Sample records for poor oral bioavailability

  1. Research progress on berberine with a special focus on its oral bioavailability.

    PubMed

    Liu, Chang-Shun; Zheng, Yu-Rong; Zhang, Ying-Feng; Long, Xiao-Ying

    2016-03-01

    The natural product berberine (BBR) has become a potential drug in the treatment of diabetes, hyperlipidemia, and cancer. However, the oral delivery of BBR is challenged by its poor bioavailability. It is necessary to improve the oral bioavailability of BBR before it can be used in many clinical applications. Understanding the pharmacokinetic characteristics of BBR will enable the development of suitable formulas that have improved oral bioavailability. The key considerations for BBR are how to enhance the drug absorption and to avoid the intestinal first-pass effect. This review summarizes the pharmacological activities of BBR and analyzes the factors that lead to its poor oral bioavailability. In particular, the therapeutic potential of BBR in new indications from the aspect of oral bioavailability is discussed. In conclusion, BBR is a promising drug candidate for metabolic disorders and cancer but faces considerable challenges due to its poor oral bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. pH-dependent solubility and permeability profiles: A useful tool for prediction of oral bioavailability.

    PubMed

    Sieger, P; Cui, Y; Scheuerer, S

    2017-07-15

    pH-dependent solubility - permeability profiles offer a simple way to predict bioavailability after oral application, if bioavailability is only solubility and permeability driven. Combining both pH-dependent solubility and pH-dependent permeability in one diagram provides a pH-window (=ΔpH sol-perm ) from which the conditions for optimal oral bioavailability can be taken. The size of this window is directly proportional to the observed oral bioavailability. A set of 21 compounds, with known absolute human oral bioavailability, was used to establish this correlation. Compounds with ΔpH sol-perm <2 exhibit poor oral bioavailability (<25%). An increase of ΔpH sol-perm by one pH-unit increases oral bioavailability typically by approximately 25%. For compounds where ΔpH sol-perm ≥3 but still showing poor bioavailability, most probably other pharmacokinetic aspects (e.g. high clearance), are limiting exposure. Interestingly, the location of this pH-window seems to have a negligible influence on the observed oral bioavailability. In scenarios, where the bioavailability is impaired by certain factors, like for example proton pump inhibitor co-medication or food intake, the exact position of this pH-window might be beneficial for understanding the root cause. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Systems Biological Approach of Molecular Descriptors Connectivity: Optimal Descriptors for Oral Bioavailability Prediction

    PubMed Central

    Ahmed, Shiek S. S. J.; Ramakrishnan, V.

    2012-01-01

    Background Poor oral bioavailability is an important parameter accounting for the failure of the drug candidates. Approximately, 50% of developing drugs fail because of unfavorable oral bioavailability. In silico prediction of oral bioavailability (%F) based on physiochemical properties are highly needed. Although many computational models have been developed to predict oral bioavailability, their accuracy remains low with a significant number of false positives. In this study, we present an oral bioavailability model based on systems biological approach, using a machine learning algorithm coupled with an optimal discriminative set of physiochemical properties. Results The models were developed based on computationally derived 247 physicochemical descriptors from 2279 molecules, among which 969, 605 and 705 molecules were corresponds to oral bioavailability, intestinal absorption (HIA) and caco-2 permeability data set, respectively. The partial least squares discriminate analysis showed 49 descriptors of HIA and 50 descriptors of caco-2 are the major contributing descriptors in classifying into groups. Of these descriptors, 47 descriptors were commonly associated to HIA and caco-2, which suggests to play a vital role in classifying oral bioavailability. To determine the best machine learning algorithm, 21 classifiers were compared using a bioavailability data set of 969 molecules with 47 descriptors. Each molecule in the data set was represented by a set of 47 physiochemical properties with the functional relevance labeled as (+bioavailability/−bioavailability) to indicate good-bioavailability/poor-bioavailability molecules. The best-performing algorithm was the logistic algorithm. The correlation based feature selection (CFS) algorithm was implemented, which confirms that these 47 descriptors are the fundamental descriptors for oral bioavailability prediction. Conclusion The logistic algorithm with 47 selected descriptors correctly predicted the oral bioavailability, with a predictive accuracy of more than 71%. Overall, the method captures the fundamental molecular descriptors, that can be used as an entity to facilitate prediction of oral bioavailability. PMID:22815781

  4. Systems biological approach of molecular descriptors connectivity: optimal descriptors for oral bioavailability prediction.

    PubMed

    Ahmed, Shiek S S J; Ramakrishnan, V

    2012-01-01

    Poor oral bioavailability is an important parameter accounting for the failure of the drug candidates. Approximately, 50% of developing drugs fail because of unfavorable oral bioavailability. In silico prediction of oral bioavailability (%F) based on physiochemical properties are highly needed. Although many computational models have been developed to predict oral bioavailability, their accuracy remains low with a significant number of false positives. In this study, we present an oral bioavailability model based on systems biological approach, using a machine learning algorithm coupled with an optimal discriminative set of physiochemical properties. The models were developed based on computationally derived 247 physicochemical descriptors from 2279 molecules, among which 969, 605 and 705 molecules were corresponds to oral bioavailability, intestinal absorption (HIA) and caco-2 permeability data set, respectively. The partial least squares discriminate analysis showed 49 descriptors of HIA and 50 descriptors of caco-2 are the major contributing descriptors in classifying into groups. Of these descriptors, 47 descriptors were commonly associated to HIA and caco-2, which suggests to play a vital role in classifying oral bioavailability. To determine the best machine learning algorithm, 21 classifiers were compared using a bioavailability data set of 969 molecules with 47 descriptors. Each molecule in the data set was represented by a set of 47 physiochemical properties with the functional relevance labeled as (+bioavailability/-bioavailability) to indicate good-bioavailability/poor-bioavailability molecules. The best-performing algorithm was the logistic algorithm. The correlation based feature selection (CFS) algorithm was implemented, which confirms that these 47 descriptors are the fundamental descriptors for oral bioavailability prediction. The logistic algorithm with 47 selected descriptors correctly predicted the oral bioavailability, with a predictive accuracy of more than 71%. Overall, the method captures the fundamental molecular descriptors, that can be used as an entity to facilitate prediction of oral bioavailability.

  5. Oral bioavailability enhancement and hepatoprotective effects of thymoquinone by self-nanoemulsifying drug delivery system.

    PubMed

    Kalam, Mohd Abul; Raish, Mohammad; Ahmed, Ajaz; Alkharfy, Khalid M; Mohsin, Kazi; Alshamsan, Aws; Al-Jenoobi, Fahad I; Al-Mohizea, Abdullah M; Shakeel, Faiyaz

    2017-07-01

    Thymoquinone (TQ) is a poorly water soluble bioactive compound which shows poor oral bioavailability upon oral administration. Due to poor aqueous solubility and bioavailability of TQ, various self-nanoemulsifying drug delivery systems (SNEDDS) of TQ were developed and evaluated for enhancement of its hepatoprotective effects and oral bioavailability. Hepatoprotective and pharmacokinetic studies of TQ suspension and TQ-SNEDDS were carried out in rat models. Different SNEDDS formulations of TQ were developed and thermodynamically stable TQ-SNEDDS were characterized for physicochemical parameters and evaluated for drug release studies via dialysis membrane. Optimized SNEDDS formulation of TQ was selected for further evaluation of in vivo evaluation. In vivo hepatoprotective investigations showed significant hepatoprotective effects for optimized TQ-SNEDDS in comparison with TQ suspension. The oral administration of optimized SNEDDS showed significant improvement in in vivo absorption of TQ in comparison with TQ suspension. The relatively bioavailability of TQ was enhanced 3.87-fold by optimized SNEDDS in comparison with TQ suspension. The results of this research work indicated the potential of SNEDDS in enhancing relative bioavailability and therapeutic effects of natural bioactive compounds such as TQ. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bioavailability enhancement of atovaquone using hot melt extrusion technology.

    PubMed

    Kate, Laxman; Gokarna, Vinod; Borhade, Vivek; Prabhu, Priyanka; Deshpande, Vinita; Pathak, Sulabha; Sharma, Shobhona; Patravale, Vandana

    2016-04-30

    Emerging parasite resistance and poor oral bioavailability of anti-malarials are the two cardinal issues which hinder the clinical success of malaria chemotherapy. Atovaquone-Proguanil is a WHO approved fixed dose combination used to tackle the problem of emerging resistance. However, Atovaquone is a highly lipophilic drug having poor aqueous solubility (less than 0.2 μg/ml) thus reducing its oral bioavailability. The aim of the present investigation was to explore hot melt extrusion (HME) as a solvent-free technique to enhance solubility and oral bioavailability of Atovaquone and to develop an oral dosage form for Atovaquone-Proguanil combination. Solid dispersion of Atovaquone was successfully developed using HME. The solid dispersion was characterized for DSC, FTIR, XRD, SEM, and flow properties. It was filled in size 2 hard gelatin capsules. The formulation showed better release as compared to Malarone® tablets, and 3.2-fold and 4.6-fold higher bioavailability as compared to Malarone® tablets and Atovaquone respectively. The enhanced bioavailability also resulted in 100% anti-malarial activity in murine infection model at 1/8(th) therapeutic dose. Thus the developed methodology shows promising potential to solve the problems associated with Atovaquone therapy, namely its high cost and poor oral bioavailability, resulting in increased therapeutic efficacy of Atovaquone. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs.

    PubMed

    Kotta, Sabna; Khan, Abdul Wadood; Pramod, Kannissery; Ansari, Shahid H; Sharma, Rakesh Kumar; Ali, Javed

    2012-05-01

    More than 40% of new chemical entities discovered are poorly water soluble and suffer from low oral bioavailability. In recent years, nanoemulsions are receiving increasing attention as a tool of delivering these low-bioavailable moieties in an efficient manner. This review gives a brief description about how oral nanoemulsions act as a tool to improve the bioavailability of poorly water-soluble drugs. The recurrent confusion found in the literature regarding the theory behind the formation of nanoemulsions is clarified, along with the difference between nanoemulsion and lyotropic 'microemulsion' phase. This paper gives a clear-cut idea about all possible methods for the preparation of nanoemulsions and the advantages and disadvantages of each method are described. A description of the stability problems of nanoemulsions and their prevention methods is also provided, in addition to a comprehensive update on the patents and research works done in the arena of oral nanoemulsions. Low-energy emulsification techniques can also produce stable nanoemulsions. It is guaranteed that oral nanoemulsions can act as a potential tool for the delivery of poorly water-soluble therapeutic moieties in a very efficient manner.

  8. Candesartan cilexetil loaded nanodelivery systems for improved oral bioavailability.

    PubMed

    Dudhipala, Narendar; Veerabrahma, Kishan

    2017-02-01

    Candesartan cilexetil (CC), an antihypertensive drug, has low oral bioavailability due to poor solubility and hepatic first-pass metabolism. These are major limitations in oral delivery of CC. Several approaches are known to reduce the problems of solubility and improve the bioavailability of CC. Among various approaches, nanotechnology-based delivery of CC has potential to overcome the challenges associated with the oral administration. This review focuses on various nano-based delivery systems available and tried for improving the aqueous solubility, dissolution and consequently bioavailability of CC upon oral administration. Of all, solid lipid nanoparticles appear to be promising delivery system, based on current reported results, for delivery of CC, as this system improved the oral bioavailability and possessed prolonged pharmacodynamic effect.

  9. Enhanced bioavailability of opiates after intratracheal administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Findlay, J.W.A.; Jones, E.C.; McNulty, M.J.

    1986-03-01

    Several opiate analgesics have low oral bioavailabilities in the dog because of presystemic metabolism. Intratracheal administration may circumvent this first-pass effect. Three anesthetized beagles received 5-mg/kg doses of codeine phosphate intratracheally (i.t.), orally (p.o.) and intravenously (i.v.) in a crossover study. The following drugs were also studied in similar experiments: ethylmorphine hydrochloride (5 mg/kg), pholcodine bitartrate (10 mg/kg, hydrocodone bitartrate (4 mg/kg) and morphine sulfate (2.5 mg/kg). Plasma drug concentrations over the 24- to 48-hr periods after drug administrations were determined by radioimmunoassays. I.t. bioavailabilities (codeine (84%), ethylmorphine (100%), and morphine (87%)) of drugs with poor oral availabilities were allmore » markedly higher than the corresponding oral values (14, 26, and 23%, respectively). I.t. bioavailabilities of pholcodine (93%) and hydrocodone (92%), which have good oral availabilities (74 and 79%, respectively), were also enhanced. In all cases, peak plasma concentrations occurred more rapidly after i.t. (0.08-0.17 hr) than after oral (0.5-2 hr) dosing and i.t. disposition often resembled i.v. kinetics. I.t. administration may be a valuable alternative dosing route, providing rapid onset of pharmacological activity for potent drugs with poor oral bioavailability.« less

  10. A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin.

    PubMed

    Shukla, Mahendra; Jaiswal, Swati; Sharma, Abhisheak; Srivastava, Pradeep Kumar; Arya, Abhishek; Dwivedi, Anil Kumar; Lal, Jawahar

    2017-05-01

    Curcumin, the golden spice from Indian saffron, has shown chemoprotective action against many types of cancer including breast cancer. However, poor oral bioavailability is the major hurdle in its clinical application. In the recent years, self-nanoemulsifying drug delivery system (SNEDDS) has emerged as a promising tool to improve the oral absorption and enhancing the bioavailability of poorly water-soluble drugs. In this context, complexation with lipid carriers like phospholipid has also shown the tremendous potential to improve the solubility and therapeutic efficacy of certain drugs with poor oral bioavailability. In the present investigation, a systematic combination of both the approaches is utilized to prepare the phospholipid complex of curcumin and facilitate its incorporation into SNEDDS. The combined use of both the approaches has been explored for the first time to enhance the oral bioavailability and in turn increase the anticancer activity of curcumin. As evident from the pharmacokinetic studies and in situ single pass intestinal perfusion studies in Sprague-Dawley rats, the optimized SNEDDS of curcumin-phospholipid complex has shown enhanced oral absorption and bioavailability of curcumin. The cytotoxicity study in metastatic breast carcinoma cell line has shown the enhancement of cytotoxic action by 38.7%. The primary tumor growth reduction by 58.9% as compared with the control group in 4T1 tumor-bearing BALB/c mice further supported the theory of enhancement of anticancer activity of curcumin in SNEDDS. The developed formulation can be a potential and safe carrier for the oral delivery of curcumin.

  11. Carboxylated mesoporous carbon microparticles as new approach to improve the oral bioavailability of poorly water-soluble carvedilol.

    PubMed

    Zhang, Yanzhuo; Zhi, Zhizhuang; Li, Xue; Gao, Jian; Song, Yaling

    2013-09-15

    The main objective of this study was to develop carboxylated ordered mesoporous carbon microparticles (c-MCMs) loaded with a poorly water-soluble drug, intended to be orally administered, able to enhance the drug loading capacity and improve the oral bioavailability. A model drug, carvedilol (CAR), was loaded onto c-MCMs via a procedure involving a combination of adsorption equilibrium and solvent evaporation. The physicochemical properties of the drug-loaded composites were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and HPLC. It was found that c-MCM has a high drug loading level up to 41.6%, and higher than that of the mesoporous silica template. Incorporation of CAR in both drug carriers enhanced the solubility and dissolution rate of the drug, compared to the pure crystalline drug. After loading CAR into c-MCMs, its oral bioavailability was compared with the marketed product in dogs. The results showed that the bioavailability of CAR was improved 179.3% compared with that of the commercial product when c-MCM was used as the drug carrier. We believe that the present study will help in the design of oral drug delivery systems for enhanced oral bioavailability of poorly water-soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Lipopolysaccharide based oral nanocarriers for the improvement of bioavailability and anticancer efficacy of curcumin.

    PubMed

    Chaurasia, Sundeep; Patel, Ravi R; Chaubey, Pramila; Kumar, Nagendra; Khan, Gayasuddin; Mishra, Brahmeshwar

    2015-10-05

    Soluthin MD(®), a unique phosphatidylcholine-maltodextrin based hydrophilic lipopolysaccharide, which exhibits superior biocompatibility and bioavailability enhancer properties for poorly water soluble drug(s). Curcumin (CUR) is a potential natural anticancer drug with low bioavailability due to poor aqueous solubility. The study aims at formulation and optimization of CUR loaded lipopolysaccharide nanocarriers (C-LPNCs) to enhance oral bioavailability and anticancer efficacy in colon-26 tumor-bearing mice in vitro and in vivo. The Optimized C-LPNCs demonstrated favorable mean particle size (108 ± 3.4 nm) and percent entrapment efficiency (65.29 ± 1.0%). Pharmacokinetic parameters revealed ∼130-fold increase in oral bioavailability and cytotoxicity studies demonstrated ∼23-fold reduction in 50% cell growth inhibition when treated with optimized C-LPNCs as compared to pure CUR. In vivo anticancer study performed with optimized C-LPNCs showed significant increase in efficacy compared with pure CUR. Thus, lipopolysaccharide nanocarriers show potential delivery strategy to improve oral bioavailability and anticancer efficacy of CUR in the treatment of colorectal cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fabrication and Optimization of Self-Microemulsions to Improve the Oral Bioavailability of Total Flavones of Hippophaë rhamnoides L.

    PubMed

    Guo, Ruixue; Guo, Xinbo; Hu, Xiaodan; Abbasi, Arshad Mehmood; Zhou, Lin; Li, Tong; Fu, Xiong; Liu, Rui Hai

    2017-12-01

    The purpose of this work was to improve the oral bioavailability of a poorly soluble functional food ingredient, the total flavones of Hippophaë rhamnoides L. (TFH). A self-microemulsion drug delivery system (SMEDDS) was developed to overcome the problems of poor absorption of TFH in vivo. The optimal SMEDDS significantly enhanced the solubility of TFH up to 530 times compared to that in water. The mean droplet size was 61.76 nm with uniform distribution. And the loaded system was stable at 25 °C for 3 mo with transparent appearance. The in vitro release of TFH from SMEDDS was faster and more complete than that from suspension. After oral administration of TFH-SMEDDS in rats, the relative bioavailability of TFH was dramatically improved for 3.09 times compared with the unencapsulated form. The investigation indicated the potential application of SMEDDS as a vehicle to improve the oral bioavailability of TFH. The lipid-based nanotechnology, namely self-microemulsion drug delivery system (SMEDDS) was used to improve the bioavailability and oral delivery of total flavones of Hippophaë rhamnoides L. (TFH). The relevant bioavailability of TFH could be remarkably 3-fold improved by the optimized SMEDDS. The SMEDDS produced via a simple one-step process for poorly soluble TFH to achieve a significant improvement in the bioavailability, may endorse the promising utilization of TFH in functional foods as well as pharmaceutical fields with an enhanced absorption in vivo. © 2017 Institute of Food Technologists®.

  14. Significance of excipients to enhance the bioavailability of poorly water-soluble drugs in oral solid dosage forms: A Review

    NASA Astrophysics Data System (ADS)

    Vadlamudi, Manoj Kumar; Dhanaraj, Sangeetha

    2017-11-01

    Nowadays most of the drug substances are coming into the innovation pipeline with poor water solubility. Here, the influence of excipients will play a significant role to improve the dissolution of poorly aqueous soluble compounds. The drug substance needs to be dissolved in gastric fluids to get the better absorption and bioavailability of an orally administered drug. Dissolution is the rate-controlling stage for drugs which controls the rate and degree of absorption. Usually, poorly soluble oral administrated drugs show a slower dissolution rate, inconsistent and incomplete absorption which can lead to lower bioavailability. The low aqueous solubility of BCS class II and IV drugs is a major challenge in the drug development and delivery process. Several technologies have been used in an attempt to progress the bioavailability of poorly water-soluble drug compounds which include solid dispersions, lipid-based formulations, micronization, solvent evaporation, co-precipitation, ordered mixing, liquid-solid compacts, solvent deposition inclusion complexation, and steam aided granulation. In fact, most of the technologies require excipient as a carrier which plays a significant role in improving the bioavailability using Hypromellose acetate succinate, Cyclodextrin, Povidone, Copovidone, Hydroxypropyl cellulose, Hydroxypropyl methylcellulose, Crospovidone, Starch, Dimethylacetamide, Polyethylene glycol, Sodium lauryl sulfate, Polysorbate, Poloxamer. Mesoporous silica and so on. This review deliberates about the excipients significance on bioavailability enhancement of drug products in a single platform along with pragmatically proved applications so that user can able to select the right excipients as per the molecule.

  15. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles.

    PubMed

    Kadari, Amrita; Gudem, Sagarika; Kulhari, Hitesh; Bhandi, Murali Mohan; Borkar, Roshan M; Kolapalli, Venkata Ramana Murthy; Sistla, Ramakrishna

    2017-11-01

    Fisetin (FST), a potent anticancer phytoconstituent, exhibits poor aqueous solubility and hence poor bioavailability. The aim of the present study is to improve the oral bioavailability of FST by encapsulating into PLGA NPs (poly-lactide-co-glycolic acid nanoparticles) as a complex of HPβCD (hydroxyl propyl beta cyclodextrin) and to assess its anti-cancer activity against breast cancer cells. FST-HPβCD inclusion complex (FHIC) was prepared and the supramolecular complex formation was characterized by FTIR, DSC, PXRD and 1 H NMR. FHIC encapsulated PLGA nanoparticles (FHIC-PNP) were prepared and were studied for in vitro anticancer activity, cellular uptake, apoptosis and reactive oxygen species generation in MCF-7 human breast cancer cells. Comparative bioavailability of FST was determined after oral administration in C57BL6 mice as pure FST and FHIC-PNP. The results revealed that FHIC-PNP not only enhanced the anti-cancer activity and apoptosis of FST against MCF-7 cells but also improved its oral bioavailability, as demonstrated by increased peak plasma concentration and total drug absorbed.

  16. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    PubMed Central

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    Purpose The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Methods Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. Results All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of <200 nm with the drug present in the amorphous state. It demonstrated the highest solubility (32.51±2.41 μg/mL), an excellent dissolution (~85% in 10 minutes), and an oral bioavailability ~2.5-fold better than that of the free drug. It showed similar oral bioavailability compared to the conventional solid dispersion. Conclusion Electrosprayed nanospherules, which provide improved solubility and bioavailability, are promising drug delivery tools for oral administration of poorly water-soluble fenofibrate. PMID:26834471

  17. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate.

    PubMed

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil(®) M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of <200 nm with the drug present in the amorphous state. It demonstrated the highest solubility (32.51±2.41 μg/mL), an excellent dissolution (~85% in 10 minutes), and an oral bioavailability ~2.5-fold better than that of the free drug. It showed similar oral bioavailability compared to the conventional solid dispersion. Electrosprayed nanospherules, which provide improved solubility and bioavailability, are promising drug delivery tools for oral administration of poorly water-soluble fenofibrate.

  18. An Intestinal "Transformers"-like Nanocarrier System for Enhancing the Oral Bioavailability of Poorly Water-Soluble Drugs.

    PubMed

    Chuang, Er-Yuan; Lin, Kun-Ju; Huang, Tring-Yo; Chen, Hsin-Lung; Miao, Yang-Bao; Lin, Po-Yen; Chen, Chiung-Tong; Juang, Jyuhn-Huarng; Sung, Hsing-Wen

    2018-06-06

    Increasing the intestinal dissolution of orally administered poorly water-soluble drugs that have poor oral bioavailability to a therapeutically effective level has long been an elusive goal. In this work, an approach that can greatly enhance the oral bioavailability of a poorly water-soluble drug such as curcumin (CUR) is developed, using a "Transformers"-like nanocarrier system (TLNS) that can self-emulsify the drug molecules in the intestinal lumen to form nanoemulsions. Owing to its known anti-inflammation activity, the use of CUR in treating pancreatitis is evaluated herein. Structural changes of the TLNS in the intestinal environment to form the CUR-laden nanoemulsions are confirmed in vitro. The therapeutic efficacy of this TLNS is evaluated in rats with experimentally induced acute pancreatitis (AP). Notably, the CUR-laden nanoemulsions that are obtained using the proposed TLNS can passively target intestinal M cells, in which they are transcytosed and then transported into the pancreatic tissues via the intestinal lymphatic system. The pancreases in rats that are treated with the TLNS yield approximately 12 times stronger CUR signals than their counterparts receiving free CUR, potentially improving the recovery of AP. These findings demonstrate that the proposed TLNS can markedly increase the intestinal drug dissolution, making oral delivery a favorable noninvasive means of administering poorly water-soluble drugs.

  19. In vitro and in vivo evaluation of capsaicin-loaded microemulsion for enhanced oral bioavailability.

    PubMed

    Zhu, Yuan; Zhang, Jiajia; Zheng, Qianfeng; Wang, Miaomiao; Deng, Wenwen; Li, Qiang; Firempong, Caleb Kesse; Wang, Shengli; Tong, Shanshan; Xu, Ximing; Yu, Jiangnan

    2015-10-01

    Capsaicin, as a food additive, has attracted worldwide concern owing to its pungency and multiple pharmacological effects. However, poor water solubility and low bioavailability have limited its application. This study aims to develop a capsaicin-loaded microemulsion to enhance the oral bioavailability of the anti-neuropathic-pain component, capsaicin, which is poorly water soluble. In this study, the microemulsion consisting of Cremophor EL, ethanol, medium-chain triglycerides (oil phase) and water (external phase) was prepared and characterized (particle size, morphology, stability and encapsulation efficiency). The gastric mucosa irritation test of formulated capsaicin was performed in rats to evaluate its oral feasibility, followed by the pharmacokinetic study in vivo. Under these conditions, the encapsulated capsaicin revealed a faster capsaicin release in vitro coupled with a greater absorption in vivo when compared to the free capsaicin. The oral bioavailability of the formulated capsaicin-loaded microemulsions was 2.64-fold faster than that of free capsaicin. No significant irritation was observed on the mucosa from the pathological section of capsaicin-loaded microemulsion treated stomach. These results indicate that the developed microemulsion represents a safe and orally effective carrier for poorly soluble substances. The formulation could be used for clinical trials and expand the application of capsaicin. © 2014 Society of Chemical Industry.

  20. Optimizing Oral Bioavailability in Drug Discovery: An Overview of Design and Testing Strategies and Formulation Options.

    PubMed

    Aungst, Bruce J

    2017-04-01

    For discovery teams working toward new, orally administered therapeutic agents, one requirement is to attain adequate systemic exposure after oral dosing, which is best accomplished when oral bioavailability is optimized. This report summarizes the bioavailability challenges currently faced in drug discovery, and the design and testing methods and strategies currently utilized to address the challenges. Profiling of discovery compounds usually includes separate assessments of solubility, permeability, and susceptibility to first-pass metabolism, which are the 3 most likely contributors to incomplete oral bioavailability. An initial assessment of absorption potential may be made computationally, and high throughput in vitro assays are typically performed to prioritize compounds for in vivo studies. The initial pharmacokinetic study is a critical decision point in compound evaluation, and the importance of the effect the dosing vehicle or formulation can have on oral bioavailability, especially for poorly water soluble compounds, is emphasized. Dosing vehicles and bioavailability-enabling formulations that can be used for discovery and preclinical studies are described. Optimizing oral bioavailability within a chemical series or for a lead compound requires identification of the barrier limiting bioavailability, and methods used for this purpose are outlined. Finally, a few key guidelines are offered for consideration when facing the challenges of optimizing oral bioavailability in drug discovery. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Utilizing food effects to overcome challenges in delivery of lipophilic bioactives: structural design of medical and functional foods.

    PubMed

    McClements, David Julian

    2013-12-01

    The oral bioavailability of many lipophilic bioactives, such as pharmaceuticals and nutraceuticals, is relatively low due to their poor solubility, permeability and/or chemical stability within the human gastrointestinal tract (GIT). The oral bioavailability of lipophilic bioactives can be improved by designing food matrices that control their release, solubilization, transport and absorption within the GIT. This article discusses the challenges associated with delivering lipophilic bioactive components, the impact of food composition and structure on oral bioavailability and the design of functional and medical foods for improving the oral bioavailability of lipophilic bioactives. Food-based delivery systems can be used to improve the oral bioavailability of lipophilic bioactives. There are a number of potential advantages to delivering lipophilic bioactives using functional or medical foods: greater compliance than conventional delivery forms; increased bioavailability and efficacy; and reduced variability in biological effects. However, food matrices are structurally complex multicomponent materials and research is still needed to identify optimum structures and compositions for particular bioactives.

  2. Elevating bioavailability of curcumin via encapsulation with a novel formulation of artificial oil bodies.

    PubMed

    Chang, Ming-Tsung; Tsai, Tong-Rong; Lee, Chun-Yann; Wei, Yu-Sheng; Chen, Ying-Jie; Chen, Chun-Ren; Tzen, Jason T C

    2013-10-09

    Utilization of curcumin has been limited due to its poor oral bioavailability. Oral bioavailability of hydrophobic compounds might be elevated via encapsulation in artificial seed oil bodies. This study aimed to improve oral bioavailability of curcumin via this encapsulation. Unfortunately, curcumin was indissoluble in various seed oils. A mixed dissolvent formula was used to dissolve curcumin, and the admixture was successfully encapsulated in artificial oil bodies stabilized by recombinant sesame caleosin. The artificial oil bodies of relatively small sizes (150 nm) were stably solidified in the forms of powder and tablet. Oral bioavailability of curcumin with or without encapsulation in artificial oil bodies was assessed in Sprague-Dawley male rats. The results showed that encapsulation of curcumin significantly elevated its bioavailability and provided the highest maximum whole blood concentration (Cmax), 37 ± 28 ng/mL, in the experimental animals 45 ± 17 min (t(max)) after oral administration. Relative bioavailability calculated on the basis of the area under the plasma concentration-time curve (AUC) was increased by 47.7 times when curcumin was encapsulated in the artificial oil bodies. This novel formulation of artificial oil bodies seems to possess great potential to encapsulate hydrophobic drugs for oral administration.

  3. Preparation and evaluation of self-microemulsifying drug delivery system containing vinpocetine.

    PubMed

    Cui, Shu-Xia; Nie, Shu-Fang; Li, Li; Wang, Chang-Guang; Pan, Wei-San; Sun, Jian-Ping

    2009-05-01

    The main purpose of current investigation is to prepare a self-microemulsifying drug delivery system (SMEDDS) to enhance the oral bioavailability of vinpocetine, a poorly water-soluble drug. Suitable vehicles were screened by determining the solubility of vinpocetine in them. Certain surfactants were selected according to their emulsifying ability with different oils. Ternary phase diagrams were used to identify the efficient self-microemulsifying region and to screen the effect of surfactant/cosurfactant ratio (K(m)). The optimized formulation for in vitro dissolution and bioavailability assessment was oil (ethyl oleate, 15%), surfactant (Solutol HS 15, 50%), and cosurfactant (Transcutol P, 35%). The release rate of vinpocetine from SMEDDS was significantly higher than that of the commercial tablet. Pharmacokinetics and bioavailability of SMEDDS were evaluated. It was found that the oral bioavailability of vinpocetine of SMEDDS was 1.72-fold higher as compared with that of the commercial tablet. These results obtained demonstrated that vinpocetine absorption was enhanced significantly by employing SMEDDS. Therefore, SMEDDS might provide an efficient way of improving oral bioavailability of poorly water-soluble drugs.

  4. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system.

    PubMed

    Chen, Zhi-Qiang; Liu, Ying; Zhao, Ji-Hui; Wang, Lan; Feng, Nian-Ping

    2012-01-01

    Indirubin, isolated from the leaves of the Chinese herb Isatis tinctoria L, is a protein kinase inhibitor and promising antitumor agent. However, the poor water solubility of indirubin has limited its application. In this study, a supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) was developed to improve the oral bioavailability of indirubin. A prototype S-SMEDDS was designed using solubility studies and phase diagram construction. Precipitation inhibitors were selected from hydrophilic polymers according to their crystallization-inhibiting capacity through in vitro precipitation tests. In vitro release of indirubin from S-SMEDDS was examined to investigate its likely release behavior in vivo. The in vivo bioavailability of indirubin from S-SMEDDS and from SMEDDS was compared in rats. The prototype formulation of S-SMEDDS comprised Maisine™ 35-1:Cremophor(®) EL:Transcutol(®) P (15:40:45, w/w/w). Polyvinylpyrrolidone K17, a hydrophilic polymer, was used as a precipitation inhibitor based on its better crystallization-inhibiting capacity compared with polyethylene glycol 4000 and hydroxypropyl methylcellulose. In vitro release analysis showed more rapid drug release from S-SMEDDS than from SMEDDS. In vivo bioavailability analysis in rats indicated that improved oral absorption was achieved and that the relative bioavailability of S-SMEDDS was 129.5% compared with SMEDDS. The novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of indirubin in rats. The results suggest that S-SMEDDS is a superior means of oral delivery of indirubin.

  5. Enhanced effect and mechanism of water-in-oil microemulsion as an oral delivery system of hydroxysafflor yellow A

    PubMed Central

    Qi, Jianping; Zhuang, Jie; Wu, Wei; Lu, Yi; Song, Yunmei; Zhang, Zhetao; Jia, Jia; Ping, Qineng

    2011-01-01

    Background: A microemulsion is an effective formulation for improving the oral bioavailability of poorly soluble drugs. In this paper, a water-in-oil (w/o) microemulsion was investigated as a system for enhancing the oral bioavailability of Biopharmaceutic Classification System (BCS) III drugs. Methods: The microemulsion formulation was optimized using a pseudoternary phase diagram, comprising propylene glycol dicaprylocaprate (PG), Cremophor® RH40, and water (30/46/24 w/w). Results: The microemulsion increased the oral bioavailability of hydroxysafflor yellow A which was highly water-soluble but very poorly permeable. The relative bioavailability of hydroxysafflor yellow A microemulsion was about 1937% compared with a control solution in bile duct-nonligated rats. However, the microemulsion showed lower enhanced absorption ability in bile duct-ligated rats, and the relative bioavailability was only 181%. In vitro experiments were further employed to study the mechanism of the enhanced effect of the microemulsion. In vitro lipolysis showed that the microemulsion was digested very quickly by pancreatic lipase. About 60% of the microemulsion was digested within 1 hour. Furthermore, the particle size of the microemulsion after digestion was very small (53.3 nm) and the digested microemulsion had high physical stability. An everted gut sac model demonstrated that cumulative transport of the digested microemulsion was significantly higher than that of the diluted microemulsion. Conclusion: These results suggested that digestion of the microemulsion by pancreatic lipase plays an important role in enhancing oral bioavailability of water-soluble drugs. PMID:21720510

  6. Evaluation of an oral carrier system in rats: bioavailability and gastrointestinal absorption properties of curcumin encapsulated PBCA nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Min; Zhao, Lixia; Guo, Chenyu; Cao, Fengliang; Chen, Huanlei; Zhao, Liyan; Tan, Qi; Zhu, Xiuqing; Zhu, Fanping; Ding, Tingting; Zhai, Yingjie; Zhai, Guangxi

    2012-02-01

    A new oral delivery system, polybutylcyanoacrylate nanoparticles (PBCNs), was introduced to improve the oral bioavailability of curcumin (CUR), a poorly soluble drug. The formulation was optimized by orthogonal design and the optimal PBCNs loading CUR exhibited a spherical shape under transmission electron microscopy with a range of 40-400 nm. Physicochemical state of CUR in PBCN was investigated by X-ray diffraction and the possible structure changes occurring in CUR after conjugating with polybutylcyanoacrylate were studied with FTIR. The results indicated that CUR in PBCN was in a non-crystalline state and CUR was encapsulated in PBCN without chemical reaction. The oral pharmacokinetic study was conducted in rats and the relative bioavailability of CUR encapsulated PBCNs to the crude CUR was more than 800%. The in situ absorption experiment in rat intestine indicated the absorption was first order with passive diffusion mechanism. The absorption results in various segments of intestine showed that the main absorption sites were ileum and colon. It can be concluded that PBCNs as an oral carrier can significantly improve the oral absorption of a poorly soluble drug.

  7. Improved Dissolution and Oral Bioavailability of Celecoxib by a Dry Elixir System.

    PubMed

    Cho, Kwan Hyung; Jee, Jun-Pil; Yang, Da A; Kim, Sung Tae; Kang, Dongjin; Kim, Dae-Young; Sim, Taeyong; Park, Sang Yeob; Kim, Kyeongsoon; Jang, Dong-Jin

    2018-02-01

    The purpose of this study was to develop and evaluate a dry elixir (DE) system for enhancing the dissolution rate and oral bioavailability of celecoxib. DE system has been used for improving solubility, oral bioavailability of poorly water-soluble drugs. The encapsulated drugs or solubilized drugs in the matrix are rapidly dissolved due to the co-solvent effect, resting in both an enhanced dissolution and bioavailability. DEs containing celecoxib were prepared by spray-drying method and characterized by morphology, drug/ethanol content, drug crystallinity, dissolution rate and oral bioavailability. The ethanol content and drug content in DE system could be easily altered by controlling the spraydrying conditions. The dissolution profile of celecoxib from DE proved to be much higher than that of celecoxib powder due to the nano-structured matrix, amorphous state and encapsulated ethanol. The bioavailability of celecoxib from DEs was compared with celecoxib powder alone and commercial product (Celebrex®) in rats. In particular, blood concentrations of celecoxib form DE formulation were much greater than those of native celecoxib and market product. The data demonstrate that the DE system could provide an useful solid dosage form to enhance the solubility, dissolution rate and oral bioavailability of celecoxib.

  8. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system

    PubMed Central

    Chen, Zhi-Qiang; Liu, Ying; Zhao, Ji-Hui; Wang, Lan; Feng, Nian-Ping

    2012-01-01

    Background Indirubin, isolated from the leaves of the Chinese herb Isatis tinctoria L, is a protein kinase inhibitor and promising antitumor agent. However, the poor water solubility of indirubin has limited its application. In this study, a supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) was developed to improve the oral bioavailability of indirubin. Methods A prototype S-SMEDDS was designed using solubility studies and phase diagram construction. Precipitation inhibitors were selected from hydrophilic polymers according to their crystallization-inhibiting capacity through in vitro precipitation tests. In vitro release of indirubin from S-SMEDDS was examined to investigate its likely release behavior in vivo. The in vivo bioavailability of indirubin from S-SMEDDS and from SMEDDS was compared in rats. Results The prototype formulation of S-SMEDDS comprised Maisine™ 35-1:Cremophor® EL:Transcutol® P (15:40:45, w/w/w). Polyvinylpyrrolidone K17, a hydrophilic polymer, was used as a precipitation inhibitor based on its better crystallization-inhibiting capacity compared with polyethylene glycol 4000 and hydroxypropyl methylcellulose. In vitro release analysis showed more rapid drug release from S-SMEDDS than from SMEDDS. In vivo bioavailability analysis in rats indicated that improved oral absorption was achieved and that the relative bioavailability of S-SMEDDS was 129.5% compared with SMEDDS. Conclusion The novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of indirubin in rats. The results suggest that S-SMEDDS is a superior means of oral delivery of indirubin. PMID:22403491

  9. Development and evaluation of a novel microemulsion formulation of elacridar to improve its bioavailability

    PubMed Central

    Sane, Ramola; Mittapalli, Rajendar K.; Elmquist, William F.

    2014-01-01

    The study objective was to develop a formulation of elacridar to overcome its dissolution-rate limited bioavailability. Elacridar is a P-gp and BCRP inhibitor that has been used to improve the brain distribution of drugs that are substrates of P-gp and BCRP. The chronic use of elacridar is restricted due to poor solubility leading to poor oral bioavailability. A microemulsion formulation using Cremophor EL, Carbitol and Captex 355 (6:3:1) was developed. The elacridar microemulsion was effective in the inhibition of P-gp and Bcrp in MDCKII-transfected cells. FVBn mice were used to determine the bioavailability of elacridar after a 10 mg/kg dose of elacridar in the microemulsion, intraperitoneally and orally; and the absolute bioavailability was determined to be 1.3 and 0.47, respectively. Co-administration of elacridar microemulsion intraperitoneally with oral erlotinib in FVBn mice improved the erlotinib brain penetration three-fold. The current study shows that a microemulsion formulation of elacridar is effective in improving the bioavailability of elacridar and is an effective inhibitor of P-gp and Bcrp; in-vitro and in-vivo. It offers an alternative to the suspension and allows a decrease in the dose required to achieve a significant inhibitory effect at the blood-brain barrier. PMID:23334925

  10. Phenazopyridine-phthalimide nano-cocrystal: Release rate and oral bioavailability enhancement.

    PubMed

    Huang, Yu; Li, Jin-Mei; Lai, Zhi-Hui; Wu, Jun; Lu, Tong-Bu; Chen, Jia-Mei

    2017-11-15

    Both cocrystal and nanocrystal technologies have been widely used in the pharmaceutical development for poorly soluble drugs. However, the synergistic effects due to the integration of these two technologies have not been well investigated. The aim of this study is to develop a nano-sized cocrystal of phenazopyridine (PAP) with phthalimide (PI) to enhance the release rate and oral bioavailability of PAP. A PAP-PI nano-cocrystal with particle diameter of 21.4±0.1nm was successfully prepared via a sonochemical approach and characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamic light scattering (DLS) analysis. An in vitro release study revealed a significant release rate enhancement for PAP-PI nano-cocrystal as compared to PAP-PI cocrystal and PAP hydrochloride salt. Further, a comparative oral bioavailability study in rats indicated significant improvement in C max and oral bioavailability (AUC 0-∞ ) by 1.39- and 2.44-fold, respectively. This study demonstrated that this novel nano-cocrystal technology can be a new promising option to improve release rate and absorption of poorly soluble compounds in the pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A metabolic way to investigate related hurdles causing poor bioavailability in oral delivery of isoacteoside in rats employing ultrahigh-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Cui, Qingling; Pan, Yingni; Yan, Xiaowei; Qu, Bao; Liu, Xiaoqiu; Xiao, Wei

    2017-02-28

    Isoacteoside (ISAT), a phenylethanoid glycoside that acts as the principal bioactive component in traditional Chinese medicines, possesses broad pharmacological effects such as neuroprotective, antihypertensive and hepatoprotective activities. However, its pharmaceutical development has been severely limited due to the poor oral bioavailability. It is essential and significant to investigate related hurdles leading to the poor bioavailability of isoacteoside. Whole animal metabolism studies were conducted in rats, followed by metabolic mechanism including gastrointestinal stability, intestinal flora metabolism and intestinal enzyme metabolism employing the powerful method ultrahigh-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UPLC/QTOF-MS/MS). A simple, rapid and sensitive method has been developed which comprehensively revealed the underlying cause of poor bioavailability of ISAT in a metabolic manner. The prototype of ISAT and its combined metabolites have not been detected in plasma. Furthermore, the residual content of the parent compound in in vitro experiments was approximately 59%, 5% and barely none in intestinal bacteria, intestinal S9 and simulated intestinal juice at 6 h, respectively. The present work has demonstrated that the factors causing the poor bioavailability of isoacteoside should be attributed to the metabolism. In general, the metabolism that resulted from intestinal flora and intestinal enzymes were predominant reasons giving rise to the poor bioavailability of ISAT, which also suggested that metabolites might be responsible for the excellent pharmacological effect of ISAT. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs.

    PubMed

    Zhang, Xingwang; Xing, Huijie; Zhao, Yue; Ma, Zhiguo

    2018-06-23

    Over the past decades, a large number of drugs as well as drug candidates with poor dissolution characteristics have been witnessed, which invokes great interest in enabling formulation of these active ingredients. Poorly water-soluble drugs, especially biopharmaceutical classification system (BCS) II ones, are preferably designed as oral dosage forms if the dissolution limit can be broken through. Minimizing a drug’s size is an effective means to increase its dissolution and hence the bioavailability, which can be achieved by specialized dispersion techniques. This article reviews the most commonly used dispersion techniques for pharmaceutical processing that can practically enhance the dissolution and bioavailability of poorly water-soluble drugs. Major interests focus on solid dispersion, lipid-based dispersion (nanoencapsulation), and liquisolid dispersion (drug solubilized in a non-volatile solvent and dispersed in suitable solid excipients for tableting or capsulizing), covering the formulation development, preparative technique and potential applications for oral drug delivery. Otherwise, some other techniques that can increase the dispersibility of a drug such as co-precipitation, concomitant crystallization and inclusion complexation are also discussed. Various dispersion techniques provide a productive platform for addressing the formulation challenge of poorly water-soluble drugs. Solid dispersion and liquisolid dispersion are most likely to be successful in developing oral dosage forms. Lipid-based dispersion represents a promising approach to surmounting the bioavailability of low-permeable drugs, though the technique needs to traverse the obstacle from liquid to solid transformation. Novel dispersion techniques are highly encouraged to develop for formulation of poorly water-soluble drugs.

  13. Excipient foods: designing food matrices that improve the oral bioavailability of pharmaceuticals and nutraceuticals.

    PubMed

    McClements, David Julian; Xiao, Hang

    2014-07-25

    The oral bioavailability of many lipophilic bioactive agents (pharmaceuticals and nutraceuticals) is limited due to various physicochemical and physiological processes: poor release from food or drug matrices; low solubility in gastrointestinal fluids; metabolism or chemical transformation within the gastrointestinal tract; low epithelium cell permeability. The bioavailability of these agents can be improved by specifically designing food matrices that control their release, solubilization, transport, metabolism, and absorption within the gastrointestinal tract. This article discusses the impact of food composition and structure on oral bioavailability, and how this knowledge can be used to design excipient foods for improving the oral bioavailability of lipophilic bioactives. Excipient foods contain ingredients or structures that may have no bioactivity themselves, but that are able to promote the bioactivity of co-ingested bioactives. These bioactives may be lipophilic drugs in pharmaceutical preparations (such as capsules, pills, or syrups) or nutraceuticals present within food matrices (such as natural or processed foods and beverages).

  14. Preparation, Characterization and Evaluation of Quetiapine Fumarate Solid Lipid Nanoparticles to Improve the Oral Bioavailability

    PubMed Central

    Narala, Arjun; Veerabrahma, Kishan

    2013-01-01

    Quetiapine fumarate is an antipsychotic drug with poor oral bioavailability (9%) due to first-pass metabolism. Present work is an attempt to improve oral bioavailability of quetiapine fumarate by incorporating in solid lipid nanoparticles (SLN). Six quetiapine fumarate SLN formulations were developed using three different lipids by hot homogenisation followed by ultrasonication. The drug excipient compatibility was studied by differential scanning calorimetry (DSC). Stable quetiapine fumarate SLNs having a mean particle size of 200–250 nm with entrapment efficiency varying in between 80% and 92% were developed. The physical stability of optimized formulation F3 was checked at room temperature for 2 months. Comparative bioavailability studies were conducted in male Wistar rats after oral administration of quetiapine fumarate suspension and SLN formulation. The relative bioavailability of quetiapine fumarate from optimized SLN preparation was increased by 3.71 times when compared with the reference quetiapine fumarate suspension. The obtained results are indicative of SLNs as potential lipid carriers for improving the bioavailability of quetiapine fumarate by minimizing first-pass metabolism. PMID:26555970

  15. Viscoelastic Emulsion Improved the Bioaccessibility and Oral Bioavailability of Crystalline Compound: A Mechanistic Study Using in Vitro and in Vivo Models.

    PubMed

    Ting, Yuwen; Jiang, Yike; Lan, Yaqi; Xia, Chunxin; Lin, Zhenyu; Rogers, Michael A; Huang, Qingrong

    2015-07-06

    The oral bioavailability of hydrophobic compound is usually limited by the poor aqueous solubility in the gastrointestinal (GI) tract. Various oral formulations were developed to enhance the systemic concentration of such molecules. Moreover, compounds with high melting temperature that appear as insoluble crystals imposed a great challenge to the development of oral vehicle. Polymethoxyflavone, an emerging category of bioactive compounds with potent therapeutic efficacies, were characterized as having a hydrophobic and highly crystalline chemical structure. To enhance the oral dosing efficiency of polymethoxyflavone, a viscoelastic emulsion system with a high static viscosity was developed and optimized using tangeretin, one of the most abundant polymethoxyflavones found in natural sources, as a modeling compound. In the present study, different in vitro and in vivo models were used to mechanistically evaluate the effect of emulsification on oral bioavailability of tangeretin. In vitro lipolysis revealed that emulsified tangeretin was digested and became bioaccessible much faster than unprocessed tangeretin oil suspension. By simulating the entire human GI tract, TNO's gastrointestinal model (TIM-1) is a valuable tool to mechanistically study the effect of emulsification on the digestion events that lead to a better oral bioavailability of tangeretin. TIM-1 result indicated that tangeretin was absorbed in the upper GI tract. Thus, a higher oral bioavailability can be expected if the compound becomes bioaccessible in the intestinal lumen soon after dosing. In vivo pharmacokinetics analysis on mice again confirmed that the oral bioavailability of tangeretin increased 2.3 fold when incorporated in the viscoelastic emulsion than unformulated oil suspension. By using the combination of in vitro and in vivo models introduced in this work, the mechanism that underlie the effect of viscoelastic emulsion on the oral bioavailability of tangeretin was well-elucidated.

  16. Lipid-based nanocarriers as an alternative for oral delivery of poorly water- soluble drugs: peroral and mucosal routes.

    PubMed

    Silva, A C; Santos, D; Ferreira, D; Lopes, C M

    2012-01-01

    The hydrophobic character of most drug molecules and their potential for degradation under the hostile environment of the gastrointestinal tract (GIT) constitutes the main obstacle in the development of a successful oral drug delivery system, since these are related to limitations of bioavailability and absorption processes. However, according to the advantages of the oral route, alternative ways of drug administration in the oral cavity should be considered. In this context, it is essential to have a systematic knowledge of the GIT and the oral cavity components, for a better understanding of the processes taking place during the oral administration of drugs. This review gives an overview of those anatomical and physiological features and elucidates about the current approaches employed to enhance the bioavailability of oral poorly water-soluble drugs. Strategies including the uses of lipid-based nanocarriers, such as nanoemulsions, liposomes and lipid nanoparticles are discussed, considering their ability to improve solubility, dissolution kinetics, absorption and, consequently, biopharmaceutical properties. Some toxicological concerns are also highlighted.

  17. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion

    PubMed Central

    Shakeel, Faiyaz; Baboota, Sanjula; Ahuja, Alka; Ali, Javed; Shafiq, Sheikh

    2008-01-01

    Background Celecoxib, a selective cyclo-oxygenase-2 inhibitor has been recommended orally for the treatment of arthritis and osteoarthritis. Long term oral administration of celecoxib produces serious gastrointestinal side effects. It is a highly lipophilic, poorly soluble drug with oral bioavailability of around 40% (Capsule). Therefore the aim of the present investigation was to assess the skin permeation mechanism and bioavailability of celecoxib by transdermally applied nanoemulsion formulation. Optimized oil-in-water nanoemulsion of celecoxib was prepared by the aqueous phase titration method. Skin permeation mechanism of celecoxib from nanoemulsion was evaluated by FTIR spectral analysis, DSC thermogram, activation energy measurement and histopathological examination. The optimized nanoemulsion was subjected to pharmacokinetic (bioavailability) studies on Wistar male rats. Results FTIR spectra and DSC thermogram of skin treated with nanoemulsion indicated that permeation occurred due to the disruption of lipid bilayers by nanoemulsion. The significant decrease in activation energy (2.373 kcal/mol) for celecoxib permeation across rat skin indicated that the stratum corneum lipid bilayers were significantly disrupted (p < 0.05). Photomicrograph of skin sample showed the disruption of lipid bilayers as distinct voids and empty spaces were visible in the epidermal region. The absorption of celecoxib through transdermally applied nanoemulsion and nanoemulsion gel resulted in 3.30 and 2.97 fold increase in bioavailability as compared to oral capsule formulation. Conclusion Results of skin permeation mechanism and pharmacokinetic studies indicated that the nanoemulsions can be successfully used as potential vehicles for enhancement of skin permeation and bioavailability of poorly soluble drugs. PMID:18613981

  18. Improving dissolution and oral bioavailability of pranlukast hemihydrate by particle surface modification with surfactants and homogenization

    PubMed Central

    Ha, Eun-Sol; Baek, In-hwan; Yoo, Jin-Wook; Jung, Yunjin; Kim, Min-Soo

    2015-01-01

    The present study was carried out to develop an oral formulation of pranlukast hemihydrate with improved dissolution and oral bioavailability using a surface-modified microparticle. Based on solubility measurements, surface-modified pranlukast hemihydrate microparticles were manufactured using the spray-drying method with hydroxypropylmethyl cellulose, sucrose laurate, and water and without the use of an organic solvent. The hydrophilicity of the surface-modified pranlukast hemihydrate microparticle increased, leading to enhanced dissolution and oral bioavailability of pranlukast hemihydrate without a change in crystallinity. The surface-modified microparticles with an hydroxypropylmethyl cellulose/sucrose laurate ratio of 1:2 showed rapid dissolution of up to 85% within 30 minutes in dissolution medium (pH 6.8) and oral bioavailability higher than that of the commercial product, with approximately 2.5-fold and 3.9-fold increases in area under the curve (AUC0→12 h) and peak plasma concentration, respectively. Therefore, the surface-modified microparticle is an effective oral drug delivery system for the poorly water-soluble therapeutic pranlukast hemihydrate. PMID:26150699

  19. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake.

    PubMed

    Baek, Jong-Suep; Cho, Cheong-Weon

    2017-08-01

    Curcumin has been reported to exhibit potent anticancer effects. However, poor solubility, bioavailability and stability of curcumin limit its in vivo efficacy for the cancer treatment. Solid lipid nanoparticles (SLN) are a promising delivery system for the enhancement of bioavailability of hydrophobic drugs. However, burst release of drug from SLN in acidic environment limits its usage as oral delivery system. Hence, we prepared N-carboxymethyl chitosan (NCC) coated curcumin-loaded SLN (NCC-SLN) to inhibit the rapid release of curcumin in acidic environment and enhance the bioavailability. The NCC-SLN exhibited suppressed burst release in simulated gastric fluid while sustained release was observed in simulated intestinal fluid. Furthermore, NCC-SLN exhibited increased cytotoxicity and cellular uptake on MCF-7 cells. The lymphatic uptake and oral bioavailability of NCC-SLN were found to be 6.3-fold and 9.5-fold higher than that of curcumin solution, respectively. These results suggest that NCC-SLN could be an efficient oral delivery system for curcumin. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Oral heparin delivery: design and in vivo evaluation of a stomach-targeted mucoadhesive delivery system.

    PubMed

    Schmitz, Thierry; Leitner, Verena M; Bernkop-Schnürch, Andreas

    2005-05-01

    Low molecular weight heparin (LMWH) is an agent of choice in the anti-coagulant therapy and prophylaxis of thrombosis and coronary syndromes. However, the therapeutic use is partially limited due to a poor oral bioavailability. It was therefore the aim of this study to design and evaluate a highly efficient stomach-targeted oral delivery system for LMWH. In order to appraise the influence of the molecular weight on the oral bioavailability, mini-tablets comprising 3 kDa (279 IU) and 6 kDa (300 IU) LMWH, respectively, were generated and tested in vivo in rats. The potential of the test formulations based on thiolated polycarbophil, was evaluated in comparison to hydroxyethylcellulose (HEC) as control carrier matrix. The plasma levels of LMWH after oral versus subcutaneous administration were determined in order to calculate the relative bioavailability. With the delivery system containing 3 kDa LMWH (279 IU) a relative bioavailability of 19.1% was achieved, offering a significantly (p < 0.05) better bioavailability than the control system displaying a relative bioavailability of 8.1% The 6 kDa LMWH (300 IU) formulation displayed a relative bioavailability of 10.7% in contrast to the control displaying a relative bioavailability of 2.1%. In conclusion, these results suggest that mucoadhesive thiolated polymers are a promising tool for the non-invasive stomach-targeted systemic delivery of LMWH as model for a hydrophilic macromolecular polysaccharide. Copyright 2005 Wiley-Liss, Inc

  1. Lipids-based nanostructured lipid carriers (NLCs) for improved oral bioavailability of sirolimus.

    PubMed

    Yu, Qin; Hu, Xiongwei; Ma, Yuhua; Xie, Yunchang; Lu, Yi; Qi, Jianping; Xiang, Li; Li, Fengqian; Wu, Wei

    2016-05-01

    The main purpose of this study was to improve the oral bioavailability of sirolimus (SRL), a poorly water-soluble immunosuppressant, by encapsulating into lipids-based nanostructured lipid carriers (NLCs). SRL-loaded NLCs (SRL-NLCs) were prepared by a high-pressure homogenization method with glycerol distearates (PRECIROL ATO-5) as the solid lipid, oleic acid as the liquid lipids, and Tween 80 as the emulsifier. The SRL-NLCs prepared under optimum conditions was spherical in shape with a mean particle size of about 108.3 nm and an entrapment efficiency of 99.81%. In vitro release of SRL-NLCs was very slow, about 2.15% at 12 h, while in vitro lipolysis test showed fast digestion of the NLCs within 1 h. Relative oral bioavailability of SRL-NLCs in Beagle dogs was 1.81-folds that of the commercial nanocrystalline sirolimus tablets Rapamune®. In conclusion, the NLCs show potential to improve the oral bioavailability of SRL.

  2. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions.

    PubMed

    Yu, Hailong; Huang, Qingrong

    2012-05-30

    Curcumin is a natural bioactive compound with many health-promoting benefits. Its low oral bioavailability limits its application in functional foods. In the present study, novel organogel-based nanoemulsions have been developed for oral delivery of curcumin and improvement of its bioavailability. Recently developed curcumin organogel was used as the oil phase in the curcumin nanoemulsion formulation. Tween 20 was selected as the emulsifier on the basis of maximum in vitro bioaccessibility of curcumin in the nanoemulsion. In vitro lipolysis profile revealed that the digestion of nanoemulsion was significantly faster and more complete than the organogel. Permeation experiments on Caco-2 cell monolayers suggested that digestion-diffusion was the major absorption mechanism for curcumin in the nanoemulsion. Furthermore, in vivo pharmacokinetics analysis on mice confirmed that the oral bioavailability of curcumin in the nanoemulsion was increased by 9-fold compared with unformulated curcumin. This novel formulation approach may also be used for oral delivery of other poorly soluble nutraceuticals with high loading capacity, which has significant impact in functional foods, dietary supplements and pharmaceutical industries.

  3. Formulation, optimization, and in vitro/in vivo evaluation of furosemide nanosuspension for enhancement of its oral bioavailability

    NASA Astrophysics Data System (ADS)

    Sahu, Bhanu P.; Das, Malay K.

    2014-04-01

    Furosemide is a poorly soluble diuretic used for treatment of hypertension and edema. It has very poor or variable oral bioavailability due to its reduced solubility in gastric fluid and reduced permeability in intestinal fluid. The aim of this study was to prepare nanosuspension of furosemide to enhance its oral bioavailability by increasing its dissolution in stomach where it has better permeability. Full factorial design was used for a systematic approach of formulation and optimization. The nanosuspensions were prepared by precipitation with ultrasonication method. Polyvinyl acetate was used for sterically stabilizing the nanosuspensions. The diffusing drug concentration and stabilizer were used as the factors and the particle size, polydispersity index, and drug release were selected as dependent variables and characterized. The effect of nanoprecipitation on enhancement of oral bioavailability of furosemide nanosuspension was studied by in vitro dissolution and in vivo absorption studies in rats and compared to pure drug. Quality by design using full factorial design provided a systematic approach in optimizing nanosuspensions to produce products with desired quality. Stable nanosuspension were obtained with average size range of the precipitated nanoparticles between 150 and 300 nm and were found to be homogenous showing a narrow polydispersity index of 0.3 ± 0.1. The in vivo studies on rats revealed a significant increase in the oral absorbtion of furosemide in the nanosuspension compared to pure drug. The AUC0→24 and C max values of nanosuspension were approximately 1.38- and 1.68-fold greater than that of pure drug, respectively. Furosemide nanosuspension showed 20.06 ± 0.02 % decrease in systolic blood pressure compared to 13.37 + 0.02 % in plain furosemide suspension, respectively. The improved oral bioavailability and pharmacodynamic effect of furosemide may be due to the improved dissolution of furosemide in simulated gastric fluid which results in enhanced oral systemic absorption of furosemide from stomach region where it has better permeability.

  4. [Silica-coated ethosome as a novel oral delivery system for enhanced oral bioavailability of curcumin].

    PubMed

    Li, Chong; Deng, Li; Zhang, Yan; Su, Ting-Ting; Jiang, Yin; Chen, Zhang-Bao

    2012-11-01

    The aim of this study is to investigate the feasibility of silica-coated ethosome as a novel oral delivery system for the poorly water-soluble curcumin (as a model drug). The silica-coated ethosomes loading curcumin (CU-SE) were prepared by alcohol injection method with homogenization, followed by the precipitation of silica by sol-gel process. The physical and chemical features of CU-SEs, and curcumin release were determined in vitro. The pharmacodynamics and bioavailability measurements were sequentially performed. The mean diameter of CU-SE was (478.5 +/- 80.3) nm and the polydispersity index was 0.285 +/- 0.042, while the mean value of apparent drug entrapment efficiency was 80.77%. In vitro assays demonstrated that CU-SEs were significantly stable with improved release properties when compared with curcumin-loaded ethosomes (CU-ETs) without silica-coatings. The bioavailability of CU-SEs and CU-ETs was 11.86- and 5.25-fold higher, respectively, than that of curcumin suspensions (CU-SUs) in in vivo assays. The silica coatings significantly promoted the stability of ethosomes and CU-SEs exhibited 2.26-fold increase in bioavailablity relative to CU-ETs, indicating that the silica-coated ethosomes might be a potential approach for oral delivery of poorly water-soluble drugs especially the active ingredients of traditional Chinese medicine with improved bioavailability.

  5. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin

    PubMed Central

    Li, Chong; Zhang, Yan; Su, Tingting; Feng, Lianlian; Long, Yingying; Chen, Zhangbao

    2012-01-01

    We investigated flexible liposomes as a potential oral drug delivery system. However, enhanced membrane fluidity and structural deformability may necessitate liposomal surface modification when facing the harsh environment of the gastrointestinal tract. In the present study, silica-coated flexible liposomes loaded with curcumin (CUR-SLs) having poor water solubility as a model drug were prepared by a thin-film method with homogenization, followed by the formation of a silica shell by the sol-gel process. We systematically investigated the physical properties, drug release behavior, pharmacodynamics, and bioavailability of CUR-SLs. CUR-SLs had a mean diameter of 157 nm and a polydispersity index of 0.14, while the apparent entrapment efficiency was 90.62%. Compared with curcumin-loaded flexible liposomes (CUR-FLs) without silica-coatings, CUR-SLs had significantly higher stability against artificial gastric fluid and showed more sustained drug release in artificial intestinal fluid as determined by in vitro release assays. The bioavailability of CUR-SLs and CUR-FLs was 7.76- and 2.35-fold higher, respectively, than that of curcumin suspensions. Silica coating markedly improved the stability of flexible liposomes, and CUR-SLs exhibited a 3.31-fold increase in bioavailability compared with CUR-FLs, indicating that silica-coated flexible liposomes may be employed as a potential carrier to deliver drugs with poor water solubility via the oral route with improved bioavailability. PMID:23233804

  6. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin.

    PubMed

    Li, Chong; Zhang, Yan; Su, Tingting; Feng, Lianlian; Long, Yingying; Chen, Zhangbao

    2012-01-01

    We investigated flexible liposomes as a potential oral drug delivery system. However, enhanced membrane fluidity and structural deformability may necessitate liposomal surface modification when facing the harsh environment of the gastrointestinal tract. In the present study, silica-coated flexible liposomes loaded with curcumin (CUR-SLs) having poor water solubility as a model drug were prepared by a thin-film method with homogenization, followed by the formation of a silica shell by the sol-gel process. We systematically investigated the physical properties, drug release behavior, pharmacodynamics, and bioavailability of CUR-SLs. CUR-SLs had a mean diameter of 157 nm and a polydispersity index of 0.14, while the apparent entrapment efficiency was 90.62%. Compared with curcumin-loaded flexible liposomes (CUR-FLs) without silica-coatings, CUR-SLs had significantly higher stability against artificial gastric fluid and showed more sustained drug release in artificial intestinal fluid as determined by in vitro release assays. The bioavailability of CUR-SLs and CUR-FLs was 7.76- and 2.35-fold higher, respectively, than that of curcumin suspensions. Silica coating markedly improved the stability of flexible liposomes, and CUR-SLs exhibited a 3.31-fold increase in bioavailability compared with CUR-FLs, indicating that silica-coated flexible liposomes may be employed as a potential carrier to deliver drugs with poor water solubility via the oral route with improved bioavailability.

  7. Enhanced oral bioavailability of glycyrrhetinic acid via nanocrystal formulation.

    PubMed

    Lei, Yaya; Kong, Yindi; Sui, Hong; Feng, Jun; Zhu, Rongyue; Wang, Wenping

    2016-10-01

    The purpose of this study was to prepare solid nanocrystals of glycyrrhetinic acid (GA) for improved oral bioavailability. The anti-solvent precipitation-ultrasonication method followed by freeze-drying was adopted for the preparation of GA nanocrystals. The physicochemical properties, drug dissolution and pharmacokinetic of the obtained nanocrystals were investigated. GA nanocrystals showed a mean particle size of 220 nm and shaped like short rods. The analysis results from differential scanning calorimetry and X-ray powder diffraction indicated that GA remained in crystalline state despite a huge size reduction. The equilibrium solubility and dissolution rate of GA nanocrystal were significantly improved in comparison with those of the coarse GA or the physical mixture. The bioavailability of GA nanocrystals in rats was 4.3-fold higher than that of the coarse GA after oral administration. With its rapid dissolution and absorption performance, the solid nanocrystal might be a more preferable formulation for oral administration of poorly soluble GA.

  8. Novel diindolylmethane derivatives based NLC formulations to improve the oral bioavailability and anticancer effects in triple negative breast cancer

    PubMed Central

    Godugu, Chandraiah; Doddapaneni, Ravi; Safe, Stephen H.; Singh, Mandip

    2017-01-01

    The present study demonstrates the promising anticancer effects of novel C-substituted diindolylmethane (DIM) derivatives DIM-10 and DIM-14 in aggressive TNBC models. In vitro studies demonstrated that these compounds possess strong anticancer effects. Caco-2 permeability studies resulted in poor permeability and poor oral bioavailability was demonstrated by pharmacokinetic studies. Nano structured lipid carrier (NLC) formulations were prepared to increase the clinical acceptance of these compounds. Significant increase in oral bioavailability was observed with NLC formulations. Compared to DIM-10, DIM-10 NLC formulation showed increase in Cmax and AUC values by 4.73 and 11.19-folds, respectively. Similar pattern of increase was observed with DIM-14 NLC formulations. In dogs DIM-10 NLC formulations showed an increase of 2.65 and 2.94-fold in Cmax and AUC, respectively. The anticancer studies in MDA-MB-231 orthotopic TNBC models demonstrated significant reduction in tumor volumes in DIM-10 and DIM-14 NLC treated animals. Our studies suggest that NLC formulation of both DIM-10 and 14 is effective in TNBC models. PMID:27586082

  9. A microemulsion of puerarin-phospholipid complex for improving bioavailability: preparation, in vitro and in vivo evaluations.

    PubMed

    Wu, Jun-Yong; Li, Yong-Jiang; Han, Meng; Hu, Xiong-Bin; Yang, Le; Wang, Jie-Min; Xiang, Da-Xiong

    2018-08-01

    Puerarin is a phytochemical with various pharmacological effects, but poor water solubility and low oral bioavailability limited usage of puerarin. The purpose of this study was to develop a new microemulsion (ME) based on phospholipid complex technique to improve the oral bioavailability of puerarin. Puerarin phospholipid complex (PPC) was prepared by a solvent evaporation method and was characterized by X-ray diffraction and infrared spectroscopy. Pseudo-ternary phase diagrams were constructed to investigate the effects of different oil on the emulsifying performance of the blank ME. Intestinal mucosal injury test was conducted to evaluate safety of PPC-ME, and no sign of damage on duodenum, jejunum and ileum of rats was observed using hematoxylin-eosin staining. In pharmacokinetic study of PPC-ME, a significantly greater C max (1.33 µg/mL) was observed when compared to puerarin (C max 0.55 µg/mL) or PPC (C max 0.70 µg/mL); the relative oral bioavailability of PPC-ME was 3.16-fold higher than puerarin. In conclusion, the ME combined with the phospholipid complex technique was a promising strategy to enhance the oral bioavailability of puerarin.

  10. Soft gelatin capsules (softgels).

    PubMed

    Gullapalli, Rampurna Prasad

    2010-10-01

    It is estimated that more than 40% of new chemical entities (NCEs) coming out of the current drug discovery process have poor biopharmaceutical properties, such as low aqueous solubility and/or permeability. These suboptimal properties pose significant challenges for the oral absorption of the compounds and for the development of orally bioavailable dosage forms. Development of soft gelatin capsule (softgel) dosage form is of growing interest for the oral delivery of poorly water soluble compounds (BCS class II or class IV). The softgel dosage form offers several advantages over other oral dosage forms, such as delivering a liquid matrix designed to solubilize and improve the oral bioavailability of a poorly soluble compound as a unit dose solid dosage form, delivering low and ultra-low doses of a compound, delivering a low melting compound, and minimizing potential generation of dust during manufacturing and thereby improving the safety of production personnel. However, due to the very dynamic nature of the softgel dosage form, its development and stability during its shelf-life are fraught with several challenges. The goal of the current review is to provide an in-depth discussion on the softgel dosage form to formulation scientists who are considering developing softgels for therapeutic compounds.

  11. Development of dihydropyridone indazole amides as selective Rho-kinase inhibitors.

    PubMed

    Goodman, Krista B; Cui, Haifeng; Dowdell, Sarah E; Gaitanopoulos, Dimitri E; Ivy, Robert L; Sehon, Clark A; Stavenger, Robert A; Wang, Gren Z; Viet, Andrew Q; Xu, Weiwei; Ye, Guosen; Semus, Simon F; Evans, Christopher; Fries, Harvey E; Jolivette, Larry J; Kirkpatrick, Robert B; Dul, Edward; Khandekar, Sanjay S; Yi, Tracey; Jung, David K; Wright, Lois L; Smith, Gary K; Behm, David J; Bentley, Ross; Doe, Christopher P; Hu, Erding; Lee, Dennis

    2007-01-11

    Rho kinase (ROCK1) mediates vascular smooth muscle contraction and is a potential target for the treatment of hypertension and related disorders. Indazole amide 3 was identified as a potent and selective ROCK1 inhibitor but possessed poor oral bioavailability. Optimization of this lead resulted in the discovery of a series of dihydropyridones, exemplified by 13, with improved pharmacokinetic parameters relative to the initial lead. Indazole substitution played a critical role in decreasing clearance and improving oral bioavailability.

  12. Oral bioavailability enhancement of β-lapachone, a poorly soluble fast crystallizer, by cocrystal, amorphous solid dispersion, and crystalline solid dispersion.

    PubMed

    Liu, Chengyu; Liu, Zhengsheng; Chen, Yuejie; Chen, Zhen; Chen, Huijun; Pui, Yipshu; Qian, Feng

    2018-03-01

    The aim of this paper was to compare the in vitro dissolution and in vivo bioavailability of three solubility enhancement technologies for β-lapachone (LPC), a poorly water soluble compound with extremely high crystallization propensity. LPC cocrystal was prepared by co-grinding LPC with resorcinol. LPC crystalline and amorphous solid dispersions (CSD and ASD) were obtained by spray drying with Poloxamer 188 and HPMC-AS, respectively. The cocrystal structure was solved by single crystal x-ray diffraction. All formulations were characterized by WAXRD, DSC, POM and SEM. USP II and intrinsic dissolution studies were used to compare the in vitro dissolution of these formulations, and a crossover dog pharmacokinetic study was used to compare their in vivo bioavailability. An 1:1 LPC-resorcinol cocrystal with higher solubility and faster dissolution rate was obtained, yet it converted to LPC crystal rapidly in solution. LPC/HPMC-AS ASD was confirmed to be amorphous and uniform, while the crystal and crystallite sizes of LPC in CSD were found to be ∼1-3 μm and around 40 nm, respectively. These formulations performed similarly during USP II dissolution, while demonstrated dramatically different oral bioavailability of ∼32%, ∼5%, and ∼1% in dogs, for CSD, co-crystal, and ASD, respectively. CSD showed the fastest intrinsic dissolution rate among the three. The three formulations showed poor IVIVC which could be due to rapid and unpredictable crystallization kinetics. Considering all the reasons, we conclude that for molecules with extremely high crystallization tendency that cannot be inhibited by any pharmaceutical excipients, size-reduction technologies such as CSD could be advantageous for oral bioavailability enhancement in vivo than technologies only generating transient but not sustained supersaturation. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The influence of supercritical carbon dioxide (SC-CO2) processing conditions on drug loading and physicochemical properties.

    PubMed

    Ahern, Robert J; Crean, Abina M; Ryan, Katie B

    2012-12-15

    Poor water solubility of drugs can complicate their commercialisation because of reduced drug oral bioavailability. Formulation strategies such as increasing the drug surface area are frequently employed in an attempt to increase dissolution rate and hence, improve oral bioavailability. Maximising the drug surface area exposed to the dissolution medium can be achieved by loading drug onto a high surface area carrier like mesoporous silica (SBA-15). The aim of this work was to investigate the impact of altering supercritical carbon dioxide (SC-CO(2)) processing conditions, in an attempt to enhance drug loading onto SBA-15 and increase the drug's dissolution rate. Other formulation variables such as the mass ratio of drug to SBA-15 and the procedure for combining the drug and SBA-15 were also investigated. A model drug with poor water solubility, fenofibrate, was selected for this study. High drug loading efficiencies were obtained using SC-CO(2), which were influenced by the processing conditions employed. Fenofibrate release rate was enhanced greatly after loading onto mesoporous silica. The results highlighted the potential of this SC-CO(2) drug loading approach to improve the oral bioavailability of poorly water soluble drugs. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture.

    PubMed

    Joshi, Hemant N; Tejwani, Ravindra W; Davidovich, Martha; Sahasrabudhe, Vaishali P; Jemal, Mohammed; Bathala, Mohinder S; Varia, Sailesh A; Serajuddin, Abu T M

    2004-01-09

    Oral bioavailability of a poorly water-soluble drug was greatly enhanced by using its solid dispersion in a surface-active carrier. The weakly basic drug (pK(a) approximately 5.5) had the highest solubility of 0.1mg/ml at pH 1.5, < 1 microg/ml aqueous solubility between pH 3.5 and 5.5 at 24+/-1 degrees C, and no detectable solubility (< 0.02 microg/ml) at pH greater than 5.5. Two solid dispersion formulations of the drug, one in Gelucire 44/14 and another one in a mixture of polyethylene glycol 3350 (PEG 3350) with polysorbate 80, were prepared by dissolving the drug in the molten carrier (65 degrees C) and filling the melt in hard gelatin capsules. From the two solid dispersion formulations, the PEG 3350-polysorbate 80 was selected for further development. The oral bioavailability of this formulation in dogs was compared with that of a capsule containing micronized drug blended with lactose and microcrystalline cellulose and a liquid solution in a mixture of PEG 400, polysorbate 80 and water. For intravenous administration, a solution in a mixture of propylene glycol, polysorbate 80 and water was used. Absolute oral bioavailability values from the capsule containing micronized drug, the capsule containing solid dispersion and the oral liquid were 1.7+/-1.0%, 35.8+/-5.2% and 59.6+/-21.4%, respectively. Thus, the solid dispersion provided a 21-fold increase in bioavailability of the drug as compared to the capsule containing micronized drug. A capsule formulation containing 25 mg of drug with a total fill weight of 600 mg was subsequently selected for further development. The selected solid dispersion formulation was physically and chemically stable under accelerated storage conditions for at least 6 months. It is hypothesized that polysorbate 80 ensures complete release of drug in a metastable finely dispersed state having a large surface area, which facilitates further solubilization by bile acids in the GI tract and the absorption into the enterocytes. Thus, the bioavailability of this poorly water-soluble drug was greatly enhanced by formulation as a solid dispersion in a surface-active carrier.

