque cloud detection

    DOEpatents

    Roskovensky, John K.

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  11. Physical View of Cloud Seeding

    ERIC Educational Resources Information Center

    Tribus, Myron

    1970-01-01

    Reviews experimental data on various aspects of climate control. Includes a discussion of (1) the physics of cloud seeding, (2) the applications of cloud seeding, and (3) the role of statistics in the field of weather modification. Bibliography. (LC)

  12. G2 Gas Cloud Simulation

    NASA Video Gallery

    This simulation shows the future behavior of the G2 gas cloud now approaching Sgr A*, the supermassive black hole at the center of the Milky Way. X-ray emission from the cloud's tidal interaction w...

  13. Animated View of Noctilucent Cloud

    NASA Video Gallery

    Polar mesospheric clouds, as they are known to those who study them from satellite observations, are also often called "noctilucent," or night shining, clouds as seen by ground-based observers. Bec...

  14. Active Imaging through Cirrus Clouds.

    PubMed

    Landesman, B; Kindilien, P; Pierson, R; Matson, C; Mosley, D

    1997-11-24

    The presence of clouds of ice particles in the uplink and downlink path of an illumination beam can severely impede the performance of an active imaging system. Depending on the optical depth of the cloud, i.e., its density and depth, the beam can be completely scattered and extinguished, or the beam can pass through the cloud with some fraction attenuated, scattered, and depolarized. In particular, subvisual cirrus clouds, i.e., high, thin cirrus clouds that cannot be observed from the ground, can affect the properties and alignment of both uplink and downlink beams. This paper discusses the potential for active imaging in the presence of cirrus clouds. We document field data results from an active imaging experiment conducted several years ago, which the authors believe to show the effects of cirrus clouds on an active imaging system. To verify these conclusions, we include the results of a simulation of the interaction of a coherent illumination scheme with a cirrus cloud.

  15. Dense Cloud Cores revealed by ALMA CO observations in the low metallicity dwarf galaxy WLM

    NASA Astrophysics Data System (ADS)

    Rubio, M.; Elmegreen, B.; Hunter, D.; Cortes, J.; Brinks, E.; Cigan, P.

    2017-03-01

    Understanding stellar birth requires observations of the clouds in which they form. These clouds are dense and self-gravitating, and in all existing observations, they are molecular with H2 the dominant species and CO the best available. When the abundances of carbon and oxygen are low compared to hydrogen, and the opacity from dust is also low, as in primeval galaxies and local dwarf irregular galaxies CO forms slowly and is easily destroyed, so it cannot accumulate inside dense clouds. Then we lose our ability to trace the gas in regions of star formation and we lose critical information on the temperatures, densities, and velocities of the material that collapses. I will report on high resolution observations with ALMA of CO clouds in the local group dwarf irregular galaxy WLM, which has a metallicity that is 13% of the solar value and 50% lower than the previous CO detection threshold and the properties derived of very small dense CO clouds mapped..

  16. Discovery of Leonid Meteoric Cloud

    DTIC Science & Technology

    2007-11-02

    as a local enhancement in sky brightness during the meteor shower in 1998. The radius of the trail, deduced from the spatial extent of the cloud, is...A meteoric cloud is a faint glow of sunlight scattered by the small meteoroids in the trail along a parent comets orbit. Here we report the first...detection of the meteoric cloud associated with the Leonid meteor stream. Our photometric observations, performed on Mauna Kea, Hawaii, reveal the cloud

  17. Dust-correlated cm wavelength continuum emission from translucent clouds ζ Oph and LDN 1780

    NASA Astrophysics Data System (ADS)

    Vidal, M.; Casassus, S.; Dickinson, C.; Witt, A. N.; Castellanos, P.; Davies, R. D.; Davis, R. J.; Cabrera, G.; Cleary, K.; Allison, J. R.; Bond, J. R.; Bronfman, L.; Bustos, R.; Jones, M. E.; Paladini, R.; Pearson, T. J.; Readhead, A. C. S.; Reeves, R.; Sievers, J. L.; Taylor, A. C.

    2011-07-01

    The diffuse cm wave IR-correlated signal, the 'anomalous' CMB foreground, is thought to arise in the dust in cirrus clouds. We present Cosmic Background Imager (CBI) cm wave data of two translucent clouds, ζ Oph and LDN 1780 with the aim of characterizing the anomalous emission in the translucent cloud environment. In ζ Oph, the measured brightness at 31 GHz is 2.4σ higher than an extrapolation from 5-GHz measurements assuming a free-free spectrum on 8 arcmin scales. The SED of this cloud on angular scales of 1° is dominated by free-free emission in the cm range. In LDN 1780 we detected a 3σ excess in the SED on angular scales of 1° that can be fitted using a spinning dust model. In this cloud, there is a spatial correlation between the CBI data and IR images, which trace dust. The correlation is better with near-IR templates (IRAS 12 and 25 μm) than with IRAS 100 μm, which suggests a very small grain origin for the emission at 31 GHz. We calculated the 31-GHz emissivities in both clouds. They are similar and have intermediate values between that of cirrus clouds and dark clouds. Nevertheless, we found an indication of an inverse relationship between emissivity and column density, which further supports the VSGs origin for the cm emission since the proportion of big relative to small grains is smaller in diffuse clouds.

  18. Retrieval Of Cloud Pressure And Chlorophyll Content Using Raman Scattering In GOME Ultraviolet Spectra

    NASA Technical Reports Server (NTRS)

    Atlas, Robert (Technical Monitor); Joiner, Joanna; Vasikov, Alexander; Flittner, David; Gleason, James; Bhartia, P. K.

    2002-01-01

    Reliable cloud pressure estimates are needed for accurate retrieval of ozone and other trace gases using satellite-borne backscatter ultraviolet (buv) instruments such as the global ozone monitoring experiment (GOME). Cloud pressure can be derived from buv instruments by utilizing the properties of rotational-Raman scattering (RRS) and absorption by O2-O2. In this paper we estimate cloud pressure from GOME observations in the 355-400 nm spectral range using the concept of a Lambertian-equivalent reflectivity (LER) surface. GOME has full spectral coverage in this range at relatively high spectral resolution with a very high signal-to-noise ratio. This allows for much more accurate estimates of cloud pressure than were possible with its predecessors SBUV and TOMS. We also demonstrate the potential capability to retrieve chlorophyll content with full-spectral buv instruments. We compare our retrieved LER cloud pressure with cloud top pressures derived from the infrared ATSR instrument on the same satellite. The findings confirm results from previous studies that showed retrieved LER cloud pressures from buv observations are systematically higher than IR-derived cloud-top pressure. Simulations using Mie-scattering radiative transfer algorithms that include O2-O2 absorption and RRS show that these differences can be explained by increased photon path length within and below cloud.

  19. Supernovae explosions in the Large Magellanic Cloud drive massive winds toward the Milky Way

    NASA Astrophysics Data System (ADS)

    Ciampa, Drew A.; Barger, Kat; Horn, Madeline; Hernandez, Michael; Haffner, L. Matthew; Lehner, Nicolas; Howk, J. Christopher

    2017-01-01

    We present H-alpha mapped observations of Large Magellanic Cloud (LMC) intermediate- and high-velocity clouds. The intermediate-velocity cloud represents a present-day galactic wind while the high-velocity cloud may trace a remnant of a past wind from 300 Myr ago. Previous absorption-line studies detected these winds in front of the LMC, but were unable to confirm that these clouds extend off the LMC. Using the Wisconsin H-alpha Mapper, we mapped the H-alpha emission of the near side LMC cloud population. This enabled us, for the first time, to determine the extent, morphology, and kinematics of these clouds. The previous work by Lehner et al. (2009) and Barger et al. (2016) find that these clouds are roughly 10 million solar masses each; our observations show that these clouds contain substantially more mass than previous estimates. This ejected material is falling toward the Milky Way and may aid in replenishing our star formation reservoir.

  20. Enigmatic eight-meter trace fossils in the Lower Pennsylvanian Lee sandstone, central Appalachian basin, Tennessee

    USGS Publications Warehouse

    Wnuk, C.; Maberry, J.O.

    1990-01-01

    Enigmatic tubular trace fossils up to eight meters long occur in the Lower Pennsylvanian Middlesboro Member of the Lee Formation. Two morphotypes occur: type 1 trace fossils are plain, smooth, vertical, nonbranching, parallel-walled, tubular structures, type 2 trace fossils branch, have walls with faint vertical striations, regularly or irregularly spaced nodes, and funnel-shaped terminations. Sandstone casts filling type 2 structures have helical spiral morphology, and, in rare individuals, faint meniscate fills have been observed. Both trace-fossil morphotypes have poorly cemented wall linings containing framboidal pyrite, amorphous carbon, quartz sand, and poorly preserved fecal material. The trace fossils occur in a massive, structureless, channel-form sandstone, originating at the contact between a channel lag and the overlying massive fill representing a barrier island transgressing an estuarine facies. Origin of these structures is uncertain. -from Authors

  1. Interpolation of aliased seismic traces

    SciTech Connect

    Monk, D.J.; McBeath, R.G.; Wason, C.B.

    1993-08-10

    A method is described of interpolating seismic traces comprising the steps of: (a) processing seismic data to produce input seismic traces; (b) transforming the input seismic traces from the x, y, and time domain into the x-slope, y-slope and time domain (domains) by using a two dimensional power diversity slant stack; and (c) transforming the product of step (b) back into the x, y, and time domain using an inverse slant stack.

  2. Coherent Radiation of Electron Cloud

    SciTech Connect

    Heifets, S.

    2004-11-02

    The electron cloud in positron storage rings is pinched when a bunch passes by. For short bunches, the radiation due to acceleration of electrons of the cloud is coherent. Detection of such radiation can be used to measure the density of the cloud. The estimate of the power and the time structure of the radiated signal is given in this paper.

  3. A View from the Clouds

    ERIC Educational Resources Information Center

    Chudnov, Daniel

    2010-01-01

    Cloud computing is definitely a thing now, but it's not new and it's not even novel. Back when people were first learning about the Internet in the 1990s, every diagram that one saw showing how the Internet worked had a big cloud in the middle. That cloud represented the diverse links, routers, gateways, and protocols that passed traffic around in…

  4. The Basics of Cloud Computing

    ERIC Educational Resources Information Center

    Kaestner, Rich

    2012-01-01

    Most school business officials have heard the term "cloud computing" bandied about and may have some idea of what the term means. In fact, they likely already leverage a cloud-computing solution somewhere within their district. But what does cloud computing really mean? This brief article puts a bit of definition behind the term and helps one…

  5. AceCloud: Molecular Dynamics Simulations in the Cloud.

    PubMed

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  6. Cloud water chemistry and the production of sulfates in clouds

    NASA Technical Reports Server (NTRS)

    Hegg, D. A.; Hobbs, P. V.

    1981-01-01

    Measurements are presented of the pH and ionic content of water collected in clouds over western Washington and the Los Angeles Basin. Evidence for sulfate production in some of the clouds is presented. Not all of the sulfur in the cloud water was in the form of sulfate. However, the measurements indicate that the production of sulfate in clouds is of considerable significance in the atmosphere. Comparison of field measurements with model results show reasonable agreement and suggest that the production of sulfate in cloud water is a consequence of more than one conversion mechanism.

  7. The impact of humidity above stratiform clouds on indirect aerosol climate forcing.

    PubMed

    Ackerman, Andrew S; Kirkpatrick, Michael P; Stevens, David E; Toon, Owen B

    2004-12-23

    Some of the global warming from anthropogenic greenhouse gases is offset by increased reflection of solar radiation by clouds with smaller droplets that form in air polluted with aerosol particles that serve as cloud condensation nuclei. The resulting cooling tendency, termed the indirect aerosol forcing, is thought to be comparable in magnitude to the forcing by anthropogenic CO2, but it is difficult to estimate because the physical processes that determine global aerosol and cloud populations are poorly understood. Smaller cloud droplets not only reflect sunlight more effectively, but also inhibit precipitation, which is expected to result in increased cloud water. Such an increase in cloud water would result in even more reflective clouds, further increasing the indirect forcing. Marine boundary-layer clouds polluted by aerosol particles, however, are not generally observed to hold more water. Here we simulate stratocumulus clouds with a fluid dynamics model that includes detailed treatments of cloud microphysics and radiative transfer. Our simulations show that the response of cloud water to suppression of precipitation from increased droplet concentrations is determined by a competition between moistening from decreased surface precipitation and drying from increased entrainment of overlying air. Only when the overlying air is humid or droplet concentrations are very low does sufficient precipitation reach the surface to allow cloud water to increase with droplet concentrations. Otherwise, the response of cloud water to aerosol-induced suppression of precipitation is dominated by enhanced entrainment of overlying dry air. In this scenario, cloud water is reduced as droplet concentrations increase, which diminishes the indirect climate forcing.

  8. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, James W.

    1994-01-01

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest.

  9. Data Products on Cloud

    NASA Technical Reports Server (NTRS)

    Ly, Vuong T.; Mandl, Daniel J.

    2014-01-01

    This presentation lays out the data processing products that exist and are planned for the Matsu cloud for Earth Observing 1. The presentation focuses on a new feature called co-registration of Earth Observing 1 with Landsat Global Land Survey chips.

  10. Jupiter Clouds in Depth

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] 619 nm [figure removed for brevity, see original site] 727 nm [figure removed for brevity, see original site] 890 nm

    Images from NASA's Cassini spacecraft using three different filters reveal cloud structures and movements at different depths in the atmosphere around Jupiter's south pole.

    Cassini's cameras come equipped with filters that sample three wavelengths where methane gas absorbs light. These are in the red at 619 nanometer (nm) wavelength and in the near-infrared at 727 nm and 890 nm. Absorption in the 619 nm filter is weak. It is stronger in the 727 nm band and very strong in the 890 nm band where 90 percent of the light is absorbed by methane gas. Light in the weakest band can penetrate the deepest into Jupiter's atmosphere. It is sensitive to the amount of cloud and haze down to the pressure of the water cloud, which lies at a depth where pressure is about 6 times the atmospheric pressure at sea level on the Earth). Light in the strongest methane band is absorbed at high altitude and is sensitive only to the ammonia cloud level and higher (pressures less than about one-half of Earth's atmospheric pressure) and the middle methane band is sensitive to the ammonia and ammonium hydrosulfide cloud layers as deep as two times Earth's atmospheric pressure.

    The images shown here demonstrate the power of these filters in studies of cloud stratigraphy. The images cover latitudes from about 15 degrees north at the top down to the southern polar region at the bottom. The left and middle images are ratios, the image in the methane filter divided by the image at a nearby wavelength outside the methane band. Using ratios emphasizes where contrast is due to methane absorption and not to other factors, such as the absorptive properties of the cloud particles, which influence contrast at all wavelengths.

    The most prominent feature seen in all three filters is the polar stratospheric haze that makes Jupiter

  11. Multiscale Cloud System Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell W.

    2009-01-01

    The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.

  12. Living under a Cloud.

    ERIC Educational Resources Information Center

    Gursky, Daniel

    1991-01-01

    This article examines the efforts of three high school teachers at Richland High School in Richland (Washington) to change the school logo from a mushroom cloud, the symbol for a nuclear explosion. Opposition to these teachers' efforts has come from school administrators and fellow teachers, students, alumnae, and community residents. (IAH)

  13. Optical Transmission through Clouds

    DTIC Science & Technology

    1989-09-01

    radiative transfer in clouds is carried out by the .1,nte Carlo method. In a Monte Carlo computation one photon...has some advantages over other computational methods for radiative transfer , namely * any phase function can be used * can include polarization (with...APPENDIX A. Monte Carlo Simulation if Radiative Transfer APPENDIX B. Intensity Reference Method for Radiative Transfer APPENDIX C.

  14. Data in the Cloud

    ERIC Educational Resources Information Center

    Bull, Glen; Garofalo, Joe

    2010-01-01

    The ability to move from one representation of data to another is one of the key characteristics of expert mathematicians and scientists. Cloud computing will offer more opportunities to create and display multiple representations of data, making this skill even more important in the future. The advent of the Internet led to widespread…

  15. Seeding the Cloud

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2013-01-01

    For any institution looking to shift enterprise resource planning (ERP) systems to the cloud, big savings can be achieved--but only if the school has properly prepped "before" negotiations begin. These three steps can help: (1) Mop up the mess first; (2) Understand the true costs for services; and (3) Calculate the cost of transition.

  16. Invisible Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Moderate-resolution Imaging Spectroradiometer's (MODIS') cloud detection capability is so sensitive that it can detect clouds that would be indistinguishable to the human eye. This pair of images highlights MODIS' ability to detect what scientists call 'sub-visible cirrus.' The image on top shows the scene using data collected in the visible part of the electromagnetic spectrum-the part our eyes can see. Clouds are apparent in the center and lower right of the image, while the rest of the image appears to be relatively clear. However, data collected at 1.38um (lower image) show that a thick layer of previously undetected cirrus clouds obscures the entire scene. These kinds of cirrus are called 'sub-visible' because they can't be detected using only visible light. MODIS' 1.38um channel detects electromagnetic radiation in the infrared region of the spectrum. These images were made from data collected on April 4, 2000. Image courtesy Mark Gray, MODIS Atmosphere Team

  17. Uranus - Discrete Cloud

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This false-color Voyager picture of Uranus shows a discrete cloud seen as a bright streak near the planet's limb. The picture is a highly processed composite of three images obtained Jan. 14, 1986, when the spacecraft was 12.9 million kilometers (8.0 million miles) from the planet. The cloud visible here is the most prominent feature seen in a series of Voyager images designed to track atmospheric motions. (The occasional donut-shaped features, including one at the bottom, are shadows cast by dust in the camera optics; the processing necessary to bring out the faint features on the planet also brings out these camera blemishes.) Three separate images were shuttered through violet, blue and orange filters. Each color image showed the cloud to a different degree; because they were not exposed at exactly the same time, the images were processed to provide a correction for a good spatial match. In a true-color image, the cloud would be barely discernible; the false color helps bring out additional details. The different colors imply variations in vertical structure, but as yet is not possible to be specific about such differences. One possibility is that the Uranian atmosphere contains smog-like constituents, in which case some color differences may represent differences in how these molecules are distributed. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  18. Computing in the Clouds

    ERIC Educational Resources Information Center

    Johnson, Doug

    2010-01-01

    Web-based applications offer teachers, students, and school districts a convenient way to accomplish a wide range of tasks, from accounting to word processing, for free. Cloud computing has the potential to offer staff and students better services at a lower cost than the technology deployment models they're using now. Saving money and improving…

  19. Interstellar molecular clouds.

    PubMed

    Bally, J

    1986-04-11

    The interstellar medium in our galaxy contains matter in a variety of states ranging from hot plasma to cold and dusty molecular gas. The molecular phase consists of giant clouds, which are the largest gravitationally bound objects in the galaxy, the primary reservoir of material for the ongoing birth of new stars, and the medium regulating the evolution of galactic disks.

  20. Training in the Clouds

    ERIC Educational Resources Information Center

    Pretlow, Cassi; Jayroe, Tina

    2010-01-01

    In this article, the authors share how cloud-based applications, such as Google Calendar, Wikidot, Google Docs, Google Sites, YouTube, and Craigslist, played a big part in the success of their plan of implementing a technology training program for customers and employees. A few years ago the Denver Public Library, where the authors work, developed…

  1. Model Cloud Relationships.

    DTIC Science & Technology

    1983-10-30

    nucleation due tovi Brownian diffusion (NNUB .), thermophoresis (NNUC .) andVi Vi diffusiophoresis (NNUD .). Finally, production of specific Vi...Young (1974) referred to as model A. Young considers contact by Brownian diffusion, thermophoresis and diffusiophoresis. Brownian- diftusion contact...nucleation results from the random collision of aerosol particles with cloud droplets. Thermophoresis contact nucleation occurs due to the attraction

  2. The VOCALS Regional Experiment: Aerosol-Cloud-Precipitation Interactions in Marine Boundary Layer Cloud

    NASA Astrophysics Data System (ADS)

    Wood, R.

    2012-12-01

    Robert Wood, C.S. Bretherton, C. R. Mechoso, R. A. Weller, B. J. Huebert, H. Coe, B. A. Albrecht, P. H. Daum, D. Leon, A. Clarke, P. Zuidema, C. W. Fairall, G. Allen, S. deSzoeke, G. Feingold, J. Kazil, S. Yuter, R. George, A. Berner, C. Terai, G. Painter, H. Wang, M. Wyant, D. Mechem The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) is an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific (SEP), a region dominated by strong coastal upwelling, extensive cold SSTs, and home to the largest subtropical stratocumulus deck on Earth. VOCALS-REx took place during October and November 2008 and involved five research aircraft, two ships and two surface sites in northen Chile. A central theme of VOCALS-REx is the improved understanding of links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties. In this presentation, we will present a synthesis of results from VOCALS-REx focusing on the following questions: (a) how are aerosols, clouds and precipitation inter-related in the SEP region? (b) what microphysical-macrophysical interactions are necessary for the formation and maintenance of open cells? (c) how do cloud and MBL properties change across the strong microphysical gradients from the South American coast to the remote ocean?