  15. Improved oral bioavalability of mebudipine upon administration in PhytoSolve and Phosal-based formulation (PBF).

    PubMed

    Khani, Samira; Keyhanfar, Fariborz

    2014-02-01

    The aim of this investigation was to examine the efficacy of PhytoSolve and Phosal-based formulation (PBF) to enhance the oral bioavailability of mebudipine, which is a poorly water-soluble calcium channel blocker. The solubility of mebudipine in various oils was determined. PhytoSolve was prepared with a medium-chain triglyceride (MCT) oil (20%), soybean phospholipids (5%), and a 70% fructose solution (75%). The influence of the weight ratio of Phosal 50PG to glycerol in PBF on the mean globule size was studied with dynamic light scattering. The optimized formulation was evaluated for robustness toward dilution, transparency, droplet size, and zeta potential. The in vivo oral absorption of different mebudipine formulations (PhytoSolve, PBF, oily solution, and suspension) were evaluated in rats. The optimized PBF contained Phosal 50PG/glycerol in a 6:4 ratio (w/w). The PBF and PhytoSolve formulations were miscible with water in any ratio and did not demonstrate any phase separation or drug precipitation over 1 month of storage. The mean particle size of PhytoSolve and PBF were 138.5 ± 9.0 and 74.4 ± 2.5 nm, respectively. The in vivo study demonstrated that the oral bioavailability of PhytoSolve and PBF in rats was significantly higher than that of the other formulations. The PhytoSolve and PBF formulations of mebudipine are found to be more bioavailable compared with suspension and oily solutions during an in vivo study in rats. These formulations might be new alternative carriers that increase the oral bioavailability of poorly water-soluble molecules, such as mebudipine.

  16. Dissolution and bioavailability enhancement of alpha-asarone by solid dispersions via oral administration.

    PubMed

    Deng, Li; Wang, Yu; Gong, Tao; Sun, Xun; Zhang, Zhi-Rong

    2017-11-01

    Alpha (α)-asarone (1-propenyl-2,4,5-methoxybenzol) (ARE) has been extensively used to treat chronic obstructive pulmonary diseases (COPD), bronchial asthma, pneumonia, and epilepsy. Due to its poor solubility and bioavailability, ARE was clinically administered via intravenous injection. However, severe allergies were often reported due to the presence of solublizers in the injection formulation. In our study, we sought to explore the biopharmaceutical classification of ARE, elucidate the mechanisms behind ARE absorption, and to develop a viable formulation to improve the oral bioavailability of ARE. ARE was not a P-glycoprotein substrate, which was absorbed in the passive mode without site specificity in the gastrointestinal tract. Solid dispersions prepared using hydrophilic matrix materials such as Pluronic F68, and polyethylene glycol (PEG) of varying molecular weights (PEG4K, PEG10K, and PEG20K) were proven to significantly improve the dissolution of ARE in vitro and the oral bioavailability of ARE in rats, which represent a promising strategy for the oral administration of ARE and other BCS II compounds.

  17. Fabrication and in vivo evaluation of Nelfinavir loaded PLGA nanoparticles for enhancing oral bioavailability and therapeutic effect

    PubMed Central

    Venkatesh, D. Nagasamy; Baskaran, Mahendran; Karri, Veera Venkata Satyanarayana Reddy; Mannemala, Sai Sandeep; Radhakrishna, Kollipara; Goti, Sandip

    2015-01-01

    Nelfinavir mesylate (NFV) is an anti-viral drug, used in the treatment of Acquired Immunodeficiency Syndrome (AIDS). Poor oral bioavailability and shorter half-life (3.5–5 h) remain a major clinical limitation of NFV leading to unpredictable drug bioavailability and frequent dosing. In this context, the objective of the present study was to formulate NFV loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), which can increase the solubility and oral bioavailability along with sustained release of the drug. NFV loaded PLGA-NPs were prepared by nanoprecipitation method using PLGA and Poloxomer 407. The prepared NPs were evaluated for particle size, zeta potential, morphology, drug content, entrapment efficiency (EE) and in vitro dissolution studies. Oral bioavailability studies were carried out in New Zealand rabbits by administering developed NFV PLGA-NPs and pure drug suspension. PLGA-NPs prepared by using 1:4 ratio of drug and PLGA, with a stirring rate of 1500 rpm for 4 h. The prepared NPs were in the size of 185 ± 0.83 nm with a zeta potential of 28.7 ± 0.09 mV. The developed NPs were found to be spherical with uniform size distribution. The drug content and EE of the optimized formulation were found to be 36 ± 0.19% and 72 ± 0.47% respectively. After oral administration of NFV PLGA-NPs, the relative bioavailability was enhanced about 4.94 fold compared to NFV suspension as a control. The results describe an effective strategy for oral delivery of NFV loaded PLGA NPs that helps in enhancing bioavailability and reduce the frequency of dosing. PMID:26702262

  18. Dry elixir formulations of dexibuprofen for controlled release and enhanced oral bioavailability.

    PubMed

    Kim, Seo-Ryung; Kim, Jin-Ki; Park, Jeong-Sook; Kim, Chong-Kook

    2011-02-14

    The objective of this study was to achieve an optimal formulation of dexibuprofen dry elixir (DDE) for the improvement of dissolution rate and bioavailability. To control the release rate of dexibuprofen, Eudragit(®) RS was employed on the surface of DDE resulting in coated dexibuprofen dry elixir (CDDE). Physicochemical properties of DDE and CDDE such as particle size, SEM, DSC, and contents of dexibuprofen and ethanol were characterized. Pharmacokinetic parameters of dexibuprofen were evaluated in the rats after oral administration. The DDE and CDDE were spherical particles of 12 and 19 μm, respectively. The dexibuprofen and ethanol contents in the DDE were dependent on the amount of dextrin and maintained for 90 days. The dissolution rate and bioavailability of dexibuprofen loaded in dry elixir were increased compared with those of dexibuprofen powder. Moreover, coating DDE with Eudragit(®) RS retarded the dissolution rate of dexibuprofen from DDE without reducing the bioavailability. Our results suggest that CDDE may be potential oral dosage forms to control the release and to improve the bioavailability of poorly water-soluble dexibuprofen. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability.

    PubMed

    Ma, Yiran; Zhao, Xinyi; Li, Jian; Shen, Qi

    2012-01-01

    The aim of this research was to increase the oral bioavailability of daidzein by the formulations of poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with daidzein. Amongst the various traditional and novel techniques of preparing daidzein-loaded PLGA nanoparticles, daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were selected. The average drug entrapment efficiency, particle size, and zeta potential of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were 81.9% ± 5%, 309.2 ± 14.0 nm, -32.14 ± 2.53 mV and 83.2% ± 7.2%, 323.2 ± 4.8 nm, -18.73 ± 1.68 mV, respectively. The morphological characterization of nanoparticles was observed with scanning electron microscopy by stereological method and the physicochemical state of nanoparticles was valued by differential scanning calorimetry. The in vitro drug-release profile of both nanoparticle formulations fitted the Weibull dynamic equation. Pharmacokinetic studies demonstrated that after oral administration of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 5.57- and 8.85-fold, respectively, compared to daidzein suspension as control. These results describe an effective strategy for oral delivery of daidzein-loaded PLGA nanoparticles and might provide a fresh approach to enhancing the bioavailability of drugs with poor lipophilic and poor hydrophilic properties.

  20. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability

    PubMed Central

    Ma, Yiran; Zhao, Xinyi; Li, Jian; Shen, Qi

    2012-01-01

    The aim of this research was to increase the oral bioavailability of daidzein by the formulations of poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with daidzein. Amongst the various traditional and novel techniques of preparing daidzein-loaded PLGA nanoparticles, daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were selected. The average drug entrapment efficiency, particle size, and zeta potential of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were 81.9% ± 5%, 309.2 ± 14.0 nm, −32.14 ± 2.53 mV and 83.2% ± 7.2%, 323.2 ± 4.8 nm, −18.73 ± 1.68 mV, respectively. The morphological characterization of nanoparticles was observed with scanning electron microscopy by stereological method and the physicochemical state of nanoparticles was valued by differential scanning calorimetry. The in vitro drug-release profile of both nanoparticle formulations fitted the Weibull dynamic equation. Pharmacokinetic studies demonstrated that after oral administration of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 5.57- and 8.85-fold, respectively, compared to daidzein suspension as control. These results describe an effective strategy for oral delivery of daidzein-loaded PLGA nanoparticles and might provide a fresh approach to enhancing the bioavailability of drugs with poor lipophilic and poor hydrophilic properties. PMID:22346351

  1. Development of self-nanoemulsifying drug delivery system for oral bioavailability enhancement of valsartan in beagle dogs.

    PubMed

    Li, Zhenbao; Zhang, Wenjuan; Gao, Yan; Xiang, Rongwu; Liu, Yan; Hu, Mingming; Zhou, Mei; Liu, Xiaohong; Wang, Yongjun; He, Zhonggui; Sun, Yinghua; Sun, Jin

    2017-02-01

    Valsartan, an angiotensin II receptor antagonist, is widely used to treat high blood pressure in the clinical setting. However, its poor water solubility results in the low oral bioavailability. The aim of this study was to improve dissolution rate and oral bioavailability by developing a self-nanoemulsifying drug delivery system. Saturation solubility of valsartan in various oils, surfactants, and cosurfactants was investigated, and the optimized formulation was determined by central composite design-response surface methodology. The shape of resultant VAL-SNEDDS was spherical with an average diameter of about 27 nm. And the drug loading efficiency is approximately 14 wt%. Differential scanning calorimetry and XRD studies disclosed the molecular or amorphous state of valsartan in VAL-SNEDDS. The dissolution study indicated that the self-nanoemulsifying drug delivery systems (SNEDDS) exhibited significantly enhanced dissolution compared with market capsules (Diovan®) in various media. Furthermore, the stability of formulation revealed that valsartan SNEDDS was stable under low temperature and accelerated test condition. Furthermore, the pharmacokinetics demonstrated that C max and AUC (0-∞) of SNEDDS capsules were about three- and twofold higher than Diovan® in beagle dogs, respectively. Meanwhile, the safety evaluation implied that VAL-SNEDDS was innocuous to beagle dogs during 15 days of continuous administration. Our results suggested that VAL-SNEDDS was a potential and safe delivery system with enhanced dissolution rate and oral bioavailability, as well as offered a strategy for the engineering of poorly water-soluble drugs in the clinical setting.

  2. Statistical modeling, optimization and characterization of solid self-nanoemulsifying drug delivery system of lopinavir using design of experiment.

    PubMed

    Patel, Grishma; Shelat, Pragna; Lalwani, Anita

    2016-10-01

    Lopinavir (LPV), an antiretroviral protease inhibitor shows poor bioavailability because of poor aqueous solubility and extensive hepatic first-pass metabolism. The aim of the present work was to investigate the potential of the solid self-nanoemulsifying drug delivery system (S-SNEDDS) in improving dissolution rate and oral bioavailability of LPV. Liquid SNEDDS (L-SNEDDS) of LPV were prepared using Capmul MCM C8, Cremophor RH 40 and propylene glycol and their amounts were optimized by Scheffe's mixture design. L-SNEDDS formulations were evaluated for different physicochemical and in vitro drug release parameters. S-SNEDDS were prepared by adsorbing L-SNEDDS on Neusilin US2 and characterized for solid-state properties. In vivo bioavailability of S-SNEDDS, marketed Lopinavir + Ritonavir (LPV/RTV) formulation and pure LPV was studied in Wistar rats. Stability study of S-SNEDDS was performed as per ICH guidelines. Optimized L-SNEDDS obtained by Scheffe design had drug loading 160 ± 1.15 mg, globule size 32.9 ± 1.45 nm and drug release >95% within 15 min. Solid state studies suggested the transformation of the crystalline drug to amorphous drug. The size and zeta potential of globules obtained on dilution S-SNEDDS remained similar to L-SNEEDS. In vivo bioavailability study revealed that S-SNEDDS has 2.97 and 1.54-folds higher bioavailability than pure LPV and LPV/RTV formulation, respectively. The optimized S-SNEDDS was found to be stable and had a shelf life of 2.85 years. The significant increase in drug dissolution and bioavailability by prepared SNEDDS suggest that the developed S-SNEDDS is a useful solid platform for improving oral bioavailability of poorly soluble LPV.

  3. Absolute bioavailability of evacetrapib in healthy subjects determined by simultaneous administration of oral evacetrapib and intravenous [13C8]‐evacetrapib as a tracer

    PubMed Central

    Aburub, Aktham; Ward, Chris; Hinds, Chris; Czeskis, Boris; Ruterbories, Kenneth; Suico, Jeffrey G.; Royalty, Jane; Ortega, Demetrio; Pack, Brian W.; Begum, Syeda L.; Annes, William F.; Lin, Qun; Small, David S.

    2015-01-01

    This open‐label, single‐period study in healthy subjects estimated evacetrapib absolute bioavailability following simultaneous administration of a 130‐mg evacetrapib oral dose and 4‐h intravenous (IV) infusion of 175 µg [13C8]‐evacetrapib as a tracer. Plasma samples collected through 168 h were analyzed for evacetrapib and [13C8]‐evacetrapib using high‐performance liquid chromatography/tandem mass spectrometry. Pharmacokinetic parameter estimates following oral and IV doses, including area under the concentration‐time curve (AUC) from zero to infinity (AUC[0‐∞]) and to the last measureable concentration (AUC[0‐tlast]), were calculated. Bioavailability was calculated as the ratio of least‐squares geometric mean of dose‐normalized AUC (oral : IV) and corresponding 90% confidence interval (CI). Bioavailability of evacetrapib was 44.8% (90% CI: 42.2–47.6%) for AUC(0‐∞) and 44.3% (90% CI: 41.8–46.9%) for AUC(0‐tlast). Evacetrapib was well tolerated with no reports of clinically significant safety assessment findings. This is among the first studies to estimate absolute bioavailability using simultaneous administration of an unlabeled oral dose with a 13C‐labeled IV microdose tracer at about 1/1000th the oral dose, with measurement in the pg/mL range. This approach is beneficial for poorly soluble drugs, does not require additional toxicology studies, does not change oral dose pharmacokinetics, and ultimately gives researchers another tool to evaluate absolute bioavailability. PMID:26639670

  4. Absolute bioavailability of evacetrapib in healthy subjects determined by simultaneous administration of oral evacetrapib and intravenous [(13) C8 ]-evacetrapib as a tracer.

    PubMed

    Cannady, Ellen A; Aburub, Aktham; Ward, Chris; Hinds, Chris; Czeskis, Boris; Ruterbories, Kenneth; Suico, Jeffrey G; Royalty, Jane; Ortega, Demetrio; Pack, Brian W; Begum, Syeda L; Annes, William F; Lin, Qun; Small, David S

    2016-05-30

    This open-label, single-period study in healthy subjects estimated evacetrapib absolute bioavailability following simultaneous administration of a 130-mg evacetrapib oral dose and 4-h intravenous (IV) infusion of 175 µg [(13) C8 ]-evacetrapib as a tracer. Plasma samples collected through 168 h were analyzed for evacetrapib and [(13) C8 ]-evacetrapib using high-performance liquid chromatography/tandem mass spectrometry. Pharmacokinetic parameter estimates following oral and IV doses, including area under the concentration-time curve (AUC) from zero to infinity (AUC[0-∞]) and to the last measureable concentration (AUC[0-tlast ]), were calculated. Bioavailability was calculated as the ratio of least-squares geometric mean of dose-normalized AUC (oral : IV) and corresponding 90% confidence interval (CI). Bioavailability of evacetrapib was 44.8% (90% CI: 42.2-47.6%) for AUC(0-∞) and 44.3% (90% CI: 41.8-46.9%) for AUC(0-tlast ). Evacetrapib was well tolerated with no reports of clinically significant safety assessment findings. This is among the first studies to estimate absolute bioavailability using simultaneous administration of an unlabeled oral dose with a (13) C-labeled IV microdose tracer at about 1/1000(th) the oral dose, with measurement in the pg/mL range. This approach is beneficial for poorly soluble drugs, does not require additional toxicology studies, does not change oral dose pharmacokinetics, and ultimately gives researchers another tool to evaluate absolute bioavailability. © 2015 The Authors Journal of Labelled Compounds and Radiopharmaceuticals Published by John Wiley & Sons Ltd.

  5. Phase behavior and oral bioavailability of amorphous Curcumin.

    PubMed

    Pawar, Yogesh B; Shete, Ganesh; Popat, Dharmesh; Bansal, Arvind K

    2012-08-30

    Amorphous form has been used as a means to improve aqueous solubility and oral bioavailability of poorly water soluble drugs. The objective of present study was to characterize thermodynamic and kinetic parameters of amorphous form of Curcumin (CRM-A). CRM-A was found to be a good glass former with glass transition temperature (T(g)) of 342.64K and critical cooling rate below 1K/min. CRM-A had a moderate tendency of crystallization and exhibited Kauzmann temperature (T(KS)) of 294.23 K. CRM-A was found to be fragile in nature as determined by T(m)/T(g) (1.32), C(p)(1 iq):C(p)(glass) (1.22), strength parameter (D<10), fragility index (m>75), T(K)/T(g) (0.85), and T(g)-T(K) (48.41). Theoretically predicted aqueous solubility advantage of 43.15-folds, was reduced to 17-folds under practical conditions. This reduction in solubility was attributed to water induced devitrification, as evident through PXRD and SEM analysis. Further, oral bioavailability study of CRM-A was undertaken to investigate bioavailability benefits, if any. C(max) was improved by 1.97-folds (statistically significant difference over control). However, oral bioavailability (AUC(0-)(∞)) was improved by 1.45-folds (statistically non significant difference over control). These observations pointed towards role of rapid devitrification of CRM-A in GIT milieu, thus limiting its oral bioavailability advantage. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. In Vitro Release and Bioavailability of Silybin from Micelle-Templated Porous Calcium Phosphate Microparticles.

    PubMed

    Zhu, Yuan; Wang, Miaomiao; Zhang, Ya; Zeng, Jin; Omari-Siaw, E; Yu, Jiangnan; Xu, Ximing

    2016-10-01

    Developing a promising carrier for the delivery of poorly water-soluble drugs, such as silybin, to improve oral absorption has become a very worthy of consideration. The goal of this study was to prepare a novel porous calcium phosphate microparticle using povidone-mixed micelles as template while evaluating its in vitro and in vivo properties with silybin as a model drug. The particle characterization, in vitro drug release behavior, and pharmacokinetic parameters of the prepared silybin-loaded calcium phosphate microparticle were investigated. The mean particle size was found to be 3.54 ± 0.32 μm with a rough surface porous structure. Additionally, the silybin-loaded calcium phosphate microparticle compared with the free silybin showed a prolonged 72-h release in vitro and a higher C max (418.5 ± 23.7 ng mL(-1)) with 167.5% oral relative bioavailability. A level A in vitro-in vivo correlation (IVIVC), established for the first time, demonstrated an excellent IVIVC of the formulated silybin in oral administration. In conclusion, this povidone-mixed micelle-based microparticle was successfully prepared to enhance the oral bioavailability of silybin. Therefore, application of this novel porous calcium phosphate microparticle holds a significant potential for the development of poorly water-soluble drugs.

  7. A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability.

    PubMed

    Wang, Yutong; Wang, Changyuan; Zhao, Jing; Ding, Yanfang; Li, Lei

    2017-01-01

    Nanosuspension is one of the most promising strategies to improve the oral bioavailability of insoluble drugs. The existing techniques applied to produce nanosuspensions are classified as "bottom-up" or "top-down" methods, or a combination of both. Curcumin (CUR), a Biopharmaceutics Classification System (BCS) class IV substance, is a promising drug candidate in view of its good bioactivity, but its use is limited due to its poor solubility and permeability. In the present study, CUR nanosuspensions were developed to enhance CUR oral bioavailability using a cost-effective method different from conventional techniques. The physicochemical properties of CUR nanosuspensions were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The crystalline state of CUR in different nanosuspensions analyzed using differential scanning calorimeter (DSC) and X-ray diffraction analysis (PXRD) confirmed its amorphous state. In vitro dissolution degree of the prepared CUR nanosuspensions using TPGS or Brij78 as stabilizer was greatly increased. Pharmacokinetic studies demonstrated that the oral bioavailability of CUR was increased 3.18 and 3.7 times after administration of CUR/TPGS nanosuspensions or CUR/Brij78 nanosuspensions, when compared with the administration of CUR suspension. CUR nanosuspensions produced by our cost-effective method could improve its oral bioavailability. In addition, the low-cost and time-saving method reported here is highly suitable for a fast and inexpensive preparation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Oral bioavailability assessment and intestinal lymphatic transport of Org 45697 and Org 46035, two highly lipophilic novel immunomodulator analogues.

    PubMed

    Caliph, Suzanne M; Faassen, W A Fried; Vogel, Gerard M; Porter, Christopher J H

    2009-08-01

    Org 45697 (MW 600.7, clogP 7.92, soybean oil solubility 50 mg/g) and Org 46035 (MW 601.6, clog P 8.46, soybean oil solubility 40 mg/g) are two poorly water soluble (<0.1 microg/ml), highly lipophilic drug candidates with immunomodulator activity and highly analogous chemical structures. After oral administration to conscious ambulatory rats in an aqueous-based methylcellulose/Tween 80 suspension, the bioavailability of both compounds was low (< 2% of administered dose). However, bioavailability was significantly increased (> 5 fold) after oral administration in a long chain triglyceride lipid (olive oil) formulation. Subsequent studies have explored the potential for solubilising formulations, including lipid-based formulations, to enhance the oral bioavailability of Org 45697 and Org 46035 and secondly to explore the potential contribution of intestinal lymphatic transport to intestinal absorption. The experimental data show that solubilising formulations may provide for significant increases in oral bioavailability for Org 45697 and Org 46035 and that after co-administration with lipid, 35-50% of the absorbed dose may be transported to the systemic circulation via the intestinal lymph. Interestingly, the lymphatic transport of the less lipid soluble analogue, Org 46035 was approximately 40% lower than that of Org 45697 suggesting that relatively subtle differences in lipid solubility can have significant impact on the extent of lymphatic transport.

  9. Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption.

    PubMed

    Zhang, Dong; Li, Dongpo; Shang, Lei; He, Zhonggui; Sun, Jin

    2016-09-10

    Cytarabine has a poor oral absorption due to its rapid deamination and poor membrane permeability. Bile acid transporters are highly expressed both in enterocytes and hepatocytes and to increase the oral bioavailability and investigate the potential application of cytarabine for liver cancers, a transporter- recognizing prodrug strategy was applied to design and synthesize four conjugates of cytarabine with cholic acid (CA), chenodeoxycholic acid (CDCA), hyodeoxycholic acid (HDCA) and ursodeoxycholic acid (UDCA). The anticancer activities against HepG2 cells were evaluated by MTT assay and the role of bile acid transporters during cellular transport was investigated in a competitive inhibition experiment. The in vitro and in vivo metabolic stabilities of these conjugates were studied in rat plasma and liver homogenates. Finally, an oral bioavailability study was conducted in rats. All the cholic acid-cytarabine conjugates (40μM) showed potent antiproliferative activities (up to 70%) against HepG2 cells after incubation for 48h. The addition of bile acids could markedly reduce the antitumor activities of these conjugates. The N(4)-ursodeoxycholic acid conjugate of cytarabine (compound 5) exhibited optimal stability (t1/2=90min) in vitro and a 3.9-fold prolonged half-life of cytarabine in vivo. More importantly, compound 5 increased the oral bioavailability 2-fold compared with cytarabine. The results of the present study suggest that the prodrug strategy based on the bile acid transporters is suitable for improving the oral absorption and the clinical application of cytarabine. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Phospholipid-based solid drug formulations for oral bioavailability enhancement: A meta-analysis.

    PubMed

    Fong, Sophia Yui Kau; Brandl, Martin; Bauer-Brandl, Annette

    2015-12-01

    Low bioavailability nowadays often represents a challenge in oral dosage form development. Solid formulations composed of drug and phospholipid (PL), which, upon contact with water, eventually form multilamellar liposomes (i.e. 'proliposomes'), are an emerging approach to solve such issue. Regarded as an 'improved' version of liposomes concerning storage stability, the potential and versatility of a range of such formulations for oral drug delivery have been extensively discussed. However, a systematic and quantitative analysis of the studies that applied solid PL for oral bioavailability enhancement is currently lacking. Such analysis is necessary for providing an overview of the research progress and addressing the question on how promising this approach can be on bioavailability enhancement. The current review performed a systematic search of references in three evidence-based English databases, Medline, Embase, and SciFinder, from the year of 1985 up till March 2015. A total of 112 research articles and 82 patents that involved solid PL-based formulations were identified. The majority of such formulations was intended for oral drug delivery (55%) and was developed to address low bioavailability issues (49%). A final of 54 studies that applied such formulations for bioavailability enhancement of 43 different drugs with poor water solubility and/or permeability were identified. These proof-of-concept studies with in vitro (n=31) and/or animal (n=23) evidences have been systematically summarized. Meta-analyses were conducted to measure the overall enhancement power (percent increase compared to control group) of solid PL formulations on drugs' solubility, permeability and oral bioavailability, which were found to be 127.4% (95% CI [86.1, 168.7]), 59.6% (95% CI [30.1, 89.0]), and 18.5% (95% CI [10.1, 26.9]) respectively. Correlations between the enhancement factors and in silico physiochemical properties of drugs were also performed to check if such approach can be used to identify the best candidates for oral solid PL formulation. In addition to scientific literature, 13 solid PL formulation-related patents that addressed the issue of low oral bioavailability have been identified and summarized; whereas no clinical study was identified from the current search. By providing systematic information and meta-analysis on studies that applied the principle of 'proliposomes' for oral bioavailability enhancement, the current review should be insightful for formulation scientists who wish to adopt the PL based approach to overcome the solubility, permeability and bioavailability issues of orally delivered drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Mesoporous materials and nanocrystals for enhancing the dissolution behavior of poorly water-soluble drugs.

    PubMed

    Santos, Helder A; Peltonen, Leena; Limnell, Tarja; Hirvonen, Jouni

    2013-01-01

    Advanced drug delivery formulations are presently recognized as promising tools for overcoming the adverse physicochemical properties of conventional drug molecules, such as poor water solubility, which often leads to poor drug bioavailability. Oral drug delivery is considered as the easiest and most convenient route of drug administration. However, via the current trends utilizing combinatorial chemistry and high throughput screening in drug development, new drug molecules are moving towards lipophilic and poorly water-soluble large molecules, and the oral delivery route is becoming increasingly challenging. In this context, formulation of poorly soluble and/or permeable drugs using mesoporous materials and nanocrystals technology have proven to be highly successful due to the greater surface/volume ratio of these systems, resulting in improvements in dissolution and bioavailability, as well as enhanced drug permeability. This review addresses the issues of poorly water-soluble drugs with a major focus on recent developments in the application of the mesoporous materials (e.g., porous silicon and silica) and nanocrystals in drug delivery applications. In addition, we present several recent examples of the significant potential of these materials for the pharmaceutical field.

  12. In vitro-in vivo correlation for wet-milled tablet of poorly water-soluble cilostazol.

    PubMed

    Jinno, Jun-ichi; Kamada, Naoki; Miyake, Masateru; Yamada, Keigo; Mukai, Tadashi; Odomi, Masaaki; Toguchi, Hajime; Liversidge, Gary G; Higaki, Kazutaka; Kimura, Toshikiro

    2008-08-25

    The purpose of the present study was to investigate oral bioavailability of an immediate release tablet containing wet-milled crystals of a poorly water-soluble drug, cilostazol, and to establish in vitro-in vivo correlation. Sub-micron sized cilostazol (median diameter: 0.26 microm) was successfully prepared using a beads-mill in water in the presence of a hydrophilic polymer and an anionic surfactant. The milled suspension was solidified with a sugar alcohol as a water-soluble carrier by spray-drying method. The co-precipitate was compressed into an immediate release tablet with common excipients. Oral bioavailability of the wet-milled cilostazol tablet in male beagle dogs was 13-fold higher than the hammer-milled commercial tablet in fasted condition. Food did not increase the oral bioavailability of the wet-milled tablet, while 4-fold increase was found for the commercial tablet. Irrespective to the bioavailability enhancement, in vitro dissolution rate of the wet-milled tablet was even slower than the commercial tablet by the compendial method (USP Apparatus 2). On the other hand, a good correlation was found between the dissolution profiles obtained by a flow-through cell method (USP Apparatus 4, closed-loop system without outlet filter) using a large volume of water and sodium lauryl sulfate (SLS) solution at the concentration lower than the critical micellar concentration (cmc) as dissolution media corresponding to the fasted and fed conditions, respectively.

  13. Improved oral bioavailability of glyburide by a self-nanoemulsifying drug delivery system.

    PubMed

    Liu, Hongzhuo; Shang, Kuimao; Liu, Weina; Leng, Donglei; Li, Ran; Kong, Ying; Zhang, Tianhong

    2014-01-01

    The present study aimed at the development and characterisation of self-nanoemulsifying drug delivery system (SNEDDS) to improve the oral bioavailability of poorly soluble glyburide. The solubility of glyburide was determined in various oils, surfactants and co-surfactants which were grouped into two different combinations to construct ternary phase diagrams. The formulations were evaluated for emulsification time, droplet size, zeta-potential, electrical conductivity and stability of nanoemulsions. The optimised SNEDDS loading with 5 mg/g glyburide comprised 55% Cremophor® RH 40, 15% propanediol and 30% Miglyol® 812, which rapidly formed fine oil-in-water nanoemulsions with 46 ± 4 nm particle size. Compared with the commercial micronised tablets (Glynase®PresTab®), enhanced in vitro release profiles of SNEDDS were observed, resulting in the 1.5-fold increase of AUC following oral administration of SNEDDS in fasting beagle dogs. These results indicated that SNEDDS is a promising drug delivery system for increasing the oral bioavailability of glyburide.

  14. Nanostructured lipid carriers used for oral delivery of oridonin: an effect of ligand modification on absorption.

    PubMed

    Zhou, Xiaotong; Zhang, Xingwang; Ye, Yanghuan; Zhang, Tianpeng; Wang, Huan; Ma, Zhiguo; Wu, Baojian

    2015-02-20

    Oridonin (Ori) is a natural compound with notable anti-inflammation and anti-cancer activities. However, therapeutic use of this compound is limited by its poor solubility and low bioavailability. Here a novel biotin-modified nanostructured lipid carrier (NLC) was developed to enhance the bioavailability of Ori. The effect of ligand (biotin) modification on oral absorption of Ori encapsulated in NLCs was also explored. Ori-loaded NLCs (Ori-NLCs) were prepared by the melt dispersion-high pressure homogenization method. Biotin modification of Ori-NLCs was achieved by EDC and NHS in aqueous phase. The obtained biotin-decorated Ori-NLCs (Bio-Ori-NLCs) were 144.9nm in size with an entrapment efficiency of 49.54% and a drug load of 4.81%. Oral bioavailability was enhanced by use of Bio-Ori-NLCs with a relative bioavailability of 171.01%, while the value of non-modified Ori-NLCs was improved to 143.48%. Intestinal perfusion showed that Ori solution unexpectedly exhibited a moderate permeability, indicating that permeability was not a limiting factor of Ori absorption. Ori could be rapidly metabolized that was the main cause of low bioavailability. However, there was a difference in the enhancement of bioavailability between Bio-Ori-NLCs and conventional NLCs. Although severe lipolyses happened both on Bio-Ori-NLCs and non-modified NLCs, the performance of Bio-Ori-NLCs in the bioavailability improvement was more significant. Overall, Bio-Ori-NLCs can further promote the oral absorption of Ori by a ligand-mediated active transport. It may be a promising carrier for the oral delivery of Ori. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells.

    PubMed

    Patil, Sharvil; Choudhary, Bhavana; Rathore, Atul; Roy, Krishtey; Mahadik, Kakasaheb

    2015-11-15

    Curcumin has a wide range of pharmacological activities including antioxidant, anti-inflammatory, antidiabetic, antibacterial, wound healing, antiatherosclerotic, hepatoprotective and anti-carcinogenic. However, its clinical applications are limited owing to its poor aqueous solubility, multidrug pump P-gp efflux, extensive in vivo metabolism and rapid elimination due to glucuronidation/sulfation. The objective of the current work was to prepare novel curcumin loaded mixed micelles (CUR-MM) of Pluronic F-127 (PF127) and Gelucire® 44/14 (GL44) in order to enhance its oral bioavailability and cytotoxicity in human lung cancer cell line A549. 3(2) Factorial design was used to assess the effect of formulation variables for optimization of mixed micelle batch. CUR-MM was prepared by a solvent evaporation method. The optimized CUR-MM was evaluated for size, entrapment efficiency (EE), in vitro curcumin release, cytotoxicity and oral bioavailability in rats. The average size of CUR-MM was found to be around 188 ± 3 nm with an EE of about 76.45 ± 1.18% w/w. In vitro dissolution profile of CUR-MM revealed controlled release of curcumin. Additionally, CUR-MM showed significant improvement in cytotoxic activity (3-folds) and oral bioavailability (around 55-folds) of curcumin as compared to curcumin alone. Such significant improvement in cytotoxic activity and oral bioavailability of curcumin when formulated into mixed micelles could be attributed to solubilization of hydrophobic curcumin into micelle core along with P-gp inhibition effect of both, PF127 and GL44. Thus the present work propose the formulation of mixed micelles of PF127 and GL44 which can act as promising carrier systems for hydrophobic drugs such as curcumin with significant improvement in their oral bioavailability. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications.

    PubMed

    Kawabata, Yohei; Wada, Koichi; Nakatani, Manabu; Yamada, Shizuo; Onoue, Satomi

    2011-11-25

    The poor oral bioavailability arising from poor aqueous solubility should make drug research and development more difficult. Various approaches have been developed with a focus on enhancement of the solubility, dissolution rate, and oral bioavailability of poorly water-soluble drugs. To complete development works within a limited amount of time, the establishment of a suitable formulation strategy should be a key consideration for the pharmaceutical development of poorly water-soluble drugs. In this article, viable formulation options are reviewed on the basis of the biopharmaceutics classification system of drug substances. The article describes the basic approaches for poorly water-soluble drugs, such as crystal modification, micronization, amorphization, self-emulsification, cyclodextrin complexation, and pH modification. Literature-based examples of the formulation options for poorly water-soluble compounds and their practical application to marketed products are also provided. Classification of drug candidates based on their biopharmaceutical properties can provide an indication of the difficulty of drug development works. A better understanding of the physicochemical and biopharmaceutical properties of drug substances and the limitations of each delivery option should lead to efficient formulation development for poorly water-soluble drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation.

    PubMed

    Zainuddin, Rana; Zaheer, Zahid; Sangshetti, Jaiprakash N; Momin, Mufassir

    2017-12-01

    To synthesize β cyclodextrin nanosponges using a novel and efficient microwave mediated method for enhancing bioavailability of Rilpivirine HCl (RLP). Belonging to BCS class II RLP has pH dependent solubility and poor oral bioavailability. However, a fatty meal enhances its absorption hence the therapy indicates that the dosage form be consumed with a meal. But then it becomes tedious and inconvenient to continue the therapy for years with having to face the associated gastric side effects such as nausea. Microwave synthesizer was used to mediate the poly-condensation reaction between β-cyclodextrin and cross-linker diphenylcarbonate. Critical parameters selected were polymer to cross-linker ratio, Watt power, reaction time and solvent volume. Characterization studies were performed using FTIR, DSC, SEM, 1 H-NMR and PXRD. Molecular modeling was applied to confirm the possibility of drug entrapment. In vitro drug dissolution followed by oral bioavailability studies was performed in Sprawley rats. Samples were analyzed using HPLC. Microwave synthesis yields para-crystalline, porous nanosponges (∼205 nm). Drug entrapment led to enhancement of solubility and a two-fold increase in drug dissolution (P < 0.001) following Higuchi release model. Enhanced oral bioavailability was observed in fasted Sprawley rats where C max and AUC 0-∞ increases significantly (C max of NS∼ 586 ± 5.91 ng/mL; plain RLP ∼310 ± 5. 74 ng/mL). The approach offers a comfortable dosing zone for AIDs patients, negating the requirement of consuming the formulation in a fed state due to enhancement in drugs' oral bioavailability.

  18. Role of self-emulsifying drug delivery systems in optimizing the oral delivery of hydrophilic macromolecules and reducing interindividual variability.

    PubMed

    AboulFotouh, Khaled; Allam, Ayat A; El-Badry, Mahmoud; El-Sayed, Ahmed M

    2018-07-01

    Self-emulsifying drug delivery systems (SEDDS) have been widely employed to improve the oral bioavailability of poorly soluble drugs. In the past few years, SEDDS were extensively investigated to overcome various barriers encountered in the oral delivery of hydrophilic macromolecules (e.g., protein/peptide therapeutics and plasmid DNA (pDNA)), as well as in lowering the effect of food on drugs' bioavailability. However, the main mechanism(s) by which SEDDS could achieve such promising effects remains not fully understood. This review summarizes the recent progress in the use of SEDDS for protecting protein therapeutics and/or pDNA against enzymatic degradation and increasing the oral bioavailability of various drug substances regardless of the dietary condition. Understanding the underlying mechanism(s) of such promising applications will aid in the future development of rationally designed SEDDS. Entrapment of hydrophilic macromolecules in the oil phase of the formed emulsion is critical for protection of the loaded cargoes against enzymatic degradation and the enhancement of oral bioavailability. On the other hand, drug administration as a preconcentrated solution in the SEDDS preconcentrate allows the process of drug absorption to occur independently of the dietary condition, and thus reducing interindividual variability that results from concomitant food intake. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs.

    PubMed

    Dahan, Arik; Hoffman, Amnon

    2008-07-02

    As a consequence of modern drug discovery techniques, there has been a consistent increase in the number of new pharmacologically active lipophilic compounds that are poorly water soluble. A great challenge facing the pharmaceutical scientist is making these molecules into orally administered medications with sufficient bioavailability. One of the most popular approaches to improve the oral bioavailability of these molecules is the utilization of a lipid based drug delivery system. Unfortunately, current development strategies in the area of lipid based delivery systems are mostly empirical. Hence, there is a need for a simplified in vitro method to guide the selection of a suitable lipidic vehicle composition and to rationalize the delivery system design. To address this need, a dynamic in vitro lipolysis model, which provides a very good simulation of the in vivo lipid digestion process, has been developed over the past few years. This model has been extensively used for in vitro assessment of different lipid based delivery systems, leading to enhanced understanding of the suitability of different lipids and surfactants as a delivery system for a given poorly water soluble drug candidate. A key goal in the development of the dynamic in vitro lipolysis model has been correlating the in vitro data of various drug-lipidic delivery system combinations to the resultant in vivo drug profile. In this paper, we discuss and review the need for this model, its underlying theory, practice and limitations, and the available data accumulated in the literature. Overall, the dynamic in vitro lipolysis model seems to provide highly useful initial guidelines in the development process of oral lipid based drug delivery systems for poorly water soluble drugs, and it predicts phenomena that occur in the pre-enterocyte stages of the intestinal absorption cascade.

  20. Increasing the dissolution rate and oral bioavailability of the poorly water-soluble drug valsartan using novel hierarchical porous carbon monoliths.

    PubMed

    Zhang, Yanzhuo; Che, Erxi; Zhang, Miao; Sun, Baoxiang; Gao, Jian; Han, Jin; Song, Yaling

    2014-10-01

    In the present study, a novel hierarchical porous carbon monolith (HPCM) with three-dimensionally (3D) ordered macropores (∼ 400 nm) and uniform accessible mesopores (∼ 5.2 nm) was synthesized via a facile dual-templating technique using colloidal silica nanospheres and Poloxamer 407 as templates. The feasibility of the prepared HPCM for oral drug delivery was studied. Valsartan (VAL) was chosen as a poorly water-soluble model drug and loaded into the HPCM matrix using the solvent evaporation method. Scanning electron microscopy (SEM) and specific surface area analysis were employed to characterize the drug-loaded HPCM-based formulation, confirming the successful inclusion of VAL into the nanopores of HPCM. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) demonstrated that the incorporated drug in the HPCM matrix was in an amorphous state and the VAL formulation exhibited good physical stability for up to 6 months. In vitro tests showed that the dissolution rate of HPCM-based formulation was increased significantly compared with that of crystalline VAL or VAL-loaded 3D ordered macroporous carbon monoliths (OMCMs). Furthermore, a pharmacokinetic study in rats demonstrated about 2.4-fold increase in oral bioavailability of VAL in the case of HPCM-based formulation compared with the commercially available VAL preparation (Valzaar(®)). These results therefore suggest that HPCM is a promising carrier able to improve the dissolution rate and oral bioavailability of the poorly water-soluble drug VAL. Copyright © 2014. Published by Elsevier B.V.

  1. Fabrication of a Soybean Bowman-Birk Inhibitor (BBI) Nanodelivery Carrier To Improve Bioavailability of Curcumin.

    PubMed

    Liu, Chun; Cheng, Fenfen; Yang, Xiaoquan

    2017-03-22

    Curcumin is a poorly water-soluble drug, and its oral bioavailability is very low. Here, a novel self-assembly nanoparticle delivery carrier has been successfully developed by using soybean Bowman-Birk inhibitor (BBI) to improve the solubility, bioaccessibility, and oral absorption of curcumin. BBI is a unique protein, which can be resistant to the pH range and proteolytic enzymes in the gastrointestinal tract (GIT), bioavailable, and not allergenic. The encapsulation efficiencies (EE) and the loading capacities (LC) of curcumin in the curcumin-loaded BBI nanoparticles (Cur-BBI-NPs, size = 90.09 nm, PDI = 0.103) were 86.17 and 10.31%, respectively. The in vitro bioaccessibility of Cur-BBI-NPs was superior to that of curcumin-loaded sodium caseinate (SC) nanoparticles (Cur-SC-NPs) (as control). Moreover, Cur-BBI-NPs significantly enhanced the bioavailability of curcumin in rats compared with Cur-SC-NPs, and the clathrin-mediated endocytosis pathway probably contributed to the favorable bioavailability of Cur-BBI-NPs, as revealed by the cellular uptake inhibition study.

  2. Pharmacokinetics of isochlorgenic acid C in rats by HPLC-MS: Absolute bioavailability and dose proportionality.

    PubMed

    Huang, Li Hua; Xiong, Xiao Hong; Zhong, Yun Ming; Cen, Mei Feng; Cheng, Xuan Ge; Wang, Gui Xiang; Zang, Lin Quan; Wang, Su Jun

    2016-06-05

    Isochlorgenic acid C (IAC), one of the bioactive compounds of Lonicera japonica, exhibited diverse pharmacological effects. However, its pharmacokinetic properties and bioavailability remained unresolved. To determine the absolute bioavailability in rats and the dose proportionality on the pharmacokinetics of single oral dose of IAC. A validated HPLC-MS method was developed for the determination of IAC in rat plasma. Plasma concentration versus time data were generated following oral and intravenous dosing. The pharmacokinetic analysis was performed using DAS 3.0 software analysis. Absolute bioavailability in rats was determined by comparing pharmacokinetic data after administration of single oral (5, 10 and 25mgkg(-1)) and intravenous (5mgkg(-1)) doses of IAC. The dose proportionality of AUC(0-∞) and Cmax were analyzed by linear regression. Experimental data showed that absolute oral bioavailability of IAC in rats across the doses ranged between 14.4% and 16.9%. The regression analysis of AUC(0-∞) and Cmax at the three doses (5, 10 and 25mgkg(-1)) indicated that the equations were y=35.23x+117.20 (r=0.998) and y=121.03x+255.74 (r=0.995), respectively. A new HPLC-MS method was developed to determine the bioavailability and the dose proportionality of IAC. Bioavailability of IAC in rats was poor and both Cmax and AUC(0-∞) of IAC had a positive correlation with dose. Evaluation of the pharmacokinetics of IAC will be useful in assessing concentration-effect relationships for the potential therapeutic applications of IAC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation

    PubMed Central

    Yousaf, Abid Mehmood; Kim, Dong Wuk; Oh, Yu-Kyoung; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2015-01-01

    Background The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate. Methods The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v) aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP) nanospheres, hydroxypropyl-β-cyclodextrin (HP-β-CD) nanocorpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS), fenofibrate/HP-β-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder. Results Among the tested carriers, PVP, HP-β-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-β-CD nanocorpuscles; however, in other formulations, it existed in the crystalline state with a reduced intensity. The aqueous solubility and dissolution rates of the nanoparticles (after 30 minutes) were not significantly different from one another. Among the nanoparticulated systems tested in this study, the initial dissolution rates (up to 10 minutes) were higher with the PVP nanospheres and HP-β-CD nanocorpuscles; however, neither of them resulted in the highest oral bioavailability. Irrespective of relatively retarded dissolution rate, gelatin nanocapsules showed the highest apparent aqueous solubility and furnished the most improved oral bioavailability of the drug (~5.5-fold), owing to better wetting and diminution in crystallinity. Conclusion Fenofibrate-loaded gelatin nanocapsules prepared using the solvent-evaporation method through the spray-drying technique could be a potential oral pharmaceutical product for administering the poorly water-soluble fenofibrate with an enhanced bioavailability. PMID:25784807

  4. Creatinine-based non-phospholipid vesicular carrier for improved oral bioavailability of Azithromycin.

    PubMed

    Ullah, Shafi; Shah, Muhammad Raza; Shoaib, Mohammad; Imran, Muhammad; Shah, Syed Wadood Ali; Ali, Imdad; Ahmed, Farid

    2017-06-01

    Novel, safe, efficient and cost effective nano-carriers from renewable resources have got greater interest for enhancing solubility and bioavailability of hydrophobic dugs. This study reports the synthesis of a novel biocompatible non-phospholipid human metabolite "Creatinine" based niosomal delivery system for Azithromycin improved oral bioavailability. Synthesized surfactant was characterized through spectroscopic and spectrometric techniques and then the potential for niosomal vesicle formation was evaluated using Azithromycin as model drug. Drug loaded vesicles were characterized for size, polydispersity index (PDI), shape, drug encapsulation efficiency (EE), in vitro release and drug-excipient interaction using zetasizer, atomic force microscope (AFM), LC-MS/MS and FTIR. The biocompatibility of surfactant was investigated through cells cytotoxicity, blood hemolysis and acute toxicity. Azithromycin encapsulated in niosomes was investigated for in vivo bioavailability in rabbits. The vesicles were spherical with 247 ± 4.67 nm diameter hosting 73.29 ± 3.51% of the drug. Surfactant was nontoxic against cell cultures and caused 5.80 ± 0.51% hemolysis at 1000 µg/mL. It was also found safe in mice up to 2.5 g/kg body weight. Synthesized surfactant based niosomal vesicles revealed enhanced oral bioavailability of Azithromycin in rabbits. The results of the present study confirm that the novel surfactant is highly biocompatible and the niosomal vesicles can be efficiently used for improving the oral bioavailability of poor water soluble drugs.

  5. Pharmacokinetics of Curcumin Diethyl Disuccinate, a Prodrug of Curcumin, in Wistar Rats.

    PubMed

    Bangphumi, Kunan; Kittiviriyakul, Chuleeporn; Towiwat, Pasarapa; Rojsitthisak, Pornchai; Khemawoot, Phisit

    2016-12-01

    Curcumin is the major bioactive component of turmeric, but has poor oral bioavailability that limits its clinical applications. To improve the in vitro solubility and alkaline stability, we developed a prodrug of curcumin by succinylation to obtain curcumin diethyl disuccinate, with the goal of improving the oral bioavailability of curcumin. The in vivo pharmacokinetic profile of curcumin diethyl disuccinate was compared with that of curcumin in male Wistar rats. Doses of curcumin 20 mg/kg intravenous or 40 mg/kg oral were used as standard regimens for comparison with the prodrug at equivalent doses in healthy adult rats. Blood, tissues, urine, and faeces were collected from time zero to 48 h after dosing to determine the prodrug level, curcumin level and a major metabolite by liquid chromatography-tandem spectrometry. The absolute oral bioavailability of curcumin diethyl disuccinate was not significantly improved compared with curcumin, with both compounds having oral bioavailability of curcumin less than 1 %. The major metabolic pathway of the prodrug was rapid hydrolysis to obtain curcumin, followed by glucuronidation. Interestingly, curcumin diethyl disuccinate gave superior tissue distribution with higher tissue to plasma ratio of curcumin and curcumin glucuronide in several organs after intravenous dosing at 1 and 4 h. The primary elimination route of curcumin glucuronide occurred via biliary and faecal excretion, with evidence of an entry into the enterohepatic circulation. Curcumin diethyl disuccinate did not significantly improve the oral bioavailability of curcumin due to first pass metabolism in the gastrointestinal tract. Further studies on reduction of first pass metabolism are required to optimise delivery of curcumin using a prodrug approach.

  6. Preparation, characterization and in vitro/vivo evaluation of tectorigenin solid dispersion with improved dissolution and bioavailability.

    PubMed

    Shuai, Shuping; Yue, Shanlan; Huang, Qingting; Wang, Wei; Yang, Junyi; Lan, Ke; Ye, Liming

    2016-08-01

    The purpose of this study was to develop and evaluate a novel amorphous solid dispersion system for tectorigenin (TG). TG is one of isoflavone aglycones extracted from Iris tectorum and flowers of Pueraria thunbergiana, but its poor water solubility and low membrane permeability have severely restricted the clinical application. To increase the aqueous solubility and oral bioavailability of TG, we prepared the solid dispersions of tectorigenin (TG-SD) using a simple solvent evaporation process with TG, polyvinylpyrrolidone (PVP) and PEG4000 at weight ratio of 7:54:9 after tested in several ratios. The prepared solid dispersions of tectorigenin are duly characterized for drug morphological conversion, in vitro dissolution and in vivo bioavailability. The X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) studies have indicated the morphological conversion of tectorigenin to amorphous form. In vitro release profiles revealed that the % release of TG-SD was achieved 4.35-fold higher than that of the pure drug after 150 min. The oral bioavailability of the solid dispersion in rats was also increased based on AUC0-t and C max of TG-SD, which were 4.8- and 13.1-fold higher than that of TG crystal, respectively. It is worth noting that physical mixture containing TG, PEG4000 and PVP produced a similar level of oral exposure as TG-SD, suggesting that PEG4000 and PVP were able to enhance bioavailability of TG in rats. However, with the reduction of particle size, TG-SD provided the fastest oral absorption compared to physical mixture and pure drug. These results demonstrated that the efficacy of solid dispersions for the enhancement of TG oral bioavailability was by increasing its aqueous solubility and the solid dispersion formulation could be a viable option for enhancing the oral bioavailability of TG.

  7. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake

    PubMed Central

    Cho, Hyun-Jong; Park, Jin Woo; Yoon, In-Soo; Kim, Dae-Duk

    2014-01-01

    Docetaxel is a potent anticancer drug, but development of an oral formulation has been hindered mainly due to its poor oral bioavailability. In this study, solid lipid nanoparticles (SLNs) surface-modified by Tween 80 or D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) were prepared and evaluated in terms of their feasibility as oral delivery systems for docetaxel. Tween 80-emulsified and TPGS 1000-emulsified tristearin-based lipidic nanoparticles were prepared by a solvent-diffusion method, and their particle size distribution, zeta potential, drug loading, and particle morphology were characterized. An in vitro release study showed a sustained-release profile of docetaxel from the SLNs compared with an intravenous docetaxel formulation (Taxotere®). Tween 80-emulsified SLNs showed enhanced intestinal absorption, lymphatic uptake, and relative oral bioavailability of docetaxel compared with Taxotere in rats. These results may be attributable to the absorption-enhancing effects of the tristearin nanoparticle. Moreover, compared with Tween 80-emulsified SLNs, the intestinal absorption and relative oral bioavailability of docetaxel in rats were further improved in TPGS 1000-emulsified SLNs, probably due to better inhibition of drug efflux by TPGS 1000, along with intestinal lymphatic uptake. Taken together, it is worth noting that these surface-modified SLNs may serve as efficient oral delivery systems for docetaxel. PMID:24531717

  8. Enhanced oral bioavailability of felodipine by novel solid self-microemulsifying tablets.

    PubMed

    Jing, Boyu; Wang, Zhiyuan; Yang, Rui; Zheng, Xia; Zhao, Jia; Tang, Si; He, Zhonggui

    2016-01-01

    The novel self-microemulsifying (SME) tablets were developed to enhance the oral bioavailability of a poor water-soluble drug felodipine (FDP). Firstly, FDP was dissolved in the optimized liquid self-microemusifying drug delivery systems (SMEDDS) containing Miglyol® 812, Cremophor® RH 40, Tween 80 and Transcutol® P, and the mixture was solidified with porous silicon dioxide and crospovidone as adsorbents. Then after combining the solidified powders with other excipients, the solid SME tablets were prepared by wet granulation-compression method. The prepared tablets possessed satisfactory characterization; the droplet size of the SME tablets following self-emulsification in water was nearly equivalent to the liquid SMEDDS (68.4 ± 14.0 and 64.4 ± 12.0 nm); differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) analysis demonstrated that FDP in SME tablets had undergone a polymorphism transition from a crystal form to an amorphous state, which was further confirmed by transmission electron microscopy (TEM). A similar dissolution performance of SME tablets and liquid SMEDDS was also obtained under the sink condition (85% within 10 min), both significantly higher than commercial tablets. The oral bioavailability was evaluated for the SME tablets, liquid SMEDDS and commercial conventional tablets in the fasted beagle dogs. The AUC of FDP from the SME tablets was about 2-fold greater than that of conventional tablets, but no significant difference was found when compared with the liquid SMEDDS. Accordingly, these preliminary results suggest that this formulation approach offers a useful large-scale producing method to prepare the solid SME tablets from the liquid SMEDDS for oral bioavailability equivalent enhancement of poorly soluble FDP.

  9. In-situ single pass intestinal permeability and pharmacokinetic study of developed Lumefantrine loaded solid lipid nanoparticles.

    PubMed

    Garg, Anuj; Bhalala, Kripal; Tomar, Devendra Singh; Wahajuddin

    2017-01-10

    The present investigation aims to develop lumefantrine loaded binary solid lipid nanoparticles (LF-SLNs) to improve its poor and variable oral bioavailability. The oral bioavailability of LF is poor and variable due to its limited aqueous solubility and P-gp mediated efflux occurring in small intestine. LF-SLNs were prepared using binary lipid mixture of stearic acid and caprylic acid stabilized with TPGS (D-alpha tocopheryl polyethylene glycol 1000 succinate) and Poloxamer 188. Developed LF-SLNs were characterized for particle size distribution, zeta potential, entrapment efficiency, solid state properties and biopharmaceutical properties including in situ intestinal permeability and oral bioavailability. The particle size distribution, zeta potential and entrapment efficiency of optimized batch (LF-SLN7) was found to be 357.7±43.27nm, 25.29±1.15mV and 97.35±0.30%, respectively. DSC thermographs showed loss of crystalline nature of lumefantrine in LF-SLNs. In situ single pass intestinal permeability study (SPIP) study indicated significant enhancement in the effective intestinal permeability of LF from LF-SLN7 as compared to that of control. Pharmacokinetic study also showed significant increase in Cmax and area under curve (AUC0- ∞ ) from LF-SLN7 (3860±521ng/mL and 43181±2557h×ng/mL, respectively) as compared to that of LF-control suspension (1425±563ng/mL and 19586±1537h×ng/mL, respectively). Thus, developed LF-SLNs can be promising to overcome P-gp efflux pump and enhance the oral bioavailability of lumefantrine. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Enhancing the Solubility and Oral Bioavailability of Poorly Water-Soluble Drugs Using Monoolein Cubosomes.

    PubMed

    Ali, Md Ashraf; Kataoka, Noriko; Ranneh, Abdul-Hackam; Iwao, Yasunori; Noguchi, Shuji; Oka, Toshihiko; Itai, Shigeru

    2017-01-01

    Monoolein cubosomes containing either spironolactone (SPI) or nifedipine (NI) were prepared using a high-pressure homogenization technique and characterized in terms of their solubility and oral bioavailability. The mean particle size, polydispersity index (PDI), zeta potential, solubility and encapsulation efficiency (EE) values of the SPI- and NI-loaded cubosomes were determined to be 90.4 nm, 0.187, -13.4 mV, 163 µg/mL and 90.2%, and 91.3 nm, 0.168, -12.8 mV, 189 µg/mL and 93.0%, respectively, which were almost identical to those of the blank cubosome. Small-angle X-ray scattering analyses confirmed that the SPI-loaded, NI-loaded and blank cubosomes existed in the cubic space group Im3̄m. The lattice parameters of the SPI- and NI-loaded cubosomes were 147.6 and 151.6 Å, respectively, making them almost identical to that of blank cubosome (151.0 Å). The in vitro release profiles of the SPI- and NI-loaded cubosomes showed that they released less than 5% of the drugs into various media over 12-48 h, indicating that most of the drug remained encapsulated within the cubic phase of their lipid bilayer. Furthermore, the in vivo pharmacokinetic results suggested that these cubosomes led to a considerable increase in the systemic oral bioavailability of the drugs compared with pure dispersions of the same materials. Notably, the stability results indicated that the mean particle size and PDI values of these cubosomes were stable for at least 4 weeks. Taken together, these results demonstrate that monoolein cubosomes represent promising drug carriers for enhancing the solubility and oral bioavailability of poorly water-soluble drugs.

  11. Sodium Dodecyl Sulfate-Modified Doxorubicin-Loaded Chitosan-Lipid Nanocarrier with Multi Polysaccharide-Lecithin Nanoarchitecture for Augmented Bioavailability and Stability of Oral Administration In Vitro and In Vivo.

    PubMed

    Su, Chia-Wei; Chiang, Min-Yu; Lin, Yu-Ling; Tsai, Nu-Man; Chen, Yen-Po; Li, Wei-Ming; Hsu, Chin-Hao; Chen, San-Yuan

    2016-05-01

    For oral anti-cancer drug delivery, a new chitosan-lipid nanoparticle with sodium dodecyl sulfate modification was designed and synthesized using a double emulsification. TEM examination showed that the DOX-loaded nanoparticles, termed D-PL/TG NPs, exhibited a unique core-shell configuration composed of multiple amphiphilic chitosan-lecithin reverse micelles as the core and a triglyceride shell as a physical barrier to improve the encapsulation efficiency and reduce the drug leakage. In addition, the D-PL/TG NPs with sodium dodecyl sulfate modification on the surface have enhanced stability in the GI tract and increased oral bioavailability of doxorubicin. In vitro transport studies performed on Caco-2 monolayers indicated that the D-PL/TG NPs enhanced the permeability of DOX in the Caco-2 monolayers by altering the transport pathway from passive diffusion to transcytosis. The in vivo intestinal absorption assay suggested that the D-PL/TG NPs were preferentially absorbed through the specialized membranous epithelial cells (M cells) of the Peyer's patches, resulting in a significant improvement (8-fold) in oral bioavailability compared to that of free DOX. The experimental outcomes in this work demonstrate that the D-PL/TG NPs provide an exciting opportunity for advances in the oral administration of drugs with poor bioavailability that are usually used in treating tough and chronic diseases.

  12. Improved oral bioavailability for lutein by nanocrystal technology: formulation development, in vitro and in vivo evaluation.

    PubMed

    Chang, Daoxiao; Ma, Yanni; Cao, Guoyu; Wang, Jianhuan; Zhang, Xia; Feng, Jun; Wang, Wenping

    2018-08-01

    Lutein is a kind of natural carotenoids possessing many pharmacological effects. The application of lutein was limited mainly due to its low oral bioavailability caused by poor aqueous solubility. Nanocrystal formulation of lutein was developed to improve the oral bioavailability in this study. The nanosuspension was prepared by the anti-solvent precipitation-ultrasonication method and optimized by Box-Behnken design, followed by freeze-drying to obtain lutein nanocrystals. The nanocrystals were characterized on their physical properties, in vitro dissolution and in vivo absorption performance. Lutein nanocrystals showed as tiny spheres with an average particle size of 110.7 nm. The result of diffractograms indicated that the percent crystallinity of lutein was 89.4% in coarse powder and then declined in nanocrystal formulation. The saturated solubility of lutein in water increased from 7.3 μg/ml for coarse powder up to 215.7 μg/ml for lutein nanocrystals. The dissolution rate of lutein nanocrystals was significantly higher than that of coarse powder or the physical mixture. The C max and AUC 0-24 h of lutein nanocrystals after oral administration in rats was 3.24 and 2.28 times higher than those of lutein suspension, respectively. These results indicated that the nanocrystal formulation could significantly enhance the dissolution and absorption of lutein and might be a promising approach for improving its oral bioavailability.

  13. Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability.

    PubMed

    Luo, YiFan; Chen, DaWei; Ren, LiXiang; Zhao, XiuLi; Qin, Jing

    2006-08-10

    An ultrasonic-solvent emulsification technique was adopted to prepare vinpocetine loaded Glyceryl monostearate (GMS) nanodispersions with narrow size distribution. To increase the lipid load the process was conducted at 50 degrees C, and in order to prepare nanoparticle using an ultrasonic-solvent emulsification technique. The mean particle size and droplet size distribution, drug loading capacity, drug entrapment efficiency (EE%), zeta potential, and long-term physical stability of the SLNs were investigated in detail respectively. Drug release from two sorts of VIN-SLN was studied using a dialysis bag method. A pharmacokinetic study was conducted in male rats after oral administration of 10 mg kg(-1) VIN in different formulations, it was found that the relative bioavailability of VIN in SLNs was significantly increased compared with that of the VIN solution. The amount of surfactant also had a marked effect on the oral absorption of VIN with SLN formulations. The absorption mechanism of the SLN formulations was also discussed. These results indicated that VIN absorption is enhanced significantly by employing SLN formulations. SLNs offer a new approach to improve the oral bioavailability of poorly soluble drugs.

  14. Dissolution and oral bioavailability enhancement of praziquantel by solid dispersions.

    PubMed

    Liu, Yanyan; Wang, Tianzi; Ding, Wenya; Dong, Chunliu; Wang, Xiaoting; Chen, Jianqing; Li, Yanhua

    2018-06-01

    The aim of the present investigation was to enhance the solubility, dissolution, and oral bioavailability of praziquantel (PZQ), a poorly water-soluble BCS II drug (Biopharmaceutical Classification System), using a solid dispersion (SD) technique involving hydrophilic copolymers. The SD formulations were prepared by a solvent evaporation method with PZQ and PEG 4000 (polyethylene glycol 4000), PEG 6000, or P 188 polymers at various weight ratios or a combination of PEG 4000/P 188. The optimized SD formulation, which had the highest solubility in distilled water, was further characterized by its surface morphology, crystallinity, and dissolution in 0.1 M HCl with 0.2% w/v of sodium dodecyl sulfate (SDS). X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed the amorphous form of PZQ in the SDs. Moreover, at an oral dosage of 5 mg/kg PZQ, the SDs had higher C max values and areas under the curve (AUCs) compared to those of commercial PZQ tablets. Preparation of PZQ-loaded SDs using PEG 4000/P 188 is a promising strategy to improve the oral bioavailability of PZQ.

  15. Characterization, pharmacokinetics and tissue distribution of chlorogenic acid-loaded self-microemulsifying drug delivery system.

    PubMed

    Chen, Li; Liu, Chang-Shun; Chen, Qing-Zhen; Wang, Sen; Xiong, Yong-Ai; Jing, Jing; Lv, Jia-Jia

    2017-03-30

    The purpose of this study was to develop a self-microemulsifying drug delivery system (SMEDDS) to improve the oral bioavailability of Chlorogenic acid (CA), an important bioactive compound from Lonicerae Japonicae Flos with poor permeability. SMEDDS was prepared and characterized by self-emulsifying rate, morphological observation, droplet size determination, stability, in vitro release, in vivo bioavailability and tissue distribution experiments. Results shown that the SMEDDS of CA has a high self-emulsifying rate (>98%) in the dissolution media, and its microemulsion exhibits small droplet size (16.37nm) and good stability. In vitro release test showed a complete release of CA from SMEDDS in 480min. After oral administration in mice, significantly enhanced bioavailability of CA was achieved through SMEDDS (249.4% relative to the CA suspension). Interestingly, SMEDDS significantly changed the tissue distribution of CA and showed a better targeting property to the kidney (2.79 of the relative intake efficiency). It is suggested that SMEDDS improves the oral bioavailability of CA may mainly through increasing its absorption and slowing the metabolism of absorbed CA via changing its distribution from the liver to the kidney. In conclusion, it is indicated that SMEDDS is a promising carrier for the oral delivery of CA. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Determination of Tangeretin in Rat Plasma: Assessment of Its Clearance and Absolute Oral Bioavailability.

    PubMed

    Elhennawy, Mai Gamal; Lin, Hai-Shu

    2017-12-29

    Tangeretin (TAN) is a dietary polymethoxylated flavone that possesses a broad scope of pharmacological activities. A simple high-performance liquid chromatography (HPLC) method was developed and validated in this study to quantify TAN in plasma of Sprague-Dawley rats. The lower limit of quantification (LLOQ) was 15 ng/mL; the intra- and inter-day assay variations expressed in the form of relative standard deviation (RSD) were all less than 10%; and the assay accuracy was within 100 ± 15%. Subsequently, pharmacokinetic profiles of TAN were explored and established. Upon single intravenous administration (10 mg/kg), TAN had rapid clearance ( Cl = 94.1 ± 20.2 mL/min/kg) and moderate terminal elimination half-life ( t 1/2 λz = 166 ± 42 min). When TAN was given as a suspension (50 mg/kg), poor but erratic absolute oral bioavailability (mean value < 3.05%) was observed; however, when TAN was given in a solution prepared with randomly methylated-β-cyclodextrin (50 mg/kg), its plasma exposure was at least doubled (mean bioavailability: 6.02%). It was obvious that aqueous solubility hindered the oral absorption of TAN and acted as a barrier to its oral bioavailability. This study will facilitate further investigations on the medicinal potentials of TAN.

  17. Preparation and in vitro/in vivo evaluation of metformin hydrochloride rectal dosage forms for treatment of patients with type II diabetes.

    PubMed

    Zaghloul, Abdel-Azim; Lila, Ahmad; Abd-Allah, Fathy; Nada, Aly

    2017-06-01

    Metformin hydrochloride (MtHCL) is an oral antidiabetic drug and has many other therapeutic benefits. It has poor bioavailability, narrow absorption window and extensive liver metabolism. Moreover, children and elders face difficulty to swallow the commercial oral tablets. Preparation, in vitro/in vivo evaluation of MtHCL suppositories for rectal administration to solve some of these problems. Suppository fatty bases (Witepsol ® , Suppocire ® and Massa ® ; different grades) and PEG bases 1000, 4000 and 6000 (different ratios), were used to prepare rectal suppository formulations each containing 500 mg drug. These were characterized for manufacturing defects, and pharmacotechnical performance and formulations showing superior results were subjected to bioavailability testing in human volunteers compared with the commercial oral tablet (Ref) applying LC-MS/MS developed analytical technique. The preparation method produced suppositories with satisfactory characteristics and free of manufacturing defects. The fatty bases were superior compared with PEG bases regarding the physical characteristics. Three formulations were chosen for bioavailability testing and the results showed comparable bioavailability compared to the Ref. The fatty bases showed superior characteristics compared with the PEG bases. MtHCL formulated in selected fatty bases could be a potential alternative to the commercial oral tablets particularly for pediatric and geriatric patients.

  18. Binary lipids-based nanostructured lipid carriers for improved oral bioavailability of silymarin.

    PubMed

    Shangguan, Mingzhu; Lu, Yi; Qi, Jianping; Han, Jin; Tian, Zhiqiang; Xie, Yunchang; Hu, Fuqiang; Yuan, Hailong; Wu, Wei

    2014-02-01

    The main purpose of this study was to prepare binary lipids-based nanostructured lipid carriers to improve the oral bioavailability of silymarin, a poorly water-soluble liver protectant. Silymarin-loaded nanostructured lipid carriers were prepared by the method of high-pressure homogenization with glycerol distearates (Precirol ATO-5) and oleic acid as the solid and liquid lipids, respectively, and lecithin (Lipoid E 100) and Tween-80 as the emulsifiers. The silymarin-nanostructured lipid carrier prepared under optimum conditions was spherical in shape with mean particle size of ∼78.87 nm, entrapment efficiency of 87.55%, loading capacity of 8.32%, and zeta potential of -65.3 mV, respectively. In vitro release of silymarin-nanostructured lipid carriers was very limited even after 12 h, while in vitro lipolysis showed fast digestion of nanostructured lipid carriers within 1 h. Relative oral bioavailability of silymarin-nanostructured lipid carriers in Beagle dogs was 2.54- and 3.10-fold that of marketed Legalon® and silymarin solid dispersion pellets, respectively. It was concluded that nanostructured lipid carriers were potential drug delivery systems to improve the bioavailability of silymarin. Other than improved dissolution, alternative mechanisms such as facilitated absorption as well as lymphatic transport may contribute to bioavailability enhancement.

  19. Curcumin-loaded self-nanomicellizing solid dispersion system: part I: development, optimization, characterization, and oral bioavailability.

    PubMed

    Parikh, Ankit; Kathawala, Krishna; Song, Yunmei; Zhou, Xin-Fu; Garg, Sanjay

    2018-05-29

    Curcumin (CUR) is considered as one of the most bioactive molecules ever discovered from nature due to its proven anti-inflammatory and antioxidant in both preclinical and clinical studies. Despite its proven safety and efficacy, the clinical translation of CUR into a useful therapeutic agent is still limited due to its poor oral bioavailability. To overcome its limitation and enhance oral bioavailability by improving its aqueous solubility, stability, and intestinal permeability, a novel CUR formulation (NCF) was developed using the self-nanomicellizing solid dispersion strategy. From the initial screening of polymers for their potential to improve the solubility and stability, Soluplus (SOL) was selected. The optimized NCF demonstrated over 20,000-fold improvement in aqueous solubility as a result of amorphization, hydrogen bonding interaction, and micellization determined using differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance, dynamic light scattering, and transmission electron microscopy. Moreover, the greater stabilizing effect in alkaline pH and light was observed. Furthermore, significant enhancement of dissolution and permeability of CUR across everted sacs of rat small intestine were noticed. Pharmacokinetic studies demonstrated that the oral bioavailability of CUR was increased 117 and 17-fold in case of NCF and physical mixture of CUR and SOL compared to CUR suspension. These results suggest NCF identified as a promising new approach for repositioning of CUR for pharmaceutical application by enhancing the oral bioavailability of CUR. The findings herein stimulate further in vivo evaluations and clinical tests of NCF.

  20. Polymorph Impact on the Bioavailability and Stability of Poorly Soluble Drugs.

    PubMed

    Censi, Roberta; Di Martino, Piera

    2015-10-15

    Drugs with low water solubility are predisposed to poor and variable oral bioavailability and, therefore, to variability in clinical response, that might be overcome through an appropriate formulation of the drug. Polymorphs (anhydrous and solvate/hydrate forms) may resolve these bioavailability problems, but they can be a challenge to ensure physicochemical stability for the entire shelf life of the drug product. Since clinical failures of polymorph drugs have not been uncommon, and some of them have been entirely unexpected, the Food and Drug Administration (FDA) and the International Conference on Harmonization (ICH) has required preliminary and exhaustive screening studies to identify and characterize all the polymorph crystal forms for each drug. In the past, the polymorphism of many drugs was detected fortuitously or through manual time consuming methods; today, drug crystal engineering, in particular, combinatorial chemistry and high-throughput screening, makes it possible to easily and exhaustively identify stable polymorphic and/or hydrate/dehydrate forms of poorly soluble drugs, in order to overcome bioavailability related problems or clinical failures. This review describes the concepts involved, provides examples of drugs characterized by poor solubility for which polymorphism has proven important, outlines the state-of-the-art technologies and discusses the pertinent regulations.

  1. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Feng, Qian; Li, Ye

    2012-12-15

    Emodin is a poorly bioavailable but promising plant-derived anticancer drug candidate. The low oral bioavailability of emodin is due to its extensive glucuronidation in the intestine and liver. Caco-2 cell culture model was used to investigate the interplay between UDP-glucuronosyltransferases (UGTs) and efflux transporters in the intestinal disposition of emodin. Bidirectional transport assays of emodin at different concentrations were performed in the Caco-2 monolayers with or without multidrug resistance-associated protein (MRP) and breast cancer resistance protein (BCRP) efflux transporter chemical inhibitors. The bidirectional permeability of emodin and its glucuronide in the Caco-2 monolayers was determined. Emodin was rapidly metabolized tomore » emodin glucuronide in Caco-2 cells. LTC4, a potent inhibitor of MRP2, decreased the efflux of emodin glucuronide and also substantially increased the intracellular glucuronide level in the basolateral-to-apical (B–A) direction. MK-571, chemical inhibitor of MRP2, MRP3, and MRP4, significantly reduced the efflux of glucuronide in the apical-to-basolateral (A–B) and B–A directions in a dose-dependent manner. However, dipyridamole, a BCRP chemical inhibitor demonstrated no effect on formation and efflux of emodin glucuronide in Caco-2 cells. In conclusion, UGT is a main metabolic pathway for emodin in the intestine, and the MRP family is composed of major efflux transporters responsible for the excretion of emodin glucuronide in the intestine. The coupling of UGTs and MRP efflux transporters causes the extensive metabolism, excretion, and low bioavailability of emodin. -- Highlights: ► Glucuronidation is the main reason for the poor oral bioavailability of emodin. ► Efflux transporters are involved in the excretion of emodin glucuronide. ► The intestine is the main organ for metabolism of emodin.« less

  2. Preparation and Pharmacokinetics Evaluation of Solid Self-Microemulsifying Drug Delivery System (S-SMEDDS) of Osthole.

    PubMed

    Sun, Chaojie; Gui, Yun; Hu, Rongfeng; Chen, Jiayi; Wang, Bin; Guo, Yuxing; Lu, Wenjie; Nie, Xiangjiang; Shen, Qiang; Gao, Song; Fang, Wenyou

    2018-05-29

    The study was performed aiming to enhance the solubility and oral bioavailability of poorly water-soluble drug osthole by formulating solid self-microemulsifying drug delivery system (S-SMEDDS) via spherical crystallization technique. Firstly, the liquid self-microemulsifying drug delivery system (L-SMEDDS) of osthole was formulated with castor oil, Cremophor RH40, and 1,2-propylene glycol after screening various lipids and emulsifiers. The type and amount of polymeric materials, good solvents, bridging agents, and poor solvents in S-SMEDDS formulations were further determined by single-factor study. The optimal formulation contained 1:2 of ethyl cellulose (EC) and Eudragit S100, which served as matrix forming and enteric coating polymers respectively. Anhydrous ethanol and dichloromethane with a ratio of 5:3 are required to perform as good solvent and bridging agent, respectively, with the addition of 0.08% SDS aqueous solution as poor solvent. The optimized osthole S-SMEDDS had a high yield (83.91 ± 3.31%) and encapsulation efficiency (78.39 ± 2.25%). Secondly, osthole L-SMEDDS was solidified to osthole S-SMEDDS with no significant changes in terms of morphology, particle size, and zeta potential. In vitro release study demonstrated a sustained release of the drug from osthole S-SMEDDS. Moreover, in vivo pharmacokinetic study showed that the T max and mean residence time (MRT (0-t) ) of osthole were significantly prolonged and further confirmed that osthole S-SMEDDS exhibited sustained release effect in rabbits. Comparing with osthole aqueous suspension and L-SMEDDS, osthole S-SMEDDS increased bioavailability by 205 and 152%, respectively. The results suggested that S-SMEDDS was an effective oral solid dosage form, which can improve the solubility and oral bioavailability of poorly water-soluble drug osthole.

  3. Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin.

    PubMed

    Liu, Ying; Wang, Lan; Zhao, Yiqing; He, Man; Zhang, Xin; Niu, Mengmeng; Feng, Nianping

    2014-12-10

    Nanostructured lipid carriers and microemulsions effectively deliver poorly water-soluble drugs. However, few studies have investigated their ability and difference in improving drug bioavailability, especially the factors contributed to the difference. Thus, this study was aimed at investigating their efficiency in bioavailability enhancement based on studying two key processes that occur in NLC and ME during traverse along the intestinal tract: the solubilization process and the intestinal permeability process. The nanostructured lipid carriers and microemulsions had the same composition except that the former were prepared with solid lipids and the latter with liquid lipids; both were evaluated for particle size and zeta potential. Transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction were performed to characterize their properties. Furthermore, in vitro drug release, in situ intestinal absorption, and in vitro lipolysis were studied. The bioavailability of luteolin delivered using nanostructured lipid carriers in rats was compared with that delivered using microemulsions and suspensions. The in vitro analysis revealed different release mechanisms for luteolin in nanostructured lipid carriers and microemulsions, although the in situ intestinal absorption was similar. The in vitro lipolysis data indicated that digestion speed and extent were higher for microemulsions than for nanostructured lipid carriers, and that more of the former partitioned to the aqueous phase. The in vivo bioavailability analysis in rats indicated that the oral absorption and bioavailability of luteolin delivered using nanostructured lipid carriers and microemulsions were higher than those of luteolin suspensions. Nanostructured lipid carriers and microemulsions improved luteolin's oral bioavailability in rats. The rapid lipid digestion and much more drug solubilized available for absorption in microemulsions may contribute to better absorption and higher bioavailability. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Development of an abiraterone acetate formulation with improved oral bioavailability guided by absorption modeling based on in vitro dissolution and permeability measurements.

    PubMed

    Solymosi, Tamás; Ötvös, Zsolt; Angi, Réka; Ordasi, Betti; Jordán, Tamás; Semsey, Sándor; Molnár, László; Ránky, Soma; Filipcsei, Genovéva; Heltovics, Gábor; Glavinas, Hristos

    2017-10-30

    Particle size reduction of drug crystals in the presence of surfactants (often called "top-down" production methods) is a standard approach used in the pharmaceutical industry to improve bioavailability of poorly soluble drugs. Based on the mathematical model used to predict the fraction dose absorbed this formulation approach is successful when dissolution rate is the main rate limiting factor of oral absorption. In case compound solubility is also a major factor this approach might not result in an adequate improvement in bioavailability. Abiraterone acetate is poorly water soluble which is believed to be responsible for its very low bioavailability in the fasted state and its significant positive food effect. In this work, we have successfully used in vitro dissolution, solubility and permeability measurements in biorelevant media to describe the dissolution characteristics of different abiraterone acetate formulations. Mathematical modeling of fraction dose absorbed indicated that reducing the particle size of the drug cannot be expected to result in significant improvement in bioavailability in the fasted state. In the fed state, the same formulation approach can result in a nearly complete absorption of the dose; thereby, further increasing the food effect. Using a "bottom-up" formulation method we improved both the dissolution rate and the apparent solubility of the compound. In beagle dog studies, this resulted in a ≫>10-fold increase in bioavailability in the fasted state when compared to the marketed drug and the elimination of the food effect. Calculated values of fraction dose absorbed were in agreement with the observed relative bioavailability values in beagle dogs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Orally Bioavailable and Effective Buparvaquone Lipid-Based Nanomedicines for Visceral Leishmaniasis.

    PubMed

    Smith, Lindsay; Serrano, Dolores R; Mauger, Marion; Bolás-Fernández, Francisco; Dea-Ayuela, Maria Auxiliadora; Lalatsa, Aikaterini

    2018-05-24

    Nanoenabled lipid-based drug delivery systems offer a platform to overcome challenges encountered with current failed leads in the treatment of parasitic and infectious diseases. When prepared with FDA or EMA approved excipients, they can be readily translated without the need for further toxicological studies, while they remain affordable and amenable to scale-up. Buparvaquone (BPQ), a hydroxynapthoquinone with in vitro activity in the nanomolar range, failed to clinically translate as a viable treatment for visceral leishmaniasis due to its poor oral bioavailability limited by its poor aqueous solubility (BCS Class II drug). Here we describe a self-nanoemulsifying system (SNEDDS) with high loading and thermal stability up to 6 months in tropical conditions and the ability to enhance the solubilization capacity of BPQ in gastrointestinal media as demonstrated by flow-through cell and dynamic in vitro lipolysis studies. BPQ SNEDDS demonstrated an enhanced oral bioavailability compared to aqueous BPQ dispersions (probe-sonicated), resulting in an increased plasma AUC 0-24 by 55% that is 4-fold higher than any previous reported values for BPQ formulations. BPQ SNEDDS can be adsorbed on low molecular glycol chitosan polymers forming solid dispersions that when compressed into tablets allow the complete dissolution of BPQ in gastrointestinal media. BPQ SNEDDS and BPQ solid SNEDDS demonstrated potent in vitro efficacy in the nanomolar range (<37 nM) and were able to near completely inhibit parasite replication in the spleen while also demonstrating 48 ± 48 and 56 ± 23% inhibition of the parasite replication in the liver, respectively, compared to oral miltefosine after daily administration over 10 days. The proposed platform technology can be used to elicit a range of cost-effective and orally bioavailable noninvasive formulations for a range of antiparasitic and infectious disease drugs that are needed for closing the global health innovation gap.

  6. Oral fast-dissolving films containing lutein nanocrystals for improved bioavailability: formulation development, in vitro and in vivo evaluation.

    PubMed

    Liu, Chen; Chang, Daoxiao; Zhang, Xinhui; Sui, Hong; Kong, Yindi; Zhu, Rongyue; Wang, Wenping

    2017-11-01

    Lutein is widely used as diet supplement for prevention of age-related macular degeneration. However, the application and efficacy of lutein in food and nutritional products has been hampered due to its poor solubility and low oral bioavailability. This study aimed to develop and evaluate the formulation of oral fast-dissolving film (OFDF) containing lutein nanocrystals for enhanced bioavailability and compliance. Lutein nanocrystals were prepared by anti-solvent precipitation method and then encapsulated into the films by solvent casting method. The formulation of OFDF was optimized by Box-Behnken Design (BBD) as follows: HPMC 2.05% (w/v), PEG 400 1.03% (w/v), Cremophor EL 0.43% (w/v). The obtained films exhibited uniform thickness of 35.64 ± 1.64 μm and drug content of 0.230 ± 0.003 mg/cm 2 and disintegrated rapidly in 29 ± 8 s. The nanocrystal-loaded films with reconstituted particle size of 377.9 nm showed better folding endurance and faster release rate in vitro than the conventional OFDFs with raw lutein. The microscope images, thermograms, and diffractograms indicated that lutein nanocrystals were highly dispersed into the films. After administrated to SD rats, t max was decreased from 3 h for oral solution formulation to less than 0.8 h for OFDF formulations, and C max increased from 150 ng/mL for solution to 350 ng/mL for conventional OFDF or 830 ng/mL for nanocrystal OFDF. The AUC 0-24h of conventional or nanocrystal OFDF was 1.37 or 2.08-fold higher than that of the oral solution, respectively. These results suggested that drug nanocrystal-loaded OFDF can be applied as a promising approach for enhanced bioavailability of poor soluble drugs like lutein.

  7. Improved oral bioavailability and therapeutic efficacy of dabigatran etexilate via Soluplus-TPGS binary mixed micelles system.

    PubMed

    Hu, Mei; Zhang, Jinjie; Ding, Rui; Fu, Yao; Gong, Tao; Zhang, Zhirong

    2017-04-01

    The clinical use of dabigatran etexilate (DABE) is limited by its poor absorption and relatively low bioavailability. Our study aimed to explore the potential of a mixed micelle system composed of Soluplus ® and D-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) to improve the oral absorption and bioavailability of DBAE. DBAE was first encapsulated into Soluplus/TPGS mixed micelles by a simple thin film hydration method. The DBAE loaded micelles displayed an average size distribution of around 83.13 nm. The cellular uptake of DBAE loaded micelles in Caco-2 cell monolayer was significantly enhanced by 2-2.6 fold over time as compared with DBAE suspension. Both lipid raft/caveolae and macropinocytosis-mediated the cell uptake of DBAE loaded micelles through P-glycoprotein (P-gp)-independent pathway. Compared with the DBAE suspension, the intestinal absorption of DBAE from DBAE mixed micelles in rats was significantly improved by 8 and 5-fold in ileum at 2 h and 4 h, respectively. Moreover, DBAE mixed micelles were absorbed into systemic circulation via both portal vein and lymphatic pathway. The oral bioavailability of DBAE mixed micelles in rats was 3.37 fold higher than that of DBAE suspension. DBAE mixed micelles exhibited a comparable anti-thrombolytic activity with a thrombosis inhibition rate of 63.18% compared with DBAE suspension in vivo. Thus, our study provides a promising drug delivery system to enhance the oral bioavailability and therapeutic efficacy of DBAE.

  8. Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin.

    PubMed

    Chuah, Ai Mey; Jacob, Bindya; Jie, Zhang; Ramesh, Subbarayan; Mandal, Shibajee; Puthan, Jithesh K; Deshpande, Parag; Vaidyanathan, Vadakkanchery V; Gelling, Richard W; Patel, Gaurav; Das, Tapas; Shreeram, Sathyavageeswaran

    2014-08-01

    Curcumin has been shown to have a wide variety of biological activities for various human diseases including inflammation, diabetes and cancer. However, the poor oral bioavailability of curcumin poses a significant pharmacological barrier to its use therapeutically and/or as a functional food. Here we report the evaluation of the bioavailability and bio-efficacy of curcumin as an amorphous solid dispersion (ASD) in a matrix consisting of hydroxypropyl methyl cellulose (HPMC), lecithin and isomalt using hot melt extrusion for application in food products. Oral pharmacokinetic studies in rats showed that ASD curcumin was ∼13-fold more bioavailable compared to unformulated curcumin. Evaluation of the anti-inflammatory activity of ASD curcumin in vivo demonstrated enhanced bio-efficacy compared to unformulated curcumin at 10-fold lower dose. Thus ASD curcumin provides a more potent and efficacious formulation of curcumin which may also help in masking the colour, taste and smell which currently limit its application as a functional food ingredient. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Improving oral bioavailability of acyclovir using nanoparticulates of thiolated xyloglucan.

    PubMed

    Madgulkar, Ashwini; Bhalekar, Mangesh R; Dikpati, Amrita A

    2016-08-01

    Acyclovir a BCS class III drug exhibits poor bioavailability due to limited permeability. The intention of this research work was to formulate and characterize thiolated xyloglucan polysaccharide nanoparticles (TH-NPs) of acyclovir with the purpose of increasing its oral bioavailability. Acyclovir-loaded TH-NPs were prepared using a cross-linking agent. Interactions of formulation excipients were reconnoitered using Fourier transform infrared spectroscopy (FT-IR). The formulated nanoparticles were lyophilised by the addition of a cryoprotectant and characterized for its particle size, morphology and stability and optimized using Box Behnken Design.The optimized TH-NP formulation exhibited particle size of 474.4±2.01 and an entrapment efficiency of 81.57%. A marked enhancement in the mucoadhesion was also observed. In-vivo study in a rat model proved that relative bioavailability of acyclovir TH-NPs is ∼2.575 fold greater than that of the marketed acyclovir drug suspension. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Impact of passive permeability and gut efflux transport on the oral bioavailability of novel series of piperidine-based renin inhibitors in rodents.

    PubMed

    Lévesque, Jean-François; Bleasby, Kelly; Chefson, Amandine; Chen, Austin; Dubé, Daniel; Ducharme, Yves; Fournier, Pierre-André; Gagné, Sébastien; Gallant, Michel; Grimm, Erich; Hafey, Michael; Han, Yongxin; Houle, Robert; Lacombe, Patrick; Laliberté, Sébastien; MacDonald, Dwight; Mackay, Bruce; Papp, Robert; Tschirret-Guth, Richard

    2011-09-15

    An oral bioavailability issue encountered during the course of lead optimization in the renin program is described herein. The low F(po) of pyridone analogs was shown to be caused by a combination of poor passive permeability and gut efflux transport. Substitution of pyridone ring for a more lipophilic moiety (logD>1.7) had minimal effect on rMdr1a transport but led to increased passive permeability (P(app)>10 × 10(-6) cm/s), which contributed to overwhelm gut transporters and increase rat F(po). LogD and in vitro passive permeability determination were found to be key in guiding SAR and improve oral exposure of renin inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Haste Makes Waste: The Interplay Between Dissolution and Precipitation of Supersaturating Formulations.

    PubMed

    Sun, Dajun D; Lee, Ping I

    2015-11-01

    Contrary to the early philosophy of supersaturating formulation design for oral solid dosage forms, current evidence shows that an exceedingly high rate of supersaturation generation could result in a suboptimal in vitro dissolution profile and subsequently could reduce the in vivo oral bioavailability of amorphous solid dispersions. In this commentary, we outline recent research efforts on the specific effects of the rate and extent of supersaturation generation on the overall kinetic solubility profiles of supersaturating formulations. Additional insights into an appropriate definition of sink versus nonsink dissolution conditions and the solubility advantage of amorphous pharmaceuticals are also highlighted. The interplay between dissolution and precipitation kinetics should be carefully considered in designing a suitable supersaturating formulation to best improve the dissolution behavior and oral bioavailability of poorly water-soluble drugs.

  12. Synthesis and evaluation of mesoporous carbon/lipid bilayer nanocomposites for improved oral delivery of the poorly water-soluble drug, nimodipine.

    PubMed

    Zhang, Yanzhuo; Zhao, Qinfu; Zhu, Wufu; Zhang, Lihua; Han, Jin; Lin, Qisi; Ai, Fengwei

    2015-07-01

    A novel mesoporous carbon/lipid bilayer nanocomposite (MCLN) with a core-shell structure was synthesized and characterized as an oral drug delivery system for poorly water-soluble drugs. The objective of this study was to investigate the potential of MCLN-based formulation to modulate the in vitro release and in vivo absorption of a model drug, nimodipine (NIM). NIM-loaded MCLN was prepared by a procedure involving a combination of thin-film hydration and lyophilization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area analysis, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were employed to characterize the NIM-loaded MCLN formulation. The effect of MCLN on cell viability was assessed using the MTT assay. In addition, the oral bioavailability of NIM-loaded MCLN in beagle dogs was compared with that of the immediate-release formulation, Nimotop®. Our results demonstrate that the NIM-loaded MCLN formulation exhibited a typical sustained release pattern. The NIM-loaded MCLN formulation achieved a greater degree of absorption and longer lasting plasma drug levels compared with the commercial formulation. The relative bioavailability of NIM for NIM-loaded MCLN was 214%. MCLN exhibited negligible toxicity. The data reported herein suggest that the MCLN matrix is a promising carrier for controlling the drug release rate and improving the oral absorption of poorly water-soluble drugs.

  13. Preparation of novel porous starch microsphere foam for loading and release of poorly water soluble drug.

    PubMed

    Jiang, Tongying; Wu, Chao; Gao, Yikun; Zhu, Wenquan; Wan, Long; Wang, Zhanyou; Wang, Siling

    2014-02-01

    Organic porous material is a promising carrier for enhancing the dissolution of poorly water soluble drug. The aim of the present study was to enhance dissolution and oral bioavailability of lovastatin (LV) by preparing a porous starch microsphere foam (PSM) using a novel method, meanwhile, looking into the mechanism of improving dissolution of LV. PSM was prepared by the W/O emulsion-freeze thawing method. The porous structure of PSM was characterized by scanning electron microscopy (SEM) and nitrogen adsorption/desorption analysis. The adsorption role of nanopores on the drug dissolution and physical state of LV was systematically studied by instrumental analysis, and in vitro and in vivo drug dissolution studies. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate carrier cytotoxicity. The SEM images of PSM showed nanometer-sized pores. Physical state characterization indicated that porous structure effectively limited the degree of crystallinity of LV. The results of in vitro and in vivo tests testified that PSM accelerated the release of LV and enhanced its oral bioavailability in comparison with crude LV and commercial capsules. The loaded PSM powder indicated a good physical stability under storage for 12 months. MTT assay shows PSM has no toxicity for Caco-2 cell. The preparation was a promising method to produce small and uniform PSM with markedly enhanced dissolution rate and oral bioavailability due to the spatial confinement effect of porous structure. The present work demonstrates the significant potential for the use of PSM as a novel delivery system for poorly water soluble drugs.

  14. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles

    NASA Astrophysics Data System (ADS)

    Dian, Linghui; Yu, Enjiang; Chen, Xiaona; Wen, Xinguo; Zhang, Zhengzan; Qin, Lingzhen; Wang, Qingqing; Li, Ge; Wu, Chuanbin

    2014-12-01

    To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water. X-ray diffraction (XRD) patterns illustrated that quercetin was in amorphous or molecular form within PMs. Fourier transform infrared spectroscopy (FTIR) indicated that quercetin formed intermolecular hydrogen bonding with carriers. An in vitro dialysis test showed the Qu-PMs possessed significant sustained-release property, and the formulation was stable for at least 6 months under accelerated conditions. The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin. Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.

  15. Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells.

    PubMed

    Kumar, Nitesh; Rai, Amita; Reddy, Neetinkumar D; Raj, P Vasanth; Jain, Prateek; Deshpande, Praful; Mathew, Geetha; Kutty, N Gopalan; Udupa, Nayanabhirama; Rao, C Mallikarjuna

    2014-10-01

    Silymarin, a hepatoprotective agent, has poor oral bioavailability. However, the current dosage form of the drug does not target the liver and inflammatory cells selectively. The aim of the present study was to develop lecithin-based carrier system of silymarin by incorporating phytosomal-liposomal approach to increase its oral bioavailability and to make it target-specific to the liver for enhanced hepatoprotection. The formulation was prepared by film hydration method. Release of drug was assessed at pH 1.2 and 7.4. Formulation was assessed for in vitro hepatoprotection on Chang liver cells, lipopolysaccharide-induced reactive oxygen species (ROS) production by RAW 267.4 (murine macrophages), in vivo efficacy against paracetamol-induced hepatotoxicity and pharmacokinetic study by oral route in Wistar rat. The formulation showed maximum entrapment (55%) for a lecithin-cholesterol ratio of 6:1. Comparative release profile of formulation was better than silymarin at pH 1.2 and pH 7.4. In vitro studies showed a better hepatoprotection efficacy for formulation (one and half times) and better prevention of ROS production (ten times) compared to silymarin. In in vivo model, paracetamol showed significant hepatotoxicity in Wistar rats assessed through LFT, antioxidant markers and inflammatory markers. The formulation was found more efficacious than silymarin suspension in protecting the liver against paracetamol toxicity and the associated inflammatory conditions. The liposomal formulation yielded a three and half fold higher bioavailability of silymarin as compared with silymarin suspension. Incorporating the phytosomal form of silymarin in liposomal carrier system increased the oral bioavailability and showed better hepatoprotection and better anti-inflammatory effects compared with silymarin suspension. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Improved intestinal absorption of a poorly water-soluble oral drug using mannitol microparticles containing a nanosolid drug dispersion.

    PubMed

    Nishino, Yukiko; Kubota, Aya; Kanazawa, Takanori; Takashima, Yuuki; Ozeki, Tetsuya; Okada, Hiroaki

    2012-11-01

    A nozzle for a spray dryer that can prepare microparticles of water-soluble carriers containing various nanoparticles in a single step was previously developed in our laboratory. To enhance the solubility and intestinal absorption of poorly water-soluble drugs, we used probucol (PBL) as a poorly water-soluble drug, mannitol (MAN) as a water-soluble carrier for the microparticles, and EUDRAGIT (EUD) as a polymer vehicle for the solid dispersion. PBL-EUD-acetone-methanol and aqueous MAN solutions were simultaneously supplied through different liquid passages of the spray nozzle and dried together. PBL-EUD solid dispersion was nanoprecipitated in the MAN solution using an antisolvent mechanism and rapidly dried by surrounding it with MAN. PBL in the dispersion vehicle was amorphous and had higher physical stability according to powder X-ray diffraction and differential scanning calorimetry analysis. The bioavailability of PBL in PBL-EUD S-100-MAN microparticles after oral administration in rats was markedly higher (14- and 6.2-fold, respectively) than that of the original PBL powder and PBL-MAN microparticles. These results demonstrate that the composite microparticles containing a nanosized solid dispersion of a poorly water-soluble drug prepared using the spray nozzle developed by us should be useful to increase the solubility and bioavailability of drugs after oral administration. Copyright © 2012 Wiley Periodicals, Inc.

  17. Preparation, characterization and in vivo evaluation of curcumin self-nano phospholipid dispersion as an approach to enhance oral bioavailability.

    PubMed

    Allam, Ahmed N; Komeil, Ibrahim A; Fouda, Mohamed A; Abdallah, Ossama Y

    2015-07-15

    The aim of this study was to examine the efficacy of self-nano phospholipid dispersions (SNPDs) based on Phosal(®) to improve the oral bioavailability of curcumin (CUR). SNPDs were prepared with Phosal(®) 53 and Miglyol 812 at different surfactant ratio. Formulations were evaluated for particle size, polydispersity index, zeta potential, and robustness toward dilution, TEM as well as in vitro drug release. The in vivo oral absorption of selected formulations in comparison to drug suspension was evaluated in rats. Moreover, formulations were assessed for in vitro characteristic changes before and after storage. The SNPDs were miscible with water in any ratio and did not show any phase separation or drug precipitation. All the formulas were monodisperse with nano range size from 158±2.6 nm to 610±6.24 nm. They passed the pharmacopeial tolerance for CUR dissolution. No change in dissolution profile and physicochemical characteristics was detected after storage. CUR-SNPDs are found to be more bioavailable compared with suspension during an in vivo study in rats and in vitro release studies failed to imitate the in vivo conditions. These formulations might be new alternative carriers that enhance the oral bioavailability of poorly water-soluble molecules, such as CUR. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Enhanced bioavailability of tripterine through lipid nanoparticles using broccoli-derived lipids as a carrier material.

    PubMed

    Li, Wan; Zhang, Tianpeng; Ye, Yanghuan; Zhang, Xingwang; Wu, Baojian

    2015-11-30

    Chemotherapy via the oral route remains a considerable challenge due to poor water-solubility and permeability of anticancer agents. This study aimed to construct lipid nanoparticles using broccoli-derived lipids for oral delivery of tripterine (Tri), a natural anticancer candidate, and to enhance its oral bioavailability. Tri-loaded broccoli lipid nanoparticles (Tri-BLNs) were prepared by a solvent-diffusion method. The resulting Tri-BLNs were 75±10 nm in particle size with entrapment efficiency over 98%. In vitro release study indicated that Tri was almost not released from Tri-BLNs (<2%), whereas the lipolytic experiment showed that Tri-BLNs possessed a relatively strong anti-enzymatic degradation ability to Tri-CLNs (Tri-loaded common lipid nanoparticles). In situ single-pass intestinal perfusion manifested that the effective permeability of Tri-BLNs were significantly higher than that of Tri-CLNs. Further, Tri-BLNs exhibited more efficient cellular uptake in MDCK-II cells as evidenced by flow cytometry and confocal microscopy. The relative bioavailability of Tri-BLNs and Tri-CLNs was 494.13% and 281.95% compared with Tri suspensions, respectively. Depending on the ability in enhancement of biomembrane permeability, broccoli-derived lipids as an alternative source should be useful to construct lipid nanoparticles for bettering oral delivery of drugs with low bioavailability. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Enhanced dissolution and oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using hydrophilic polymers.

    PubMed

    Xu, Wei-Juan; Xie, Hong-Juan; Cao, Qing-Ri; Shi, Li-Li; Cao, Yue; Zhu, Xiao-Yin; Cui, Jing-Hao

    2016-01-01

    This study aimed to improve the dissolution rate and oral bioavailability of valsartan (VAL), a poorly soluble drug using solid dispersions (SDs). The SDs were prepared by a freeze-drying technique with polyethylene glycol 6000 (PEG6000) and hydroxypropylmethylcellulose (HPMC 100KV) as hydrophilic polymers, sodium hydroxide (NaOH) as an alkalizer, and poloxamer 188 as a surfactant without using any organic solvents. In vitro dissolution rate and physicochemical properties of the SDs were characterized using the USP paddle method, differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and Fourier transform-infrared (FT-IR) spectroscopy, respectively. In addition, the oral bioavailability of SDs in rats was evaluated by using VAL (pure drug) as a reference. The dissolution rates of the SDs were significantly improved at pH 1.2 and pH 6.8 compared to those of the pure drug. The results from DSC, XRD showed that VAL was molecularly dispersed in the SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between VAL and its carriers. The SDs exhibited significantly higher values of AUC 0-24 h and Cmax in comparison with the pure drug. In conclusion, hydrophilic polymer-based SDs prepared by a freeze-drying technique can be a promising method to enhance dissolution rate and oral bioavailability of VAL.

  20. Nanostructured lipid carriers: versatile oral delivery vehicle

    PubMed Central

    Poonia, Neelam; Kharb, Rajeev; Lather, Viney; Pandita, Deepti

    2016-01-01

    Oral delivery is the most accepted and economical route for drug administration and leads to substantial reduction in dosing frequency. However, this route still remains a challenge for the pharmaceutical industry due to poorly soluble and permeable drugs leading to poor oral bioavailability. Incorporating bioactives into nanostructured lipid carriers (NLCs) has helped in boosting their therapeutic functionality and prolonged release from these carrier systems thus providing improved pharmacokinetic parameters. The present review provides an overview of noteworthy studies reporting impending benefits of NLCs in oral delivery and highlights recent advancements for developing engineered NLCs either by conjugating polymers over their surface or modifying their charge to overcome the mucosal barrier of GI tract for active transport across intestinal membrane. PMID:28031979

  1. Recent Advances in Delivery Systems and Therapeutics of Cinnarizine: A Poorly Water Soluble Drug with Absorption Window in Stomach

    PubMed Central

    Pathak, Kamla

    2014-01-01

    Low solubility causing low dissolution in gastrointestinal tract is the major problem for drugs meant for systemic action after oral administration, like cinnarizine. Pharmaceutical products of cinnarizine are commercialized globally as immediate release preparations presenting low absorption with low and erratic bioavailability. Approaches to enhance bioavailability are widely cited in the literature. An attempt has been made to review the bioavailability complications and clinical therapeutics of poorly water soluble drug: cinnarizine. The interest of writing this paper is to summarize the pharmacokinetic limitations of drug with special focus on strategies to improvise bioavailability along with effectiveness of novel dosage forms to circumvent the obstacle. The paper provides insight to the approaches to overcome low and erratic bioavailability of cinnarizine by cyclodextrin complexes and novel dosage forms: self-nanoemulsifying systems and buoyant microparticulates. Nanoformulations need to systematically explored in future, for their new clinical role in prophylaxis of migraine attacks in children. Clinical reports have affirmed the role of cinnarizine in migraine prophylaxis. Research needs to be dedicated to develop dosage forms for efficacious bioavailability and drug directly to brain. PMID:25478230

  2. Application of carrier and plasticizer to improve the dissolution and bioavailability of poorly water-soluble baicalein by hot melt extrusion.

    PubMed

    Zhang, Yilan; Luo, Rui; Chen, Yi; Ke, Xue; Hu, Danrong; Han, Miaomiao

    2014-06-01

    The objective of this study was to develop a suitable formulation for baicalein (a poorly water-soluble drug exhibiting high melting point) to prepare solid dispersions using hot melt extrusion (HME). Proper carriers and plasticizers were selected by calculating the Hansen solubility parameters, evaluating melting processing condition, and measuring the solubility of obtained melts. The characteristic of solid dispersions prepared by HME was evaluated. The dissolution performance of the extrudates was compared to the pure drug and the physical mixtures. Physicochemical properties of the extrudates were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). Relative bioavailability after oral administration in beagle dogs was assessed. As a result, Kollidon VA64 and Eudragit EPO were selected as two carriers; Cremophor RH was used as the plasticizer. The dissolution of all the extrudates was significantly improved. DSC and PXRD results suggested that baicalein in the extrudates was amorphous. FTIR spectroscopy revealed the interaction between drug and polymers. After oral administration, the relative bioavailability of solid dispersions with VA64 and EPO was comparative, about 2.4- and 2.9-fold greater compared to the pure drug, respectively.

  3. Design and evaluation of oral nanoemulsion drug delivery system of mebudipine.

    PubMed

    Khani, Samira; Keyhanfar, Fariborz; Amani, Amir

    2016-07-01

    A nanoemulsion drug delivery system was developed to increase the oral bioavailability of mebudipine as a calcium channel blocker with very low bioavailability profile. The impact of nano-formulation on the pharmacokinetic parameters of mebudipine in rats was investigated. Nanoemulsion formulations containing ethyl oleate, Tween 80, Span 80, polyethylene glycol 400, ethanol and deionized water were prepared using probe sonicator. The optimum formulation was evaluated for physicochemical properties, such as particle size, morphology and stability. The particle size of optimum formulation was 22.8 ± 4.0 nm. Based on the results of this study, the relative bioavailability of mebudipine nanoemulsion was enhanced by about 2.6-, 2.0- and 1.9-fold, respectively, compared with suspension, ethyl oleate solution and micellar solution. In conclusion, nanoemulsion is an interesting option for the delivery of poorly water soluble molecules, such as mebudipine.

  4. Improving intestinal absorption and oral bioavailability of curcumin via taurocholic acid-modified nanostructured lipid carriers.

    PubMed

    Tian, Cihui; Asghar, Sajid; Wu, Yifan; Chen, Zhipeng; Jin, Xin; Yin, Lining; Huang, Lin; Ping, Qineng; Xiao, Yanyu

    2017-01-01

    The expression of multiple receptors on intestinal epithelial cells enables an actively targeted carrier to significantly enhance the oral delivery of payloads. Conjugating the receptors' ligands on the surfaces of a particulate-delivery system allows site-specific targeting. Here, we used taurocholic acid (TCA) as a ligand for uptake of nanostructured lipid carriers (NLCs) mediated by a bile-acid transporter to improve oral bioavailability of curcumin (Cur). First, synthesis of TCA-polyethylene glycol 100-monostearate (S100-TCA) was carried out. Then, the physical and chemical properties of S100-TCA-modified Cur-loaded NLCs (Cur-TCA NLCs) with varying levels of S100-TCA modifications were investigated. Small particle size (<150 nm), high drug encapsulation (>90%), drug loading (about 3%), negative ζ-potential (-7 to -3 mV), and sustained release were obtained. In situ intestinal perfusion studies demonstrated improved absorption rate and permeability coefficient of Cur-TCA NLCs. Depending on the degree of modification, Cur-TCA NLCs displayed about a five- to 15-fold higher area under the curve in rats after oral administration than unmodified Cur NLCs, which established that the addition of S100-TCA to the NLCs boosted absorption of Cur. Further investigations of TCA NLCs might reveal a bright future for effective oral delivery of poorly bioavailable drugs.

  5. Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: formulation, optimization and in vivo evaluation.

    PubMed

    Nooli, Mounika; Chella, Naveen; Kulhari, Hitesh; Shastri, Nalini R; Sistla, Ramakrishna

    2017-04-01

    Olmesartan medoxomil (OLM) is an antihypertensive drug with low oral bioavailability (28%) resulting from poor aqueous solubility, presystemic metabolism and P-glycoprotein mediated efflux. The present investigation studies the role of lipid nanocarriers in enhancing the OLM bioavailability through oral delivery. Solid lipid nanoparticles (SLN) were prepared by solvent emulsion-evaporation method. Statistical tools like regression analysis and Pareto charts were used to detect the important factors effecting the formulations. Formulation and process parameters were then optimized using mean effect plot and contour plots. The formulations were characterized for particle size, size distribution, surface charge, percentage of drug entrapped in nanoparticles, drug-excipients interactions, powder X-ray diffraction analysis and drug release in vitro. The optimized formulation comprised glyceryl monostearate, soya phosphatidylcholine and Tween 80 as lipid, co-emulsifier and surfactant, respectively, with an average particle size of 100 nm, PDI 0.291, zeta potential of -23.4 mV and 78% entrapment efficiency. Pharmacokinetic evaluation in male Sprague Dawley rats revealed 2.32-fold enhancement in relative bioavailability of drug from SLN when compared to that of OLM plain drug on oral administration. In conclusion, SLN show promising approaches as a vehicle for oral delivery of drugs like OLM.

  6. Nimodipine nanocrystals for oral bioavailability improvement: preparation, characterization and pharmacokinetic studies.

    PubMed

    Fu, Qiang; Sun, Jin; Zhang, Dong; Li, Mo; Wang, Yongjun; Ling, Guixia; Liu, Xiaohong; Sun, Yinghua; Sui, Xiaofan; Luo, Cong; Sun, Le; Han, Xiaopeng; Lian, He; Zhu, Meng; Wang, Siling; He, Zhonggui

    2013-09-01

    This study intended to develop nimodipine (NMD) nanocrystals with different sizes for oral administration and to investigate the relationship between dissolution and pharmacokinetics for NMD nanocrystals and Nimotop(®). NMD nanocrystals were prepared by combination of microprecipitation and high pressure homogenization and were further lyophilized. The particle size, morphology and aqueous solubility of the NMD nanocrystals were determined. With Nimotop(®) as the control, the dissolution rate was evaluated and the pharmacokinetic study was undertaken in beagle dogs. NMD nanocrystals with mean diameters of about 159.0, 503.0 and 833.3 nm were prepared, respectively. The lyophilization didn't affect the particle sizes of the redispersed nanocrystals. The aqueous solubility was significantly improved and displayed a size-dependent manner. The nanocrystals exhibited lower dissolution patterns than Nimotop(®) under non-sink condition, but bioavailability of the two nanocrystals (159.0 and 833.3 nm) was equivalent, about 2.6-fold higher than Nimotop(®). In conclusion, oral nanocrystal drug delivery system was a promising strategy in improving the oral bioavailability of poorly soluble or insoluble drugs. But we could not establish a favorable in vitro in vivo correlation for NMD nanocrystals and Nimotop(®) and thus the oral absorption mechanism of the NMD nanocrystals required further study. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption

    PubMed Central

    Zeng, Ni; Gao, Xiaoling; Hu, Quanyin; Song, Qingxiang; Xia, Huimin; Liu, Zhongyang; Gu, Guangzhi; Jiang, Mengyin; Pang, Zhiqing; Chen, Hongzhuan; Chen, Jun; Fang, Liang

    2012-01-01

    Background Lipid-based liquid crystalline nanoparticles (LCNPs) have attracted growing interest as novel drug-delivery systems for improving the bioavailability of both hydrophilic and hydrophobic drugs. However, their cellular interaction and in vivo behavior have not been fully developed and characterized. Methods In this study, self-assembled LCNPs prepared from soy phosphatidylcholine and glycerol dioleate were developed as a platform for oral delivery of paclitaxel. The particle size of empty LCNPs and paclitaxel-loaded LCNPs was around 80 nm. The phase behavior of the liquid crystalline matrix was characterized using crossed polarized light microscopy and small-angle X-ray scattering, and showed both reversed cubic and hexagonal phase in the liquid crystalline matrix. Transmission electron microscopy and cryofield emission scanning electron microscopy analysis revealed an inner winding water channel in LCNPs and a “ ball-like”/“hexagonal” morphology. Results Cellular uptake of LCNPs in Caco-2 cells was found to be concentration-dependent and time-dependent, with involvement of both clathrin and caveolae/lipid raft-mediated endocytosis. Under confocal laser scanning microscopy, soy phosphatidylcholine was observed to segregate from the internalized LCNPs and to fuse with the cell membrane. An in vivo pharmacokinetic study showed that the oral bioavailability of paclitaxel-loaded LCNPs (13.16%) was 2.1 times that of Taxol® (the commercial formulation of paclitaxel, 6.39%). Conclusion The findings of this study suggest that this LCNP delivery system may be a promising candidate for improving the oral bioavailability of poorly water-soluble agents. PMID:22888230

  8. A novel matrix dispersion based on phospholipid complex for improving oral bioavailability of baicalein: preparation, in vitro and in vivo evaluations.

    PubMed

    Zhou, Yang; Dong, Wujun; Ye, Jun; Hao, Huazhen; Zhou, Junzhuo; Wang, Renyun; Liu, Yuling

    2017-11-01

    Phospholipid complex is one of the most successful approaches for enhancing oral bioavailability of poorly absorbed plant constituents. But the sticky property of phospholipids results in an unsatisfactory dissolution of drugs. In this study, a matrix dispersion of baicalein based on phospholipid complex (BaPC-MD) was first prepared by a discontinuous solvent evaporation method, in which polyvinylpyrrolidone-K30 (PVP-K30) was employed for improving the dispersibility of baicalein phospholipid complex (BaPC) and increasing dissolution of baicalein. The combination ratio of baicalein and phospholipids in BaPC-MD was 99.39% and baicalein was still in a complete complex state with phospholipid in BaPC-MD. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) analyzes demonstrated that baicalein was fully transformed to an amorphous state in BaPC-MD and phospholipid complex formed. The water-solubility and n-octanol solubility of baicalein in BaPC-MD significantly increased compared with those of pure baicalein. Compared with baicalein and BaPC, the cumulative dissolution of BaPC-MD at 120 min increased 2.77- and 1.23-fold, respectively. In vitro permeability study in Caco-2 cells indicated that the permeability of BaPC-MD was remarkably higher than those of baicalein and BaPC. Pharmacokinetic study showed that the average C max of BaPC-MD was significantly increased compared to baicalein and BaPC. AUC 0-14 h of BaPC-MD was 5.01- and 1.91-fold of baicalein and BaPC, respectively. The novel BaPC-MD significantly enhanced the oral bioavailability of baicalein by improving the dissolution and permeability of baicalein without destroying the complexation state of baicalein and phospholipids. The current drug delivery system provided an optimal strategy to significantly enhance oral bioavailability for poorly water-soluble drugs.

  9. Improvement of Oral Bioavailability of Lopinavir Without Co-administration of Ritonavir Using Microspheres of Thiolated Xyloglucan.

    PubMed

    Madgulkar, Ashwini R; Bhalekar, Mangesh R; Kadam, Ashwini A

    2018-01-01

    Lopinavir is a BCS Class IV drug exhibiting poor bioavailability due to P-gp efflux and limited permeation. The aim of this research was to formulate and characterize microspheres of lopinavir using thiolated xyloglucan (TH-MPs) as carrier to improve its oral bioavailability without co-administration of ritonavir. Thiomeric microspheres were prepared by ionotropic gelation between alginic acid and calcium ions. Interaction studies were performed using Fourier transform infrared spectroscopy (FT-IR). The thiomeric microspheres were characterized for its entrapment efficiency, T 80 , surface morphology, and mucoadhesion employing in vitro wash off test. The microspheres were optimized by 3 2 factorial design. The optimized thiomeric microsphere formulation revealed 93.12% entrapment efficiency, time for 80% drug release (T 80 ) of 358.1 min, and 88% mucoadhesion after 1 h. The permeation of lopinavir from microspheres was enhanced 3.15 times as determined by ex vivo study using everted chick intestine and increased relative bioavailability over 3.22-fold over combination of lopinavir and ritonavir as determined by in vivo study in rat model.

  10. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: influence of wax and glyceride lipids on plasma pharmacokinetics.

    PubMed

    Kumar, Venishetty Vinay; Chandrasekar, Durairaj; Ramakrishna, Sistla; Kishan, Veerabrahma; Rao, Yamsani Madhusudan; Diwan, Prakash Vamanrao

    2007-04-20

    Nitrendipine is an antihypertensive drug with poor oral bioavailability ranging from 10 to 20% due to the first pass metabolism. For improving the oral bioavailability of nitrendipine, nitrendipine loaded solid lipid nanoparticles have been developed using triglyceride (tripalmitin), monoglyceride (glyceryl monostearate) and wax (cetyl palmitate). Poloxamer 188 was used as surfactant. Hot homogenization of melted lipids and aqueous phase followed by ultrasonication at temperature above the melting point of lipid was used to prepare SLN dispersions. SLN were characterized for particle size, zeta potential, entrapment efficiency and crystallinity of lipid and drug. In vitro release studies were performed in phosphate buffer of pH 6.8 using Franz diffusion cell. Pharmacokinetics of nitrendipine loaded solid lipid nanoparticles after intraduodenal administration to conscious male Wistar rats was studied. Bioavailability of nitrendipine was increased three- to four-fold after intraduodenal administration compared to that of nitrendipine suspension. The obtained results are indicative of solid lipid nanoparticles as carriers for improving the bioavailability of lipophilic drugs such as nitrendipine by minimizing first pass metabolism.

  11. Lack of dose dependent kinetics of methyl salicylate-2-O-β-D-lactoside in rhesus monkeys after oral administration.

    PubMed

    He, Yangyang; Yan, Yu; Zhang, Tiantai; Ma, Yinzhong; Zhang, Wen; Wu, Ping; Song, Junke; Wang, Shuang; Du, Guanhua

    2015-04-22

    Methyl salicylate-2-O-β-d-lactoside (MSL) is one of the main active components isolated from Gaultheria yunnanensis, which is a traditional Chinese medicine used to treat arthritis and various aches and pains. Pharmacological researches showed that MSL had various effective activities in both in vivo and in vitro experiments. However, the pharmacokinetics features and oral bioavailability of MSL in primates were not studied up to now. To study the pharmacokinetics of different doses of MSL in rhesus monkeys and investigate the absolute bioavailability of MSL after oral administration. Male and female rhesus monkeys were either orally administrated with MSL 200, 400 and 800 mg/kg or received an intravenous dose of 20mg/kg randomly. The levels of MSL and salicylic acid (SA) in plasma were simultaneous measured by a simple, sensitive and reproducible high performance liquid chromatography method. Mean peak plasma concentration values for groups treated with 200, 400 and 800 mg/kg doses ranged from 48.79 to 171.83 μg/mL after single-dose oral administration of MSL, and mean area under the concentration-time curve values ranged from 195.16 to 1107.76 μg/mL h. Poor linearity of the kinetics of SA after oral administration of MSL was observed in the regression analysis of the Cmax-dose plot (r(2)=0.812), CL-dose plot (r(2)=0.225) and AUC(0-t)-dose plot (r(2)=0.938). Absolute bioavailability of MSL was assessed to be 118.89 ± 57.50, 213.54 ± 58.98 and 168.72 ± 76.58%, respectively. Bioavailability of MSL after oral administration in rhesus monkeys was measured for the first time. Pharmacokinetics parameters did not appear to be dose proportional among the three oral doses of treatments, and MSL showed an apparent absolute bioavailability in excess of 100% in rhesus monkeys based on the present study. In addition, a rapid, sensitive and reliable HPLC method was established and demonstrated for the research of traditional Chinese medicine in this study. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Improved oral bioavailability of poorly water-soluble glimepiride by utilizing microemulsion technique

    PubMed Central

    Li, Haiying; Pan, Tingting; Cui, Ying; Li, Xiaxia; Gao, Jiefang; Yang, Wenzhi; Shen, Shigang

    2016-01-01

    The objective of this work was to prepare an oil/water glimepiride (GM) microemulsion (ME) for oral administration to improve its solubility and enhance its bioavailability. Based on a solubility study, pseudoternary phase diagrams, and Box–Behnken design, the oil/water GMME formulation was optimized and prepared. GMME was characterized by dynamic laser light scattering, zeta potential, transmission electron microscopy, and viscosity. The in vitro drug release, storage stability, pharmacodynamics, and pharmacokinetics of GMME were investigated. The optimized GMME was composed of Capryol 90 (oil), Cremophor RH40 (surfactant), and Transcutol (cosurfactant), and increased GM solubility up to 544.6±4.91 µg/mL. The GMME was spherical in shape. The particle size and its polydispersity index were 38.9±17.46 nm and 0.266±0.057, respectively. Meanwhile, the GMME was physicochemically stable at 4°C for at least 3 months. The short-term efficacy in diabetic mice provided the proof that blood glucose had a consistent and significant reduction at a dose of 375 µg/kg whether via IP injection or IG administration of GMME. Compared with the glimepiride suspensions or glimepiride-meglumine complex solution, the pharmacokinetics of GMME in Wistar rats via IG administration exhibited higher plasma drug concentration, larger area under the curve, and more enhanced oral bioavailability. There was a good correlation of GMME between the in vitro release values and the in vivo oral absorption. ME could be an effective oral drug delivery system to improve bioavailability of GM. PMID:27540291

  13. Self-micro emulsifying formulation improved intestinal absorption and oral bioavailability of bakuchiol.

    PubMed

    Pi, Jiaxin; Gao, Xu; Yu, Yue; Zheng, Yin; Zhu, Zhuangzhi; Wang, Yajing

    2014-10-18

    Bakuchiol (BAK), isolated from the seeds of Psoralea corylifolia L., recently presents a variety of pharmacologic activities. However, the poor oral bioavailability limits its further development and clinical use. The purpose of this study was to establish a self-microemulsifying (SME) formulation for oral delivery improvement of BAK. The optimized liquid SME formulation was comprised of BAK (40 %), Cremophor RH 40 (30 %) and Labrasol (30 %). The emulsion droplets were spherical in shape, and particle size and zeta potential were determined. The in vitro dissolution test of BAK-SME formulation illustrated faster dissolution rate than the bulk drug. The permeabilities of 40 μg mL -1 BAK-SME formulation in rat intestinal segments of duodenum, jejunum, ileum and colon were 30.91 × 10 -3 , 23.61 × 10 -3 , 29.43 × 10 -3 and 23.62 × 10 -3 cm min -1 , respectively, exhibiting 3.99 times in duodenum, 2.59 times in ileum and 2.31 times in colon greater than BAK perfusate. The oral bioavailability of BAK-SME formulation at a dose of 150 mg kg -1 was determined in rats. The C max and the AUC (0-24h) were 515.4 ng mL -1 and 4,327.2 h ng mL -1 , respectively, which were 1.90 fold and 1.73 fold greater than the value of BAK suspension. All these results clearly stated that BAK-SME formulation performed well-improvement on oral bioavailability of BAK.

  14. Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats

    PubMed Central

    Kapetanovic, Izet M.; Huang, Zhihua; Thompson, Thomas N.; McCormick, David L.

    2011-01-01

    Purpose Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a naturally occurring polyphenol with a broad range of possible health benefits, including anti-cancer activity. However, the biological activity of resveratrol may be limited by poor absorption and first-pass metabolism: only low plasma concentrations of resveratrol are seen following oral administration, and metabolism to glucuronide and sulfate conjugates is rapid. Methylated polyphenol analogs (such as pterostilbene [3,5-dimethoxy-4′-hydroxy-trans-stilbene], the dimethylether analog of resveratrol) may overcome these limitations to pharmacologic efficacy. The present study was designed to compare the bioavailability, pharmacokinetics, and metabolism of resveratrol and pterostilbene following equimolar oral dosing in rats. Methods The agents were administered orally via gavage for 14 consecutive days at 50 or 150 mg/kg/day for resveratrol and 56 or 168 mg/kg/day for pterostilbene. Two additional groups were dosed once intravenously with 10 and 11.2 mg/kg for resveratrol and pterostilbene, respectively. Plasma concentrations of agents and metabolites were measured using a high-pressure liquid chromatograph-tandem mass spectrometer system. Noncompartmental analysis was used to derive pharmacokinetic parameters. Results Resveratrol and pterostilbene were approximately 20 and 80% bioavailable, respectively. Following oral dosing, plasma levels of pterostilbene and pterostilbene sulfate were markedly greater than were plasma levels of resveratrol and resveratrol sulfate. Although plasma levels of resveratrol glucuronide exceeded those of pterostilbene glucuronide, those differences were smaller than those of the parent drugs and sulfate metabolites. Conclusions When administered orally, pterostilbene demonstrates greater bioavailability and total plasma levels of both the parent compound and metabolites than does resveratrol. These differences in agent pharmacokinetics suggest that the in vivo biological activity of equimolar doses of pterostilbene may be greater than that of resveratrol. PMID:21116625

  15. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations.

    PubMed

    Tsai, Ming-Jun; Huang, Yaw-Bin; Wu, Pao-Chu; Fu, Yaw-Syan; Kao, Yao-Ren; Fang, Jia-You; Tsai, Yi-Hung

    2011-02-01

    Apomorphine, a dopamine receptor agonist for treating Parkinson's disease, has very poor oral bioavailability (<2%) due to the first-pass effect. The aim of this work was to investigate whether the oral bioavailability and brain regional distribution of apomorphine could be improved by utilizing solid lipid nanoparticles (SLNs). Glyceryl monostearate (GMS) and polyethylene glycol monostearate (PMS) were individually incorporated into SLNs as emulsifiers. It was found that variations in the emulsifiers had profound effects on the physicochemical characteristics. Mean diameters of the GMS and PMS systems were 155 and 63 nm, respectively. More than 90% of the apomorphine was entrapped in the SLNs. The interfacial film was the likely location for most of apomorphine molecules. The PMS system, when incubated in simulated intestinal medium, was found to be more stable in terms of particle size and encapsulation efficiency than the GMS system. Using the GMS and PMS systems to orally administer apomorphine (26 mg/kg) equally enhanced the bioavailability in rats. SLNs showed 12- to 13-fold higher bioavailability than the reference solution. The drug distribution in the striatum, the predominant site of therapeutic action, also increased when using the SLNs. The anti-Parkinsonian activity of apomorphine was evaluated in rats with 6-hydroxydopamine-induced lesions, a model of Parkinson's disease. The contralateral rotation behavior was examined after oral apomorphine delivery. The total number of rotations increased from 20 to 94 and from 20 to 115 when the drug was administered from SLNs containing GMS and PMS, respectively. The experimental results suggest that SLNs may offer a promising strategy for apomorphine delivery via oral ingestion. Copyright © 2010 Wiley-Liss, Inc.

  16. pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs.

    PubMed

    Wang, Xue-Qing; Zhang, Qiang

    2012-10-01

    pH-sensitive polymeric nanoparticles are promising for oral drug delivery, especially for peptide/protein drugs and poorly water-soluble medicines. This review describes current status of pH-sensitive polymeric nanoparticles for oral drug delivery and introduces the mechanisms of drug release from them as well as possible reasons for absorption improvement, with emphasis on our contribution to this field. pH-sensitive polymeric nanoparticles are prepared mainly with polyanions, polycations, their mixtures or cross-linked polymers. The mechanisms of drug release are the result of carriers' dissolution, swelling or both of them at specific pH. The possible reasons for improvement of oral bioavailability include the following: improve drug stability, enhance mucoadhesion, prolong resident time in GI tract, ameliorate intestinal permeability and increase saturation solubility and dissolution rate for poorly water-soluble drugs. As for the advantages of pH-sensitive nanoparticles over conventional nanoparticles, we conclude that (1) most carriers used are enteric-coating materials and their safety has been approved. (2) The rapid dissolution or swelling of carriers at specific pH results in quick drug release and high drug concentration gradient, which is helpful for absorption. (3) At the specific pH carriers dissolve or swell, and the bioadhesion of carriers to mucosa becomes high because nanoparticles turn from solid to gel, which can facilitate drug absorption. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The effect of Pro NanoLipospheres (PNL) formulation containing natural absorption enhancers on the oral bioavailability of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in a rat model.

    PubMed

    Cherniakov, Irina; Izgelov, Dvora; Domb, Abraham J; Hoffman, Amnon

    2017-11-15

    The lipophilic phytocannabinoids cannabidiol (CBD) and Δ 9 -tetrahydrocannabinol (THC) show therapeutic efficacy in various medical conditions. Both molecules are poorly water soluble and subjected to extensive first pass metabolism in the gastrointestinal tract, leading to a limited oral bioavailability of approximately 9%. We have developed an advanced lipid based Self-Emulsifying Drug Delivery System termed Advanced Pro-NanoLiposphere (PNL) pre-concentrate. The PNL is composed of lipid and emulsifying excipients of GRAS status and are known to increase solubility and reduce Phase I metabolism of lipophilic active compounds. Advanced PNLs are PNLs with an incorporated natural absorption enhancers. These molecules are natural alkaloids and phenolic compounds which were reported to inhibit certain phase I and phase II metabolism processes. Here we use piperine, curcumin and resveratrol to formulate the Advanced-PNL formulations. Consequently, we have explored the utility of these Advanced-PNLs on CBD and THC oral bioavailability. Oral administration of CBD-piperine-PNL resulted in 6-fold increase in AUC compared to CBD solution, proving to be the most effective of the screened formulations. The same trend was found in pharmacokinetic experiments of THC-piperine-PNL which resulted in a 9.3-fold increase in AUC as compared to THC solution. Our Piperine-PNL can be used as a platform for synchronized delivery of piperine and CBD or THC to the enterocyte site. This co-localization provides an increase in CBD and THC bioavailability by its effect at the pre-enterocyte and the enterocyte levels of the absorption process. The extra augmentation in the absorption of CBD and THC by incorporating piperine into PNL is attributed to the inhibition of Phase I and phase II metabolism by piperine in addition to the Phase I metabolism and P-gp inhibition by PNL. These novel results pave the way to utilize piperine-PNL delivery system for other poorly soluble, highly metabolized compounds that currently cannot be administered orally. Copyright © 2017. Published by Elsevier B.V.

  18. Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: cytotoxicity, pharmacokinetic and anticancer efficacy studies.

    PubMed

    Chaurasia, Sundeep; Chaubey, Pramila; Patel, Ravi R; Kumar, Nagendra; Mishra, Brahmeshwar

    2016-01-01

    Curcumin (CUR), can inhibit proliferation and induce apoptosis of tumor cells, its extreme insolubility and limited bioavailability restricted its clinical application. An innovative polymeric nanoparticle of CUR has been developed to enhance the bioavailability and anti-cancer efficacy of CUR, in vitro and in vivo. Cationic copolymer Eudragit E 100 was selected as carrier, which can enhance properties of poor bioavailable chemotherapeutic drugs (CUR). The CUR-loaded Eudragit E 100 nanoparticles (CENPs) were prepared by emulsification-diffusion-evaporation method. The in vitro cytotoxicity study of CENPs was carried out using sulphorhodamine B assay. Pharmacokinetic and anti-cancer efficacy of CENPs was investigated in Wister rats as well as colon-26 tumor-bearing mice after oral administration. CENPs showed acceptable particle size and percent entrapment efficiency. In vitro cytotoxicity studies in terms of 50% cell growth inhibition values demonstrated ∼19-fold reduction when treated with CENPs as compared to pure CUR. ∼91-fold increase in Cmax and ∼95-fold increase in AUC0-12h were observed indicating a significant enhancement in the oral bioavailability of CUR when orally administered as CENPs compared to pure CUR. The in vivo anti-cancer study performed with CENPs showed a significant increase in efficacy compared with pure CUR, as observed by tumor volume, body weight and survival rate. The results clearly indicate that the developed polymeric nanoparticles offer a great potential to improve bioavailability and anticancer efficacy of hydrophobic chemotherapeutic drug.

  19. Preparation and evaluation of self-microemulsions for improved bioavailability of ginsenoside-Rh1 and Rh2.

    PubMed

    Yang, Feifei; Zhou, Jing; Hu, Xiao; Yu, Stephanie Kyoungchun; Liu, Chunyu; Pan, Ruile; Chang, Qi; Liu, Xinmin; Liao, Yonghong

    2017-10-01

    Due to intestinal cytochrome P450 (CYP450)-mediated metabolism and P-glycoprotein (P-gp) efflux, poor oral bioavailability hinders ginsenoside-Rh1 (Rh1) and ginsenoside-Rh2 (Rh2) from clinical application. In this study, Rh1 and Rh2 were incorporated into two self-microemulsions (SME-1 and SME-2) to improve oral bioavailability. SME-1 contained both CYP450 and P-gp inhibitory excipients while SME-2 only consisted of P-gp inhibitory excipients. Results for release, cellular uptake, transport, and lymph node distribution demonstrated no significant difference between either self-microemulsions in vivo, but were elevated significantly in comparison to the free drug. The pharmaceutical profiles in vivo showed that the bioavailability of Rh1 in SME-1 (33.25%) was significantly higher than that in either SME-2 (21.28%) or free drug (12.92%). There was no significant difference in bioavailability for Rh2 between SME-1 (48.69%) or SME-2 (41.73%), although they both had remarkable increase in comparison to free drug (15.02%). We confirmed that SME containing CYP450 and P-gp inhibitory excipient could distinctively improve the oral availabilities of Rh1 compared to free drug or SME containing P-gp inhibitory excipient. No notable increase was observed between either SME for Rh2, suggesting that Rh2 undergoes P-gp-mediated efflux, but may not undergo distinct CYP450-mediated metabolism.

  20. Lapatinib nano-delivery systems: a promising future for breast cancer treatment.

    PubMed

    Bonde, Gunjan Vasant; Yadav, Sarita Kumari; Chauhan, Sheetal; Mittal, Pooja; Ajmal, Gufran; Thokala, Sathish; Mishra, Brahmeshwar

    2018-05-01

    Breast cancer stands the second prominent cause of death among women. For its efficient treatment, Lapatinib (LAPA) was developed as a selective tyrosine kinase inhibitor of receptors, overexpressed by breast cancer cells. Various explored delivery strategies for LAPA indicated its controlled release with enhanced aqueous solubility, improved bioavailability, decreased plasma protein binding, reduced dose and toxicity to the other organs with maximized clinical efficacy, compared to its marketed tablet formulation. Areas covered: This comprehensive review deals with the survey, performed through different electronic databases, regarding various challenges and their solutions attained by fabricating delivery systems like nanoparticles, micelle, nanocapsules, nanochannels, and liposomes. It also covers the synthesis of novel LAPA-conjugates for diagnostic purpose. Expert opinion: Unfortunately, clinical use of LAPA is restricted because of its extensive albumin binding capacity, poor oral bioavailability, and poor aqueous solubility. LAPA is marketed as the oral tablet only. Therefore, it becomes imperative to formulate alternate efficient multiparticulate or nano-delivery systems for administration through non-oral routes, for active/passive targeting, and to scale-up by pharmaceutical scientists followed by their clinical trials by clinical experts. LAPA combinations with capecitabine and letrozole should also be tried for breast cancer treatment.

  1. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process.

    PubMed

    Anwar, Mohammed; Ahmad, Iqbal; Warsi, Musarrat H; Mohapatra, Sharmistha; Ahmad, Niyaz; Akhter, Sohail; Ali, Asgar; Ahmad, Farhan J

    2015-10-01

    The biomedical applications of curcumin (CUR) are limited due to its poor oral bioavailability. In this work, CUR nanoparticles were successfully prepared by combining the supercritical anti-solvent (SAS) process with Tween 80 as a solubilizing agent and permeation enhancer. Different processing parameters that can govern the mean particle size and size distribution of nanoparticles were well investigated by manipulating the types of solvents, mixing vessel pressure, mixing vessel temperature, CO2 flow rate, solution flow rate and solution concentration. Solid state characterization was done by Fourier Transform infrared spectroscopy, differential scanning calorimetry, dynamic light scattering, scanning electron microscopy, and powder X-ray diffraction study. Solubility and dissolution profile of SAS-processed CUR were found to be significantly increased in comparison with native CUR. Further, a validated ultra-performance liquid chromatographic method with quadrupole-time of flight-mass spectrometry was developed to investigate the pharmacokinetic parameters after a single oral dose (100mg/kg) administration of CUR (before/after SAS-processed) in male Wistar rats. From the plasma concentration vs. time profile graph, oral bioavailability of SAS-processed CUR was found to be increased approximately 11.6-fold (p<0.001) as compared to native CUR. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A novel oral delivery system consisting in "drug-in cyclodextrin-in nanostructured lipid carriers" for poorly water-soluble drug: vinpocetine.

    PubMed

    Lin, Congcong; Chen, Fen; Ye, Tiantian; Zhang, Lina; Zhang, Wenji; Liu, Dandan; Xiong, Wei; Yang, Xinggang; Pan, Weisan

    2014-04-25

    The purpose of this study was to develop a new delivery system based on drug cyclodextrin (CD) complexation and loading into nanostructured lipid carriers (NLC) to improve the oral bioavailability of vinpocetine (VP). Three different CDs and three different methods to obtain solid vinpocetine-cyclodextrin-tartaric acid complexes (VP-CD-TA) were contrasted. The co-evaporation vinpocetine-β-cyclodextrin-tartaric acid loaded NLC (VP-β-CD-TA COE-loaded NLC) was obtained by emulsification ultrasonic dispersion method. VP-β-CD-TA COE-loaded NLC was suitably characterized for particle size, polydispersity index, zeta potential, entrapment efficiency and the morphology. The crystallization of drug in VP-CD-TA and NLC was investigated by differential scanning calorimetry (DSC). The in vitro release study was carried out at pH 1.2, pH 6.8 and pH 7.4 medium. New Zealand rabbits were applied to investigate the pharmacokinetic behavior in vivo. The VP-β-CD-TA COE-loaded NLC presented a superior physicochemical property and selected to further study. In the in vitro release study, VP-β-CD-TA COE-loaded NLC exhibited a higher dissolution rate in the pH 6.8 and pH 7.4 medium than VP suspension and VP-NLC. The relative bioavailability of VP-β-CD-TA COE-loaded NLC was 592% compared with VP suspension and 92% higher than VP-NLC. In conclusion, the new formulation significantly improved bioavailability of VP for oral delivery, demonstrated a perspective way for oral delivery of poorly water-soluble drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Critical determinant of intestinal permeability and oral bioavailability of pegylated all trans-retinoic acid prodrug-based nanomicelles: Chain length of poly (ethylene glycol) corona.

    PubMed

    Li, Zhenbao; Han, Xiaopeng; Zhai, Yinglei; Lian, He; Zhang, Dong; Zhang, Wenjuan; Wang, Yongjun; He, Zhonggui; Liu, Zheng; Sun, Jin

    2015-06-01

    Pegylation method is widely used to prolong the blood circulation time of proteins and nanoparticles after intravenous administration, but the effect of surface poly (ethylene glycol) (PEG) chain length on oral absorption of the pegylated nanoparticles is poorly reported. The aim of our study was to investigate the influence of PEG corona chain length on membrane permeability and oral bioavailability of the amphiphilic pegylated prodrug-based nanomicelles, taking all trans-retinoic acid (ATRA) as a model drug. The amphiphilic ATRA-PEG conjugates were synthesized by esterification reaction between all trans-retinoic acid and mPEGs (mPEG500, mPEG1000, mPEG2000, and mPEG5000). The conjugates could self-assemble in aqueous medium to form nanomicelles by emulsion-solvent evaporation method. The resultant nanomicelles were in spherical shape with an average diameter of 13-20 nm. The drug loading efficiency of ATRA-PEG500, ATRA-PEG1000, ATRA-PEG2000, and ATRA-PEG5000 was about 38.4, 26.6, 13.1, and 5.68 wt%, respectively. With PEG chain length ranging from 500 to 5000, ATRA-PEG nanomicelles exhibited a bell shape of chemical stability in different pH buffers, intestinal homogenate and plasma. More importantly, they were all rapidly hydrolyzed into the parent drug in hepatic homogenate, with the half-time values being 0.3-0.4h. In comparison to ATRA solution and ATRA prodrug-based nanomicelles, ATRA-PEG1000 showed the highest intestinal permeability. After oral administration, ATRA-PEG2000 and ATRA-PEG5000 nanomicelles were not nearly absorbed, while the oral bioavailability of ATRA-PEG500 and ATRA-PEG1000 demonstrated about 1.2- and 2.0-fold higher than ATRA solution. Our results indicated that PEG1000 chain length of ATRA-PEG prodrug nanomicelles has the optimal oral bioavailability probably due to improved stability and balanced mucus penetration capability and cell binding, and that the PEG chain length on a surface of nanoparticles cannot exceed a key threshold with the purpose of enhancement in oral bioavailability. Copyright © 2015. Published by Elsevier B.V.

  4. G5 PAMAM dendrimer versus liposome: a comparison study on the in vitro transepithelial transport and in vivo oral absorption of simvastatin.

    PubMed

    Qi, Rong; Zhang, Heran; Xu, Lu; Shen, Wenwen; Chen, Cong; Wang, Chao; Cao, Yini; Wang, Yunan; van Dongen, Mallory A; He, Bing; Wang, Siling; Liu, George; Banaszak Holl, Mark M; Zhang, Qiang

    2015-07-01

    This study compared formulation effects of a dendrimer and a liposome preparation on the water solubility, transepithelial transport, and oral bioavailability of simvastatin (SMV). Amine-terminated G5 PAMAM dendrimer (G5-NH2) was chosen to form SMV/G5-NH2 molecular complexes, and SMV-liposomes were prepared by using a thin film dispersion method. The effects of these preparations on the transepithelial transport were investigated in vitro using Caco-2 cell monolayers. Results indicated that the solubility and transepithelial transport of SMV were significantly improved by both formulations. Pharmacokinetic studies in rats also revealed that both the SMV/G5-NH2 molecular complexes and the SMV-liposomes significantly improved the oral bioavailability of SMV with the liposomes being more effective than the G5-NH2. The overall better oral absorption of SMV-liposomes as compared to SMV/G5-NH2 molecular complexes appeared to arise from better liposomal solubilization and encapsulation of SMV and more efficient intracellular SMV delivery. Various carrier systems have been designed to enhance drug delivery via the oral route. In this study, the authors compared G5 PAMAM dendrimers to liposome preparations in terms of solubility, transepithelial transport, and oral bioavailability of this poorly water-soluble drug. This understanding has improved our knowledge in the further development of drug carrier systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Improving Biopharmaceutical Properties of Vinpocetine Through Cocrystallization.

    PubMed

    Golob, Samuel; Perry, Miranda; Lusi, Matteo; Chierotti, Michele R; Grabnar, Iztok; Lassiani, Lucia; Voinovich, Dario; Zaworotko, Michael J

    2016-12-01

    Vinpocetine is a poorly water soluble weakly basic drug (pK a  = 7.1) used for the treatment of several cerebrovascular and cognitive disorders. Because existing formulations exhibit poor bioavailability and scarce absorption, a dosage form with improved pharmacokinetic properties is highly desirable. Cocrystallization represents a promising approach to generate diverse novel crystal forms and to improve the aqueous solubility and in turn the oral bioavailability. In this article, a novel ionic cocrystal of vinpocetine is described, using boric acid as a coformer, and fully characterized (by means of differential scanning calorimetry, solid-state nuclear magnetic resonance, powder and single-crystal X-ray diffraction, and powder dissolution test). Pharmacokinetic performance was also tested in a human pilot study. This pharmaceutical ionic cocrystal exhibits superior solubilization kinetics and modulates important pharmacokinetic values such as maximum concentration in plasma (C max ), time to maximum concentration (t max ), and area under the plasma concentration-time curve (AUC) of the poorly soluble vinpocetine and it therefore offers an innovative approach to improve its bioavailability. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Computational modeling of human oral bioavailability: what will be next?

    PubMed

    Cabrera-Pérez, Miguel Ángel; Pham-The, Hai

    2018-06-01

    The oral route is the most convenient way of administrating drugs. Therefore, accurate determination of oral bioavailability is paramount during drug discovery and development. Quantitative structure-property relationship (QSPR), rule-of-thumb (RoT) and physiologically based-pharmacokinetic (PBPK) approaches are promising alternatives to the early oral bioavailability prediction. Areas covered: The authors give insight into the factors affecting bioavailability, the fundamental theoretical framework and the practical aspects of computational methods for predicting this property. They also give their perspectives on future computational models for estimating oral bioavailability. Expert opinion: Oral bioavailability is a multi-factorial pharmacokinetic property with its accurate prediction challenging. For RoT and QSPR modeling, the reliability of datasets, the significance of molecular descriptor families and the diversity of chemometric tools used are important factors that define model predictability and interpretability. Likewise, for PBPK modeling the integrity of the pharmacokinetic data, the number of input parameters, the complexity of statistical analysis and the software packages used are relevant factors in bioavailability prediction. Although these approaches have been utilized independently, the tendency to use hybrid QSPR-PBPK approaches together with the exploration of ensemble and deep-learning systems for QSPR modeling of oral bioavailability has opened new avenues for development promising tools for oral bioavailability prediction.

  7. Enhancement of Oral Bioavailability of Curcumin by a Novel Solid Dispersion System.

    PubMed

    Hu, Liandong; Shi, Yanjing; Li, Jian Heng; Gao, Na; Ji, Jing; Niu, Feng; Chen, Queting; Yang, Xiaoning; Wang, Shaocheng

    2015-12-01

    The objective of this study was to improve the solubility and bioavailability of curcumin by a new curcumin dripping pills (Cur-DPs) formulation using melt mixing methods. The optimal formulation consisted of Polyethoxylated 40 hydrogenated castor oil (Cremophor RH40), Poloxamer 188, and Polyethylene glycol 4000 (PEG 4000). Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier-transform infrared spectroscopy (FT-IR) were used to verify the forming of Cur-DPs. All the physical characterization information proved the formation of Cur-DPs, and the results demonstrated the superiority of the dripping pills in dissolution rates. The pharmacokinetic study of Cur-DPs was performed in rats compared to the pure curcumin suspension. The oral bioavailability of poorly water-soluble curcumin was successfully improved by CUR-DPs. And the stability of prepared Cur-DP was also in a good state in 3 months. These results identified the Cur-DPs was an effective new approach for pharmaceutical application.

  8. In vitro and in vivo evaluation of curcumin loaded lauroyl sulphated chitosan for enhancing oral bioavailability.

    PubMed

    Shelma, R; Sharma, Chandra P

    2013-06-05

    Curcumin has been demonstrated as a potent anticancer agent but its clinical application has been limited by its poor aqueous solubility and bioavailability. Here we describe encapsulation of curcumin in the lauroyl sulphated chitosan with a view to improve its bioavailability. In vitro antioxidant activity of extract of curcumin loaded matrix was investigated and exhibited dose dependent radical scavenging and reducing activity. Cytotoxicity studies carried out with curcumin loaded carrier on C6 cell line and were found to be toxic. Its in vitro effects on proliferation using the C6 cell lines also studied and observed antiproliferation of C6 cell line. Plasma concentration of curcumin-time profiles from pharmacokinetic studies in rats after oral administration showed a 11.5-fold increased pharmacological availability of curcumin with encapsulated curcumin compared with native curcumin. Overall we demonstrate that the curcumin loaded matrix has shown a superior pharmacological availability in vivo over curcumin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Metabolic fate of poly-(lactic-co-glycolic acid)-based curcumin nanoparticles following oral administration.

    PubMed

    Harigae, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Taiki; Inoue, Nao; Kimura, Fumiko; Ikeda, Ikuo; Miyazawa, Teruo

    2016-01-01

    Curcumin (CUR), the main polyphenol in turmeric, is poorly absorbed and rapidly metabolized following oral administration, which severely curtails its bioavailability. Poly-(lactic-co-glycolic acid)-based CUR nanoparticles (CUR-NP) have recently been suggested to improve CUR bioavailability, but this has not been fully verified. Specifically, no data are available about curcumin glucuronide (CURG), the major metabolite of CUR found in the plasma following oral administration of CUR-NP. Herein, we investigated the absorption and metabolism of CUR-NP and evaluated whether CUR-NP improves CUR bioavailability. Following oral administration of CUR-NP in rats, we analyzed the plasma and organ distribution of CUR and its metabolites using high-performance liquid chromatography-tandem mass spectrometry. To elucidate the mechanism of increased intestinal absorption of CUR-NP, we prepared mixed micelles comprised of phosphatidylcholine and bile salts and examined the micellar solubility of CUR-NP. Additionally, we investigated the cellular incorporation of the resultant micelles into differentiated Caco-2 human intestinal cells. Following in vivo administration of CUR-NP, CUR was effectively absorbed and present mainly as CURG in the plasma which contained significant amounts of the metabolite compared with other organs. Thus, CUR-NP increased intestinal absorption of CUR rather than decreasing metabolic degradation and conversion to other metabolites. In vitro, CUR encapsulated in CUR-NP was solubilized in mixed micelles; however, whether the micelles contained CUR or CUR-NP had little influence on cellular uptake efficiency. Therefore, we suggest that the high solubilization capacity of CUR-NP in mixed micelles, rather than cellular uptake efficiency, explains the high intestinal absorption of CUR-NP in vivo. These findings provide a better understanding of the bioavailability of CUR and CUR-NP following oral administration. To improve the bioavailability of CUR, future studies should focus on enhancing the resistance to metabolic degradation and conversion of CUR to other metabolites, which may lead to novel discoveries regarding food function and disease prevention.

  10. Enhancing the bioavailability of resveratrol by combining it with piperine

    PubMed Central

    Johnson, Jeremy J.; Nihal, Minakshi; Siddiqui, Imtiaz A.; Scarlett, Cameron O.; Bailey, Howard H.; Mukhtar, Hasan; Ahmad, Nihal

    2012-01-01

    Scope Resveratrol (3,5,4′-trihydroxystilbene) is a phytoalexin shown to possess a multitude of health-promoting properties in pre-clinical studies. However, the poor in vivo bioavailability of resveratrol due to its rapid metabolism is being considered as a major obstacle in translating its effects in humans. In this study, we examined the hypothesis that piperine will enhance the pharmacokinetic parameters of resveratrol via inhibiting its glucuronidation, thereby slowing its elimination. Methods and results Employing a standardized LC/MS assay, we determined the effect of piperine co-administration with resveratrol on serum levels resveratrol and resveratrol-3-O-β-d-glucuronide in C57BL mice. Mice were administered resveratrol (100 mg/kg; oral gavage) or resveratrol (100 mg/kg; oral gavage) + piperine (10 mg/kg; oral gavage), and the serum levels of resveratrol and resveratrol-3-O-β-d-glucuronide were analyzed at different times. We found that the degree of exposure (i.e. AUC) to resveratrol was enhanced to 229% and the maximum serum concentration (Cmax) was increased to 1544% with the addition of piperine. Conclusion Our study demonstrated that piperine significantly improves the in vivo bioavailability of resveratrol. However, further detailed research is needed to study the mechanism of improved bioavailability of resveratrol via its combination with piperine as well as its effect on resveratrol metabolism. PMID:21714124

  11. Novel gastroretentive sustained-release tablet of tacrolimus based on self-microemulsifying mixture: in vitro evaluation and in vivo bioavailability test.

    PubMed

    Wang, Yan-ping; Gan, Yong; Zhang, Xin-xin

    2011-10-01

    To develop a novel gastroretentive drug delivery system based on a self-microemulsifying (SME) lipid mixture for improving the oral absorption of the immunosuppressant tacrolimus. Liquid SME mixture, composed of Cremophor RH40 and monocaprylin glycerate, was blended with polyethylene oxide, chitosan, polyvinylpyrrolidone and mannitol, and then transformed into tablets via granulation, with ethanol as the wetting agent. The tablets were characterized in respect of swelling, bioadhesive and SME properties. In vitro dissolution was conducted using an HCl buffer at pH 1.2. Oral bioavailability of the tablets was examined in fasted beagle dogs. The tablet could expand to 13.5 mm in diameter and 15 mm in thickness during the initial 20 min of contact with the HCl buffer at pH 1.2. The bioadhesive strength was as high as 0.98±0.06 N/cm(2). The SME gastroretentive sustained-release tablets preserved the SME capability of the liquid SME formations under transmission electron microscope. The drug-release curve was fit to the zero-order release model, which was helpful in reducing fluctuations in blood concentration. Compared with the commercially available capsules of tacrolimus, the relative bioavailability of the SME gastroretentive sustained-release tablets was 553.4%±353.8%. SME gastroretentive sustained-release tablets can enhance the oral bioavailability of tacrolimus with poor solubility and a narrow absorption window.

  12. Evaluation of Intestinal Absorption and Bioavailability of a Bergenin-Phospholipid Complex Solid Dispersion in Rats.

    PubMed

    Gao, Haoshi; Wei, Yue; Xi, Long; Sun, Yuanyuan; Zhang, Tianhong

    2018-05-01

    Bergenin (BN) is a Biopharmaceutics Classification System class IV (BCS IV) drug with poor hydrophilicity and lipophilicity and is potentially eliminated by the efflux function of P-glycoprotein (P-gp). These factors may explain its low oral bioavailability. In the present study, a BN-phospholipid complex solid dispersion (BNPC-SD) was prepared by solvent evaporation and characterized based on differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, infrared diffraction, solubility, octanol-water partition coefficient, and in vitro dissolution. To investigate how P-gp can inhibit BN absorption in vivo, the P-gp inhibitor verapamil was co-administered with BNPC-SD to Sprague Dawley rats. By in situ single-pass intestinal perfusion, the membrane permeability of BN from BNPC-SD was higher than that of BN given alone and was improved further by co-administered verapamil. A pharmacokinetics study was done in Sprague Dawley rats, with plasma BN levels estimated by high-performance liquid chromatography. C max and AUC 0 → t values for BN were significantly higher for BNPC-SD than for BN given alone and were increased further by verapamil. Thus, the relative oral bioavailability of BNPC-SD as well as BNPC-SD co-administered with verapamil was 156.33 and 202.46%, respectively, compared with the value for BN given alone. These results showed that BNPC-SD can increase the oral bioavailability of BCS IV drugs.