  3. Ozone retrieval errors associated with clouds in total ozone mapping spectrometer (TOMS) data

    NASA Astrophysics Data System (ADS)

    Liu, Xiong

    result from large cloud-height errors; corrections lead to 50--70% POAs in the tropics because of mainly the ICOAEN effect. POAs with fractions of 30--60% occur in marine stratocumulus regions west of South Africa and South America. ORES over clear and cloudy areas cause about half the ozone/reflectivity slope; greater ozone production from frequent low-altitude clouds and rich ozone precursors may cause the remainder. The knowledge of TOMS OREs has important implications for ozone/trace gas retrieval from other satellites.

  4. Investigation Of Trace Gas To Aerosol Relationships Over BioMass Burning Areas Using Daily Satellite Observations

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas; Penning de Vries, Marloes; Beirle, Steffen; Zorner, Jan

    2013-12-01

    We investigate the spatial and temporal relationships between satellite observations of selected trace gases (CO, NO2, HCHO, CHOCHO), the UV aerosol index (UVAI) and the aerosol optical depth (AOD) measured either by satellite or from ground. In contrast to previous studies we use daily observations, since only from daily observations information on individual biomass burning events can be obtained. Unlike the AOD, satellite observations of trace gases and UVAI are possible in the presence of clouds. This might be important for the study of aerosol-cloud-interactions.

  5. Prebiotic chemistry in clouds.

    PubMed

    Oberbeck, V R; Marshall, J; Shen, T

    1991-01-01

    In the traditional concept for the origin of life as proposed by Oparin and Haldane in the 1920s, prebiotic reactants became slowly concentrated in the primordial oceans and life evolved slowly from a series of highly protracted chemical reactions during the first billion years of Earth's history. However, chemical evolution may not have occurred continuously because planetesimals and asteroids impacted the Earth many times during the first billion years, may have sterilized the Earth, and required the process to start over. A rapid process of chemical evolution may have been required in order that life appeared at or before 3.5 billion years ago. Thus, a setting favoring rapid chemical evolution may be required. A chemical evolution hypothesis set forth by Woese in 1979 accomplished prebiotic reactions rapidly in droplets in giant atmospheric reflux columns. However, in 1985 Scherer raised a number of objections to Woese's hypothesis and concluded that it was not valid. We propose a mechanism for prebiotic chemistry in clouds that satisfies Scherer's concerns regarding the Woese hypothesis and includes advantageous droplet chemistry. Prebiotic reactants were supplied to the atmosphere by comets, meteorites, and interplanetary dust or synthesized in the atmosphere from simple compounds using energy sources such as ultraviolet light, corona discharge, or lightning. These prebiotic monomers would have first encountered moisture in cloud drops and precipitation. We propose that rapid prebiotic chemical evolution was facilitated on the primordial Earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by , or synthesized during entry of, meteorites, comets, and interplanetary dust would have been scavenged by cloud drops containing clay condensation nuclei. Polymerization would have occurred within cloud systems during cycles of condensation, freezing, melting, and

  6. From Regional Cloud-Albedo to a Global Albedo Footprint - Studying Aerosol Effects on the Radiation Budget Using the Relation Between Albedo and Cloud Fraction

    NASA Astrophysics Data System (ADS)

    Bender, F.; Engström, A.; Karlsson, J.; Wood, R.; Charlson, R. J.

    2015-12-01

    Earth's albedo is the primary determinant of the amount of energy absorbed by the Earth-atmosphere system. The main factor controlling albedo is the amount of clouds present, but aerosols can affect and alter both clear-sky and cloudy-sky reflectance. How albedo depends on cloud fraction and how albedo varies at a given cloud fraction and a given cloud water content, reveals information about these aerosol effects on the radiation budget. Hence, the relation between total albedo and cloud fraction can be used for illustration and quantification of aerosol effects, and as a diagnostic tool, to test model performance. Here, we show examples of the utilisation of this relation focusing on satellite observations from CERES and MODIS on Aqua, as well as from Calipso and CloudSat, and performing comparisons with climate models on the way: In low-cloud regions in the subtropics, we find that climate models well represent a near-constant regional cloud albedo, and this representation has improved from CMIP3 to CMIP5. CMIP5 models indicate more reflective clouds in present-day climate than pre-industrial, as a result of increased aerosol burdens. On monthly mean time scale, models are found to over-estimate the regional cloud-brightening due to aerosols. On the global scale we find an increasing cloud albedo with increasing cloud fraction - a relation that is very well defined in observations, and less so in CMIP5 models. Cloud brightening from pre-industrial to present day is also seen on global scale. Further, controlling for both cloud fraction and cloud water content we can trace small variations in albedo, or perturbations of solar reflectivity, that create a near-global coherent geographical pattern that is consistent with aerosol impacts on climate, with albedo enhancement in regions dominant of known aerosol sources and suppression of albedo in regions associated with high rates of aerosol removal (deduced using CloudSat precipitation estimates). This mapping can be

  7. Distances of Three High-Galactic Latitude Diffuse Clouds

    NASA Astrophysics Data System (ADS)

    Montgomery, Sharon Lynn; Kelly, M. E.; Burrows, D. N.

    2010-01-01

    The Sun is embedded within a large, irregularly-shaped region of plasma called the Local Bubble. Lallement et al. (2003) have traced its convoluted boundary by using the equivalent widths of NaD lines in 1005 distant stars. To avoid directional bias, however, they intentionally avoided targeting stars that shared lines-of-sight with clouds visible on IR, X-ray, or radio maps. Thus, to complement their study, we have determined the distances of three diffuse clouds that were also classified as soft X-ray shadows by Snowden et al. (2000). We targeted these objects since X-ray shadows are expected to lie at or near the bubble's boundary. Thus, their distances and radial velocities provide information about the bubble's edge. In addition, a small fraction of the clouds that are also shadows may prove to lie well within the bubble. The number and nature of such interlopers allows us to place constraints on the bubble's history. To determine the distances and radial velocities, we collected moderately high-resolution spectra of 62 bright, early-type stars lying near the three clouds using the Sandiford Cassegrain-Echelle spectrograph of the 2.1m Otto Struve Telescope. We then searched the stars’ spectra for interstellar Na-D lines and used their known distances to bracket the distances to the clouds.

  8. Visual Analysis of Cloud Computing Performance Using Behavioral Lines.

    PubMed

    Muelder, Chris; Zhu, Biao; Chen, Wei; Zhang, Hongxin; Ma, Kwan-Liu

    2016-02-29

    Cloud computing is an essential technology to Big Data analytics and services. A cloud computing system is often comprised of a large number of parallel computing and storage devices. Monitoring the usage and performance of such a system is important for efficient operations, maintenance, and security. Tracing every application on a large cloud system is untenable due to scale and privacy issues. But profile data can be collected relatively efficiently by regularly sampling the state of the system, including properties such as CPU load, memory usage, network usage, and others, creating a set of multivariate time series for each system. Adequate tools for studying such large-scale, multidimensional data are lacking. In this paper, we present a visual based analysis approach to understanding and analyzing the performance and behavior of cloud computing systems. Our design is based on similarity measures and a layout method to portray the behavior of each compute node over time. When visualizing a large number of behavioral lines together, distinct patterns often appear suggesting particular types of performance bottleneck. The resulting system provides multiple linked views, which allow the user to interactively explore the data by examining the data or a selected subset at different levels of detail. Our case studies, which use datasets collected from two different cloud systems, show that this visual based approach is effective in identifying trends and anomalies of the systems.

  9. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability.

    PubMed

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-24

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.

  10. A Linearized Prognostic Cloud Scheme in NASAs Goddard Earth Observing System Data Assimilation Tools

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Errico, Ronald M.; Gelaro, Ronald; Kim, Jong G.; Mahajan, Rahul

    2015-01-01

    A linearized prognostic cloud scheme has been developed to accompany the linearized convection scheme recently implemented in NASA's Goddard Earth Observing System data assimilation tools. The linearization, developed from the nonlinear cloud scheme, treats cloud variables prognostically so they are subject to linearized advection, diffusion, generation, and evaporation. Four linearized cloud variables are modeled, the ice and water phases of clouds generated by large-scale condensation and, separately, by detraining convection. For each species the scheme models their sources, sublimation, evaporation, and autoconversion. Large-scale, anvil and convective species of precipitation are modeled and evaporated. The cloud scheme exhibits linearity and realistic perturbation growth, except around the generation of clouds through large-scale condensation. Discontinuities and steep gradients are widely used here and severe problems occur in the calculation of cloud fraction. For data assimilation applications this poor behavior is controlled by replacing this part of the scheme with a perturbation model. For observation impacts, where efficiency is less of a concern, a filtering is developed that examines the Jacobian. The replacement scheme is only invoked if Jacobian elements or eigenvalues violate a series of tuned constants. The linearized prognostic cloud scheme is tested by comparing the linear and nonlinear perturbation trajectories for 6-, 12-, and 24-h forecast times. The tangent linear model performs well and perturbations of clouds are well captured for the lead times of interest.

  11. The effect of cloud type on earth's energy balance - Results for selected regions

    NASA Technical Reports Server (NTRS)

    Ockert-Bell, Maureen E.; Hartmann, Dennis L.

    1992-01-01

    International Satellite Cloud Climatology Project (ISCCP) C1 cloud information is compared with planetary albedo, outgoing longwave radiation (OLR), and net radiation measured at the top of the atmosphere by the Earth Radiation Budget Experiment (ERBE). Principal component analysis indicates that the day-to-day variations of the abundances of the 35 cloud types of the C1 data are correlated with each other, so that for many purposes the data set can be well represented by about five cloud types. Using stepwise multiple regression, the ISCCP C1 data can be used to predict the day-to-day variations of the energy balance measured by ERBE for 2.5-deg regions. Total fractional area coverage of cloudiness is a relatively poor predictor of radiation budget quantities. If the total fractional area coverage by clouds is divided into contributions from several distinct cloud types, the fractional coverages by these several cloud types will together form a much better prediction of radiation budget quantities than the single variable of total fractional-area cloud coverage. The regression equations can be used to estimate the net effect of clouds on the radiation balance and the contributions from particular types of clouds to albedo, OLR, and net radiation.

  12. Impact of Antarctic mixed-phase clouds on climate.

    PubMed

    Lawson, R Paul; Gettelman, Andrew

    2014-12-23

    Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm(-2), and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than -20 °C.

  13. Impact of Antarctic mixed-phase clouds on climate

    PubMed Central

    Lawson, R. Paul; Gettelman, Andrew

    2014-01-01

    Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm−2, and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than −20 °C. PMID:25489069

  14. Chemical Abundances of Two Stars in the Large Magellanic Cloud Globular Cluster NGC 1718

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; McWilliam, Andrew; Wallerstein, George

    2017-01-01

    Detailed chemical abundances of two stars in the intermediate-age Large Magellanic Cloud (LMC) globular cluster NGC 1718 are presented, based on high resolution spectroscopic observations with the MIKE spectrograph. The detailed abundances confirm NGC 1718 to be a fairly metal-rich cluster, with an average [{Fe/H}] ˜ -0.55± 0.01. The two red giants appear to have primordial O, Na, Mg, and Al abundances, with no convincing signs of a composition difference between the two stars-hence, based on these two stars, NGC 1718 shows no evidence for hosting multiple populations. The Mg abundance is lower than Milky Way field stars, but is similar to LMC field stars at the same metallicity. The previous claims of very low [Mg/Fe] in NGC 1718 are therefore not supported in this study. Other abundances (Si, Ca, Ti, V, Mn, Ni, Cu, Rb, Y, Zr, La, and Eu) all follow the LMC field star trend, demonstrating yet again that (for most elements) globular clusters trace the abundances of their host galaxy's field stars. Similar to the field stars, NGC 1718 is found to be mildly deficient in explosive α-elements, but moderately to strongly deficient in O, Na, Mg, Al, and Cu, elements which form during hydrostatic burning in massive stars. NGC 1718 is also enhanced in La, suggesting that it was enriched in ejecta from metal-poor AGB stars.

  15. Uranus Cloud Movement

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Time-lapse Voyager 2 images of Uranus show the movement of two small, bright, streaky clouds -- the first such features ever seen on the planet. The clouds were detected in this series of orange-filtered images taken Jan. 14, 1986, over a 4.6-hour interval (from top to bottom). At the time, the spacecraft was about 12.9 million kilometers (8.0 million miles) from the planet, whose pole of rotation is near the center of each disk. Uranus, which is tipped on its side with respect to the other planets, is rotating in a counterclockwise direction, as are the two clouds seen here as bright streaks. (The occasional donut-shaped features that show up are shadows cast by dust in the camera optics. The processing necessary to bring out the faint features on the planet also brings out these camera blemishes.) The larger of the two clouds is at a latitude of 33 degrees; the smaller cloud, seen faintly in the three lower images, lies at 26 degrees (a lower latitude and hence closer to the limb). Their counterclockwise periods of rotation are 16.2 and 16.9 hours, respectively. This difference implies that the lower-latitude feature is lagging behind the higher-latitude feature at a speed of almost 100 meters per second (220 mph). Latitudinal bands are also visible in these images. The faint bands, more numerous now than in previous Voyager images from longer range, are concentric with the pole of rotation -- that is, they circle the planet in lines of constant latitude. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  16. Overlap Properties of Clouds Generated by a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Oreopoulos, L.; Khairoutdinov, M.

    2002-01-01

    In order for General Circulation Models (GCMs), one of our most important tools to predict future climate, to correctly describe the propagation of solar and thermal radiation through the cloudy atmosphere a realistic description of the vertical distribution of cloud amount is needed. Actually, one needs not only the cloud amounts at different levels of the atmosphere, but also how these cloud amounts are related, in other words, how they overlap. Currently GCMs make some idealized assumptions about cloud overlap, for example that contiguous cloud layers overlap maximally and non-contiguous cloud layers overlap in a random fashion. Since there are difficulties in obtaining the vertical profile of cloud amount from observations, the realism of the overlap assumptions made in GCMs has not been yet rigorously investigated. Recently however, cloud observations from a relatively new type of ground radar have been used to examine the vertical distribution of cloudiness. These observations suggest that the GCM overlap assumptions are dubious. Our study uses cloud fields from sophisticated models dedicated to simulate cloud formation, maintenance, and dissipation called Cloud Resolving Models . These models are generally considered capable of producing realistic three-dimensional representation of cloudiness. Using numerous cloud fields produced by such a CRM we show that the degree of overlap between cloud layers is a function of their separation distance, and is in general described by a combination of the maximum and random overlap assumption, with random overlap dominating as separation distances increase. We show that it is possible to parameterize this behavior in a way that can eventually be incorporated in GCMs. Our results seem to have a significant resemblance to the results from the radar observations despite the completely different nature of the datasets. This consistency is encouraging and will promote development of new radiative transfer codes that will

  17. First observations of tracking clouds using scanning ARM cloud radars

    DOE PAGES

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  18. Cloud Computing Security Issue: Survey

    NASA Astrophysics Data System (ADS)

    Kamal, Shailza; Kaur, Rajpreet

    2011-12-01

    Cloud computing is the growing field in IT industry since 2007 proposed by IBM. Another company like Google, Amazon, and Microsoft provides further products to cloud computing. The cloud computing is the internet based computing that shared recourses, information on demand. It provides the services like SaaS, IaaS and PaaS. The services and recourses are shared by virtualization that run multiple operation applications on cloud computing. This discussion gives the survey on the challenges on security issues during cloud computing and describes some standards and protocols that presents how security can be managed.

  19. Formation of giant molecular clouds in global spiral structures: The role of orbital dynamics and cloud-cloud collisions

    NASA Technical Reports Server (NTRS)

    Roberts, W. W., Jr.; Stewart, G. R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes.

  20. Distances of Four High-Galactic Latitude Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Montgomery, Sharon L.; Rombach, C. E.; Birney, C. Y.; Burrows, D. N.

    2006-12-01

    The Sun is embedded within a large, irregularly-shaped region of plasma called the Local Bubble that formed when relatively nearby stars exploded as supernovae several million years ago. Lallement et al. (2003) have traced its convoluted boundary by using the equivalent widths of NaD lines in 1005 distant stars. To avoid directional bias, however, they intentionally avoided targeting stars that shared lines-of-sight with clouds visible on IR, X-ray, or radio maps. Thus, to complement their study, we have determined the distances and radial velocities of four molecular clouds that were also classified as soft X-ray shadows by Snowden et al. (2000). We targeted these objects since X-ray shadows are expected to lie at or near the bubble’s boundary. Thus, their distances and radial velocities provide information about the bubble’s edge. In addition, a small fraction of the clouds that are also shadows may prove to lie well within the bubble. The number and nature of such interlopers places constraints on the bubble’s history. The clouds' distances and radial velocities were determined using moderately high-resolution spectra of 88 bright, early-type stars lying near the clouds. The spectra were obtained using the Sandiford Cassegrain-Echelle spectrograph of the 2.1m Otto Struve Telescope. We then searched the stars’ spectra for interstellar Na-D lines and used their known distances to bracket the distances to the clouds. We use the derived distances to calculate the density and pressure of the Local Bubble in the direction of these clouds.

  1. Cloud boundaries during FIRE 2

    NASA Technical Reports Server (NTRS)

    Uttal, Taneil; Shaver, Scott M.; Clothiaux, Eugene E.; Ackerman, Thomas P.

    1993-01-01

    To our knowledge, previous observations of cloud boundaries have been limited to studies of cloud bases with ceilometers, cloud tops with satellites, and intermittent reports by aircraft pilots. Comprehensive studies that simultaneously record information of cloud top and cloud base, especially in multiple layer cases, have been difficult, and require the use of active remote sensors with range-gated information. In this study, we examined a 4-week period during which the NOAA Wave Propagation Laboratory (WPL) 8-mm radar and the Pennsylvania State University (PSU) 3-mm radar operated quasi-continuously, side by side. By quasi-continuously, we mean that both radars operated during all periods when cloud was present, during both daytime and nighttime hours. Using this data, we develop a summary of cloud boundaries for the month of November for a single location in the mid-continental United States.

  2. Io's Sodium Cloud (Clear Filter)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of Jupiter's moon Io and its surrounding sky is shown in false color. It was taken at 5 hours 30 minutes Universal Time on Nov. 9, 1996 by the solid state imaging (CCD) system aboard NASA's Galileo spacecraft, using a clear filter whose wavelength range was approximately 400 to 1100 nanometers. This picture differs in two main ways from the green-yellow filter image of the same scene which was released yesterday.

    First, the sky around Io is brighter, partly because the wider wavelength range of the clear filter lets in more scattered light from Io's illuminated crescent and from Prometheus' sunlit plume. Nonetheless, the overall sky brightness in this frame is comparable to that seen through the green-yellow filter, indicating that even here much of the diffuse sky emission is coming from the wavelength range of the green-yellow filter (i.e., from Io's Sodium Cloud).

    The second major difference is that a quite large roundish spot has appeared in Io's southern hemisphere. This spot -- which has been colored red -- corresponds to thermal emission from the volcano Pele. The green-yellow filter image bears a much smaller trace of this emission because the clear filter is far more sensitive to those relatively long wavelengths where thermal emission is strongest.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  3. Sahara Dust Cloud

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24

    A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean.

    These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward.

    In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005.

    In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie

    The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the

  4. Trace metal transformations in gasification

    SciTech Connect

    Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A.