  13. Enhanced oral absorption of 20(S)-protopanaxadiol by self-assembled liquid crystalline nanoparticles containing piperine: in vitro and in vivo studies

    PubMed Central

    Jin, Xin; Zhang, Zhen-hai; Sun, E; Tan, Xiao-bin; Li, Song-lin; Cheng, Xu-dong; You, Ming; Jia, Xiao-bin

    2013-01-01

    Background 20(S)-protopanaxadiol (PPD), similar to several other anticancer agents, has low oral absorption and is extensively metabolized. These factors limit the use of PPD for treatment of human diseases. Methods In this study, we used cubic nanoparticles containing piperine to improve the oral bioavailability of PPD and to enhance its absorption and inhibit its metabolism. Cubic nanoparticles loaded with PPD and piperine were prepared by fragmentation of glyceryl monoolein (GMO)/poloxamer 407 bulk cubic gel and verified using transmission electron microscopy and differential scanning calorimetry. We evaluated the in vitro release of PPD from these nanoparticles and its absorption across the Caco-2 cell monolayer model, and subsequently, we examined the bioavailability and metabolism of PPD and its nanoparticles in vivo. Results The in vitro release of PPD from these nanoparticles was less than 5% at 12 hours. PPD-cubosome and PPD-cubosome loaded with piperine (molar ratio PPD/piperine, 1:3) increased the apical to basolateral permeability values of PPD across the Caco-2 cell monolayer from 53% to 64%, respectively. In addition, the results of a pharmacokinetic study in rats showed that the relative bioavailabilities of PPD-cubosome [area under concentration–time curve (AUC)0–∞] and PPD-cubosome containing piperine (AUC0–∞) compared to that of raw PPD (AUC0–∞) were 166% and 248%, respectively. Conclusion The increased bioavailability of PPD-cubosome loaded with piperine is due to an increase in absorption and inhibition of metabolism of PPD by cubic nanoparticles containing piperine rather than because of improved release of PPD. The cubic nanoparticles containing piperine may be a promising oral carrier for anticancer drugs with poor oral absorption and that undergo extensive metabolism by cytochrome P450. PMID:23426652

  14. Optimized zein nanospheres for improved oral bioavailability of atorvastatin

    PubMed Central

    Hashem, Fahima M; Al-Sawahli, Majid M; Nasr, Mohamed; Ahmed, Osama AA

    2015-01-01

    Background This work focuses on the development of atorvastatin utilizing zein, a natural, safe, and biocompatible polymer, as a nanosized formulation in order to overcome the poor oral bioavailability (12%) of the drug. Methods Twelve experimental runs of atorvastatin–zein nanosphere formula were formulated by a liquid–liquid phase separation method according to custom fractional factorial design to optimize the formulation variables. The factors studied were: weight % of zein to atorvastatin (X1), pH (X2), and stirring time (X3). Levels for each formulation variable were designed. The selected dependent variables were: mean particle size (Y1), zeta potential (Y2), drug loading efficiency (Y3), drug encapsulation efficiency (Y4), and yield (Y5). The optimized formulation was assayed for compatibility using an X-ray diffraction assay. In vitro diffusion of the optimized formulation was carried out. A pharmacokinetic study was also done to compare the plasma profile of the atorvastatin–zein nanosphere formulation versus atorvastatin oral suspension and the commercially available tablet. Results The optimized atorvastatin–zein formulation had a mean particle size of 183 nm, a loading efficiency of 14.86%, and an encapsulation efficiency of 29.71%. The in vitro dissolution assay displayed an initial burst effect, with a cumulative amount of atorvastatin released of 41.76% and 82.3% after 12 and 48 hours, respectively. In Wistar albino rats, the bioavailability of atorvastatin from the optimized atorvastatin–zein formulation was 3-fold greater than that from the atorvastatin suspension and the commercially available tablet. Conclusion The atorvastatin–zein nanosphere formulation improved the oral delivery and pharmacokinetic profile of atorvastatin by enhancing its oral bioavailability. PMID:26150716

  15. Fabrication and evaluation of valsartan–polymer– surfactant composite nanoparticles by using the supercritical antisolvent process

    PubMed Central

    Kim, Min-Soo; Baek, In-hwan

    2014-01-01

    The aim of this study was to fabricate valsartan composite nanoparticles by using the supercritical antisolvent (SAS) process, and to evaluate the correlation between in vitro dissolution and in vivo pharmacokinetic parameters for the poorly water-soluble drug valsartan. Spherical composite nanoparticles with a mean size smaller than 400 nm, which contained valsartan, were successfully fabricated by using the SAS process. X-ray diffraction and thermal analyses indicated that valsartan was present in an amorphous form within the composite nanoparticles. The in vitro dissolution and oral bioavailability of valsartan were dramatically enhanced by the composite nanoparticles. Valsartan–hydroxypropyl methylcellulose–poloxamer 407 nanoparticles exhibited faster drug release (up to 90% within 10 minutes under all dissolution conditions) and higher oral bioavailability than the raw material, with an approximately 7.2-fold higher maximum plasma concentration. In addition, there was a positive linear correlation between the pharmacokinetic parameters and the in vitro dissolution efficiency. Therefore, the preparation of composite nanoparticles with valsartan–hydroxypropyl methylcellulose and poloxamer 407 by using the SAS process could be an effective formulation strategy for the development of a new dosage form of valsartan with high oral bioavailability. PMID:25404856

  16. The effect of dietary factors on strawberry anthocyanins oral bioavailability.

    PubMed

    Xiao, Di; Sandhu, Amandeep; Huang, Yancui; Park, Eunyoung; Edirisinghe, Indika; Burton-Freeman, Britt M

    2017-11-15

    Strawberries are a dietary source of anthocyanins, particularly pelargonidin glycosides. Dietary anthocyanins have received increasing attention among researchers and consumers due to their health benefits. The oral bioavailability of anthocyanins is reported to be low and various dietary factors may influence their oral bioavailability further. Milk is suggested to reduce (poly)phenols' oral bioavailability. However, the effect of milk on anthocyanin oral bioavailability remains uncertain. Likewise, mixed nutrient meals may influence the oral bioavailability of anthocyanins. Therefore, the purpose of this study was to assess the effect of milk on the oral bioavailability and other pharmacokinetic (PK) variables of strawberry anthocyanins consumed with and without a meal. Nine healthy participants consumed a strawberry beverage prepared in milk or water with a standard meal on two occasions. On two additional occasions, the beverages were given to a subset (n = 4) of participants to determine the impact of the meal on anthocyanin PK variables, including oral bioavailability. Independent of the meal, beverages prepared in milk significantly reduced the peak plasma concentrations (C max ) of pelargonidin-3-O-glucoside (P-3-G), pelargonidin-glucuronide (PG) and pelargonidin-3-O-rutinoside (P-3-R), as well as the PG and P-3-R area under the curve (AUC) (p < 0.05) compared to beverages prepared in water. Milk did not influence the oral relative bioavailability of pelargonidin anthocyanins under meal conditions; however, the oral relative bioavailability of pelargonidin anthocyanins was reduced by ∼50% by milk under without meal conditions (p < 0.05). Consuming strawberry beverages made with milk and consuming those made with water with and without a meal influenced different aspects of strawberry anthocyanin PKs. The significance of this effect on clinical efficacy requires additional research.

  17. Oral lipid-based nanoformulation of tafenoquine enhanced bioavailability and blood stage antimalarial efficacy and led to a reduction in human red blood cell loss in mice.

    PubMed

    Melariri, Paula; Kalombo, Lonji; Nkuna, Patric; Dube, Admire; Hayeshi, Rose; Ogutu, Benhards; Gibhard, Liezl; deKock, Carmen; Smith, Peter; Wiesner, Lubbe; Swai, Hulda

    2015-01-01

    Tafenoquine (TQ), a new synthetic analog of primaquine, has relatively poor bioavailability and associated toxicity in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. A microemulsion formulation of TQ (MTQ) with sizes <20 nm improved the solubility of TQ and enhanced the oral bioavailability from 55% to 99% in healthy mice (area under the curve 0 to infinity: 11,368±1,232 and 23,842±872 min·μmol/L) for reference TQ and MTQ, respectively. Average parasitemia in Plasmodium berghei-infected mice was four- to tenfold lower in the MTQ-treated group. In vitro antiplasmodial activities against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum indicated no change in half maximal inhibitory concentration, suggesting that the microemulsion did not affect the inherent activity of TQ. In a humanized mouse model of G6PD deficiency, we observed reduction in toxicity of TQ as delivered by MTQ at low but efficacious concentrations of TQ. We hereby report an enhancement in the solubility, bioavailibility, and efficacy of TQ against blood stages of Plasmodium parasites without a corresponding increase in toxicity.

  18. Oral lipid-based nanoformulation of tafenoquine enhanced bioavailability and blood stage antimalarial efficacy and led to a reduction in human red blood cell loss in mice

    PubMed Central

    Melariri, Paula; Kalombo, Lonji; Nkuna, Patric; Dube, Admire; Hayeshi, Rose; Ogutu, Benhards; Gibhard, Liezl; deKock, Carmen; Smith, Peter; Wiesner, Lubbe; Swai, Hulda

    2015-01-01

    Tafenoquine (TQ), a new synthetic analog of primaquine, has relatively poor bioavailability and associated toxicity in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. A microemulsion formulation of TQ (MTQ) with sizes <20 nm improved the solubility of TQ and enhanced the oral bioavailability from 55% to 99% in healthy mice (area under the curve 0 to infinity: 11,368±1,232 and 23,842±872 min·μmol/L) for reference TQ and MTQ, respectively. Average parasitemia in Plasmodium berghei-infected mice was four- to tenfold lower in the MTQ-treated group. In vitro antiplasmodial activities against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum indicated no change in half maximal inhibitory concentration, suggesting that the microemulsion did not affect the inherent activity of TQ. In a humanized mouse model of G6PD deficiency, we observed reduction in toxicity of TQ as delivered by MTQ at low but efficacious concentrations of TQ. We hereby report an enhancement in the solubility, bioavailibility, and efficacy of TQ against blood stages of Plasmodium parasites without a corresponding increase in toxicity. PMID:25759576

  19. Enhancement of solubility and bioavailability of ambrisentan by solid dispersion using Daucus carota as a drug carrier: formulation, characterization, in vitro, and in vivo study.

    PubMed

    Deshmane, Subhash; Deshmane, Snehal; Shelke, Santosh; Biyani, Kailash

    2018-06-01

    Ambrisentan is an US FDA approved drug, it is the second oral endothelin A receptor antagonist known for the treatment of pulmonary arterial hypertension, but its oral administration is limited due to its poor water solubility. Hence, the objective of the investigation was focused on enhancement of solubility and bioavailability of ambrisentan by solid dispersion technique using natural Daucus carota extract as drug carrier. Drug carrier was evaluated for solubility, swelling index, viscosity, angle of repose, hydration capacity, and acute toxicity test (LD 50 ). Ambrisentan was studied for the saturation solubility, phase solubility, and Gibbs free energy change. Compatibility of drug and the natural carrier was confirmed by DSC, FTIR, and XRD. Solid dispersions were evaluated for drug content, solubility, morphology, in vitro, and in vivo study. Screening of the natural carrier showed the desirable properties like water solubility, less swelling index, less viscosity, and acute toxicity study revealed no any clinical symptoms of toxicity. Drug and carrier interaction study confirmed the compatibility to consider its use in the formulation. Formed particles were found to be spherical with smooth surface. In vitro studies revealed higher drug release from the solid dispersion than that of the physical mixture. Bioavailability study confirms the increased absorption and bioavailability by oral administration of solid dispersion. Hence, it can be concluded that the natural Daucus carota extract can be the better alternative source for the preparation of solid dispersion and/or other dosage forms for improving solubility and bioavailability.

  20. Nanosizing of drugs: Effect on dissolution rate

    PubMed Central

    Dizaj, S. Maleki; Vazifehasl, Zh.; Salatin, S.; Adibkia, Kh.; Javadzadeh, Y.

    2015-01-01

    The solubility, bioavailability and dissolution rate of drugs are important parameters for achieving in vivo efficiency. The bioavailability of orally administered drugs depends on their ability to be absorbed via gastrointestinal tract. For drugs belonging to Class II of pharmaceutical classification, the absorption process is limited by drug dissolution rate in gastrointestinal media. Therefore, enhancement of the dissolution rate of these drugs will present improved bioavailability. So far several techniques such as physical and chemical modifications, changing in crystal habits, solid dispersion, complexation, solubilization and liquisolid method have been used to enhance the dissolution rate of poorly water soluble drugs. It seems that improvement of the solubility properties ofpoorly water soluble drugscan translate to an increase in their bioavailability. Nowadays nanotechnology offers various approaches in the area of dissolution enhancement of low aqueous soluble drugs. Nanosizing of drugs in the form of nanoparticles, nanocrystals or nanosuspensions not requiring expensive facilities and equipment or complicated processes may be applied as simple methods to increase the dissolution rate of poorly water soluble drugs. In this article, we attempted to review the effects of nanosizing on improving the dissolution rate of poorly aqueous soluble drugs. According to the reviewed literature, by reduction of drug particle size into nanometer size the total effective surface area is increased and thereby dissolution rate would be enhanced. Additionally, reduction of particle size leads to reduction of the diffusion layer thickness surrounding the drug particles resulting in the increment of the concentration gradient. Each of these process leads to improved bioavailability. PMID:26487886

  1. Boosting the bioavailability of hydrophobic nutrients, vitamins, and nutraceuticals in natural products using excipient emulsions.

    PubMed

    McClements, David Julian; Saliva-Trujillo, Laura; Zhang, Ruojie; Zhang, Zipei; Zou, Liqiang; Yao, Mingfei; Xiao, Hang

    2016-10-01

    Many highly hydrophobic bioactives, such as non-polar nutrients, nutraceuticals, and vitamins, have a relatively low or variable oral bioavailability. The poor bioavailability profile of these bioactives may be due to limited bioaccessibility, poor absorption, and/or chemical transformation within the gastrointestinal tract (GIT). The bioavailability of hydrophobic bioactives can be improved using specially designed oil-in-water emulsions consisting of lipid droplets dispersed within an aqueous phase. The bioactives may be isolated from their natural environment and then incorporated into the lipid phase of emulsion-based delivery systems. Alternatively, the bioactives may be left in their natural environment (e.g., fruits or vegetables), and then ingested with emulsion-based excipient systems. An excipient emulsion may have no inherent health benefits itself, but it boosts the biological activity of bioactive ingredients co-ingested with it by altering their bioaccessibility, absorption, and/or chemical transformation. This review discusses the design and fabrication of excipient emulsions, and gives some examples of recent research that demonstrates their potential efficacy for improving the bioavailability of hydrophobic bioactives. The concept of excipient emulsions could be used to formulate emulsion-based food products (such as excipient sauces, dressings, dips, creams, or yogurts) specifically designed to increase the bioavailability of bioactive agents in natural foods, such as fruits and vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. In vitro and in vivo studies of pharmacokinetics and antitumor efficacy of D07001-F4, an oral gemcitabine formulation.

    PubMed

    Hao, Wei-Hua; Wang, Jong-Jing; Hsueh, Shu-Ping; Hsu, Pei-Jing; Chang, Li-Chien; Hsu, Chang-Shan; Hsu, Kuang-Yang

    2013-02-01

    The chemotherapy agent gemcitabine is currently administered intravenously because the drug has poor oral bioavailability. In order to assess the pharmacokinetics and antitumor activity of D07001-F4, a new self-microemulsifying oral drug delivery system preparation of gemcitabine, this study was performed to compare the effect of D07001-F4 with administered gemcitabine in vitro and in vivo. D07001-F4 pharmacokinetics was examined by evaluation of in vitro deamination of D07001-F4 and gemcitabine hydrochloride by recombinant human cytidine deaminase (rhCDA) and in vivo evaluation of D07001-F4 pharmacokinetics in mice. Antitumor activity was evaluated by comparing the effect of D07001-F4 and gemcitabine hydrochloride in inhibiting growth in nine cancer cell lines and by examining the effect of D07001-F4 and gemcitabine in two xenograft tumor models in mice. In vitro deamination of D07001-F4 by rhCDA was 3.3-fold slower than deamination of gemcitabine hydrochloride. Growth inhibition by D07001-F4 of 7 of the 8 cancer cell lines was increased compared with that seen with gemcitabine hydrochloride, and D07001-F4 inhibited the growth of pancreatic and colon cancer xenografts. In vivo pharmacokinetics showed the oral bioavailability of D07001-F4 to be 34%. D07001-F4 was effective against several cancer types, was metabolized more slowly than gemcitabine hydrochloride, and exhibited enhanced oral bioavailability.

  3. Bringing Curcumin to the Clinic in Cancer Prevention: a Review of Strategies to Enhance Bioavailability and Efficacy.

    PubMed

    Mahran, Rama I; Hagras, Magda M; Sun, Duxin; Brenner, Dean E

    2017-01-01

    Curcumin is widely available, inexpensive spice that has been used in ancient folk medicine for millennia, especially in India. Curcumin has the pharmacological properties that slow or reverse cellular proliferation and enhance apoptosis and differentiation associated with a diverse array of molecular effects. Despite its effective anticarcinogenesis properties, curcumin's poor solubility, instability, and extensive metabolism result in poor oral bioavailability. Strategies to enhance curcumin delivery include encapsulating or incorporating curcumin in a nanoparticle or microparticle drug delivery system, synthesizing more stable curcumin analogs that resist metabolism while retaining curcumin's pharmacological properties, and adding another natural product that has bioenhancing properties to curcumin or combination of two of these strategies. This review comprehensively explores curcumin's chemistry and pharmacology followed by comparing and contrasting a vast number of strategies designed to enhance curcumin's bioavailability and its therapeutic effects. The review provides insights into which curcumin formulation strategies have the greatest promise to reach clinical application.

  4. Pharmacokinetics of dietary cancer chemopreventive compound dibenzoylmethane in rats and the impact of nanoemulsion and genetic knockout of Nrf2 on its disposition.

    PubMed

    Lin, Wen; Hong, Jin-Liern; Shen, Guoxiang; Wu, Rachel T; Wang, Yuwen; Huang, Mou-Tuan; Newmark, Harold L; Huang, Qingrong; Khor, Tin Oo; Heimbach, Tycho; Kong, Ah-Ng

    2011-03-01

    The pharmacokinetic disposition of a dietary cancer chemopreventive compound dibenzoylmethane (DBM) was studied in male Sprague-Dawley rats after intravenous (i.v.) and oral (p.o.) administrations. Following a single i.v. bolus dose, the mean plasma clearance (CL) of DBM was low compared with the hepatic blood flow. DBM displayed a high volume of distribution (Vss). The elimination terminal t1/2 was long. The mean CL, Vss and AUC0-∞/dose were similar between the i.v. 10 and 10 mg/kg doses. After single oral doses (10, 50 and 250 mg/kg), the absolute oral bioavailability (F*) of DBM was 7.4%-13.6%. The increase in AUC was not proportional to the oral doses, suggesting non-linearity. In silico prediction of oral absorption also demonstrated low DBM absorption in vivo. An oil-in-water nanoemulsion containing DBM was formulated to potentially overcome the low F* due to poor water solubility of DBM, with enhanced oral absorption. Finally, to examine the role of Nrf2 on the pharmacokinetics of DBM, since DBM activates the Nrf2-dependent detoxification pathways, Nrf2 wild-type (+/+) mice and Nrf2 knockout (-/-) mice were utilized. There was an increased systemic plasma exposure of DBM in Nrf2 (-/-) mice, suggesting that the Nrf2 genotype could also play a role in the pharmacokinetic disposition of DBM. Taken together, the results show that DBM has low oral bioavailability which could be due in part to poor water solubility and this could be overcome by a nanotechnology-based drug delivery system and furthermore the Nrf2 genotype could also play a role in the pharmacokinetics of DBM. Copyright © 2010 John Wiley & Sons, Ltd.

  5. Melt dispersion granules: formulation and evaluation to improve oral delivery of poorly soluble drugs - a case study with valsartan.

    PubMed

    Chella, Naveen; Tadikonda, Ramarao

    2015-06-01

    Solid dispersion (SD) technique is a promising strategy to improve the solubility and dissolution of BCS class II drugs. However, only few products are marketed till today based on SD technology due to poor flow properties and stability. The present work was intended to solve these problems by using combination approach, melt dispersion and surface adsorption technologies. The main aim of the present work is to improve the absorption in the stomach (at lower pH) where the absorption window exists for the drug by improving the dissolution, resulting in the enhancement of oral bioavailability of poorly soluble, weakly acidic drug with pH dependant solubility, i.e. valsartan. Melt dispersion granules were prepared in different ratios using different carriers (Gelucire 50/13, PEG 8000 and Pluronic F-68) and lactose as an adsorbent. Similarly, physical mixtures were also prepared at corresponding ratios. The prepared dispersion granules and physical mixtures were characterized by FTIR, DSC and in vitro dissolution studies. DSC studies revealed reduction in the crystallinity with a possibility of presence of amorphous character of drug in the dispersion granules. From dissolution studies, valsartan Gelucire dispersion (GSD4; 1:4 ratio) showed complete drug release in 30 min against the plain drug which showed only 11.31% of drug release in 30 min. Pharmacokinetic studies of optimized formulation in male Wistar rats showed 2.65-fold higher bioavailability and 1.47-fold higher Cmax compared to pure drug. The melt dispersion technology has the potential to improve dissolution and the bioavailability of BCS class II drugs.

  6. In Vitro and In Vivo Characterization of Drug Nanoparticles Prepared Using PureNano™ Continuous Crystallizer to Improve the Bioavailability of Poorly Water Soluble Drugs.

    PubMed

    Tahara, Kohei; Nishikawa, Masahiro; Matsui, Ko; Hisazumi, Koji; Onodera, Risako; Tozuka, Yuichi; Takeuchi, Hirofumi

    2016-09-01

    The aim of this study was to enhance the dissolution and oral absorption of poorly water-soluble active pharmaceutical ingredients (APIs) using nanoparticle suspensions prepared with a PureNano™ continuous crystallizer (PCC). Nanoparticle suspensions were prepared with a PCC, which is based on microfluidics reaction technology and solvent-antisolvent crystallization. Phenytoin, bezafibrate, flurbiprofen, and miconazole were used as model APIs. These APIs were dissolved in ethanol and precipitated by the addition of water and polyvinyl alcohol. Batch crystallization (BC) using a beaker was also performed to prepare the suspensions. Both PCC and BC formulations were freeze-dried before being characterized in vitro and in vivo. The particle sizes of the nanoparticle suspensions prepared with the PCC were smaller than those prepared by BC. The dissolution rate of each API in vitro significantly increased after crystallization. Reducing the particle size of either the BC or PCC formulation led to increased API flux across Caco-2 cell monolayers. PCC preparations showed higher plasma concentrations after oral administration, demonstrating the advantages of a fast dissolution rate and increased interaction with the gastrointestinal tract owing to the smaller particle size. PCC can continuously produce nanoparticle APIs and is an efficient approach for improving their oral bioavailability.

  7. A New Type of Liquid Silymarin Proliposome Containing Bile Salts: Its Preparation and Improved Hepatoprotective Effects.

    PubMed

    Wang, Mei; Xie, Tingting; Chang, Zhanying; Wang, Ling; Xie, Xiangyun; Kou, Yaohong; Xu, Hongxia; Gao, Xiaoli

    2015-01-01

    Silymarin, a known extract, is used in the treatment of liver diseases with various origins, but its current administration form cannot target the liver because of its poor oral bioavailability. A new type of oral silymarin proliposome aimed at improving silymarin's poor bioavailability and hepatoprotective effects, is introduced in this work. Silymarin-loaded liquid proliposome were prepared using a simple dissolving process. The morphology, particle size, zeta potential, and entrapment efficiency of the silymarin liposomes were analysed. The everted gut sac transport model was used to measure the intestinal transport of liposomes. The liposomal hepatoprotective activity was evaluated in three types of experimental hepatitis animal models. After staining with haematoxylin and eosin, the livers were microscopically examined to analyse any pathological changes. The prepared silymarin proliposome formed silymarin liposomes with a multilayer liposome structure and improved intestinal transport. In an injured liver, the silymarin liposomes produced a stronger hepatoprotective effect through a significant decrease in both the aminotransferase and MDA levels and a significant increase in the SOD and GSH-PX levels compared to orally administered silymarin tablets. This effect was also confirmed histopathologically. In a word, incorporation of silymarin into a liposomal carrier system increased intestinal absorption and showed better hepatoprotective effects compared to silymarin tablets.

  8. A New Type of Liquid Silymarin Proliposome Containing Bile Salts: Its Preparation and Improved Hepatoprotective Effects

    PubMed Central

    Chang, Zhanying; Wang, Ling; Xie, Xiangyun; Kou, Yaohong; Xu, Hongxia; Gao, Xiaoli

    2015-01-01

    Silymarin, a known extract, is used in the treatment of liver diseases with various origins, but its current administration form cannot target the liver because of its poor oral bioavailability. A new type of oral silymarin proliposome aimed at improving silymarin’s poor bioavailability and hepatoprotective effects, is introduced in this work. Silymarin-loaded liquid proliposome were prepared using a simple dissolving process. The morphology, particle size, zeta potential, and entrapment efficiency of the silymarin liposomes were analysed. The everted gut sac transport model was used to measure the intestinal transport of liposomes. The liposomal hepatoprotective activity was evaluated in three types of experimental hepatitis animal models. After staining with haematoxylin and eosin, the livers were microscopically examined to analyse any pathological changes. The prepared silymarin proliposome formed silymarin liposomes with a multilayer liposome structure and improved intestinal transport. In an injured liver, the silymarin liposomes produced a stronger hepatoprotective effect through a significant decrease in both the aminotransferase and MDA levels and a significant increase in the SOD and GSH-PX levels compared to orally administered silymarin tablets. This effect was also confirmed histopathologically. In a word, incorporation of silymarin into a liposomal carrier system increased intestinal absorption and showed better hepatoprotective effects compared to silymarin tablets. PMID:26674103

  9. Enhancement of bioavailability of ketoprofen using dry elixir as a novel dosage form.

    PubMed

    Ahn, H J; Kim, K M; Kim, C K

    1998-07-01

    To enhance the dissolution rate and bioavailability of poorly water-soluble ketoprofen, a novel oral dosage form of ketoprofen, termed ketoprofen dry elixir, was developed by the spray-drying technique. Ketoprofen, dextrin, and sodium lauryl sulfate were dissolved in an ethanol-water mixture (20:25 w/w) and thereafter spray-dried to form the ketoprofen dry elixir. Comparative studies on the in vitro dissolution and in vivo adsorption of ketoprofen in the form of dry elixir and powder were carried out. Ketoprofen in the dry elixir completely dissolved within 5 min. On the other hand, only about 50.1% of ketoprofen powder alone dissolved during 60 min. The initial dissolution rate of ketoprofen in the dry elixir markedly increased in distilled water at 37 degrees C, becoming fourfold higher than that of ketoprofen powder alone. The maximal plasma concentration of ketoprofen (Cmax) and the area under the concentration-time curve from zero to 8 hr (AUC0-8 hr) after the oral administration of dry elixir increased about 3.2- (24.6 versus 7.6 micrograms/ml) and 2.2-(38.4 versus 17.3 micrograms hr/ml) fold compared with powder alone. It was obvious that ketoprofen dry elixir might be a useful solid dosage form to improve the dissolution rate and bioavailability of poorly water-soluble ketoprofen.

  10. New Insight in Improving Therapeutic Efficacy of Antipsychotic Agents: An Overview of Improved In Vitro and In Vivo Performance, Efficacy Upgradation and Future Prospects.

    PubMed

    Ei Thu, Hnin; Hussain, Zahid; Shuid, Ahmad Nazrun

    2018-01-01

    Psychotic disorders are recognized as severe mental disorders that rigorously affect patient's personality, critical thinking, and perceptional ability. High prevalence, global dissemination and limitations of conventional pharmacological approaches compel a significant burden to the patient, medical professionals and the healthcare system. To date, numerous orally administered therapies are available for the management of depressive disorders, schizophrenia, anxiety, bipolar disorders and autism spectrum problems. However, poor water solubility, erratic oral absorption, extensive first-pass metabolism, low oral bioavailability and short half-lives are the major factors which limit the pharmaceutical significance and therapeutic feasibility of these agents. In recent decades, nanotechnology-based delivery systems have gained remarkable attention of the researchers to mitigate the pharmaceutical issues related to the antipsychotic therapies and to optimize their oral drug delivery, therapeutic outcomes, and patient compliance. Therefore, the present review was aimed to summarize the available in vitro and in vivo evidences signifying the pharmaceutical importance of the advanced delivery systems in improving the aqueous solubility, transmembrane permeability, oral bioavailability and therapeutic outcome of the antipsychotic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols.

    PubMed

    Hu, Bing; Liu, Xixia; Zhang, Chunlan; Zeng, Xiaoxiong

    2017-01-01

    Diet polyphenols-primarily categorized into flavonoids (e.g., flavonols, flavones, flavan-3-ols, anthocyanidins, flavanones, and isoflavones) and nonflavonoids (with major subclasses of stilbenes and phenolic acids)-are reported to have health-promoting effects, such as antioxidant, antiinflammatory, anticarcinoma, antimicrobial, antiviral, and cardioprotective properties. However, their applications in functional foods or medicine are limited because of their inefficient systemic delivery and poor oral bioavailability. Epigallocatechin-3-gallate, curcumin, and resveratrol are the well-known representatives of the bioactive diet polyphenols but with poor bioavailability. Food macromolecule based nanoparticles have been fabricated using reassembled proteins, crosslinked polysaccharides, protein-polysaccharide conjugates (complexes), as well as emulsified lipid via safe procedures that could be applied in food. The human gastrointestinal digestion tract is the first place where the food grade macromolecule nanoparticles exert their effects on improving the bioavailability of diet polyphenols, via enhancing their solubility, preventing their degradation in the intestinal environment, elevating the permeation in small intestine, and even increasing their contents in the bloodstream. We contend that the stability and structure behaviors of nanocarriers in the gastrointestinal tract environment and the effects of nanoencapsulation on the metabolism of polyphenols warrant more focused attention in further studies. Copyright © 2016. Published by Elsevier B.V.

  12. Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin.

    PubMed

    Kumar, Sunny; Kesharwani, Siddharth S; Mathur, Himanshi; Tyagi, Mohit; Bhat, G Jayarama; Tummala, Hemachand

    2016-01-20

    Curcumin is a natural dietary compound with demonstrated potential in preventing/treating several chronic diseases in animal models. However, this success is yet to be translated to humans mainly because of its poor oral bioavailability caused by extremely low water solubility. This manuscript demonstrates that water insoluble curcumin (~1μg/ml) forms highly aqueous soluble complexes (>2mg/ml) with a safe pH sensitive polymer, poly(butyl-methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl-methacrylate) when precipitated together in water. The complexation process was optimized to enhance curcumin loading by varying several formulation factors. Acetone as a solvent and polyvinyl alcohol as a stabilizer with 1:2 ratio of drug to polymer yielded complexes with relatively high loading (~280μg/ml) and enhanced solubility (>2mg/ml). The complexes were amorphous in solid and were soluble only in buffers with pHs less than 5.0. Hydrogen bond formation and hydrophobic interactions between curcumin and the polymer were recorded by infrared spectroscopy and nuclear magnetic resonance spectroscopy, respectively. Molecular complexes of curcumin were more stable at various pHs compared to unformulated curcumin. In mice, these complexes increased peak plasma concentration of curcumin by 6 times and oral bioavailability by ~20 times. This is a simple, economic and safer strategy of enhancing the oral bioavailability of curcumin. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study.

    PubMed

    Shah, Nirmal V; Seth, Avinash K; Balaraman, R; Aundhia, Chintan J; Maheshwari, Rajesh A; Parmar, Ghanshyam R

    2016-05-01

    The objective of present work was to utilize potential of nanostructured lipid carriers (NLCs) for improvement in oral bioavailability of raloxifene hydrochloride (RLX). RLX loaded NLCs were prepared by solvent diffusion method using glyceryl monostearate and Capmul MCM C8 as solid lipid and liquid lipid, respectively. A full 3(2) factorial design was utilized to study the effect of two independent parameters namely solid lipid to liquid lipid ratio and concentration of stabilizer on the entrapment efficiency of prepared NLCs. The statistical evaluation confirmed pronounced improvement in entrapment efficiency when liquid lipid content in the formulation increased from 5% w/w to 15% w/w. Solid-state characterization studies (DSC and XRD) in optimized formulation NLC-8 revealed transformation of RLX from crystalline to amorphous form. Optimized formulation showed 32.50 ± 5.12 nm average particle size and -12.8 ± 3.2 mV zeta potential that impart good stability of NLCs dispersion. In vitro release study showed burst release for initial 8 h followed by sustained release up to 36 h. TEM study confirmed smooth surface discrete spherical nano sized particles. To draw final conclusion, in vivo pharmacokinetic study was carried out that showed 3.75-fold enhancements in bioavailability with optimized NLCs formulation than plain drug suspension. These results showed potential of NLCs for significant improvement in oral bioavailability of poorly soluble RLX.

  14. Preparation and evaluation of Vinpocetine self-emulsifying pH gradient release pellets.

    PubMed

    Liu, Mengqi; Zhang, Shiming; Cui, Shuxia; Chen, Fen; Jia, Lianqun; Wang, Shu; Gai, Xiumei; Li, Pingfei; Yang, Feifei; Pan, Weisan; Yang, Xinggang

    2017-11-01

    The main objective of this study was to develop a pH gradient release pellet with self-emulsifying drug delivery system (SEDDS), which could not only improve the oral bioavailability of Vinpocetine (VIN), a poor soluble drug, but reduce the fluctuation of plasma concentration. First, the liquid VIN SEDDS formulation was prepared. Then the self-emulsifying pH gradient release pellets were prepared by extrusion spheronization technique, and formulation consisted by the liquid SEDDS, absorbent (colloidal silicon dioxide), penetration enhancer (sodium chloride), microcrystalline cellulose, ethyl alcohol, and three coating materials (HPMC, Eudragit L30D55, Eudragit FS30D) were eventually selected. Three kinds of coated pellets were mixed in capsules with the mass ratio of 1:1:1. The release curves of capsules were investigated in vitro under the simulated gastrointestinal conditions. In addition, the oral bioavailability and pharmacokinetics of VIN self-emulsifying pH gradient release pellets, commercial tablets and liquid VIN SEDDS were evaluated in Beagle dogs. The oral bioavailability of self-emulsifying pH gradient release pellets was about 149.8% of commercial VIN tablets, and it was about 86% of liquid VIN SEDDS, but there were no significant difference between liquid SEDDS and self-emulsifying pH gradient release pellets. In conclusion, the self-emulsifying pH gradient release pellets could significantly enhance the absorption of VIN and effectively achieve a pH gradient release. And the self-emulsifying pH gradient release pellet was a promising method to improve bioavailability of insoluble drugs.

  15. Changes in Bioavailability of Omega-3 (DHA) through Alpha-Tocopheryl Phosphate Mixture (TPM) after Oral Administration in Rats

    PubMed Central

    Gavin, Paul D.

    2017-01-01

    Benefits of Omega-3 Docosahexaenoic acid (DHA) supplements are hindered by their poor solubility and bioavailability. This study investigated the bioavailability of various formulations of Omega-3 and tocopheryl phosphate mixture (TPM), following oral administration in rats, and assessed whether TPM could improve the oral absorption of DHA. The rats were administered with a high (265.7 mg/kg) or low dose (88.6 mg/kg) of DHA. TPM was examined at 1:0.1 w/w (low TPM dose) and 1:0.5 w/w (high TPM dose). Over 24 h, the DHA plasma concentration followed a TPM dose-dependent relationship, reflected in the higher mean Cmax values (78.39 and 91.95 μg/mL) and AUC values (1396.60 and 1560.60) for the low and high TPM, respectively. The biggest difference between the low dose DHA control (LDCont) and TPM formulations was at 4 h after supplementation, where the low and high TPM showed a mean 20% (ns) and 50% (p < 0.05) increase in DHA plasma concentrations versus the control formulation. After correcting for baseline endogenous DHA, the mean plasma DHA at 4 h produced by the LD-HTPM was nearly double (90%) the LDC control (p = 0.057). This study demonstrated that co-administering omega-3 with TPM significantly increases the bioavailability of DHA in the plasma, suggesting potential use for commercially available TPM + DHA fortified products. PMID:28930161

  16. Novel gastroretentive sustained-release tablet of tacrolimus based on self-microemulsifying mixture: in vitro evaluation and in vivo bioavailability test

    PubMed Central

    Wang, Yan-ping; Gan, Yong; Zhang, Xin-xin

    2011-01-01

    Aim: To develop a novel gastroretentive drug delivery system based on a self-microemulsifying (SME) lipid mixture for improving the oral absorption of the immunosuppressant tacrolimus. Methods: Liquid SME mixture, composed of Cremophor RH40 and monocaprylin glycerate, was blended with polyethylene oxide, chitosan, polyvinylpyrrolidone and mannitol, and then transformed into tablets via granulation, with ethanol as the wetting agent. The tablets were characterized in respect of swelling, bioadhesive and SME properties. In vitro dissolution was conducted using an HCl buffer at pH 1.2. Oral bioavailability of the tablets was examined in fasted beagle dogs. Results: The tablet could expand to 13.5 mm in diameter and 15 mm in thickness during the initial 20 min of contact with the HCl buffer at pH 1.2. The bioadhesive strength was as high as 0.98±0.06 N/cm2. The SME gastroretentive sustained-release tablets preserved the SME capability of the liquid SME formations under transmission electron microscope. The drug-release curve was fit to the zero-order release model, which was helpful in reducing fluctuations in blood concentration. Compared with the commercially available capsules of tacrolimus, the relative bioavailability of the SME gastroretentive sustained-release tablets was 553.4%±353.8%. Conclusion: SME gastroretentive sustained-release tablets can enhance the oral bioavailability of tacrolimus with poor solubility and a narrow absorption window. PMID:21927013

  17. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study

    PubMed Central

    Shah, Nirmal V.; Seth, Avinash K.; Balaraman, R.; Aundhia, Chintan J.; Maheshwari, Rajesh A.; Parmar, Ghanshyam R.

    2016-01-01

    The objective of present work was to utilize potential of nanostructured lipid carriers (NLCs) for improvement in oral bioavailability of raloxifene hydrochloride (RLX). RLX loaded NLCs were prepared by solvent diffusion method using glyceryl monostearate and Capmul MCM C8 as solid lipid and liquid lipid, respectively. A full 32 factorial design was utilized to study the effect of two independent parameters namely solid lipid to liquid lipid ratio and concentration of stabilizer on the entrapment efficiency of prepared NLCs. The statistical evaluation confirmed pronounced improvement in entrapment efficiency when liquid lipid content in the formulation increased from 5% w/w to 15% w/w. Solid-state characterization studies (DSC and XRD) in optimized formulation NLC-8 revealed transformation of RLX from crystalline to amorphous form. Optimized formulation showed 32.50 ± 5.12 nm average particle size and −12.8 ± 3.2 mV zeta potential that impart good stability of NLCs dispersion. In vitro release study showed burst release for initial 8 h followed by sustained release up to 36 h. TEM study confirmed smooth surface discrete spherical nano sized particles. To draw final conclusion, in vivo pharmacokinetic study was carried out that showed 3.75-fold enhancements in bioavailability with optimized NLCs formulation than plain drug suspension. These results showed potential of NLCs for significant improvement in oral bioavailability of poorly soluble RLX. PMID:27222747

  18. Preparation and evaluation of a self-emulsifying drug delivery system of etoposide-phospholipid complex.

    PubMed

    Wu, Zhongbin; Guo, Dan; Deng, Li; Zhang, Yue; Yang, Qiuxia; Chen, Jianming

    2011-01-01

    The aim of this study was to develop a new phospholipid complex self-emulsifying drug delivery system (PC-SEDDS) to enhance bioavailability of oral etoposide, a drug with poor water solubility. Etoposide-phospholipid complex (EPC) was prepared by reacting etoposide and phospholipid in tetrahydrofuran and confirmed as a phospholipid compound by differential scanning calorimetry (DSC). Solubility of EPC and etoposide was determined in various vehicles. Pseudoternary phase diagrams were constructed to identify the efficient self-emulsification region of EPC-SEDDS, and the effects of oil concentration, drug loading, and aqueous media on droplet size were investigated. The optimal formulation of EPC-SEDDS was EPC:octyl and decyl monoglyceride (ODO):Cremopher EL:PEG-400 (1:20:48:32) (w/w/w/w). Compared with etoposide-phospholipid complex suspension (EPCS) and etoposide suspension (ES), cumulative release of etoposide from EPC-SEDDS increased by 1.31 and 2.65 fold at 24 hours, respectively. Compared with ES, relative bioavailability of EPC-SEDDS, E-SEDDS, and EPCS after oral administration in rats was enhanced by 60.21-, 44.9-, and 8.44- fold, respectively. The synergistic effect between PC and SEDDS contributed to the enhanced bioavailability of etoposide. It was concluded that PC-SEDDS proved to be a potential system for delivering orally administered hydrophobic compounds including etoposide.

  19. Non-nucleoside inhibitors of the measles virus RNA-dependent RNA polymerase: synthesis, structure-activity relationships, and pharmacokinetics.

    PubMed

    Ndungu, J Maina; Krumm, Stefanie A; Yan, Dan; Arrendale, Richard F; Reddy, G Prabhakar; Evers, Taylor; Howard, Randy; Natchus, Michael G; Saindane, Manohar T; Liotta, Dennis C; Plemper, Richard K; Snyder, James P; Sun, Aiming

    2012-05-10

    The measles virus (MeV), a member of the paramyxovirus family, is an important cause of pediatric morbidity and mortality worldwide. In an effort to provide therapeutic treatments for improved measles management, we previously identified a small, non-nucleoside organic inhibitor of the viral RNA-dependent RNA polymerase by means of high-throughput screening. Subsequent structure-activity relationship (SAR) studies around the corresponding pyrazole carboxamide scaffold led to the discovery of 2 (AS-136a), a first generation lead with low nanomolar potency against life MeV and attractive physical properties suitable for development. However, its poor water solubility and low oral bioavailability (F) in rat suggested that the lead could benefit from further SAR studies to improve the biophysical characteristics of the compound. Optimization of in vitro potency and aqueous solubility led to the discovery of 2o (ERDRP-00519), a potent inhibitor of MeV (EC(50) = 60 nM) with an aqueous solubility of approximately 60 μg/mL. The agent shows a 10-fold exposure (AUC/C(max)) increase in the rat model relative to 2, displays near dose proportionality in the range of 10-50 mg/kg, and exhibits good oral bioavailability (F = 39%). The significant solubility increase appears linked to the improved oral bioavailability.

  20. Oral bioavailability enhancement of raloxifene by developing microemulsion using D-optimal mixture design: optimization and in-vivo pharmacokinetic study.

    PubMed

    Shah, Nirmal; Seth, Avinashkumar; Balaraman, R; Sailor, Girish; Javia, Ankur; Gohil, Dipti

    2018-04-01

    The objective of this work was to utilize a potential of microemulsion for the improvement in oral bioavailability of raloxifene hydrochloride, a BCS class-II drug with 2% bioavailability. Drug-loaded microemulsion was prepared by water titration method using Capmul MCM C8, Tween 20, and Polyethylene glycol 400 as oil, surfactant, and co-surfactant respectively. The pseudo-ternary phase diagram was constructed between oil and surfactants mixture to obtain appropriate components and their concentration ranges that result in large existence area of microemulsion. D-optimal mixture design was utilized as a statistical tool for optimization of microemulsion considering oil, S mix , and water as independent variables with percentage transmittance and globule size as dependent variables. The optimized formulation showed 100 ± 0.1% transmittance and 17.85 ± 2.78 nm globule size which was identically equal with the predicted values of dependent variables given by the design expert software. The optimized microemulsion showed pronounced enhancement in release rate compared to plain drug suspension following diffusion controlled release mechanism by the Higuchi model. The formulation showed zeta potential of value -5.88 ± 1.14 mV that imparts good stability to drug loaded microemulsion dispersion. Surface morphology study with transmission electron microscope showed discrete spherical nano sized globules with smooth surface. In-vivo pharmacokinetic study of optimized microemulsion formulation in Wistar rats showed 4.29-fold enhancements in bioavailability. Stability study showed adequate results for various parameters checked up to six months. These results reveal the potential of microemulsion for significant improvement in oral bioavailability of poorly soluble raloxifene hydrochloride.

  1. Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability.

    PubMed

    Dhumal, Ravindra S; Biradar, Shailesh V; Yamamura, Shigeo; Paradkar, Anant R; York, Peter

    2008-09-01

    The aim of the present work was to prepare amorphous discreet nanoparticles by sonoprecipitation method for enhancing oral bioavailability of cefuroxime axetil (CA), a poorly water-soluble drug. CA nanoparticles (SONO-CA) were prepared by sonoprecipitation and compared with particles obtained by precipitation without sonication (PPT-CA) and amorphous CA obtained by spray drying. Spray drying present broad particle size distribution (PSD) with mean particle size of 10 microm and low percent yield, whereas, precipitation without sonication resulted in large amorphous aggregates with broad PSD. During sonoprecipitation, particle size and yield improve with an increase in the amplitude of sonication and lowering the operation temperature due to instantaneous supersaturation and nucleation. The overall symmetry and purity of CA molecule was maintained as confirmed by FTIR and HPLC, respectively. All the three methods resulted in the formation of amorphous CA with only sonoprecipitation resulting in uniform sized nanoparticles. Sonoprecipitated CA nanoparticles showed enhanced dissolution rate and oral bioavailability in Wistar rat due to an increased solubility attributed to combination of effects like amorphization and nanonization with increased surface area and reduced diffusion pathway.

  2. Chitosan cocrystals embedded alginate beads for enhancing the solubility and bioavailability of aceclofenac.

    PubMed

    Ganesh, Mani; Jeon, Ung Jin; Ubaidulla, Udhumansha; Hemalatha, Pushparaj; Saravanakumar, Arthanari; Peng, Mei Mei; Jang, Hyun Tae

    2015-03-01

    Enhanced oral bioavailability of aceclofenac has been achieved using chitosan cocrystals of aceclofenac and its entrapment into alginate matrix a super saturated drug delivery system (SDDS). Prepared SDDS were evaluated by various physiochemical and pharmacological methods. The result revealed that the primary cocrystals enhanced the solubility of the drug and the thick gelled polymer matrix that formed from swelling of calcium alginate beads makes it to release the drug in continuous and sustained manner by supersaturated drug diffusion. The Cmax, Tmax and relative bioavailability for aceclofenac cocrystal and aceclofenac SDDS were 2.06±0.42 μg/ml, 1 h, 159.72±10.84 and 2.01 μg/ml, 1 h, 352.76±12.91, respectively. Anti-inflammatory activity of aceclofenac was significantly improved with the SDDS. With respect to the results, it revealed that the SDDS described herein might be a promising tool for the oral sustained release of aceclofenac and likely for that of various other poorly soluble drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Helicobacter pylori infection and drugs malabsorption.

    PubMed

    Lahner, Edith; Virili, Camilla; Santaguida, Maria Giulia; Annibale, Bruno; Centanni, Marco

    2014-08-14

    Drug absorption represents an important factor affecting the efficacy of oral drug treatment. Gastric secretion and motility seem to be critical for drug absorption. A causal relationship between impaired absorption of orally administered drugs and Helicobacter pylori (H. pylori) infection has been proposed. Associations have been reported between poor bioavailability of l-thyroxine and l-dopa and H. pylori infection. According to the Maastricht Florence Consensus Report on the management of H. pylori infection, H. pylori treatment improves the bioavailability of both these drugs, whereas the direct clinical benefits to patients still await to be established. Less strong seems the association between H. pylori infection and other drugs malabsorption, such as delavirdine and ketoconazole. The exact mechanisms forming the basis of the relationship between H. pylori infection and impaired drugs absorption and/or bioavailability are not fully elucidated. H. pylori infection may trigger a chronic inflammation of the gastric mucosa, and impaired gastric acid secretion often follows. The reduction of acid secretion closely relates with the wideness and the severity of the damage and may affect drug absorption. This minireview focuses on the evidence of H. pylori infection associated with impaired drug absorption.

  4. Inventory of oral anticancer agents: Pharmaceutical formulation aspects with focus on the solid dispersion technique.

    PubMed

    Sawicki, E; Schellens, J H M; Beijnen, J H; Nuijen, B

    2016-11-01

    Dissolution from the pharmaceutical formulation is a prerequisite for complete and consistent absorption of any orally administered drug, including anticancer agents (oncolytics). Poor dissolution of an oncolytic can result in low oral bioavailability, high variability in blood concentrations and with that suboptimal or even failing therapy. This review discusses pharmaceutical formulation aspects and absorption pharmacokinetics of currently licensed orally administered oncolytics. In nearly half of orally dosed oncolytics poor dissolution is likely to play a major role in low and unpredictable absorption. Dissolution-limited drug absorption can be improved with a solid dispersion which is a formulation method that induces super-saturated drug dissolution and with that it enhances in vivo absorption. This review discusses formulation principles with focus on the solid dispersion technology and how it works to enhance drug absorption. There are currently three licensed orally dosed oncolytics formulated as a solid dispersion (everolimus, vemurafenib and regorafenib) and these formulations result in remarkably improved dissolution and absorption compared to what can be achieved with conventional formulations of the respective oncolytics. Because of the successful implementation of these three solid dispersion formulations, we encourage the application of this formulation method for poorly soluble oral oncolytics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. In vivo efficacy and bioavailability of lumefantrine: Evaluating the application of Pheroid technology.

    PubMed

    du Plessis, Lissinda H; Govender, Katya; Denti, Paolo; Wiesner, Lubbe

    2015-11-01

    The oral absorption of compounds with low aqueous solubility, such as lumefantrine, is typically limited by the dissolution rate in the gastro-intestinal tract, resulting in erratic absorption and highly variable bioavailability. In previous studies we reported on the ability of Pheroid vesicles to improve the bioavailability of poorly soluble drugs. In the present study a Pro-Pheroid formulation, a modification of the previous formulation, was applied to improve the solubility of lumefantrine after oral administration and compared to lumefantrine in DMSO:water (1:9 v/v) solution (reference solution). A bioavailability study of lumefantrine was conducted in a mouse model in fed and fasted states. When using the reference solution, the bioavailability of the lumefantrine heavily depended on food intake, resulting in a 2.7 times higher bioavailability in the fed state when compared to the fasted state. It also showed large between-subject variability. When formulated using Pro-Pheroid, the bioavailability of lumefantrine was 3.5 times higher as compared to lumefantrine in the reference solution and fasting state. Pro-Pheroid also dramatically reduced the effects of food intake and the between-subject variability for bioavailability observed with the reference. In vivo antimalarial efficacy was also evaluated with lumefantrine formulated using Pro-Pheroid technology compared to the reference solution. The results indicated that lumefantrine in Pro-Pheroid formulation exhibited improved antimalarial activity in vitro by 46.8%, when compared to the reference. The results of the Peters' 4-day suppressive test indicated no significant difference in the efficacy or mean survival time of the mice in the Pro-Pheroid formulation and reference test groups when compared to the positive control, chloroquine. These findings suggest that using the Pro-Pheroid formulation improves the bioavailability of lumefantrine, eliminates the food effect associated with lumefantrine as well as significantly reduces the between subject variability in bioavailability when compared to the reference solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Development of a novel l-sulpiride-loaded quaternary microcapsule: Effect of TPGS as an absorption enhancer on physicochemical characterization and oral bioavailability.

    PubMed

    Kim, Dong Shik; Kim, Dong Wuk; Kim, Kyeong Soo; Choi, Jong Seo; Seo, Youn Gee; Youn, Yu Seok; Oh, Kyung Taek; Yong, Chul Soon; Kim, Jong Oh; Jin, Sung Giu; Choi, Han-Gon

    2016-11-01

    The aim of this study was to assess the effect of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on the physicochemical characterization and oral bioavailability of a novel l-sulpiride-loaded quaternary microcapsule (QMC). The effect of carriers on drug solubility was investigated. Among the carriers tested, polyvinyl pyrrolidone (PVP), sodium lauryl sulphate (SLS) and TPGS were selected as polymer, surfactant and absorption enhancer, respectively, due to their high drug solubility. Using the solvent evaporation method, numerous QMCs with different ratios of l-sulpiride, PVP, SLS and TPGS were prepared, and their physicochemical properties, solubility and release were evaluated. In addition, the influence of TPGS concentration on the oral bioavailability of various drug doses was evaluated. All QMCs converted the crystalline drug to the amorphous form and remarkably improved the solubility, release and oral bioavailability of the drug. Furthermore, the TPGS concentration in the QMCs hardly affected the crystallinity, particle size and release, but considerably increased the solubility and oral bioavailability of the drug. In particular, as the dose of administered drug was increased, TPGS provided a greater improvement in oral drug bioavailability. Thus, TPGS played an important role in improving the oral bioavailability of l-sulpiride. Moreover, the QMC with a drug/PVP/SLS/TPGS weight ratio of 5:12:1 :20 with approximately 3.3-fold improved oral bioavailability would be recommended as a commercial pharmaceutical product for oral administration of l-sulpiride. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Furosemide Loaded Silica-Lipid Hybrid Microparticles: Formulation Development, in vitro and ex vivo Evaluation.

    PubMed

    Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar

    2015-09-01

    The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs.

  8. Furosemide Loaded Silica-Lipid Hybrid Microparticles: Formulation Development, in vitro and ex vivo Evaluation

    PubMed Central

    Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar

    2015-01-01

    Purpose: The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. Methods: The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. Results: In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. Conclusion: It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs. PMID:26504763

  9. Relative bioavailability, metabolism and tolerability of rectally administered oxcarbazepine suspension.

    PubMed

    Clemens, Pamela L; Cloyd, James C; Kriel, Robert L; Remmel, Rory P

    2007-01-01

    Maintenance of effective drug concentrations is essential for adequate treatment of epilepsy. Some antiepileptic drugs can be successfully administered rectally when the oral route of administration is temporarily unavailable. Oxcarbazepine is a newer antiepileptic drug that is rapidly converted to a monohydroxy derivative, the active compound. This study aimed to characterise the bioavailability, metabolism and tolerability of rectally administered oxcarbazepine suspension using a randomised, crossover design in ten healthy volunteers. Two subjects received 300 mg doses of oxcarbazepine suspension via rectal and oral routes and eight received 450 mg doses. A washout period of at least 2 weeks elapsed between doses. The rectal dose was diluted 1:1 with water. Blood samples and urine were collected for 72 hours post-dose. Adverse effects were assessed at each blood collection time-point using a self-administered questionnaire. Plasma was assayed for oxcarbazepine and monohydroxy derivative; urine was assayed for monohydroxy derivative and monohydroxy derivative-glucuronide. Maximum plasma concentration (C(max)) and time to reach C(max) (t(max)) were obtained directly from the plasma concentration-time curves. The areas under the concentration-time curve (AUCs) were determined via non-compartmental analysis. Relative bioavailability was calculated and the C(max) and AUCs were compared using Wilcoxon signed-rank tests. Mean relative bioavailability calculated from plasma AUCs was 8.3% (SD 5.5%) for the monohydroxy derivative and 10.8% (SD 7.3%) for oxcarbazepine. Oxcarbazepine and monohydroxy derivative C(max) and AUC values were significantly lower following rectal administration (p < 0.01). The total amount of monohydroxy derivative excreted in the urine following rectal administration was 10 +/- 5% of the amount excreted following oral administration. Oral absorption was consistent with previous studies. The most common adverse effects were headache and fatigue with no discernible differences between routes. Monohydroxy derivative bioavailability following rectal administration of oxcarbazepine suspension is significantly lower than following oral administration, most likely because of poor oxcarbazepine water solubility. It is unlikely that adequate monohydroxy derivative concentrations can be achieved with rectal administration of diluted oxcarbazepine suspension.

  10. Sildenafil citrate as oral solid lipid nanoparticles: a novel formula with higher bioavailability and sustained action for treatment of erectile dysfunction.

    PubMed

    Hosny, Khaled M; Aljaeid, Bader M

    2014-07-01

    The aim of this study was to prepare sildenafil citrate as solid lipid nanoparticles (SLNs), in order to find an innovative way for alleviating the disadvantages associated with commercially available sildenafil citrate tablets. These limitations include poor solubility and extensive first-pass metabolism, resulting in low (40%) bioavailability and short elimination half-life (4 h). SLNs were prepared by hot homogenization followed by ultrasonication. Solubility of sildenafil citrate in different solid lipids was measured, effect of process variables as surfactant type and concentration, homogenization time, ultrasonication time and charge-inducing agent on the particle size, zeta potential and encapsulation efficiency were also determined. Furthermore, in vitro drug release, stability and in vivo pharmacokinetics were studied in rabbits Results: The best SLN formula consisted of 2% precirol ATO5, 0.5% phosphatidylcholine, 2.5% gelucire 44/14, 0.125% stearylamine, had an average particle size of 28.5 nm with 95.34% entrapment efficiency and demonstrated a controlled drug release over 24 h. An in vivo pharmacokinetic study revealed enhanced bioavailability by > 1.87 fold, and the mean residence time was longer than that for the commercially available tablet. SLN could be a promising carrier for sustained/prolonged sildenafil citrate release with enhanced oral bioavailability.

  11. Improved Bioavailability of Levodopa Using Floatable Spray-Coated Microcapsules for the Management of Parkinson's Disease.

    PubMed

    Baek, Jong-Suep; Tee, Jie Kai; Pang, Yi Yun; Tan, Ern Yu; Lim, Kah Leong; Ho, Han Kiat; Loo, Say Chye Joachim

    2018-06-01

    Oral administration of levodopa (LD) is the gold standard in managing Parkinson's disease (PD). Although LD is the most effective drug in treating PD, chronic administration of LD induces levodopa-induced dyskinesia. A continuous and sustained provision of LD to the brain could, therefore, reduce peak-dose dyskinesia. In commercial oral formulations, LD is co-administrated with an AADC inhibitor (carbidopa) and a COMT inhibitor (entacapone) to enhance its bioavailability. Nevertheless, patients are known to take up to five tablets a day because of poor sustained-releasing capabilities that lead to fluctuations in plasma concentrations. To achieve a prolonged release of LD with the aim of improving its bioavailability, floatable spray-coated microcapsules containing all three PD drugs were developed. This gastro-retentive delivery system showed sustained release of all PD drugs, at similar release kinetics. Pharmacokinetics study was conducted and this newly developed formulation showed a more plateaued delivery of LD that is void of the plasma concentration fluctuations observed for the control (commercial formulation). At the same time, measurements of LD and dopamine of mice administered with this formulation showed enhanced bioavailability of LD. This study highlights a floatable, sustained-releasing delivery system in achieving improved pharmacokinetics data compared to a commercial formulation.

  12. Preparation and characterization of intravaginal vardenafil suppositories targeting a complementary treatment to boost in vitro fertilization process.

    PubMed

    Gomaa, Eman; Abu Lila, Amr S; Hasan, Azza A; Ghazy, Fakhr-Eldin S

    2018-01-01

    Vaginal route has been recently considered as a potential route for systemic delivery of drugs with poor oral bioavailability. Vardenafil (VDF) is a relatively new phosphodiesterase-5 inhibitor that exhibits a limited oral bioavailability (≈15%) due to extensive first-pass metabolism. In this study, we attempted to enhance the systemic bioavailability of VDF via its formulation within vaginal suppositories. Witepsol H15 and Suppocire NA50 were adopted as lipophilic suppository bases while polyethylene glycol 4000/400 and glycerogelatin were used as hydrophilic suppository bases. The effect of different base types and/or the incorporation of bioadhesive polymer on in vitro release of VDF were evaluated. The in vivo fate and organ biodistribution of VDF following intravaginal (IVG) administration were also investigated. VDF release from water-soluble bases was higher than that from lipophilic bases. The incorporation of bioadhesive polymers, such as Na alginate, remarkably sustained drug release from suppository base. The organ biodistribution study showed a higher C max (32 times) and AUC 0-4h (20 times) of VDF in uterus following IVG administration of conventional suppositories, compared to oral administration of VDF suspension. In addition, cyclic guanosine monophosphate (cGMP) serum levels, used as an indicator of the in vivo activity of VDF, in animals were higher following IVG administration rather than oral administration. This study suggests that IVG administration of VDF might represent a potential alternative to oral route with superior therapeutic benefits especially when targeting the uterus. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Experimental determination of the oral bioavailability and bioaccessibility of lead particles

    PubMed Central

    2012-01-01

    In vivo estimations of Pb particle bioavailability are costly and variable, because of the nature of animal assays. The most feasible alternative for increasing the number of investigations carried out on Pb particle bioavailability is in vitro testing. This testing method requires calibration using in vivo data on an adapted animal model, so that the results will be valid for childhood exposure assessment. Also, the test results must be reproducible within and between laboratories. The Relative Bioaccessibility Leaching Procedure, which is calibrated with in vivo data on soils, presents the highest degree of validation and simplicity. This method could be applied to Pb particles, including those in paint and dust, and those in drinking water systems, which although relevant, have been poorly investigated up to now for childhood exposure assessment. PMID:23173867

  14. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency.

    PubMed

    Yu, Fei; Ao, Mingtao; Zheng, Xiao; Li, Nini; Xia, Junjie; Li, Yang; Li, Donghui; Hou, Zhenqing; Qi, Zhongquan; Chen, Xiao Dong

    2017-11-01

    The natural product berberine (BBR), present in various plants, arouses great interests because of its numerous pharmacological effects. However, the further development and application of BBR had been hampered by its poor oral bioavailability. In this work, we report on polymer-lipid hybrid nanoparticles (PEG-lipid-PLGA NPs) loaded with BBR phospholipid complex using a solvent evaporation method for enhancing the oral BBR efficiency. The advantage of this new drug delivery system is that the BBR-soybean phosphatidylcholine complex (BBR-SPC) could be used to enhance the liposolubility of BBR and improve the affinity with the biodegradable polymer to increase the drug-loading capacity and controlled/sustained release. The entrapment efficiency of the PEG-lipid-PLGA NPs/BBR-SPC was observed to approach approximately 89% which is more than 2.4 times compared with that of the PEG-lipid-PLGA NPs/BBR. To the best of our knowledge, this is the first report on using polymer material for effective encapsulation of BBR to improve its oral bioavailability. The prepared BBR delivery systems demonstrated a uniform spherical shape, a well-dispersed core-shell structure and a small particle size (149.6 ± 5.1 nm). The crystallographic and thermal analysis has indicated that the BBR dispersed in the PEG-lipid-PLGA NPs matrix is in an amorphous form. More importantly, the enhancement in the oral relative bioavailability of the PEG-lipid-PLGA NPs/BBR-SPC was ∼343% compared with that of BBR. These positive results demonstrated that PEG-lipid-PLGA NPs/BBR-SPC may have the potential for facilitating the oral drug delivery of BBR.

  15. Drug delivery strategies for poorly water-soluble drugs.

    PubMed

    Fahr, Alfred; Liu, Xiangli

    2007-07-01

    The drug candidates coming from combinatorial chemistry research and/or the drugs selected from biologically based high-throughput screening are quite often very lipophilic, as these drug candidates exert their pharmacological action at or in biological membranes or membrane-associated proteins. This challenges drug delivery institutions in industry or academia to develop carrier systems for the optimal oral and parenteral administration of these drugs. To mention only a few of the challenges for this class of drugs: their oral bioavailability is poor and highly variable, and carrier development for parenteral administration is faced with problems, including the massive use of surface-active excipients for solubilisation. Formulation specialists are confronted with an even higher level of difficulties when these drugs have to be delivered site specifically. This article addresses the emerging formulation designs for delivering of poorly water-soluble drugs.

  16. Nanoemulsion improves the oral bioavailability of baicalin in rats: in vitro and in vivo evaluation

    PubMed Central

    Zhao, Ling; Wei, Yumeng; Huang, Yu; He, Bing; Zhou, Yang; Fu, Junjiang

    2013-01-01

    Baicalin is one of the main bioactive flavone glucuronides derived as a medicinal herb from the dried roots of Scutellaria baicalensis Georgi, and it is widely used for the treatment of fever, inflammation, and other conditions. Due to baicalin’s poor solubility in water, its absolute bioavailability after oral administration is only 2.2%. The objective of this study was to develop a novel baicalin-loaded nanoemulsion to improve the oral bioavailability of baicalin. Based on the result of pseudoternary phase diagram, the nanoemulsion formulation consisting of soy-lecithin, tween-80, polyethylene glycol 400, isopropyl myristate, and water (1:2:1.5:3.75:8.25, w/w) was selected for further study. Baicalin-loaded nanoemulsions (BAN-1 and BAN-2) were prepared by internal or external drug addition and in vivo and in vitro evaluations were performed. The results showed that the mean droplet size, polydispersity index, and drug content of BAN-1 and BAN-2 were 91.2 ± 2.36 nm and 89.7 ± 3.05 nm, 0.313 ± 0.002 and 0.265 ± 0.001, and 98.56% ± 0.79% and 99.40% ± 0.51%, respectively. Transmission electron microscopy revealed spherical globules and confirmed droplet size analysis. After dilution 30-fold with water, the solubilization capacity of BAN-1 and BAN-2 did not change. In vitro release results showed sustained-release characteristics. BAN-1 formulation was stable for at least 6 months and was more stable than BAN-2. In rats, the area under the plasma drug concentration-time curve value of BAN-1 was 1.8-fold and 7-fold greater than those of BAN-2 and free baicalin suspension after oral administration at a dose of 100 mg/kg. In conclusion, these results demonstrated that the baicalin-loaded nanoemulsion formulation, in particular BAN-1, was very effective for improving the oral bioavailability of baicalin and exhibited great potential for future clinical application. PMID:24124365

  17. A novel osmotic pump-based controlled delivery system consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen: in vitro and in vivo evaluation.

    PubMed

    Li, Shujuan; Wang, Xiaoyu; Wang, Yingying; Zhao, Qianqian; Zhang, Lina; Yang, Xinggang; Liu, Dandan; Pan, Weisan

    2015-01-01

    In this study, a novel controlled release osmotic pump capsule consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen (FP) was developed to improve the solubility and oral bioavailability of FP and to minimize the fluctuation of plasma concentration. The pH-modulated solid dispersion containing FP, Kollidon® 12 PF and Na2CO3 at a weight ratio of 1/4.5/0.02 was prepared using the solvent evaporation method. The osmotic pump capsule was assembled by semi-permeable capsule shell of cellulose acetate (CA) prepared by the perfusion method. Then, the solid dispersion, penetration enhancer, and suspending agents were tableted and filled into the capsule. Central composite design-response surface methodology was used to evaluate the influence of factors on the responses. A second-order polynomial model and a multiple linear model were fitted to correlation coefficient of drug release profile and ultimate cumulative release in 12 h, respectively. The actual response values were in good accordance with the predicted ones. The optimized formulation showed a complete drug delivery and zero-order release rate. Beagle dogs were used to be conducted in the pharmacokinetic study. The in vivo study indicated that the relative bioavailability of the novel osmotic pump system was 133.99% compared with the commercial preparation. The novel controlled delivery system with combination of pH-modulated solid dispersion and osmotic pump system is not only a promising strategy to improve the solubility and oral bioavailability of poorly soluble ionizable drugs but also an effective way to reduce dosing frequency and minimize the plasma fluctuation.

  18. In situ absorption and relative bioavailability studies of zaleplon loaded self-nanoemulsifying powders.

    PubMed

    Janga, Karthik Y; Jukanti, Raju; Sunkavalli, Sharath; Velpula, Ashok; Bandari, Suresh; Kandadi, Prabhakar; Veerareddy, Prabhakar Reddy

    2013-01-01

    Self-nanoemulsifying drug delivery systems (SNEDDSs) offer potential as suitable carriers for improved oral delivery of poorly soluble and low bioavailable drugs. To derive self-nanoemulsifying powders (SNEPs), the optimized Z-SNEDDS formulation was adsorbed onto different carriers and based on micromeritics the formulation loaded onto neusilin US2 (SNEP-N) was selected for further characterization. The solid-state characterization (scanning electron microscopy, differential scanning calorimetry and powder X-ray diffraction) studies unravel the transformation of native crystalline state to amorphous and/or molecular state. The higher predictive effective permeability coefficient and fraction absorbed in humans extrapolated from in situ single-pass intestinal absorption study data in rats provide an insight on the potential of SNEPs for augment in absorption across gastrointestinal barrier. Overall a 3.5-fold enhancement in the extent of absorption of zaleplon from SNEP-N formulation proves the feasibility of SNEPs formulation for improved oral delivery of zaleplon.

  19. Preparation and evaluation of icariside II-loaded binary mixed micelles using Solutol HS15 and Pluronic F127 as carriers.

    PubMed

    Hou, Jian; Wang, Jing; Sun, E; Yang, Lei; Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai

    2016-11-01

    An effective anti-cancer drug, icariside II (IS), has been used to treat a variety of cancers in vitro. However, its poor aqueous solubility and permeability lead to low oral bioavailability. The aim of this work was to use Solutol®HS15 and Pluronic F127 as surfactants to develop novel mixed micelles to enhance the oral bioavailability of IS by improving permeability and inhibiting efflux. The IS-loaded mixed micelles were prepared using the method of ethanol thin-film hydration. The physicochemical properties, dissolution property, oral bioavailability of the male SD rats, permeability and efflux of Caco-2 transport models, and gastrointestinal safety of the mixed micelles were evaluated. The optimized IS-loaded mixed micelles showed that at 4:1 ratio of Solutol®HS15 and Pluronic F127, the particle size was 12.88 nm with an acceptable polydispersity index of 0.172. Entrapment efficiency (94.6%) and drug loading (9.7%) contributed to the high solubility (11.7 mg/mL in water) of IS, which increased about 900-fold. The SF-IS mixed micelle release profile showed a better sustained release property than that of IS. In Caco-2 cell monolayer models, the efflux ratio dramatically decreased by 83.5%, and the relative bioavailability of the mixed micelles (AUC 0-∞ ) compared with that of IS (AUC 0-∞ ) was 317%, indicating potential for clinical application. In addition, a gastrointestinal safety assay also provided reliable clinical evidence for the safe use of this micelle.

  20. [Bioavailability of antiglaucoma drugs].

    PubMed

    Demailly, P

    2000-05-01

    The biodisponibility of antiglaucoma drugs, generally delivered in an aqueous eye-drop solution depends on their capacity to cross the cornea. The structure of the cornea forms a barrier to strongly lipophilic substances and the continuous renewal of the lacrimal film creates a major obstacle, preventing active substances from penetrating the eye. Active substances must thus be delivered in highly concentrated solutions. The systemic bioavailability of antiglaucoma drugs taken orally, for example beta-blockers, is well known, their behavior after eye-drop administration remains poorly elucidated and highly dependent on individual susceptibility. We reviewed the literature on pilocarpine, beta-blockers, adrenergic drugs (dipivalyl-epinephrine, apraclonidine, brimonidine), carbon anhydrase inhibitors (acetazolamide, dorzolamide).

  1. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors

    NASA Astrophysics Data System (ADS)

    Lagorce, David; Douguet, Dominique; Miteva, Maria A.; Villoutreix, Bruno O.

    2017-04-01

    The modulation of PPIs by low molecular weight chemical compounds, particularly by orally bioavailable molecules, would be very valuable in numerous disease indications. However, it is known that PPI inhibitors (iPPIs) tend to have properties that are linked to poor Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) and in some cases to poor clinical outcomes. Previously reported in silico analyses of iPPIs have essentially focused on physicochemical properties but several other ADMET parameters would be important to assess. In order to gain new insights into the ADMET properties of iPPIs, computations were carried out on eight datasets collected from several databases. These datasets involve compounds targeting enzymes, GPCRs, ion channels, nuclear receptors, allosteric modulators, oral marketed drugs, oral natural product-derived marketed drugs and iPPIs. Several trends are reported that should assist the design and optimization of future PPI inhibitors, either for drug discovery endeavors or for chemical biology projects.

  2. Effectiveness of oral antibiotics for definitive therapy of Gram-negative bloodstream infections.

    PubMed

    Kutob, Leila F; Justo, Julie Ann; Bookstaver, P Brandon; Kohn, Joseph; Albrecht, Helmut; Al-Hasan, Majdi N

    2016-11-01

    There is paucity of data evaluating intravenous-to-oral antibiotic switch options for Gram-negative bloodstream infections (BSIs). This retrospective cohort study examined the effectiveness of oral antibiotics for definitive treatment of Gram-negative BSI. Patients with Gram-negative BSI hospitalised for <14 days at Palmetto Health Hospitals in Columbia, SC, from 1 January 2010 through 31 December 2013 and discharged on oral antibiotics were included in this study. The cohort was stratified into three groups based on bioavailability of oral antibiotics prescribed (high, ≥95%; moderate, 75-94%; and low, <75%). Kaplan-Meier analysis and multivariate Cox proportional hazards regression were used to examine treatment failure. Among the 362 patients, high, moderate and low bioavailability oral antibiotics were prescribed to 106, 179 and 77 patients, respectively, for definitive therapy of Gram-negative BSI. Mean patient age was 63 years, 217 (59.9%) were women and 254 (70.2%) had a urinary source of infection. Treatment failure rates were 2%, 12% and 14% in patients receiving oral antibiotics with high, moderate and low bioavailability, respectively (P = 0.02). Risk of treatment failure in the multivariate Cox model was higher in patients receiving antibiotics with moderate [adjusted hazard ratio (aHR) = 5.9, 95% CI 1.6-38.5; P = 0.005] and low bioavailability (aHR = 7.7, 95% CI 1.9-51.5; P = 0.003) compared with those receiving oral antimicrobial agents with high bioavailability. These data demonstrate the effectiveness of oral antibiotics with high bioavailability for definitive therapy of Gram-negative BSI. Risk of treatment failure increases as bioavailability of the oral regimen declines. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  3. Enhanced oral bioavailability and antiasthmatic efficacy of curcumin using redispersible dry emulsion.

    PubMed

    Jang, Dong-Jin; Kim, Sung Tae; Oh, Euichaul; Lee, Kooyeon

    2014-01-01

    Dry emulsion containing curcumin (DE-CUR) was prepared for oral delivery of poorly water-soluble curcumin, and its oral bioavailability and antiasthmatic efficacy was evaluated. After comparison of the solubility of curcumin in various oils, Plurol® Oleique CC497 was selected to be the oil phase due to its higher solubility of CUR than other oils. A dry emulsion prepared by spray-drying of a homogenized oil-in-water emulsion was well-reconstituted in water, fabricating similar particle distribution and in vitro release to that of a dispersed homogeneous emulsion before spraying. The release of DE-CUR was much higher than that of curcumin (85.3 vs. 1.7% release at 60 min). Consequently, DE-CUR resulted in 12.0- and 7.1-fold higher Cmax and AUC0-24h than curcumin. In a murine asthma model, DE-CUR effectively suppressed airway hyperresponsiveness and levels of T-helper cytokines such as interleukin-4, inteleukin-5, and interleukin-13. These findings demonstrate that the DE-CUR shows a potential for the development of functional foods or medicines including CUR.

  4. Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin.

    PubMed

    Szymusiak, Magdalena; Hu, Xiaoyu; Leon Plata, Paola A; Ciupinski, Paulina; Wang, Zaijie Jim; Liu, Ying

    2016-09-10

    Curcumin is a bioactive molecule extracted from Turmeric roots that has been recognized to possess a wide variety of important biological activities. Despite its great pharmacological activities, curcumin is highly hydrophobic, which results in poor bioavailability. We have formulated this hydrophobic compound into stable polymeric nanoparticles (nano-curcumin) to enhance its oral absorption. Pharmacokinetic analysis after oral delivery of nano-curcumin in mice demonstrated approximately 20-fold reduction in dose requirement when compared to unformulated curcumin to achieve comparable plasma and central nervous system (CNS) tissue concentrations. This investigation corroborated our previous study of curcumin functionality of attenuating opioid tolerance and dependence, which shows equivalent efficacy of low-dose (20mg/kg) nano-curcumin and high-dose (400mg/kg) pure curcumin in mice. Furthermore, the highly selective and validated liquid chromatography-mass spectrometry (LC-MS) method was developed to quantify curcumin glucuronide, the major metabolite of curcumin. The results suggest that the presence of curcumin in the CNS is essential for prevention and reversal of opioid tolerance and dependence. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese

    PubMed Central

    Yokel, Robert A.; Hicks, Clair L.; Florence, Rebecca L.

    2008-01-01

    Oral aluminum (Al) bioavailability from drinking water has been previously estimated, but there is little information on Al bioavailability from foods. It was suggested that oral Al bioavailability from drinking water is much greater than from foods. The objective was to further test this hypothesis. Oral Al bioavailability was determined in the rat from basic [26Al]-sodium aluminum phosphate (basic SALP) in a process cheese. Consumption of ~ 1 gm cheese containing 1.5 or 3% basic SALP resulted in oral Al bioavailability (F) of ~ 0.1 and 0.3%, respectively, and time to maximum serum 26Al concentration (Tmax) of 8 to 9 h. These Al bioavailability results were intermediate to previously reported results from drinking water (F ~ 0.3%) and acidic-SALP incorporated into a biscuit (F ~ 0.1%), using the same methods. Considering the similar oral bioavailability of Al from food vs. water, and their contribution to the typical human’s daily Al intake (~ 95 and 1.5%, respectively), these results suggest food contributes much more Al to systemic circulation, and potential Al body burden, than does drinking water. These results do not support the hypothesis that drinking water provides a disproportionate contribution to total Al absorbed from the gastrointestinal tract. PMID:18436363

  6. Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese.