    1995-08-01

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

  5. Airborne observations of cloud properties on HALO during NARVAL

    NASA Astrophysics Data System (ADS)

    Konow, Heike; Hansen, Akio; Ament, Felix

    2016-04-01

    The representation of cloud and precipitation processes is one of the largest sources of uncertainty in climate and weather predictions. To validate model predictions of convective processes over the Atlantic ocean, usually satellite data are used. However, satellite products provide just a coarse view with poor temporal resolution of convective maritime clouds. Aircraft-based observations offer a more detailed insight due to lower altitude and high sampling rates. The research aircraft HALO (High Altitude Long Range Research Aircraft) is operated by the German Aerospace Center (DLR). With a ceiling of 15 km, and a range of 10,000 km and more than 10 hours it is able to reach remote regions and operate from higher altitudes than most other research aircraft. Thus, it provides the unique opportunity to exploit regions of the atmosphere that cannot be easily accessed otherwise. Measurements conducted on HALO provide more detailed insights than achievable from satellite data. Therefore, this measurement platform bridges the gap between previous airborne measurements and satellites. The payload used for this study consists of, amongst others, a suite of passive microwave radiometers, a cloud radar, and a water vapor DIAL. To investigate cloud and precipitation properties of convective maritime clouds, the NARVAL (Next-generation Aircraft Remote-Sensing for Validation Studies) campaign was conducted in winter 2013/2014 out of Barbados and Keflavik (Iceland). This campaign was one of the first that took place on the HALO aircraft. During the experiment's two parts 15 research flights were conducted (8 flights during NARVAL-South out of Barbados to investigate trade-wind cumuli and 7 flights out of Keflavik with focus on mid-latitude cyclonic systems). Flight durations were between five and nine hours, amounting to roughly 118 flight hours overall. 121 dropsondes were deployed. In fall 2016 two additional aircraft campaigns with the same payload will take place: The

  6. Cloud Radiative Effect in dependence on Cloud Type

    NASA Astrophysics Data System (ADS)

    Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent

    2015-04-01

    Radiative transfer of energy in the atmosphere and the influence of clouds on the radiation budget remain the greatest sources of uncertainty in the simulation of climate change. Small changes in cloudiness and radiation can have large impacts on the Earth's climate. In order to assess the opposing effects of clouds on the radiation budget and the corresponding changes, frequent and more precise radiation and cloud observations are necessary. The role of clouds on the surface radiation budget is studied in order to quantify the longwave, shortwave and the total cloud radiative forcing in dependence on the atmospheric composition and cloud type. The study is performed for three different sites in Switzerland at three different altitude levels: Payerne (490 m asl), Davos (1'560 m asl) and Jungfraujoch (3'580 m asl). On the basis of data of visible all-sky camera systems at the three aforementioned stations in Switzerland, up to six different cloud types are distinguished (Cirrus-Cirrostratus, Cirrocumulus-Altocumulus, Stratus-Altostratus, Cumulus, Stratocumulus and Cumulonimbus-Nimbostratus). These cloud types are classified with a modified algorithm of Heinle et al. (2010). This cloud type classifying algorithm is based on a set of statistical features describing the color (spectral features) and the texture of an image (textural features) (Wacker et al. (2015)). The calculation of the fractional cloud cover information is based on spectral information of the all-sky camera data. The radiation data are taken from measurements with pyranometers and pyrgeometers at the different stations. A climatology of a whole year of the shortwave, longwave and total cloud radiative effect and its sensitivity to integrated water vapor, cloud cover and cloud type will be calculated for the three above-mentioned stations in Switzerland. For the calculation of the shortwave and longwave cloud radiative effect the corresponding cloud-free reference models developed at PMOD/WRC will be

  7. Evaluation of the OMI Cloud Pressures Derived from Rotational Raman Scattering by Comparisons with other Satellite Data and Radiative Transfer Simulations

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander; Joiner, Joanna; Spurr, Robert; Bhartia, Pawan K.; Levelt, Pieternel; Stephens, Graeme

    2009-01-01

    In this paper we examine differences between cloud pressures retrieved from the Ozone Monitoring Instrument (OMI) using the ultraviolet rotational Raman scattering (RRS) algorithm and those from the thermal infrared (IR) Aqua/MODIS. Several cloud data sets are currently being used in OMI trace gas retrieval algorithms including climatologies based on IR measurements and simultaneous cloud parameters derived from OMI. From a validation perspective, it is important to understand the OMI retrieved cloud parameters and how they differ with those derived from the IR. To this end, we perform radiative transfer calculations to simulate the effects of different geophysical conditions on the OMI RRS cloud pressure retrievals. We also quantify errors related to the use of the Mixed Lambert-Equivalent Reflectivity (MLER) concept as currently implemented of the OMI algorithms. Using properties from the Cloudsat radar and MODIS, we show that radiative transfer calculations support the following: (1) The MLER model is adequate for single-layer optically thick, geometrically thin clouds, but can produce significant errors in estimated cloud pressure for optically thin clouds. (2) In a two-layer cloud, the RRS algorithm may retrieve a cloud pressure that is either between the two cloud decks or even beneath the top of the lower cloud deck because of scattering between the cloud layers; the retrieved pressure depends upon the viewing geometry and the optical depth of the upper cloud deck. (3) Absorbing aerosol in and above a cloud can produce significant errors in the retrieved cloud pressure. (4) The retrieved RRS effective pressure for a deep convective cloud will be significantly higher than the physical cloud top pressure derived with thermal IR.

  8. Improvements to the OMI O2-O2 operational cloud algorithm and comparisons with ground-based radar-lidar observations

    NASA Astrophysics Data System (ADS)

    Pepijn Veefkind, J.; de Haan, Johan F.; Sneep, Maarten; Levelt, Pieternel F.

    2016-12-01

    The OMI (Ozone Monitoring Instrument on board NASA's Earth Observing System (EOS) Aura satellite) OMCLDO2 cloud product supports trace gas retrievals of for example ozone and nitrogen dioxide. The OMCLDO2 algorithm derives the effective cloud fraction and effective cloud pressure using a DOAS (differential optical absorption spectroscopy) fit of the O2-O2 absorption feature around 477 nm. A new version of the OMI OMCLDO2 cloud product is presented that contains several improvements, of which the introduction of a temperature correction on the O2-O2 slant columns and the updated look-up tables have the largest impact. Whereas the differences in the effective cloud fraction are on average limited to 0.01, the differences of the effective cloud pressure can be up to 200 hPa, especially at cloud fractions below 0.3. As expected, the temperature correction depends on latitude and season. The updated look-up tables have a systematic effect on the cloud pressure at low cloud fractions. The improvements at low cloud fractions are very important for the retrieval of trace gases in the lower troposphere, for example for nitrogen dioxide and formaldehyde. The cloud pressure retrievals of the improved algorithm are compared with ground-based radar-lidar observations for three sites at mid-latitudes. For low clouds that have a limited vertical extent the comparison yields good agreement. For higher clouds, which are vertically extensive and often contain several layers, the satellite retrievals give a lower cloud height. For high clouds, mixed results are obtained.

  9. Jupiter Clouds in Depth

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] 619 nm [figure removed for brevity, see original site] 727 nm [figure removed for brevity, see original site] 890 nm

    Images from NASA's Cassini spacecraft using three different filters reveal cloud structures and movements at different depths in the atmosphere around Jupiter's south pole.

    Cassini's cameras come equipped with filters that sample three wavelengths where methane gas absorbs light. These are in the red at 619 nanometer (nm) wavelength and in the near-infrared at 727 nm and 890 nm. Absorption in the 619 nm filter is weak. It is stronger in the 727 nm band and very strong in the 890 nm band where 90 percent of the light is absorbed by methane gas. Light in the weakest band can penetrate the deepest into Jupiter's atmosphere. It is sensitive to the amount of cloud and haze down to the pressure of the water cloud, which lies at a depth where pressure is about 6 times the atmospheric pressure at sea level on the Earth). Light in the strongest methane band is absorbed at high altitude and is sensitive only to the ammonia cloud level and higher (pressures less than about one-half of Earth's atmospheric pressure) and the middle methane band is sensitive to the ammonia and ammonium hydrosulfide cloud layers as deep as two times Earth's atmospheric pressure.

    The images shown here demonstrate the power of these filters in studies of cloud stratigraphy. The images cover latitudes from about 15 degrees north at the top down to the southern polar region at the bottom. The left and middle images are ratios, the image in the methane filter divided by the image at a nearby wavelength outside the methane band. Using ratios emphasizes where contrast is due to methane absorption and not to other factors, such as the absorptive properties of the cloud particles, which influence contrast at all wavelengths.

    The most prominent feature seen in all three filters is the polar stratospheric haze that makes Jupiter

  10. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface is disclosed. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest. 4 figs.

  11. Tracing Geothermal Fluids

    SciTech Connect

    Michael C. Adams; Greg Nash

    2004-03-01

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  12. Atmospheric trace molecule spectroscopy

    NASA Technical Reports Server (NTRS)

    Farmer, C. B.

    1982-01-01

    The Spacelab investigation entitled Atmospheric Trace Molecule Spectroscopy (ATMOS) is designed to obtain fundamental information related to the chemistry and physics of the Earth's upper atmosphere using the techniques of infrared absorption spectroscopy. There are two principal objectives to be met. The first is the determination, on a global scale, of the compositional structure of the upper atmosphere and its spatial variability. The establishment of this variability represents the first step toward determining the characteristic residence times for the upper atmospheric constituents; the magnitudes of their sources and sinks; and, ultimately, an understanding of their effects on the stability of the stratosphere. The second objective is to provide the high-resolution, calibrated spectral information which is essential for the detailed design of advanced instrumentation for subsequent global monitoring of specific species found to be critical to atmospheric stability. This information will be disseminated in the form of a three dimensional atlas of solar absorption spectra obtained over a range of latitudes, longitudes, and altitudes.

  13. High Resolution Cloud Microphysics and Radiation Studies

    DTIC Science & Technology

    2011-06-16

    characteristics of mid level altocumulus clouds and upper level visible and subvisual cirrus clouds The MPL lidar provided information about the temporal...balloon, lidar, and radar study of cirrus and altocumulus clouds to further investigate the presence of multi- cloud and nearly cloud -free layers...data set of the clouds and thermodynanuc structure to build a mesoscale and LF.S test-bed for cirrus and altocumulus cloud layers. The project was

  14. Cloud-Vegetation Interaction: Use of Normalized Difference Cloud Index for Estimation of Cloud Optical Thickness

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhint, Y.; Davis, A.; Wiscombe, W.; Pilewskie, P.

    1999-01-01

    A new technique to retrieve cloud optical depth for broken clouds above green vegetation using ground-based zenith radiance measurements is developed. By analogy with the Normalized Difference Vegetation Index NDVI), the Normalized Difference Cloud Index (NDCI) is defined as a ratio between the difference and the sum of two zenith radiances measured for two narrow spectral bands in the visible and near-IR regions. The very different spectral behavior of cloud liquid water drops and green vegetation is the key physics behind the NDCI. It provides extra tools to remove the radiative effects of the 3D cloud structure. Numerical calculations based on fractal clouds and real measurements of NDCI and cloud liquid water path confirm the improvements.

  15. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: An ARM Mobile Facility Deployment

    NASA Technical Reports Server (NTRS)

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, J. Christine; Mann, Julian A. L.; O'Connor, Ewan J.; Hogan, Robin J.; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palikonda, Rabindra; Albrecht, Bruce; Luke, Ed; Hannay, Cecile; Lin, Yanluan

    2015-01-01

    Capsule: A 21-month deployment to Graciosa Island in the northeastern Atlantic Ocean is providing an unprecedented record of the clouds, aerosols and meteorology in a poorly-sampled remote marine environment The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21 month (April 2009- December 2010) comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1- 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from at Graciosa are being compared with short-range forecasts made a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a

  16. Nitrogen dioxide observations from the Geostationary Trace ...

    EPA Pesticide Factsheets

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m  ×  250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with prelim

  17. Cloud Computing Strategy

    DTIC Science & Technology

    2012-07-01

    the use of  available cloud and  shared   services .”     Federal Risk and Authorization Management Program (FedRAMP):  FedRAMP (See  Appendix B...governance processes will promote and enable the use of standardized SLAs  that facilitate the adoption of  shared   services  and virtual computing...Services,  shared   services  (cloud services offered by other  Components, the Federal Government, mission partners) and commercial vendors that meet

  18. The Clouds of Isidore

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These views of Hurricane Isidore were acquired by the Multi-angle Imaging SpectroRadiometer (MISR) on September 20, 2002. After bringing large-scale flooding to western Cuba, Isidore was upgraded (on September 21) from a tropical storm to a category 3hurricane. Sweeping westward to Mexico's Yucatan Peninsula, the hurricane caused major destruction and left hundreds of thousands of people homeless. Although weakened after passing over the Yucatan landmass, Isidore regained strength as it moved northward over the Gulf of Mexico.

    At left is a colorful visualization of cloud extent that superimposes MISR's radiometric camera-by-camera cloud mask (RCCM) over natural-color radiance imagery, both derived from data acquired with the instrument's vertical-viewing (nadir) camera. Using brightness and statistical metrics, the RCCM is one of several techniques MISR uses to determine whether an area is clear or cloudy. In this rendition, the RCCM has been color-coded, and purple = cloudy with high confidence, blue = cloudy with low confidence, green = clear with low confidence, and red = clear with high confidence.

    In addition to providing information on meteorological events, MISR's data products are designed to help improve our understanding of the influences of clouds on climate. Cloud heights and albedos are among the variables that govern these influences. (Albedo is the amount of sunlight reflected back to space divided by the amount of incident sunlight.) The center panel is the cloud-top height field retrieved using automated stereoscopic processing of data from multiple MISR cameras. Areas where heights could not be retrieved are shown in dark gray. In some areas, such as the southern portion of the image, the stereo retrieval was able to detect thin, high clouds that were not picked up by the RCCM's nadir view. Retrieved local albedo values for Isidore are shown at right. Generation of the albedo product is dependent upon observed cloud radiances as a function

  19. Point clouds in BIM

    NASA Astrophysics Data System (ADS)

    Antova, Gergana; Kunchev, Ivan; Mickrenska-Cherneva, Christina

    2016-10-01

    The representation of physical buildings in Building Information Models (BIM) has been a subject of research since four decades in the fields of Construction Informatics and GeoInformatics. The early digital representations of buildings mainly appeared as 3D drawings constructed by CAD software, and the 3D representation of the buildings was only geometric, while semantics and topology were out of modelling focus. On the other hand, less detailed building representations, with often focus on ‘outside’ representations were also found in form of 2D /2,5D GeoInformation models. Point clouds from 3D laser scanning data give a full and exact representation of the building geometry. The article presents different aspects and the benefits of using point clouds in BIM in the different stages of a lifecycle of a building.

  20. Can CFMIP2 models reproduce the leading modes of cloud vertical structure in the CALIPSO-GOCCP observations?

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Yang, Song

    2017-02-01

    Using principal component (PC) analysis, three leading modes of cloud vertical structure (CVS) are revealed by the GCM-Oriented CALIPSO Cloud Product (GOCCP), i.e. tropical high, subtropical anticyclonic and extratropical cyclonic cloud modes (THCM, SACM and ECCM, respectively). THCM mainly reflect the contrast between tropical high clouds and clouds in middle/high latitudes. SACM is closely associated with middle-high clouds in tropical convective cores, few-cloud regimes in subtropical anticyclonic clouds and stratocumulus over subtropical eastern oceans. ECCM mainly corresponds to clouds along extratropical cyclonic regions. Models of phase 2 of Cloud Feedback Model Intercomparison Project (CFMIP2) well reproduce the THCM, but SACM and ECCM are generally poorly simulated compared to GOCCP. Standardized PCs corresponding to CVS modes are generally captured, whereas original PCs (OPCs) are consistently underestimated (overestimated) for THCM (SACM and ECCM) by CFMIP2 models. The effects of CVS modes on relative cloud radiative forcing (RSCRF/RLCRF) (RSCRF being calculated at the surface while RLCRF at the top of atmosphere) are studied in terms of principal component regression method. Results show that CFMIP2 models tend to overestimate (underestimated or simulate the opposite sign) RSCRF/RLCRF radiative effects (REs) of ECCM (THCM and SACM) in unit global mean OPC compared to observations. These RE biases may be attributed to two factors, one of which is underestimation (overestimation) of low/middle clouds (high clouds) (also known as stronger (weaker) REs in unit low/middle (high) clouds) in simulated global mean cloud profiles, the other is eigenvector biases in CVS modes (especially for SACM and ECCM). It is suggested that much more attention should be paid on improvement of CVS, especially cloud parameterization associated with particular physical processes (e.g. downwelling regimes with the Hadley circulation, extratropical storm tracks and others), which

  1. Remote sensing measurements of the CO2 mixing ratio in the planetary boundary layer using cloud slicing with airborne lidar

    NASA Astrophysics Data System (ADS)

    Ramanathan, Anand K.; Mao, Jianping; Abshire, James B.; Allan, Graham R.

    2015-03-01

    We have measured the CO2 volume mixing ratio (VMR) within the planetary boundary layer (PBL) using cloud slicing with an airborne pulsed integrated path differential absorption (IPDA) lidar from flight altitudes of up to 13 km. During a flight over Iowa in summer 2011, simultaneous measurement of the optical range and CO2 absorption to clouds and the ground were made using time-resolved detection of pulse echoes from each scattering surface. We determined the CO2 absorption in the PBL by differencing the two lidar-measured absorption line shapes, one to a broken shallow cumulus cloud layer located at the top of the PBL and the other to the ground. Solving for the CO2 VMR in the PBL and that of the free troposphere, we measured a ≈15 ppm (4%) drawdown in the PBL. Both CO2 VMRs were within ≈3 ppm of in situ CO2 profile measurements. We have also demonstrated cloud slicing using scatter from thin, diffuse cirrus clouds and cumulus clouds, which allowed solving for the CO2 VMR for three vertical layers. The technique and retrieval algorithm are applicable to a space-based lidar instrument as well as to lidar IPDA measurements of other trace gases. Thus, lidar cloud slicing also offers promise toward space-based remote sensing of vertical trace gas profiles in the atmosphere using a variety of clouds.

  2. Family Structure and Employment Characteristics Differentiate Poor from Near-Poor Workers.

    ERIC Educational Resources Information Center

    Dagata, Elizabeth M.

    1997-01-01

    Current Population Survey data indicate that rural workers were more likely than urban workers to be poor or near-poor. Poor and near-poor rural workers were more likely than other workers to be southern, young, and in a minority group. Barriers to livable-wage employment included low educational attainment, being a single mother, and having young…

  3. Do Middle-Class Students Perceive Poor Women and Poor Men Differently?

    ERIC Educational Resources Information Center

    Cozzarelli, Catherine; Tagler, Michael J.; Wilkinson, Anna V.

    2002-01-01

    Examined college students' attitudes and stereotypes regarding poor women, attributions for their poverty, and whether those thoughts and feelings differed from those about poor men. Attitudes and stereotypes were significantly more positive regarding poor women than poor men. Participants endorsed internal attributions for both women's and men's…

  4. A flattened cloud core in NGC 2024

    NASA Technical Reports Server (NTRS)

    Ho, Paul T. P.; Peng, Yun-Lou; Torrelles, Jose M.; Gomez, Jose F.; Rodriguez, Luis F.; Canto, Jorge

    1993-01-01

    The (J, K) (1, 1) and (2, 2) NH3 lines were mapped toward a molecular cloud core in NGC 2024 using the VLA in its C/D-configuration. This region is associated with one of the most highly collimated molecular outflows. We find that the molecular condensations associated with the far-infrared sources FIR 5, FIR 6, and FIR 7 have kinetic temperatures of about 40 K. We also find line broadening toward FIR 6 and FIR 7. This suggests that these condensations may not be protostars heated by gravitational energy released during collapse but that they have an internal heating source. A flattened structure of ammonia emission is found extending parallel to the unipolar CO outflow structure, but displaced systematically to the east. If the NH3 emission traces the denser gas environment, there is no evidence that a dense gas structure is confining the molecular outflow. Instead, the location of the high-velocity outflow along the surface of the NH3 structure suggests that a wind is sweeping material from the surface of this elongated cloud core.

  5. Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The larger of two nearby companions of the Milky Way Galaxy that can be seen with the naked eye in the southern hemisphere sky and which are named after the Portuguese navigator, Ferdinand Magellan, who observed them in 1519 during his circumnavigation of the world. Located in the constellation of Dorado, at a distance of about 170 000 light-years, the Large Magellanic Cloud (LMC) has an overall ...

  6. Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The smaller of two nearby companions of the Milky Way Galaxy that can be seen with the naked eye in the southern hemisphere sky and which are named after the Portuguese navigator, Ferdinand Magellan. Located in the constellation of Tucana, at a distance of about 190 000 light-years, the Small Magellanic Cloud (SMC) has an angular diameter of about three degrees, about half the apparent diameter o...

  7. Chemistry and microphysics of polar stratospheric clouds and cirrus clouds.

    PubMed

    Zondlo, M A; Hudson, P K; Prenni, A J; Tolbert, M A

    2000-01-01

    Ice particles found within polar stratospheric clouds (PSCs) and upper tropospheric cirrus clouds can dramatically impact the chemistry and climate of the Earth's atmosphere. The formation of PSCs and the subsequent chemical reactions that occur on their surfaces are key components of the massive ozone hole observed each spring over Antarctica. Cirrus clouds also provide surfaces for heterogeneous reactions and significantly modify the Earth's climate by changing the visible and infrared radiation fluxes. Although the role of ice particles in climate and chemistry is well recognized, the exact mechanisms of cloud formation are still unknown, and thus it is difficult to predict how anthropogenic activities will change cloud abundances in the future. This article focuses on the nucleation, chemistry, and microphysical properties of ice particles composing PSCs and cirrus clouds. A general overview of the current state of research is presented along with some unresolved issues facing scientists in the future.

  8. Cumulus cloud formulations for longwave radiation calculations

    SciTech Connect

    Han, D.; Ellingson, R.G.

    1999-03-15

    Longwave radiative transfer under broken cloud conditions is often treated as a problem in cloud bulk geometry, especially for cumulus clouds, because individual clouds are nearly black. However, climate models ignore cloud geometry and estimate the effects of broken cumulus clouds as the cloud amount weighted average of clear and black cloud overcast conditions. To overcome the simplicity of the black plate approximation, the authors developed a more generalized form of cloud geometrical effects on the effective cloud fraction. Following previous work, this form includes parameters that allow a more precise specification of cloud size and spatial distributions. The sensitivity of the generalized form to the variation in cloud bulk geometrical shapes, aspect ratio, size distribution, and side inclination angle are the primary factors significantly affecting the effective cloud fraction. These parameters are important at all cloud amounts with greatest sensitivity when the cloud amount is between 0.2 and 0.8. On the other hand, cloud spatial distributions do not significantly influence the effective cloud fraction when absolute cloud amount is less than 0.2 and/or when the cloud aspect ratio is less than 0.5. However, in the range of greatest sensitivity with large aspect ratio and absolute amount, model comparisons show large intermodel differences. The model discussed herein is cloud size dependent and applies most directly to small cumulus clouds.

  9. Influence of atmospheric circulation patterns on local cloud and solar variability in Bergen, Norway

    NASA Astrophysics Data System (ADS)

    Parding, Kajsa; Olseth, Jan Asle; Liepert, Beate G.; Dagestad, Knut-Frode

    2016-08-01

    In a previous paper, we have shown that long-term cloud and solar observations (1965-2013) in Bergen, Norway (60.39°N, 5.33°E) are compatible with a largely cloud dominated radiative climate. Here, we explicitly address the relationship between the large scale circulation over Europe and local conditions in Bergen, identifying specific circulation shifts that have contributed to the observed cloud and solar variations. As a measure of synoptic weather patterns, we use the Grosswetterlagen (GWL), a daily classification of European weather for 1881-2013. Empirical models of cloud cover, cloud base, relative sunshine duration, and normalised global irradiance are constructed based on the GWL frequencies, extending the observational time series by more than 70 years. The GWL models successfully reproduce the observed increase in cloud cover and decrease in solar irradiance during the 1970s and 1980s. This cloud-induced dimming is traced to an increasing frequency of cyclonic and decreasing frequency of anticyclonic weather patterns over northern Europe. The changing circulation patterns in winter can be understood as a shift from the negative to the positive phase of the North Atlantic and Arctic Oscillation. A recent period of increasing solar irradiance is observed but not reproduce by the GWL models, suggesting this brightening is associated with factors other than large scale atmospheric circulation, possibly decreasing aerosol loads and local cloud shifts.

  10. Clouds over Mars!

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is the first color image ever taken from the surface of Mars of an overcast sky. Featured are pink stratus clouds coming from the northeast at about 15 miles per hour (6.7 meters/second) at an approximate height of ten miles (16 kilometers) above the surface. The clouds consist of water ice condensed on reddish dust particles suspended in the atmosphere. Clouds on Mars are sometimes localized and can sometimes cover entire regions, but have not yet been observed to cover the entire planet. The image was taken about an hour and forty minutes before sunrise by the Imager for Mars Pathfinder (IMP) on Sol 16 at about ten degrees up from the eastern Martian horizon.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  11. Chemical Variation in Molecular Cloud Cores in the Orion A Cloud

    NASA Astrophysics Data System (ADS)

    Tatematsu, Ken'ichi; Hirota, Tomoya; Kandori, Ryo; Umemoto, Tomofumi

    2010-12-01

    We have observed molecular cloud cores in the Orion A giant molecular cloud (GMC) in CCS, HC3N, DNC, and HN13C to study their chemical characteristics. We detected CCS in the Orion A GMC for the first time. CCS was detected in about a third of the observed cores. The cores detected in CCS are not localized, but widely distributed over the Orion A GMC. The CCS peak intensity of the core tends to be high in the southern region of the Orion A GMC. The HC3N peak intensity of the core also tends to be high in the southern region, while there are HC3N intense cores near Orion KL, which is not seen in CCS. The core associated with Orion KL shows a broad HC3N line profile, and the star-formation activity near to Orion KL seems to enhance the HC3N emission. The column density ratio of NH3 to CCS is lower near the middle of the filament, and higher toward the northern and southern regions along the Orion A GMC filament. This ratio is known to trace the chemical evolution in nearby dark cloud cores, but seems to be affected by the core gas temperature in the Orion A GMC: cores with low NH3 to CCS column density ratios tend to have a warmer gas temperature. The value of the column density ratio of DNC to HN13 is generally similar to that in dark cloud cores, but becomes lower around Orion KL due to a higher gas temperature.

  12. Specialised emission pattern of leaf trace in a late Permian (253 million-years old) conifer

    PubMed Central

    Wei, Hai-Bo; Feng, Zhuo; Yang, Ji-Yuan; Chen, Yu-Xuan; Shen, Jia-Jia; He, Xiao-Yuan

    2015-01-01

    Leaf traces are important structures in higher plants that connect leaves and the stem vascular system. The anatomy and emission pattern of leaf traces are well studied in extant vascular plants, but remain poorly understood in fossil lineages. We quantitatively analysed the leaf traces in the late Permian conifer Ningxiaites specialis from Northwest China based on serial sections through pith, primary and secondary xylems. A complete leaf traces emission pattern of a conifer is presented for the first time from the late Palaeozoic. Three to five monarch leaf traces are grouped in clusters, arranged in a helical phyllotaxis. The leaf traces in each cluster can be divided into upper, middle and lower portions, and initiate at the pith periphery and cross the wood horizontally. The upper leaf trace increases its diameter during the first growth increment and then diminishes completely, which indicates leaf abscission at the end of the first year. The middle trace immediately bifurcates once or twice to form two or three vascular bundles. The lower trace persists as a single bundle during its entire length. The intricate leaf trace dynamics indicates this fossil plant had a novel evolutionary habit by promoting photosynthetic capability for the matured plant. PMID:26198410

  13. Specialised emission pattern of leaf trace in a late Permian (253 million-years old) conifer.

    PubMed

    Wei, Hai-Bo; Feng, Zhuo; Yang, Ji-Yuan; Chen, Yu-Xuan; Shen, Jia-Jia; He, Xiao-Yuan

    2015-07-22

    Leaf traces are important structures in higher plants that connect leaves and the stem vascular system. The anatomy and emission pattern of leaf traces are well studied in extant vascular plants, but remain poorly understood in fossil lineages. We quantitatively analysed the leaf traces in the late Permian conifer Ningxiaites specialis from Northwest China based on serial sections through pith, primary and secondary xylems. A complete leaf traces emission pattern of a conifer is presented for the first time from the late Palaeozoic. Three to five monarch leaf traces are grouped in clusters, arranged in a helical phyllotaxis. The leaf traces in each cluster can be divided into upper, middle and lower portions, and initiate at the pith periphery and cross the wood horizontally. The upper leaf trace increases its diameter during the first growth increment and then diminishes completely, which indicates leaf abscission at the end of the first year. The middle trace immediately bifurcates once or twice to form two or three vascular bundles. The lower trace persists as a single bundle during its entire length. The intricate leaf trace dynamics indicates this fossil plant had a novel evolutionary habit by promoting photosynthetic capability for the matured plant.

  14. The ACRIDICON-CHUVA observational study of tropical convective clouds and precipitation using the new German research aircraft HALO

    NASA Astrophysics Data System (ADS)

    Wendisch, Manfred; Pöschl, Ulrich; Andreae, Meinrat O.; Machado, Luiz A. T.; Albrecht, Rachel; Schlager, Hans; Rosenfeld, Daniel; Krämer, Martina

    2015-04-01

    An extensive airborne/ground-based measurement campaign to study tropical convective clouds is introduced. It was performed in Brazil with focus on the Amazon rainforest from 1 September to 4 October 2014. The project combined the joint German-Brazilian ACRIDICON (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) and CHUVA (Machado et al.2014) projects. ACRIDICON aimed at the quantification of aerosol-cloud-precipitation interactions and their thermodynamic, dynamic and radiative effects in convective cloud systems by in-situ aircraft observations and indirect measurements (aircraft, satellite, and ground-based). The ACRIDICON-CHUVA campaign was conducted in cooperation with the second Intensive Operational Phase (IOP) of the GOAmazon (Green Ocean Amazon) program. The focus in this presentation is on the airborne observations within ACRIDICON-CHUVA. The German HALO (High Altitude and Long-Range Research Aircraft) was based in Manaus (Amazonas State); it carried out 14 research flights (96 flight hours in total). HALO was equipped with remote sensing and in-situ instrumentation for meteorological, trace gas, aerosol, cloud, and precipitation measurements. Five mission objectives were pursued: (1) cloud vertical evolution (cloud profiling), (2) aerosol processing (inflow and outflow), (3) satellite validation, (4) vertical transport and mixing (tracer experiment), and (5) clouds over forested and deforested areas. The five cloud missions collected data in clean atmospheric conditions and in contrasting polluted (urban and biomass burning) environments.

  15. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    SciTech Connect

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-02-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation.

  16. CLOUD PARAMETERIZATIONS, CLOUD PHYSICS, AND THEIR CONNECTIONS: AN OVERVIEW.

    SciTech Connect

    LIU,Y.; DAUM,P.H.; CHAI,S.K.; LIU,F.

    2002-02-12

    This paper consists of three parts. The first part is concerned with the parameterization of cloud microphysics in climate models. We demonstrate the crucial importance of spectral dispersion of the cloud droplet size distribution in determining radiative properties of clouds (e.g., effective radius), and underline the necessity of specifying spectral dispersion in the parameterization of cloud microphysics. It is argued that the inclusion of spectral dispersion makes the issue of cloud parameterization essentially equivalent to that of the droplet size distribution function, bringing cloud parameterization to the forefront of cloud physics. The second part is concerned with theoretical investigations into the spectral shape of droplet size distributions in cloud physics. After briefly reviewing the mainstream theories (including entrainment and mixing theories, and stochastic theories), we discuss their deficiencies and the need for a paradigm shift from reductionist approaches to systems approaches. A systems theory that has recently been formulated by utilizing ideas from statistical physics and information theory is discussed, along with the major results derived from it. It is shown that the systems formalism not only easily explains many puzzles that have been frustrating the mainstream theories, but also reveals such new phenomena as scale-dependence of cloud droplet size distributions. The third part is concerned with the potential applications of the systems theory to the specification of spectral dispersion in terms of predictable variables and scale-dependence under different fluctuating environments.

  17. Clouds and Dust Storms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 2 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere.

    Image information: VIS instrument. Latitude 68.4, Longitude 180 East (180 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with

  18. Trace elements in obese Turkish children.

    PubMed

    Tascilar, Mehmet Emre; Ozgen, Ilker Tolga; Abaci, Ayhan; Serdar, Muhittin; Aykut, Osman

    2011-10-01

    The quality of the diet of obese children is poor. Eating habits may alter micronutrient status in obese patients. In this study, we determined the serum levels of selenium, zinc, vanadium, molybdenum, iron, copper, beryllium, boron, chromium, manganese, cobalt, silver, barium, aluminum, nickel, cadmium, mercury, and lead in obese Turkish children. Thirty-four obese and 33 healthy control subjects were enrolled in the study. Serum vanadium and cobalt levels of obese children were significantly lower than those of the control group (0.244 ± 0.0179 vs. 0.261 ± 0.012 μg/l, p < 0.001, and 0.14 ± 0.13 vs. 0.24 ± 0.15 μg/l, p = 0.011, respectively). There was no significant difference between groups regarding the other serum trace element levels. In conclusion, there may be alterations in the serum levels of trace elements in obese children and these alterations may have a role in the pathogenesis of obesity.

  19. Improving Mixed-phase Cloud Parameterization in Climate Model with the ACRF Measurements

    SciTech Connect

    Wang, Zhien

    2016-12-13

    Mixed-phase cloud microphysical and dynamical processes are still poorly understood, and their representation in GCMs is a major source of uncertainties in overall cloud feedback in GCMs. Thus improving mixed-phase cloud parameterizations in climate models is critical to reducing the climate forecast uncertainties. This study aims at providing improved knowledge of mixed-phase cloud properties from the long-term ACRF observations and improving mixed-phase clouds simulations in the NCAR Community Atmosphere Model version 5 (CAM5). The key accomplishments are: 1) An improved retrieval algorithm was developed to provide liquid droplet concentration for drizzling or mixed-phase stratiform clouds. 2) A new ice concentration retrieval algorithm for stratiform mixed-phase clouds was developed. 3) A strong seasonal aerosol impact on ice generation in Arctic mixed-phase clouds was identified, which is mainly attributed to the high dust occurrence during the spring season. 4) A suite of multi-senor algorithms was applied to long-term ARM observations at the Barrow site to provide a complete dataset (LWC and effective radius profile for liquid phase, and IWC, Dge profiles and ice concentration for ice phase) to characterize Arctic stratiform mixed-phase clouds. This multi-year stratiform mixed-phase cloud dataset provides necessary information to study related processes, evaluate model stratiform mixed-phase cloud simulations, and improve model stratiform mixed-phase cloud parameterization. 5). A new in situ data analysis method was developed to quantify liquid mass partition in convective mixed-phase clouds. For the first time, we reliably compared liquid mass partitions in stratiform and convective mixed-phase clouds. Due to the different dynamics in stratiform and convective mixed-phase clouds, the temperature dependencies of liquid mass partitions are significantly different due to much higher ice concentrations in convective mixed phase clouds. 6) Systematic evaluations

  20. Chemical composition of marine stratocumulus clouds over the eastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Straub, Derek J.; Lee, Taehyoung; Collett, Jeffrey L.

    2007-02-01

    Samples of marine cloud water collected over the eastern Pacific Ocean have been analyzed for pH, major ions (Cl-, NO3-, SO42-, Na+, NH4+, K+, Ca2+, and Mg2+), hydrogen peroxide, formaldehyde, S(IV), Fe, Mn, and total organic carbon. The samples were obtained during the Dynamics and Chemistry of Marine Stratocumulus, Phase II (DYCOMS-II) field project in July 2001. These measurements represent a unique in situ description of cloud water composition for stratocumulus clouds residing in the remote marine boundary layer, a regime for which there are few published cloud water composition data. A wide range of concentrations was observed for each species of interest, including sodium (36-2784 μN), sulfate (15-905 μN), nitrate (3-205 μN), hydrogen peroxide (37.8-283.2 μM), formaldehyde (2.2-8.7 μM) and Fe (cloud water concentrations with cloud liquid water content (LWC) and volume mean drop diameter show that dilution played a role in cloud drop solute concentration variations during individual flights and that solute concentrations are related to cloud drop size and ultimately to below-cloud aerosol number concentration. Air equivalent concentrations (the amount of a solute in cloud water per unit volume of air) were derived in order to eliminate concentration dependence on LWC and to allow comparison with previous aerosol, trace gas, and cloud water studies. The analysis indicates that background marine conditions were not always encountered during the DYCOMS-II mission as a result of anthropogenic or biogenic sources impacting the study region.

  1. The origin of the most iron-poor star

    SciTech Connect

    Marassi, S.; Schneider, R.; Limongi, M.; Omukai, K.; Nozawa, T.; Chieffi, A.

    2014-10-20

    We investigate the origin of carbon-enhanced metal-poor (CEMP) stars starting from the recently discovered [Fe/H] < -7.1 star SMSS J031300. We show that the elemental abundances observed on the surface of SMSS J031300 can be well fit by the yields of faint, metal-free, supernovae (SNe). Using properly calibrated faint SN explosion models, we study, for the first time, the formation of dust grains in such carbon-rich, iron-poor SN ejecta. Calculations are performed assuming both unmixed and uniformly mixed ejecta and taking into account the partial destruction by the SN reverse shock. We find that, due to the paucity of refractory elements beside carbon, amorphous carbon is the only grain species to form, with carbon condensation efficiencies that range between (0.15 and 0.84), resulting in dust yields in the range (0.025-2.25) M {sub ☉}. We follow the collapse and fragmentation of a star-forming cloud enriched by the products of these faint SN explosions and we explore the role played by fine structure line cooling and dust cooling. We show that even if grain growth during the collapse has a minor effect of the dust-to-gas ratio, due to C depletion into CO molecules at an early stage of the collapse, the formation of CEMP low-mass stars, such as SMSS J031300, could be triggered by dust cooling and fragmentation. A comparison between model predictions and observations of a sample of C-normal and C-rich metal-poor stars supports the idea that a single common pathway may be responsible for the formation of the first low-mass stars.

  2. Exoplanet Clouds in the Laboratory

    NASA Astrophysics Data System (ADS)

    Johnson, Alexandria; Cziczo, Daniel J.; Seager, Sara; Charbonneau, David; Bauer, Amy J. R.

    2015-12-01

    The lack of strong spectral features of some exoplanet atmospheres may suggest the presence of a cloud layer and poses great challenges for atmospheric characterization. We aim to address these observations and the challenges by leveraging lab-based terrestrial cloud particle instrumentation as a means of investigating how particles representative of those in exoplanet atmospheres interact with incoming radiation. In the end we hope to achieve two goals - First, to better understand the observable properties of cloud particles in exoplanet atmospheres. Second, to determine how these clouds might directly limit our ability to observe and characterize the atmosphere below.In this presentation I will discuss the cloud chamber used for this work, how we leverage terrestrial based cloud knowledge, our initial investigation of the light scattered by ammonium nitrate (NH4NO3) across temperature and relative humidity dependent phase changes, and future work with suspected exoplanet atmospheric condensates under various atmospheric compositions, pressures, and temperatures.

  3. Effects of aerosol sources and chemical compositions on cloud drop sizes and glaciation temperatures

    NASA Astrophysics Data System (ADS)

    Zipori, Assaf; Rosenfeld, Daniel; Tirosh, Ofir; Teutsch, Nadya; Erel, Yigal

    2015-09-01

    The effect of aerosols on cloud properties, such as its droplet sizes and its glaciation temperatures, depends on their compositions and concentrations. In order to examine these effects, we collected rain samples in northern Israel during five winters (2008-2011 and 2013) and determined their chemical composition, which was later used to identify the aerosols' sources. By combining the chemical data with satellite-retrieved cloud properties, we linked the aerosol types, sources, and concentrations with the cloud glaciation temperatures (Tg). The presence of dust increased Tg from -26°C to -12°C already at relatively low dust concentrations. This result is in agreement with the conventional wisdom that desert dust serves as good ice nuclei (INs). With higher dust concentrations, Tg saturated at -12°C, even though cloud droplet sizes decreased as a result of the cloud condensation nucleating (CCN) activity of the dust. Marine air masses also encouraged freezing, but in this case, freezing was enhanced by the larger cloud droplet sizes in the air masses (caused by low CCN concentrations) and not by IN concentrations or by aerosol type. An increased fraction of anthropogenic aerosols in marine air masses caused a decrease in Tg, indicating that these aerosols served as poor IN. Anthropogenic aerosols reduced cloud droplet sizes, which further decreased Tg. Our results could be useful in climate models for aerosol-cloud interactions, as we investigated the effects of aerosols of different sources on cloud properties. Such parameterization can simplify these models substantially.

  4. Evaluation of Passive Multilayer Cloud Detection Using Preliminary CloudSat and CALIPSO Cloud Profiles

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.

    2006-12-01

    During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.

  5. Cloud Occurrence Frequency at the Barrow, Alaska, ARM Climate Research Facility for 2008 Third Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect

    M Jensen; K Johnson; JH Mather

    2009-07-14

    Clouds represent a critical component of the Earth’s atmospheric energy balance as a result of their interactions with solar and terrestrial radiation and a redistribution of heat through convective processes and latent heating. Despite their importance, clouds and the processes that control their development, evolution and lifecycle remain poorly understood. Consequently, the simulation of clouds and their associated feedbacks is a primary source of inter-model differences in equilibrium climate sensitivity. An important step in improving the representation of cloud process simulations is an improved high-resolution observational data set of the cloud systems including their time evolution. The first order quantity needed to understand the important role of clouds is the height of cloud occurrence and how it changes as a function of time. To this end, the Atmospheric Radiation Measurement (ARM) Climate Research Facilities (ACRF) suite of instrumentation has been developed to make the observations required to improve the representation of cloud systems in atmospheric models.

  6. OT1_dhunter_3: Characterizing Molecular Clouds at Low Metallicity

    NASA Astrophysics Data System (ADS)

    Hunter, D.

    2010-07-01

    Molecular gas is difficult to detect from traditional millimeter CO transitions in dwarf galaxies below a certain metallicity. Yet, there is evidence for lots of molecular H_2 in these galaxies. Fortunately, Photo-dissociation Regions are a better tracer of the molecular material in low metallicity systems. In metal-poor galaxies, PDRs dominate the molecular core where CO is found, and in the current paradigm the PDR grows and the core shrinks as metallicity decreases. Thus, we expect critical differences in the molecular clouds of dwarfs compared to spirals, with the differences becoming more extreme with lower metallicity. Yet, understanding these differences and their consequences to star formation is essential to understanding the processes that drive star formation at low metallicities. Therefore, we propose to observe the PDRs in 5 regions in 5 typical metal-poor dwarf galaxies spanning a range in oxygen abundance. We will use these observations to characterize the molecular gas, examine the correspondence between the molecular clouds and the atomic gas and star formation characteristics, and determine the characteristics of the atomic ISM that are necessary for the formation of these dense molecular clouds. We will also test the molecular cloud structure paradigm as a function of metallicity.

  7. Simulating Roll Clouds associated with Low-Level Convergence.

    NASA Astrophysics Data System (ADS)

    Prasad, A. A.; Sherwood, S. C.