    PubMed

    Yokel, Robert A; Hicks, Clair L; Florence, Rebecca L

    2008-06-01

    Oral aluminum (Al) bioavailability from drinking water has been previously estimated, but there is little information on Al bioavailability from foods. It was suggested that oral Al bioavailability from drinking water is much greater than from foods. The objective was to further test this hypothesis. Oral Al bioavailability was determined in the rat from basic [26Al]-sodium aluminum phosphate (basic SALP) in a process cheese. Consumption of approximately 1g cheese containing 1.5% or 3% basic SALP resulted in oral Al bioavailability (F) of approximately 0.1% and 0.3%, respectively, and time to maximum serum 26Al concentration (Tmax) of 8-9h. These Al bioavailability results were intermediate to previously reported results from drinking water (F approximately 0.3%) and acidic-SALP incorporated into a biscuit (F approximately 0.1%), using the same methods. Considering the similar oral bioavailability of Al from food vs. water, and their contribution to the typical human's daily Al intake ( approximately 95% and 1.5%, respectively), these results suggest food contributes much more Al to systemic circulation, and potential Al body burden, than does drinking water. These results do not support the hypothesis that drinking water provides a disproportionate contribution to total Al absorbed from the gastrointestinal tract.

  7. Residues of chlortetracycline, doxycycline and sulfadiazine-trimethoprim in intestinal content and feces of pigs due to cross-contamination of feed.

    PubMed

    Peeters, Laura E J; Daeseleire, Els; Devreese, Mathias; Rasschaert, Geertrui; Smet, Annemieke; Dewulf, Jeroen; Heyndrickx, Marc; Imberechts, Hein; Haesebrouck, Freddy; Butaye, Patrick; Croubels, Siska

    2016-09-20

    Cross-contamination of feed with low concentrations of antimicrobials can occur at production, transport and/or farm level. Concerns are rising about possible effects of this contaminated feed on resistance selection in the intestinal microbiota. Therefore, an experiment with pigs was set up, in which intestinal and fecal concentrations of chlortetracycline (CTC), doxycycline (DOX) and sulfadiazine-trimethoprim (SDZ-TRIM) were determined after administration of feed containing a 3 % carry-over level of these antimicrobials. The poor oral bioavailability of tetracyclines resulted in rather high concentrations in cecal and colonic content and feces at steady-state conditions. A mean concentration of 10 mg/kg CTC and 4 mg/kg DOX in the feces was reached, which is higher than concentrations that were shown to cause resistance selection. On the other hand, lower mean levels of SDZ (0.7 mg/kg) and TRIM (< limit of detection of 0.016 mg/kg) were found in the feces, corresponding with the high oral bioavailability of SDZ and TRIM in pigs. The relation between the oral bioavailability and intestinal concentrations of the tested antimicrobials, may be of help in assessing the risks of cross-contaminated feed. However, future research is needed to confirm our results and to evaluate the effects of these detected concentrations on resistance selection in the intestinal microbiota of pigs.

  8. Solid dispersion tablets of breviscapine with polyvinylpyrrolidone K30 for improved dissolution and bioavailability to commercial breviscapine tablets in beagle dogs.

    PubMed

    Cong, Wenjuan; Shen, Lan; Xu, Desheng; Zhao, Lijie; Ruan, Kefeng; Feng, Yi

    2014-09-01

    Breviscapine, one of cardiovascular drugs extracted from a Chinese herb Erigeron breviscapinus, has been frequently used to treat cardiovascular diseases such as hypertension, angina pectoris, coronary heart disease and stroke. However, its poor water solubility and low bioavailability in vivo severely restrict the clinical application. To overcome these drawbacks, breviscapine solid dispersion tablets consisting of breviscapine, polyvinylpyrrolidone K30 (PVP K30), microcrystalline cellulose and crospovidone were appropriately prepared. In vitro dissolution profiles showed that breviscapine released percentage of solid dispersion tablets reached 90 %, whereas it was only 40 % for commercial breviscapine tablets. Comparative pharmacokinetic study between solid dispersion tablets and commercial products was investigated on the normal beagle dogs after oral administration. Results showed that the bioavailability of breviscapine was greatly increased by 3.45-fold for solid dispersion tablets. The greatly improved dissolution rate and bioavailability might be attributed to intermolecular hydrogen bonding reactions between PVP K30 and scutellarin. These findings suggest that our solid dispersion tablets can greatly improve the bioavailability as well as the dissolution rate of breviscapine.

  9. On prilled Nanotubes-in-Microgel Oral Systems for protein delivery.

    PubMed

    de Kruif, Jan Kendall; Ledergerber, Gisela; Garofalo, Carla; Fasler-Kan, Elizaveta; Kuentz, Martin

    2016-04-01

    Newly discovered active macromolecules are highly promising for therapy, but poor bioavailability hinders their oral use. Microencapsulation approaches, such as protein prilling into microspheres, may enable protection from gastrointestinal (GI) enzymatic degradation. This would increase bioavailability mainly for local delivery to GI lumen or mucosa. This work's purpose was to design a novel architecture, namely a Nanotubes-in-Microgel Oral System, by prilling for protein delivery. Halloysite nanotubes (HNT) were selected as orally acceptable clay particles and their lumen was enlarged by alkaline etching. This chemical modification increased the luminal volume to a mean of 216.3 μL g(-1) (+40.8%). After loading albumin as model drug, the HNT were entrapped in microgels by prilling. The formation of Nanoparticles-in-Microsphere Oral System (NiMOS) yielded entrapment efficiencies up to 63.2%. NiMOS shape was spherical to toroidal, with a diameter smaller than 320 μm. Release profiles depended largely on the employed system and HNT type. Protein stability was determined throughout prilling and after in vitro enzymatic degradation. Prilling did not harm protein structure, and NiMOS demonstrated higher enzymatic protection than pure nanotubes or microgels, since up to 82% of BSA remained unscathed after in vitro digestion. Therefore, prilled NiMOS was shown to be a promising and flexible multi-compartment system for oral (local) macromolecular delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A solid phospholipid-bile salts-mixed micelles based on the fast dissolving oral films to improve the oral bioavailability of poorly water-soluble drugs

    NASA Astrophysics Data System (ADS)

    Lv, Qing-yuan; Li, Xian-yi; Shen, Bao-de; Dai, Ling; Xu, He; Shen, Cheng-ying; Yuan, Hai-long; Han, Jin

    2014-06-01

    The phospholipid-bile salts-mixed micelles (PL-BS-MMs) are potent carriers used for oral absorption of drugs that are poorly soluble in water; however, there are many limitations associated with liquid formulations. In the current study, the feasibility of preparing the fast dissolving oral films (FDOFs) containing PL-BS-MMs was examined. FDOFs incorporated with Cucurbitacin B (Cu B)-loaded PL-sodium deoxycholate (SDC)-MMs have been developed and characterized. To prepare the MMs and to serve as the micellar carrier, a weight ratio of 1:0.8 and total concentration of 54 mg/mL was selected for the PL/SDC based on the size, size distribution, zeta potential, encapsulation efficiency, and morphology. The concentration of Cu B was determined to be 5 mg/mL. Results showed that a narrow size distributed nanomicelles with a mean particle size of 86.21 ± 6.11 nm and a zeta potential of -31.21 ± 1.17 mV was obtained in our optimized Cu B-PL/SDC-MMs formulation. FDOFs were produced by solvent casting method and the formulation with 50 mg/mL of pullulan and 40 mg/mL of PEG 400 were deemed based on the physico-mechanical properties. The FDOFs containing Cu B-PL/SDC-MMs were easily reconstituted in a transparent and clear solution giving back a colloidal system with spherical micelles in the submicron range. In the in vitro dissolution test, the FDOFs containing Cu B-PL/SDC-MMs showed an increased dissolution velocity markedly. The pharmacokinetics study showed that the FDOFs containing PL-SDC-MMs not only kept the absorption properties as same as the PL-SDC-MMs, but also significantly increased the oral bioavailability of Cu B compared to the Cu B suspension ( p < 0.05). This study showed that the FDOFs containing Cu B-PL/SDC-MMs could represent a novel platform for the delivery of poorly water-soluble drugs via oral administration. Furthermore, the integration with the FDOFs could also provide a simple and cost-effective manner for the solidification of PL-SDC-MMs.

  11. Duloxetine loaded-microemulsion system to improve behavioral activities by upregulating serotonin and norepinephrine in brain for the treatment of depression.

    PubMed

    Sindhu, Pardeep; Kumar, Shobhit; Iqbal, Babar; Ali, Javed; Baboota, Sanjula

    2018-04-01

    Duloxetine is a well-known antidepressant molecule which is used in the treatment of depression but due to poor solubility it suffers with the drawback of low oral bioavailability. The objective of present work was to formulate and characterize duloxetine loaded microemulsion to enhance the oral bioavailability. Prepared microemulsion was studied for droplet size, zeta potential, refractive index, polydispersity index (PDI), percentage transmittance, viscosity and in vitro release study. Optimized microemulsion (D1) showed spherical droplets with mean diameter of 35.40 ± 3.11 nm, PDI of 0.170 and zeta potential values of -25.8 mV. Formulation showed good transmittance (greater than 99%), viscosity (0.205 Pa s) and refractive index (1.43 ± 0.01). Increased duloxetine release was obtained with microemulsion in comparison to drug suspension. Behavioral tests like mobility test, tail suspension test and forced swimming test performed in depressed and treated rats with duloxetine microemulsion significantly improved the behavioral activities in comparison to duloxetine suspension. Pharmacokinetic studies showed that microemulsion exhibited 1.8 times increment in bioavailability in comparison to duloxetine suspension. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Effects of Estrogen and Estrus Cycle on Pharmacokinetics, Absorption and Disposition of Genistein in Female Sprague-Dawley Rats

    PubMed Central

    Kulkarni, Kaustubh H.; Yang, Zhen; Tao, Niu; Hu, Ming

    2014-01-01

    Genistein is an active soy isoflavone with anticancer activities but it is unknown why it has a higher oral bioavailability in female than in male rats. Our study determined the effects of estrus cycle on genistein’s oral bioavailability. Female rats with various levels of estrogen were orally administered with genistein or used in a four-site rat intestinal perfusion experiment. Rats in “proestrus” group (with elevated estrogen) had significantly reduced (57% decrease, p<0.05) oral bioavailability of total genistein (aglycone+conjugates) than those in “metoestrus” group (with basal level of estrogen). Female ovariectomized rats, due to lack of estrogen, showed oral bioavailability of total genistein similar to the “metoestrus” group but higher (155% increase, p<0.05) than the “proestrus” group. Based on intestinal perfusion studies, the increased bioavailability was partially attributed to the higher (>100% increase, p<0.05) hepatic disposition via glucuronidation and possibly more efficient enterohepatic recycling of genistein in the “metoestrus” group. Furthermore, chronic exogenous supplementation of estradiol in ovariectomized rats significantly reduced (77%, p<0.05) the oral bioavailability of total genistein, mostly via increased sulfation (>10 folds) in liver, to a level comparable to those in the “proestrus” group. In conclusion, the oral bioavailability of total genistein was inversely proportional to elevated estrogen levels in female rats, which is partially mediated through the regulation of hepatic enzymes responsible disposition of genistein. PMID:22757747

  13. Development and application of bio-sample quantification to evaluate stability and pharmacokinetics of inulin-type fructo-oligosaccharides from Morinda Officinalis.

    PubMed

    Chi, Liandi; Chen, Lingxiao; Zhang, Jiwen; Zhao, Jing; Li, Shaoping; Zheng, Ying

    2018-07-15

    Inulin-type fructooligosaccharides (FOS) purified from Morinda Officinalis, with degrees of polymerization (DP) from 3 to 9, have been approved in China as an oral prescribed drug for mild and moderate depression episode, while the stability and oral absorption of this FOS mixtures are largely unknown. As the main active component and quality control marker for above FOS, DP5 was selected as the representative FOS in this study. Desalting method by ion exchange resin was developed to treat bio-sample, followed by separation and quantification by high performance liquid chromatography-charged aerosol detector. Results showed that the DP5 was stepwisely hydrolyzed in simulated gastric fluid and gut microbiota, while maintained stable in intestinal fluid. DP5 has poor permeability across Caco-2 monolayer with P app of 5.22 × 10 -7  cm/s, and very poor oral absorption with bioavailability of (0.50 ± 0.12)% in rat. In conclusion, FOS in Morinda Officinalis demonstrated poor chemical stability in simulated gastric fluid and human gut microbiota, and low oral absorption in rats. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability.

    PubMed

    Onoue, Satomi; Takahashi, Haruki; Kawabata, Yohei; Seto, Yoshiki; Hatanaka, Junya; Timmermann, Barbara; Yamada, Shizuo

    2010-04-01

    Considerable interest has been focused on curcumin due to its use to treat a wide variety of disorders, however, the therapeutic potential of curcumin could often be limited by its poor solubility, bioavailability, and photostability. To overcome these drawbacks, efficacious formulations of curcumin, including nanocrystal solid dispersion (CSD-Cur), amorphous solid dispersion (ASD-Cur), and nanoemulsion (NE-Cur), were designed with the aim of improving physicochemical and pharmacokinetic properties. Physicochemical properties of the prepared formulations were characterized by scanning/transmission electron microscope for morphological analysis, laser diffraction, and dynamic light scattering for particle size analysis, and polarized light microscope, powder X-ray diffraction and differential scanning calorimetry for crystallinity assessment. In dissolution tests, all curcumin formulations exhibited marked improvement in the dissolution behavior when compared with crystalline curcumin. Significant improvement in pharmacokinetic behavior was observed in the newly developed formulations, as evidenced by 12- (ASD-Cur), 16- (CSD-Cur), and 9-fold (NE-Cur) increase of oral bioavailability. Upon photochemical characterization, curcumin was found to be photoreactive and photodegradable in the solution state, possibly via type 2 photochemical reaction, whereas high photochemical stability was seen in the solid formulations, especially CSD-Cur. On the basis of these observations, taken together with dissolution and pharmacokinetic behaviors, CSD strategy would be efficacious to enhance bioavailability of curcumin with high photochemical stability. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  15. The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability.

    PubMed

    McClements, David Julian; Li, Fang; Xiao, Hang

    2015-01-01

    The oral bioavailability of a health-promoting dietary component (nutraceutical) may be limited by various physicochemical and physiological phenomena: liberation from food matrices, solubility in gastrointestinal fluids, interaction with gastrointestinal components, chemical degradation or metabolism, and epithelium cell permeability. Nutraceutical bioavailability can therefore be improved by designing food matrices that control their bioaccessibility (B*), absorption (A*), and transformation (T*) within the gastrointestinal tract (GIT). This article reviews the major factors influencing the gastrointestinal fate of nutraceuticals, and then uses this information to develop a new scheme to classify the major factors limiting nutraceutical bioavailability: the nutraceutical bioavailability classification scheme (NuBACS). This new scheme is analogous to the biopharmaceutical classification scheme (BCS) used by the pharmaceutical industry to classify drug bioavailability, but it contains additional factors important for understanding nutraceutical bioavailability in foods. The article also highlights potential strategies for increasing the oral bioavailability of nutraceuticals based on their NuBACS designation (B*A*T*).

  16. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines.

    PubMed

    Aburahma, Mona Hassan

    2016-07-01

    Most of the new drugs, biological therapeutics (proteins/peptides) and vaccines have poor performance after oral administration due to poor solubility or degradation in the gastrointestinal tract (GIT). Though, vesicular carriers exemplified by liposomes or niosomes can protect the entrapped agent to a certain extent from degradation. Nevertheless, the harsh GIT environment exemplified by low pH, presence of bile salts and enzymes limits their capabilities by destabilizing them. In response to that, more resistant bile salts-containing vesicles (BS-vesicles) were developed by inclusion of bile salts into lipid bilayers constructs. The effectiveness of orally administrated BS-vesicles in improving the performance of vesicles has been demonstrated in researches. Yet, these attempts did not gain considerable attention. This is the first review that provides a comprehensive overview of utilizing BS-vesicles as a promising pharmaceutical carrier with a special focus on their successful applications in oral delivery of therapeutic macromolecules and vaccines. Insights on the possible mechanisms by which BS-vesicles improve the oral bioavailability of the encapsulated drug or immunological response of entrapped vaccine are explained. In addition, methods adopted to prepare and characterize BS-vesicles are described. Finally, the gap in the scientific researches tackling BS-vesicles that needs to be addressed is highlighted.

  17. Formulation and delivery strategies of ibuprofen: challenges and opportunities.

    PubMed

    Irvine, Jake; Afrose, Afrina; Islam, Nazrul

    2018-02-01

    Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), is mostly administered orally and topically to relieve acute pain and fever. Due to its mode of action this drug may be useful in the treatment regimens of other, more chronic conditions, like cystic fibrosis. This drug is poorly soluble in aqueous media and thus the rate of dissolution from the currently available solid dosage forms is limited. This leads to poor bioavailability at high doses after oral administration, thereby increasing the risk of unwanted adverse effects. The poor solubility is a problem for developing injectable solution dosage forms. Because of its poor skin permeability, it is difficult to obtain an effective therapeutic concentration from topical preparations. This review aims to give a brief insight into the status of ibuprofen dosage forms and their limitations, particle/crystallization technologies for improving formulation strategies as well as suggesting its incorporation into the pulmonary drug delivery systems for achieving better therapeutic action at low dose.

  18. Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement

    NASA Astrophysics Data System (ADS)

    Budi Hartono, Sandy; Hadisoewignyo, Lannie; Yang, Yanan; Meka, Anand Kumar; Antaresti; Yu, Chengzhong

    2016-12-01

    In the present work, a simple method was used to develop composite curcumin-amine functionalized mesoporous silica nanoparticles (MSN). The nanoparticles were used to improve the bioavailability of curcumin in mice through oral administration. We investigated the effect of particle size on the release profile, solubility and oral bioavailability of curcumin in mice, including amine functionalized mesoporous silica micron-sized-particles (MSM) and MSN (100-200 nm). Curcumin loaded within amine functionalized MSN (MSN-A-Cur) had a better release profile and a higher solubility compared to amine MSM (MSM-A-Cur). The bioavailability of MSN-A-Cur and MSM-A-Cur was considerably higher than that of ‘free curcumin’. These results indicate promising features of amine functionalized MSN as a carrier to deliver low solubility drugs with improved bioavailability via the oral route.

  19. Optimization of ADME Properties for Sulfonamides Leading to the Discovery of a T-Type Calcium Channel Blocker, ABT-639

    PubMed Central

    2015-01-01

    The discovery of a novel peripherally acting and selective Cav3.2 T-type calcium channel blocker, ABT-639, is described. HTS hits 1 and 2, which have poor metabolic stability, were optimized to obtain 4, which has improved stability and oral bioavailability. Modification of 4 to further improve ADME properties led to the discovery of ABT-639. Following oral administration, ABT-639 produces robust antinociceptive activity in experimental pain models at doses that do not significantly alter psychomotor or hemodynamic function in the rat. PMID:26101566

  20. Optimization of ADME Properties for Sulfonamides Leading to the Discovery of a T-Type Calcium Channel Blocker, ABT-639.

    PubMed

    Zhang, Qingwei; Xia, Zhiren; Joshi, Shailen; Scott, Victoria E; Jarvis, Michael F

    2015-06-11

    The discovery of a novel peripherally acting and selective Cav3.2 T-type calcium channel blocker, ABT-639, is described. HTS hits 1 and 2, which have poor metabolic stability, were optimized to obtain 4, which has improved stability and oral bioavailability. Modification of 4 to further improve ADME properties led to the discovery of ABT-639. Following oral administration, ABT-639 produces robust antinociceptive activity in experimental pain models at doses that do not significantly alter psychomotor or hemodynamic function in the rat.

  1. The influence of droplet size on the stability, in vivo digestion, and oral bioavailability of vitamin E emulsions.

    PubMed

    Parthasarathi, S; Muthukumar, S P; Anandharamakrishnan, C

    2016-05-18

    Vitamin E (α-tocopherol) is a nutraceutical compound, which has been shown to possess potent antioxidant and anticancer activity. However, its biological activity may be limited by its poor bioavailability. Colloidal delivery systems have shown wide applications in the food and pharmaceutical industries to deliver lipophilic bioactive compounds. In this study, we have developed conventional and nanoemulsions of vitamin E from food grade ingredients (sunflower oil, saponin, and water) and showed the nanoemulsion formulation increased the oral bioavailability when compared to the conventional emulsion. The mean droplet diameters in the nano and conventional emulsions were 0.277 and 1.285 μm, respectively. The stability of the emulsion formulation after thermal processing, long-term storage at different temperatures, mechanical stress and in plasma was determined. The results showed that the saponin coated nanoemulsion was stable to droplet coalescence during thermal processing (30-90 °C), long-term storage and mechanical stress when compared to the conventional emulsion. The biological fate of the emulsion formulations were studied using male Wistar rats as an animal model. The emulsion droplet stability during passage through the gastrointestinal tract was evaluated by their introduction into rat stomachs. Microscopy was used to investigate the structural changes that occurred during digestion. Both the conventional emulsion and nanoemulsion formulations showed strong evidence of droplet flocculation and coalescence during in vivo digestion. The in vivo oral bioavailability study revealed that vitamin E in a nanoemulsion form showed a 3-fold increase in the AUC when compared to the conventional emulsion. The information reported in this study will facilitate the design of colloidal delivery systems using nanoemulsion formulations.

  2. Custom fractional factorial designs to develop atorvastatin self-nanoemulsifying and nanosuspension delivery systems--enhancement of oral bioavailability.

    PubMed

    Hashem, Fahima M; Al-Sawahli, Majid M; Nasr, Mohamed; Ahmed, Osama A A

    2015-01-01

    Poor water solubility of a drug is a major challenge in drug delivery research and a main cause for limited bioavailability and pharmacokinetic parameters. This work aims to utilize custom fractional factorial design to assess the development of self-nanoemulsifying drug delivery systems (SNEDDS) and solid nanosuspensions (NS) in order to enhance the oral delivery of atorvastatin (ATR). According to the design, 14 experimental runs of ATR SNEDDS were formulated utilizing the highly ATR solubilizing SNEDDS components: oleic acid, Tween 80, and propylene glycol. In addition, 12 runs of NS were formulated by the antisolvent precipitation-ultrasonication method. Optimized formulations of SNEDDS and solid NS, deduced from the design, were characterized. Optimized SNEDDS formula exhibited mean globule size of 73.5 nm, zeta potential magnitude of -24.1 mV, and 13.5 μs/cm of electrical conductivity. Optimized solid NS formula exhibited mean particle size of 260.3 nm, 7.4 mV of zeta potential, and 93.2% of yield percentage. Transmission electron microscopy showed SNEDDS droplets formula as discrete spheres. The solid NS morphology showed flaky nanoparticles with irregular shapes using scanning electron microscopy. The release behavior of the optimized SNEDDS formula showed 56.78% of cumulative ATR release after 10 minutes. Solid NS formula showed lower rate of release in the first 30 minutes. Bioavailability estimation in Wistar albino rats revealed an augmentation in ATR bioavailability, relative to ATR suspension and the commercial tablets, from optimized ATR SNEDDS and NS formulations by 193.81% and 155.31%, respectively. The findings of this work showed that the optimized nanocarriers enhance the oral delivery and pharmacokinetic profile of ATR.

  3. Enhancement of oral bioavailability of E804 by self-nanoemulsifying drug delivery system (SNEDDS) in rats.

    PubMed

    Heshmati, Nasim; Cheng, Xinlai; Eisenbrand, Gerhard; Fricker, Gert

    2013-10-01

    Indirubin and its derivatives have been shown to interrupt the cell cycle by inhibiting cyclin-dependent kinases, explaining their long-time use in traditional Chinese medicine for the treatment of chronic myelocytic leukemia. A potent derivative of indirubin, indirubin-3'-oxime 2,3-dihydroxypropyl ether (E804), has been shown to block the Src-Stat3 and Src-Stat5 signaling pathway in human cancer cells, inducing apoptosis. The anticancer effects of E804, however, cannot be easily examined in vivo because of its poor water solubility and low absorption. The aim of this study was to develop and evaluate a self-nanoemulsifying drug delivery system (SNEDDS) containing E804 for enhancing its solubility and bioavailability. Solubility of E804 was determined in various vehicles, and pseudoternary phase diagram was used to evaluate the self-emulsifying existence area. The SNEDDS composed of Capmul MCM (oil), Solutol HS 15 (surfactant), and polyethylene glycol 400 (cosurfactant) on the ratio of 20.5:62.5:16 loaded 1.5% of E804. The particle size of droplets was found to be 16.8 and 140 nm, and SNEDDS was stable after freeze-thaw cycles and upon dilution in HCl 0.1 N and pH 7.4 HBSS++. The ability of formulation for absorption enhancement was studied in rats in vivo after oral administration. The results showed that the developed SNEDDS increased the E804 bioavailability 984.23% compared with the aqueous suspension. Our studies for the first time show that the developed SNEDDS can be used as a possible formulation for E804 to improve its solubility and oral bioavailability. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Pharmacokinetic Evaluation of Improved Oral Bioavailability of Valsartan: Proliposomes Versus Self-Nanoemulsifying Drug Delivery System.

    PubMed

    Nekkanti, Vijaykumar; Wang, Zhijun; Betageri, Guru V

    2016-08-01

    The objective of this study was to develop proliposomes and self-nanoemulsifying drug delivery system (SNEDDS) for a poorly bioavailable drug, valsartan, and to compare their in vivo pharmacokinetics. Proliposomes were prepared by thin-film hydration method using different lipids such as soy phosphatidylcholine (SPC), hydrogenated soy phosphatidylcholine (HSPC), distearyl phosphatidylcholine (DSPC), dimyristoylphosphatidylcholine (DMPC), and dimyristoyl phosphatidylglycerol sodium (DMPG) and cholesterol in various ratios. SNEDDS formulations were prepared using varying concentrations of capmul MCM, labrafil M 2125, and Tween 80. Both proliposomes and SNEDDS were evaluated for particle size, zeta potential, in vitro drug release, in vitro permeability, and in vivo pharmacokinetics. In vitro drug release was carried out in purified water and 0.1 N HCl using USP type II dissolution apparatus. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA) and everted rat intestinal permeation techniques. Among the formulations, the proliposomes with drug/DMPG/cholesterol in the ratio of 1:1:0.5 and SNEDDS with capmul MCM (16.0% w/w), labrafil M 2125 (64.0% w/w), and Tween 80 (18.0% w/w) showed the desired particle size and zeta potential. Enhanced drug release was observed with proliposomes and SNEDDS as compared to pure valsartan. Valsartan permeability across PAMPA and everted rat intestinal permeation models was significantly higher with proliposomes and SNEDDS. Following single oral administration of proliposomes and SNEDDS, a relative bioavailability of 202.36 and 196.87%, respectively, was achieved compared to pure valsartan suspension. The study results indicated that both proliposomes and SNEDDS formulations are comparable in improving the oral bioavailability of valsartan.

  5. Effect of taste masking technology on fast dissolving oral film: dissolution rate and bioavailability.

    PubMed

    Zhu, Ying; You, Xinru; Huang, Keqing; Raza, Faisal; Lu, Xin; Chen, Yuejian; Dhinakar, Arvind; Zhang, Yuan; Kang, Yang; Wu, Jun; Ge, Liang

    2018-07-27

    Fast dissolving oral film is a stamp-style, drug-loaded polymer film with rapid disintegration and dissolution. This new kind of drug delivery system requires effective taste masking technology. Suspension intermediate and liposome intermediate were prepared, respectively, for the formulation of two kinds of fast dissolving oral films with the aim of studying the effect of taste masking technology on the bioavailability of oral films. Loratadine was selected as the model drug. The surface pH of the films was close to neutral, avoiding oral mucosal irritation or side effects. The thickness of a 2 cm × 2 cm suspension oral film containing 10 mg of loratadine was 100 μm. Electron microscope analysis showed that liposomes were spherical before and after re-dissolution, and drugs with obvious bitterness could be masked by the encapsulation of liposomes. Dissolution of the two films was superior to that of the commercial tablets. Rat pharmacokinetic experiments showed that the oral bioavailability of the suspension film was significantly higher than that of the commercial tablets, and the relative bioavailability of the suspension film was 175%. Liposomal film produced a certain amount of improvement in bioavailability, but lower than that of the suspension film.

  6. Effect of taste masking technology on fast dissolving oral film: dissolution rate and bioavailability

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; You, Xinru; Huang, Keqing; Raza, Faisal; Lu, Xin; Chen, Yuejian; Dhinakar, Arvind; Zhang, Yuan; Kang, Yang; Wu, Jun; Ge, Liang

    2018-07-01

    Fast dissolving oral film is a stamp-style, drug-loaded polymer film with rapid disintegration and dissolution. This new kind of drug delivery system requires effective taste masking technology. Suspension intermediate and liposome intermediate were prepared, respectively, for the formulation of two kinds of fast dissolving oral films with the aim of studying the effect of taste masking technology on the bioavailability of oral films. Loratadine was selected as the model drug. The surface pH of the films was close to neutral, avoiding oral mucosal irritation or side effects. The thickness of a 2 cm × 2 cm suspension oral film containing 10 mg of loratadine was 100 μm. Electron microscope analysis showed that liposomes were spherical before and after re-dissolution, and drugs with obvious bitterness could be masked by the encapsulation of liposomes. Dissolution of the two films was superior to that of the commercial tablets. Rat pharmacokinetic experiments showed that the oral bioavailability of the suspension film was significantly higher than that of the commercial tablets, and the relative bioavailability of the suspension film was 175%. Liposomal film produced a certain amount of improvement in bioavailability, but lower than that of the suspension film.

  7. In vitro and in vivo evaluation of cyclodextrin-based nanosponges for enhancing oral bioavailability of atorvastatin calcium.

    PubMed

    Zidan, Mohamed F; Ibrahim, Hany M; Afouna, Mohsen I; Ibrahim, Elsherbeny A

    2018-08-01

    The aim of this study was to explore the feasibility of complexing the poorly water-soluble drug atorvastatin calcium (AC) with β-cyclodextrin (β-CD) based nanosponges (NS), which offer advantages of improving dissolution rate and eventually oral bioavailability. Blank NS were fabricated at first by reacting β-CD with the cross-linker carbonyldiimidazole at different molar ratios (1:2, 1:4, and 1:8), then NS of highest solubilization extent for AC were complexed with AC. AC loaded NS (AC-NS) were characterized for various physicochemical properties. Pharmacokinetic, pharmacodynamics and histological finding of AC-NS were performed in rats. The prepared AC-NS showed particles size ranged from 408.7 ± 12.9 to 423 ± 15.9 nm while zeta potential values varied from -21.7 ± 0.90 to -22.7 ± 0.85 mV. The loading capacity varied from 17.9 ± 1.21 to 34.1 ± 1.16%. DSC, FT-IR, and PXRD studies confirmed the complexation of AC with NS and amorphous state of the drug in the complex. AC-NS displayed a biphasic release pattern with increase in the dissolution rate of AC as compared to plain AC. Oral administration of AC-NS (1:4 w/w, drug: NS) to rats led to 2.13-folds increase in the bioavailability as compared to AC suspension. Pharmacodynamics studies in rats with fatty liver revealed significant reduction (p < .05) in total cholesterol, triglyceride, LDL-C and increased level of beneficial HDL-C along with improvement in the associated liver steatosis as confirmed through photomicrographs of liver sections. In this study, we confirmed that complexation of AC with NS would be a viable approach for improving oral bioavailability and in vivo performance of AC.

  8. Comparative study on solid self-nanoemulsifying drug delivery and solid dispersion system for enhanced solubility and bioavailability of ezetimibe

    PubMed Central

    Rashid, Rehmana; Kim, Dong Wuk; Yousaf, Abid Mehmood; Mustapha, Omer; Din, Fakhar ud; Park, Jong Hyuck; Yong, Chul Soon; Oh, Yu-Kyoung; Youn, Yu Seok; Kim, Jong Oh; Choi, Han-Gon

    2015-01-01

    Background The objective of this study was to compare the physicochemical characteristics, solubility, dissolution, and oral bioavailability of an ezetimibe-loaded solid self-nanoemulsifying drug delivery system (SNEDDS), surface modified solid dispersion (SMSD), and solvent evaporated solid dispersion (SESD) to identify the best drug delivery system with the highest oral bioavailability. Methods For the liquid SNEDDS formulation, Capryol 90, Cremophor EL, and Tween 80 were selected as the oil, surfactant, and cosurfactant, respectively. The nanoemulsion-forming region was sketched using a pseudoternary phase diagram on the basis of reduced emulsion size. The optimized liquid SNEDDS was converted to solid SNEDDS by spray drying with silicon dioxide. Furthermore, SMSDs were prepared using the spray drying technique with various amounts of hydroxypropylcellulose and Tween 80, optimized on the basis of their drug solubility. The SESD formulation was prepared with the same composition of optimized SMSD. The aqueous solubility, dissolution, physicochemical properties, and pharmacokinetics of all of the formulations were investigated and compared with the drug powder. Results The drug existed in the crystalline form in SMSD, but was changed into an amorphous form in SNEDDS and SESD, giving particle sizes of approximately 24, 6, and 11 µm, respectively. All of these formulations significantly improved the aqueous solubility and dissolution in the order of solid SNEDDS ≥ SESD > SMSD, and showed a total higher plasma concentration than did the drug powder. Moreover, SESD gave a higher area under the drug concentration time curve from zero to infinity than did SNEDDS and SMSD, even if they were not significantly different, suggesting more improved oral bioavailability. Conclusion Among the various formulations tested in this study, the SESD system would be strongly recommended as a drug delivery system for the oral administration of ezetimibe with poor water solubility. PMID:26491288

  9. Rivaroxaban crushed tablet suspension characteristics and relative bioavailability in healthy adults when administered orally or via nasogastric tube.

    PubMed

    Moore, Kenneth T; Krook, Mark A; Vaidyanathan, Seema; Sarich, Troy C; Damaraju, C V; Fields, Larry E

    2014-07-01

    Because some patients have difficulty swallowing a whole tablet, we investigated the relative bioavailability of a crushed 20 mg rivaroxaban tablet and of 2 alternative crushed tablet dosing strategies. Stability and nasogastric (NG) tube adsorption characteristics of a crushed rivaroxaban tablet were assessed. Then, in 55 healthy adults, relative bioavailability of rivaroxaban administered orally as a whole tablet (Reference [Whole-Oral]), crushed tablet in applesauce suspension (Crushed-Oral), or crushed tablet in water suspension via NG tube (Crushed-NG) were determined. There were no significant changes in mean percent of non-degraded rivaroxaban recovered over 4 hours from crushed tablet suspensions (>98.4% recovery across all suspensions and time points) or after NG tube exposure (recovery: 99.1% for silicone and 98.9% for polyvinyl chloride NG tubes). Relative bioavailability was similar between Crushed-Oral and Reference dosing (Cmax and AUC∞ were within the 80-125% bioequivalence limits). Relative bioavailability was also similar between the Crushed-NG and Reference dosing (AUC∞ was within bioequivalence limits; Cmax [90% CI range: 78.5-85.8%] was only slightly below the 80% lower bioequivalence limit). A crushed rivaroxaban tablet was stable and when administered orally or via NG tube, displayed similar relative bioavailability compared to a whole tablet administered orally. © 2014, The American College of Clinical Pharmacology.

  10. Improved oral bioavailability of probucol by dry media-milling.

    PubMed

    Li, Jia; Yang, Yan; Zhao, Meihui; Xu, Hui; Ma, Junyuan; Wang, Shaoning

    2017-09-01

    The polymer/probucol co-milled mixtures were prepared to improve drug dissolution rate and oral bioavailability. Probucol, a BCS II drug, was co-milled together with Copovidone (Kollidon VA64, VA64), Soluplus, or MCC using the dry media-milling process with planetary ball-milling equipment. The properties of the milled mixtures including morphology, crystal form, vitro drug dissolution and in vivo oral bioavailability in rats were evaluated. Probucol existed as an amorphous in the matrix of the co-milled mixtures containing VA64, which helped to enhance drug dissolution. The ternary mixture composed of VA64, RH40, and probucol showed increased dissolution rates in both sink and non-sink conditions. It also had a higher oral bioavailability compared to the reference formulation. Dry-media milling of binary or ternary mixtures composed of drug, polymer and surfactant possibly have wide applications to improve dissolution rate and oral bioavailability of water-insoluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modified mesoporous silica nanoparticles for enhancing oral bioavailability and antihypertensive activity of poorly water soluble valsartan.

    PubMed

    Biswas, Nikhil

    2017-03-01

    The aim was to improve the oral bioavailability and antihypertensive activity of poorly soluble drug valsartan (VAL) by modifying the design and delivery of mesoporous silica nanoparticles (MSNs). The synthesized MSNs were functionalized with aminopropyl groups (AP-MSN) through postsynthesis and coated with pH sensitive polymer Eudragit L100-55 (AP-MSN-L100-55) for pH dependant sustain release of anionic VAL. MSNs were characterized by Brauner-Emmett-Teller (BET) surface area analyzer, zeta sizer, Field Emission Scanning Electron Microscope (FESEM), Powder X-Ray Diffraction (PXRD) and Differential Scanning Calorimetry (DSC). Functionalized MSNs showed highest entrapment efficiency (59.77%) due to strong ionic interaction with VAL. In vitro dissolution of M-MSN [MSN-VAL and AP-MSN-VAL-L100-55 mixed equally] at physiological conditions demonstrated immediate release (MSN-VAL fraction) followed by sustained release (AP-MSN-VAL-L100-55 fraction) of 96% VAL in 960min. The dramatic improvement in dissolution was attributed to the amorphization of crystalline VAL by MSNs as evidenced by DSC and PXRD studies. No noticeable cytotoxicity was observed for MSN, AP-MSN and AP-MSN-L100-55 in MTT assay. Pharmacokinetic study of M-MSN confirmed 1.82 fold increases in bioavailability compared to commercial Diovan tablet in fasted male rabbits. Blood pressure monitoring in rats showed that the morning dosing of Diovan tablet efficiently controlled BP for just over 360min whereas the effect of M-MSN lasted for >840min. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Albendazole Microcrystal Formulations Based on Chitosan and Cellulose Derivatives: Physicochemical Characterization and In Vitro Parasiticidal Activity in Trichinella spiralis Adult Worms.

    PubMed

    Priotti, Josefina; Codina, Ana V; Leonardi, Darío; Vasconi, María D; Hinrichsen, Lucila I; Lamas, María C

    2017-05-01

    The oral route has notable advantages to administering dosage forms. One of the most important questions to solve is the poor solubility of most drugs which produces low bioavailability and delivery problems, a major challenge for the pharmaceutical industry. Albendazole is a benzimidazole carbamate extensively used in oral chemotherapy against intestinal parasites, due to its extended spectrum activity and low cost. Nevertheless, the main disadvantage is the poor bioavailability due to its very low solubility in water. The main objective of this study was to prepare microcrystal formulations by the bottom-up technology to increase albendazole dissolution rate, in order to enhance its antiparasitic activity. Thus, 20 novel microstructures based on chitosan, cellulose derivatives, and poloxamer as a surfactant were produced and characterized by their physicochemical properties and in vitro biological activity. To determine the significance of type and concentration of polymer, and presence or absence of surfactant in the crystals, the variables area under the curve, albendazole microcrystal solubility, and drug released (%) at 30 min were analyzed with a three-way ANOVA. This analysis indicated that the microcrystals made with hydroxyethylcellulose or chitosan appear to be the best options to optimize oral absorption of the active pharmaceutical ingredient. The in vitro evaluation of anthelmintic activity on adult forms of Trichinella spiralis identified system S10A as the most effective, of choice for testing therapeutic efficacy in vivo.

  13. Bioavailability and pharmacokinetics of oral and injectable formulations of methadone after intravenous, oral, and intragastric administration in horses.

    PubMed

    Linardi, Renata L; Stokes, Ashley M; Keowen, Michael L; Barker, Steven A; Hosgood, Giselle L; Short, Charles R

    2012-02-01

    To characterize the bioavailability and pharmacokinetics of oral and injectable formulations of methadone after IV, oral, and intragastric administration in horses. 6 healthy adult horses. Horses received single doses (each 0.15 mg/kg) of an oral formulation of methadone hydrochloride orally or intragastrically or an injectable formulation of the drug orally, intragastrically, or IV (5 experimental treatments/horse; 2-week washout period between each experimental treatment). A blood sample was collected from each horse before and at predetermined time points over a 360-minute period after each administration of the drug to determine serum drug concentration by use of gas chromatography-mass spectrometry analysis and to estimate pharmacokinetic parameters by use of a noncompartmental model. Horses were monitored for adverse effects. In treated horses, serum methadone concentrations were equivalent to or higher than the effective concentration range reported for humans, without induction of adverse effects. Oral pharmacokinetics in horses included a short half-life (approx 1 hour), high total body clearance corrected for bioavailability (5 to 8 mL/min/kg), and small apparent volume of distribution corrected for bioavailability (0.6 to 0.9 L/kg). The bioavailability of methadone administered orally was approximately 3 times that associated with intragastric administration. Absorption of methadone in the small intestine in horses appeared to be limited owing to the low bioavailability after intragastric administration. Better understanding of drug disposition, including absorption, could lead to a more appropriate choice of administration route that would enhance analgesia and minimize adverse effects in horses.

  14. The fate and tissue disposition of deoxynivalenol in broiler chickens

    PubMed Central

    PRALATNET, Sasithorn; POAPOLATHEP, Saranya; IMSILP, Kanjana; TANHAN, Phanwimol; ISARIYODOM, Supaporn; KUMAGAI, Susumu; POAPOLATHEP, Amnart

    2015-01-01

    To evaluate the fate of deoxynivalenol (DON) in broilers, DON was administered either intravenously or orally to broilers at a dose of 1 mg/kg BW. Concentrations of DON in plasma were measurable up to 4 hr and 2 hr after intravenous and oral administration, respectively. Following intravenous administration, the values for the elimination half-life, the volume of distribution and the clearance were 1.25 ± 0.25 hr, 7.55 ± 2.03 l/kg and 4.16 ± 0.42 l/hr/kg, respectively. The oral bioavailability was 15.46 ± 4.02%. DON was detectable in all tissues examined after oral administration. These results suggest that DON is able to penetrate into the various tissues in broilers, though poorly absorbed from their gastrointestinal tract. PMID:25843039

  15. Minimization of CYP2D6 Polymorphic Differences and Improved Bioavailability via Transdermal Administration: Latrepirdine Example.

    PubMed

    Chew, Marci L; Mordenti, Joyce; Yeoh, Thean; Ranade, Gautam; Qiu, Ruolun; Fang, Juanzhi; Liang, Yali; Corrigan, Brian

    2016-08-01

    Transdermal delivery has the potential to offer improved bioavailability by circumventing first-pass gut and hepatic metabolism. This study evaluated the pharmacokinetics of oral immediate release and transdermal latrepirdine in extensive and poor CYP2D6 metabolizers (EM/PM). Latrepirdine transdermal solution was prepared extemporaneously. The solution was applied with occlusive dressing to upper or middle back for 24 h. Each subject received a single dose of 8.14 mg oral, 5 mg transdermal, and 10 mg transdermal (EMs only) latrepirdine free base in a fixed sequence. Twelve EMs and 7 PMs (50-79 years) enrolled and completed the study. Latrepirdine was well tolerated following both routes of administration. Dose-normalized latrepirdine total exposures were approximately 11-fold and 1.5-fold higher in EMs and PMs, respectively following administration of transdermal relative to oral. Differences between EM and PM latrepirdine exposures were decreased, with PMs having 1.9- and 2.7-fold higher peak and total exposures, respectively, following transdermal administration compared to 11- and 20-fold higher exposures, respectively, following oral administration. Transdermal delivery can potentially mitigate the large intersubject differences observed with compounds metabolized primarily by CYP2D6. Transdermal delivery was readily accomplished in the clinic using an extemporaneously prepared solution [NCT00990613].

  16. Lipids in the Stomach - Implications for the Evaluation of Food Effects on Oral Drug Absorption.

    PubMed

    Koziolek, Mirko; Carrière, Frédéric; Porter, Christopher J H

    2018-02-08

    Food effects on oral drug bioavailability can have significant impact on the provision of safe and reliable oral pharmacotherapy. A mechanistic understanding of the events that contribute to the occurrence of food effects is therefore critical. An increased oral bioavailability is often seen for poorly water-soluble drugs after co-administration with lipids, including lipids in food, and is commonly explained by the ability of lipids to enhance drug solubility in intestinal luminal fluids. In contrast, the impact of lipids on drug solubilisation in the stomach has received less attention. This is in spite of the fact that lipid digestion is initiated in the stomach by human gastric lipase and that gastric events also initiate emulsification of lipids in the gastrointestinal tract. The stomach therefore acts to 'pre-process' lipids for subsequent events in the intestine and may significantly affect downstream events at intestinal drug absorption sites. In this article, the mechanisms by which lipids are processed in the stomach are reviewed and the potential impact of these processes on drug absorption discussed. Attention is also focused on in vitro methods that are used to assess gastric processing of lipids and their application to better understand food effects on drug release and absorption.

  17. Soluplus®/TPGS-based solid dispersions prepared by hot-melt extrusion equipped with twin-screw systems for enhancing oral bioavailability of valsartan.

    PubMed

    Lee, Jae-Young; Kang, Wie-Soo; Piao, Jingpei; Yoon, In-Soo; Kim, Dae-Duk; Cho, Hyun-Jong

    2015-01-01

    Soluplus(®) (SP) and D-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS)-based solid dispersion (SD) formulations were developed by hot-melt extrusion (HME) to improve oral bioavailability of valsartan (VST). HME process with twin-screw configuration for generating a high shear stress was used to prepare VST SD formulations. The thermodynamic state of the drug and its dispersion in the polymers were evaluated by solid-state studies, including Fourier-transform infrared, X-ray diffraction, and differential scanning calorimetry. Drug release from the SD formulations was assessed at pH values of 1.2, 4.0, and 6.8. Pharmacokinetic study was performed in rats to estimate the oral absorption of VST. HME with a high shear rate produced by the twin-screw system was successfully applied to prepare VST-loaded SD formulations. Drug amorphization and its molecular dispersion in the polymer matrix were verified by several solid-state studies. Drug release from SD formulations was improved, compared to the pure drug, particularly at pH 6.8. Oral absorption of drug in rats was also enhanced in SP and TPGS-based SD groups compared to that in the pure drug group. SP and TPGS-based SDs, prepared by the HME process, could be used to improve aqueous solubility, dissolution, and oral absorption of poorly water-soluble drugs.

  18. Bioavailability and Pharmacokinetics of Oral Cocaine in Humans.

    PubMed

    Coe, Marion A; Jufer Phipps, Rebecca A; Cone, Edward J; Walsh, Sharon L

    2018-06-01

    The pharmacokinetic profile of oral cocaine has not been fully characterized and prospective data on oral bioavailability are limited. A within-subject study was performed to characterize the bioavailability and pharmacokinetics of oral cocaine. Fourteen healthy inpatient participants (six males) with current histories of cocaine use were administered two oral doses (100 and 200 mg) and one intravenous (IV) dose (40 mg) of cocaine during three separate dosing sessions. Plasma samples were collected for up to 24 h after dosing and analyzed for cocaine and metabolites by gas chromatography-mass spectrometry. Pharmacokinetic parameters were calculated by non-compartmental analysis, and a two-factor model was used to assess for dose and sex differences. The mean ± SEM oral cocaine bioavailability was 0.32 ± 0.04 after 100 and 0.45 ± 0.06 after 200 mg oral cocaine. Volume of distribution (Vd) and clearance (CL) were both greatest after 100 mg oral (Vd = 4.2 L/kg; CL = 116.2 mL/[min kg]) compared to 200 mg oral (Vd = 2.9 L/kg; CL = 87.5 mL/[min kg]) and 40 mg IV (Vd = 1.3 L/kg; CL = 32.7 mL/[min kg]). Oral cocaine area-under-thecurve (AUC) and peak concentration increased in a dose-related manner. AUC metabolite-to-parent ratios of benzoylecgonine and ecgonine methyl ester were significantly higher after oral compared to IV administration and highest after the lower oral dose. In addition, minor metabolites were detected in higher concentrations after oral compared to IV cocaine. Oral cocaine produced a pharmacokinetic profile different from IV cocaine, which appears as a rightward and downward shift in the concentration-time profile. Cocaine bioavailability values were similar to previous estimates. Oral cocaine also produced a unique metabolic profile, with greater concentrations of major and minor metabolites.

  19. Design, synthesis and optimization of bis-amide derivatives as CSF1R inhibitors.

    PubMed

    Ramachandran, Sreekanth A; Jadhavar, Pradeep S; Miglani, Sandeep K; Singh, Manvendra P; Kalane, Deepak P; Agarwal, Anil K; Sathe, Balaji D; Mukherjee, Kakoli; Gupta, Ashu; Haldar, Srijan; Raja, Mohd; Singh, Siddhartha; Pham, Son M; Chakravarty, Sarvajit; Quinn, Kevin; Belmar, Sebastian; Alfaro, Ivan E; Higgs, Christopher; Bernales, Sebastian; Herrera, Francisco J; Rai, Roopa

    2017-05-15

    Signaling via the receptor tyrosine kinase CSF1R is thought to play an important role in recruitment and differentiation of tumor-associated macrophages (TAMs). TAMs play pro-tumorigenic roles, including the suppression of anti-tumor immune response, promotion of angiogenesis and tumor cell metastasis. Because of the role of this signaling pathway in the tumor microenvironment, several small molecule CSF1R kinase inhibitors are undergoing clinical evaluation for cancer therapy, either as a single agent or in combination with other cancer therapies, including immune checkpoint inhibitors. Herein we describe our lead optimization effort that resulted in the identification of a potent, cellular active and orally bioavailable bis-amide CSF1R inhibitor. Docking and biochemical analysis allowed the removal of a metabolically labile and poorly permeable methyl piperazine group from an early lead compound. Optimization led to improved metabolic stability and Caco2 permeability, which in turn resulted in good oral bioavailability in mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Erythrocyte membrane nanoparticles improve the intestinal absorption of paclitaxel.

    PubMed

    Jiang, Xing; Wang, Kaikai; Zhou, Zaigang; Zhang, Yifan; Sha, Huizi; Xu, Qiuping; Wu, Jie; Wang, Juan; Wu, Jinhui; Hu, Yiqiao; Liu, Baorui

    2017-06-24

    Paclitaxel (PTX) is a cytotoxic chemotherapy drug with encouraging activity in human malignancies. However, free PTX has a very low oral bioavailability due to its low aqueous solubility and the gastrointestinal drug barrier. In order to overcome this obstacle, we have designed erythrocyte membrane nanoparticles (EMNP) using sonication method. The permeability of PTX by EMNP was 3.5-fold (P app  = 0.425 nm/s) and 16.2-fold (P app  = 394.1 nm/s) higher than free PTX in MDCK-MDR1 cell monolayers and intestinal mucosal tissue, respectively. The in vivo pharmacokinetics indicated that the AUC 0-t (μg/mL·h) and C max (μg/mL) of EMNP were 14.2-fold and 6.0-fold higher than that of free PTX, respectively. In summary, the EMNP appears to be a promising nanoformulation to enhance the oral bioavailability of insoluble and poorly permeable drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. In vitro and in vivo studies on the complexes of glipizide with water-soluble β-cyclodextrin-epichlorohydrin polymers.

    PubMed

    Nie, Shufang; Zhang, Shu; Pan, Weisan; Liu, Yanli

    2011-05-01

    The purpose of this study was to evaluate the potential of a newly modified cyclodextrin derivative, water-soluble β-cyclodextrin-epichlorohydrin polymer (β-CDP), as an effective drug carrier to enhance the dissolution rate and oral bioavailability of glipizide as a poorly water-soluble model drug. Inclusion complexes of glipizide with β-CDP were prepared by the co-evaporation method and characterized by phase solubility, dissolution, and differential scanning calorimetry. The solubility curve was classified as type A(L), which indicated the formation of 1:1 complex between glipizide and β-CDP. β-CDP had better properties of increasing the aqueous solubility of glipizide compared with HP-β-CD. The dissolution rate of drug from the β-CDP complexes was significantly greater than that of the corresponding physical mixtures indicating that the formation of amorphous complex increased the solubility of glipizide. Moreover, the increment in drug dissolution rate from the glipizide/β-CDP systems was higher than that from the corresponding ones with HP-β-CD, which indicated that β-CDP could provide greater capability of solubilization for poorly soluble drugs. Furthermore, in vivo study revealed that the bioavailability of glipizide was significantly improved by glipizide /β-CDP inclusion complex after oral administration to beagle dogs.

  2. Impregnation of Fenofibrate on mesoporous silica using supercritical carbon dioxide.

    PubMed

    Bouledjouidja, Abir; Masmoudi, Yasmine; Van Speybroeck, Michiel; Schueller, Laurent; Badens, Elisabeth

    2016-02-29

    Low oral bioavailability can be circumvented by the formulation of the poorly water soluble drug in ordered mesoporous silica (OMS-L-7). Fenofibrate is an orally administered, poorly water-soluble active pharmaceutical ingredient (API), used clinically to lower lipid levels. Fenofibrate was loaded into silica using two methods: incipient wetness and supercritical impregnation. This study investigates the impact of loading and the impact of varying supercritical carbon dioxide (scCO2) processing conditions. The objective is to enhance Fenofibrate loading into silica while reducing degree of the drug crystallinity, so as to increase the drug's dissolution rate and its bioavailability. The comparison of both impregnation processes was made in terms of impregnation yields and duration as well as physical characterization of the drug. While incipient wetness method led to a Fenofibrate loading up to 300 mgdrug/gsilica in 48 h of impregnation, the supercritical impregnation method yielded loading up to 485 mgdrug/gsilica in 120 min of impregnation duration, at 16 MPa and 308 K, with a low degree of crystallinity (about 1%) comparable to the crystallinity observed via the solvent method. In addition to the enhancement of impregnation efficiency, the supercritical route provides a solvent-free alternative for impregnation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A Molecular-Level View of the Physical Stability of Amorphous Solid Dispersions

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoda

    Many pharmaceutical compounds being developed in recent years are poorly soluble in water. This has led to insufficient oral bioavailability of many compounds in vitro. The amorphous formulation is one of the promising techniques to increase the oral bioavailability of these poorly water-soluble compounds. However, an amorphous drug substance is inherently unstable because it is a high energy form. In order to increase the physical stability, the amorphous drug is often formulated with a suitable polymer to form an amorphous solid dispersion. Previous research has suggested that the formation of an intimately mixed drug-polymer mixture contributes to the stabilization of the amorphous drug compound. The goal of this research is to better understand the role of miscibility, molecular interactions and mobility on the physical stability of amorphous solid dispersions. Methods were developed to detect different degrees of miscibility on nanometer scale and to quantify the extent of hydrogen-bonding interactions between the drug and the polymer. Miscibility, hydrogen-bonding interactions and molecular mobility were correlated with physical stability during a six-month period using three model systems. Overall, this research provides molecular-level insights into many factors that govern the physical stability of amorphous solid dispersions which can lead to a more effective design of stable amorphous formulations.

  4. 3-aminopropyl functionalized magnesium phyllosilicate as an organoclay based drug carrier for improving the bioavailability of flurbiprofen.

    PubMed

    Yang, Liang; Choi, Soo-Kyung; Shin, Hyun-Jae; Han, Hyo-Kyung

    2013-01-01

    This study aimed to develop an oral delivery system using clay-based organic-inorganic hybrid materials to improve the bioavailability of the drug, flurbiprofen, which is poorly soluble in water. 3-aminopropyl functionalized magnesium phyllosilicate (AMP clay) was synthesized by a one-pot direct sol-gel method, and then flurbiprofen (FB) was incorporated into AMP clay (FB-AMP) at different drug/clay ratios. The structural characteristics of AMP and FB-AMP formulation were confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. Among tested formulations, FB-AMP(3), dramatically increased the dissolution of FB and achieved rapid and complete drug release within 2 hours. More than 60% of FB was released from FB-AMP(3) after 30 minutes; the drug was completely dissolved in the water within 2 hours. Under the acidic condition (pH 1.2), FB-AMP(3) also increased the dissolution of FB by up to 47.1% within 1 hour, which was three-fold higher than that of untreated FB. Furthermore, following an oral administration of FB-AMP(3) to Sprague-Dawley rats, the peak plasma concentration and area under the plasma concentration-time curve of FB increased two-fold, and the time to reach the peak plasma concentration was shortened compared with that in the untreated FB. This result suggests that the oral drug delivery system using clay-based organic-inorganic hybrid material might be useful to improve the bioavailability of FB.

  5. 3-aminopropyl functionalized magnesium phyllosilicate as an organoclay based drug carrier for improving the bioavailability of flurbiprofen

    PubMed Central

    Yang, Liang; Choi, Soo-Kyung; Shin, Hyun-Jae; Han, Hyo-Kyung

    2013-01-01

    This study aimed to develop an oral delivery system using clay-based organic–inorganic hybrid materials to improve the bioavailability of the drug, flurbiprofen, which is poorly soluble in water. 3-aminopropyl functionalized magnesium phyllosilicate (AMP clay) was synthesized by a one-pot direct sol-gel method, and then flurbiprofen (FB) was incorporated into AMP clay (FB-AMP) at different drug/clay ratios. The structural characteristics of AMP and FB-AMP formulation were confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. Among tested formulations, FB-AMP(3), dramatically increased the dissolution of FB and achieved rapid and complete drug release within 2 hours. More than 60% of FB was released from FB-AMP(3) after 30 minutes; the drug was completely dissolved in the water within 2 hours. Under the acidic condition (pH 1.2), FB-AMP(3) also increased the dissolution of FB by up to 47.1% within 1 hour, which was three-fold higher than that of untreated FB. Furthermore, following an oral administration of FB-AMP(3) to Sprague-Dawley rats, the peak plasma concentration and area under the plasma concentration-time curve of FB increased two-fold, and the time to reach the peak plasma concentration was shortened compared with that in the untreated FB. This result suggests that the oral drug delivery system using clay-based organic–inorganic hybrid material might be useful to improve the bioavailability of FB. PMID:24204143

  6. Preparation and pharmacokinetics in beagle dogs of ganershu sustained-release pellets

    PubMed Central

    Pan, Jin-huo; Wang, Jian-chun; Jiang, Zhi-tao; Zhang, Ting; Ge, Shao-bo; Zhang, Ye-xia; Jin, Xin; Yan, Guo-jun

    2014-01-01

    Background: The active ingredients of Ganershu compound recipe, which are effective for hepatitis treatment in liver protection and transaminase reduction. However, the active ingredients of Ganershu compound recipe are poor absorption, which conduct it has a low oral bioavailability. Objective: We prepared Ganershu sustained-release pellets (GSPs) by fluidized-bed on central composite design-response surface methodology and increase its bioavailability in beagle dogs. Materials and Methods: In this study, GSPs were successfully prepared. The Drug-loaded pellets and sustained-release coated were carried out in fluidized-bed machine. GSP was optimized for fitting release, roundness, and the overall desirability by central composite design-response surface methodology. Results: To optimize cumulative release profile, the outermost ethyl cellulose coating layer and the hydroxypropyl methyl cellulose (HPMC) swelling layer were employed, which were respectively given coating levels in terms of weight gain of 22% and 6%, the concentration of HPMC is 4.5% (g/ml). The pharmacokinetics of Ganershu normal pellets (GNPs) and GSP was studied in beagle dogs after oral administration. The naringenin as an index, the area under the curve0-∞ of naringenin in GSP was 1.38 times greater than that of GNP. Meanwhile, Tmax of GSP was prolonged for about 74%. Conclusion: This study can clearly indicate that we enhanced the oral bioavailability of Ganershu by preparing the GSP, which had the sustained dissolution and improved the potential of it for clinical application. PMID:25210307

  7. Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability

    PubMed Central

    Yin, Juntao; Xiang, Cuiyu; Wang, Peiqing; Yin, Yuyun; Hou, Yantao

    2017-01-01

    Baicalein (BCL) possesses high pharmacological activities but low solubility and stability in the intestinal tract. This study aimed to probe the potential of nanoemulsions (NEs) consisting of hemp oil and less surfactants in ameliorating the oral bioavailability of BCL. BCL-loaded NEs (BCL-NEs) were prepared by high-pressure homogenization technique to reduce the amount of surfactants. BCL-NEs were characterized by particle size, entrapment efficiency (EE), in vitro drug release, and morphology. Bioavailability was studied in Sprague-Dawley rats following oral administration of BCL suspensions, BCL conventional emulsions, and BCL-NEs. The obtained NEs were ~90 nm in particle size with an EE of 99.31%. BCL-NEs significantly enhanced the oral bioavailability of BCL, up to 524.7% and 242.1% relative to the suspensions and conventional emulsions, respectively. BCL-NEs exhibited excellent intestinal permeability and transcellular transport ability. The cytotoxicity of BCL-NEs was documented to be low and acceptable for oral purpose. Our findings suggest that such novel NEs and preparative process provide a promising alternative to current formulation technologies and suitable for oral delivery of drugs with bioavailability issues. PMID:28435268

  8. Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability.

    PubMed

    Yin, Juntao; Xiang, Cuiyu; Wang, Peiqing; Yin, Yuyun; Hou, Yantao

    2017-01-01

    Baicalein (BCL) possesses high pharmacological activities but low solubility and stability in the intestinal tract. This study aimed to probe the potential of nanoemulsions (NEs) consisting of hemp oil and less surfactants in ameliorating the oral bioavailability of BCL. BCL-loaded NEs (BCL-NEs) were prepared by high-pressure homogenization technique to reduce the amount of surfactants. BCL-NEs were characterized by particle size, entrapment efficiency (EE), in vitro drug release, and morphology. Bioavailability was studied in Sprague-Dawley rats following oral administration of BCL suspensions, BCL conventional emulsions, and BCL-NEs. The obtained NEs were ~90 nm in particle size with an EE of 99.31%. BCL-NEs significantly enhanced the oral bioavailability of BCL, up to 524.7% and 242.1% relative to the suspensions and conventional emulsions, respectively. BCL-NEs exhibited excellent intestinal permeability and transcellular transport ability. The cytotoxicity of BCL-NEs was documented to be low and acceptable for oral purpose. Our findings suggest that such novel NEs and preparative process provide a promising alternative to current formulation technologies and suitable for oral delivery of drugs with bioavailability issues.

  9. Azathioprine pharmacokinetics after intravenous, oral, delayed release oral and rectal foam administration.

    PubMed Central

    Van Os, E C; Zins, B J; Sandborn, W J; Mays, D C; Tremaine, W J; Mahoney, D W; Zinsmeister, A R; Lipsky, J J

    1996-01-01

    BACKGROUND: 6-Mercaptopurine and its prodrug azathioprine are effective medications for refractory inflammatory bowel disease. However, use of these drugs has been limited by concerns about their toxicity. Colonic delivery of azathioprine may reduce its systemic bioavailability and limit toxicity. AIM: To determine the bioavailability of 6-mercaptopurine after administration of azathioprine via three colonic delivery formulations. METHODS: Twenty four healthy human subjects each received 50 mg of azathioprine by one of four delivery formulations (each n = 6): oral; delayed release oral; hydrophobic rectal foam; and hydrophilic rectal foam. All subjects also received a 50 mg dose of intravenous azathioprine during a separate study period. Plasma concentrations of 6-mercaptopurine were determined by high pressure liquid chromatography. RESULTS: The bioavailabilities of 6-mercaptopurine after colonic azathioprine administration via delayed release oral, hydrophobic rectal foam, and hydrophilic rectal foam (7%, 5%, 1%; respectively) were significantly lower than the bioavailability of 6-mercaptopurine after oral azathioprine administration (47%) by Wilcoxon rank sum pairwise comparison. CONCLUSIONS: Azathioprine delivered to the colon by delayed release oral and rectal foam formulations considerably reduced systemic 6-mercaptopurine bioavailability. The therapeutic potential of these colonic delivery methods, which can potentially limit toxicity by local delivery of high doses of azathioprine, should be investigated in patients with inflammatory bowel disease. PMID:8881811

  10. Predicting biopharmaceutical performance of oral drug candidates - Extending the volume to dissolve applied dose concept.

    PubMed

    Muenster, Uwe; Mueck, Wolfgang; van der Mey, Dorina; Schlemmer, Karl-Heinz; Greschat-Schade, Susanne; Haerter, Michael; Pelzetter, Christian; Pruemper, Christian; Verlage, Joerg; Göller, Andreas H; Ohm, Andreas

    2016-05-01

    The purpose of the study was to experimentally deduce pH-dependent critical volumes to dissolve applied dose (VDAD) that determine whether a drug candidate can be developed as immediate release (IR) tablet containing crystalline API, or if solubilization technology is needed to allow for sufficient oral bioavailability. pH-dependent VDADs of 22 and 83 compounds were plotted vs. the relative oral bioavailability (AUC solid vs. AUC solution formulation, Frel) in humans and rats, respectively. Furthermore, in order to investigate to what extent Frel rat may predict issues with solubility limited absorption in human, Frel rat was plotted vs. Frel human. Additionally, the impact of bile salts and lecithin on in vitro dissolution of poorly soluble compounds was tested and data compared to Frel rat and human. Respective in vitro - in vivo and in vivo - in vivo correlations were generated and used to build developability criteria. As a result, based on pH-dependent VDAD, Frel rat and in vitro dissolution in simulated intestinal fluid the IR formulation strategy within Pharmaceutical Research and Development organizations can be already set at late stage of drug discovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Rice Protein Matrix Enhances Circulating Levels of Xanthohumol Following Acute Oral Intake of Spent Hops in Humans.

    PubMed

    O'Connor, Annalouise; Konda, Veera; Reed, Ralph L; Christensen, J Mark; Stevens, Jan F; Contractor, Nikhat

    2018-03-01

    Xanthohumol (XN), a prenylated flavonoid found in hops, exhibits anti-inflammatory and antioxidant properties. However, poor bioavailability may limit therapeutic applications. As food components are known to modulate polyphenol absorption, the objective is to determine whether a protein matrix could enhance the bioavailability of XN post oral consumption in humans. This is a randomized, double-blind, crossover study in healthy participants (n = 6) evaluating XN and its major metabolites (isoxanthohumol [IX], 6- and 8-prenylnaringenin [6-PN, 8-PN]) for 6 h following consumption of 12.4 mg of XN delivered via a spent hops-rice protein matrix preparation or a control spent hops preparation. Plasma XN and metabolites are measured by LC-MS/MS. C max , T max , and area-under-the-curve (AUC) values were determined. Circulating XN and metabolite response to each treatment was not bioequivalent. Plasma concentrations of XN and XN + metabolites (AUC) are greater with consumption of the spent hops-rice protein matrix preparation. Compared to a standard spent hops powder, a protein-rich spent hops matrix demonstrates enhanced plasma levels of XN and metabolites following acute oral intake. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Crystal Engineering of Green Tea Epigallocatechin-3-gallate (EGCg) Cocrystals and Pharmacokinetic Modulation in Rats

    PubMed Central

    2013-01-01

    The most abundant polyphenol in green tea, epigallocatechin-3-gallate (EGCg), has recently received considerable attention due to the discovery of numerous health-promoting bioactivities. Despite reports of its poor oral bioavailability, EGCg has been included in many dietary supplement formulations. Conventional preformulation methods have been employed to improve the bioavailability of EGCg. However, these methods have limitations that hinder the development of EGCg as an effective therapeutic agent. In this study, we have utilized the basic concepts of crystal engineering and several crystallization techniques to screen for various solid crystalline forms of EGCg and evaluated the efficacy of crystal engineering for modulating the pharmacokinetics of EGCg. We synthesized and characterized seven previously undescribed crystal forms of EGCg including the pure crystal structure of EGCg. The aqueous solubility profiles of four new EGCg cocrystals were determined. These cocrystals were subsequently dosed at 100 mg EGCg per kg body weight in rats, and the plasma levels were monitored over the course of eight hours following the single oral dose. Two of the EGCg cocrystals were found to exhibit modest improvements in relative bioavailability. Further, cocrystallization resulted in marked effects on pharmacokinetic parameters including Cmax, Tmax, area under curve, relative bioavailability, and apparent terminal half-life. Our findings suggest that modulation of the pharmacokinetic profile of EGCg is possible using cocrystallization and that it offers certain opportunities that could be useful during its development as a therapeutic agent. PMID:23730870

  13. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process

    PubMed Central

    Kim, Min-Soo; Kim, Jeong-Soo; Park, Hee Jun; Cho, Won Kyung; Cha, Kwang-Ho; Hwang, Sung-Joo

    2011-01-01

    Background The aim of this study was to improve the physicochemical properties and bioavailability of poorly water-soluble sirolimus via preparation of a solid dispersion of nanoparticles using a supercritical antisolvent (SAS) process. Methods First, excipients for enhancing the stability and solubility of sirolimus were screened. Second, using the SAS process, solid dispersions of sirolimus-polyvinylpyrrolidone (PVP) K30 nanoparticles were prepared with or without surfactants such as sodium lauryl sulfate (SLS), tocopheryl propylene glycol succinate, Sucroester 15, Gelucire 50/13, and Myrj 52. A mean particle size of approximately 250 nm was obtained for PVP K30-sirolimus nanoparticles. Solid state characterization, kinetic solubility, powder dissolution, stability, and pharmacokinetics were analyzed in rats. Results X-ray diffraction, differential scanning calorimetry, and high-pressure liquid chromatography indicated that sirolimus existed in an anhydrous amorphous form within a solid dispersion of nanoparticles and that no degradation occurred after SAS processing. The improved supersaturation and dissolution of sirolimus as a solid dispersion of nanoparticles appeared to be well correlated with enhanced bioavailability of oral sirolimus in rats. With oral administration of a solid dispersion of PVP K30-SLS-sirolimus nanoparticles, the peak concentration and AUC0→12h of sirolimus were increased by approximately 18.3-fold and 15.2-fold, respectively. Conclusion The results of this study suggest that preparation of PVP K30-sirolimus-surfactant nanoparticles using the SAS process may be a promising approach for improving the bioavailability of sirolimus. PMID:22162657

  14. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge.

    PubMed

    Arzani, Gelareh; Haeri, Azadeh; Daeihamed, Marjan; Bakhtiari-Kaboutaraki, Hamid; Dadashzadeh, Simin

    2015-01-01

    Carvedilol (CRV) is an antihypertensive drug with both alpha and beta receptor blocking activity used to preclude angina and cardiac arrhythmias. To overcome the low, variable oral bioavailability of CRV, niosomal formulations were prepared and characterized: plain niosomes (without bile salts), bile salt-enriched niosomes (bilosomes containing various percentages of sodium cholate or sodium taurocholate), and charged niosomes (negative, containing dicetyl phosphate and positive, containing hexadecyl trimethyl ammonium bromide). All formulations were characterized in terms of encapsulation efficiency, size, zeta potential, release profile, stability, and morphology. Various formulations were administered orally to ten groups of Wistar rats (n=6 per group). The plasma levels of CRV were measured by a validated high-performance liquid chromatography (HPLC) method and pharmacokinetic properties of different formulations were characterized. Contribution of lymphatic transport to the oral bioavailability of niosomes was also investigated using a chylomicron flow-blocking approach. Of the bile salt-enriched vesicles examined, bilosomes containing 20% sodium cholate (F2) and 30% sodium taurocholate (F5) appeared to give the greatest enhancement of intestinal absorption. The relative bioavailability of F2 and F5 formulations to the suspension was estimated to be 1.84 and 1.64, respectively. With regard to charged niosomes, the peak plasma concentrations (Cmax) of CRV for positively (F7) and negatively charged formulations (F10) were approximately 2.3- and 1.7-fold higher than after a suspension. Bioavailability studies also revealed a significant increase in extent of drug absorption from charged vesicles. Tissue histology revealed no signs of inflammation or damage. The study proved that the type and concentration of bile salts as well as carrier surface charge had great influences on oral bioavailability of niosomes. Blocking the lymphatic absorption pathway significantly reduced oral bioavailability of CRV niosomes. Overall twofold enhancement in bioavailability in comparison with drug suspension confers the potential of niosomes as suitable carriers for improved oral delivery of CRV.

  15. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform.

    PubMed

    Choudhury, Hira; Gorain, Bapi; Karmakar, Sanmoy; Biswas, Easha; Dey, Goutam; Barik, Rajib; Mandal, Mahitosh; Pal, Tapan Kumar

    2014-01-02

    Paclitaxel, a potential anticancer agent against solid tumors has been restricted from its oral use due to poor water solubility as well as Pgp efflux property. The present study was aimed to improve the oral bioavailability of paclitaxel through development of (o/w) nanoemulsion consisting of Capryol 90 as internal phase with Tween 20 as emulsifier with water as an external phase. Formulations were selected from the nanoemulsion region of pseudo-ternary phase diagrams, formulated by aqueous titration method. The developed nanoemulsion has been characterized by its thermodynamic stability, morphology, droplet size, zeta potential, viscosity where in vitro release was evaluated through dialysis. Paclitaxel nanoemulsion exhibited thermodynamical stability with low viscosity, nano-sized oil droplets in water with low poly-dispersity index. The shelf life of the paclitaxel nanoemulsion was found to be approximately 2.38 years. Increased permeability through the Caco-2 cell monolayer and decreased efflux is great advantageous for nanoemulsion formulation. The effects of paclitaxel nanoemulsion on breast cancer cell proliferation, morphology and DNA fragmentation were analyzed in vitro which showed significant anti-proliferation and decreased IC50 values in nanoemulsion group which may be due to enhanced uptake of paclitaxel through the oil core. Moreover, the absolute oral bioavailability and sustained release profile of the paclitaxel nanoemulsion evaluated in mouse model was found to improve up to 55.9%. The concentration of paclitaxel in mice plasma was determined by our validated LC-MS/MS method. By reviewing the significant outcome of the present investigation based on stability study, Caco-2 permeability, cell proliferative assay and pharmacokinetic profile it may be concluded that the oral nanoemulsion has got encouraging advantages over the presently available formulations of this injectable chemotherapeutic drug. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Improving maraviroc oral bioavailability by formation of solid drug nanoparticles.

    PubMed

    Savage, Alison C; Tatham, Lee M; Siccardi, Marco; Scott, Trevor; Vourvahis, Manoli; Clark, Andrew; Rannard, Steve P; Owen, Andrew

    2018-05-17

    Oral drug administration remains the preferred approach for treatment of HIV in most patients. Maraviroc (MVC) is the first in class co-receptor antagonist, which blocks HIV entry into host cells. MVC has an oral bioavailability of approximately 33%, which is limited by poor permeability as well as affinity for CYP3A and several drug transporters. While once-daily doses are now the favoured option for HIV therapy, dose-limiting postural hypotension has been of theoretical concern when administering doses high enough to achieve this for MVC (particularly during coadministration of enzyme inhibitors). To overcome low bioavailability and modify the pharmacokinetic profile, a series of 70 wt% MVC solid drug nanoparticle (SDN) formulations (containing 30 wt% of various polymer/surfactant excipients) were generated using emulsion templated freeze-drying. The lead formulation contained PVA and AOT excipients ( MVC SDN PVA/AOT ), and was demonstrated to be fully water-dispersible to release drug nanoparticles with z-average diameter of 728 nm and polydispersity index of 0.3. In vitro and in vivo studies of MVC SDN PVA/AOT showed increased apparent permeability of MVC, compared to a conventional MVC preparation, with in vivo studies in rats showing a 2.5-fold increase in AUC (145.33 vs. 58.71 ng h ml -1 ). MVC tissue distribution was similar or slightly increased in tissues examined compared to the conventional MVC preparation, with the exception of the liver, spleen and kidneys, which showed statistically significant increases in MVC for MVC SDN PVA/AOT . These data support a novel oral format with the potential for dose reduction while maintaining therapeutic MVC exposure and potentially enabling a once-daily fixed dose combination product. Copyright © 2018. Published by Elsevier B.V.

  17. Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity

    PubMed Central

    Faidah, Hani S; Khurram, Muhammad; Amin, Muhammad Usman; Haseeb, Abdul; Kakar, Maria

    2018-01-01

    Background Berberine is an isoquinoline alkaloid widely used in Ayurveda and traditional Chinese medicine to treat illnesses such as hypertension and inflammatory conditions, and as an anticancer and hepato-protective agent. Berberine has low oral bioavailability due to poor aqueous solubility and insufficient dissolution rate, which can reduce the efficacy of drugs taken orally. In this study, evaporative precipitation of nanosuspension (EPN) and anti-solvent precipitation with a syringe pump (APSP) were used to address the problems of solubility, dissolution rate and bioavailability of berberine. Methods Semi-crystalline nanoparticles (NPs) of 90–110 nm diameter for APSP and 65–75 nm diameter for EPN were prepared and then characterized using differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). Thereafter, drug content solubility and dissolution studies were undertaken. Berberine and its NPs were evaluated for their antibacterial activity. Results The results indicate that the NPs have significantly increased solubility and dissolution rate due to conversion of the crystalline structure to a semi-crystalline form. Conclusion Berberine NPs produced by both APSP and EPN methods have shown promising activities against Gram-positive and Gram-negative bacteria, and yeasts, with NPs prepared through the EPN method showing superior results compared to those made with the APSP method and the unprocessed drug. PMID:29491706

  18. Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic

    PubMed Central

    Bird, Gregory H.; Madani, Navid; Perry, Alisa F.; Princiotto, Amy M.; Supko, Jeffrey G.; He, Xiaoying; Gavathiotis, Evripidis; Sodroski, Joseph G.; Walensky, Loren D.

    2010-01-01

    The pharmacologic utility of lengthy peptides can be hindered by loss of bioactive structure and rapid proteolysis, which limits bioavailability. For example, enfuvirtide (Fuzeon, T20, DP178), a 36-amino acid peptide that inhibits human immunodeficiency virus type 1 (HIV-1) infection by effectively targeting the viral fusion apparatus, has been relegated to a salvage treatment option mostly due to poor in vivo stability and lack of oral bioavailability. To overcome the proteolytic shortcomings of long peptides as therapeutics, we examined the biophysical, biological, and pharmacologic impact of inserting all-hydrocarbon staples into an HIV-1 fusion inhibitor. We find that peptide double-stapling confers striking protease resistance that translates into markedly improved pharmacokinetic properties, including oral absorption. We determined that the hydrocarbon staples create a proteolytic shield by combining reinforcement of overall α-helical structure, which slows the kinetics of proteolysis, with complete blockade of peptide cleavage at constrained sites in the immediate vicinity of the staple. Importantly, double-stapling also optimizes the antiviral activity of HIV-1 fusion peptides and the antiproteolytic feature extends to other therapeutic peptide templates, such as the diabetes drug exenatide (Byetta). Thus, hydrocarbon double-stapling may unlock the therapeutic potential of natural bioactive polypeptides by transforming them into structurally fortified agents with enhanced bioavailability. PMID:20660316

  19. Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity.

    PubMed

    Sahibzada, Muhammad Umar Khayam; Sadiq, Abdul; Faidah, Hani S; Khurram, Muhammad; Amin, Muhammad Usman; Haseeb, Abdul; Kakar, Maria

    2018-01-01

    Berberine is an isoquinoline alkaloid widely used in Ayurveda and traditional Chinese medicine to treat illnesses such as hypertension and inflammatory conditions, and as an anticancer and hepato-protective agent. Berberine has low oral bioavailability due to poor aqueous solubility and insufficient dissolution rate, which can reduce the efficacy of drugs taken orally. In this study, evaporative precipitation of nanosuspension (EPN) and anti-solvent precipitation with a syringe pump (APSP) were used to address the problems of solubility, dissolution rate and bioavailability of berberine. Semi-crystalline nanoparticles (NPs) of 90-110 nm diameter for APSP and 65-75 nm diameter for EPN were prepared and then characterized using differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). Thereafter, drug content solubility and dissolution studies were undertaken. Berberine and its NPs were evaluated for their antibacterial activity. The results indicate that the NPs have significantly increased solubility and dissolution rate due to conversion of the crystalline structure to a semi-crystalline form. Berberine NPs produced by both APSP and EPN methods have shown promising activities against Gram-positive and Gram-negative bacteria, and yeasts, with NPs prepared through the EPN method showing superior results compared to those made with the APSP method and the unprocessed drug.

  20. Development and in-vivo assessment of the bioavailability of oridonin solid dispersions by the gas anti-solvent technique.

    PubMed

    Li, Songming; Liu, Ying; Liu, Tao; Zhao, Ling; Zhao, Jihui; Feng, Nianping

    2011-06-15

    We developed solid dispersions, using the gas anti-solvent technique (GAS), to improve the oral bioavailability of the poorly water-soluble active component oridonin. The solubility of oridonin in supercritical carbon dioxide was measured under various pressures and temperatures. To prepare oridonin solid dispersions using the GAS technique, ethanol was used as the solvent, CO(2) was used as the anti-solvent and the hydrophilic polymer polyvinylpyrrolidone K17 (PVP K17) was used as the drug carrier matrix. Characterization of the obtained preparations was undertaken using scanning electron microscopy (SEM), X-ray diffraction (XRD) analyses and a drug release study. Oridonin solid dispersions were formed and oridonin was present in an amorphous form in these dispersions. Oridonin solid dispersions significantly increased the drug dissolution rate compared with that of oridonin powder, primarily through drug amorphization. Compared with the physical mixture of oridonin and PVP K17, oridonin solid dispersions gave higher values of AUC and C(max), and the absorption of oridonin from solid dispersions resulted in 26.4-fold improvement in bioavailability. The present study illustrated the feasibility of applying the GAS technique to prepare oridonin solid dispersions, and of using them for the delivery of oridonin via the oral route. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Modulatory effects of silibinin in various cell signaling pathways against liver disorders and cancer - A comprehensive review.

    PubMed

    Polachi, Navaneethakrishnan; Bai, Guirong; Li, Tingyang; Chu, Yang; Wang, Xiangyang; Li, Shuming; Gu, Ning; Wu, Jiang; Li, Wei; Zhang, Yanjun; Zhou, Shuiping; Sun, He; Liu, Changxiao

    2016-11-10

    Silibinin, a natural flavanone, derived from the milk thistle plant (Silybum marianum), was illustrated for several medicinal uses such as liver-protective, anti-oxidant, anti-cancer, anti-inflammation and many other. However, silibinin has poor absorbance and bioavailability due to low water solubility, thereby limiting its clinical applications and therapeutic efficiency. To overcome this problem, the combination of silibinin with phosphatidylcholine (PC) as a formulation was used to enhance the solubility and bioavailability. The results indicated that silibinin-PC taken orally markedly enhanced bioavailability and therapeutic efficiency. In addition, a deeper understanding of the signaling pathways modulated by silibinin is important to realize its potential in developing targeted therapies against liver disorders and cancer. Silibinin has been shown to inhibit many cell signaling pathways in preclinical models, demonstrating promising effects against liver disorders and cancer through in vitro and in vivo studies. This review summarizes the pharmacokinetic properties, bioavailability, safety data, clinical activities and modulatory effects of silibinin in different cell signaling pathways against liver disorders and cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Pharmaceutical cocrystals: a novel approach for oral bioavailability enhancement of drugs.

    PubMed

    Chadha, Renu; Saini, Anupam; Arora, Poonam; Bhandari, Swati

    2012-01-01

    Solid dosage forms are by far the preferred drug delivery systems. However, these often face the problem of poor and erratic bioavailability during the drug development process. Numerous formulation strategies for drug delivery are currently under development, among which the solid forms such as polymorphs, solvates, salts, and cocrystals have been considered to be the most important for improving dissolution rate and bioavailability. Cocrystallization is a fairly new approach in pharmaceutical industry that can improve the solubility and, consequently, the bioactivity of the active pharmaceutical ingredient (API) without compromising its structural integrity. Pharmaceutical cocrystals have found their place in drug delivery, primarily due to their ability to produce alternative, viable solid forms when a more standard approach of salt and polymorph formation fails to deliver the desired objectives. Over the past few years, a number of papers have been published focusing on a broad range of subjects, from traditional crystal engineering to structure-property relationships of cocrystals. The present review, however, illustrates how the cocrystalline forms of APIs have improved their in vitro dissolution rate and in vivo bioavailability, often correlating well with their improved solubility as well.

  3. Development of surface stabilized candesartan cilexetil nanocrystals with enhanced dissolution rate, permeation rate across CaCo-2, and oral bioavailability.

    PubMed

    Jain, Sanyog; Reddy, Venkata Appa; Arora, Sumit; Patel, Kamlesh

    2016-10-01

    Candesartan cilexetil (CC), an ester prodrug of candesartan, is BCS class II drug with extremely low aqueous solubility limiting its oral bioavailability. The present research aimed to develop a nanocrystalline formulation of CC with improved saturation solubility in gastrointestinal fluids and thereby, exhibiting enhanced oral bioavailability. CC nanocrystals were prepared using a low energy antisolvent precipitation methodology. A combination of hydroxypropyl methylcellulose (HPMC) and Pluronic® F 127 (50:50 w/w) was found to be optimum for the preparation of CC nanocrystals. The particle size, polydispersity index (PDI), and zeta potential of optimized formulation was found to be 159 ± 8.1 nm, 0.177 ± 0.043, and -23.7 ± 1.02 mV, respectively. Optimized formulation was found to possess irregular, plate-like morphology as evaluated by scanning electron microscopy and crystalline as evaluated by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). A significant increase in saturation solubility and dissolution rate of the optimized nanosuspension was observed at all the tested pH conditions. Optimized CC nanocrystals exhibited a storage stability of more than 3 months when stored under cold and room temperature conditions. In vitro Caco-2 permeability further revealed that CC nanocrystals exhibited nearly 4-fold increase in permeation rate compared to the free CC. In vivo oral bioavailability studies of optimized CC nanocrystals in murine model revealed 3.8-fold increase in the oral bioavailability and twice the C max as compared with the free CC when administered orally. In conclusion, this study has established a crystalline nanosuspension formulation of CC with improved oral bioavailability in murine model. Graphical Abstract Antisolvent precipitation methodology for the preparation of Candesartan Cilexetil nanocrystals for enhanced solubility and oral bioavailability.

  4. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts.

    PubMed

    Kidd, Parris M

    2009-09-01

    Plant-derived polyphenols are increasingly receiving attention as dietary supplements for the homeostatic management of inflammation, to support detoxication, and for anticancer, weight loss, and other benefits. Their pro-homeostatic effects on genes, transcription factors, enzymes, and cell signaling pathways are being intensively explored, but the poor bioavailability of some polyphenols likely contributes to poor clinical trial outcomes. This review covers four polyphenol preparations with poor bioavailability and their complexation into phytosomes to bypass this problem. Silybin and the other silymarin flavonolignans from milk thistle conserve tissue glutathione, are liver-protective, and have anticancer potential. Curcumin and its related diphenolic curcuminoids have potent antioxidant, anti-inflammatory, and anti-carcinogenic properties. The green tea flavan-3-ol catechins have antioxidant, anti-inflammatory, cardio- and neuro-protective effects, and anti-carcinogenic benefits, with fat oxidation effects coupled to weight loss. The complex grape seed proanthocyanidin mix (including catechin and epicatechin monomers and oligomers) counters oxidative stress and protects the circulatory system. For each of these preparations, conversion into phytosomes has improved efficacy without compromising safety. The phytosome technology creates intermolecular bonding between individual polyphenol molecules and one or more molecules of the phospholipid, phosphatidylcholine (PC). Molecular imaging suggests that PC molecule(s) enwrap each polyphenol; upon oral intake the amphipathic PC molecules likely usher the polyphenol through the intestinal epithelial cell outer membrane, subsequently accessing the bloodstream. PC itself has proven clinical efficacy that contributes to phytosome in vivo actions. As a molecular delivery vehicle, phytosome technology substantially improves the clinical applicabilities of polyphenols and other poorly absorbed plant medicinals.

  5. The oral bioavailability and toxicokinetics of methylmercury in common loon (Gavia immer) chicks

    USGS Publications Warehouse

    Fournier, F.; Karasov, W.H.; Kenow, K.P.; Meyer, M.W.; Hines, R.K.

    2002-01-01

    We compared the toxicokinetics of methylmercury in captive common loon chicks during two time intervals to assess the impact of feather growth on the kinetics of mercury. We also determined the oral bioavailability of methylmercury during these trials to test for age-related changes. The blood concentration-time curves for individuals dosed during feather development (initiated 35 days post hatch) were best described by a one-compartment toxicokinetic model with an elimination half-life of 3 days. The data for birds dosed following completion of feather growth (84 days post hatch) were best fitted by a two-compartment elimination model that includes an initial rapid distribution phase with a half-life of 0.9 days, followed by a slow elimination phase with a half-life of 116 days. We determined the oral bioavailability of methylmercury during the first dosing interval by comparing the ratios of the area under the blood concentration-time curves (AUC0→∞) for orally and intravenously dosed chicks. The oral bioavailability of methylmercury during the first dosing period was 0.83. We also determined bioavailability during both dosing periods using a second measure because of irregularities with intravenous results in the second period. This second bioavailability measure estimated the percentage of the dose that was deposited in the blood volume (f), and the results show that there was no difference in bioavailability among dosing periods. The results of this study highlight the importance of feather growth on the toxicokinetics of methylmercury.

  6. Piperine-pro-nanolipospheres as a novel oral delivery system of cannabinoids: Pharmacokinetic evaluation in healthy volunteers in comparison to buccal spray administration.

    PubMed

    Cherniakov, Irina; Izgelov, Dvora; Barasch, Dinorah; Davidson, Elyad; Domb, Abraham J; Hoffman, Amnon

    2017-11-28

    Nowadays, therapeutic indications for cannabinoids, specifically Δ 9 -tetrahydrocannabinol (THC) and Cannabidiol (CBD) are widening. However, the oral consumption of the molecules is very limited due to their highly lipophilic nature that leads to poor solubility at the aqueous environment. Additionally, THC and CBD are prone to extensive first pass mechanisms. These absorption obstacles render the molecules with low and variable oral bioavailability. To overcome these limitations we designed and developed the advanced pro-nanolipospheres (PNL) formulation. The PNL delivery system is comprised of a medium chain triglyceride, surfactants, a co-solvent and the unique addition of a natural absorption enhancer: piperine. Piperine was selected due to its distinctive inhibitory properties affecting both Phase I and Phase II metabolism. This constellation self emulsifies into nano particles that entrap the cannabinoids and the piperine in their core and thus improve their solubility while piperine and the other PNL excipients inhibit their intestinal metabolism. Another clear advantage of the formulation is that its composition of materials is approved for human consumption. The safe nature of the excipients enabled their direct evaluation in humans. In order to evaluate the pharmacokinetic profile of the THC-CBD-piperine-PNL formulation, a two-way crossover, single administration clinical study was conducted. The trial comprised of 9 healthy volunteers under fasted conditions. Each subject received a THC-CBD (10.8mg, 10mg respectively) piperine (20mg)-PNL filled capsule and an equivalent dose of the oromucosal spray Sativex® with a washout period in between treatments. Single oral administration of the piperine-PNL formulation resulted in a 3-fold increase in Cmax and a 1.5-fold increase in AUC for THC when compared to Sativex®. For CBD, a 4-fold increase in Cmax and a 2.2-fold increase in AUC was observed. These findings demonstrate the potential this formulation has in serving as a standardized oral cannabinoid formulation. Moreover, the concept of improving oral bioavailability described here, can pave the way for other potential lipophilic active compounds requiring enhancement of their oral bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Animal versus human oral drug bioavailability: Do they correlate?

    PubMed Central

    Musther, Helen; Olivares-Morales, Andrés; Hatley, Oliver J.D.; Liu, Bo; Rostami Hodjegan, Amin

    2014-01-01

    Oral bioavailability is a key consideration in development of drug products, and the use of preclinical species in predicting bioavailability in human has long been debated. In order to clarify whether any correlation between human and animal bioavailability exist, an extensive analysis of the published literature data was conducted. Due to the complex nature of bioavailability calculations inclusion criteria were applied to ensure integrity of the data. A database of 184 compounds was assembled. Linear regression for the reported compounds indicated no strong or predictive correlations to human data for all species, individually and combined. The lack of correlation in this extended dataset highlights that animal bioavailability is not quantitatively predictive of bioavailability in human. Although qualitative (high/low bioavailability) indications might be possible, models taking into account species-specific factors that may affect bioavailability are recommended for developing quantitative prediction. PMID:23988844

  8. The effects of inhibiting cytochrome P450 3A, p-glycoprotein, and gastric acid secretion on the oral bioavailability of methadone in dogs.

    PubMed

    Kukanich, B; Lascelles, B D X; Aman, A M; Mealey, K L; Papich, M G

    2005-10-01

    Methadone is an opioid, which has a high oral bioavailability (>70%) and a long elimination half-life (>20 h) in human beings. The purpose of this study was to evaluate the effects of ketoconazole [a CYP3A and p-glycoprotein (p-gp) inhibitor] and omeprazole (an H+,K(+)-ATPase proton-pump inhibitor) on oral methadone bioavailability in dogs. Six healthy dogs were used in a crossover design. Methadone was administered i.v. (1 mg/kg), orally (2 mg/kg), again orally following oral ketoconazole (10 mg/kg q12 h for two doses), and following omeprazole (1 mg/kg p.o. q12 h for five doses). Plasma concentrations of methadone were analyzed by high-pressure liquid chromatography or fluorescence polarization immunoassay. The mean +/- SD for the elimination half-life, volume of distribution, and clearance were 1.75 +/- 0.25 h, 3.46 +/- 1.09 L/kg, and 25.14 +/- 9.79 mL/min.kg, respectively following i.v. administration. Methadone was not detected in any sample following oral administration alone or following oral administration with omeprazole. Following administration with ketoconazole, detectable concentrations of methadone were present in one dog with a 29% bioavailability. MDR-1 genotyping, encoding p-gp, was normal in all dogs. In contrast to its pharmacokinetics humans, methadone has a short elimination half-life, rapid clearance, and low oral bioavailability in dogs and the extent of absorption is not affected by inhibition of CYP3A, p-gp, and gastric acid secretion.

  9. [Effect of Radix euphorbiae pekinensis extract on bioavailability of paclitaxel after their oral co-administration].

    PubMed

    Li, Minghua; Peng, Li; Yang, Fuheng; Liu, Sijia; Wang, Shengqi

    2015-06-01

    To evaluate the effect of Radix euphorbiae pekinensis extract on the permeability and bioavailability of paclitaxel co-administered orally. Based on Ussing Chamber and in vivo experiment, the permeability and bioavailability of paclitaxel were evaluated after oral co-administration with radix euphorbiae pekinensis in rats. The contents of paclitaxel in the permeates and the blood samples were determined using HPLC and LC-MS/MS method, respectively. In Radix euphorbiae pekinensis co-administration group, the Papp of the mucosal-to-serosal (M-S) transport or serosal-to-mucosal transport (S-M) of paclitaxel in the jejunum or ileum segment differed significantly from those in verapamil co-administration group and blank control group (P<0.05), but the Papp of S-M transport in the colon showed no significant difference from that in the blank control group. In the blank group, the average absolute bioavailability (AB%) of orally administered paclitaxel was only 2.81%, compared to that of 7.63% in radix euphorbiae pekinensis group. The average AB% in verapamil group was about 1.5 times that of the blank group. Co-administration of Radix euphorbiae pekinensis extract can increase the bioavailability of orally administered paclitaxel.

  10. Chronic Exposure to Deoxynivalenol Has No Influence on the Oral Bioavailability of Fumonisin B1 in Broiler Chickens

    PubMed Central

    Antonissen, Gunther; Devreese, Mathias; Van Immerseel, Filip; De Baere, Siegrid; Hessenberger, Sabine; Martel, An; Croubels, Siska

    2015-01-01

    Both deoxynivalenol (DON) and fumonisin B1 (FB1) are common contaminants of feed. Fumonisins (FBs) in general have a very limited oral bioavailability in healthy animals. Previous studies have demonstrated that chronic exposure to DON impairs the intestinal barrier function and integrity, by affecting the intestinal surface area and function of the tight junctions. This might influence the oral bioavailability of FB1, and possibly lead to altered toxicity of this mycotoxin. A toxicokinetic study was performed with two groups of 6 broiler chickens, which were all administered an oral bolus of 2.5 mg FBs/kg BW after three-week exposure to either uncontaminated feed (group 1) or feed contaminated with 3.12 mg DON/kg feed (group 2). No significant differences in toxicokinetic parameters of FB1 could be demonstrated between the groups. Also, no increased or decreased body exposure to FB1 was observed, since the relative oral bioavailability of FB1 after chronic DON exposure was 92.2%. PMID:25690690

  11. Ultra rapidly dissolving repaglinide nanosized crystals prepared via bottom-up and top-down approach: influence of food on pharmacokinetics behavior.

    PubMed

    Gadadare, Rahul; Mandpe, Leenata; Pokharkar, Varsha

    2015-08-01

    The present work was undertaken with the objectives of improving the dissolution velocity, related oral bioavailability, and minimizing the fasted/fed state variability of repaglinide, a poorly water-soluble anti-diabetic active by exploring the principles of nanotechnology. Nanocrystal formulations were prepared by both top-down and bottom-up approaches. These approaches were compared in light of their ability to provide the formulation stability in terms of particle size. Soluplus® was used as a stabilizer and Kolliphor™ E-TPGS was used as an oral absorption enhancer. In vitro dissolution profiles were investigated in distilled water, fasted and fed state simulated gastric fluid, and compared with the pure repaglinide. In vivo pharmacokinetics was performed in both the fasted and fed state using Wistar rats. Oral hypoglycemic activity was also assessed in streptozotocin-induced diabetic rats. Nanocrystals TD-A and TD-B showed 19.86 and 25.67-fold increase in saturation solubility, respectively, when compared with pure repaglinide. Almost 10 (TD-A) and 15 (TD-B)-fold enhancement in the oral bioavailability of nanocrystals was observed regardless of the fasted/fed state compared to pure repaglinide. Nanocrystal formulations also demonstrated significant (p < 0.001) hypoglycemic activity with faster onset (less than 30 min) and prolonged duration (up to 8 h) compared to pure repaglinide (after 60 min; up to 4 h, respectively).

  12. Assessment of oral bioavailability enhancing approaches for SB-247083 using flow-through cell dissolution testing as one of the screens.

    PubMed

    Perng, Cherng-Yih; Kearney, Albert S; Palepu, Nagesh R; Smith, Brian R; Azzarano, Leonard M

    2003-01-02

    SB-247083 is a potent, nonpeptidic, orally active, ETA-selective, endothelin receptor antagonist. The diacid form and three salts (monoarginine, diarginine and disodium) of SB-247083 were evaluated during the pre-clinical phase of development. The developability attributes (i.e. hygroscopicity, thermal behavior, aqueous solubility, and drug-excipient compatibility) of these compounds were evaluated. In addition to these attributes, the flow-through cell (FTC) dissolution testing (using USP Apparatus 4) was used as a screening technique to evaluate several SB-247083 formulations of the diacid and its salts. FTC dissolution testing offers two distinct advantages over the more traditional static-condition dissolution testing: (1) maintenance of sink conditions; and (2) the ability to change the dissolution medium during a dissolution run. The former advantage is especially important for poorly aqueous soluble drugs having associated dissolution-rate-limitations, and the latter advantage allows one to more closely simulate the pH gradient associated with transit through the GI tract. Based on the comparative dissolution data, three formulations were chosen for oral dosing in dogs. The reasonable correlation found between the FTC dissolution results and the oral bioavailability data demonstrate that FTC dissolution testing can be a valuable tool for aiding in salt (solid-state form) and formulation selection in the early stages of development of drug candidates.

  13. Aluminum bioavailability from the approved food additive leavening agent acidic sodium aluminum phosphate, incorporated into a baked good, is lower than from water.

    PubMed

    Yokel, Robert A; Florence, Rebecca L

    2006-10-03

    There are estimates of oral aluminum (Al) bioavailability from drinking water, but little information on Al bioavailability from foods. Foods contribute approximately 95% and drinking water 1-2% of the typical human's daily Al intake. The objectives were to estimate oral Al bioavailability from a representative food containing the food additive acidic sodium aluminum phosphate (acidic SALP), a leavening agent in baked goods. Rats were acclimated to a special diet that resulted in no stomach contents 14 h after its withdrawal. They were trained to rapidly consume a biscuit containing 1.5% acidic SALP. Oral Al bioavailability was then determined from a biscuit containing 1% or 2% acidic SALP, synthesized to contain (26)Al. The rats received concurrent (27)Al infusion. Blood was repeatedly withdrawn and serum analyzed for (26)Al by accelerator mass spectrometry. Total Al was determined by atomic absorption spectrometry. Oral (26)Al bioavailability was determined from the area under the (26)Al, compared to (27)Al, serum concentrationxtime curves. Oral Al bioavailability (F) from biscuit containing 1% or 2% acidic (26)Al-SALP averaged approximately 0.11% and 0.13%; significantly less than from water, which was previously shown to be approximately 0.3%. The time to maximum serum (26)Al concentration was 4.2 and 6h after consumption of biscuit containing 1% or 2% (26)Al-acidic SALP, respectively, compared to 1-2h following (26)Al in water. These results of oral Al bioavailability from acidic (26)Al-SALP in a biscuit (F approximately 0.1%) and results from (26)Al in water (F approximately 0.3%) x the contributions of food and drinking water to the typical human's daily Al intake ( approximately 5-10mg from food and 0.1mg from water, respectively) suggest food provides approximately 25-fold more Al to systemic circulation, and potential Al body burden, than does drinking water.

  14. Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs?

    PubMed

    Chen, Feng; Wen, Qi; Jiang, Jun; Li, Hai-Long; Tan, Yin-Feng; Li, Yong-Hui; Zeng, Nian-Kai

    2016-02-17

    A wealth of information is emerging about the impact of gut microbiota on human health and diseases such as cardiovascular diseases, obesity and diabetes. As we learn more, we find out the gut microbiota has the potential as new territory for drug targeting. Some novel therapeutic approaches could be developed through reshaping the commensal microbial structure using combinations of different agents. The gut microbiota also affects drug metabolism, directly and indirectly, particularly towards the orally administered drugs. Herbal products have become the basis of traditional medicines such as traditional Chinese medicine and also been being considered valuable materials in modern drug discovery. Of note, low oral bioavailability but high bioactivity is a conundrum not yet solved for some herbs. Since most of herbal products are orally administered, the herbs' constituents are inevitably exposed to the intestinal microbiota and the interplays between herbal constituents and gut microbiota are expected. Emerging explorations of herb-microbiota interactions have an opportunity to revolutionize the way we view herbal therapeutics. The present review aims to provide information regarding the health promotion and/or disease prevention by the interplay between traditional herbs with low bioavailability and gut microbiota through gut microbiota via two different types of mechanisms: (1) influencing the composition of gut microbiota by herbs and (2) metabolic reactions of herbal constituents by gut microbiota. The major data bases (PubMed and Web of Science) were searched using "gut microbiota", "intestinal microbiota", "gut flora", "intestinal flora", "gut microflora", "intestinal microflora", "herb", "Chinese medicine", "traditional medicine", or "herbal medicine" as keywords to find out studies regarding herb-microbiota interactions. The Chinese Pharmacopoeia (2010 edition, Volume I) was also used to collect the data of commonly used medicinal herbs and their quality control approaches. Among the 474 monographs of herbs usually used in the Chinese Pharmacopoeia, the quality control approach of 284 monographs is recommended to use high-performance liquid chromatography approach. Notably, the major marker compounds (>60%) for quality control are polyphenols, polysaccharides and saponins, with significant oral bioavailability conundrum. Results from preclinical and clinical studies on herb-microbiota interactions showed that traditional herbs could exert heath promotion and disease prevention roles via influencing the gut microbiota structure. On the other hand, herb constituents such as ginsenoside C-K, hesperidin, baicalin, daidzin and glycyrrhizin could exert their therapeutic effects through gut microbiota-mediated bioconversion. Herb-microbiota interaction studies provide novel mechanistic understanding of the traditional herbs that exhibit poor oral bioavailability. "Microbiota availability" could be taken consideration into describing biological measurements in the therapeutic assessment of herbal medicine. Our review should be of value in stimulating discussions among the scientific community on this relevant theme and prompting more efforts to complement herb-microbiota interactions studies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Enhancement of Curcumin Bioavailability Via the Prodrug Approach: Challenges and Prospects.

    PubMed

    Ratnatilaka Na Bhuket, Pahweenvaj; El-Magboub, Asma; Haworth, Ian S; Rojsitthisak, Pornchai

    2017-06-01

    Curcumin is a natural product with many interesting pharmacological properties. However, these are offset by the particularly poor biopharmaceutical properties. The oral bioavailability of curcumin in humans is very low, mainly due to low solubility, poor stability, and extensive metabolism. This has led to multiple approaches to improve bioavailability, including administration of curcumin with metabolism inhibitors, formulation into nanoparticles, modification of the curcumin structure, and development of curcumin prodrugs. In this paper, we focus on the pharmacokinetic outcomes of these approaches. Pharmacokinetic parameters of curcumin after release from prodrugs are dependent on the linker between curcumin and the promoiety, and the release itself may depend on the physiological and enzymatic environment at the site of cleavage. This is an area in which more data are required for rational design of improved linkers. Cytotoxicity of curcumin prodrugs seems to correlate well with cellular uptake in vitro, but the in vivo relevance is uncertain. We conclude that improved experimental and theoretical models of absorption of curcumin prodrugs, development of accurate analytical methods for simultaneous measurement of plasma levels of prodrug and released curcumin, and acquisition of more pharmacokinetic data in animal models for dose prediction in humans are required to facilitate movement of curcumin prodrugs into clinical trials.

  16. Bioavailability of the Yuzpe and levonorgestrel regimens of emergency contraception: vaginal vs. oral administration.

    PubMed

    Kives, Sari; Hahn, Philip M; White, Emily; Stanczyk, Frank Z; Reid, Robert L

    2005-03-01

    Separate crossover studies compared the bioavailability of oral vs. vaginal routes of administration for the Yuzpe (n=5) and levonorgestrel regimens (n=4) of emergency contraception. Twice the standard dose of the Yuzpe regimen (200 microg of ethinyl estradiol, 1000 microg of levonorgestrel) or the levonorgestrel regimen (1500 microg of levonorgestrel) was self-administered vaginally. One week later, each subject received orally the standard dose of the assigned medication. Serial blood samples were collected over 24 h and assayed for levonorgestrel and ethinyl estradiol (for the Yuzpe regimen only). Paired t tests were used to compare oral vs. vaginal administration for maximum concentration (Cmax), time to maximum concentration (Tmax) and area under the curve over 24 h (AUC0-24). Relative bioavailability (vaginal/oral) was derived from AUC0-24. Vaginal administration of double the standard dose of the Yuzpe regimen resulted in a lower Cmax (vaginal=5.4 vs. oral=14.6 ng/mL, p=.038) and a later Tmax (5.9 vs. 2.0 h, p=.066) for levonorgestrel, compared to oral administration. Corresponding ethinyl estradiol concentrations were higher (786 vs. 391 pg/mL, p=.039) and peaked later (4.0 vs. 1.9 hr, p=.154) with vaginal administration. Relative bioavailabilities for levonorgestrel and ethinyl estradiol were 58% and 175%, respectively. Similarly, vaginal administration of the levonorgestrel regimen resulted in a lower Cmax (vaginal=5.4 vs. oral=15.2 ng/mL, p=.006) and a later Tmax (7.4 vs. 1.3 h, p=.037) for levonorgestel, compared to oral administration. The relative bioavailability was 62%. Our preliminary data suggest that vaginal administration of these emergency contraception regimens appears to require at least three times the standard oral dose to achieve equivalent systemic levonorgestrel concentrations.

  17. Comparative biodistribution and safety profiling of olmesartan medoxomil oil-in-water oral nanoemulsion.

    PubMed

    Gorain, Bapi; Choudhury, Hira; Tekade, Rakesh Kumar; Karan, Saumen; Jaisankar, P; Pal, Tapan Kumar

    2016-12-01

    Poor aqueous solubility and unfavourable de-esterification of olmesartan medoxomil (a selective angiotensin II receptor blocker), results in low oral bioavailability of less than 26%. Improvement of oral bioavailability with prolonged pharmacodynamics activity of olmesartan in Wistar rats had been approached by nanoemulsification strategy in our previous article [Colloid Surface B, 115, 2014: 286]. In continuation to that work, we herewith report the biodistribution behaviour and 28-day repeated dose sub-chronic toxicity of olmesartan medoxomil nanoemulsion in Wistar rats following oral administration. The levels of olmesartan in collected biological samples were estimated using our validated LC-MS/MS technique. Our biodistribution study showed significantly higher brain concentrations of olmesartan (0.290 ± 0.089 μg/mL, 0.333 ± 0.071 μg/mL and 0.217 ± 0.062 μg/mL at 0.5, 2.0 and 8.0 h post dosing, respectively) when administered orally as nanoemulsion formulation as compared to the aqueous suspension. In addition, the olmesartan nanoemulsion was found to be safe and non-toxic, as it neither produced any lethality nor remarkable haematological, biochemical and structural adverse effects as observed during the 28-days sub-chronic toxicity studies in experimental Wistar rats. It is herewith envisaged that the developed nanoemulsion formulation approach for the delivery of olmesartan medoxomil via oral route can further be explored in memory dysfunction and brain ischemia, for better brain penetration and improved clinical application in stroke patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Bioavailability of voriconazole in hospitalised patients.

    PubMed

    Veringa, Anette; Geling, Sanne; Span, Lambert F R; Vermeulen, Karin M; Zijlstra, Jan G; van der Werf, Tjip S; Kosterink, Jos G W; Alffenaar, Jan-Willem C

    2017-02-01

    An important element in antimicrobial stewardship programmes is early switch from intravenous (i.v.) to oral antimicrobial treatment, especially for highly bioavailable drugs. The antifungal agent voriconazole is available both in i.v. and oral formulations and bioavailability is estimated to be >90% in healthy volunteers, making this drug a suitable candidate for such a transition. Recently, two studies have shown that the bioavailability of voriconazole is substantially lower in patients. However, for both studies various factors that could influence the voriconazole serum concentration, such as inflammation, concomitant intake of food with oral voriconazole, and gastrointestinal complications, were not included in the evaluation. Therefore, in this study a retrospective chart review was performed in adult patients treated with both oral and i.v. voriconazole at the same dose and within a limited (≤5 days) time interval in order to evaluate the effect of switching the route of administration on voriconazole serum concentrations. A total of 13 patients were included. The mean voriconazole trough concentration was 2.28 mg/L [95% confidence interval (CI) 1.29-3.26 mg/L] for i.v. voriconazole administration and 2.04 mg/L (95% CI 0.78-3.30 mg/L) for oral administration. No significant difference was found in the mean oral and i.v. trough concentrations of voriconazole (P = 0.390). The mean bioavailability was 83.0% (95% CI 59.0-107.0%). These findings suggest that factors other than bioavailability may cause the observed difference in voriconazole trough concentrations between oral and i.v. administration in the earlier studies and stress the need for an antimicrobial stewardship team to guide voriconazole dosing. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  19. A novel three-dimensional large-pore mesoporous carbon matrix as a potential nanovehicle for the fast release of the poorly water-soluble drug, celecoxib.

    PubMed

    Zhang, Yanzhuo; Wang, Hong; Li, Chuanjun; Sun, Baoxiang; Wang, Yu; Wang, Siling; Gao, Cunqiang

    2014-04-01

    A novel mesocellular carbon foam (MSU-FC) with a large pore size and a three-dimensional porous structure for the oral delivery of poorly water-soluble drugs was prepared. The goal of this study was to improve in vitro dissolution and in vivo absorption of celecoxib (CEB), a model drug, by means of novel carbon-based nanoparticles prepared from the MSU-FC matrix. The MSU-FC matrix was synthesized by an inverse replica templating method using mesocellular silica template. A solvent immersion/evaporation method was used to load the drug molecules. The drug-loaded nanoparticles were characterized for morphology, surface area, particle size, mesoporous structure, crystallinity, solubility and dissolution. The effect of MSU-FC on cell viability was measured using the MTT conversion assay. Furthermore, the oral bioavailability of CEB-loaded MSU-FC in fasted rats was compared with that of the marketed product. Our results demonstrate that CEB incorporation into the prepared MSU-FC resulted in an approximately 9-fold increase in aqueous solubility in comparison with crystalline CEB. MSU-FC produced accelerated immediate release of CEB in comparison with crystalline CEB (pure CEB powder or marketed formulation) and the drug-loaded conventional mesoporous carbon particles. The relative bioavailability of CEB for CEB-loaded MSU-FC was 172%. In addition, MSU-FC nanoparticles exhibited very low toxicity. The MSU-FC nanomatrix has been shown to be a promising drug delivery vehicle for improving the dissolution and biopharmaceutical characteristics of poorly water-soluble drugs.

  20. Formulation and development of bicontinuous nanostructured liquid crystalline particles of efavirenz.

    PubMed

    Avachat, Amelia M; Parpani, Shreekrishna S

    2015-02-01

    Efavirenz is a lipophilic non-nucleoside reverse transcriptase inhibitor used in the first-line pediatric therapeutic cocktail. Due to its high lipophilicity (logP = 5.4) and poor aqueous solubility (intrinsic water solubility = 8.3 μg/mL) efavirenz has low bioavailability. A 30 mg/mL solution in a medium-chain triglyceride vehicle is the only pediatric formulation available with an oral bioavailability 20% lower than the solid form. The current work was aimed at formulating and characterizing liquid crystal nanoparticles for oral delivery of efavirenz to improve oral bioavailability, provide sustained release, minimize side effects and drug resistance. Formulation of cubosomes was done by two methods; sonication and spray drying. Sonication gave highest entrapment efficiency and least particle size. Further, monoolein was substituted with phytantriol as monoolein gets degraded in the presence of lipase when administered orally with consequent loss of liquid crystalline structure. It was confirmed that there was no difference in particle size, entrapment efficiency and nature of product formed by using monoolein or phytantriol. The best formulation was found to be F9, having particle size 104.19 ± 0.21 nm and entrapment efficiency 91.40 ± 0.10%. In vitro release at the end of 12h was found to be 56.45% and zeta potential to be -23.14 mV which stabilized the cubic phase dispersions. It was further characterized for TEM, small angle X-ray scattering (SAXS), DSC and stability studies. SAXS revealed Pn3m space group, indicating a diamond cubic phase which was further confirmed by TEM. Pharmacokinetics of EFV was studied in male Wistar rats. EFV-loaded cubosome dispersions exhibited 1.93 and 1.62-fold increase in peak plasma concentration (Cmax) and 1.48 and 1.42-fold increase in AUC in comparison to that of a suspension prepared with the contents of EFV capsules suspended in 1.5% carboxymethylcellulose PBS solution (pH 5.0), and an EFV solution in medium-chain triglyceride respectively. Thus, stable cubosomes of efavirenz with increased bioavailability providing sustained release effect could be prepared successfully using phytantriol and poloxamer 407. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Enhanced bioavailability of orally administered flurbiprofen by combined use of hydroxypropyl-cyclodextrin and poly(alkyl-cyanoacrylate) nanoparticles.

    PubMed

    Zhao, Xiaoyun; Li, Wei; Luo, Qiuhua; Zhang, Xiangrong

    2014-03-01

    Flurbiprofen was formulated into nanoparticle suspension to improve its oral bioavailability. Hydroxypropyl-β-cyclodextrin inclusion-flurbiprofen complex (HP-β-CD-FP) was prepared, then incorporating this complex into poly(alkyl-cyanoacrylate) (PACA) nanoparticles. HP-β-CD-FP-PACA nanoparticle was prepared by the emulsion solvent polymerization method. The zeta potential was -26.8 mV, the mean volume particle diameter was 134 nm, drug encapsulation efficiency was 53.3 ± 3.6 % and concentration was 1.5 mg/mL. The bioavailability of flurbiprofen from optimized nanoparticles was assessed in male Wistar rats at a dose of 15 mg/kg. As compared to the flurbiprofen suspension, 211.6 % relative bioavailability was observed for flurbiprofen nanoparticles. The reduced particle size and increased surface area may contribute to improve oral bioavailability of flurbiprofen.

  2. Comparative Oral Absorption of Curcumin in a Natural Turmeric Matrix with Two Other Curcumin Formulations: An Open-label Parallel-arm Study.

    PubMed

    Gopi, Sreeraj; Jacob, Joby; Varma, Karthik; Jude, Shintu; Amalraj, Augustine; Arundhathy, C A; George, Robin; Sreeraj, T R; Divya, C; Kunnumakkara, Ajaikumar B; Stohs, Sidney J

    2017-12-01

    Curcuminoids are the major bioactive molecules in turmeric, and poor bioavailability deters them from being the major components of many health and wellness applications. This study was conducted to assess the bioavailability of a completely natural turmeric matrix formulation (CNTMF) and compare its bioavailability with two other commercially available formulations, namely, curcumin with volatile oil (volatile oil formulation) and curcumin with phospholipids and cellulose (phospholipid formulation) in healthy human adult male subjects (15 each group) under fasting conditions. Each formulation was administrated orally as a single 500-mg dose in capsule form, and blood samples were analyzed by liquid chromatography mass spectrometry at various time intervals up to 24 h. The ingestion of the CNTMF was very well absorbed and resulted in a mean curcuminoids plasma C max of 170.14 ng/mL (T max  = 4 h) compared with 47.54 ng/mL and 69.63 ng/mL for the volatile oil (T max  = 3 h) and phospholipid (T max  = 2.25 h) formulations, respectively. The extent of absorption of total curcuminoids in the blood for the CNTMF was 6× greater than volatile oil formulation and 5× greater than phospholipids formulation. The results of this study indicate that curcumin in a natural turmeric matrix exhibited greater bioavailability than the two comparator products. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Fabrication of water-soluble polymer-encapsulated As4S4 to increase oral bioavailability and chemotherapeutic efficacy in AML mice

    PubMed Central

    Ma, Qiang; Wang, Chuan; Li, Xiaojin; Guo, Hua; Meng, Jie; Liu, Jian; Xu, Haiyan

    2016-01-01

    Realgar (As4S4) has been demonstrated to be effective for the treatment of acute myeloid leukemia (AML); it has the advantages of no drug resistance and oral administration. Nevertheless, its poor solubility has been an obstacle to its bioavailability, requiring high-dose administration over a long period. We investigated whether crushing realgar crystals to the nanoscale and encapsulating the particles in a water-soluble polymer in one step using hot-melt extrusion would increase the bioavailability of As4S4. Raw As4S4 (r-As4S4) and water-soluble polymer were processed via co-rotating twin screw extrusion. The resulting product (e-As4S4) was characterized by SEM, XRD, and DLS. The cytotoxicity and therapeutic effects of e-As4S4 were evaluated in vivo and in vitro. The results show that e-As4S4 dissolved rapidly in water, forming a stable colloid solution. The average size of e-As4S4 particles was 680 nm, which was reduced by more than 40-fold compared with that of r-As4S4. The bioavailability of e-As4S4 was up to 12.6-fold higher than that of r-As4S4, and it inhibited the proliferation of HL-60 cells much more effectively than did r-As4S4, inducing apoptosis and significantly reducing the infiltration of HL-60 cells into the bone marrow, spleen, and liver. This in turn prolonged the survival of AML mice. PMID:27383126

  4. Pharmacokinetics and bioavailability of denaverine hydrochloride in healthy subjects following intravenous, oral and rectal single doses.

    PubMed

    Staab, Alexander; Schug, Barbara S; Larsimont, Véronique; Elze, Martina; Thümmler, Daniela; Mutschler, Ernst; Blume, Henning

    2003-02-01

    The neurotropic-musculotropic spasmolytic agent denaverine hydrochloride is used mainly in the treatment of smooth muscle spasms of the gastrointestinal and urogenital tract. Despite its commercial availability as a solution for intravenous or intramuscular administration (ampoule) and as a suppository formulation, no pharmacokinetic data in man was available to date. Therefore, the objectives of this clinical trial were to determine the basic pharmacokinetic parameters of denaverine after intravenous administration, to assess the feasibility of using the oral route of administration and to characterise the bioavailability of the suppository formulation. To achieve this, healthy subjects received 50 mg denaverine hydrochloride intravenously, orally and rectally in aqueous solutions and rectally as suppository in an open, randomised crossover design. Total body clearance, volume of distribution at steady-state and half-life of denaverine are 5.7 ml/min per kg, 7.1 l/kg and 33.8 h, respectively. The absolute bioavailability after oral administration of an aqueous solution is 37%. First-pass metabolism leading to the formation of N-monodemethyl denaverine was found to be one reason for the incomplete bioavailability after oral administration. Rectal administration of an aqueous solution of denaverine hydrochloride resulted in a decreased rate (median of C(max) ratios: 26%, difference in median t(max) values: 1.9 h) and extent (31%) of bioavailability compared to oral administration. Using the suppository formulation led to a further reduction in rate (median of C(max) ratios: 30%, difference in median t(max) values: 3 h) and extent (42%) of bioavailability compared to the rectal solution.

  5. Enhanced oral bioavailability of docetaxel in rats combined with myricetin: In situ and in vivo evidences.

    PubMed

    Hao, Tianyun; Ling, Yunni; Wu, Meijuan; Shen, Yajing; Gao, Yu; Liang, Shujun; Gao, Yuan; Qian, Shuai

    2017-04-01

    The purpose of this study was to investigate the effect of myricetin on the pharmacokinetics of docetaxel in rats. In comparison to oral docetaxel alone (40mg/kg), the bioavailability of docetaxel could be significantly enhanced by 1.6-2.4-fold via oral co-administration with various flavonoids (apigenin, naringenin, baicalein, quercetin and myricetin) at a dosage of 10mg/kg, and myricetin showed the highest bioavailability improvement. Further pharmacokinetic studies demonstrated that the presence of myricetin (5-20mg/kg) enhanced both C max and AUC of docetaxel with the highest C max (162ng/mL, 2.3-fold) and relative bioavailability (244%) achieved at 10mg/kg of myricetin, while t 1/2 was not influenced. In order to explore the reasons for such bioavailability enhancement of docetaxel, rat in situ single-pass intestinal perfusion model and intravenous docetaxel co-administrated with oral myricetin were carried out. After combining with myricetin, the permeability coefficient (P blood ) of docetaxel based on its appearance in mesenteric blood was significantly increased up to 3.5-fold in comparison to that of docetaxel alone. Different from oral docetaxel, the intravenous pharmacokinetics of docetaxel was not affected by co-administration of myricetin, indicating the limited effect of myricetin on the elimination of docetaxel. The above findings suggested that the oral bioavailability enhancement of docetaxel via co-administration with myricetin might be mainly attributed to the enhanced absorption in gastrointestinal tract rather than modulating the elimination of docetaxel. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Influence of PEG coating on the oral bioavailability of gold nanoparticles in rats.

    PubMed

    Alalaiwe, Ahmed; Roberts, Georgia; Carpinone, Paul; Munson, John; Roberts, Stephen

    2017-11-01

    Metallic nanoparticles can be produced in a variety of shapes, sizes, and surface chemistries, making them promising potential tools for drug delivery. Most studies to date have evaluated uptake of metallic nanoparticles from the GI tract with methods that are at best semi-quantitative. This study used the classical method of comparing blood concentration area under the curve (AUC) following intravenous and oral doses to determine the oral bioavailability of 1, 2 and 5 kDa PEG-coated 5 nm gold nanoparticles (AuNPs). Male rats were given a single intravenous dose (0.8 mg/kg) or oral (gavage) dose (8 mg/kg) of a PEG-coated AuNP, and the concentration of gold was measured in blood over time and in tissues (liver, spleen and kidney) at sacrifice. Blood concentrations following oral administration were inversely related to PEG size, and the AUC in blood was significantly greater for the 1 kDa PEG-coated AuNPs than particles coated with 2 or 5 kDa PEG. However, bioavailabilities of all of the particles were very low (< 0.1%). Concentrations in liver, spleen and kidney were similar after the intravenous doses, but kidney showed the highest concentrations after an oral dose. In addition to providing information on the bioavailability of AuNPs coated with PEG in the 1-5 kDa range, this study demonstrates the utility of applying the blood AUC approach to assess the quantitative oral bioavailability of metallic nanoparticles.

  7. Oral bioavailability of curcumin: problems and advancements.

    PubMed

    Liu, Weidong; Zhai, Yingjie; Heng, Xueyuan; Che, Feng Yuan; Chen, Wenjun; Sun, Dezhong; Zhai, Guangxi

    2016-09-01

    Curcumin is a natural compound of Curcuma longa L. and has shown many pharmacological activities such as anti-inflammatory, anti-oxidant in both preclinical and clinical studies. Moreover, curcumin has hepatoprotective, neuroprotective activities and protects against myocardial infarction. Particularly, curcumin has also demonstrated favorite anticancer efficacy. But limiting factors such as its extremely low oral bioavailability hampers its application as therapeutic agent. Therefore, many technologies have been developed and applied to overcome this limitation. This review described the main physicochemical properties of curcumin and summarized the recent studies in the design and development of oral delivery systems for curcumin to enhance the solubility and oral bioavailability, including liposomes, nanoparticles and polymeric micelles, phospholipid complexes, and microemulsions.

  8. [Bioavailability and factors influencing its rate].

    PubMed

    Vraníková, Barbora; Gajdziok, Jan

    Bioavailability can be defined as the rate and range of active ingredient absorption, when it becomes available in the systemic circulation or at the desired site of drug action, respectively. Drug bioavailability after oral administration is affected by anumber of different factors, including physicochemical properties of the drug, physiological aspects, the type of dosage form, food intake, biorhythms, and intra- and interindividual variability of the human population. This article is the first from the series dealing with the bioavailability and methods leading to its improvement. The aim of the present paper is to provide an overview of aspects influencing the rate of bioavailability after oral administration of the active ingredient. Subsequentarticles will provide detailed descriptions of methods used for dug bioavailability improvement, which are here only summarized.

  9. Preparation and evaluation of high dispersion stable nanocrystal formulation of poorly water-soluble compounds by using povacoat.

    PubMed

    Yuminoki, Kayo; Seko, Fuko; Horii, Shota; Takeuchi, Haruka; Teramoto, Katsuya; Nakada, Yuichiro; Hashimoto, Naofumi

    2014-11-01

    In this study, we reported the application of Povacoat®, a hydrophilic polyvinylalcohol copolymer, as a dispersion stabilizer of nanoparticles of poorly water-soluble compounds. In addition, the influence of aggregation of the nanoparticles on their solubility and oral absorption was studied. Griseofulvin (GF) was used as a model compound with poor water solubility and was milled to nanoparticles by wet bead milling. The dispersion stability of GF milled with Povacoat® or the generally used polymers (polyvinylalcohol, hydroxypropylcellulose SSL, and polyvinylpyrrolidone K30) was compared. Milled GF suspended in Povacoat® aqueous solution with D-mannitol, added to improve the disintegration rate of freeze-dried GF, exhibited high dispersion stability without aggregation (D90 = ca. 0.220 μm), whereas milled GF suspended in aqueous solutions of the other polymers aggregated (D90 > 5 μm). Milled GF with Povacoat® showed improved aqueous solubility and bioavailability compared with the other polymers. The aggregation of nanoparticles had significant impact on the solubility and bioavailability of GF. Povacoat® also prevented the aggregation of the various milled poorly water-soluble compounds (hydrochlorothiazide and tolbutamide, etc.) more effectively than the other polymers. These results showed that Povacoat® could have wide applicability to the development of nanoformulations of poorly water-soluble compounds. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Design and evaluation of self-emulsifying drug delivery systems of Rhizoma corydalis decumbentis extracts.

    PubMed

    Ma, Hongda; Zhao, Qingchun; Wang, Yongjun; Guo, Tao; An, Ye; Shi, Guobing

    2012-10-01

    To improve the dissolution and oral absorption of Rhizoma corydalis decumbentis extracts (RCDE), a famous traditional Chinese herbal medicine which contains poorly water-soluble active components, self-emulsifying drug-delivery systems (SEDDS) were designed and evaluated in vitro and in vivo for the first time. Six formulations were prepared, and pseudoternary phase diagrams were constructed to identify the efficient self-emulsication region through the modified visual test. The optimized formulation consisted of 45% Solutol, 40% ethyl oleate, and 15% Transcutol P. The mean droplet size distribution of the optimized SEDDS was less than 100 nm. The release of the active components (protopine and tetrahydropalmatine) in RCDE from SEDDS hard gelatin capsules showed a faster rate in comparison with the commercial tablets. After oral administration of RCDE SEDDS capsules or the commercial tablets to fasted rats, the relative bioavailability of SEDDS capsules for protopine and tetrahydropalmatine was 209.7% and 133.2% compared with commercial tablets, respectively. Our study indicated that SEDDS has the potential to improve the bioavailability of traditional Chinese medicines, in which many active components are hydrophobic, such as RCDE.

  11. Preparation and Optimization of Amorphous Ursodeoxycholic Acid Nano-suspensions by Nanoprecipitation based on Acid-base Neutralization for Enhanced Dissolution.

    PubMed

    Xie, Yike; Chen, Zhongjian; Su, Rui; Li, Ye; Qi, Jianping; Wu, Wei; Lu, Yi

    2017-01-01

    Ursodeoxycholic acid, usually used to dissolve cholesterol gallstones in clinic, is a typical hydrophobic drug with poor oral bioavailability due to dissolution rate-limited performance. The objective of this study was to increase the dissolution of ursodeoxycholic acid by amorphous nanosuspensions. Nanoprecipitation based on acid-base neutralization was used to prepare the nanosuspensions with central composite design to optimize the formula. The nanosuspensions were characterized by particle size, morphology, crystallology and dissolution. The ursodeoxycholic acid nanosuspensions showed mean particle size around 380 nm with polydispersion index value about 0.25. Scanning electron microscope observed high coverage of HPMC-E50 onto the surface of the nanosuspensions. Differential scanning calorimetry and powder X-ray diffractometry revealed amorphous structure of the ursodeoxycholic acid nanosuspensions. A significant increase of dissolution in acidic media was achieved by the amorphous nanosuspensions compared with the physical mixture. It can be predicted that the amorphous nanosuspensions show great potential in improving the oral bioavailability of ursodeoxycholic acid. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Investigation of nanosized crystalline form to improve the oral bioavailability of poorly water soluble cilostazol.

    PubMed

    Miao, Xiaoqing; Sun, Changshan; Jiang, Tongying; Zheng, Li; Wang, Tianyi; Wang, Siling

    2011-01-01

    The aim of this study was to develop cilostazol (CLT) nanocrystals intended to improve its dissolution rate and enhance its bioavailability. In this study, CLT nanosuspension was prepared by the anti-solvent and high-pressure homogenization method. The effects of the production parameters, such as the stabilizer concentration, pressure and number of cycles, were investigated. Characterization of the product was performed by scanning electron microscopy (SEM), Nitrogen adsorption, differential scanning calorimetry (DSC), X-ray powder diffraction analysis (XRPD), X-ray Photoelectron Spectroscopy (XPS), particle size analysis and dissolution testing. Additionally, the comparison studies of oral bioavailability in beagle dogs of three type tables were performed. The images of SEM showed a spherical smooth CLT powder, and Nitrogen adsorption test revealed spray dried powder were porous with high BET surface area compared with that of raw CLT. DSC and XRPD results demonstrated that the combination of preferred polymorph B and C of CLT were prepared successfully, the saturation solubility of the nanosized crystalline powder is about 5 fold greater than that of raw CLT, and the dissolution rate was enhanced 4 fold than that of raw CLT. The Cmax and AUC0-48h of CLT nanosized crystalline tablets were 2.1 fold and 1.9 fold, and 3.0 fold and 2.3 fold compared with those of the nanosized tablets and commercial tablets, respectively. The anti-solvent-high-pressure homogenization technique was employed successfully to produce cilostazol nanosuspensions. The bioavailability of CLT tablets prepared using spray dried nanosized crystalline powder after oral administration to dogs was markedly increased compared with that produced by nanosized tablets and commercial tablets, because of its greater dissolution rate owing to its transition of the crystalline state to form C and form B, reduced particle size and porous structure with increased surface area.

  13. Development of a pharmaceutical cocrystal with solution crystallization technology: Preparation, characterization, and evaluation of myricetin-proline cocrystals.

    PubMed

    Liu, Mingyu; Hong, Chao; Yao, Yashu; Shen, Hongyi; Ji, Guang; Li, Guowen; Xie, Yan

    2016-10-01

    Myricetin shows low oral bioavailability (<10%) in rats due to poor aqueous solubility, although it has demonstrated various pharmacological activities such as those related to anticancer, anti-diabetes, and hepatic protection. To overcome this issue, in this study, pharmaceutical cocrystals were designed to efficiently deliver myricetin by oral administration. A 1:2 stoichiometric cocrystal of myricetin with proline was prepared successfully by solution crystallization based on the ternary phase diagram (TPD) principle, and it is presented as a new sphericity-like crystalline phase characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The formation of myricetin-proline cocrystals was a spontaneous and exothermic process, probably due to the supramolecular interactions between themselves, which were determined by Fourier transform-infrared spectroscopy (FT-IR). Consequently, the dissolution efficiency of myricetin from cocrystals was increased 7.69-fold compared with that of coarse myricetin, and the oral bioavailability of myricetin cocrystals in rats was enhanced by approximately 3.03 times compared with that of pure myricetin. The present study provides useful information for the potential application of cocrystal technology for water-insoluble drugs, especially flavonoid compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Solid formulation of a supersaturable self-microemulsifying drug delivery system for valsartan with improved dissolution and bioavailability

    PubMed Central

    Yeom, Dong Woo; Chae, Bo Ram; Kim, Jin Han; Chae, Jun Soo; Shin, Dong Jun; Kim, Chang Hyun; Kim, Sung Rae; Choi, Ji Ho; Song, Seh Hyon; Oh, Dongho; Sohn, Se Il; Choi, Young Wook

    2017-01-01

    In order to improve the dissolution and oral bioavailability of valsartan (VST), and reduce the required volume for treatment, we previously formulated a supersaturable self-microemulsifying drug delivery system (SuSMEDDS) composed of VST (80 mg), Capmul® MCM (13.2 mg), Tween® 80 (59.2 mg), Transcutol® P (59.2 mg), and Poloxamer 407 (13.2 mg). In the present study, by using Florite® PS-10 (119.1 mg) and Vivapur® 105 (105.6 mg) as solid carriers, VST-loaded solidified SuSMEDDS (S-SuSMEDDS) granules were successfully developed, which possessed good flow properties and rapid drug dissolution. By introducing croscarmellose sodium (31 mg) as a superdisintegrant, S-SuSMEDDS tablets were also successfully formulated, which showed fast disintegration and high dissolution efficiency. Preparation of granules and tablets was successfully optimized using D-optimal mixture design and 3-level factorial design, respectively, resulting in percentage prediction errors of <10%. In pharmacokinetic studies in rats, the relative bioavailability of the optimized granules was 107% and 222% of values obtained for SuSMEDDS and Diovan® powder, respectively. Therefore, we conclude that novel S-SuSMEDDS formulations offer great potential for developing solid dosage forms of a liquefied formulation such as SuSMEDDS, while improving oral absorption of drugs with poor water solubility. PMID:29212229

  15. Solid formulation of a supersaturable self-microemulsifying drug delivery system for valsartan with improved dissolution and bioavailability.

    PubMed

    Yeom, Dong Woo; Chae, Bo Ram; Kim, Jin Han; Chae, Jun Soo; Shin, Dong Jun; Kim, Chang Hyun; Kim, Sung Rae; Choi, Ji Ho; Song, Seh Hyon; Oh, Dongho; Sohn, Se Il; Choi, Young Wook

    2017-11-07

    In order to improve the dissolution and oral bioavailability of valsartan (VST), and reduce the required volume for treatment, we previously formulated a supersaturable self-microemulsifying drug delivery system (SuSMEDDS) composed of VST (80 mg), Capmul ® MCM (13.2 mg), Tween ® 80 (59.2 mg), Transcutol ® P (59.2 mg), and Poloxamer 407 (13.2 mg). In the present study, by using Florite ® PS-10 (119.1 mg) and Vivapur ® 105 (105.6 mg) as solid carriers, VST-loaded solidified SuSMEDDS (S-SuSMEDDS) granules were successfully developed, which possessed good flow properties and rapid drug dissolution. By introducing croscarmellose sodium (31 mg) as a superdisintegrant, S-SuSMEDDS tablets were also successfully formulated, which showed fast disintegration and high dissolution efficiency. Preparation of granules and tablets was successfully optimized using D-optimal mixture design and 3-level factorial design, respectively, resulting in percentage prediction errors of <10%. In pharmacokinetic studies in rats, the relative bioavailability of the optimized granules was 107% and 222% of values obtained for SuSMEDDS and Diovan ® powder, respectively. Therefore, we conclude that novel S-SuSMEDDS formulations offer great potential for developing solid dosage forms of a liquefied formulation such as SuSMEDDS, while improving oral absorption of drugs with poor water solubility.

  16. [Lack of bioavailability of generic lopinavir/ritonavir not prequalified by WHO marketed in Africa (Congo Brazzaville)].

    PubMed

    Camara, S; Zucman, D; Vasse, M; Goudjo, A; Guillard, E; Peytavin, G

    2015-02-01

    Although second-line generic antiretroviral drugs are of great value in developing countries there are concerns regarding their quality and safety. This study is a case report and pharmacological study in healthy volunteers. A French subject of sub-saharan origin who visited Republic of Congo received a post-exposure treatment with AZT+3TC and LPV/r (200/50 mg, Arga-L®, India) following unprotected sexual intercourse. Two days later, in France, tests showed that plasma concentrations of lopinavir and ritonavir were undetectable. The WHO prequalification list showed Arga-L® was not prequalified. A pharmacological study in healthy volunteers evaluated oral bioavailability: plasma concentrations of generic LPV/r Arga-L® and LPV/r Kaletra® (400/100 mg) were measured after one single dose at 7 days apart in four healthy volunteers. Concentrations of Arga-L® at 12 h after intake were considerably lower than those of Kaletra®, revealing very low oral bioavailability of generic lopinavir and ritonavir (<10%) compared to the brand-name drug. We found that Arga-L®, despite having adequate qualitative and quantitative drug contents, had very poor bio availability compared to Kaletra®. In order to avoid the selection and the spread of drug-resistant HIV strains, rigorous pharmacological monitoring of generic antiretroviral drugs that are not pre-qualified by WHO, but are marketed in Africa, must be a priority for health authorities.

  17. Enhancement of the bioavailability of an antihypertensive drug by transdermal protransfersomal system: formulation and in vivo study.

    PubMed

    Morsi, Nadia M; Aboelwafa, Ahmed A; Dawoud, Marwa H S

    2018-06-01

    Timolol Maleate (TiM), a nonselective β-adrenergic blocker, is a potent highly effective agent for management of hypertension. The drug suffers from poor oral bioavailability (50%) due to its first pass effect and a short elimination half-life of 4 h; resulting in its frequent administration. Transdermal formulation may circumvent these problems in the form of protransfersomes. The aim of this study is to develop and optimize transdermal protransfersomal system of Timolol Maleate by film deposition on carrier method where protransfersomes were converted to transfersomes upon skin hydration following transdermal application under occlusive conditions. Two 2 3 full factorial designs were employed to investigate the influence of three formulation variables which were; phosphatidyl choline: surfactant molar ratio, carrier: mixture and the type of SAA each on particle size, drug entrapment efficiency and release rate. The optimized formulation was evaluated regarding permeation through hairless rat skin and compared with oral administration of aqueous solution on male Wistar rats. Optimized protransfersomal system had excellent permeation rate through shaved rat skin (780.69 μg/cm 2 /h) and showed six times increase in relative bioavailability with prolonged plasma profile up to 72 h. A potential protransfresomal transdermal system was successfully developed and factorial design was found to be a smart tool in its optimization.

  18. Bioavailability Challenges Associated with Development of Anti-Cancer Phenolics

    PubMed Central

    Gao, Song; Hu, Ming

    2010-01-01

    Phenolics including many polyphenols and flavonoids have the potentials to become chemoprevention and chemotherapy agents. However, poor bioavailability limits their biological effects in vivo. This paper reviews the factors that affect phenolics absorption and their bioavailabilities from the points of view of their physicochemical properties and disposition in the gastrointestinal tract. The up-to-date research data suggested that solubility and metabolism are the primary reasons that limit phenolic aglycones’ bioavailability although stability and poor permeation may also contribute to the poor bioavailabilities of the glycosides. Future investigations should further optimize phenolics’ bioavailabilities and realize their chemopreventive and chemotherapeutic effects in vivo. PMID:20370701

  19. Aluminum bioavailability from drinking water is very low and is not appreciably influenced by stomach contents or water hardness.

    PubMed

    Yokel, R A; Rhineheimer, S S; Brauer, R D; Sharma, P; Elmore, D; McNamara, P J

    2001-03-21

    The objectives were to estimate aluminum (Al) oral bioavailability under conditions that model its consumption in drinking water, and to test the hypotheses that stomach contents and co-administration of the major components of hard water affect Al absorption. Rats received intragastric 26Al in the absence and presence of food in the stomach and with or without concomitant calcium (Ca) and magnesium (Mg) at concentrations found in hard drinking water. The use of 26Al enables the study of Al pharmacokinetics at physiological Al concentrations without interference from 27Al in the environment or the subject. 27Al was intravenously administered throughout the study. Repeated blood withdrawal enabled determination of oral 26Al bioavailability from the area under its serum concentrationxtime curve compared to serum 27Al concentration in relation to its infusion rate. Oral Al bioavailability averaged 0.28%. The presence of food in the stomach and Ca and Mg in the water that contained the orally dosed 26Al appeared to delay but not significantly alter the extent of 26Al absorption. The present and published results suggest oral bioavailability of Al from drinking water is very low, about 0.3%. The present results suggest it is independent of stomach contents and water hardness.

  20. Gastric retention pellets of edaravone with enhanced oral bioavailability: Absorption mechanism, development, and in vitro/in vivo evaluation.

    PubMed

    Li, Qingguo; Huang, Wenhai; Yang, Juan; Wang, Jianfeng; Hu, Min; Mo, Jianmei; Cheng, Yuzhu; Ou, Zhanlun; Zhang, Zhenyu Jason; Guan, Shixia

    2018-07-01

    Absorption mechanism of edaravone (EDR) was studied to inform the preparation of gastric retention pellets with the aim to enhance its oral bioavailability. Three different models, namely, Caco-2 cells model, in situ single-pass intestinal perfusion model, and everted gut sac model in rats, were employed to characterize the gastrointestinal absorption kinetics of EDR. And it was found that passive transfer plays a vital role for the transport of EDR, and acidic condition is preferable for EDR absorption. Further, it is likely that EDR acts as a substrate for P-glycoprotein and multidrug-resistance protein. And hence, an orally available gastric retention pellets were developed accordingly. Pharmacokinetic experiments performed with rats and beagles showed that the absolute bioavailability of EDR solution and enteric-coated pellets following oral administration were 33.85% ± 2.45% and 7.64% ± 1.03%, indicating that stomach absorption is better than intestinal adsorption for EDR. However, the gastric retention pellets resulted in 68.96% absolute bioavailability and about 200% relative bioavailability in comparison to EDR solution, which was 9 times that of enteric-coated pellets. The present work demonstrates that gastric retention pellets has excellent potential as oral administration route for EDR. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Bioavailability and stability of erythromycin delayed release tablets.

    PubMed

    Ogwal, S; Xide, T U

    2001-12-01

    Erythromycin is available as the free base, ethylsuccinate, estolate, stearate, gluceptate, and lactobionate derivatives. When given orally erythromycin and its derivatives except the estolate are inactivated to some extent by the gastric acid and poor absorption may result. To establish whether delayed release erythromycin tablets meet the bioequivalent requirement for the market. Sectrophotometric analysis was used to determine the dissolution percentage of the tablets in vitro. High performance liquid chromatography and IBM/XT microcomputer was used to determine the bioavailability and pharmacokinetic parameters in vivo. Dissolution percentage in thirty minutes reached 28.9% and in sixty minutes erythromycin was completely released. The parameters of the delayed release tablets were Tlag 2.3 hr, Tmax.4.5 hr, and Cmax 2.123 g/ml Ka 0.38048 hr(-1) T (1/2) 1.8 hr, V*C/F 49.721 AUC 12.9155. The relative bioavailability of erythromycin delayed release tablet to erythromycin capsules was 105.31% The content, appearance, and dissolution bioavailability of delayed release erythromycin tablets conforms to the United States pharmacopoeia standards. The tablets should be stored in a cool and dry place in airtight containers and the shelf life is temporarily assigned two years.

  2. Design and optimization of self-nanoemulsifying drug delivery systems for improved bioavailability of cyclovirobuxine D

    PubMed Central

    Ke, Zhongcheng; Hou, Xuefeng; Jia, Xiao-bin

    2016-01-01

    Background The main purpose of this research was to design a self-nanoemulsifying drug delivery system (SNEDDS) for improving the bioavailability of cyclovirobuxine D as a poorly water-soluble drug. Materials and methods Solubility trials, emulsifying studies, and pseudo-ternary phase diagrams were used to screen the SNEDDS formulations. The optimized drug-loaded SNEDDS was prepared at a mass ratio of 3:24:38:38 for cyclovirobuxine D, oleic acid, Solutol SH15, and propylene glycol, respectively. The optimized formulation was characterized in terms of physicochemical and pharmacokinetic parameters compared with marketed cyclovirobuxine D tablets. Results The optimized cyclovirobuxine-D-loaded SNEDDS was spontaneously dispersed to form a nanoemulsion with a globule size of 64.80±3.58 nm, which exhibited significant improvement of drug solubility, rapid absorption rate, and enhanced area under the curve, together with increased permeation and decreased efflux. Fortunately, there was a nonsignificant cytotoxic effect toward Caco-2 cells. The relative bioavailability of SNEDDS was 200.22% in comparison with market tablets, in rabbits. Conclusion SNEDDS could be a potential candidate for an oral dosage form of cyclovirobuxine D with improved bioavailability. PMID:27418807

  3. Pharmacokinetics of three formulations of ondansetron hydrochloride in healthy volunteers: 24-mg oral tablet, rectal suppository, and i.v. infusion.

    PubMed

    VanDenBerg, C M; Kazmi, Y; Stewart, J; Weidler, D J; Tenjarla, S N; Ward, E S; Jann, M W

    2000-06-01

    The absolute bioavailability and pharmacokinetics of three formulations of ondansetron hydrochloride 24 mg--an oral tablet, an intravenous solution, and an extemporaneous rectal suppository--were studied. Twelve healthy, nonsmoking volunteers (six men and six women) were given ondansetron in a study with a three-way cross-over design. All subjects received each dosage form on the same day in the following order: oral tablet, rectal suppository, and intravenous infusion. Administrations were separated by one week. Blood sampling times varied, depending on the administration route. Mean absolute bioavailability for the oral tablet and the rectal suppository differed significantly. Absorption of ondansetron was prolonged when it was administered as the rectal suppository. Absolute bioavailability for the 24-mg tablet was similar to that for other tablet strengths in previous studies. All subjects completed the study without significant adverse effects. Absorption of ondansetron from the rectal suppository was prolonged compared with the oral tablet and the i.v. infusion. Bioavailability for the 24-mg suppository formulation was considerably lower than for the 24-mg tablet.

  4. Polymeric Micelles and Alternative Nanonized Delivery Vehicles for Poorly Soluble Drugs

    PubMed Central

    Lu, Ying; Park, Kinam

    2013-01-01

    Poorly soluble drugs often encounter low bioavailability and erratic absorption patterns in the clinical setting. Due to the rising number of compounds having solubility issues, finding ways to enhance the solubility of drugs is one of the major challenges in the pharmaceutical industry today. Polymeric micelles, which form upon self-assembly of amphiphilic macromolecules, can act as solubilizing agents for delivery of poorly soluble drugs. This manuscript examines the fundamentals of polymeric micelles through reviews of representative literature and demonstrates possible applications through recent examples of clinical trial developments. In particular, the potential of polymeric micelles for delivery of poorly water-soluble drugs, especially in the areas of oral delivery and in cancer therapy, is discussed. Key considerations in utilizing polymeric micelles’ advantages and overcoming potential disadvantages have been highlighted. Lastly, other possible strategies related to particle size reduction for enhancing solubilization of poorly water-soluble drugs are introduced. PMID:22944304

  5. Enhanced Oral Bioavailability of Domperidone with Piperine in Male Wistar Rats: Involvement of CYP3A1 and P-gp Inhibition.

    PubMed

    Athukuri, Bhargavi Latha; Neerati, Prasad

    2017-01-01

    Domperidone is a commonly used antiemetic drug. The oral bioavailability of domperidone is very low due to its rapid first pass metabolism in the intestine and liver. Piperine, the main alkaloid present in black pepper has been reported to show inhibitory effects on Cytochrome P-450 (CYP-450) enzymes and P-glycoprotein (P-gp). In the present study we investigated the effect of piperine pretreatment on the intestinal transport and oral bioavailability of domperidone in male Wistar rats. The intestinal transport of domperidone was evaluated by an in-vitro non-everted sac method and in-situ single pass intestinal perfusion (SPIP) study. The oral pharmacokinetics of domperidone was evaluated by conducting oral bioavailability study in rats. A statistically significant improvement in apparent permeability (Papp) was observed in rats pretreated with piperine compared to the respective control group. The effective permeability (Peff) of domperidone was increased in the ileum of the piperine treated group. Following pretreatment with piperine, the peak plasma concentration (Cmax) and area under the concentration- time curve (AUC) were significantly increased. A significant decrease in time to reach maximum plasma concentration (Tmax), clearance and elimination rate constant (Kel) was observed in rats pretreated with piperine. Piperine enhanced the oral bioavailability of domperidone by inhibiting CYP3A1 and P-gp in rats. This observation suggests the possibility that the combination of piperine with other CYP3A4 and P-gp dual substrates may also improve bioavailability. Further clinical studies are recommended to verify this drug interaction in human volunteers and patients. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  6. Bioavailabilities of rectal and oral methadone in healthy subjects

    PubMed Central

    Dale, Ola; Sheffels, Pamela; Kharasch, Evan D

    2004-01-01

    Aims Rectal administration of methadone may be an alternative to intravenous and oral dosing in cancer pain, but the bioavailability of the rectal route is not known. The aim of this study was to compare the absolute rectal bioavailability of methadone with its oral bioavailability in healthy humans. Methods Seven healthy subjects (six males, one female, aged 20–39 years) received 10 mg d5-methadone-HCl rectally (5 ml in 20% glycofurol) together with either d0-methadone intravenously (5 mg) or orally (10 mg) on two separate occasions. Blood samples for the LC-MS analyses of methadone and it's metabolite EDDP were drawn for up to 96 h. Noninvasive infrared pupillometry was peformed at the same time as blood sampling. Results The mean absolute rectal bioavalability of methadone was 0.76 (0.7, 0.81), compared to 0.86 (0.75, 0.97) for oral administration (mean (95% CI)). Rectal absorption of methadone was more rapid than after oral dosing with Tmax values of 1.4 (0.9, 1.8) vs. 2.8 (1.6, 4.0) h. The extent of formation of the metabolite EDDP did not differ between routes of administration. Single doses of methadone had a duration of action of at least 10 h and were well tolerated. Conclusions Rectal administration of methadone results in rapid absorption, a high bioavailability and long duration of action. No evidence of presystemic elimination was seen. Rectal methadone has characteristics that make it a potential alternative to intravenous and oral administration, particularly in cancer pain and palliative care. PMID:15255797

  7. Pharmacokinetics of acetaminophen, codeine, and the codeine metabolites morphine and codeine-6-glucuronide in healthy Greyhound dogs

    PubMed Central

    KuKanich, Butch

    2009-01-01

    The purpose of this study was to determine the pharmacokinetics of codeine and the active metabolites morphine and codeine-6-glucuronide after IV codeine administration and the pharmacokinetics of acetaminophen (APAP), codeine, morphine, and codeine-6-glucuronide after oral administration of combination product containing acetaminophen and codeine to dogs. Six healthy Greyhound dogs were administered 0.734 mg/kg codeine IV and acetaminophen (10.46 mg/kg mean dose) with codeine (1.43 mg/kg mean dose) orally. Blood samples were obtained at predetermined time points for the determination of codeine, morphine, and codeine-6-glucuronide plasma concentrations by LC/MS and acetaminophen by HPLC with UV detection. Codeine was rapidly eliminated after IV administration (T½ =1.22 hr; clearance=29.94 mL/min/kg; volume of distribution=3.17 L/kg) with negligible amounts of morphine present, but large amounts of codeine-6-glucuronide (CMAX=735.75 ng/mL) were detected. The oral bioavailability of codeine was 4%, morphine concentrations were negligible, but large amounts of codeine-6-glucuronide (CMAX=1952.86 ng/mL) were detected suggesting substantial first pass metabolism. Acetaminophen was rapidly absorbed (CMAX=6.74 μg/mL; TMAX=0.85 hr) and eliminated (T½=0.96 hr). In conclusion, the pharmacokinetics of codeine were similar to other opioids in dogs with a short half-life, rapid clearance, large volume of distribution, and poor oral bioavailability. High concentrations of codeine-6-glucuronide were detected after IV and oral administration. PMID:20444020

  8. Pharmacokinetics of acetaminophen, codeine, and the codeine metabolites morphine and codeine-6-glucuronide in healthy Greyhound dogs.