    2015-12-01

    Convective initiation often takes place when features such as fronts and/or rolls collide, merge or otherwise meet. Rolls indicate boundary layer convergence and may initiate thunderstorms. These are often seen in satellite and radar imagery prior to the onset of deep convection. However, links between convergence driven rolls and convection are poor in global models. The poor representation of convection is the source of many model biases, especially over the Maritime Continent in the Tropics. We simulate low-level convergence lines over north-eastern Australia using the Weather Research and Forecasting (WRF) Model (version 3.7). The simulations are events from September-October 2002 driven by sea breeze circulations. Cloud lines associated with bore-waves that form along the low-level convergence lines are thoroughly investigated in this study with comparisons from satellite and surface observations. Initial simulations for a series of cloud lines observed on 4th October, 2002 over the Gulf of Carpentaria showed greater agreement in the timing and propagation of the disturbance and the low-level convergence, however the cloud lines or streets of roll clouds were not properly captured by the model. Results from a number of WRF simulations with different microphysics, cumulus and planetary boundary layer schemes, resolution and boundary conditions will also be discussed.

  8. Particle cloud mixing in microgravity

    NASA Technical Reports Server (NTRS)

    Ross, H.; Facca, L.; Tangirala, V.; Berlad, A. L.

    1989-01-01

    Quasi-steady flame propagation through clouds of combustible particles requires quasi-steady transport properties and quasi-steady particle number density. Microgravity conditions may be employed to help achieve the conditions of quiescent, uniform clouds needed for such combustion studies. Joint experimental and theoretical NASA-UCSD studies were concerned with the use of acoustic, electrostatic, and other methods of dispersion of fuel particulates. Results of these studies are presented for particle clouds in long cylindrical tubes.

  9. Shape of fair weather clouds.

    PubMed

    Wang, Yong; Zocchi, Giovanni

    2010-03-19

    We introduce a model which accounts for the shape of cumulus clouds exclusively in terms of thermal plumes or thermals. The plumes are explicitly represented by a simple potential flow generated by singularities (sources and sinks) and are thus laminar, but with their motion create a field which supports the cloud. We compare this model with actual clouds by means of various shape descriptors including the fractal dimension, and find agreement.

  10. BIRTH CONTROL, CULTURE AND THE POOR.

    ERIC Educational Resources Information Center

    RIESSMAN, CATHERINE KOHLER

    EVIDENCE FROM STUDIES INDICATE THAT THE POOR DESIRE TO CONTROL THEIR FAMILY SIZE AND PREFER TO USE BIRTH CONTROL DEVICES (PILLS OR INTERUTERINE DEVICES) WHICH ARE NOT COITUS-CONNECTED AND ANTITHETICAL TO THEIR SEXUAL ATTITUDES AND TRADITIONS. CONTRARY TO THE BELIEF THAT THE POOR ARE LESS LIKELY TO UTILIZE EXISTING HEALTH FACILITIES OR TO TAKE PART…

  11. Poor Rural Children Attract Close Study

    ERIC Educational Resources Information Center

    Viadero, Debra

    2008-01-01

    Growing up poor in isolated rural areas and small towns is qualitatively different from growing up poor in the city. Yet most of what experts know about the effects of poverty on children's development comes from studies conducted in big cities. Now, an ambitious project run by universities in Pennsylvania and North Carolina is putting what some…

  12. RADAR OBSERVATION CONDITIONS OF POOR VISIBILITY,

    DTIC Science & Technology

    Ship navigational radar is an effective means for revealing above-water objects in conditions of poor visibility. A radar image of the surrounding...radar observation and with the competent operation of the set, radar is a reliable means of detection of encountered vessels in conditions of poor

  13. The Chronically Poor: Breaking the Cycle.

    ERIC Educational Resources Information Center

    Morris-Bilotti, Sharon

    This question-and-answer format paper looks at some of the basic issues surrounding the chronically poor and initiatives and services designed to break the poverty cycle. A first section explores some of the myths and realities surrounding the characteristics of the chronically poor population and notes that this population is comprised of…

  14. Cognitive Profiles of Korean Poor Readers

    ERIC Educational Resources Information Center

    Cho, Jeung-Ryeul; Ji, Yu-Kyong

    2011-01-01

    This study compared the performance of 30 poor readers in the third grade with those of 30 average readers of the same age and 30 younger readers matched with the same reading level on phonological, visuo-perceptual, orthographic, and naming speed tasks. Individual data revealed heterogeneous profiles for the poor readers: six (20%) exhibited…

  15. The Crisis of the Near Poor

    ERIC Educational Resources Information Center

    Newman, Katherine S.; Tan Chen, Victor

    2007-01-01

    This article focuses on the "missing class," the near poor whose incomes place them above the poverty line, but well below the middle class. Near-poor families with two parents and two children subsist on $20,000 to $40,000 a year, which disqualifies them for virtually all public subsidies, but is a far cry from what they need to be…

  16. Testing cloud-radiation algorithms in GCMs and single-column models

    SciTech Connect

    Somerville, R.

    1995-09-01

    Our poor understanding of cloud processes limits our ability to make realistic climate change predictions. Part of the problem is that we have too many cloud parameterizations and too few observations. Lack of contact between observationalists and modelers exacerbates this problem. The principle behind the single column model presented here is that the horizontal convergence of heat, momentum, and moisture is specified from observations. 2 refs., 2 figs.

  17. How Certain Trace Elements Behave.

    ERIC Educational Resources Information Center

    Zingaro, Ralph A.

    1979-01-01

    Fluorine, selenium, tin, and arsenic are among the trace elements occurring in the environment which are considered. Emphasis is given to developing a qualitative survey of the extent and kinds of metal transformations and their resultant effects. (CS)

  18. Tracing a Discipline in Evolution

    ERIC Educational Resources Information Center

    Bevis, Herbert A.; Pyatt, Edwin E.

    1974-01-01

    Traces the origin and development of programs that led to the creation of the Department of Environmental Engineering Sciences at the University of Florida. Includes descriptions of degrees offered, type of work required, and facilities available. (GS)

  19. Forensic trace DNA: a review

    PubMed Central

    2010-01-01

    DNA analysis is frequently used to acquire information from biological material to aid enquiries associated with criminal offences, disaster victim identification and missing persons investigations. As the relevance and value of DNA profiling to forensic investigations has increased, so too has the desire to generate this information from smaller amounts of DNA. Trace DNA samples may be defined as any sample which falls below recommended thresholds at any stage of the analysis, from sample detection through to profile interpretation, and can not be defined by a precise picogram amount. Here we review aspects associated with the collection, DNA extraction, amplification, profiling and interpretation of trace DNA samples. Contamination and transfer issues are also briefly discussed within the context of trace DNA analysis. Whilst several methodological changes have facilitated profiling from trace samples in recent years it is also clear that many opportunities exist for further improvements. PMID:21122102

  20. Cloud droplet size distributions in low-level stratiform clouds

    SciTech Connect

    Miles, N.L.; Verlinde, J.; Clothiaux, E.E.

    2000-01-15

    A database of stratus cloud droplet size distribution parameters, derived from in situ data reported in the existing literature, was created, facilitating intercomparison among datasets and quantifying typical values and their variability. From the datasets, which were divided into marine and continental groups, several parameters are presented, including the total number concentration, effective diameter, mean diameter, standard deviation of the droplet diameters about the mean diameter, and liquid water content, as well as the parameters of modified gamma and lognormal distributions. In light of these results, the appropriateness of common assumptions used in remote sensing of cloud droplet size distributions is discussed. For example, vertical profiles of mean diameter, effective diameter, and liquid water content agreed qualitatively with expectations based on the current paradigm of cloud formation. Whereas parcel theory predicts that the standard deviation about the mean diameter should decrease with height, the results illustrated that the standard deviation generally increases with height. A feature common to all marine clouds was their approximately constant total number concentration profiles; however, the total number concentration profiles of continental clouds were highly variable. Without cloud condensation nuclei spectra, classification of clouds into marine and continental groups is based on indirect methods. After reclassification of four sets of measurements in the database, there was a fairly clear dichotomy between marine and continental clouds, but a great deal of variability within each classification. The relevant applications of this study lie in radiative transfer and climate issues, rather than in cloud formation and dynamics. Techniques that invert remotely sensed measurements into cloud droplet size distributions frequently rely on a priori assumptions, such as constant number concentration profiles and constant spectral width. The

  1. Cloud/climate sensitivity experiments

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.; Remer, L.

    1982-01-01

    A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.

  2. Empirical data from Oort's cloud

    NASA Technical Reports Server (NTRS)

    Desemme, A. H.

    1985-01-01

    Empirical evidence on the size and origin of the Oort cloud of comets is compared with theories on the origin of the Oort cloud. Data on the binding energy of the very long period comets indicate that the Oort cloud is five times smaller than previously thought and that the mean velocity perturbation introduced by stellar passages is smaller than Oort believed. The bimodal brightness distribution of 'new' comets indicates that their formation mechanism is straightforward accretion without later fragmentation. Data on retrograde versus prograde orbits and their relevance to the rotation of the Oort cloud are examined. Models of the solar nebula are discussed in the light of the foregoing evidence.

  3. Cloud formation in substellar atmospheres

    NASA Astrophysics Data System (ADS)

    Helling, Christiane

    2009-02-01

    Clouds seem like an every-day experience. But-do we know how clouds form on brown dwarfs and extra-solar planets? How do they look like? Can we see them? What are they composed of? Cloud formation is an old-fashioned but still outstanding problem for the Earth atmosphere, and it has turned into a challenge for the modelling of brown dwarf and exo-planetary atmospheres. Cloud formation imposes strong feedbacks on the atmospheric structure, not only due to the clouds own opacity, but also due to the depletion of the gas phase, possibly leaving behind a dynamic and still supersaturated atmosphere. I summarise the different approaches taken to model cloud formation in substellar atmospheres and workout their differences. Focusing on the phase-non-equilibrium approach to cloud formation, I demonstrate the inside we gain from detailed microphysical modelling on for instance the material composition and grain size distribution inside the cloud layer on a Brown Dwarf atmosphere. A comparison study on four different cloud approaches in Brown Dwarf atmosphere simulations demonstrates possible uncertainties in interpretation of observational data.

  4. The Ethics of Cloud Computing.

    PubMed

    de Bruin, Boudewijn; Floridi, Luciano

    2017-02-01

    Cloud computing is rapidly gaining traction in business. It offers businesses online services on demand (such as Gmail, iCloud and Salesforce) and allows them to cut costs on hardware and IT support. This is the first paper in business ethics dealing with this new technology. It analyzes the informational duties of hosting companies that own and operate cloud computing datacentres (e.g., Amazon). It considers the cloud services providers leasing 'space in the cloud' from hosting companies (e.g., Dropbox, Salesforce). And it examines the business and private 'clouders' using these services. The first part of the paper argues that hosting companies, services providers and clouders have mutual informational (epistemic) obligations to provide and seek information about relevant issues such as consumer privacy, reliability of services, data mining and data ownership. The concept of interlucency is developed as an epistemic virtue governing ethically effective communication. The second part considers potential forms of government restrictions on or proscriptions against the development and use of cloud computing technology. Referring to the concept of technology neutrality, it argues that interference with hosting companies and cloud services providers is hardly ever necessary or justified. It is argued, too, however, that businesses using cloud services (e.g., banks, law firms, hospitals etc. storing client data in the cloud) will have to follow rather more stringent regulations.

  5. Molecular Clouds in the North American and Pelican Nebulae: Structures

    NASA Astrophysics Data System (ADS)

    Zhang, Shaobo; Xu, Ye; Yang, Ji

    2014-03-01

    We present observations of a 4.25 deg2 area toward the North American and Pelican Nebulae in the J = 1-0 transitions of 12CO, 13CO, and C18O. Three molecules show different emission areas with their own distinct structures. These different density tracers reveal several dense clouds with a surface density of over 500 M ⊙ pc-2 and a mean H2 column density of 5.8, 3.4, and 11.9 × 1021 cm-2 for 12CO, 13CO, and C18O, respectively. We obtain a total mass of 5.4 × 104 M ⊙ (12CO), 2.0 × 104 M ⊙ (13CO), and 6.1 × 103 M ⊙ (C18O) in the complex. The distribution of excitation temperature shows two phases of gas: cold gas (~10 K) spreads across the whole cloud; warm gas (>20 K) outlines the edge of the cloud heated by the W80 H II region. The kinetic structure of the cloud indicates an expanding shell surrounding the ionized gas produced by the H II region. There are six discernible regions in the cloud: the Gulf of Mexico, Caribbean Islands and Sea, and Pelican's Beak, Hat, and Neck. The areas of 13CO emission range within 2-10 pc2 with mass of (1-5) × 103 M ⊙ and line width of a few km s-1. The different line properties and signs of star-forming activity indicate they are in different evolutionary stages. Four filamentary structures with complicated velocity features are detected along the dark lane in LDN 935. Furthermore, a total of 611 molecular clumps within the 13CO tracing cloud are identified using the ClumpFind algorithm. The properties of the clumps suggest that most of the clumps are gravitationally bound and at an early stage of evolution with cold and dense molecular gas.

  6. Molecular Tracers of Turbulent Shocks in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Pon, Andy; Johnstone, D. I.; Kaufman, M. J.

    2013-01-01

    Molecular clouds exhibit large linewidths, which are usually interpreted as being due to supersonic turbulence. This turbulence plays a key role in many theories of star formation, as it is believed to help support and fragment molecular clouds. Current numerical MHD simulations show that the turbulent energy of a molecular cloud dissipates on the order of a crossing time, but do not explicitly follow how this energy is released. We have run models of C-type shocks, based on Kaufman & Neufeld (1996), propagating into gas with densities near 1000 cm3 at velocities of a few km/s, appropriate for the ambient conditions inside of a molecular cloud, to determine which species and transitions dominate the cooling and radiative energy release associated with the dissipation of turbulent energy in shocks within molecular clouds. Combining these shock models and estimates for the rate of turbulent energy dissipation (Basu & Murali 2001), we produce synthetic CO spectra and predict those line emissions that will be observable with current and upcoming observational facilities, such as Herschel, SOFIA, ALMA, and CCAT. We compare our synthetic shock spectra to the photodissociation region (PDR) models of Kaufman et al. (1999) and show that mid-J CO lines (e.g., CO J = 7 to 6) from molecular clouds illuminated by standard interstellar radiation fields are dominated by emission from shocked gas. We also present Herschel observations of these shock tracing lines. References: Basu, S. & Murali, C. 2001, ApJ, 551, 743 Kaufman, M. J. & Neufeld, D. A. 1996, ApJ, 456, 250 Kaufman, M. J., Wolfire, M. G., Hollenbach, D. J., & Luhman, M. L. 1999, ApJ, 527, 795

  7. Iron nutrition and premenopausal women: effects of poor iron status on physical and neuropsychological performance.

    PubMed

    McClung, James P; Murray-Kolb, Laura E

    2013-01-01

    Iron is a nutritionally essential trace element that functions through incorporation into proteins and enzymes, many of which contribute to physical and neuropsychological performance. Poor iron status, including iron deficiency (ID; diminished iron stores) and iron deficiency anemia (IDA; poor iron stores and diminished hemoglobin), affects billions of people worldwide. This review focuses on physical and neuropsychological outcomes associated with ID and IDA in premenopausal women, as the prevalence of ID and IDA is often greater in premenopausal women than other population demographics. Recent studies addressing the physiological effects of poor iron status on physical performance, including work productivity, voluntary activity, and athletic performance, are addressed. Similarly, the effects of iron status on neurological performance, including cognition, affect, and behavior, are summarized. Nutritional countermeasures for the prevention of poor iron status and the restoration of decrements in performance outcomes are described.

  8. Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei.

    PubMed

    Fridlind, Ann M; Ackerman, Andrew S; Jensen, Eric J; Heymsfield, Andrew J; Poellot, Michael R; Stevens, David E; Wang, Donghai; Miloshevich, Larry M; Baumgardner, Darrel; Lawson, R Paul; Wilson, James C; Flagan, Richard C; Seinfeld, John H; Jonsson, Haflidi H; VanReken, Timothy M; Varutbangkul, Varuntida; Rissman, Tracey A

    2004-04-30

    NASA's recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment focused on anvil cirrus clouds, an important but poorly understood element of our climate system. The data obtained included the first comprehensive measurements of aerosols and cloud particles throughout the atmospheric column during the evolution of multiple deep convective storm systems. Coupling these new measurements with detailed cloud simulations that resolve the size distributions of aerosols and cloud particles, we found several lines of evidence indicating that most anvil crystals form on mid-tropospheric rather than boundary-layer aerosols. This result defies conventional wisdom and suggests that distant pollution sources may have a greater effect on anvil clouds than do local sources.

  9. Using cloud computing infrastructure with CloudBioLinux, CloudMan, and Galaxy.

    PubMed

    Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James

    2012-06-01

    Cloud computing has revolutionized availability and access to computing and storage resources, making it possible to provision a large computational infrastructure with only a few clicks in a Web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this unit, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatic analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy, into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to set up the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command-line interface, and the Web-based Galaxy interface.

  10. OGLE ATLAS OF CLASSICAL NOVAE. II. MAGELLANIC CLOUDS

    SciTech Connect

    Mróz, P.; Udalski, A.; Poleski, R.; Soszyński, I.; Szymański, M. K.; Pietrzyński, G.; Wyrzykowski, Ł.; Ulaczyk, K.; Kozłowski, S.; Pietrukowicz, P.; Skowron, J.

    2016-01-15

    The population of classical novae in the Magellanic Clouds was poorly known because of a lack of systematic studies. There were some suggestions that nova rates per unit mass in the Magellanic Clouds were higher than in any other galaxy. Here, we present an analysis of data collected over 16 years by the OGLE survey with the aim of characterizing the nova population in the Clouds. We found 20 eruptions of novae, half of which are new discoveries. We robustly measure nova rates of 2.4 ± 0.8 yr{sup −1} (LMC) and 0.9 ± 0.4 yr{sup −1} (SMC) and confirm that the K-band luminosity-specific nova rates in both Clouds are 2–3 times higher than in other galaxies. This can be explained by the star formation history in the Magellanic Clouds, specifically the re-ignition of the star formation rate a few Gyr ago. We also present the discovery of the intriguing system OGLE-MBR133.25.1160, which mimics recurrent nova eruptions.

  11. Identification of Ambient Molecular Clouds Associated with Galactic Supernova Remnant IC 443

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Joon; Koo, Bon-Chul; Snell, Ronald L.; Yun, Min S.; Heyer, Mark H.; Burton, Michael G.

    2012-04-01

    The Galactic supernova remnant (SNR) IC 443 is one of the most studied core-collapse SNRs for its interaction with molecular clouds. However, the ambient molecular clouds with which IC 443 is interacting have not been thoroughly studied and remain poorly understood. Using the Five College Radio Astronomy Observatory 14 m telescope, we obtained fully sampled maps of the ~1° × 1° region toward IC 443 in the 12CO J = 1-0 and HCO+ J = 1-0 lines. In addition to the previously known molecular clouds in the velocity range v LSR = -6 to -1 km s-1 (-3 km s-1 clouds), our observations reveal two new ambient molecular cloud components: small (~1') bright clouds in v LSR = -8 to -3 km s-1 (SCs) and diffuse clouds in v LSR = +3 to +10 km s-1 (+5 km s-1 clouds). Our data also reveal the detailed kinematics of the shocked molecular gas in IC 443 however, the focus of this paper is the physical relationship between the shocked clumps and the ambient cloud components. We find strong evidence that the SCs are associated with the shocked clumps. This is supported by the positional coincidence of the SCs with shocked clumps and other tracers of shocks. Furthermore, the kinematic features of some shocked clumps suggest that these are the ablated material from the SCs upon the impact of the SNR shock. The SCs are interpreted as dense cores of parental molecular clouds that survived the destruction by the pre-supernova evolution of the progenitor star or its nearby stars. We propose that the expanding SNR shock is now impacting some of the remaining cores and the gas is being ablated and accelerated, producing the shocked molecular gas. The morphology of the +5 km s-1 clouds suggests an association with IC 443. On the other hand, the -3 km s-1 clouds show no evidence for interaction.

  12. N2H(+) in the Orion ambient ridge - Cloud clumping versus rotation

    NASA Technical Reports Server (NTRS)

    Womack, Maria; Ziurys, L. M.; Sage, L. J.

    1993-01-01

    The IRAM 30-m telescope is used to obtain spectra of the J = 1 yields 0 transition of N2H(+) over a 2 x 2 arcsec area toward the Orion-KL/IRc2 star-forming region with 26-arcsec angular resolution. The N2H(+) emission, which exclusively traces the ridge gas, exhibits multiple radial velocities which appear to arise from the presence of at least four clouds of quiescent material. It is argued that the velocity structure of N2H(+) does not uniformly change across OMC-1 and, consequently, is inconsistent with the presence of large-scale differential rotation of the extended ridge along the SW-NE axis about IRc2. The coincidence of the two larger clouds with star-forming activity in Orion-KL suggests that either the quiescent gas is being pushed apart or that the star formation may have been triggered by a cloud-cloud interaction.

  13. Verification of Cloud Forecasts over the Eastern Pacific Using Passive Satellite Retrievals

    DTIC Science & Technology

    2009-10-01

    200 g m22 derive from cirrus or boundary layer stratus clouds that3 LWP values were not assimilated. OCTOBER 2009 N A C H A M K I N E T A L . 3489 often...precipitating sys- tems. These systems reflect the majority of the well- defined cloud entities that tracked across the region. Lower thresholds produced...artificially high scores as both cirrus and stratus clouds could share the same LWP value. Given the poor point-to-point correlations the scores were

  14. Martian Clouds Data Workshop

    NASA Technical Reports Server (NTRS)

    Lee, Steven (Editor)

    1987-01-01

    The major topics covered were a discussion of the structure of relational data base systems and features of the Britton Lee Relational Data Base Management System (RDBMS); a discussion of the workshop's objectives, approach, and research scenarios; and an overview of the Atmospheres Node User's Guide, which details the datasets stored on the Britton Lee, the structure of the query and data analysis system, and examples of the exact menu screens encountered. Also discussed were experience with the system, review of the system performance, and a strategy to produce queries and performance data retrievals of mutual interest. The goals were defined as examining correlations between cloud occurrence, water vapor abundance, and surface properties.

  15. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    DOE PAGES

    Zamora, Lauren M.; Kahn, R. A.; Cubison, M. J.; ...

    2016-01-21

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smallermore » than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × dln(Nliq)/dln(BBt)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm–3) and very high aerosol concentrations (2000–3000 cm–3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm–2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that

  16. Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic

    NASA Technical Reports Server (NTRS)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L. D.

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300% over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were approx. 40- 60% smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq)/ and various biomass burning tracers (BBt/ across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be approx. 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/cu m and very high aerosol concentrations (2000- 3000/ cu cm in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W/sq m or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic.We lastly explore evidence suggesting that numerous northern

  17. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    SciTech Connect

    Zamora, Lauren M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L. D.

    2016-01-21

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smaller than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × dln(Nliq)/dln(BBt)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm–3) and very high aerosol concentrations (2000–3000 cm–3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm–2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high

  18. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    NASA Astrophysics Data System (ADS)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L. D.

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300 % over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ˜ 40-60 % smaller than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3) × dln(Nliq)/dln(BBt)) to be ˜ 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content ( ˜ 0.02 g m-3) and very high aerosol concentrations (2000-3000 cm-3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W m-2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. We lastly explore evidence suggesting that numerous northern

  19. Global retrieval of ATSR cloud parameters and evaluation (GRAPE): dataset assessment

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Poulsen, C. A.; Arnold, C.; Campmany, E.; Dean, S.; Ewen, G. B. L.; Grainger, R. G.; Lawrence, B. N.; Siddans, R.; Thomas, G. E.; Watts, P. D.

    2011-04-01

    The Along-Track Scanning Radiometers (ATSRs) provide a long time-series of measurements suitable for the retrieval of cloud properties. This work evaluates the freely-available Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) dataset (version 3) created from the ATSR-2 (1995-2003) and Advanced ATSR (AATSR; 2002 onwards) records. Users are recommended to consider only retrievals flagged as high-quality, where there is a good consistency between the measurements and the retrieved state (corresponding to about 60% of converged retrievals over sea, and more than 80% over land). Cloud properties are found to be generally free of any significant spurious trends relating to satellite zenith angle. Estimates of the random error on retrieved cloud properties are suggested to be generally appropriate for optically-thick clouds, and up to a factor of two too small for optically-thin cases. The correspondence between ATSR-2 and AATSR cloud properties is high, but a relative calibration difference between the sensors of order 5-10% at 660 nm and 870 nm limits the potential of the current version of the dataset for trend analysis. As ATSR-2 is thought to have the better absolute calibration, the discussion focusses on this portion of the record. Cloud-top heights from GRAPE compare well to ground-based data at four sites, particularly for shallow clouds. Clouds forming in boundary-layer inversions are typically around 1 km too high in GRAPE due to poorly-resolved inversions in the modelled temperature profiles used. Global cloud fields are compared to satellite products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements, and a climatology of liquid water content derived from satellite microwave radiometers. In all cases the main reasons for differences are linked to differing sensitivity to, and treatment of, multi-layer cloud systems. The correlation coefficient between

  20. Global retrieval of ATSR cloud parameters and evaluation (GRAPE): dataset assessment

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Poulsen, C. A.; Arnold, C.; Campmany, E.; Dean, S.; Ewen, G. B. L.; Grainger, R. G.; Lawrence, B. N.; Siddans, R.; Thomas, G. E.; Watts, P. D.

    2010-11-01

    The Along-Track Scanning Radiometers (ATSRs) provide a long time-series of measurements suitable for the retrieval of cloud properties. This work evaluates the freely-available Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) dataset (version 3) created from the ATSR-2 (1995-2003) and Advanced ATSR (AATSR; 2002 onwards) records. Users are recommended to consider only retrievals flagged as high-quality, where there is a good consistency between the measurements and the retrieved state (corresponding to about 60% of converged retrievals over sea, and more than 80% over land). Cloud properties are found to be generally free of any significant spurious trends relating to satellite zenith angle. Estimates of the random error on retrieved cloud properties are suggested to be generally appropriate for optically-thick clouds, and up to a factor of two too small for optically-thin cases. The correspondence between ATSR-2 and AATSR cloud properties is high, but a relative calibration difference between the sensors of order 5-10% at 660 nm and 870 nm limits the potential of the current version of the dataset for trend analysis. As ATSR-2 is thought to have the better absolute calibration, the discussion focusses on this portion of the record. Cloud-top heights from GRAPE compare well to ground-based data at four sites, particularly for shallow clouds. Clouds forming in boundary-layer inversions are typically around 1 km too high in GRAPE due to poorly-resolved inversions in the modelled temperature profiles used. Global cloud fields are compared to satellite products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements, and a climatology of liquid water content derived from satellite microwave radiometers. In all cases the main reasons for differences are linked to differing sensitivity to, and treatment of, multi-layer cloud systems. The correlation coefficient between

  1. Alterations of Cloud Microphysics Due to Cloud Processed CCN

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Tabor, S. S.; Noble, S. R., Jr.

    2015-12-01

    High-resolution CCN spectra have revealed bimodality (Hudson et al. 2015) similar to aerosol size spectra (e.g., Hoppel et al. 1985). Bimodality is caused by chemical and physical cloud processes that increase mass or hygroscopicity of only CCN that produced activated cloud droplets. Bimodality is categorized by relative CCN concentrations (NCCN) within the two modes, Nu-Np; i.e., NCCN within the higher critical supersaturation, Sc, mode that did not undergo cloud processing minus NCCN within the lower Sc mode that was cloud processed. Lower, especially negative, Nu-Np designates greater processing. The table shows regressions between Nu-Np and characteristics of clouds nearest the CCN measurements. ICE-T MASE parameter R SL R SL Nc 0.17 93.24 -0.26 98.65 MD -0.31 99.69 0.33 99.78 σ -0.27 99.04 0.48 100.00 Ld -0.31 99.61 0.38 99.96 Table. Correlation coefficients, R, and one-tailed significance levels in percent, SL, for Nu-Np with microphysics of the clouds closest to each CCN measurement, 75 ICE-T and 74 MASE cases. Nc is cloud droplet concentration, MD is cloud droplet mean diameter, σ is standard deviation of cloud droplet spectra, Ldis drizzle drop LWC. Two aircraft field campaigns, Ice in Clouds Experiment-Tropical (ICE-T) and Marine Stratus/Stratocumulus Experiment (MASE) show opposite R signs because coalescence dominated cloud processing in low altitude ICE-T cumuli whereas chemical transformations predominated in MASE low altitude polluted stratus. Coalescence reduces Nc and NCCN, which thus increases MD, and σ, which promote Ld. Chemical transformations, e.g., SO2 to SO4, increase CCN hygroscopicity, thus reducing Sc, but not affecting Nc or NCCN. Lower Sc CCN are capable of producing greater Nc in subsequent cloud cycles, which leads to lower MD and σ which reduce Ld (figure). These observations are consistent with cloud droplet growth models for the higher vertical wind (W) of cumuli and lower W of stratus. Coalescence thus reduces the indirect

  2. CloudSat View of Flossie

    NASA Video Gallery

    CloudSat passed directly over Tropical Storm Flossie on July 29 and showed cumulus and stratocumulus clouds in northern Hawaii and cumulonimbus clouds over the southern part. Large amounts of liqui...

  3. Cloud-free resolution element statistics program

    NASA Technical Reports Server (NTRS)

    Liley, B.; Martin, C. D.

    1971-01-01

    Computer program computes number of cloud-free elements in field-of-view and percentage of total field-of-view occupied by clouds. Human error is eliminated by using visual estimation to compute cloud statistics from aerial photographs.

  4. MODIS Collection 6 Clear Sky Restoral (CSR): Filtering Cloud Mast 'Not Clear' Pixels

    NASA Technical Reports Server (NTRS)

    Meyer, Kerry G.; Platnick, Steven Edward; Wind, Galina; Riedi, Jerome

    2014-01-01

    Correctly identifying cloudy pixels appropriate for the MOD06 cloud optical and microphysical property retrievals is accomplished in large part using results from the MOD35 1km cloud mask tests (note there are also two 250m subpixel cloud mask tests that can convert the 1km cloudy designations to clear sky). However, because MOD35 is by design clear sky conservative (i.e., it identifies "not clear" pixels), certain situations exist in which pixels identified by MOD35 as "cloudy" are nevertheless likely to be poor retrieval candidates. For instance, near the edge of clouds or within broken cloud fields, a given 1km MODIS field of view (FOV) may in fact only be partially cloudy. This can be problematic for the MOD06 retrievals because in these cases the assumptions of a completely overcast homogenous cloudy FOV and 1-dimensional plane-parallel radiative transfer no longer hold, and subsequent retrievals will be of low confidence. Furthermore, some pixels may be identified by MOD35 as "cloudy" for reasons other than the presence of clouds, such as scenes with thick smoke or lofted dust, and should therefore not be retrieved as clouds. With such situations in mind, a Clear Sky Restoral (CSR) algorithm was introduced in C5 that attempts to identify pixels expected to be poor retrieval candidates. Table 1 provides SDS locations for CSR and partly cloudy (PCL) pixels.

  5. The collapse of the cores of slowly rotating isothermal clouds

    NASA Technical Reports Server (NTRS)

    Terebey, S.; Shu, F. H.; Cassen, P.

    1984-01-01

    A generalized model which accounts for the effects of initially uniform and slow rotation is defined for the spherical collapse of a singular isothermal sphere such as protosolar and binary nebulae. An initial unstable equilibrium state is described for a sound speed of 0.35 km/sec and a rotation rate of 10 to the -14th/sec for the molecular cloud surrounding the accreting core. The total angular momentum and mass of the inner cloud is set equal to solar system values. The evolution of the collapse is traced by applying a perturbation analysis to the similarity solution for a nonrotating condition, and matched asymptotic expansions solve the hydrodynamic equations. The model is concluded a valid tool for studying star and nebular disk formation.

  6. Halos in cirrus clouds: why are classic displays so rare?

    PubMed

    Sassen, Kenneth

    2005-09-20

    Upper tropospheric cirrus clouds consist of hexagonal ice crystals, which geometrical ray-tracing-theory predicts should regularly produce a variety of optical phenomena such as vivid 22 degrees and 46 degrees halos. Yet, cirrus inconsistently generate such optical displays, while a class of more exotic displays are reported, albeit rarely. I review current knowledge of the cirrus cloud microphysical factors that control ice crystal shape, and hence halo/arc formation, but also appeal to halo enthusiasts to help investigate the causes of unusually complex, brilliant, or rare optical displays. Currently, a wealth of meteorological information can be tapped from the Internet to help advance our knowledge of the basic meteorological factors leading to these rare events.

  7. Efficient resources provisioning based on load forecasting in cloud.

    PubMed

    Hu, Rongdong; Jiang, Jingfei; Liu, Guangming; Wang, Lixin

    2014-01-01

    Cloud providers should ensure QoS while maximizing resources utilization. One optimal strategy is to timely allocate resources in a fine-grained mode according to application's actual resources demand. The necessary precondition of this strategy is obtaining future load information in advance. We propose a multi-step-ahead load forecasting method, KSwSVR, based on statistical learning theory which is suitable for the complex and dynamic characteristics of the cloud computing environment. It integrates an improved support vector regression algorithm and Kalman smoother. Public trace data taken from multitypes of resources were used to verify its prediction accuracy, stability, and adaptability, comparing with AR, BPNN, and standard SVR. Subsequently, based on the predicted results, a simple and efficient strategy is proposed for resource provisioning. CPU allocation experiment indicated it can effectively reduce resources consumption while meeting service level agreements requirements.

  8. Energy and minorities, women, and the poor

    SciTech Connect

    Perry, H.L.; Perry, E.B.

    1980-01-01

    A comprehensive, up-to-date (1975 to 1980) bibliography of articles, books and other publications is presented dealing with the subject of energy and minorities, women and the poor. Included are academic, popular, and government publications as well as publications by private groups and organizations. It is intended for political scientists, sociologists, economists, home economists, energy planners, energy managers and others interested in the interface of minorities, women, and the poor with energy. Following a brief introduction, there is a general listing. Also included are references dealing with energy and black Americans, native Americans (Indians), the poor, and women. (MJJ)

  9. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    SciTech Connect

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they

  10. Effective cloud fractions of GOME-2 measurements using an enhanced HICRU implementation

    NASA Astrophysics Data System (ADS)

    Sihler, Holger; Beirle, Steffen; Grzegorski, Michael; Hörmann, Christoph; Lampel, Johannes; Penning de Vries, Marloes; Wagner, Thomas

    2016-04-01

    The physics of clouds is one of the most important drivers of meteorology and the climate system. Apart from this, the distribution of clouds interferes with the majority of satellite measurement techniques. Tropospheric trace gas retrievals are particularly sensitivity to the distribution of clouds within the field-of-view of the instrument, because already small cloud fractions have the potential to alter the measurement error and significantly increase the uncertainty of the measurement. Hence, the accuracy of tropospheric trace gas retrievals depends on the accuracy of the cloud fraction, particularly for small cloud fractions. The original HICRU Iterative Cloud Retrieval Utilities (HICRU) algorithm has been specifically developed for the retrieval of small cloud fractions at high accuracy. This is achieved by inferring a clear sky top of atmosphere reflectance map from the dataset itself, minimising the influence of instrument degradation and/or insufficient calibration. HICRU thus requires a minimum of a-priori knowledge. So far, this approach was limited to measurements at sufficiently small viewing angles, such as GOME and SCIAMACHY, for which the use of a single, viewing-angle independent background albedo map is justified. Here, we demonstrate how this empirical approach may be enhanced by parametrising the viewing angle dependence of the TOA reflectance. It then becomes applicable to satellite instruments like GOME-2, OMI, and the upcoming TROPOMI/S5P with viewing angles up to 45 or even 70 degrees, by parametrising the viewing angle dependence of the TOA reflectance. Furthermore, the enhanced HICRU algorithm comprises an advanced treatment of the temporal evolution using a spatially averaged Fourier series fit. The enhanced HICRU has the potential to be applied also to instruments with moderate spectral resolution like MERIS, MODIS, or AVHRR as well.

  11. Storm and Clouds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Yesterday's storm front was moving westward, today's moves eastward. Note the thick cloud cover and beautifully delineated cloud tops.

    Image information: VIS instrument. Latitude 72.1, Longitude 308.3 East (51.7 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Architectural Implications of Cloud Computing

    DTIC Science & Technology

    2011-10-24

    Mellon University Final Thoughts 1 Cloud Computing is in essence an economic model • It is a different way to acquire and manage IT resources...Cloud (EC2): http://aws.amazon.com/ec2/ • Amazon Simple Storage Solution (S3): http://aws.amazon.com/s3/ • Eucalyptus Systems: http

  13. A Tale of Two Clouds

    ERIC Educational Resources Information Center

    Gray, Terry

    2010-01-01

    The University of Washington (UW) adopted a dual-provider cloud-computing strategy, focusing initially on software as a service. The original project--to replace an obsolete alumni e-mail system--resulted in a cloud solution that soon grew to encompass the entire campus community. The policies and contract terms UW developed, focusing on…

  14. Chemical evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.; Tarafdar, Sankar P.; Villere, Karen R.; Huntress, Wesley T., Jr.

    1987-01-01

    The principles behind the coupled chemical-dynamical evolution of molecular clouds are described. Particular attention is given to current problems involving the simplest species (i.e., C. CO, O2, and H2) in quiescent clouds. The results of a comparison made between the molecular abundances in the Orion ridge and the hot core (Blake, 1986) are presented.

  15. Measuring Cloud Properties from UAVs

    NASA Astrophysics Data System (ADS)

    Nicoll, K.; Harrison, R. G.; Roberts, G.

    2014-12-01

    Observations of in-situ cloud properties are an essential aspect of cloud microphysics studies. UAVs readily provide a platform from which high resolution cloud measurements can be made, both in the vertical and horizontal directions. Currently, however, one limiting factor in the use of UAVs for cloud studies is the lack of availability of lightweight, low power sensors. This work describes a number of small, disposable sensors for cloud droplet detection and electrical charge measurements, which have been flown on both free balloon and UAV platforms. The cloud droplet detector utilises optical reflection, combining a low power, high brightness LED as the optical source with a semiconductor photodiode as the detector. During daylight conditions, the photodiode detector also provides a measurement of broadband solar radiation, allowing an estimate of extinction within the cloud to be derived. The current consumption of the sensor is <30mA, and it has worked reliably in both day and night time conditions. Multiple flights of these sensors onboard UAVs with wingspan <2m (including Funjet and Easystar aircraft), made from southern France through a variety of cloud types will be presented.

  16. Optically thin ice clouds in Arctic; Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Pelon, Jacques; Girard, Eric; Blanchet, Jean-Pierre; Wobrock, Wolfram; Gayet, Jean-Franćois; Schwarzenböck, Alfons; Gultepe, Ismail; Delanoë, Julien; Mioche, Guillaume

    2010-05-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Yet, their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (< -30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. To check this, it is necessary to analyse cloud properties in the Arctic. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of

  17. The latitudinal distribution of clouds on Titan.

    PubMed

    Rannou, P; Montmessin, F; Hourdin, F; Lebonnois, S

    2006-01-13

    Clouds have been observed recently on Titan, through the thick haze, using near-infrared spectroscopy and images near the south pole and in temperate regions near 40 degrees S. Recent telescope and Cassini orbiter observations are now providing an insight into cloud climatology. To study clouds, we have developed a general circulation model of Titan that includes cloud microphysics. We identify and explain the formation of several types of ethane and methane clouds, including south polar clouds and sporadic clouds in temperate regions and especially at 40 degrees in the summer hemisphere. The locations, frequencies, and composition of these cloud types are essentially explained by the large-scale circulation.

  18. TraceContract: A Scala DSL for Trace Analysis

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Havelund, Klaus

    2011-01-01

    In this paper we describe TRACECONTRACT, an API for trace analysis, implemented in the SCALA programming language. We argue that for certain forms of trace analysis the best weapon is a high level programming language augmented with constructs for temporal reasoning. A trace is a sequence of events, which may for example be generated by a running program, instrumented appropriately to generate events. The API supports writing properties in a notation that combines an advanced form of data parameterized state machines with temporal logic. The implementation utilizes SCALA's support for defining internal Domain Specific Languages (DSLs). Furthermore SCALA's combination of object oriented and functional programming features, including partial functions and pattern matching, makes it an ideal host language for such an API.

  19. Determination of the chemical properties of residues retained in individual cloud droplets by XRF microprobe at SPring-8

    NASA Astrophysics Data System (ADS)

    Ma, C.-J.; Tohno, S.; Kasahara, M.; Hayakawa, S.

    2004-06-01

    To determine the chemical properties of residue retained in individual cloud droplets is primarily important for the understanding of rainout mechanism and aerosol modification in droplet. The sampling of individual cloud droplets were carried out on the summit of Mt. Taiko located in Tango peninsula, Kyoto prefecture, during Asian dust storm event in March of 2002. XRF microprobe system equipped at SPring-8, BL-37XU was applied to the subsequent quantification analysis of ultra trace elements in residues of individual cloud droplets. It was possible to form the replicas of separated individual cloud droplets on the thin collodion film. The two dimensional XRF maps for the residues in individual cloud droplets were clearly drawn by scanning of micro-beam. Also, XRF spectra of trace elements in residues were well resolved. From the XRF spectra for individual residues, the chemical mixed state of residues could be assumed. The chemical forms of Fe (Fe +++) and Zn (Zn +) could be clearly characterized by their K-edge micro-XANES spectra. By comparison of Z/Si mass ratios of residues in cloud droplets and those of the original sands collected in desert areas in China, the aging of ambient dust particles and their in cloud modification were indirectly assumed.

  20. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction. The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  1. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction (Browning et al, 1994). The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  2. Climate Effects of Cloud Modified CCN-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Noble, S. R., Jr.; Hudson, J. G.