    PubMed

    KuKanich, B

    2010-02-01

    The purpose of this study was to determine the pharmacokinetics of codeine and the active metabolites morphine and codeine-6-glucuronide after i.v. codeine administration and the pharmacokinetics of acetaminophen (APAP), codeine, morphine, and codeine-6-glucuronide after oral administration of combination product containing acetaminophen and codeine to dogs. Six healthy Greyhound dogs were administered 0.734 mg/kg codeine i.v. and acetaminophen (10.46 mg/kg mean dose) with codeine (1.43 mg/kg mean dose) orally. Blood samples were collected at predetermined time points for the determination of codeine, morphine, and codeine-6-glucuronide plasma concentrations by LC/MS and acetaminophen by HPLC with UV detection. Codeine was rapidly eliminated after i.v. administration (T(1/2) = 1.22 h; clearance = 29.94 mL/min/kg; volume of distribution = 3.17 L/kg) with negligible amounts of morphine present, but large amounts of codeine-6-glucuronide (C(max) = 735.75 ng/mL) were detected. The oral bioavailability of codeine was 4%, morphine concentrations were negligible, but large amounts of codeine-6-glucuronide (C(max) = 1952.86 ng/mL) were detected suggesting substantial first pass metabolism. Acetaminophen was rapidly absorbed (C(max) = 6.74 microg/mL; T(max) = 0.85 h) and eliminated (T(1/2) = 0.96 h). In conclusion, the pharmacokinetics of codeine was similar to other opioids in dogs with a short half-life, rapid clearance, large volume of distribution, and poor oral bioavailability. High concentrations of codeine-6-glucuronide were detected after i.v. and oral administration.

  9. Improved dissolution and absorption of ketoconazole in the presence of organic acids as pH-modifiers.

    PubMed

    Adachi, Masashi; Hinatsu, Yuta; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Nakatani, Manabu; Wada, Koichi; Yamamoto, Akira

    2015-08-30

    Formulation development of poorly water-soluble compounds can be challenging because of incomplete dissolution that causes low and variable bioavailability. Enhancing compound solubility is important and many techniques have been investigated to that end, but they require specific materials and machinery. This study investigates the incorporation of a pH-modifier as a method to increase compound solubility and uses ketoconazole (KZ), which is weakly basic (pKa: 6.5), as a model compound. Organic acids are effective pH-modifiers and are generally used in pharmaceutical industries. We successfully obtained granules containing variable organic acids (KZ/acid granule) using a high-shear mixer. Dissolution tests of the KZ/acid granule resulted in highly enhanced solubility under non-sink conditions. Adding water-soluble acids, such as citric acid (CA) and tartaric acid, resulted in more than 8-fold higher dissolution at pH 6.0 compared to that of KZ only. The granules containing citric acid (KZ/CA granule) improved the dissolution of KZ after oral administration to rats under low gastric acid conditions, where the bioavailability of the KZ/CA granules at elevated gastric pH was comparable with that of KZ only at gastric acidic pH. The incorporation of organic acids would result in effective therapeutic outcomes independent of gastric pH in patients. In addition, higher bioavailability of KZ was observed after oral administration of KZ/CA granules under gastric acidic pH conditions than that of KZ alone. Thus, CA improved the dissolution and absorption rate of KZ after oral administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Optimized preparation of vinpocetine proliposomes by a novel method and in vivo evaluation of its pharmacokinetics in New Zealand rabbits.

    PubMed

    Xu, Hongtao; He, Ling; Nie, Shufang; Guan, Jin; Zhang, Xiaoning; Yang, Xinggang; Pan, Weisan

    2009-11-16

    Free-flowing proliposomes which contained vinpocetine were prepared successfully to increase the oral bioavailability of vinpocetine. In this study the proliposomes were prepared by a novel method which was reported for the first time and the formulation was optimized using the centre composite design (CCD). The optimized formulation was Soybean phosphatidylcholine: 860 mg; cholesterol: 95 mg and sorbitol: 8000 mg. After the proliposomes were contacted with water, the suspension of vinpocetine liposomes formed automatically and the entrapment efficiency was approximately 86.3% with an average particle size of about 300 nm. The physicochemical properties of the proliposomes including SEM, TEM, XRD and FTIR were also detected. HPLC system was applied to study the concentration of vinpocetine in the plasma of the New Zealand rabbits after oral administration of vinpocetine proliposomes and vinpocetine suspension. The pharmacokinetic parameters were calculated by the software program DAS2.0. The concentration-time curves of vinpocetine suspension and vinpocetine proliposomes were much more different. There were two absorption peaks on the concentration-time curves of the vinpocetine proliposomes. The pharmacokinetic parameters of vinpocetine and vinpocetine proliposomes in New Zealand rabbits were T(max) 1 h and 3 h (there was also an absorption peak at 1 h); C(max) 163.82+/-12.28 ng/ml and 166.43+/-21.04 ng/ml; AUC(0-infinity) 1479.70+/-68.51 ng/ml h and 420.70+/-35.86 ng/ml h, respectively. The bioavailability of vinpocetine in proliposomes was more than 3.5 times higher than the vinpocetine suspension. The optimized vinpocetine proliposomes did improve the oral bioavailability of vinpocetine in New Zealand rabbits and offer a new approach to enhance the gastrointestinal absorption of poorly water soluble drugs.

  11. Sirolimus formulation with improved pharmacokinetic properties produced by a continuous flow method.

    PubMed

    Solymosi, Tamás; Angi, Réka; Basa-Dénes, Orsolya; Ránky, Soma; Ötvös, Zsolt; Glavinas, Hristos; Filipcsei, Genovéva; Heltovics, Gábor

    2015-08-01

    The oral bioavailability of Sirolimus is limited by poor dissolution of the compound in the gastrointestinal tract resulting in a low bioavailability and large inter-individual differences in blood levels. Several different formulation approaches were applied to overcome these disadvantageous pharmacokinetic properties including the marketed oral solution and a tablet form containing wet milled nanocrystals. These approaches deliver improved pharmacokinetics, yet, they share the characteristics of complex production method and composition. We have developed a nanostructured Sirolimus formulation prepared by the controlled continuous flow precipitation of the compound from its solution in the presence of stabilizers. We have shown that contrary to the batch production the process could be easily intensified and scaled up; apparently the uniformity of the precipitation is heavily dependent on the production parameters, most likely the mixing of the solvent and antisolvent. We compared the physicochemical and pharmacokinetic properties of the nanostructured formula with the marketed nanoformula. We found that our method produces particles in the size range of less than 100nm. The solid form redispersed instantaneously in water and in biorelevant media. Both the solid form and the redispersed colloid solution showed excellent stability even in accelerated test conditions. The oral administration of the nanostructured formula resulted in faster absorption, higher exposure and higher trough concentrations when compared to the marked form. These advantageous properties could allow the development of solid oral Sirolimus formulae with lower strength and gel based topical delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Nonlinear intestinal absorption kinetics of cefuroxime axetil in rats.

    PubMed Central

    Ruiz-Balaguer, N; Nacher, A; Casabo, V G; Merino, M

    1997-01-01

    Cefuroxime is commercially available for parenteral administration as a sodium salt and for oral administration as cefuroxime axetil, the 1-(acetoxy)ethyl ester of the drug. Cefuroxime axetil is a prodrug of cefuroxime and has little, if any, antibacterial activity until hydrolyzed in vivo to cefuroxime. In this study, the absorption of cefuroxime axetil in the small intestines of anesthetized rats was investigated in situ, by perfusion at four concentrations (11.8, 5, 118 and 200 microM). Oral absorption of cefuroxime axetil can apparently be described as a specialized transport mechanism which obeys Michaelis-Menten kinetics. Parameters characterizing absorption of prodrug in free solution were obtained: maximum rate of absorption (Vmax) = 289.08 +/- 46.26 microM h-1, and Km = 162.77 +/- 31.17 microM. Cefuroxime axetil transport was significantly reduced in the presence of the enzymatic inhibitor sodium azide. On the other hand, the prodrug was metabolized in the gut wall through contact with membrane-bound enzymes in the brush border membrane before absorption occurred. This process reduces the prodrug fraction directly available for absorption. From a bioavailability point of view, therefore, the effects mentioned above can explain the variable and poor bioavailability following oral administration of cefuroxime axetil. Thus, future strategies in oral cefuroxime axetil absorption should focus on increasing the stability of the prodrug in the intestine by modifying the prodrug structure and/or targeting the compound to the absorption site. PMID:9021205

  13. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules.

    PubMed

    Choonara, Bibi F; Choonara, Yahya E; Kumar, Pradeep; Bijukumar, Divya; du Toit, Lisa C; Pillay, Viness

    2014-11-15

    The oral delivery of proteins and peptides is a dynamic research field despite the numerous challenges limiting their effective delivery. Successful oral delivery of proteins and peptides requires the accomplishment of three key tasks: protection of the macromolecules from degradation in the gastrointestinal tract (GIT), permeation through the intestinal barrier and absorption of molecules into the systemic circulation. Currently, no clinically useful oral formulations have been developed but several attempts have been made to overcome the challenges of low oral bioavailability resulting from poor absorption, poor permeation and enzymatic degradation of the proteins and peptides in the GIT. Present strategies attempt to provide structural protection of the proteins and peptides and improved absorption through the use of enzyme inhibitors, absorption enhancers, novel polymeric delivery systems and chemical modification. However, each of these technologies has their limitations despite showing positive results. This review attempts to discuss the physical and chemical barriers of the GIT with particular emphasis on the current approaches employed to overcome these barriers, including the evaluation of other non-parenteral routes of protein and peptide delivery. In addition, this review assimilates oral formulation strategies under development and within the clinical trial stage in relation to their benefits and drawbacks with regard to facilitating optimal protection and absorption of proteins and peptides, as well as pertinent future challenges and opportunities governing oral drug delivery. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Predicting oral relative bioavailability of arsenic in soil from in vitro bioaccessibility

    EPA Science Inventory

    Several investigations have been conducted to develop in vitro bioaccessibility (IVBA) assays that reliably predict in vivo oral relative bioavailability (RBA) of arsenic (As). This study describes a meta-regression model relating soil As RBA and IVBA that is based upon data comb...

  15. Absorption Study of Genistein Using Solid Lipid Microparticles and Nanoparticles: Control of Oral Bioavailability by Particle Sizes.

    PubMed

    Kim, Jeong Tae; Barua, Sonia; Kim, Hyeongmin; Hong, Seong-Chul; Yoo, Seung-Yup; Jeon, Hyojin; Cho, Yeongjin; Gil, Sangwon; Oh, Kyungsoo; Lee, Jaehwi

    2017-07-01

    In this study, the effect of particle size of genistein-loaded solid lipid particulate systems on drug dissolution behavior and oral bioavailability was investigated. Genistein-loaded solid lipid microparticles and nanoparticles were prepared with glyceryl palmitostearate. Except for the particle size, other properties of genistein-loaded solid lipid microparticles and nanoparticles such as particle composition and drug loading efficiency and amount were similarly controlled to mainly evaluate the effect of different particle sizes of the solid lipid particulate systems on drug dissolution behavior and oral bioavailability. The results showed that genistein-loaded solid lipid microparticles and nanoparticles exhibited a considerably increased drug dissolution rate compared to that of genistein bulk powder and suspension. The microparticles gradually released genistein as a function of time while the nanoparticles exhibited a biphasic drug release pattern, showing an initial burst drug release, followed by a sustained release. The oral bioavailability of genistein loaded in solid lipid microparticles and nanoparticles in rats was also significantly enhanced compared to that in bulk powders and the suspension. However, the bioavailability from the microparticles increased more than that from the nanoparticles mainly because the rapid drug dissolution rate and rapid absorption of genistein because of the large surface area of the genistein-solid lipid nanoparticles cleared the drug to a greater extent than the genistein-solid lipid microparticles did. Therefore, the findings of this study suggest that controlling the particle size of solid-lipid particulate systems at a micro-scale would be a promising strategy to increase the oral bioavailability of genistein.

  16. Absolute Bioavailability and Pharmacokinetics of Linezolid in Hospitalized Patients Given Enteral Feedings

    PubMed Central

    Beringer, Paul; Nguyen, Megan; Hoem, Nils; Louie, Stan; Gill, Mark; Gurevitch, Michael; Wong-Beringer, Annie

    2005-01-01

    Linezolid is a new antimicrobial agent effective against drug-resistant gram-positive pathogens which are common causes of infections in hospitalized patients. Many such patients rely on the intravenous or enteral route for nutrition and drug administration. Therefore, the bioavailability of linezolid administered enterally in the presence of enteral feedings in hospitalized patients was examined. Eighteen subjects were assessed in a randomized single-dose crossover study; 12 received continuous enteral feedings, while 6 did not (controls). Both groups received linezolid 600 mg intravenously and orally (control) or enterally, with the alternate route of administration separated by a 24-h washout period. Pharmacokinetic parameters derived from noncompartmental and compartmental analysis incorporating linear and nonlinear elimination pathways were compared between groups: F, Ka, Vs, K23, K32, Vmax, Km, and K20 (bioavailability, absorption rate constant, volume of central compartment normalized to body weight, intercompartmental rate constants, maximum velocity, Michaelis-Menten constant, and elimination rate constant, respectively). Pharmacokinetic (PK) data were available from 17 patients. The linezolid oral suspension was rapidly and completely absorbed by either the oral or enteral route of administration. Bioavailability was unaltered in the presence of enteral feedings. PK estimates remain similar regardless of the model applied. At the therapeutic dose used, only slight nonlinearity in elimination was observed. A linezolid oral suspension may be administered via the enteral route to hospitalized patients without compromise in its excellent bioavailability and rapid rate of absorption. Compartmental pharmacokinetic analysis offers a more flexible study application, since bioavailability (F) can be estimated directly with intermixed intravenous/oral doses without a need for a washout period. PMID:16127039

  17. Solid super saturated self-nanoemulsifying drug delivery system (sat-SNEDDS) as a promising alternative to conventional SNEDDS for improvement rosuvastatin calcium oral bioavailability.

    PubMed

    Abo Enin, Hadel A; Abdel-Bar, Hend Mohamed

    2016-11-01

    This study aims to illustrate the applicability of solid supersaturated self-nanoemulsifying drug delivery system (sat-SNEDDS) for the improvement of rosuvastatin calcium (RC) oral bioavailability. Different sat-SNEDDS were prepared by incorporating different ratios of RC into SNEDDS using tween80/PEG400 (77.2%) as surfactant/cosurfactant mixture and garlic /olive oil (22.8%) as oil phase. The prepared systems were characterized viz; size, zeta potential, TEM and stability. Various hydrophilic and hydrophobic carriers were employed to solidify the optimized RC sat-SNEDDS. The influence of the carrier was investigated by SEM, XRPD, DSC, flow properties, in vitro precipitation, drug release and oral bioavailability study. The adsorption of the stable positively charged nanocarrier RC sat-SNEDDS onto solid carriers provided free flowing amorphous powder. The carrier could amend the morphological architecture and in vitro release of the RC solid sat-SNEDDS. Hydrophobic carriers as microcrystalline cellulose 102 (MCC) showed superior physical characters and higher dissolution rate over hydrophilic carriers as maltodextrin with respective T 100% 30 min and 45 min. The rapid spontaneous emulsification, the positively nanosized MCC-sat-SNEDDS improved oral bioavailability of RC by 2.1-fold over commercial tablets. Solid MCC-sat-SNEDDS combined dual benefits of sat-SNEDDS and solid dosage form was successfully optimized to improve RC oral bioavailability.

  18. Bioavailability of Oral Hydrocortisone Corrected for Binding Proteins and Measured by LC-MS/MS Using Serum Cortisol and Salivary Cortisone.

    PubMed

    Johnson, T N; Whitaker, M J; Keevil, B; Ross, R J

    2018-01-01

    The assessment absolute bioavailability of oral hydrocortisone is complicated by its saturable binding to cortisol binding globulin (CBG). Previous assessment of bioavailability used a cortisol radioimmunoassay which has cross reactivity with other steroids. Salivary cortisone is a measure of free cortisol and LC-MS/MS is the gold standard method for measuring steroids. We here report the absolute bioavailability of hydrocortisone calculated using serum cortisol and salivary cortisone measured by LC-MS/MS. 14 healthy male dexamethasone suppressed volunteers were administered 20 mg hydrocortisone either intravenously or orally by tablet. Samples of serum and saliva were taken and measured for cortisol and cortisone by LC-MS/MS. Serum cortisol was corrected for saturable binding using published data and pharmacokinetic parameters derived using the program WinNonlin. The mean (95% CI) bioavailability of oral hydrocortisone calculated from serum cortisol, unbound serum cortisol and salivary cortisone was 1.00 (0.89-1.14); 0.88 (0.75-1.05); and 0.93 (0.83-1.05), respectively. The data confirm that, after oral administration, hydrocortisone is completely absorbed. The data derived from serum cortisol corrected for protein binding, and that from salivary cortisone, are similar supporting the concept that salivary cortisone reflects serum free cortisol levels and that salivary cortisone can be used as a non-invasive method for measuring the pharmacokinetics of hydrocortisone.

  19. Enhanced Oral Bioavailability of Diltiazem by the Influence of Gallic Acid and Ellagic Acid in Male Wistar Rats: Involvement of CYP3A and P-gp Inhibition.

    PubMed

    Athukuri, Bhargavi Latha; Neerati, Prasad

    2017-09-01

    The oral bioavailability of diltiazem is very low due to rapid first pass metabolism in liver and intestine. The purpose of the study was to investigate the effect of gallic acid and ellagic acid on intestinal transport and oral bioavailability of diltiazem in rats. The intestinal transport and permeability of diltiazem was evaluated by in vitro non-everted sac method and in situ single pass intestinal perfusion study. The oral pharmacokinetics was evaluated by conducting oral bioavailability study. The intestinal transport and apparent permeability of diltiazem were significantly enhanced in duodenum, jejunum, and ileum of gallic and ellagic acid-treated groups. The effective permeability of diltiazem was significantly enhanced in ileum part of gallic and ellagic acid-treated groups. When compared with control group, the presence of these two phytochemicals significantly enhanced the area under plasma concentration-time curve and the peak plasma concentration of diltiazem (C max ). Gallic acid and ellagic acid significantly increased the bioavailability of diltiazem due to the inhibition of both CYP3A-mediated metabolism and P-glycoprotein-mediated efflux in the intestine and/or liver. Based on these results, the clinical experiments are warranted for the confirmation to reduce the dose of diltiazem when concomitantly administered with these phytochemicals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Solution or suspension - Does it matter for lipid based systems? In vivo studies of chase dosing lipid vehicles with aqueous suspensions of a poorly soluble drug.

    PubMed

    Larsen, A T; Holm, R; Müllertz, A

    2017-08-01

    In this study, the potential of co-administering an aqueous suspension with a placebo lipid vehicle, i.e. chase dosing, was investigated in rats relative to the aqueous suspension alone or a solution of the drug in the lipid vehicle. The lipid investigated in the present study was Labrafil M2125CS and three evaluated poorly soluble model compounds, danazol, cinnarizine and halofantrine. For cinnarizine and danazol the oral bioavailability in rats after chase dosing or dosing the compound dissolved in Labrafil M21515CS was similar and significantly higher than for the aqueous suspension. For halofantrine the chase dosed group had a tendency towards a low bioavailability relative to the Labrafil M2125CS solution, but still a significant higher bioavailability relative to the aqueous suspension. This could be due to factors such as a slower dissolution rate in the intestinal phase of halofantrine or a lower solubility in the colloidal structures formed during digestion, but other mechanisms may also be involved. The study thereby supported the potential of chase dosing as a potential dosing regimen in situations where it is beneficial to have a drug in the solid state, e.g. due to chemical stability issues in the lipid vehicle. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Optimized nano-transfersomal films for enhanced sildenafil citrate transdermal delivery: ex vivo and in vivo evaluation

    PubMed Central

    Badr-Eldin, Shaimaa M; Ahmed, Osamaa AA

    2016-01-01

    Sildenafil citrate (SLD) is a selective cyclic guanosine monophosphate-specific phosphodiesterase type 5 inhibitor used for the oral treatment of erectile dysfunction and, more recently, for other indications, including pulmonary hypertension. The challenges facing the oral administration of the drug include poor bioavailability and short duration of action that requires frequent administration. Thus, the objective of this work is to formulate optimized SLD nano-transfersomal transdermal films with enhanced and controlled permeation aiming at surmounting the previously mentioned challenges and hence improving the drug bioavailability. SLD nano-transfersomes were prepared using modified lipid hydration technique. Central composite design was applied for the optimization of SLD nano-transfersomes with minimized vesicular size. The independent variables studied were drug-to-phospholipid molar ratio, surfactant hydrophilic lipophilic balance, and hydration medium pH. The optimized SLD nano-transfersomes were developed and evaluated for vesicular size and morphology and then incorporated into hydroxypropyl methyl cellulose transdermal films. The optimized transfersomes were unilamellar and spherical in shape with vesicular size of 130 nm. The optimized SLD nano-transfersomal films exhibited enhanced ex vivo permeation parameters with controlled profile compared to SLD control films. Furthermore, enhanced bioavailability and extended absorption were demonstrated by SLD nano-transfersomal films as reflected by their significantly higher maximum plasma concentration (Cmax) and area under the curve and longer time to maxi mum plasma concentration (Tmax) compared to control films. These results highlighted the potentiality of optimized SLD nano-transfersomal films to enhance the transdermal permeation and the bioavailability of the drug with the possible consequence of reducing the dose and administration frequency. PMID:27103786

  2. Optimized nano-transfersomal films for enhanced sildenafil citrate transdermal delivery: ex vivo and in vivo evaluation.

    PubMed

    Badr-Eldin, Shaimaa M; Ahmed, Osamaa Aa

    2016-01-01

    Sildenafil citrate (SLD) is a selective cyclic guanosine monophosphate-specific phosphodiesterase type 5 inhibitor used for the oral treatment of erectile dysfunction and, more recently, for other indications, including pulmonary hypertension. The challenges facing the oral administration of the drug include poor bioavailability and short duration of action that requires frequent administration. Thus, the objective of this work is to formulate optimized SLD nano-transfersomal transdermal films with enhanced and controlled permeation aiming at surmounting the previously mentioned challenges and hence improving the drug bioavailability. SLD nano-transfersomes were prepared using modified lipid hydration technique. Central composite design was applied for the optimization of SLD nano-transfersomes with minimized vesicular size. The independent variables studied were drug-to-phospholipid molar ratio, surfactant hydrophilic lipophilic balance, and hydration medium pH. The optimized SLD nano-transfersomes were developed and evaluated for vesicular size and morphology and then incorporated into hydroxypropyl methyl cellulose transdermal films. The optimized transfersomes were unilamellar and spherical in shape with vesicular size of 130 nm. The optimized SLD nano-transfersomal films exhibited enhanced ex vivo permeation parameters with controlled profile compared to SLD control films. Furthermore, enhanced bioavailability and extended absorption were demonstrated by SLD nano-transfersomal films as reflected by their significantly higher maximum plasma concentration (C max) and area under the curve and longer time to maxi mum plasma concentration (T max) compared to control films. These results highlighted the potentiality of optimized SLD nano-transfersomal films to enhance the transdermal permeation and the bioavailability of the drug with the possible consequence of reducing the dose and administration frequency.

  3. Nonlinear absorption kinetics of self-emulsifying drug delivery systems (SEDDS) containing tocotrienols as lipophilic molecules: in vivo and in vitro studies.

    PubMed

    Alqahtani, Saeed; Alayoubi, Alaadin; Nazzal, Sami; Sylvester, Paul W; Kaddoumi, Amal

    2013-07-01

    Self-emulsifying drug delivery systems (SEDDS) have been broadly used to promote the oral absorption of poorly water-soluble drugs. The purpose of the current study was to evaluate the in vivo oral bioavailability of vitamin E isoforms, δ-tocotrienol (δ-T3) and γ-tocotrienol (γ-T3) administered as SEDDS, as compared to commercially available UNIQUE E® Tocotrienols capsules. Results from studies in rats showed that low dose treatment with δ-T3 (90%) and γ-T3 (10%) formulated SEDDS showed bioavailability of 31.5% and 332%, respectively. However, bioavailability showed a progressive decrease with increased treatment dose that displayed nonlinear absorption kinetics. Additional in vitro studies examining cellular uptake studies in Caco 2 cells revealed that the SEDDS formulation increased passive permeability of δ-T3 and γ-T3 by threefold as compared to the commercial capsule formulation. These studies also showed that free surfactants decreased δ-T3 and γ-T3 absorption. Specifically, combined treatment cremophor EL or labrasol with tocotrienols caused a 60-85% reduction in the cellular uptake of δ-T3 and γ-T3 and these effects appear to result from surfactant-induced inhibition of the δ-T3 and γ-T3 transport protein Niemann-Pick C1-like 1 (NPC1L1). In summary, results showed that SEDDS formulation significantly increases the absorption and bioavailability δ-T3 and γ-T3. However, this effect is self-limiting because treatment with increasing doses of SEDDS appears to be associated with a corresponding increase in free surfactants levels that directly and negatively impact tocotrienol transport protein function and results in nonlinear absorption kinetics and a progressive decrease in δ-T3 and γ-T3 absorption and bioavailability.

  4. Effects of ranitidine (antacid), food, and formulation on the pharmacokinetics of fostamatinib: results from five phase I clinical studies.

    PubMed

    Flanagan, Talia; Martin, Paul; Gillen, Michael; Mathews, David; Lisbon, Eleanor; Kruusmägi, Martin

    2017-02-01

    Fostamatinib is an orally dosed phosphate prodrug that is cleaved by intestinal alkaline phosphatase to the active metabolite R406. Clinical studies were performed to assess the effect of food and ranitidine on exposure, to support in vitro-in vivo relationships (IVIVR) understanding and formulation transitions and to investigate absolute oral bioavailability. A series of in vitro dissolution and clinical pharmacokinetic studies were performed to support the design and introduction of a new formulation, understand the impact of changes in in vitro dissolution on in vivo performance for two fostamatinib formulations, to characterize the effects of food and ranitidine on exposure, and determine the absolute oral bioavailability. The in vivo performance of fostamatinib was generally insensitive to changes in in vitro dissolution performance, although marked slowing of the dissolution rate did impact exposures. Food and ranitidine had minor effects on R406 exposure that were not considered clinically relevant. The absolute oral bioavailability of fostamatinib was 54.6 %. The absolute oral bioavailability of fostamatinib was ~55 %. Food and ranitidine had minor effects on R406 exposure. An in vitro dissolution versus clinical performance relationship was determined that supported formulation transitions.

  5. Floating lipid beads for the improvement of bioavailability of poorly soluble basic drugs: in-vitro optimization and in-vivo performance in humans.

    PubMed

    Abouelatta, Samar M; Aboelwafa, Ahmed A; Khalil, Rawia M; ElGazayerly, Omaima N

    2015-01-01

    The challenge in developing oral drug delivery systems of poorly soluble basic drugs is primarily due to their pH dependent solubility. Cinnarizine (CNZ), a model for a poorly soluble basic drug, has pH dependent solubility; where it dissolves readily at low pH in the stomach and exhibits a very low solubility at pH values greater than 4. It is also characterized by a short half life of 3-6h, which requires frequent daily administration resulting in poor patient compliance. In an attempt to solve these problems, extended release floating lipid beads were formulated. A 2(4) full factorial design was utilized for optimization of the effects of various independent variables; lipid:drug ratio, % Pluronic F-127, % Sterotex, and Gelucire 43/01:Gelucire 50/13 ratio, on the loading efficiency and release of CNZ from the lipid beads. In-vivo pharmacokinetic study of the optimized CNZ-lipid beads compared to Stugeron® (reference standard) was performed in healthy human volunteers. A promising approach for enhancing the bioavailability of the poorly soluble basic drug, CNZ, utilizing novel and simple floating lipid beads was successfully developed. Zero order release profile of CNZ was achieved for 12h. Mean AUC0-24 and AUC0-∞ of the optimized CNZ-loaded lipid beads were 4.23 and 6.04 times that of Stugeron® tablets respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. In vitro and in vivo evaluation of self-nanoemulsifying drug delivery systems of cilostazol for oral and parenteral administration.

    PubMed

    Mahmoud, Dina B; Shukr, Marwa H; Bendas, Ehab R

    2014-12-10

    The current investigation was aimed to improve the solubility of poorly soluble drug, cilostazol (CLZ). Self-nanoemulsifying drug delivery system (SNEDDS) composed of oil, surfactant and co-surfactant for both oral and parenteral administration of CLZ was formulated. The components for SNEDDS were identified by solubility studies, and pseudo-ternary phase diagrams were plotted to identify the efficient self-emulsification regions. The optimum formula, composed of Capryol 90 as an oil phase, Cremophor EL as a surfactant, and Transcutol HP as a co-surfactant in a ratio of 19.8:30.5:49.7 by weight, was able to solubilize CLZ 2000 times higher than its solubility in water. This formula was able to form grade "A" nanoemulsion when diluted with water, resulted in emulsification time of 50±1.1 s, particle size of 14.3 nm, PDI of 0.5 and % transmittance was 97.40%±0.65. It showed excellent in vitro dissolution of 93.1% and 81.5% after 5 min in 0.3% sodium lauryl sulphate solution and phosphate buffer pH 6.4, respectively when compared with the marketed tablet formulation and drug suspension as the tablets showed only 44.3% and 9.9% while CLZ suspension showed 33.9% and 8.8% in 0.3% sodium lauryl sulphate solution and phosphate buffer pH 6.4, respectively. It was found to be robust to dilution, thermodynamically stable with low viscosity values of 14.20±0.35 cP. In vivo study revealed significant increase in bioavailability of CLZ in rabbits to 3.94 fold compared with the marketed tablet formulation after oral administration. This formula could be sterilized by autoclaving and did not cause significant hemolysis to human blood which indicates its safety for intravenous administration with a 1.12 fold increase in bioavailability compared with its oral administration. Our study illustrated the potential use of SNEDDS of poorly soluble CLZ orally, and its successful administration of parenterally when required in acute cases of myocardial and cerebral infarction. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Preclinical Bioavailability Strategy for Decisions on Clinical Drug Formulation Development: An In Depth Analysis.

    PubMed

    Van den Bergh, An; Van Hemelryck, Sandy; Bevernage, Jan; Van Peer, Achiel; Brewster, Marcus; Mackie, Claire; Mannaert, Erik

    2018-06-11

    The aim of the presented retrospective analysis was to verify whether a previously proposed Janssen Biopharmaceutical Classification System (BCS)-like decision tree, based on preclinical bioavailability data of a solution and suspension formulation, would facilitate informed decision making on the clinical formulation development strategy. In addition, the predictive value of (in vitro) selection criteria, such as solubility, human permeability, and/or a clinical dose number (Do), were evaluated, potentially reducing additional supporting formulation bioavailability studies in animals. The absolute ( F abs,sol ) and relative ( F rel, susp/sol ) bioavailability of an oral solution and suspension, respectively, in rat or dog and the anticipated BCS classification were analyzed for 89 Janssen compounds with 28 of these having F rel,susp/sol and F abs,sol in both rat and dog at doses around 10 and 5 mg/kg, respectively. The bioavailability outcomes in the dog aligned well with a BCS-like classification based upon the solubility of the active pharmaceutical ingredient (API) in biorelevant media, while the alignment was less clear for the bioavailability data in the rat. A retrospective analysis on the clinically tested formulations for a set of 12 Janssen compounds confirmed that the previously proposed animal bioavailability-based decision tree facilitated decisions on the oral formulation type, with the dog as the most discriminative species. Furthermore, the analysis showed that based on a Do for a standard human dose of 100 mg in aqueous and/or biorelevant media, a similar formulation type would have been selected compared to the one suggested by the animal data. However, the concept of a Do did not distinguish between solubility enhancing or enabling formulations and does not consider the API permeability, and hence, it produces the risk of slow and potentially incomplete oral absorption of an API with poor intestinal permeability. In cases where clinical dose estimations are available early in development, the preclinical bioavailability studies and dose number calculations, used to guide formulation selection, may be performed at more relevant doses instead of the proposed standard human dose. It should be noted, however, that unlike in late development, there is uncertainty on the clinical dose estimated in the early clinical phases because that dose is usually only based on in vitro and/or in vivo animal pharmacology models, or early clinical biomarker information. Therefore, formulation strategies may be adjusted based on emerging data supporting clinical doses. In summary, combined early information on in vitro-assessed API solubility and permeability, preclinical suspension/solution bioavailability data in relation to the intravenous clearance, and metabolic pathways of the API can strengthen formulation decisions. However, these data may not always fully distinguish between conventional (e.g., to be taken with food), enhancing, and enabling formulations. Therefore, to avoid overinvestment in complex and expensive enabling technologies, it is useful to evaluate a conventional and solubility (and/or permeability) enhancing formulation under fasted and fed conditions, as part of a first-in-human study or in a subsequent early human bioavailability study, for compounds with high Do, a low animal F rel,susp/sol , or low F abs,sol caused by precipitation of the solubilized API.

  8. Effects of polymer molecular weight on relative oral bioavailability of curcumin.

    PubMed

    Tsai, Yin-Meng; Chang-Liao, Wan-Ling; Chien, Chao-Feng; Lin, Lie-Chwen; Tsai, Tung-Hu

    2012-01-01

    Polylactic-co-glycolic acid (PLGA) nanoparticles have been used to increase the relative oral bioavailability of hydrophobic compounds and polyphenols in recent years, but the effects of the molecular weight of PLGA on bioavailability are still unknown. This study investigated the influence of polymer molecular weight on the relative oral bioavailability of curcumin, and explored the possible mechanism accounting for the outcome. Curcumin encapsulated in low (5000-15,000) and high (40,000-75,000) molecular weight PLGA (LMw-NPC and HMw-NPC, respectively) were prepared using an emulsification-solvent evaporation method. Curcumin alone and in the nanoformulations was administered orally to freely mobile rats, and blood samples were collected to evaluate the bioavailability of curcumin, LMw-NPC, and HMw-NPC. An ex vivo experimental gut absorption model was used to investigate the effects of different molecular weights of PLGA formulation on absorption of curcumin. High-performance liquid chromatography with diode array detection was used for quantification of curcumin in biosamples. There were no significant differences in particle properties between LMw-NPC and HMw-NPC, but the relative bioavailability of HMw-NPC was 1.67-fold and 40-fold higher than that of LMw-NPC and conventional curcumin, respectively. In addition, the mean peak concentration (C(max)) of conventional curcumin, LMw-NPC, and HMw-NPC was 0.028, 0.042, and 0.057 μg/mL, respectively. The gut absorption study further revealed that the HMw-PLGA formulation markedly increased the absorption rate of curcumin in the duodenum and resulted in excellent bioavailability compared with conventional curcumin and LMw-NPC. Our findings demonstrate that different molecular weights of PLGA have varying bioavailability, contributing to changes in the absorption rate at the duodenum. The results of this study provide the rationale for design of a nanomedicine delivery system to enhance the bioavailability of water-insoluble pharmaceutical compounds and functional foods.

  9. Effects of polymer molecular weight on relative oral bioavailability of curcumin

    PubMed Central

    Tsai, Yin-Meng; Chang-Liao, Wan-Ling; Chien, Chao-Feng; Lin, Lie-Chwen; Tsai, Tung-Hu

    2012-01-01

    Background Polylactic-co-glycolic acid (PLGA) nanoparticles have been used to increase the relative oral bioavailability of hydrophobic compounds and polyphenols in recent years, but the effects of the molecular weight of PLGA on bioavailability are still unknown. This study investigated the influence of polymer molecular weight on the relative oral bioavailability of curcumin, and explored the possible mechanism accounting for the outcome. Methods Curcumin encapsulated in low (5000–15,000) and high (40,000–75,000) molecular weight PLGA (LMw-NPC and HMw-NPC, respectively) were prepared using an emulsification-solvent evaporation method. Curcumin alone and in the nanoformulations was administered orally to freely mobile rats, and blood samples were collected to evaluate the bioavailability of curcumin, LMw-NPC, and HMw-NPC. An ex vivo experimental gut absorption model was used to investigate the effects of different molecular weights of PLGA formulation on absorption of curcumin. High-performance liquid chromatography with diode array detection was used for quantification of curcumin in biosamples. Results There were no significant differences in particle properties between LMw-NPC and HMw-NPC, but the relative bioavailability of HMw-NPC was 1.67-fold and 40-fold higher than that of LMw-NPC and conventional curcumin, respectively. In addition, the mean peak concentration (Cmax) of conventional curcumin, LMw-NPC, and HMw-NPC was 0.028, 0.042, and 0.057 μg/mL, respectively. The gut absorption study further revealed that the HMw-PLGA formulation markedly increased the absorption rate of curcumin in the duodenum and resulted in excellent bioavailability compared with conventional curcumin and LMw-NPC. Conclusion Our findings demonstrate that different molecular weights of PLGA have varying bioavailability, contributing to changes in the absorption rate at the duodenum. The results of this study provide the rationale for design of a nanomedicine delivery system to enhance the bioavailability of water-insoluble pharmaceutical compounds and functional foods. PMID:22745556

  10. Nanosuspension of Phyllanthus amarus extract for improving oral bioavailability and prevention of paracetamol induced hepatotoxicity in Sprague-Dawley rats

    NASA Astrophysics Data System (ADS)

    Bhushan Mishra, Shanti; Pandey, Himanshu; Pandey, Avinash C.

    2013-09-01

    Phyllanthus amarus (P. amarus) is commonly used for traditional Indian medicine and as dietary adjuncts for the treatment of numerous physiological disorders including hepatic disorders. Due to the poor water solubility of its major constituents such as lignans and flavonoids, its absorption upon oral administration could be limited. The present study was designed to evaluate and compare the hepatoprotective effects of the ethanolic extract of P. amarus (PAE) and its nanoparticles (PAN) on paracetamol induced acute liver toxicity in Sprague-Dawley rats. An oral dose of PAE at 125 and 250 mg kg-1 and PAN at 25 and 50 mg kg-1 showed a significant hepatoprotective effect relatively to the same extent (P < 0.001) by reducing levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and bile salts. These biochemical assessments were supported by rat hepatic biopsy examinations. Moreover, the results also indicated that the hepatoprotective effect of 50 mg kg-1 PAN was effectively better than 125 mg kg-1 PAE (P < 0.001), and an oral dose of PAN that is five times less than PAE could exhibit similar levels of outcomes. In conclusion, we suggest that the nanoparticles system can be applied to overcome other poorly water soluble herbal medicines and furthermore to decrease the treatment dosage.

  11. Design of microemulsion system suitable for the oral delivery of poorly aqueous soluble beta-carotene.

    PubMed

    Peng, Cheng; Svirskis, Darren; Lee, Sung Je; Oey, Indrawati; Kwak, Hae-Soo; Chen, Guanyu; Bunt, Craig; Wen, Jingyuan

    2017-02-14

    Beta-carotene is a potent antioxidant for maintaining human health. However, its oral absorption is low due to poor aqueous solubility of less than 1 μg/ml. A microemulsion delivery system was designed to solubilize beta-carotene toward enhancing its oral bioavailability. From seven pseudoternary diagrams constructed, three systems were selected with large microemulsion areas suitable for oral administration and dilution in the predominately aqueous gastrointestinal fluids. Conductivity and rheology characterization were conducted along four dilution lines within the selected systems. Three pseudoternary-phase diagrams were selected with large microemulsion regions, >60% of the total phase diagram area, which provide microemulsions with higher drug-loading capacity. A phenomenon was observed by which both propylene glycol and Capmul MCM EP stabilize the microstructure of the microemulsions has been proposed based on the characterization studies. An optimal bicontinuous microemulsion formulation was selected comprising 12% orange oil, 24% Capmul MCM, 18% Tween 20, 6% Labrasol, 20% propylene glycol and 20% water, with a high beta-carotene loading capacity of 140.8 μg/ml and droplet size of 117.4 nm. In conclusion, the developed novel microemulsion formulation allows solubilizing beta-carotene and is a promising basis for further development as a functional beverage.

  12. Novel delivery system for natural products: Nano-curcumin formulations.

    PubMed

    Rahimi, Hamid Reza; Nedaeinia, Reza; Sepehri Shamloo, Alireza; Nikdoust, Shima; Kazemi Oskuee, Reza

    2016-01-01

    Curcumin is extracted from Curcuma longa and regulates the intracellular signal pathways which control the growth of cancerous cell, inflammation, invasion and apoptosis. Curcumin molecules have special intrinsic features that can target the intracellular enzymes, genome (DNA) and messengers (RNA). A wide range of studies have been conducted on the physicochemical traits and pharmacological effects of curcumin on different diseases like cardiovascular diseases, diabetes, cancer, rheumatoid arthritis, Alzheimer's, inflammatory bowel disease (IBD), and even it has wound healing. Oral bioavailability of curcumin is rather poor, which would certainly put some boundaries in the employment of this drug. Bibliographical searches were performed using MEDLINE/ScienceDirect/OVID up to February 2015 using the following keywords (all fields): ("Curcumin" OR "Curcuma longa") AND [(nanoparticles) OR (Nanomicelles) OR (micro emulsions) OR (liposome) OR (phospholipid). Consequently, for any developments of curcumin in the future, analogues of curcumin that have better bioavailability or substitute formulations are needed crucially. These studies indicated that nanotechnology can formulate curcumin effectively, and this nano-formulated curcumin with a potent ability against various cancer cells, were represented to have better efficacy and bioavailability under in vivo conditions.

  13. Optimization of Imidazo[4,5-b]pyridine-Based Kinase Inhibitors: Identification of a Dual FLT3/Aurora Kinase Inhibitor as an Orally Bioavailable Preclinical Development Candidate for the Treatment of Acute Myeloid Leukemia

    PubMed Central

    2012-01-01

    Optimization of the imidazo[4,5-b]pyridine-based series of Aurora kinase inhibitors led to the identification of 6-chloro-7-(4-(4-chlorobenzyl)piperazin-1-yl)-2-(1,3-dimethyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridine (27e), a potent inhibitor of Aurora kinases (Aurora-A Kd = 7.5 nM, Aurora-B Kd = 48 nM), FLT3 kinase (Kd = 6.2 nM), and FLT3 mutants including FLT3-ITD (Kd = 38 nM) and FLT3(D835Y) (Kd = 14 nM). FLT3-ITD causes constitutive FLT3 kinase activation and is detected in 20–35% of adults and 15% of children with acute myeloid leukemia (AML), conferring a poor prognosis in both age groups. In an in vivo setting, 27e strongly inhibited the growth of a FLT3-ITD-positive AML human tumor xenograft (MV4–11) following oral administration, with in vivo biomarker modulation and plasma free drug exposures consistent with dual FLT3 and Aurora kinase inhibition. Compound 27e, an orally bioavailable dual FLT3 and Aurora kinase inhibitor, was selected as a preclinical development candidate for the treatment of human malignancies, in particular AML, in adults and children. PMID:23043539

  14. Improving permeability and oral absorption of mangiferin by phospholipid complexation.

    PubMed

    Ma, Hequn; Chen, Hongming; Sun, Le; Tong, Lijin; Zhang, Tianhong

    2014-03-01

    Mangiferin is an active ingredient of medicinal plant with poor hydrophilicity and lipophilicity. Many reports focused on improving aqueous solubility, but oral bioavailability of mangiferin was still limited. In this study, we intended to increase not only solubility, but also membrane permeability of mangiferin by a phospholipid complexation technique. The new complex's physicochemical properties were characterized in terms of scanning electron microscopy (SEM), differential scanning calorimetry (DSC), infrared absorption spectroscopy (IR), aqueous solubility, oil-water partition coefficient and in vitro dissolution. The intestinal absorption of the complex was studied by the rat in situ intestinal perfusion model. After oral administration of mangiferin-phospholipid complex and crude mangiferin in rats, the concentrations of mangiferin were determined by a validated RP-HPLC method. Results showed that the solubility of the complex in water and in n-octanol was enhanced and the oil-water partition coefficient was improved by 6.2 times and the intestinal permeability in rats was enhanced significantly. Peak plasma concentration and AUC of mangiferin from the complex (Cmax: 377.66 μg/L, AUC: 1039.94 μg/L*h) were higher than crude mangiferin (Cmax: 180 μg/L, AUC: 2355.63 μg/L*h). In view of improved solubility and enhanced permeability, phospholipid complexation technique can increase bioavailability of mangiferin by 2.3 times in comparison to the crude mangiferin. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Enhanced oral bioavailability of valsartan using a polymer-based supersaturable self-microemulsifying drug delivery system.

    PubMed

    Yeom, Dong Woo; Chae, Bo Ram; Son, Ho Yong; Kim, Jin Han; Chae, Jun Soo; Song, Seh Hyon; Oh, Dongho; Choi, Young Wook

    2017-01-01

    A novel, supersaturable self-microemulsifying drug delivery system (S-SMEDDS) was successfully formulated to enhance the dissolution and oral absorption of valsartan (VST), a poorly water-soluble drug, while reducing the total quantity for administration. Poloxamer 407 is a selectable, supersaturating agent for VST-containing SMEDDS composed of 10% Capmul ® MCM, 45% Tween ® 20, and 45% Transcutol ® P. The amounts of SMEDDS and Poloxamer 407 were chosen as formulation variables for a 3-level factorial design. Further optimization was established by weighting different levels of importance on response variables for dissolution and total quantity, resulting in an optimal S-SMEDDS in large quantity (S-SMEDDS_LQ; 352 mg in total) and S-SMEDDS in reduced quantity (S-SMEDDS_RQ; 144.6 mg in total). Good agreement was observed between predicted and experimental values for response variables. Consequently, compared with VST powder or suspension and SMEDDS, both S-SMEDDS_LQ and S-SMEDDS_RQ showed excellent in vitro dissolution and in vivo oral bioavailability in rats. The magnitude of dissolution and absorption-enhancing capacities using quantity-based comparisons was in the order S-SMEDDS_RQ > S-SMEDDS_LQ > SMEDDS > VST powder or suspension. Thus, we concluded that, in terms of developing an effective SMEDDS preparation with minimal total quantity, S-SMEDDS_RQ is a promising candidate.

  16. Nanocurcumin is superior to native curcumin in preventing degenerative changes in Experimental Cerebral Malaria.

    PubMed

    Dende, Chaitanya; Meena, Jairam; Nagarajan, Perumal; Nagaraj, Viswanathan Arun; Panda, Amulya Kumar; Padmanaban, Govindarajan

    2017-08-30

    Curcumin has many pharmacological activities despite its poor bioavailability and in vivo stability. Here, we show that a nanoformulated curcumin (PLGA-curcumin) has better therapeutic index than native curcumin in preventing the onset of neurological symptoms and delaying the death of mice in experimental cerebral malaria. Oral PLGA-curcumin was at least as effective as native curcumin at a 15-fold lower concentration in preventing the breakdown of blood-brain barrier and inhibition of brain mRNAs for inflammatory cytokines, chemokine receptor CXCR3 and its ligand CXCL10, with an increase in the anti-inflammatory cytokine IL-10. This was also reflected in serum cytokine and chemokine levels. At equivalent concentrations, a single oral dose of PLGA-curcumin was more effective in inhibiting serum IFNγ levels and enhancing IL-10 levels than native curcumin. Even at low concentrations, PLGA-curcumin was superior to native curcumin in inhibiting the sequestration of parasitized-RBCs and CD8 + T cells in the brain. A single oral dose of 5 mg PLGA-curcumin containing 350 μg of curcumin resulted in 3-4 fold higher concentration and prolonged presence of curcumin in the brain than that obtained with 5 mg of native curcumin, indicating better bioavailability of PLGA-curcumin. PLGA-curcumin has potential as an adjunct drug to treat human cerebral malaria.

  17. Impact of physiological, physicochemical and biopharmaceutical factors in absorption and metabolism mechanisms on the drug oral bioavailability of rats and humans.

    PubMed

    Hurst, Susan; Loi, Cho-Ming; Brodfuehrer, Joanne; El-Kattan, Ayman

    2007-08-01

    The onset, intensity and duration of therapeutic response to a compound depend on the intrinsic pharmacological activity of the drug and pharmacokinetic factors related to its absorption, distribution, metabolism and elimination that are inherent to the biological system. The process of drug transfer from the site of administration to the systemic circulation and the interspecies factors that impact this process are the scope of this review. In general, the factors that influence oral drug bioavailability via absorption and metabolism can be divided into physicochemical/biopharmaceutical and physiological factors. Physicochemical and biopharmaceutical factors that influence permeability and solubility tend to be species independent. Although there are significant differences in the anatomy and physiology of the gastrointestinal tract, these are not associated with significant differences in the rate and extent of drug absorption between rats and humans. However, species differences in drug metabolism in rats and humans did result in significant species differences in bioavailability. Overall, this review provides a better understanding of the interplay between drug physicochemical/biopharmaceutical factors and species differences/similarities in the absorption and metabolism mechanisms that affect oral bioavailability in rats and humans. This will enable a more rational approach to perform projection of oral bioavailability in human using available rat in vivo data.

  18. Simultaneous oral therapeutic and intravenous 14C‐microdoses to determine the absolute oral bioavailability of saxagliptin and dapagliflozin

    PubMed Central

    Boulton, David W.; Kasichayanula, Sreeneeranj; Keung, Chi Fung (Anther); Arnold, Mark E.; Christopher, Lisa J.; Xu, Xiaohui (Sophia); LaCreta, Frank

    2013-01-01

    Aim To determine the absolute oral bioavailability (Fp.o.) of saxagliptin and dapagliflozin using simultaneous intravenous 14C‐microdose/therapeutic oral dosing (i.v.micro + oraltherap). Methods The Fp.o. values of saxagliptin and dapagliflozin were determined in healthy subjects (n = 7 and 8, respectively) following the concomitant administration of single i.v. micro doses with unlabelled oraltherap doses. Accelerator mass spectrometry and liquid chromatography‐tandem mass spectrometry were used to quantify the labelled and unlabelled drug, respectively. Results The geometric mean point estimates (90% confidence interval) Fp.o. values for saxagliptin and dapagliflozin were 50% (48, 53%) and 78% (73, 83%), respectively. The i.v.micro had similar pharmacokinetics to oraltherap. Conclusions Simultaneous i.v.micro + oraltherap dosing is a valuable tool to assess human absolute bioavailability. PMID:22823746

  19. Influence of gastrointestinal digestion and edible plant combination on oral bioavailability of triterpene saponins, using a biomimetic digestion and absorption system and determination by HPLC.

    PubMed

    Li, Shun-Xing; Mu, Yang; Zheng, Feng-Ying

    2013-11-06

    Saponins have many biological activities, but their overload could cause toxicity to the human body. Bionic gastrointestinal digestion and monolayer liposome extraction were used for oral bioavailability assessment of triterpene saponins (notoginsenoside R1, ginsenosides Rb1 and Rd1) in an edible herb (San-Chi) and its compound herbal medicine (Pien Tze Huang, PZH). The concentrations of affinity-monolayer liposome saponins in the chyme were determined by HPLC and used for oral bioavailability assessment. With the digestion of San-Chi and PZH from the stomach to the intestine, the release of saponins in their chyme was increased. The intestinal absorption ratios of N-R1, G-Rb1, G-Rd1, and total saponins from San-Chi were 86.57, 18.56, 73.30, and 40.20%, respectively, which were more than those from PZH (i.e., 19.56, 10.11, 30.11, and 16.08%). The oral bioavailability of saponins was controlled by saponin species, gastrointestinal digestion, and edible plants combination.

  20. Increased bioavailability of tacrolimus after rectal administration in rats.

    PubMed

    Sakai, Masayuki; Hobara, Norio; Hokama, Nobuo; Kameya, Hiromasa; Ohshiro, Susumu; Sakanashi, Matao; Saitoh, Hiroshi

    2004-09-01

    The oral bioavailability of tacrolimus is low and varies considerably in humans due to first-pass metabolism by cytochrome P450 (CYP) 3A4 and the active efflux mediated by P-glycoprotein. This study was undertaken to elucidate the usefulness of rectal administration of tacrolimus as an alternative route to improve its bioavailability. Tacrolimus powder was suspended in a suppository base (witepsol H-15) and the tacrolimus suppository was inserted into the anus of the rats. For comparison, tacrolimus was suspended in 0.5% sodium methylcellulose solution and administered orally to rats. The dose of tacrolimus was fixed to 2 mg/kg. Blood samples were collected periodically up to 24 h after dosing, and tacrolimus concentrations were assayed by microparticle enzyme immunoassay. The whole blood concentrations of tacrolimus after rectal administration were much greater than those after oral administration. The C(max) and AUC(0-24 h) values after rectal administration were 3.9- and 6.9-fold greater than those after oral administration, respectively. These results clearly suggest a possibility that rectal administration of tacrolimus is capable of improving its bioavailability and cutting the costs of tacrolimus treatment.

  1. Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles.

    PubMed

    Wu, Shanshan; Sun, Kang; Wang, Xin; Wang, Dongxu; Wan, Xiaochun; Zhang, Jinsong

    2013-07-31

    The current results show that epigallocatechin-3-gallate (EGCG), in the form of phenolic anions at pH 8.0, can effectively disperse selenium nanoparticles. However, at gastric juice pH (1.0), the EGCG-dispersed selenium nanoparticles (referred to as E-Se) extensively aggregated, so that nano features largely disappeared. This demonstrates that deprotonated phenolic anions of EGCG play an important role in maintaining E-Se stability and suggests that E-Se would suffer from reduced oral bioavailability. To validate this conjecture, size-equivalent E-Se and bovine serum albumin (BSA)-dispersed selenium nanoparticles (B-Se), whose physicochemical properties were not altered at pH 1.0, were orally administered to selenium-deficient mice. In comparison to B-Se, the bioavailabilities of E-Se as indicated with hepatic and renal glutathione peroxidase activity and hepatic selenium levels were significantly (p < 0.01) reduced by 39, 32, and 31%, respectively. Therefore, the present study reveals that size-equivalent selenium nanoparticles prepared by different dispersers do not necessarily guarantee equivalent oral bioavailability.

  2. Approaches for Enhancing Oral Bioavailability of Peptides and Proteins

    PubMed Central

    Renukuntla, Jwala; Vadlapudi, Aswani Dutt; Patel, Ashaben; Boddu, Sai HS.; Mitra, Ashim K

    2013-01-01

    Oral delivery of peptide and protein drugs faces immense challenge partially due to the gastrointestinal (GI) environment. In spite of considerable efforts by industrial and academic laboratories, no major breakthrough in the effective oral delivery of polypeptides and proteins has been accomplished. Upon oral administration, gastrointestinal epithelium acts as a physical and biochemical barrier for absorption of proteins resulting in low bioavailability (typically less than 1–2%). An ideal oral drug delivery system should be capable of a) maintaining the integrity of protein molecules until it reaches the site of absorption, b) releasing the drug at the target absorption site, where the delivery system appends to that site by virtue of specific interaction, and c) retaining inside the gastrointestinal tract irrespective of its transitory constraints. Various technologies have been explored to overcome the problems associated with the oral delivery of macromolecules such as insulin, gonadotropin-releasing hormones, calcitonin, human growth factor, vaccines, enkephalins, and interferons, all of which met with limited success. This review article intends to summarize the physiological barriers to oral delivery of peptides and proteins and novel pharmaceutical approaches to circumvent these barriers and enhance oral bioavailability of these macromolecules. PMID:23428883

  3. Progress in nanotechnology-based drug carrier in designing of curcumin nanomedicines for cancer therapy: current state-of-the-art.

    PubMed

    Ahmad, Mohammad Zaki; Alkahtani, Saad Ahmed; Akhter, Sohail; Ahmad, Farhan Jalees; Ahmad, Javed; Akhtar, Mohammad Shabib; Mohsin, Nehal; Abdel-Wahab, Basel A

    2016-01-01

    Comprehensive pharmacological screening of curcumin (CUR) has given the evidence that it is an excellent naturally occurring therapeutic moiety for cancer. It is very well tolerated with insignificant toxicity even after high doses of oral administration. Irrespective of its better quality as an anticancer agent, therapeutic application of CUR is hampered by its extremely low-aqueous solubility and poor bioavailability, rapid clearance and low-cellular uptake. A simple means of breaking up the restrictive factor of CUR is to perk-up its aqueous solubility, improve its bioavailability, protect it from degradation, and metabolism and potentiate its targeting capacity towards the cancer cell. The development in the field of nanomedicine has made excellent progresses toward enhancing the bioavailability of lipophilic drugs like CUR. Nanoparticles (NPs) are capable to deliver the CUR at specific area and thereby prevent it from physiological degradation and systemic clearance. In recent year, an assortment of nanomedicine-based novel drug delivery system has been designed to potentiate the bioavailability of CUR towards anticancer therapy. In this review, we discuss the recent development in the field of nanoCUR (NanoCur), including polymeric micelles, liposome, polymeric NPs, nanoemulsion, nanosuspension, solid lipid NPs (SLNPs), polymer conjugates, nanogel, etc. in anticancer application.

  4. Pharmacokinetics of Scopolamine Intranasal Gel Formulation (INSCOP) During Antiorthostatic Bedrest

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Boyd, J. L.; Du, B.; Daniels, V.; Crady, C.

    2011-01-01

    Space Motion sickness (SMS) is an age old problem for space travelers on short and long duration space flight Oral antiemetics are not very effective in space due to poor bioavailability. Scopolamine (SCOP) is the most frequently used drug by recreational travelers V patch, tablets available on the market. Common side effects of antiemetics, in general, include drowsiness, sedation, dry mouth and reduced psychomotor performance. Severity and persistence of side effects are often dose related Side effects can be detrimental in high performance demanding settings, e.g. space flight, military.

  5. Oral bioavailability of DN101, a concentrated formulation of calcitriol, in tumor-bearing dogs.

    PubMed

    Rassnick, Kenneth M; Muindi, Josephia R; Johnson, Candace S; Bailey, Dennis B; Trump, Donald L

    2011-01-01

    High-dose calcitriol (1,25-dihydroxyvitamin D(3)) has antineoplastic activity against a range of tumors and potentiates chemotherapeutic agents. In an earlier canine study, the MTD of intravenous (i.v.) calcitriol was 3.75 μg/kg, but polysorbate-associated hypersensitivity reactions were common. Use of commercially available oral calcitriol is limited by the absence of a formulation of suitable strength to allow administration of a reasonable number of caplets. This study evaluated the bioavailability of DN101, a concentrated oral calcitriol formulation specifically developed for anticancer applications. An open-label, single-dose, 2-way crossover study was conducted. Dogs randomly received a single 3.75 μg/kg dose of calcitriol either i.v. or oral (as DN101), followed by cisplatin (60 mg/m(2)). Three weeks later, the alternate form of calcitriol was given prior to another dose of cisplatin. Dogs received antihistamines and corticosteroids prior to both treatments. Food was withheld for 12 h before and after therapy. Serum calcitriol concentrations were measured by radioimmunoassay. Ten tumor-bearing dogs received both i.v. and oral calcitriol. Six dogs experienced hypersensitivity reactions during i.v. calcitriol. Sequence of calcitriol administration (day-1 vs. day-21) by either i.v. or oral routes had no effect on the major calcitriol pharmacokinetic parameters. Oral calcitriol resulted in significantly lower values for AUC (P = 0.05) and prolonged T (1/2) (P = 0.003) when compared to i.v. Calcitriol oral bioavailability was highly variable among dogs (mean ± SEM, 71 ± 12.6%). This study demonstrates that a high-dose formulation of calcitriol has a moderate bioavailability in dogs, but inter-individual variability in PK parameters is similar to that observed in people. With this bioavailability, serum concentrations of calcitriol that exhibit antitumor activity in a preclinical murine model were achieved in some dogs. Exploration of methods to minimize variation in calcitriol systemic exposure is warranted.

  6. Enhanced oral bioavailability of docetaxel in rats by four consecutive days of pre-treatment with curcumin.

    PubMed

    Yan, Yi-Dong; Kim, Dae Hwan; Sung, Jun Ho; Yong, Chul Soon; Choi, Han Gon

    2010-10-31

    As with many other anti-cancer agents, docetaxel is a substrate for ATP-binding cassette transporters such as P-glycoprotein and its metabolism is mainly catalysed by CYP3A. In order to improve the oral bioavailability of docetaxel, a component of turmeric, curcumin, which can down-regulate the intestinal P-glycoprotein and CYP3A protein levels, was used for the pre-treatment of rats before the oral administration of docetaxel. Curcumin (100 mg/kg) did not significantly modify the pharmacokinetics of docetaxel when given orally 30 min before the administration of docetaxel. However, the C(max) of docetaxel in rats pre-treated with curcumin for four consecutive days was significantly increased (p<0.01) by about 10 times compared to that of the docetaxel control, and the area under the plasma concentration-time curve (AUC) was about eight times higher than that of the control. Consequently, the absolute bioavailability of docetaxel in the treatment group (four days of curcumin at 100 mg/kg) was about 40%, which was a significant increase of about eightfold in comparison to the control value. Thus, the oral bioavailability of docetaxel was enhanced by the co-administration of regular curcumin. It could be possible to administer docetaxel orally, besides the established i.v. route. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  7. Bioavailability of wilforlide A in mice and its concentration determination using an HPLC-APCI-MS/MS method.

    PubMed

    Wang, Zhijun; Yeung, Steven; Chen, Shang; Moatazedi, Yasmin; Chow, Moses S S

    2018-07-15

    Wilforlide A (WA), an active compound in Tripterygium wilfordii Hook F (TW) which is a traditional Chinese medicine for treatment of autoimmune diseases, is a quality control marker for TW product. At present, the bioavailability/pharmacokinetics of WA is not known. Such information is not only essential to evaluate the relevance of WA as a quality control maker, but also important for future clinical efficacy studies. Therefore, a high-performance liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometric method (HPLC-APCI-MS/MS) was developed and applied to a bioavailability/pharmacokinetic study of WA. WA and celastrol (the internal standard, IS) were extracted by a liquid-liquid extraction method using methyl tert-butyl ether. Multiple reaction monitoring (MRM) scanning in positive ionization mode was used to monitor the transition of m/z 455.1 to 191.3 for WA and 451.3 to 201.2 for IS. This method was validated and applied to a pharmacokinetic study of WA in mice following intravenous administration (IV, 1.2 mg/kg), intraperitoneal injection (IP, 6 mg/kg) and oral administration (PO, 30 mg/kg). The lower limit of quantification (LLOQ) for WA was 10 ng/ml. The intra- and inter-day precision was found to be within 15.4% while the accuracy within 94.1-115.7% for all the quality control and LLOQ samples. The samples were stable under all the usual storage and experimental conditions. The terminal elimination half-lives were 14.7, 9.1 and 22.7 min following IV, IP and PO dosing, while the absolute bioavailability for IP and PO WA were 9.39% and 0.58% respectively. These results indicated that the HPLC-APCI-MS/MS assay was suitable for the pharmacokinetic study of WA. WA was found poorly absorbed when given orally and therefore it may not be a relevant marker for the oral TW products in the market. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Rifampicin-loaded 'flower-like' polymeric micelles for enhanced oral bioavailability in an extemporaneous liquid fixed-dose combination with isoniazid.

    PubMed

    Moretton, Marcela A; Hocht, Christian; Taira, Carlos; Sosnik, Alejandro

    2014-08-01

    Coadministration of rifampicin (RIF)/isoniazid (INH) is clinically recommended to improve the treatment of tuberculosis. Under gastric conditions, RIF undergoes fast hydrolysis (a pathway hastened by INH) and oral bioavailability loss. We aimed to assess the chemical stabilization and the oral pharmacokinetics of RIF nanoencapsulated within poly(ε-caprolactone)-b-PEG-b-poly(ε-caprolactone) 'flower-like' polymeric micelles. The chemical stability of RIF was evaluated in vitro under acid conditions with and without INH, and the oral pharmacokinetics of RIF-loaded micelles in rats was compared with those of a suspension coded by the US Pharmacopeia. Nanoencapsulation decreased the degradation rate of RIF with respect to the free drug. Moreover, in vivo data showed a statistically significant increase of RIF oral bioavailability (up to 3.3-times) with respect to the free drug in the presence of INH. Overall results highlight the potential of this nanotechnology platform to develop an extemporaneous liquid RIF/INH fixed-dose combination suitable for pediatric administration.

  9. First report on the pharmacokinetic profile of nimbolide, a novel anticancer agent in oral and intravenous administrated rats by LC/MS method.

    PubMed

    Baira, Shandilya Mahamuni; Khurana, Amit; Somagoni, Jaganmohan; Srinivas, R; Godugu, Chandraiah; Talluri, M V N Kumar

    2018-06-02

    Nimbolide is a novel, natural compound with promising potential as a drug candidate for anticancer activity. It is isolated from the Indian traditional medicinal plant Azadirachta indica popularly known as neem. The present study was undertaken to explore the oral bioavailability and pharmacokinetic characteristics of nimbolide in rats using the LC/QTOF/MS method. A simple protein precipitation method using acetonitrile was employed for extracting nimbolide from rat plasma. The chromatographic separation of nimbolide and the internal standard (regorafenib) was attained on an Aquity BEH C18 column (100 × 2.1 mm, 2.7 μm), using ACN and 0.1% of formic acid in water as mobile phase components in a gradient elution mode at a flow rate of 0.45 mL/min over a short run time of 4 min. A mass detection was carried out using target ions of [M + H] + at m/z 467.2074 for nimbolide and m/z 483.0847 for the internal standard. The LC/MS method was validated and all the parameters were found well within the specified limits. The calibration curve was constructed in the range of 1-1000 ng/mL. The method shows good accuracy (91.66-97.12%) and precision (intra 2.21-6.92% CV and inter-day 2.56-4.62% CV). This developed LC/MS method was effectively applied to the pharmacokinetic study of nimbolide upon oral and intravenous administration in rats. In concordance with its physicochemical properties and high lipophilicity, we found that it shows poor oral absorption at different doses (10, 30 and 50 mg/kg). As expected, higher plasma levels were observed upon intravenous (10 mg/kg) administration. This method can be extended for evaluation of drug interaction and drug metabolism in rats as well as in humans. Moreover, our rapid and sensitive method may cater the need to accelerate the preclinical formulation development and lead optimization for future drug development of this potent anticancer agent. Further, our oral bioavailability studies demonstrated that nimbolide possesses poor oral absorption, which could be the probable reason for the delay in therapeutic translation of this promising agent for clinical use. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles.

    PubMed

    Mady, Fatma M; Shaker, Mohamed A

    2017-01-01

    Despite the fact that various studies have investigated the clinical relevance of ellagic acid (EA) as a naturally existing bioactive substance in cancer therapy, little has been reported regarding the efficient strategy for improving its oral bioavailability. In this study, we report the formulation of EA-loaded nanoparticles (EA-NPs) to find a way to enhance its bioactivity as well as bioavailability after oral administration. Poly(ε-caprolactone) (PCL) was selected as the biodegradable polymer for the formulation of EA-NPs through the emulsion-diffusion-evaporation technique. The obtained NPs have been characterized by measuring particle size, zeta potential, Fourier transform infrared, differential scanning calorimetry, and X-ray diffraction. The entrapment efficiency and the release profile of EA was also determined. In vitro cellular uptake and cytotoxicity of the obtained NPs were evaluated using Caco-2 and HCT-116 cell lines, respectively. Moreover, in vivo study has been performed to measure the oral bioavailability of EA-NPs compared to free EA, using New Zealand white rabbits. NPs with distinct shape were obtained with high entrapment and loading efficiencies. Diffusion-driven release profile of EA from the prepared NPs was determined. EA-NP-treated HCT-116 cells showed relatively lower cell viability compared to free EA-treated cells. Fluorometric imaging revealed the cellular uptake and efficient localization of EA-NPs in the nuclear region of Caco-2 cells. In vivo testing revealed that the oral administration of EA-NPs produced a 3.6 times increase in the area under the curve compared to that of EA. From these results, it can be concluded that incorporation of EA into PCL as NPs enhances its oral bioavailability and activity.

  11. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles

    PubMed Central

    Mady, Fatma M; Shaker, Mohamed A

    2017-01-01

    Despite the fact that various studies have investigated the clinical relevance of ellagic acid (EA) as a naturally existing bioactive substance in cancer therapy, little has been reported regarding the efficient strategy for improving its oral bioavailability. In this study, we report the formulation of EA-loaded nanoparticles (EA-NPs) to find a way to enhance its bioactivity as well as bioavailability after oral administration. Poly(ε-caprolactone) (PCL) was selected as the biodegradable polymer for the formulation of EA-NPs through the emulsion–diffusion–evaporation technique. The obtained NPs have been characterized by measuring particle size, zeta potential, Fourier transform infrared, differential scanning calorimetry, and X-ray diffraction. The entrapment efficiency and the release profile of EA was also determined. In vitro cellular uptake and cytotoxicity of the obtained NPs were evaluated using Caco-2 and HCT-116 cell lines, respectively. Moreover, in vivo study has been performed to measure the oral bioavailability of EA-NPs compared to free EA, using New Zealand white rabbits. NPs with distinct shape were obtained with high entrapment and loading efficiencies. Diffusion-driven release profile of EA from the prepared NPs was determined. EA-NP-treated HCT-116 cells showed relatively lower cell viability compared to free EA-treated cells. Fluorometric imaging revealed the cellular uptake and efficient localization of EA-NPs in the nuclear region of Caco-2 cells. In vivo testing revealed that the oral administration of EA-NPs produced a 3.6 times increase in the area under the curve compared to that of EA. From these results, it can be concluded that incorporation of EA into PCL as NPs enhances its oral bioavailability and activity. PMID:29066891

  12. Detecting ordered small molecule drug aggregates in live macrophages: a multi-parameter microscope image data acquisition and analysis strategy

    PubMed Central

    Rzeczycki, Phillip; Yoon, Gi Sang; Keswani, Rahul K.; Sud, Sudha; Stringer, Kathleen A.; Rosania, Gus R.

    2017-01-01

    Following prolonged administration, certain orally bioavailable but poorly soluble small molecule drugs are prone to precipitate out and form crystal-like drug inclusions (CLDIs) within the cells of living organisms. In this research, we present a quantitative multi-parameter imaging platform for measuring the fluorescence and polarization diattenuation signals of cells harboring intracellular CLDIs. To validate the imaging system, the FDA-approved drug clofazimine (CFZ) was used as a model compound. Our results demonstrated that a quantitative multi-parameter microscopy image analysis platform can be used to study drug sequestering macrophages, and to detect the formation of ordered molecular aggregates formed by poorly soluble small molecule drugs in animals. PMID:28270989

  13. Detecting ordered small molecule drug aggregates in live macrophages: a multi-parameter microscope image data acquisition and analysis strategy.

    PubMed

    Rzeczycki, Phillip; Yoon, Gi Sang; Keswani, Rahul K; Sud, Sudha; Stringer, Kathleen A; Rosania, Gus R

    2017-02-01

    Following prolonged administration, certain orally bioavailable but poorly soluble small molecule drugs are prone to precipitate out and form crystal-like drug inclusions (CLDIs) within the cells of living organisms. In this research, we present a quantitative multi-parameter imaging platform for measuring the fluorescence and polarization diattenuation signals of cells harboring intracellular CLDIs. To validate the imaging system, the FDA-approved drug clofazimine (CFZ) was used as a model compound. Our results demonstrated that a quantitative multi-parameter microscopy image analysis platform can be used to study drug sequestering macrophages, and to detect the formation of ordered molecular aggregates formed by poorly soluble small molecule drugs in animals.

  14. Effect of Short-Term Fasting on Systemic Cytochrome P450-Mediated Drug Metabolism in Healthy Subjects: A Randomized, Controlled, Crossover Study Using a Cocktail Approach.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; van Schaik, Ron H N; Romijn, Johannes A; Mathôt, Ron A A

    2017-10-01

    Short-term fasting can alter drug exposure but it is unknown whether this is an effect of altered oral bioavailability and/or systemic clearance. Therefore, the aim of our study was to assess the effect of short-term fasting on oral bioavailability and systemic clearance of different drugs. In a randomized, controlled, crossover trial, 12 healthy subjects received a single administration of a cytochrome P450 (CYP) probe cocktail, consisting of caffeine (CYP1A2), metoprolol (CYP2D6), midazolam (CYP3A4), omeprazole (CYP2C19) and warfarin (CYP2C9), on four occasions: an oral (1) and intravenous (2) administration after an overnight fast (control) and an oral (3) and intravenous (4) administration after 36 h of fasting. Pharmacokinetic parameters of the probe drugs were analyzed using the nonlinear mixed-effects modeling software NONMEM. Short-term fasting increased systemic caffeine clearance by 17% (p = 0.04) and metoprolol clearance by 13% (p < 0.01), whereas S-warfarin clearance decreased by 19% (p < 0.01). Fasting did not affect bioavailability. The study demonstrates that short-term fasting alters CYP-mediated drug metabolism in a non-uniform pattern without affecting oral bioavailability.

  15. Improving oral bioavailability of resveratrol by a UDP-glucuronosyltransferase inhibitory excipient-based self-microemulsion.

    PubMed

    Yang, Fei-Fei; Zhou, Jing; Hu, Xiao; Cong, Zhao-Qing; Liu, Chun-Yu; Pan, Rui-Le; Chang, Qi; Liu, Xin-Min; Liao, Yong-Hong

    2018-03-01

    Self-microemulsifying (SME) drug delivery system has been developed to increase oral bioavailabilities, and inhibitory excipients are capable of improving oral bioavailability by inhibiting enzyme mediated intestinal metabolism. However, the potential of enzyme inhibitory excipients containing SME in boosting resveratrol bioavailability remains largely uninvestigated. In this study, we set out to prepare SME-1 with UGT inhibitory excipients (excipients without inhibitory activities named SME-2 as control) to increase the bioavailability of RES by inhibiting intestinal metabolism. Results demonstrated that similar physicochemical properties such as size, polydistribution index and in vitro release, cellular uptake and permeability in Caco-2 cells as well as in vivo lymphatic distribution between inhibitory SME-1 and non-inhibitory SME-2 were observed. In vivo study demonstrated that the molar ratios of RES-G/RES were 7.25±0.48 and 5.06±2.42 for free drug and SME-2, respectively, and the molar ratio decreased to 0.36±0.10 in SME-1 group. Pharmacokinetic study confirmed that the inhibitory excipients containing SME demonstrated potential in increasing bioavailability of RES from 6.5% for the free RES and 12.9% for SME-2 to 76.1% in SME-1 through modulating the glucuronidation by UGT inhibitory excipients. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Pharmacokinetics of brotizolam in healthy subjects following intravenous and oral administration

    PubMed Central

    Jochemsen, Roeline; Wesselman, J. G. J.; Hermans, J.; van Boxtel, C. J.; Breimer, D. D.

    1983-01-01

    1 Pharmacokinetics and bioavailability of brotizolam after i.v. and oral administration were studied in healthy young volunteers. 2 Kinetic parameters after i.v. administration were: volume of distribution 0.66 ± 0.19 1/kg, total plasma clearance 113 ± 28 ml/min, distribution half-life 11 ± 6 min, and elimination half-life 4.8 ± 1.4 h (mean values ± s.d.). 3 Kinetic parameters after oral administration were: absorption lag-time 8 ± 12 min, absorption half-life 10 ± 11 min, and elimination half-life 5.1 ± 1.2 h (mean values ± s.d.). 4 Bioavailability of brotizolam was 70 ± 22% when calculated by comparing oral and intravenous area-under-curve values, corrected for intra-individual half-life differences. An alternative calculation method, which is relatively independent of large clearance variations, provided a bioavailability of 70 ± 24% (range: 47-117%). PMID:6661374

  17. N,N'-dihydroxyamidines: a new prodrug principle to improve the oral bioavailability of amidines.

    PubMed

    Reeh, Christiane; Wundt, Judith; Clement, Bernd

    2007-12-27

    N, N'-dihydroxybenzamdine represents a model compound for a new prodrug principle to improve the oral bioavailability of drugs containing amidine functions. The activation of the prodrug could be demonstrated in vitro by porcine and human subcellular enzyme fractions, the mitochondrial benzamidoxime reducing system, and porcine hepatocytes. In vivo, the bioavailability of benzamidine after oral application of N, N'-dihydroxybenzamidine was about 91% and exceeded that of benzamidine after oral application of benzamidoxime, being about 74% (Liu, L.; Ling, Y.; Havel, C.; Bashnick, L.; Young, W.; Rai, R.; Vijaykumar, D.; Riggs, J. R.; Ton, T.; Shaghafi, M.; Graupe, D.; Mordenti, J.; Sukbuntherng, J. Species comparison of in vitro and in vivo conversion of five N-hydroxyamidine prodrugs of fVIIA inhibitors to their corresponding active amidines. Presented at the 13th North America ISSX Meeting, Maui, HI, 2005).