    2015-12-01

    Cloud condensation nuclei (CCN) play an important role in the climate system through the indirect aerosol effect (IAE). IAE is one of the least understood aspects of the climate system as many cloud processes are complicated. Many studies of aerosol-cloud interaction involve CCN interaction with cloud droplet concentrations (Nc), cloud microphysics, and radiative properties. However, fewer studies investigate how cloud processes modify CCN. Upon evaporation from non-precipitating clouds, CCN distributions develop bimodal shaped distributions (Hoppel et al. 1986). Activated CCN participate in cloud processing that is either chemical: aqueous oxidation; or physical: Brownian scavenging, collision and coalescence. Chemical processing does not change CCN concentration (NCCN) but reduces critical supersaturations (Sc; larger size) (Feingold and Kreidenweis, 2000) while physical processing reduces NCCN and Sc. These processes create the minima in the bimodal CCN distributions (Hudson et al., 2015). Updraft velocity (W) and NCCN are major factors on how these modified CCN distributions affect clouds. Panel a shows two nearby CCN distributions in the MArine Stratus/stratocumulus Experiment (MASE), which have similar concentrations, but the bimodal one (red) has been modified by cloud processing. In a simplified cloud droplet model, the modified CCN then produces higher Nc (panel b) and smaller droplet mean diameters (MD; panel c) when compared to the unmodified CCN (black) for W lower than 50 cm/s. The better CCN (lower Sc) increase competition among droplets reducing MD and droplet distribution spread (σ) which acts to reduce drizzle. Competition is created by limited available condensate due to lower S created by the low W (<50 cm/s) typical of stratus. The increased Nc of the modified CCN in stratus then increases IAE in the climate system. At higher W (>50 cm/s) typical of cumuli, Ncis reduced and MD is increased from the modified CCN distribution (panels b & c). Here

  3. [Multifractal cloud properties data assessment

    SciTech Connect

    Gautier, C.; Ricchiazzi, P.; Peterson, P.; Lavallee, D. ); Frouin, R.; Lubin, D. ); Lovejoy, S. ); Schertzer, D. )

    1992-05-06

    Our group has been very active over the last year, analyzing a number of data sets to characterize multifractal cloud properties and assess the effects of clouds on surface radiation properties (spectral and broadband). The data sets analyzed include: AVHRR observations of clouds over the ocean, SPOT observations of clouds over the ocean, SSM/I observations of clouds over the ocean, pyranometer data with all-sky photographs, pyrgeometer data all-sky photographs, and spectral surface irradiance all-sky photographs. A number of radiative transfer computations have been performed to help in the interpretation of these observations or provide theoretical guidance for their analysis. Finally 4 number of radiative transfer models have been acquired and tested to prepare for the interpretation of ARM/CART data.

  4. Cloud regimes as phase transitions

    NASA Astrophysics Data System (ADS)

    Stechmann, Samuel N.; Hottovy, Scott

    2016-06-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.

  5. Physical conditions in molecular clouds

    NASA Technical Reports Server (NTRS)

    Evans, Neal J., II

    1989-01-01

    Recent developments have complicated the picture of the physical conditions in molecular clouds. The discoveries of widespread emission from high-J lines of CD and 12-micron IRAS emission have revealed the presence of considerably hotter gas and dust near the surfaces of molecular clouds. These components can complicate interpretation of the bulk of the cloud gas. Commonly assumed relations between column density or mean density and cloud size are called into question by conflicting results and by consideration of selection effects. Analysis of density and density structure through molecular excitation has shown that very high densities exist in star formation regions, but unresolved structure and possible chemical effects complicate the interpretation. High resolution far-IR and submillimeter observations offer a complementary approach and are beginning to test theoretical predictions of density gradients in clouds.

  6. Trusted computing strengthens cloud authentication.

    PubMed

    Ghazizadeh, Eghbal; Zamani, Mazdak; Ab Manan, Jamalul-lail; Alizadeh, Mojtaba

    2014-01-01

    Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model.

  7. Trusted Computing Strengthens Cloud Authentication

    PubMed Central

    2014-01-01

    Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model. PMID:24701149

  8. Constraining the Evolution of Poor Clusters

    NASA Astrophysics Data System (ADS)

    Broming, Emma J.; Fuse, C. R.

    2012-01-01

    There currently exists no method by which to quantify the evolutionary state of poor clusters (PCs). Research by Broming & Fuse (2010) demonstrated that the evolution of Hickson compact groups (HCGs) are constrained by the correlation between the X-ray luminosities of point sources and diffuse gas. The current investigation adopts an analogous approach to understanding PCs. Plionis et al. (2009) proposed a theory to define the evolution of poor clusters. The theory asserts that cannibalism of galaxies causes a cluster to become more spherical, develop increased velocity dispersion and increased X-ray temperature and gas luminosity. Data used to quantify the evolution of the poor clusters were compiled across multiple wavelengths. The sample includes 162 objects from the WBL catalogue (White et al. 1999), 30 poor clusters in the Chandra X-ray Observatory archive, and 15 Abell poor clusters observed with BAX (Sadat et al. 2004). Preliminary results indicate that the cluster velocity dispersion and X-ray gas and point source luminosities can be used to highlight a weak correlation. An evolutionary trend was observed for multiple correlations detailed herein. The current study is a continuation of the work by Broming & Fuse examining point sources and their properties to determine the evolutionary stage of compact groups, poor clusters, and their proposed remnants, isolated ellipticals and fossil groups. Preliminary data suggests that compact groups and their high-mass counterpart, poor clusters, evolve along tracks identified in the X-ray gas - X-ray point source relation. While compact groups likely evolve into isolated elliptical galaxies, fossil groups display properties that suggest they are the remains of fully coalesced poor clusters.

  9. The determination of exhaust cloud dimensions from films of space shuttle launches

    NASA Technical Reports Server (NTRS)

    Zak, R. A.

    1987-01-01

    Principles of photogrammetry are used to calculate the dimension of ground clouds produced from the Space Shuttle launch system. For each of three launches (Missions 41C, 41D, and 51A), a 16 mm camera recorded the ground cloud from three different locations. Measurements were made from outlines of the cloud and other features of interest which were traced onto paper at one-minute intervals using a 16 mm stop-action projector. Cloud characteristics such as top, max width at top, average width, and base are presented as a function of time. A temperature inversion was present each launch day and the cloud responded by first rising into the inversion and then descending to about the inversion height. Max tops were achieved in about three to five minutes and ranged from 2200 m for Mission 41C to 3500 m for Mission 41D. Cloud bases rose steadily to between 700 and 1000 m after 10 minutes. Average widths ranged from 500 to 1700 m depending on mission and camera. Photographs of digitizations of selected film frames are included in the report to show the irregular cloud shapes. Error sources for this analysis are also discussed.

  10. Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight.

    PubMed

    Alves, J F; Lada, C J; Lada, E A

    2001-01-11

    Stars and planets form within dark molecular clouds, but little is understood about the internal structure of these clouds, and consequently about the initial conditions that give rise to star and planet formation. The clouds are primarily composed of molecular hydrogen, which is virtually inaccessible to direct observation. But the clouds also contain dust, which is well mixed with the gas and which has well understood effects on the transmission of light. Here we use sensitive near-infrared measurements of the light from background stars as it is absorbed and scattered by trace amounts of dust to probe the internal structure of the dark cloud Barnard 68 with unprecedented detail. We find the cloud's density structure to be very well described by the equations for a pressure-confined, self-gravitating isothermal sphere that is critically stable according to the Bonnor-Ebert criteria. As a result we can precisely specify the physical conditions inside a dark cloud on the verge of collapse to form a star.

  11. The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment.

    NASA Astrophysics Data System (ADS)

    Sassen, Kenneth

    1991-12-01

    The development of the polarization lidar field over the past two decades is reviewed, and the current cloud-research capabilities and limitations are evaluated. Relying on fundamental scattering principles governing the interaction of polarized laser light with distinctly shaped hydrometers, this remote-sensing technique has contributed to our knowledge of the composition and structure of a variety of cloud types. For example, polarization lidar is a key component of current climate-research programs to characterize the properties of cirrus clouds, and is an integral part of multiple remote-sensor studies of mixed-phase cloud systems, such as winter mountain storms. Although unambiguous cloud-phase discrimination and the identification of some ice particle types and orientations are demonstrated capabilities, recent theoretical approaches involving ice crystal ray-tracing and cloud microphysical model simulations are, promising to increase the utility of the technique. New results simulating the single and multiple scattering properties of precipitating mixed-phase clouds are given for illustration of such methods.

  12. The Chemical Composition of Fogs and Clouds in the United States

    NASA Astrophysics Data System (ADS)

    Collett, J. L.; Bator, A.; Chang, H.; Demoz, B.; Herckes, P.; Hoag, K.; Lee, T.; Moore, K. F.; Raja, S.; Rao, X.; Reilly, J.; Rinehart, L.; Sherman, D. E.; Straub, D. J.; Xu, G.; Youngster, S.; Yu, X.; Ravikrishna, R.; Valsaraj, K.

    2006-12-01

    Over the past 15 years we have investigated the chemical and physical properties of fogs and clouds at approximately twenty locations across the United States. Sampling sites have been located in the northeast, southeast, Rocky Mountain, west coast, Pacific Northwest, and Gulf Coast, and in the Pacific (airborne and in Hawaii). They include both pristine and heavily polluted locations. Frontal/orographic clouds (warm and supercooled), coastal and marine stratiform clouds and radiation fogs have all been examined. Measurements at these various locations include "bulk" and/or drop size-resolved cloud drop composition. A variety of single and multi-stage cloud/fog collectors have been developed and used for these studies. Measured species include inorganic ions, organic acids, S(IV), hydrogen peroxide, trace metals, total organic carbon and carbonyls. Observed cloud and fog pH values ranged from below 3 to above 7. Strong variations in composition as a function of drop size are seen at many locations. Because droplet deposition processes depend strongly on drop size, knowledge of drop size-dependent composition is important for understanding fog solute deposition fluxes. This presentation will review sampling approaches and highlight key features of fog and cloud composition and its variation between locations, with time, and as a function of droplet size.

  13. Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio.

    PubMed

    Noel, Vincent; Chepfer, Helene; Ledanois, Guy; Delaval, Arnaud; Flamant, Pierre H

    2002-07-20

    A shape classification technique for cirrus clouds that could be applied to future spaceborne lidars is presented. A ray-tracing code has been developed to simulate backscattered and depolarized lidar signals from cirrus clouds made of hexagonal-based crystals with various compositions and optical depth, taking into account multiple scattering. This code was used first to study the sensitivity of the linear depolarization rate to cloud optical and microphysical properties, then to classify particle shapes in cirrus clouds based on depolarization ratio measurements. As an example this technique has been applied to lidar measurements from 15 mid-latitude cirrus cloud cases taken in Palaiseau, France. Results show a majority of near-unity shape ratios as well as a strong correlation between shape ratios and temperature: The lowest temperatures lead to high shape ratios. The application of this technique to space-borne measurements would allow a large-scale classification of shape ratios in cirrus clouds, leading to better knowledge of the vertical variability of shapes, their dependence on temperature, and the formation processes of clouds.

  14. Tropical deep convective cloud morphology

    NASA Astrophysics Data System (ADS)

    Igel, Matthew R.

    A cloud-object partitioning algorithm is developed. It takes contiguous CloudSat cloudy regions and identifies various length scales of deep convective clouds from a tropical, oceanic subset of data. The methodology identifies a level above which anvil characteristics become important by analyzing the cloud object shape. Below this level in what is termed the pedestal region, convective cores are identified based on reflectivity maxima. Identifying these regions allows for the assessment of length scales of the anvil and pedestal of the deep convective clouds. Cloud objects are also appended with certain environmental quantities from the ECMWF reanalysis. Simple geospatial and temporal assessments show that the cloud object technique agrees with standard observations of local frequency of deep-convective cloudiness. Additionally, the nature of cloud volume scale populations is investigated. Deep convection is seen to exhibit power-law scaling. It is suggested that this scaling has implications for the continuous, scale invariant, and random nature of the physics controlling tropical deep convection and therefore on the potentially unphysical nature of contemporary convective parameterizations. Deep-convective clouds over tropical oceans play important roles in Earth's climate system. The response of tropical, deep convective clouds to sea surface temperatures (SSTs) is investigated using this new data set. Several previously proposed feedbacks are examined: the FAT hypothesis, the Iris hypothesis, and the Thermostat hypothesis. When the data are analyzed per cloud object, each hypothesis is broadly found to correctly predict cloud behavior in nature, although it appears that the FAT hypothesis needs a slight modification to allow for cooling cloud top temperatures with increasing SSTs. A new response that shows that the base temperature of deep convective anvils remains approximately constant with increasing SSTs is introduced. These cloud-climate feedbacks are

  15. Measurement of Selected Organic Trace Gases During TRACE-P

    NASA Technical Reports Server (NTRS)

    Atlas, Elliot

    2004-01-01

    Major goals of the TRACE-P mission were: 1) to investigate the chemical composition of radiatively important gases, aerosols, and their precursors in the Asian outflow over the western Pacific, and 2) to describe and understand the chemical evolution of the Asian outflow as it is transported and mixed into the global troposphere. The research performed as part of this proposal addressed these major goals with a study of the organic chemical composition of gases in the TRACE-P region. This work was a close collaboration with the Blake/Rowland research group at UC-Irvine, and they have provided a separate report for their funded effort.

  16. Trace elements: implications for nursing.

    PubMed

    Hayter, J

    1980-01-01

    Although most were unknown a few years ago, present evidence indicates that at least 25 trace elements have some pertinence to health. Unlike vitamins, they cannot be synthesized. Some trace elements are now considered important only because of their harmful effects but traces of them may be essential. Zinc is especially important during puberty, pregnancy and menopause and is related to protein metabolism. Both fluoride and cadmium accumulate in the body year after year. Cadmium is positively correlated with several chronic diseases, especially hypertension. It is obtained from smoking and drinking soft water. Silicon, generally associated with silicosis, may be necessary for healthy bone and connective tissue. Chromium, believed to be the glucose tolerance factor, is obtained from brewer's yeast, spices, and whole wheat products. Copper deficiency may be implicated in a wide range of cardiovascular and blood related disorders. Either marginal deficiencies or slight excesses of most trace elements are harmful. Nurses should instruct patients to avoid highly refined foods, fad diets, or synthetic and fabricated foods. A well balanced and varied diet is the best safeguard against trace element excesses or deficiencies.

  17. EDITORIAL: Focus on Cloud Physics FOCUS ON CLOUD PHYSICS

    NASA Astrophysics Data System (ADS)

    Falkovich, Gregory; Malinowski, Szymon P.

    2008-07-01

    Cloud physics has for a long time been an important segment of atmospheric science. It is common knowledge that clouds are crucial for our understanding of weather and climate. Clouds are also interesting by themselves (not to mention that they are beautiful). Complexity is hidden behind the common picture of these beautiful and interesting objects. The typical school textbook definition that a cloud is 'a set of droplets or particles suspended in the atmosphere' is not adequate. Clouds are complicated phenomena in which dynamics, turbulence, microphysics, thermodynamics and radiative transfer interact on a wide range of scales, from sub-micron to kilometres. Some of these interactions are subtle and others are more straightforward. Large and small-scale motions lead to activation of cloud condensation nuclei, condensational growth and collisions; small changes in composition and concentration of atmospheric aerosol lead to significant differences in radiative properties of the clouds and influence rainfall formation. It is justified to look at a cloud as a composite, nonlinear system which involves many interactions and feedback. This system is actively linked into a web of atmospheric, oceanic and even cosmic interactions. Due to the complexity of the cloud system, present-day descriptions of clouds suffer from simplifications, inadequate parameterizations, and omissions. Sometimes the most fundamental physics hidden behind these simplifications and parameterizations is not known, and a wide scope of view can sometimes prevent a 'microscopic', deep insight into the detail. Only the expertise offered by scientists focused on particular elementary processes involved in this complicated pattern of interactions allows us to shape elements of the puzzle from which a general picture of clouds can be created. To be useful, every element of the puzzle must be shaped precisely. This often creates problems in communication between the sciences responsible for shaping

  18. Putting the clouds back in aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Gettelman, A.

    2015-11-01

    Aerosol-cloud interactions (ACI) are the consequence of perturbed aerosols affecting cloud drop and crystal number, with corresponding microphysical and radiative effects. ACI are sensitive to both cloud microphysical processes (the "C" in ACI) and aerosol emissions and processes (the "A" in ACI). This work highlights the importance of cloud microphysical processes, using idealized and global tests of a cloud microphysics scheme used for global climate prediction. Uncertainties in key cloud microphysical processes examined with sensitivity tests cause uncertainties of nearly -30 to +60 % in ACI, similar to or stronger than uncertainties identified due to natural aerosol emissions (-30 to +30 %). The different dimensions and sensitivities of ACI to microphysical processes identified in previous work are analyzed in detail, showing that precipitation processes are critical for understanding ACI and that uncertain cloud lifetime effects are nearly one-third of simulated ACI. Buffering of different processes is important, as is the mixed phase and coupling of the microphysics to the condensation and turbulence schemes in the model.

  19. Mapping atomic and diffuse interstellar band absorption across the Magellanic Clouds and the Milky Way

    NASA Astrophysics Data System (ADS)

    Bailey, Mandy; van Loon, Jacco Th.; Sarre, Peter J.; Beckman, John E.

    2015-12-01

    Diffuse interstellar bands (DIBs) trace warm neutral and weakly ionized diffuse interstellar medium (ISM). Here we present a dedicated, high signal-to-noise spectroscopic survey of two of the strongest DIBs, at 5780 and 5797 Å, in optical spectra of 666 early-type stars in the Small and Large Magellanic Clouds, along with measurements of the atomic Na I D and Ca II K lines. The resulting maps show for the first time the distribution of DIB carriers across large swathes of galaxies, as well as the foreground Milky Way ISM. We confirm the association of the 5797 Å DIB with neutral gas, and the 5780 Å DIB with more translucent gas, generally tracing the star-forming regions within the Magellanic Clouds. Likewise, the Na I D line traces the denser ISM whereas the Ca II K line traces the more diffuse, warmer gas. The Ca II K line has an additional component at ˜200-220 km s-1 seen towards both Magellanic Clouds; this may be associated with a pan-Magellanic halo. Both the atomic lines and DIBs show sub-pc-scale structure in the Galactic foreground absorption; the 5780 and 5797 Å DIBs show very little correlation on these small scales, as do the Ca II K and Na I D lines. This suggests that good correlations between the 5780 and 5797 Å DIBs, or between Ca II K and Na I D, arise from the superposition of multiple interstellar structures. Similarity in behaviour between DIBs and Na I in the Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Milky Way suggests the abundance of DIB carriers scales in proportion to metallicity.

  20. Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network method

    NASA Astrophysics Data System (ADS)

    Minnis, Patrick; Hong, Gang; Sun-Mack, Szedung; Smith, William L.; Chen, Yan; Miller, Steven D.

    2016-05-01

    Retrieval of ice cloud properties using IR measurements has a distinct advantage over the visible and near-IR techniques by providing consistent monitoring regardless of solar illumination conditions. Historically, the IR bands at 3.7, 6.7, 11.0, and 12.0 µm have been used to infer ice cloud parameters by various methods, but the reliable retrieval of ice cloud optical depth τ is limited to nonopaque cirrus with τ < 8. The Ice Cloud Optical Depth from Infrared using a Neural network (ICODIN) method is developed in this paper by training Moderate Resolution Imaging Spectroradiometer (MODIS) radiances at 3.7, 6.7, 11.0, and 12.0 µm against CloudSat-estimated τ during the nighttime using 2 months of matched global data from 2007. An independent data set comprising observations from the same 2 months of 2008 was used to validate the ICODIN. One 4-channel and three 3-channel versions of the ICODIN were tested. The training and validation results show that IR channels can be used to estimate ice cloud τ up to 150 with correlations above 78% and 69% for all clouds and only opaque ice clouds, respectively. However, τ for the deepest clouds is still underestimated in many instances. The corresponding RMS differences relative to CloudSat are ~100 and ~72%. If the opaque clouds are properly identified with the IR methods, the RMS differences in the retrieved optical depths are ~62%. The 3.7 µm channel appears to be most sensitive to optical depth changes but is constrained by poor precision at low temperatures. A method for estimating total optical depth is explored for estimation of cloud water path in the future. Factors affecting the uncertainties and potential improvements are discussed. With improved techniques for discriminating between opaque and semitransparent ice clouds, the method can ultimately improve cloud property monitoring over the entire diurnal cycle.

  1. Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic

    NASA Technical Reports Server (NTRS)

    Zamora, Lauren; Kahn, R. A.; Cubison, M. C.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L.

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300 over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were 50 smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq))/ and various biomass burning tracers (BBt/ across the multi-campaign dataset, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACI, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be 0.12 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/ cu m) and very high aerosol concentrations (2000-3000 cu m) in the most polluted clouds, the estimated ACI value was only 0.06. In this case, competition for water vapor by the high concentration of CCN strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease shortwave radiative flux by 2 and 4 W/sq or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. We lastly show evidence to suggest that numerous northern latitude background Aitken particles can interact with combustion particles

  2. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    NASA Astrophysics Data System (ADS)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L. D.

    2015-08-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300 % over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~ 50 % smaller than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign dataset, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACI, where ACI = (1/3) × d ln (Nliq) / d ln (BBt)) to be ~ 0.12 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~ 0.02 g m-3) and very high aerosol concentrations (2000-3000 cm-3) in the most polluted clouds, the estimated ACI value was only 0.06. In this case, competition for water vapor by the high concentration of CCN strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease shortwave radiative flux by 2-4 W m-2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. We lastly show evidence to suggest that numerous northern latitude background Aitken particles can interact with combustion particles

  3. Photogrammetry and photo interpretation applied to analyses of cloud cover, cloud type, and cloud motion

    NASA Technical Reports Server (NTRS)

    Larsen, P. A.

    1972-01-01

    A determination was made of the areal extent of terrain obscured by clouds and cloud shadows on a portion of an Apollo 9 photograph at the instant of exposure. This photogrammetrically determined area was then compared to the cloud coverage reported by surface weather observers at approximately the same time and location, as a check on result quality. Stereograms prepared from Apollo 9 vertical photographs, illustrating various percentages of cloud coverage, are presented to help provide a quantitative appreciation of the degradation of terrain photography by clouds and their attendant shadows. A scheme, developed for the U.S. Navy, utilizing pattern recognition techniques for determining cloud motion from sequences of satellite photographs, is summarized. Clouds, turbulence, haze, and solar altitude, four elements of our natural environment which affect aerial photographic missions, are each discussed in terms of their effects on imagery obtained by aerial photography. Data of a type useful to aerial photographic mission planners, expressing photographic ground coverage in terms of flying height above terrain and camera focal length, for a standard aerial photograph format, are provided. Two oblique orbital photographs taken during the Apollo 9 flight are shown, and photo-interpretations, discussing the cloud types imaged and certain visible geographical features, are provided.

  4. Cloud microphysical background for the Israel-4 cloud seeding experiment

    NASA Astrophysics Data System (ADS)

    Freud, Eyal; Koussevitzky, Hagai; Goren, Tom; Rosenfeld, Daniel

    2015-05-01

    The modest amount of rainfall in Israel occurs in winter storms that bring convective clouds from the Mediterranean Sea when the cold post frontal air interacts with its relatively warm surface. These clouds were seeded in the Israel-1 and Israel-2 cloud glaciogenic seeding experiments, which have shown statistically significant positive effect of added rainfall of at least 13% in northern Israel, whereas the Israel-3 experiment showed no added rainfall in the south. This was followed by operational seeding in the north since 1975. The lack of physical evidence for the causes of the positive effects in the north caused a lack of confidence in the statistical results and led to the Israel-4 randomized seeding experiment in northern Israel. This experiment started in the winter of 2013/14. The main difference from the previous experiments is the focus on the orographic clouds in the catchment of the Sea of Galilee. The decision to commence the experiment was partially based on evidence supporting the existence of seeding potential, which is reported here. Aircraft and satellite microphysical and dynamic measurements of the clouds document the critical roles of aerosols, especially sea spray, on cloud microstructure and precipitation forming processes. It was found that the convective clouds over sea and coastal areas are naturally seeded hygroscopically by sea spray and develop precipitation efficiently. The diminution of the large sea spray aerosols farther inland along with the increase in aerosol concentrations causes the clouds to develop precipitation more slowly. The short time available for the precipitation forming processes in super-cooled orographic clouds over the Golan Heights farthest inland represents the best glaciogenic seeding potential.

  5. Revised method for calculating cloud densities in equilibrium models

    NASA Astrophysics Data System (ADS)

    Wong, M. H.; Atreya, S. K.; Kuhn, W. R.

    2013-12-01

    Models of cloud condensation under thermodynamic equilibrium in planetary atmospheres are simple but still useful for several reasons. They calculate the wet adiabatic lapse rate, they determine saturation-limited mixing ratios of condensing species, and they calculate the stabilizing effect of latent heat release and molecular weight stratification. Equilibrium cloud condensation models (ECCMs) also calculate a type of condensate density---a condensate "unit density"---that only equates to cloud density under specific circumstances, because microphysics and dynamics are not considered in ECCMs. Unit densities are calculated for every model altitude by requiring that condensed material remains at the level where it condenses. Many ECCMs in use trace their heritage to Weidenschilling and Lewis (1973; Icarus 20, 465--476; hereafter WL73), which contains an error that affects only the calculation of condensate unit density. The error led to densities too high by a factor of the atmospheric scale height divided by unit length, which is about 3x10^6 at Jupiter's ammonia cloud level. We will describe the condensate unit density calculation error in WL73, and provide a new algorithm based on the local change in vapor mixing ratio, rather than the difference between integrated column masses as in WL73. The new algorithm satisfies conservation of mass. Using a simple scaling law to parameterize dynamics in terms of updraft speed and duration, condensate unit densities from ECCMs can be converted to cloud densities. We validate the technique for the terrestrial case, by comparing model predictions with representative densities of cirrus and cumulus clouds. For cirrus and cumulus updraft parameters, respectively, we find cloud densities of 0.01--0.2 g m-3 and 0.8--7 g m-3, in excellent agreement with observations and models of terrestrial clouds of these types. Implications for models of planetary and exoplanetary atmospheres will be discussed. [This material is based upon

  6. Cloud-Ground Interaction

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 30 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image of the North Polar water-ice clouds shows how surface topography can affect the linear form. Notice that the crater at the bottom of the image is causing a deflection in the linear form.

    Image information: VIS instrument. Latitude 68.4, Longitude 100.7 East (259.3 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the

  7. Observational Constraints on Mixed-Phase Clouds Imply Higher Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Tan, I.; Storelvmo, T.; Zelinka, M. D.

    2015-12-01

    Mixed-phase clouds are ubiquitous in all regions of Earth, yet are poorly constrained due to difficulty in obtaining observations of these clouds. Many models underestimate the supercooled liquid proportion of mixed-phase clouds, which biases estimates of the Earth's radiation budget due to the contrasting optical properties of liquid droplets and ice crystals. Using global satellite observations obtained by NASA's CALIOP instrument, mixed-phase clouds simulated by NCAR's global climate model, CESM, are constrained by tuning various microphysical parameters relevant to mixed-phase clouds processes in its atmospheric model component, CAM5. The equilibrium climate sensitivity estimates of the satellite-constrained simulations range from 5 to 5.3 degrees Celsius, which is up to 1.3 degrees Celsius greater than the standard simulation and 2.1 degrees Celsius greater than the CMIP archive ensemble mean. The higher equilibrium climate sensitivity estimates are linked to a weakened negative cloud phase feedback that depends on the supercooled liquid proportion of its mixed-phase clouds in the initial state. Climate models that underestimate the supercooled liquid proportion in the initial state are shown to exhibit an unrealistically strongly negative cloud phase feedback that counteracts warming that would otherwise occur.

  8. Deep convective clouds with sustained supercooled liquid water down to -37.5 degrees C

    PubMed

    Rosenfeld; Woodley

    2000-05-25

    In cirrus and orographic wave clouds, highly supercooled water has been observed in small quantities (less than 0.15 g m(-3)). This high degree of supercooling was attributed to the small droplet size and the lack of ice nuclei at the heights of these clouds. For deep convective clouds, which have much larger droplets near their tops and which take in aerosols from near the ground, no such measurements have hitherto been reported. However, satellite data suggest that highly supercooled water (down to -38 degrees C) frequently occurs in vigorous continental convective storms. Here we report in situ measurements in deep convective clouds from an aircraft, showing that most of the condensed water remains liquid down to -37.5 degrees C. The droplets reach a median volume diameter of 17 microm and amount to 1.8 gm(-3), one order of magnitude more than previously reported. At slightly colder temperatures only ice was found, suggesting homogeneous freezing. Because of the poor knowledge of mixed-phase cloud processes, the simulation of clouds using numerical models is difficult at present. Our observations will help to understand these cloud processes, such as rainfall, hail, and cloud electrification, together with their implications for the climate system.

  9. Dense cloud cores revealed by CO in the low metallicity dwarf galaxy WLM.

    PubMed

    Rubio, Monica; Elmegreen, Bruce G; Hunter, Deidre A; Brinks, Elias; Cortés, Juan R; Cigan, Phil

    2015-09-10

    Understanding stellar birth requires observations of the clouds in which they form. These clouds are dense and self-gravitating, and in all existing observations they are molecular, with H2 the dominant species and carbon monoxide (CO) the best available tracer. When the abundances of carbon and oxygen are low compared with that of hydrogen, and the opacity from dust is also low, as in primeval galaxies and local dwarf irregular galaxies, CO forms slowly and is easily destroyed, so it is difficult for it to accumulate inside dense clouds. Here we report interferometric observations of CO clouds in the local group dwarf irregular galaxy Wolf-Lundmark-Melotte (WLM), which has a metallicity that is 13 per cent of the solar value and 50 per cent lower than the previous CO detection threshold. The clouds are tiny compared to the surrounding atomic and H2 envelopes, but they have typical densities and column densities for CO clouds in the Milky Way. The normal CO density explains why star clusters forming in dwarf irregulars have similar densities to star clusters in giant spiral galaxies. The low cloud masses suggest that these clusters will also be low mass, unless some galaxy-scale compression occurs, such as an impact from a cosmic cloud or other galaxy. If the massive metal-poor globular clusters in the halo of the Milky Way formed in dwarf galaxies, as is commonly believed, then they were probably triggered by such an impact.

  10. Basecalling with LifeTrace.

    PubMed

    Walther, D; Bartha, G; Morris, M

    2001-05-01

    A pivotal step in electrophoresis sequencing is the conversion of the raw, continuous chromatogram data into the actual sequence of discrete nucleotides, a process referred to as basecalling. We describe a novel algorithm for basecalling implemented in the program LifeTrace. Like Phred, currently the most widely used basecalling software program, LifeTrace takes processed trace data as input. It was designed to be tolerant to variable peak spacing by means of an improved peak-detection algorithm that emphasizes local chromatogram information over global properties. LifeTrace is shown to generate high-quality basecalls and reliable quality scores. It proved particularly effective when applied to MegaBACE capillary sequencing machines. In a benchmark test of 8372 dye-primer MegaBACE chromatograms, LifeTrace generated 17% fewer substitution errors, 16% fewer insertion/deletion errors, and 2.4% more aligned bases to the finished sequence than did Phred. For two sets totaling 6624 dye-terminator chromatograms, the performance improvement was 15% fewer substitution errors, 10% fewer insertion/deletion errors, and 2.1% more aligned bases. The processing time required by LifeTrace is comparable to that of Phred. The predicted quality scores were in line with observed quality scores, permitting direct use for quality clipping and in silico single nucleotide polymorphism (SNP) detection. Furthermore, we introduce a new type of quality score associated with every basecall: the gap-quality. It estimates the probability of a deletion error between the current and the following basecall. This additional quality score improves detection of single basepair deletions when used for locating potential basecalling errors during the alignment. We also describe a new protocol for benchmarking that we believe better discerns basecaller performance differences than methods previously published.

  11. Ionospheric plasma cloud dynamics

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measurements of the thermospheric neutral wind and ionospheric drift made at Eglin AFB, Florida and Kwajalein Atoll are discussed. The neutral wind measurements at Eglin had little variation over a period of four years for moderate magnetic activity (Kp 4); the ionospheric drifts are small. Evidence is presented that indicates that increased magnetic activity has a significant effect on the neutral wind magnitude and direction at this midlatitude station. The neutral wind at dusk near the equator is generally small although in one case out of seven it was significantly larger. It is described how observations of large barium releases can be used to infer the degree of electrodynamic coupling of ion clouds to the background ionosphere. Evidence is presented that indicates that large barium releases are coupled to the conjugate ionosphere at midlatitudes.

  12. Clouds Near Mie Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-572, 12 December 2003

    Mie Crater, a large basin formed by asteroid or comet impact in Utopia Planitia, lies at the center of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red wide angle image. The crater is approximately 104 km (65 mi) across. To the east and southeast (toward the lower right) of Mie, in this 5 December 2003 view, are clouds of dust and water ice kicked up by local dust storm activity. It is mid-winter in the northern hemisphere of Mars, a time when passing storms are common on the northern plains of the red planet. Sunlight illuminates this image from the lower left; Mie Crater is located at 48.5oN, 220.3oW. Viking 2 landed west/southwest of Mie Crater, off the left edge of this image, in September 1976.

  13. W3 molecular cloud

    SciTech Connect

    Thronson, H.A.,JR.; Lada, C.J.; Hewagama, T.

    1985-10-01

    Extensive J = 1 to 0 (C-12)(O-16) and (C-13)(O-16) observations of the W3 molecular cloud and the surrounding region are presented and discussed. The velocity structure in the region is strongly suggestive of a model of large-scale, externally induced star formation. It is shown that star formation occurred in W3 and the nearby star-forming region W3(OH) after the gas within which they lie was swept up by the expanding W4 ionization front. Two condensations dominate the mass structure of the core of W3, one associated with IRS 4 and the other with IRS 5 and 1. A velocity difference between the two condensations is interpreted as indicating the two sources actually are discrete knots. 31 references.

  14. Statistical analysis of an LES shallow cumulus cloud ensemble using a cloud tracking algorithm

    NASA Astrophysics Data System (ADS)

    Dawe, J. T.; Austin, P. H.

    2012-01-01

    A technique for the tracking of individual clouds in a Large Eddy Simulation (LES) is presented. We use this technique on an LES of a shallow cumulus cloud field based upon the Barbados Oceanographic and Meteorological Experiment (BOMEX) to calculate statistics of cloud height, lifetime, and other physical properties for individual clouds in the model. We also examine the question of nature versus nurture in shallow cumulus clouds: do properties at cloud base determine the upper-level properties of the clouds (nature), or are cloud properties determined by the environmental conditions they encounter (nurture). We find that clouds which ascend through an environment that has been pre-moistened by previous cloud activity are no more likely to reach the inversion than clouds that ascend through a drier environment. Cloud base thermodynamic properties are uncorrelated with upper-level cloud properties, while mean fractional entrainment and detrainment rates display moderate correlations with cloud properties up to the inversion. Conversely, cloud base area correlates well with upper-level cloud area and maximum cloud height. We conclude that cloud thermodynamic properties are primarily influenced by entrainment and detrainment processes, cloud area and height are primarily influenced by cloud base area, and thus nature and nurture both play roles in the dynamics of BOMEX shallow cumulus clouds.

  15. Statistical analysis of a LES shallow cumulus cloud ensemble using a cloud tracking algorithm

    NASA Astrophysics Data System (ADS)

    Dawe, J. T.; Austin, P. H.

    2011-08-01

    A technique for the tracking of individual clouds in a Large Eddy Simulation (LES) is presented. We use this technique on a LES of a shallow cumulus cloud field based upon the Barbados Oceanographic and Meteorological Experiment (BOMEX) to calculate statistics of cloud height, lifetime, and other physical properties for individual clouds in the model. We also examine the question of nature versus nurture in shallow cumulus clouds: do properties at cloud base determine the upper-level properties of the clouds (nature), or are cloud properties determined by the environmental conditions they encounter (nurture). We find that clouds which ascend through an environment that has been pre-moistened by previous cloud activity are no more likely to reach the inversion than clouds that ascend through a drier environment. Cloud base thermodynamic properties are uncorrelated with upper-level cloud properties, while mean fractional entrainment and detrainment rate displays moderate correlations with cloud properties up to the inversion. Conversely, cloud base area correlates well with upper-level cloud area and maximum cloud height. We conclude that cloud thermodynamic properties are primarily influenced by entrainment and detrainment processes, cloud area and height are primarily influenced by cloud base area, and thus nature and nurture both play roles in the dynamics of BOMEX shallow cumulus clouds.

  16. Relation of Cloud Occurrence Frequency, Overlap, and Effective Thickness Derived from CALIPSO and CloudSat Merged Cloud Vertical Profiles

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2009-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.

  17. Arctic Aerosol-­Cloud Interactions during ASCOS

    NASA Astrophysics Data System (ADS)

    Stevens, R.; Hill, A. A.; Shipway, B. J.; Field, P.; Carslaw, K. S.

    2015-12-01

    A decrease in Arctic sea ice extent and thickness has been observed within recent decades. Further decreases are expected to increase the fluxes aerosol and precursor gases from the open ocean surface within the Arctic. The resulting increase in cloud condensation nuclei (CCN) concentrations would be expected to result in increased cloud albedo (Struthers et al, 2011), leading to potentially large changes in radiative forcings.However, Browse et al. (2014) have shown that these increases in condensable material could also result in the growth of existing particles to sizes where they are more efficiently removed by wet deposition in drizzling stratocumulus clouds, ultimately decreasing CCN concentrations in the high Arctic. The study of Browse et al (2014) was limited in that it did not simulate alterations of dynamics or cloud properties due to either changes in heat and moisture fluxes following sea­-ice loss or changing aerosol concentrations.Taken together, the results of Struthers et al (2011) and Browse et al (2014) show that significant uncertainties remain in trying to quantify aerosol­-cloud processes in the poorly understood Arctic system. It is likely that the CCN response to sea-­ice loss is controlled by many interrelated processes and unlikely that the current representation of these processes in global climate models include is sufficient to realistically simulate long­-term changes.Using the Met Office Unified Model (UM) including Cloud AeroSol Interactions Microphysics (CASIM), we perform a case study of summertime high Arctic (>80N) clouds in order to better understand the processes currently governing Arctic clouds, and how they may change in the future. We compare our results with observations obtained during the 2008 ASCOS campaign. We then perform sensitivity studies to assess the changes in cloud properties to reductions in sea­-ice, through either changes in fluxes of surface heat and moisture or changes in fluxes of aerosol and

  18. Chemical composition of Venus clouds

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.

    1985-01-01

    From estimates of drying effect in the cloud layer, data of the Venera 14 X-ray fluorescent spectroscopy, and evaluation of photochemical production of sulfuric acid, it follows that sulfuric acid and/or products of its further conversion should constitute not only the Mode 2 particles but most of the Mode 3 particles as well. The eddy mixing coefficient equal 20,000 sq cm per sec in the cloud layer. The presence of ferric chloride in the cloud layer is indicated by the Venus u.v. absorption spectrum in the range of 3200-5000 A, by the Venera 12 X-ray fluorescent spectrum, by the coincidence of the calculated FeCl3 condensate density profile and that of the Mode 1 in the middle and lower cloud layer, as well as by the upward flux of FeCl3 from the middle cloud layer which provides the necessary concentration of FeCl3 in H2SO4 solution. FeCl3 as the second absorber explains the localization of absorption in the upper cloud layer due to the FeCl3 conversion to ferric sulfate near the boundary between the upper and middle cloud layers. Other possible absorbers such as sulfur, ammonium pyrosulfite, nitrosylsulfuric acid, etc. are discussed.

  19. Analytical optical scattering in clouds

    NASA Technical Reports Server (NTRS)

    Phanord, Dieudonne D.

    1989-01-01

    An analytical optical model for scattering of light due to lightning by clouds of different geometry is being developed. The self-consistent approach and the equivalent medium concept of Twersky was used to treat the case corresponding to outside illumination. Thus, the resulting multiple scattering problem is transformed with the knowledge of the bulk parameters, into scattering by a single obstacle in isolation. Based on the size parameter of a typical water droplet as compared to the incident wave length, the problem for the single scatterer equivalent to the distribution of cloud particles can be solved either by Mie or Rayleigh scattering theory. The super computing code of Wiscombe can be used immediately to produce results that can be compared to the Monte Carlo computer simulation for outside incidence. A fairly reasonable inverse approach using the solution of the outside illumination case was proposed to model analytically the situation for point sources located inside the thick optical cloud. Its mathematical details are still being investigated. When finished, it will provide scientists an enhanced capability to study more realistic clouds. For testing purposes, the direct approach to the inside illumination of clouds by lightning is under consideration. Presently, an analytical solution for the cubic cloud will soon be obtained. For cylindrical or spherical clouds, preliminary results are needed for scattering by bounded obstacles above or below a penetrable surface interface.

  20. Chemistry in dynamically evolving clouds

    NASA Technical Reports Server (NTRS)

    Tarafdar, S. P.; Prasad, S. S.; Huntress, W. T., Jr.; Villere, K. R.; Black, D. C.

    1985-01-01

    A unified model of chemical and dynamical evolution of isolated, initially diffuse and quiescent interstellar clouds is presented. The model uses a semiempirically derived dependence of the observed cloud temperatures on the visual extinction and density. Even low-mass, low-density, diffuse clouds can collapse in this model, because the inward pressure gradient force assists gravitational contraction. In contrast, previous isothermal collapse models required the low-mass diffuse clouds to be unrealistically cold before gravitational contraction could start. Theoretically predicted dependences of the column densities of various atoms and molecules, such as C and CO, on visual extinction in diffuse clouds are in accord with observations. Similarly, the predicted dependences of the fractional abundances of various chemical species (e.g., CO, H2CO, HCN, HCO(+)) on the total hydrogen density in the core of the dense clouds also agree with observations reported to date in the literature. Compared with previous models of interstellar chemistry, the present model has the potential to explain the wide spectrum of chemical and physical properties of both diffuse and dense clouds with a common formalism employing only a few simple initial conditions.