  18. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes.

    PubMed

    Schiborr, Christina; Kocher, Alexa; Behnam, Dariush; Jandasek, Josef; Toelstede, Simone; Frank, Jan

    2014-03-01

    Curcumin revealed various health-beneficial properties in numerous studies. However its bioavailability is low due to its limited intestinal uptake and rapid metabolism. The aim of our project was to develop novel curcumin formulations with improved oral bioavailability and to study their safety as well as potential sex-differences. In this crossover study, healthy subjects (13 women, 10 men) took, in random order, a single oral dose of 500 mg curcuminoids as native powder, micronized powder, or liquid micelles. Blood and urine samples were collected for 24 h and total curcuminoids and safety parameters were quantified. Based on the area under the plasma concentration-time curve (AUC), the micronized curcumin was 14-, 5-, and 9-fold and micellar curcumin 277-, 114-, and 185-fold better bioavailable than native curcumin in women, men, and all subjects, respectively. Thus, women absorbed curcumin more efficiently than men. All safety parameters remained within the reference ranges following the consumption of all formulations. Both, the micronized powder and in particular the liquid micellar formulation of curcumin significantly improved its oral bioavailability without altering safety parameters and may thus be ideally suited to deliver curcumin in human intervention trials. The observed sex differences in curcumin absorption warrant further investigation. © 2014 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Microemulsions containing long-chain oil ethyl oleate improve the oral bioavailability of piroxicam by increasing drug solubility and lymphatic transportation simultaneously.

    PubMed

    Xing, Qiao; Song, Jia; You, Xiuhua; Xu, Dongling; Wang, Kexin; Song, Jiaqi; Guo, Qin; Li, Pengyu; Wu, Chuanbin; Hu, Haiyan

    2016-09-25

    Drug solubility and lymphatic transport enhancements are two main pathways to improve drug oral bioavailability for microemulsions. However, it is not easy to have both achieved simultaneously because excipients used for improving lymphatic transport were usually insufficient in forming microemulsions and solubilizing drugs. Our research is to explore whether ethyl oleate, an oil effective in developing microemulsions with desired solubilizing capability, could increase bioavailability to a higher extent by enhancing lymphatic transport. As a long-chain oil, ethyl oleate won larger microemulsion area than short-chain tributyrin and medium-chain GTCC. In contrast, long-chain soybean oil failed to prepare microemulsions. The solubility of piroxicam in ethyl oleate microemulsions (ME-C) increased by about 30 times than in water. ME-C also won significantly higher AUC0-t compared with tributyrin microemulsions (ME-A) and GTCC microemulsions (ME-B). Oral bioavailability in ME-C decreased by 38% after lymphatic transport was blocked by cycloheximide, severer than those in ME-A and ME-B (8% and 34%). These results suggest that improving lymphatic transport and solubility simultaneously might be a novel strategy to increase drug oral bioavailability to a higher extent than increasing solubility only. Ethyl oleate is a preferred oil candidate due to its integrated advantages of high solubilizing capability, large microemulsion area and effective lymphatic transport. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comparison across Three Hybrid Lipid-Based Drug Delivery Systems for Improving the Oral Absorption of the Poorly Water-Soluble Weak Base Cinnarizine.

    PubMed

    Joyce, Paul; Yasmin, Rokhsana; Bhatt, Achal; Boyd, Ben J; Pham, Anna; Prestidge, Clive A

    2017-11-06

    Three state-of-the-art drug delivery vehicles engineered by nanostructuring lipid colloids within solid particle matrices were fabricated for the oral delivery of the poorly water-soluble, weak base, cinnarizine (CIN). The lipid and solid phase of each formulation was varied to systematically analyze the impact of key material characteristics, such as nanostructure and surface chemistry, on the in vitro and in vivo fate of CIN. The three systems formulated were: silica-stabilized lipid cubosomes (SSLC), silica-solid lipid hybrid (SSLH), and polymer-lipid hybrid (PLH) particles. Significant biopharmaceutical advantages were presented for CIN when solubilized in the polymer (poly(lactic-co-glycolic) acid; PLGA) and lipid phase of PLH particles compared to the lipid phases of SSLC and SSLH particles. In vitro dissolution in simulated intestinal conditions highlighted reduced precipitation of CIN when administered within PLH particles, given by a 4-5-fold improvement in the extent of CIN dissolution compared to the other delivery vehicles. Furthermore, CIN solubilization was enhanced 1.5-fold and 6-fold under simulated fasted state lipid digestion conditions when formulated with PLH particles compared to SSLH and SSLC particles, respectively. In vivo pharmacokinetics correlated well with in vitro solubilization data, whereby oral CIN bioavailability in rats, when encapsulated in the corresponding formulations, increased from SSLC < SSLH < PLH. The pharmacokinetic data obtained throughout this study indicated a synergistic effect between PLGA nanoparticles and lipid droplets in preventing CIN precipitation and thus, enhancing oral absorption. This synergy can be harnessed to efficiently deliver challenging poorly water-soluble, weak bases through oral administration.

  1. Classification of solid dispersions: correlation to (i) stability and solubility (ii) preparation and characterization techniques.

    PubMed

    Meng, Fan; Gala, Urvi; Chauhan, Harsh

    2015-01-01

    Solid dispersion has been a topic of interest in recent years for its potential in improving oral bioavailability, especially for poorly water soluble drugs where dissolution could be the rate-limiting step of oral absorption. Understanding the physical state of the drug and polymers in solid dispersions is essential as it influences both the stability and solubility of these systems. This review emphasizes on the classification of solid dispersions based on the physical states of drug and polymer. Based on this classification, stability aspects such as crystallization tendency, glass transition temperature (Tg), drug polymer miscibility, molecular mobility, etc. and solubility aspects have been discussed. In addition, preparation and characterization methods for binary solid dispersions based on the classification have also been discussed.

  2. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo.

    PubMed

    Anand, Preetha; Nair, Hareesh B; Sung, Bokyung; Kunnumakkara, Ajaikumar B; Yadav, Vivek R; Tekmal, Rajeshwar R; Aggarwal, Bharat B

    2010-02-01

    Curcumin, a yellow pigment present in the spice turmeric (Curcuma longa), has been linked with antioxidant, anti-inflammatory, antiproliferative, anticancer, antidiabetic, antirheumatic, and antiviral effects, but its optimum potential is limited by its lack of solubility in aqueous solvents and poor oral bioavailability. We employed a polymer-based nanoparticle approach to improve bioavailability. Curcumin was encapsulated with 97.5% efficiency in biodegradable nanoparticulate formulation based on poly (lactide-co-glycolide) (PLGA) and a stabilizer polyethylene glycol (PEG)-5000. Dynamic laser light scattering and transmission electron microscopy indicated a particle diameter of 80.9 nm. This curcumin, renamed from hereon "as curcumin (NP)", was characterized for its biological activity. In vitro curcumin (NP) exhibited very rapid and more efficient cellular uptake than curcumin. Estrase staining revealed that curcumin (NP) was at least as potent as or more potent than curcumin in inducing apoptosis of leukemic cells and in suppressing proliferation of various tumor cell lines. When examined by electrophoretic gel shift mobility assay, curcumin (NP) was more active than curcumin in inhibiting TNF-induced NF-kappaB activation and in suppression of NF-kappaB-regulated proteins involved in cell proliferation (cyclin D1), invasion (MMP-9), and angiogenesis (VEGF). In mice, curcumin (NP) was more bioavailable and had a longer half-life than curcumin. Overall we demonstrate that curcumin-loaded PLGA nanoparticles formulation has enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo over curcumin.

  3. Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability

    NASA Astrophysics Data System (ADS)

    Jyun Chen, Yi; Inbaraj, Baskaran Stephen; Shiau Pu, Yeong; Chen, Bing Huei

    2014-04-01

    The objectives of this study were to develop lycopene micelles and lycopene chylomicrons from tomato extracts for the enhancement and comparison of bioavailability. Lycopene micelles and chylomicrons were prepared by a microemulsion technique involving tomato extract, soybean oil, water, vitamin E and surfactant Tween 80 or lecithin in different proportions. The encapsulation efficiency of lycopene was 78% in micelles and 80% in chylomicrons, with shape being roughly spherical and mean particle size being 7.5 and 131.5 nm. A bioavailability study was conducted in rats by both gavage and i.v. administration, with oral bioavailability of lycopene, phytoene and phytofluene being 6.8, 4.3 and 3.1% in micelles and 9.5, 9.4 and 7.1% in chylomicrons, respectively. This outcome reveals higher lycopene bioavailability through incorporation into micelle or chylomicron systems. Both size and shape should be considered for oral bioavailability determination. For i.v. injection, lycopene micelles should be more important than lycopene chylomicrons for future clinical applications.

  4. Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation.

    PubMed

    Feng, Yingshu; Sun, Congyong; Yuan, Yangyang; Zhu, Yuan; Wan, Jinyi; Firempong, Caleb Kesse; Omari-Siaw, Emmanuel; Xu, Yang; Pu, Zunqin; Yu, Jiangnan; Xu, Ximing

    2016-03-30

    In the present study, a formulation system consisting of cholesterol and phosphatidyl choline was used to prepare an effective chlorogenic acid-loaded liposome (CAL) with an improved oral bioavailability and an increased antioxidant activity. The developed liposomal formulation produced regular, spherical and multilamellar-shaped distribution nanoparticles. The pharmacokinetic analysis of CAL compared with chlorogenic acid (CA), showed a higher value of Cmax(6.42 ± 1.49 min versus 3.97 ± 0.39 min) and a delayed Tmax(15 min versus 10 min), with 1.29-fold increase in relative oral bioavailability. The tissue distribution in mice also demonstrated that CAL predominantly accumulated in the liver which indicated hepatic targeting potential of the drug. The increased activities of antioxidant enzymes (Total Superoxide Dismutase (T-SOD) and Glutathione Peroxidase (GSH-Px)) and total antioxidant capacity (T-AOC), in addition to decreased level of malondialdehyde (MDA) in CCl4-induced hepatotoxicity study further revealed that CAL exhibited significant hepatoprotective and antioxidant effects. Collectively, these findings present a liposomal formulation with significantly improved oral bioavailability and an increased in vivo antioxidant activity of CA. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients

    PubMed Central

    Wang, Conan K.; Northfield, Susan E.; Colless, Barbara; Chaousis, Stephanie; Hamernig, Ingrid; Lohman, Rink-Jan; Nielsen, Daniel S.; Schroeder, Christina I.; Liras, Spiros; Price, David A.; Fairlie, David P.; Craik, David J.

    2014-01-01

    Enhancing the oral bioavailability of peptide drug leads is a major challenge in drug design. As such, methods to address this challenge are highly sought after by the pharmaceutical industry. Here, we propose a strategy to identify appropriate amides for N-methylation using temperature coefficients measured by NMR to identify exposed amides in cyclic peptides. N-methylation effectively caps these amides, modifying the overall solvation properties of the peptides and making them more membrane permeable. The approach for identifying sites for N-methylation is a rapid alternative to the elucidation of 3D structures of peptide drug leads, which has been a commonly used structure-guided approach in the past. Five leucine-rich peptide scaffolds are reported with selectively designed N-methylated derivatives. In vitro membrane permeability was assessed by parallel artificial membrane permeability assay and Caco-2 assay. The most promising N-methylated peptide was then tested in vivo. Here we report a novel peptide (15), which displayed an oral bioavailability of 33% in a rat model, thus validating the design approach. We show that this approach can also be used to explain the notable increase in oral bioavailability of a somatostatin analog. PMID:25416591

  6. Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients.

    PubMed

    Wang, Conan K; Northfield, Susan E; Colless, Barbara; Chaousis, Stephanie; Hamernig, Ingrid; Lohman, Rink-Jan; Nielsen, Daniel S; Schroeder, Christina I; Liras, Spiros; Price, David A; Fairlie, David P; Craik, David J

    2014-12-09

    Enhancing the oral bioavailability of peptide drug leads is a major challenge in drug design. As such, methods to address this challenge are highly sought after by the pharmaceutical industry. Here, we propose a strategy to identify appropriate amides for N-methylation using temperature coefficients measured by NMR to identify exposed amides in cyclic peptides. N-methylation effectively caps these amides, modifying the overall solvation properties of the peptides and making them more membrane permeable. The approach for identifying sites for N-methylation is a rapid alternative to the elucidation of 3D structures of peptide drug leads, which has been a commonly used structure-guided approach in the past. Five leucine-rich peptide scaffolds are reported with selectively designed N-methylated derivatives. In vitro membrane permeability was assessed by parallel artificial membrane permeability assay and Caco-2 assay. The most promising N-methylated peptide was then tested in vivo. Here we report a novel peptide (15), which displayed an oral bioavailability of 33% in a rat model, thus validating the design approach. We show that this approach can also be used to explain the notable increase in oral bioavailability of a somatostatin analog.

  7. Proceedings: ISEA Bioavailability Symposium, Durham, North Carolina Use of InVitro Bioaccessibility/Relative Bioavailability Estimates for Metals in Regulatory Settings: What is Needed?

    EPA Science Inventory

    Oral ingestion of soil and dust is a key pathway for human exposures to metal and metalloid contaminants. It is widely recognized that the site-specific bioavailability of metals in soil and dust may be reduced relative to the metal bioavailability in media such as water and food...

  8. Aluminum bioavailability from tea infusion.

    PubMed

    Yokel, Robert A; Florence, Rebecca L

    2008-12-01

    The objective was to estimate oral Al bioavailability from tea infusion in the rat, using the tracer (26)Al. (26)Al citrate was injected into tea leaves. An infusion was prepared from the dried leaves and given intra-gastrically to rats which received concurrent intravenous (27)Al infusion. Oral Al bioavailability (F) was calculated from the area under the (26)Al, compared to (27)Al, serum concentration x time curves. Bioavailability from tea averaged 0.37%; not significantly different from water (F=0.3%), or basic sodium aluminum phosphate (SALP) in cheese (F=0.1-0.3%), but greater than acidic SALP in a biscuit (F=0.1%). Time to maximum serum (26)Al concentration was 1.25, 1.5, 8 and 4.8h, respectively. These results of oral Al bioavailability x daily consumption by the human suggest tea can provide a significant amount of the Al that reaches systemic circulation. This can allow distribution to its target organs of toxicity, the central nervous, skeletal and hematopoietic systems. Further testing of the hypothesis that Al contributes to Alzheimer's disease may be more warranted with studies focusing on total average daily food intake, including tea and other foods containing appreciable Al, than drinking water.

  9. Aluminum bioavailability from tea infusion

    PubMed Central

    Yokel, Robert A.; Florence, Rebecca L.

    2008-01-01

    The objective was to estimate oral Al bioavailability from tea infusion in the rat, using the tracer 26Al. 26Al citrate was injected into tea leaves. An infusion was prepared from the dried leaves and given intra-gastrically to rats which received concurrent intravenous 27Al infusion. Oral Al bioavailability (F) was calculated from the area under the 26Al, compared to 27Al, serum concentration × time curves. Bioavailability from tea averaged 0.37%; not significantly different from water (F = 0.3%), or basic sodium aluminum phosphate (SALP) in cheese (F = 0.1 to 0.3%), but greater than acidic SALP in a biscuit (F = 0.1%). Time to maximum serum 26Al concentration was 1.25, 1.5, 8 and 4.8 h, respectively. These results of oral Al bioavailability × daily consumption by the human suggest tea can provide a significant amount of the Al that reaches systemic circulation. This can allow distribution to its target organs of toxicity, the central nervous, skeletal and hematopoietic systems. Further testing of the hypothesis that Al contributes to Alzheimer's disease may be more warranted with studies focusing on total average daily food intake, including tea and other foods containing appreciable Al, than drinking water. PMID:18848597

  10. Disposition of lipid-based formulation in the intestinal tract affects the absorption of poorly water-soluble drugs.

    PubMed

    Iwanaga, Kazunori; Kushibiki, Toshihiro; Miyazaki, Makoto; Kakemi, Masawo

    2006-03-01

    Solvent Green 3 (SG), a model poorly water-soluble compound, was orally administered to rats with soybean oil emulsion or the Self-microemulsifying drug delivery system (SMEDDS) composed of Gelucire44/14. The bioavailability of SG after oral administration with SMEDDS was 1.7-fold higher than that with soybean oil emulsion. The intestinal absorption of lipid-based formulations themselves was evaluated by the in situ closed loop method. The effect of lipase and bile salt on their absorption was also evaluated. SMEDDS itself was rapidly absorbed in the intestine even in the absence of lipase and bile salt, and the absorption was increased by the addition of lipase and bile salt. On the other hand, no soybean oil emulsion was absorbed in the absence of lipase and bile salt. However, mixed micelle prepared from emulsion by incubating soybean oil emulsion with lipase and bile salt was rapidly absorbed through the intestine. Without lipase and bile salt, SG was not absorbed after administration with soybean oil emulsion. Therefore, we concluded that the degradation of soybean oil emulsion was needed for SG to be absorbed through the intestine. Furthermore, we investigated the intestinal absorption of SG after oral administration to rats whose chylomicron synthesis were inhibited by pretreatment with colchicine. Colchicine completely inhibited the intestinal absorption of SG after administration with each lipid-based formulation, suggesting that SG was absorbed from the intestine via a lymphatic route. Absorption of the dosage formulation should be paid attention when poorly water-soluble drugs are orally administered with lipid-based formulation.

  11. Oral Vaccination Through Peyer's Patches: Update on Particle Uptake.

    PubMed

    Pais Soares, Edna Filipa; Fernandes Borges, Olga Maria

    2018-01-01

    Oral immunization has numerous advantages over parenteral administrations. In addition to ease administration, more effective pathogen elimination on the mucosa before spreading into the blood circulation, constitutes the main benefit. This is particularly true for pathogens that enter the body through the oral route. On the other hand, it is the most challenging administration route for peptides, proteins and recombinant antigens due to gastrointestinal (GI) tract, numerous barriers including the harsh environment and the inherent weak immunogenicity. In addition to the adjuvant properties, polymeric particles arise as the most promising strategy to overcome poor antigen bioavailability/ stability upon oral administration. The Peyer's patches have been considered an important structure of the gut associate lymphoid tissue (GALT) for the initiation of the immune response towards particulate oral antigens. The transport mechanism of both, nano and microparticles across intestinal mucosa, particularly throughout Peyer's patches, is discussed in this review. We provide a short and concise update (last decade) focused on the importance of particle physicochemical properties, M-cell ligands and size-dependent transport and intracellular fate concerning Peyer's patches targeted oral vaccination. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. EMERGING MICROTECHNOLOGIES FOR THE DEVELOPMENT OF ORAL DRUG DELIVERY DEVICES

    PubMed Central

    Chirra, Hariharasudhan D.; Desai, Tejal A.

    2012-01-01

    The development of oral drug delivery platforms for administering therapeutics in a safe and effective manner across the gastrointestinal epithelium is of much importance. A variety of delivery systems such as enterically coated tablets, capsules, particles, and liposomes have been developed to improve oral bioavailability of drugs. However, orally administered drugs suffer from poor localization and therapeutic efficacy due to various physiological conditions such as low pH, and high shear intestinal fluid flow. Novel platforms combining controlled release, improved adhesion, tissue penetration, and selective intestinal targeting may overcome these issues and potentially diminish the toxicity and high frequency of administration associated with conventional oral delivery. Microfabrication along with appropriate surface chemistry, provide a means to fabricate these platforms en masse with flexibility in tailoring the shape, size, reservoir volume, and surface characteristics of microdevices. Moreover, the same technology can be used to include integrated circuit technology and sensors for designing sophisticated autonomous drug delivery devices that promise to significantly improve point of care diagnostic and therapeutic medical applications. This review sheds light on some of the fabrication techniques and addresses a few of the microfabricated devices that can be effectively used for controlled oral drug delivery applications. PMID:22981755

  13. Metabolomic and pharmacokinetic study on the mechanism underlying the lipid-lowering effect of oral-administrated berberine

    PubMed Central

    Gu, Shenghua; Cao, Bei; Sun, Runbin; Tang, Yueqing; Paletta, Janice L.; Wu, Xiao-Lei; Liu, Linsheng; Zha, Weibin; Zhao, Chunyan; Li, Yan; Radlon, Jason M.; Hylemon, Phillip B.; Zhou, Huiping; Aa, Jiye; Wang, Guangji

    2014-01-01

    Clinic and animal studies demonstrated that oral-administrated berberine had distinct lipid-lowering effect. However, pharmacokinetic studies showed berberine was poorly absorbed into the body so that the levels of berberine in the blood and target tissues were far below the effective concentrations revealed. To probe the underlying mechanism, the effect of berberine on biological system was studied on a high-fat-diet-induced hamster hyperlipidemia model. Our results showed that intragastric-administered berberine was poorly absorbed into circulation and most berberine accumulated in gut content. Although the bioavailability for intragastric-administered berberine was much lower than that of intraperitoneal-administered berberine, it had stronger lipid-lowing effect, indicating gastrointestinal is a potential target for hypolipidemic effect of berberine. Metabolomic study on both serum and gut content showed that oral-administrated berberine significantly regulated molecules involved in lipid metabolism, and increased the generation of bile acids in the hyperlipidemic model. DNA analysis revealed that the oral-administered berberine modulated the gut microbiota, and BBR showed a significant inhibition on the 7α-dehydroxylation conversion of cholic acid to deoxycholic acid, indicating a decreased elimination of bile acids in the gut. However, in model hamsters, elevated bile acids failed to down-regulate the expression and function of CYP7A1 in a negative feed-back way. It was suggested that the hypocholesterolemic effect for oral-administrated berberine is involved in its effect on modulating the turnover of bile acids and farnesoid X receptor signal pathway. PMID:25411028

  14. Formulation Strategies to Improve the Bioavailability of Poorly Absorbed Drugs with Special Emphasis on Self-Emulsifying Systems

    PubMed Central

    Gupta, Shweta; Kesarla, Rajesh

    2013-01-01

    Poorly water-soluble drug candidates are becoming more prevalent. It has been estimated that approximately 60–70% of the drug molecules are insufficiently soluble in aqueous media and/or have very low permeability to allow for their adequate and reproducible absorption from the gastrointestinal tract (GIT) following oral administration. Formulation scientists have to adopt various strategies to enhance their absorption. Lipidic formulations are found to be a promising approach to combat the challenges. In this review article, potential advantages and drawbacks of various conventional techniques and the newer approaches specifically the self-emulsifying systems are discussed. Various components of the self-emulsifying systems and their selection criteria are critically reviewed. The attempts of various scientists to transform the liquid self-emulsifying drug delivery systems (SEDDS) to solid-SEDDS by adsorption, spray drying, lyophilization, melt granulation, extrusion, and so forth to formulate various dosage forms like self emulsifying capsules, tablets, controlled release pellets, beads, microspheres, nanoparticles, suppositories, implants, and so forth have also been included. Formulation of SEDDS is a potential strategy to deliver new drug molecules with enhanced bioavailability mostly exhibiting poor aqueous solubility. The self-emulsifying system offers various advantages over other drug delivery systems having potential to solve various problems associated with drugs of all the classes of biopharmaceutical classification system (BCS). PMID:24459591

  15. Relative bioavailability of single doses of prolonged-release tacrolimus administered as a suspension, orally or via a nasogastric tube, compared with intact capsules: a phase 1 study in healthy participants.

    PubMed

    Undre, Nasrullah; Dickinson, James

    2017-04-04

    Tacrolimus, an immunosuppressant widely used in solid organ transplantation, is available as a prolonged-release capsule for once-daily oral administration. In the immediate postsurgical period, if patients cannot take intact capsules orally, tacrolimus therapy is often initiated as a suspension of the capsule contents, delivered orally or via a nasogastric tube. This study evaluated the relative bioavailability of prolonged-release tacrolimus suspension versus intact capsules in healthy participants. A phase 1, open-label, single-dose, cross-over study. A single clinical research unit. In total, 20 male participants, 18-55 years old, entered and completed the study. All participants received nasogastric administration of tacrolimus 10 mg suspension in treatment period 1, with randomisation to oral administration of suspension or intact capsules in periods 2 and 3. Blood concentration-time profile over 144 hours was used to estimate pharmacokinetic parameters. Primary end point: relative bioavailability of prolonged-release intact capsule versus oral or nasogastric administration of prolonged-release tacrolimus suspension (area under the concentration-time curve (AUC) from time 0 to infinity post-tacrolimus dose (AUC 0-∞ ); AUC measured until the last quantifiable concentration (AUC 0-tz ); maximum observed concentration (C max ); time to C max (T max )). Tolerability was assessed throughout the study. Relative bioavailability of prolonged-release tacrolimus suspension administered orally was similar to intact capsules, with a ratio of least-square means for AUC 0-tz and AUC 0-∞ of 1.05 (90% CI 0.96 to 1.14). Bioavailability was lower with suspension administered via a nasogastric tube versus intact capsules (17%; ratio 0.83; CI 0.76 to 0.92). C max was higher for oral and nasogastric suspension (30% and 28%, respectively), and median T max was shorter (difference 1.0 and 1.5 hours postdose, respectively) versus intact capsules (2.0 hours). Single 10 mg doses of tacrolimus were well tolerated. Compared with intact capsules, the rate of absorption of prolonged-release tacrolimus from suspension was faster, leading to higher peak blood concentrations and shorter time to peak; relative bioavailability was similar with suspension administered orally. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Effects of Manufacturing Methods on Dissolution and Absorption of Ketoconazole in the Presence of Organic Acid as a pH Modifier.

    PubMed

    Adachi, Masashi; Hinatsu, Yuta; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Nakatani, Manabu; Wada, Koichi; Yamamoto, Akira

    2017-05-01

    Poorly water-soluble compounds have a potential risk of low and variable bioavailability caused by incomplete dissolution. Incorporation of organic acids as pH modifiers is effective method for solubility enhancement of basic compounds and requires no special technique and equipment. The purpose of this study was to evaluate the effect of manufacturing method on the extent of drug solubility enhancement. We successfully prepared the granules and tablets containing ketoconazole (KZ), which is weakly basic, as a model compound and citric acid as a pH modifier using conventional wet and dry granulations. KZ solubility under non-sink condition was enhanced with supersaturation using both wet and dry granulations. High-shear granulation was the most effective method in terms of KZ dissolution enhancement, because both an intimate contact and strong bonding between KZ and incorporated acid were achieved. KZ dissolved amount from the granules prepared by high-shear granulation was about eight times higher than that from the granules without the acid. The granulation involved to suppress a diffusion of acid dissolved, leading to the effectively maintained supersaturation state. The bioavailability of KZ after oral administration to rats was improved by applying high-shear granulation with citric acid independent of gastrointestinal pH. The granules prepared by high-shear granulation showed the bioavailability about 1.7-fold higher than that of the physical mixture in rats with and without neutralization of stomach. As a result, both the dissolution and absorption rates of KZ after oral administration were enhanced using conventional manufacturing technology.

  17. Surface decorated nanoparticles as surrogate carriers for improved transport and absorption of epirubicin across the gastrointestinal tract: Pharmacokinetic and pharmacodynamic investigations.

    PubMed

    Tariq, Mohammad; Alam, Md Aftab; Singh, Anu T; Panda, Amulya K; Talegaonkar, Sushama

    2016-03-30

    Epirubicin (EPI) is a P-gp substrate antracycline analogue which elicits poor oral bioavailability. In the present work, EPI loaded poly-lactide-co-glycolic acid nanoparticles (PLGA-NPs) were prepared by double emulsion approach and superficially decorated with polyethylene glycol (EPI-PNPs) and mannosamine (EPI-MNPs). Average hydrodynamic particle size of EPI-PNPs and EPI-MNPs was found 248.63 ± 12.36 and 254.23 ± 15.16 nm, respectively. Cytotoxicity studies were performed against human breast adenocarcinoma cell lines (MCF-7) confirmed the superiority of EPI-PNPs and EPI-MNPs over free epirubicin solution (EPI-S). Further, confocal laser scanning microscopy (CLSM) and flow cytometric analysis (FACS) demonstrated enhanced drug uptake through EPI-PNPs and EPI-MNPs and elucidated dominance of caveolae mediated endocytosis for NPs uptake. Cellular transport conducted on human colon adenocarcinoma cell line (Caco-2) showed 2.45 and 3.17 folds higher permeability of EPI through EPI-PNPs and EPI-MNPs when compared with EPI-S (p<0.001) while permeability of EPI was found 5.23 and 5.67 folds higher across rat ileum, respectively. Furthermore, pharmacokinetic studies demonstrated 4.7 and 5.57 folds higher oral bioavailability through EPI-PNPs and EPI-MNPs when compared with EPI-S. In addition, both, EPI-PNPs and EMNPs showed tumor suppression comparable to indicated route (i.v. injection). EPI-MNPs showed 1.18 folds higher bioavailability and better tumor suppression than EPI-PNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Transdermal delivery of raloxifene HCl via ethosomal system: Formulation, advanced characterizations and pharmacokinetic evaluation.

    PubMed

    Mahmood, Syed; Mandal, Uttam Kumar; Chatterjee, Bappaditya

    2018-05-05

    Raloxifene HCl belongs to a class of selective estrogen receptor modulators (SERMs) which is used for the management of breast cancer. The major problem reported with raloxifene is its poor bioavailability which is only up to 2%. The main objective of the present work was to formulate raloxifene loaded ethosomal preparation for transdermal application and compare it with an oral formulation of the drug. Five ethosomal formulations with different concentrations of ethanol and a conventional liposomes formulation were prepared by rotary evaporation method. The prepared systems were characterised by high resolution transmission electron microscopy (HRTEM), force emission electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and 31 P NMR study. All these advanced characterization study established that the ethosome formulation was well defined by its size, shape and its bilayer formation. Transdermal flux of the optimized ethosome formulation was 22.14 ± 0.83 µg/ml/cm 2 which was 21 times higher when compared to the conventional liposomes. Confocal microscopy study revealed an enhanced permeation of coumarin-6 dye loaded ethosomes to much deeper layers of skin when compared with conventional liposomes. The gel was found to be pseudoplastic with elastic behaviour. In-vivo studies on rats showed a higher bioavailability of RXL (157% times) for ethosomal formulation when compared with the oral formulation. In conclusion, RXL loaded ethosomal formulation via transdermal route showed superior drug delivery properties as compared to oral formulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Curcumin attenuates collagen-induced inflammatory response through the "gut-brain axis".

    PubMed

    Dou, Yannong; Luo, Jinque; Wu, Xin; Wei, Zhifeng; Tong, Bei; Yu, Juntao; Wang, Ting; Zhang, Xinyu; Yang, Yan; Yuan, Xusheng; Zhao, Peng; Xia, Yufeng; Hu, Huijuan; Dai, Yue

    2018-01-06

    Previous studies have demonstrated that oral administration of curcumin exhibited an anti-arthritic effect despite its poor bioavailability. The present study aimed to explore whether the gut-brain axis is involved in the therapeutic effect of curcumin. The collagen-induced arthritis (CIA) rat model was induced by immunization with an emulsion of collagen II and complete Freund's adjuvant. Sympathetic and parasympathetic tones were measured by electrocardiographic recordings. Unilateral cervical vagotomy (VGX) was performed before the induction of CIA. The ChAT, AChE activities, and serum cytokine levels were determined by ELISA. The expression of the high-affinity choline transporter 1 (CHT1), ChAT, and vesicular acetylcholine transporter (VAChT) were determined by real-time PCR and immunohistochemical staining. The neuronal excitability of the vagus nerve was determined by whole-cell patch clamp recording. Oral administration of curcumin restored the imbalance between the sympathetic and parasympathetic tones in CIA rats and increased ChAT activity and expression of ChAT and VAChT in the gut, brain, and synovium. Additionally, VGX eliminated the effects of curcumin on arthritis and ACh biosynthesis and transport. Electrophysiological data showed that curcumin markedly increased neuronal excitability of the vagus nerve. Furthermore, selective α7 nAChR antagonists abolished the effects of curcumin on CIA. Our results demonstrate that curcumin attenuates CIA through the "gut-brain axis" by modulating the function of the cholinergic system. These findings provide a novel approach for mechanistic studies of anti-arthritic compounds with low oral absorption and bioavailability.

  20. The effects of ketoconazole and cimetidine on the pharmacokinetics of oral tramadol in greyhound dogs.

    PubMed

    KuKanich, B; KuKanich, K; Black, J

    2017-12-01

    Tramadol is administered to dogs for analgesia but has variability in its extent of absorption, which may hinder its efficacy. Additionally, the active opioid metabolite (M1) occurs in low concentrations. The purpose of this study was to determine if administration of oral tramadol with suspected metabolism inhibitors (ketoconazole, cimetidine) would lead to improved bioavailability of tramadol and M1. Six healthy Greyhounds were included. They were administered tramadol orally and intravenously, M1 intravenously, oral tramadol with oral ketoconazole and oral tramadol with oral cimetidine. Oral tramadol bioavailability was low (2.6%). Ketoconazole and cimetidine significantly increased tramadol bioavailability to 18.2% and 20.3%, respectively. The mean maximum plasma concentration of tramadol alone was 22.9 ng/ml, and increased to 109.9 and 143.2 μg/ml with ketoconazole and cimetidine, respectively. However, measured tramadol plasma concentrations were below the minimum concentration considered effective in humans (228 μg/ml). In all treatment groups, measured M1 concentrations (<7 μg/ml) were below concentrations associated with efficacy in humans. To conclude, tramadol and M1 concentrations were low and variable in dogs after oral dosing of tramadol, even in combination with cimetidine or ketoconazole, but effective concentrations in dogs have not been defined. © 2017 John Wiley & Sons Ltd.

  1. To Take or Not to Take With Meals? Unraveling Issues Related to Food Effects Labeling for Oral Antineoplastic Drugs.

    PubMed

    Deng, Jiexin; Brar, Satjit S; Lesko, Lawrence J

    2017-12-02

    There has been controversy regarding whether bioavailability of certain oral oncology drugs should be maximized by taking these medications with food, irrespective of label instructions in the dosing and administration section. To provide insight into this controversy, we conducted an in-depth analysis for oral antineoplastic drugs approved by the Food and Drug Administration in 2000-2016 and identified important issues influencing food labeling decisions. Furthermore, a case study involving sonidegib, a drug approved for locally advanced basal cell carcinoma with a significant food effect on exposure, was used to demonstrate the consequences of failure to adhere to food label recommendations using drug-specific population pharmacokinetic and exposure-toxicity models. In 2000-2009, 80% (4 out of 5) of all approved oral antineoplastics with increased bioavailability in the fed state were labeled as "take on empty stomach." In contrast, we found that in 2010-2016 there is a greater diversity in food recommendations for drugs with increased bioavailability in the fed state. Currently, many oral oncology drugs are given with food to maximize their bioavailability; however, as seen from our case study of sonidegib, failure to fully adhere to label recommendations to either take with food or not could lead to adverse consequences in terms of safety and efficacy. © 2017, The American College of Clinical Pharmacology.

  2. Bioavailability of repaglinide, a novel antidiabetic agent, administered orally in tablet or solution form or intravenously in healthy male volunteers.

    PubMed

    Hatorp, V; Oliver, S; Su, C A

    1998-12-01

    Repaglinide is a novel prandial glucose regulator (PGR) for the treatment of type 2 diabetes. In order to investigate subject variability following oral administration of repaglinide, and to determine the relative and absolute bioavailabilities of repaglinide following oral or intravenous administration, two single-centre, open-label, randomized, crossover clinical studies were conducted. Study 1 was conducted in 24 healthy male subjects (aged 18 to 49 years), who received repaglinide 2 mg, as either tablet or oral solution, twice each on 4 separate occasions at least 7 days apart. Study 2 was conducted in 12 healthy male subjects (aged 18 to 45 years), who received repaglinide 2 mg, either as a tablet or as an intravenous infusion over 15 minutes, once each on 2 separate occasions, with a washout period of 7-10 days. In study 1 there was no significant difference between administration of repaglinide 2 mg, in either tablet or oral solution form with regard to intrasubject variation in AUC and Cmax. However, the intrasubject variation in t(max) and mean residence time (MRT) was significantly (p = 0.001) larger for the tablets than for the oral solution. Intersubject variation (CV) in AUC ranged from 44.7% to 62.1% after oral administration. The relative bioavailability of repaglinide (AUC(tablet)/AUC(oral solution)) was 110% (95% CI, 103%-117%). In study 2 the absolute bioavailability of repaglinide administered as a tablet was 62.5% (95% CI, 49.2%-79.5%) relative to an intravenous infusion of the same dose. There was no evidence from either study that the tablet formulation led to greater variation in serum profiles of repaglinide. It was concluded that repaglinide is rapidly absorbed and eliminated in healthy subjects when administered orally or intravenously under fasting conditions, and that the total availability of repaglinide is similar in the tablet and oral solution formulations, though that the rate of absorption is slower for the tablet formulation.

  3. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends

    PubMed Central

    Sohail, Muhammad Farhan; Rehman, Mubashar; Sarwar, Hafiz Shoaib; Naveed, Sara; Salman, Omer; Bukhari, Nadeem Irfan; Hussain, Irshad; Webster, Thomas J; Shahnaz, Gul

    2018-01-01

    The oral delivery of cancer chemotherapeutic drugs is challenging due to low bioavailability, gastrointestinal side effects, first-pass metabolism and P-glycoprotein efflux pumps. Thus, chemotherapeutic drugs, including Docetaxel, are administered via an intravenous route, which poses many disadvantages of its own. Recent advances in pharmaceutical research have focused on designing new and efficient drug delivery systems for site-specific targeting, thus leading to improved bioavailability and pharmacokinetics. A decent number of studies have been reported for the safe and effective oral delivery of Docetaxel. These nanocarriers, including liposomes, polymeric nanoparticles, metallic nanoparticles, hybrid nanoparticles, dendrimers and so on, have shown promising results in research papers and clinical trials. The present article comprehensively reviews the research efforts made so far in designing various advancements in the oral delivery of Docetaxel. Different strategies to improve oral bioavailability, prevent first-pass metabolism and inhibition of efflux pumping leading to improved pharmacokinetics and anticancer activity are discussed. The final portion of this review article presents key issues such as safety of nanomaterials, regulatory approval and future trends in nanomedicine research. PMID:29922053

  4. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends.

    PubMed

    Sohail, Muhammad Farhan; Rehman, Mubashar; Sarwar, Hafiz Shoaib; Naveed, Sara; Salman, Omer; Bukhari, Nadeem Irfan; Hussain, Irshad; Webster, Thomas J; Shahnaz, Gul

    2018-01-01

    The oral delivery of cancer chemotherapeutic drugs is challenging due to low bioavailability, gastrointestinal side effects, first-pass metabolism and P-glycoprotein efflux pumps. Thus, chemotherapeutic drugs, including Docetaxel, are administered via an intravenous route, which poses many disadvantages of its own. Recent advances in pharmaceutical research have focused on designing new and efficient drug delivery systems for site-specific targeting, thus leading to improved bioavailability and pharmacokinetics. A decent number of studies have been reported for the safe and effective oral delivery of Docetaxel. These nanocarriers, including liposomes, polymeric nanoparticles, metallic nanoparticles, hybrid nanoparticles, dendrimers and so on, have shown promising results in research papers and clinical trials. The present article comprehensively reviews the research efforts made so far in designing various advancements in the oral delivery of Docetaxel. Different strategies to improve oral bioavailability, prevent first-pass metabolism and inhibition of efflux pumping leading to improved pharmacokinetics and anticancer activity are discussed. The final portion of this review article presents key issues such as safety of nanomaterials, regulatory approval and future trends in nanomedicine research.

  5. Bilayer mucoadhesive microparticles for the delivery of metoprolol succinate: Formulation and evaluation.

    PubMed

    Kumar, Krishan; Dhawan, Neha; Sharma, Harshita; Patwal, Pramod S; Vaidya, Shubha; Vaidya, Bhuvaneshwar

    2015-01-01

    Metoprolol succinate is a very potent drug for the treatment of hypertension but suffers from poor bioavailability due to its erratic absorption in lower GI tract. Therefore, in the present study, it was hypothesized that by formulating mucoadhesive particles, the residence time in the GIT and release of drug may be prolonged that will enhance the bioavailability of metoprolol succinate. Metoprolol succinate loaded chitosan microparticles were prepared by ionic gelation method. The optimized microparticles were coated with sodium alginate to form a layer over chitosan microparticles to increase the mucoadhesive strength and to release the drug in controlled manner. Coated and uncoated microparticles were evaluated for particle size, zeta potential, morphology, entrapment efficiency, drug loading and in vitro drug release. The coated microparticles showed comparatively less drug release in the 0.1 N HCl while sustained release in PBS (pH 6.8) as compared to uncoated microparticles. The in vivo study on albino rats demonstrated an increase in bioavailability of the coated microparticles as compared to marketed formulation. From the study it can be concluded that alginate coated chitosan microparticles could be a useful carrier for the oral delivery of metoprolol succinate.

  6. Novel delivery system for natural products: Nano-curcumin formulations

    PubMed Central

    Rahimi, Hamid Reza; Nedaeinia, Reza; Sepehri Shamloo, Alireza; Nikdoust, Shima; Kazemi Oskuee, Reza

    2016-01-01

    Objective: Curcumin is extracted from Curcuma longa and regulates the intracellular signal pathways which control the growth of cancerous cell, inflammation, invasion and apoptosis. Curcumin molecules have special intrinsic features that can target the intracellular enzymes, genome (DNA) and messengers (RNA). A wide range of studies have been conducted on the physicochemical traits and pharmacological effects of curcumin on different diseases like cardiovascular diseases, diabetes, cancer, rheumatoid arthritis, Alzheimer’s, inflammatory bowel disease (IBD), and even it has wound healing. Oral bioavailability of curcumin is rather poor, which would certainly put some boundaries in the employment of this drug. Materials and Methods: Bibliographical searches were performed using MEDLINE/ScienceDirect/OVID up to February 2015 using the following keywords (all fields): (“Curcumin” OR “Curcuma longa”) AND [(nanoparticles) OR (Nanomicelles) OR (micro emulsions) OR (liposome) OR (phospholipid). Results: Consequently, for any developments of curcumin in the future, analogues of curcumin that have better bioavailability or substitute formulations are needed crucially. Conclusion: These studies indicated that nanotechnology can formulate curcumin effectively, and this nano-formulated curcumin with a potent ability against various cancer cells, were represented to have better efficacy and bioavailability under in vivo conditions. PMID:27516979

  7. Enhanced Oral Bioavailability of Efavirenz by Solid Lipid Nanoparticles: In Vitro Drug Release and Pharmacokinetics Studies

    PubMed Central

    Gaur, Praveen Kumar; Mishra, Shikha; Bajpai, Meenakshi; Mishra, Anushika

    2014-01-01

    Solid lipid nanoparticle is an efficient lipid based drug delivery system which can enhance the bioavailability of poorly water soluble drugs. Efavirenz is a highly lipophilic drug from nonnucleoside inhibitor category for treatment of HIV. Present work illustrates development of an SLN formulation for Efavirenz with increased bioavailability. At first, suitable lipid component and surfactant were chosen. SLNs were prepared and analyzed for physical parameters, stability, and pharmacokinetic profile. Efavirenz loaded SLNs were formulated using Glyceryl monostearate as main lipid and Tween 80 as surfactant. ESLN-3 has shown mean particle size of 124.5 ± 3.2 nm with a PDI value of 0.234, negative zeta potential, and 86% drug entrapment. In vitro drug release study has shown 60.6–98.22% drug release in 24 h by various SLN formulations. Optimized SLNs have shown good stability at 40°C ± 2°C and 75 ± 5% relative humidity (RH) for 180 days. ESLN-3 exhibited 5.32-fold increase in peak plasma concentration (C max⁡) and 10.98-fold increase in AUC in comparison to Efavirenz suspension (ES). PMID:24967360

  8. Characteristics of Artemether-Loaded Poly(lactic-co-glycolic) Acid Microparticles Fabricated by Coaxial Electrospray: Validation of Enhanced Encapsulation Efficiency and Bioavailability.

    PubMed

    Mangrio, Farhana Akbar; Dwivedi, Pankaj; Han, Shuya; Zhao, Gang; Gao, Dayong; Si, Ting; Xu, Ronald X

    2017-12-04

    Artemether is one of the most effective drugs for the treatment of chloroquine-resistant and Plasmodium falciparum strains of malaria. However, its therapeutic potency is hindered by its poor bioavailability. To overcome this limitation, we have encapsulated artemether in poly(lactic-co-glycolic) acid (PLGA) core-shell microparticles (MPs) using the coaxial electrospray method. With optimized process parameters including liquid flow rates and applied electric voltages, experiments are systematically carried out to generate a stable cone-jet mode to produce artemether-loaded PLGA-MPs with an average size of 2 μm, an encapsulation efficiency of 78 ± 5.6%, and a loading efficiency of 11.7%. The in vitro release study demonstrates the sustained release of artemether from the core-shell structure in comparison with that of plain artemether and that of MPs produced by single-axial electrospray without any relevant cytotoxicity. The in vivo studies are performed to evaluate the pharmacokinetic characteristics of the artemether-loaded PLGA-MPs. Our study implies that artemether can be effectively encapsulated in a protective shell of PLGA for controlled release kinetics and enhanced oral bioavailability.

  9. Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a Parkinson’s disease model

    NASA Astrophysics Data System (ADS)

    Sharma, Shrestha; Narang, Jasjeet K.; Ali, Javed; Baboota, Sanjula

    2016-09-01

    Purpose. Oxidative stress is the leading cause in the pathogenesis of Parkinson’s disease. Rutin is a naturally occurring strong antioxidant molecule with wide therapeutic applications. It suffers from the problem of low oral bioavailability which is due to its poor aqueous solubility. Methods. In order to increase the solubility self-nanoemulsifying drug delivery systems (SNEDDS) of rutin were prepared. The oil, surfactant and co-surfactant were selected based on solubility/miscibility studies. Optimization was done by a three-factor, four-level (34) Box-Behnken design. The independent factors were oil, surfactant and co-surfactant concentration and the dependent variables were globule size, self-emulsification time, % transmittance and cumulative percentage of drug release. The optimized SNEDDS formulation (RSE6) was evaluated for various release studies. Antioxidant activity was assessed by various in vitro tests such as 2,2-diphenyl-1-picrylhydrazyl and reducing power assay. Oxidative stress models which had Parkinson’s-type symptoms were used to determine the antioxidant potential of rutin SNEDDS in vivo. Permeation was assessed through confocal laser scanning microscopy. Results. An optimized SNEDDS formulation consisting of Sefsol + vitamin E-Solutol HS 15-Transcutol P at proportions of 25:35:17.5 (w/w) was prepared and characterized. The globule size and polydispersity index of the optimized formulation was found to be 16.08 ± 0.02 nm and 0.124 ± 0.01, respectively. A significant (p < 0.05) increase in the percentage of drug release was achieved in the case of the optimized formulation as compared to rutin suspension. Pharmacokinetic study showed a 2.3-fold increase in relative oral bioavailability. The optimized formulation had significant in vitro and in vivo antioxidant activity. Conclusion. Rutin SNEDDS have been successfully prepared and they can serve as an effective tool in enhancing the oral bioavailability and efficacy of rutin, thus helping in ameliorating oxidative stress in neurodegenerative disorders like Parkinson’s disease.

  10. Oral bioavailability of cyclotrimethylenetrinitramine (RDX) from contaminated site soils in rats.

    PubMed

    Crouse, Lee C B; Michie, Mark W; Major, Michael A; Leach, Glenn J; Reddy, Gunda

    2008-01-01

    Cyclotrimethylenetrinitramine (RDX), a commonly used military explosive, was detected as a contaminant of soil and water at Army facilities and ranges. This study was conducted to determine the relative oral bioavailability of RDX in contaminated soil and to develop a method to derive bioavailability adjustments for risk assessments using rodents. Adult male Sprague-Dawley rats preimplanted with femoral artery catheters were dosed orally with gelatin capsules containing either pure RDX or an equivalent amount of RDX in contaminated soils from Louisiana Army Ammunition Plant (LAAP) (2300 microg/g of soil) or Fort Meade (FM) (670 microg/g of soil). After dosing rats, blood samples were collected from catheters at 2-h intervals (2, 4, 6, 8, 10, and 12) and at 24 and 48 h. RDX levels in the blood were determined by gas chromatography. The results show that the peak absorption of RDX in blood was 6 h for neat RDX (1.24 mg/kg) and for RDX from contaminated soil (1.24 mg/kg) of LAAP. Rats dosed with RDX-contaminated FM soil (0.2 mg/kg) showed peak levels of RDX in blood at 6 h, whereas their counterparts that received an identical dose (0.2 mg/kg) of neat RDX showed peak absorption at 4 h. The blood levels of absorbed RDX from LAAP soil were about 25% less than for neat RDX, whereas the bioavailability of RDX from FM soils was about 15% less than that seen in rats treated with neat RDX (0.2 mg/kg). The oral bioavailability in rats fed RDX in LAAP soil and the FM soil was reduced with the neat compound but decrease in bioavailability varied with the soil type.

  11. Enhancement of solubility and oral bioavailability of manidipine by formation of ternary solid dispersion with d-α-tocopherol polyethylene glycol 1000 succinate and copovidone.

    PubMed

    Chamsai, Benchawan; Limmatvapirat, Sontaya; Sungthongjeen, Srisagul; Sriamornsak, Pornsak

    2017-12-01

    Low bioavailability of oral manidipine (MDP) is due to its low water solubility. The objective of this study was to increase the solubility and bioavailability of MDP by fabricating ternary solid dispersion (tSD) with d-α-tocopherol polyethyleneglycol-1000-succinate and copovidone. In this study, solid ternary phase diagram was applied in order to check the homogeneity of tSD prepared by melting and solidifying with dry ice. The physicochemical properties of different formulations were determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and hot stage microscopy. Their solubility, dissolution, stability and bioavailability were also investigated. The results demonstrated that tSD obtained from ternary phase diagram divided into homogeneous and non-homogeneous regions. In the homogenous region, the transparent characteristics of tSD was observed and considered as a glass solution, which have a higher MDP solubility than that in non-homogenous region. The hot stage microscopy, DSC and PXRD confirmed that solid dispersion was formed in which MDP was molecularly dispersed in the carriers, especially in the homogenous region of phase diagram. FTIR analysis demonstrated strong hydrogen bonding between amine groups of MDP and carbonyl groups of copovidone, which supported a higher solubility and dissolution of tSD. The pharmacokinetic study in Wistar rats showed that the tSD had the greatest effect on oral bioavailability. Immediate hypotensive effect of tSD was also observed in vivo. The improvement of stability, dissolution and oral bioavailability of MDP could be achieved by using tSD technique.

  12. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms.

    PubMed

    Xie, Xiaoxia; Tao, Qing; Zou, Yina; Zhang, Fengyi; Guo, Miao; Wang, Ying; Wang, Hui; Zhou, Qian; Yu, Shuqin

    2011-09-14

    The overall goal of this paper was to develop poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) of curcumin (CUR), named CUR-PLGA-NPs, and to study the effect and mechanisms enhancing the oral bioavailability of CUR. CUR-PLGA-NPs were prepared according to a solid-in-oil-in-water (s/o/w) solvent evaporation method and exhibited a smooth and spherical shape with diameters of about 200 nm. Characterization of CUR-PLGA-NPs showed CUR was successfully encapsulated on the PLGA polymer. The entrapment efficiency and loading rate of CUR were 91.96 and 5.75%, respectively. CUR-PLGA-NPs showed about 640-fold in water solubility relative to that of n-CUR. A sustained CUR release to a total of approximately 77% was discovered from CUR-PLGA-NPs in artificial intestinal juice, but only about 48% in artificial gastric juice. After oral administration of CUR-PLGA-NPs, the relative bioavailability was 5.6-fold and had a longer half-life compared with that of native curcumin. The results showed that the effect in improving oral bioavailability of CUR may be associated with improved water solubility, higher release rate in the intestinal juice, enhanced absorption by improved permeability, inhibition of P-glycoprotein (P-gp)-mediated efflux, and increased residence time in the intestinal cavity. Thus, encapsulating hydrophobic drugs on PLGA polymer is a promising method for sustained and controlled drug delivery with improved bioavailability of Biopharmaceutics Classification System (BCS) class IV, such as CUR.

  13. Polyamidoamine (PAMAM) dendrimers as potential release modulators and oral bioavailability enhancers of vardenafil hydrochloride.

    PubMed

    Tawfik, Mai Ahmed; Tadros, Mina Ibrahim; Mohamed, Magdy Ibrahim

    2018-05-21

    Vardenafil hydrochloride (VAR) is an erectile dysfunction treating drug. VAR has a short elimination half-life (4-5 h) and suffers low oral bioavailability (15%). This work aimed to explore the dual potential of VAR-dendrimer complexes as drug release modulators and oral bioavailability enhancers. VAR-dendrimer complexes were prepared by solvent evaporation technique using four dendrimer generations (G4.5, G5, G5.5 and G6) at three concentrations (190 nM, 380 nM and 950 nM). The systems were evaluated for intermolecular interactions, particle size, zeta potential, drug entrapment efficiency percentages (EE%) and drug released percentages after 2 h (Q 2h ) and 24 h (Q 24h ). The results were statistically analyzed, and the system showing the highest desirability was selected for further pharmacokinetic studies in rabbits, in comparison to Levitra ® tablets. The highest desirability (0.82) was achieved with D10 system comprising VAR (10 mg) and G6 (190 nM). It possessed small particle size (113.85 nm), low PDI (0.19), positive zeta potential (+21.53), high EE% (75.24%), promising Q 2 h (41.45%) and Q 24 h (74.05%). Compared to Levitra ® tablets, the significantly (p < 0.01) delayed T max , prolonged MRT (0-∞) and higher relative bioavailability (3.7-fold) could clarify the dual potential of D10 as a sustained release system capable of enhancing VAR oral bioavailability.

  14. Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles

    PubMed Central

    Lai, Jie; Lu, Yi; Yin, Zongning; Hu, Fuqiang; Wu, Wei

    2010-01-01

    Efforts to improve the oral bioavailability of cyclosporine A (CyA) remains a challenge in the field of drug delivery. In this study, glyceryl monooleate (GMO)/poloxamer 407 cubic nanoparticles were evaluated as potential vehicles to improve the oral bioavailability of CyA. Cubic nanoparticles were prepared via the fragmentation of a bulk GMO/poloxamer 407 cubic phase gel by sonication and homogenization. The cubic inner structure formed was verified using Cryo-TEM. The mean diameters of the nanoparticles were about 180 nm, and the entrapment efficiency of these particles for CyA was over 85%. The in vitro release of CyA from these nanoparticles was less than 5% at 12 h. The results of a pharmacokinetic study in beagle dogs showed improved absorption of CyA from cubic nanoparticles as compared to microemulsion-based Neoral®; higher Cmax (1371.18 ± 37.34 vs 969.68 ± 176.3 ng mL−1), higher AUC0–t (7757.21 ± 1093.64 vs 4739.52 ± 806.30 ng h mL−1) and AUC0–∞ (9004.77 ± 1090.38 vs 5462.31 ± 930.76 ng h mL−1). The relative oral bioavailability of CyA cubic nanoparticles calculated on the basis of AUC0–∞ was about 178% as compared to Neoral®. The enhanced bioavailability of CyA is likely due to facilitated absorption by cubic nanoparticles rather than improved release. PMID:20161984

  15. Liposomal-encapsulated Ascorbic Acid: Influence on Vitamin C Bioavailability and Capacity to Protect Against Ischemia–Reperfusion Injury

    PubMed Central

    Davis, Janelle L.; Paris, Hunter L.; Beals, Joseph W.; Binns, Scott E.; Giordano, Gregory R.; Scalzo, Rebecca L.; Schweder, Melani M.; Blair, Emek; Bell, Christopher

    2016-01-01

    Intravenous administration of vitamin C has been shown to decrease oxidative stress and, in some instances, improve physiological function in adult humans. Oral vitamin C administration is typically less effective than intravenous, due in part to inferior vitamin C bioavailability. The purpose of this study was to determine the efficacy of oral delivery of vitamin C encapsulated in liposomes. On 4 separate randomly ordered occasions, 11 men and women were administered an oral placebo, or 4 g of vitamin C via oral, oral liposomal, or intravenous delivery. The data indicate that oral delivery of 4 g of vitamin C encapsulated in liposomes (1) produces circulating concentrations of vitamin C that are greater than unencapsulated oral but less than intravenous administration and (2) provides protection from ischemia–reperfusion-mediated oxidative stress that is similar to the protection provided by unencapsulated oral and intravenous administrations. PMID:27375360

  16. Biodegradable Poly (Lactic-co-Glycolic Acid)-Polyethylene Glycol Nanocapsules: An Efficient Carrier for Improved Solubility, Bioavailability, and Anticancer Property of Lutein.

    PubMed

    Arunkumar, Ranganathan; Prashanth, Keelara Veerappa Harish; Manabe, Yuki; Hirata, Takashi; Sugawara, Tatsuya; Dharmesh, Shylaja Mallaiah; Baskaran, Vallikannan

    2015-06-01

    Lutein bioavailability is limited because of its poor aqueous solubility. In this study, lutein-poly (lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG) nanocapsules were prepared to improve the solubility, bioavailability, and anticancer property of lutein. The scanning electron microscopy and dynamic light scattering examination revealed that the nanocapsules are smooth and spherical with size ranging from 80 to 500 nm (mean = 200 nm). In vitro lutein release profile from nanocapsules showed controlled sustainable release (66%) up to 72 h. Aqueous solubility of lutein nanocapsules was much higher by 735-fold than the lutein. Fourier transform infrared spectroscopy analyses showed no chemical interaction among PLGA, PEG, and lutein, indicating possible weak intermolecular forces like hydrogen bonds. X-ray diffraction revealed lutein is distributed in a disordered amorphous state in nanocapsules. Postprandial plasma kinetics (area under the curve) of an oral dose of lutein from nanocapsules was higher by 5.4-fold compared with that of micellar lutein (control). The antiproliferative effect of lutein from nanocapsules (IC50 value, 10.9 μM) was higher (43.6%) than the lutein (IC50 value, 25 μM). Results suggest that PLGA-PEG nanocapsule is an efficient carrier for enhancing hydrophilicity, bioavailability, and anticancer property of lipophilic molecules such as lutein. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. 26Al-containing acidic and basic sodium aluminum phosphate preparation and use in studies of oral aluminum bioavailability from foods utilizing 26Al as an aluminum tracer

    NASA Astrophysics Data System (ADS)

    Yokel, Robert A.; Urbas, Aaron A.; Lodder, Robert A.; Selegue, John P.; Florence, Rebecca L.

    2005-04-01

    We synthesized 26Al-containing acidic and basic (alkaline) sodium aluminum phosphates (SALPs) which are FDA-approved leavening and emulsifying agents, respectively, and used them to determine the oral bioavailability of aluminum incorporated in selected foods. We selected applicable methods from published syntheses (patents) and scaled them down (∼3000- and 850-fold) to prepare ∼300-400 mg of each SALP. The 26Al was incorporated at the beginning of the syntheses to maximize 26Al and 27Al equilibration and incorporate the 26Al in the naturally-occurring Al-containing chemical species of the products. Near infrared spectroscopy (NIR) and X-ray powder diffraction (XRD) were used to characterize the two SALP samples and some intermediate samples. Multi-elemental analysis (MEA) was used to determine Na, Al and P content. Commercial products were included for comparison. Satisfactory XRD analyses, near infrared spectra and MEA results confirmed that we synthesized acidic and basic SALP, as well as some of the syntheses intermediates. The 26Al-containing acidic and basic SALPs were incorporated into a biscuit material and a processed cheese, respectively. These were used in oral bioavailability studies conducted in rats in which the 26Al present in blood after its oral absorption was quantified by accelerator mass spectrometry. The results showed oral Al bioavailability from acidic SALP in biscuit was ∼0.02% and from basic SALP in cheese ∼0.05%, lower than our previous determination of Al bioavailability from drinking water, ∼0.3%. Both food and water can appreciably contribute to the Al absorbed from typical human Al intake.

  18. Effect of B-complex vitamins on the antifatigue activity and bioavailability of ginsenoside Re after oral administration.

    PubMed

    Chen, Yin Bin; Wang, Yu Fang; Hou, Wei; Wang, Ying Ping; Xiao, Sheng Yuan; Fu, Yang Yang; Wang, Jia; Zheng, Si Wen; Zheng, Pei He

    2017-04-01

    Both ginsenoside Re and B-complex vitamins are widely used as nutritional supplements. They are often taken together so as to fully utilize their antifatigue and refreshing effects, respectively. Whether actually a drug-nutrient interaction exists between ginsenoside Re and B-complex vitamins is still unknown. The objective of this study was to simultaneously investigate the effect of B-complex vitamins on the antifatigue activity and bioavailability of ginsenoside Re after their oral administration. The study results will provide valuable theoretical guidance for the combined utilization of ginseng and B-complex vitamins. Ginsenoside Re with or without B-complex vitamins was orally administered to mice to evaluate its antifatigue effects and to rats to evaluate its bioavailability. The antifatigue activity was evaluated by the weight-loaded swimming test and biochemical parameters, including hepatic glycogen, plasma urea nitrogen, and blood lactic acid. The concentration of ginsenoside Re in plasma was determined by liquid chromatography-tandem mass spectrometry. No antifatigue effect of ginsenoside Re was noted when ginsenoside Re in combination with B-complex vitamins was orally administered to mice. B-complex vitamins caused to a reduction in the bioavailability of ginsenoside Re with the area under the concentration-time curve from zero to infinity markedly decreasing from 11,830.85 ± 2,366.47 h·ng/mL to 890.55 ± 372.94 h·ng/mL. The results suggested that there were pharmacokinetic and pharmacodynamic drug-nutrient interactions between ginsenoside Re and B-complex vitamins. B-complex vitamins can significantly weaken the antifatigue effect and decrease the bioavailability of ginsenoside Re when simultaneously administered orally.

  19. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats.

    PubMed

    Radwan, Mahasen A; AlQuadeib, Bushra T; Šiller, Lidija; Wright, Matthew C; Horrocks, Benjamin

    2017-11-01

    Amphotericin B (AMB) is used most commonly in severe systemic life-threatening fungal infections. There is currently an unmet need for an efficacious (AMB) formulation amenable to oral administration with better bioavailability and lower nephrotoxicity. Novel PEGylated polylactic-polyglycolic acid copolymer (PLGA-PEG) nanoparticles (NPs) formulations of AMB were therefore studied for their ability to kill Candida albicans (C. albicans). The antifungal activity of AMB formulations was assessed in C. albicans. Its bioavalability was investigated in nine groups of rats (n = 6). Toxicity was examined by an in vitro blood hemolysis assay, and in vivo nephrotoxicity after single and multiple dosing for a week by blood urea nitrogen (BUN) and plasma creatinine (PCr) measurements. The MIC of AMB loaded to PLGA-PEG NPs against C. albicans was reduced two to threefold compared with free AMB. Novel oral AMB delivery loaded to PLGA-PEG NPs was markedly systemically available compared to Fungizone® in rats. The addition of 2% of GA to the AMB formulation significantly (p < 0.05) improved the bioavailability from 1.5 to 10.5% and the relative bioavailability was > 790% that of Fungizone®. The novel AMB formulations showed minimal toxicity and better efficacy compared to Fungizone®. No nephrotoxicity in rats was detected after a week of multiple dosing of AMB NPs based on BUN and PCr, which remained at normal levels. An oral delivery system of AMB-loaded to PLGA-PEG NPs with better efficacy and minimal toxicity was formulated. The addition of glycyrrhizic acid (GA) to AMB NPs formulation resulted in a significant oral absorption and improved bioavailability in rats.

  20. Graphical model for estimating oral bioavailability of drugs in humans and other species from their Caco-2 permeability and in vitro liver enzyme metabolic stability rates.

    PubMed

    Mandagere, Arun K; Thompson, Thomas N; Hwang, Kin-Kai

    2002-01-17

    This paper describes a graphical model for simplifying in vitro absorption, metabolism, distribution, and elimination (ADME) data analysis through the estimation of oral bioavailability (%F) of drugs in humans and other species. This model integrates existing in vitro ADME data, such as Caco-2 permeability (P(app)) and metabolic stability (percent remaining - %R) in liver S9 or microsomes, to estimate %F into groups of low, medium, or high regions. To test the predictive accuracy of our model, we examined 21 drugs and drug candidates with a wide range of oral bioavailability values, which represent approximately 10 different therapeutic areas in humans, rats, dogs, and guinea pigs. In vitro data from model compounds were used to define the boundaries of the low, medium, and high regions of the %F estimation plot. On the basis of the in vitro data, warfarin (93%), indomethacin (98%), timolol (50%), and carbamazepine (70%) were assigned to the high %F region; propranolol (26%) and metoprolol (38%) to medium %F region; and verapamil (22%) and mannitol (18%) to the low %F region. Similarly, the %F of 11 drug candidates from Elastase Inhibitor, NK1/NK2 antagonist, and anti-viral projects in rats, guinea pigs, and dogs were correctly estimated. This model estimates the oral bioavailability ranges of neutral, polar, esters, acidic, and basic drugs in all species. For a large number of drug candidates, this graphical model provides a tool to estimate human oral bioavailability from in vitro ADME data. When combined with the high throughput in vitro ADME screening process, it has the potential to significantly accelerate the processes of lead identification and optimization.

  1. Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion.

    PubMed

    Rashid, Rehmana; Kim, Dong Wuk; Din, Fakhar Ud; Mustapha, Omer; Yousaf, Abid Mehmood; Park, Jong Hyuck; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2015-10-05

    The purpose of this research was to evaluate the effect of the HPC (hydroxypropylcellulose) and Tween 80 on the physicochemical properties and oral bioavailability of ezetimibe-loaded solid dispersions. The binary solid dispersions were prepared with drug and various amounts of HPC. Likewise, ternary solid dispersions were prepared with different ratios of drug, HPC and Tween 80. Both types of solid dispersions were prepared using the solvent evaporation method. Their aqueous solubility, physicochemical properties, dissolution and oral bioavailability were investigated in comparison with the drug powder. All the solid dispersions significantly improved the drug solubility and dissolution. As the amount of HPC increased in the binary solid dispersions to 10-fold, the drug solubility and dissolution were increased accordingly. However, further increase in HPC did not result in significant differences among them. Similarly, up to 0.1-fold, Tween 80 increased the drug solubility in the ternary solid dispersions followed by no significant change. However, Tween 80 hardly affected the drug dissolution. The physicochemical analysis proved that the drug in binary and ternary solid dispersion was existed in the amorphous form. The particle-size measurements of these formulations were also not significantly different from each other, which showed that Tween 80 had no impact on physicochemical properties. The ezetimibe-loaded binary and ternary solid dispersions gave 1.6- and 1.8-fold increased oral bioavailability in rats, respectively, as compared to the drug powder; however, these values were not significantly different from each other. Thus, HPC greatly affected the solubility, dissolution and oral bioavailability of drug, but Tween 80 hardly did. Furthermore, this ezetimibe-loaded binary solid dispersion prepared only with HPC would be suggested as a potential formulation for oral administration of ezetimibe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Synthetic Curcumin Analogs as Inhibitors of β -Amyloid Peptide Aggregation: Potential Therapeutic and Diagnostic Agents for Alzheimer's Disease.

    PubMed

    Bukhari, Syed Nasir Abbas; Jantan, Ibrahim

    2015-01-01

    There is a crucial need to develop new effective drugs for Alzheimer's disease (AD) as the currently available AD treatments provide only momentary and incomplete symptomatic relief. Amongst natural products, curcumin, a major constituent of turmeric, has been intensively investigated for its neuroprotective effect against β-amyloid (Aβ)-induced toxicity in cultured neuronal cells. The ability of curcumin to attach to Aβ peptide and prevent its accumulation is attributed to its three structural characteristics such as the presence of two aromatic end groups and their co-planarity, the length and rigidity of the linker region and the substitution conformation of these aromatics. However, curcumin failed to reach adequate brain levels after oral absorption in AD clinical trials due to its low water solubility and poor oral bioavailability. A number of new curcumin analogs that mimic the active site of the compound along with analogs that mimic the curcumin anti-amyloid effect combined with anticholinesterase effect have been developed to enhance the bioavailability, pharmacokinetics, water solubility, stability at physiological conditions and delivery of curcumin. In this article, we have summarized all reported synthetic analogs of curcumin showing effects on β-amyloid and discussed their potential as therapeutic and diagnostic agents for AD.

  3. Influence of mycotoxin binders on the oral bioavailability of tylosin, doxycycline, diclazuril, and salinomycin in fed broiler chickens.

    PubMed

    De Mil, T; Devreese, M; Maes, A; De Saeger, S; De Backer, P; Croubels, S

    2017-07-01

    The presence of mycotoxins in broiler feed can have deleterious effects on the wellbeing of the animals and their performance. Mycotoxin binders are feed additives that aim to adsorb mycotoxins in the intestinal tract and thereby prevent the oral absorption of the mycotoxin. The simultaneous administration of coccidiostats and/or antimicrobials with mycotoxin binders might lead to a reduced oral bioavailability of these veterinary medicinal products. This paper describes the influence of 3 mycotoxin binders (i.e., clay 1 containing montmorillonite, mica, and feldspars; clay 2 containing montmorillonite and quartz; and yeast 1 being a modified glucomannan fraction of inactivated yeast cells) and activated carbon on the oral bioavailability and pharmacokinetic parameters of the antimicrobials doxycycline and tylosin, and the coccidiostats diclazuril and salinomycin. A feeding study with 40 15 day-old broilers was performed evaluating the effects of long-term feeding 2 g mycotoxin binder/kg of feed. The birds were randomly divided into 5 groups of 8 birds each, i.e., a control group receiving no binder and 4 test groups receiving either clay 1, clay 2, yeast 1, or activated carbon mixed in the feed. After 15 d of feeding, both the control and each test group were administered doxycycline, tylosin, diclazuril, and salinomycin, consecutively, respecting a wash-out period of 2 to 3 d between each administration. The 4 medicinal products were dosed using a single bolus administration directly in the crop. After each bolus administration, blood was collected for plasma analysis and calculation of the main pharmacokinetic parameters and relative oral bioavailability (F = area under the plasma concentration-time curve (AUC0-8 h) in the test groups/AUC0-8 h in the control group)*100). No effects were observed of any of the mycotoxin binders on the relative oral bioavailability of the coccidiostats (i.e., F between 82 and 101% and 79 and 93% for diclazuril and salinomycin, respectively). Also, no significant effects could be noticed of any of the mycotoxin binders on the relative oral bioavailability of the antimicrobials doxycycline and tylosin (i.e., F between 67 and 83% and between 43 and 104%, respectively). © 2017 Poultry Science Association Inc.

  4. Effects of oils and pharmaceutical excipients on the bioavailability of ampicillin orally administered, different oily and aqueous suspensions in rabbit.

    PubMed

    Alhamami, Omran M O

    2003-01-01

    The in vivo bioavailability and in vitro drug-release studies of ampicillin trihydrate in different oily and aqueous suspensions have been investigated. In addition, partition, solubility, and rheological measurements have also been carried out. The in vivo experimental design was based on a 6 x 6 latin square using the rabbit as the test animal. The bioavailability of ampicillin was determined using the plasma levels, which were measured microbiologically. Results of the study showed that oily and sucrose-containing aqueous formulations enhanced the extent of ampicillin absorption, although not statistically significantly, but was close to the borderline of significance. Ampicillin appears to be absorbed at essentially the same rate from both aqueous and oily formulations. The latter showed plasma-level time curves with biphasic absorption and are likely to produce prolonged plasma concentrations of ampicillin because of the effects of enterohepatic recycling. Viscosity appears to play an insignificant role in the results obtained since the bioavailability parameters correlate poorly with the viscosity except Cmax. It is suggested that enhancement in the bioavailability of ampicillin is due to the decrease in the gut transit rate brought about by the oil which predominates and masks the other effects of viscosity and osmotic effects of sucrose. The existence of a correlation between the in vitro drug-release rate (t50%) and viscosity and the lack of a correlation between in vivo and in vitro parameters support the above suggestion and indicate that traditional dissolution rate tests, such as flask-stirrer method, are unsatisfactory as bioavailability indicators when applied to dosage forms that caused marked changes in physiological factors like GER and biliary excretion.

  5. Transmembrane transport of peptide type compounds: prospects for oral delivery

    NASA Technical Reports Server (NTRS)

    Lipka, E.; Crison, J.; Amidon, G. L.

    1996-01-01

    Synthesis and delivery of potential therapeutic peptides and peptidomimetic compounds has been the focus of intense research over the last 10 years. While it is widely recognized that numerous limitations apply to oral delivery of peptides, some of the limiting factors have been addressed and their mechanisms elucidated, which has lead to promising strategies. This article will briefly summarize the challenges, results and current approaches of oral peptide delivery and give some insight on future strategies. The barriers determining peptide bioavailability after oral administration are intestinal membrane permability, size limitations, intestinal and hepatic metabolism and in some cases solubility limitations. Poor membrane permeabilities of hydrophilic peptides might be overcome by structurally modifying the compounds, thus increasing their membrane partition characteristics and/or their affinity to carrier proteins. Another approach is the site-specific delivery of the peptide to the most permeable parts of the intestine. The current view on size limitation for oral drug delivery has neglected partition considerations. Recent studies suggest that compounds with a molecular weight up to 4000 might be significantly absorbed, assuming appropriate partition behavior and stability. Metabolism, probably the most significant factor in the absorption fate of peptides, might be controlled by coadministration of competitive enzyme inhibitors, structural modifications and administration of the compound as a well absorbed prodrug that is converted into the therapeutically active agent after its absorption. For some peptides poor solubility might present a limitation to oral absorption, an issue that has been addressed by mechanistically defining and therefore improving formulation parameters. Effective oral peptide delivery requires further development in understanding these complex mechanisms in order to maximize the therapeutic potential of this class of compounds.

  6. Sodium Lauryl Sulfate Competitively Interacts with HPMC-AS and Consequently Reduces Oral Bioavailability of Posaconazole/HPMC-AS Amorphous Solid Dispersion.

    PubMed

    Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2016-08-01

    Sodium lauryl sulfate (SLS), as an effective surfactant, is often used as a solubilizer and/or wetting agent in various dosage forms for the purpose of improving the solubility and dissolution of lipophilic, poorly water-soluble drugs. This study aims to understand the impact of SLS on the solution behavior and bioavailability of hypromellose acetate succinate (HPMC-AS)-based posaconazole (PSZ) ASDs, and to identify the underlying mechanisms governing the optimal oral bioavailability of ASDs when surfactants such as SLS are used in combination. Fluorescence spectroscopy and optical microscopy showed that "oil-out" or "liquid-liquid phase separation (LLPS)" occurred in the supersaturated PSZ solution once drug concentration surpassed ∼12 μg/mL, which caused the formation of drug-rich oily droplets with initial size of ∼300-400 nm. Although FT-IR study demonstrated the existence of specific interactions between PSZ and HPMC-AS in the solid state, predissolved HPMC-AS was unable to delay LLPS of the supersaturated PSZ solution and PSZ-rich amorphous precipitates with ∼16-18% HPMC-AS were formed within 10 min. The coprecipitated HPMC-AS was found to be able to significantly delay the crystallization of PSZ in the PSZ-rich amorphous phase from less than 10 min to more than 4 h, yet coexistent SLS was able to negate this crystallization inhibition effect of HPMC-AS in the PSZ-rich amorphous precipitates and cause fast PSZ crystallization within 30 min. 2D-NOESY and the CMC/CAC results demonstrated that SLS could assemble around HPMC-AS and competitively interact with HPMC-AS in the solution, thus prevent HPMC-AS from acting as an effective crystallization inhibitor. In a crossover dog PK study, this finding was found to be correlating well with the in vivo bioavailability of PSZ ASDs formulated with or without SLS. The SLS containing PSZ ASD formulation demonstrated an in vivo bioavailability ∼30% of that without SLS, despite the apparently better in vitro dissolution, which only compared the dissolved drug in solution, a small fraction of the total PSZ dose. We conclude that the bioavailability of ASDs is highly dependent on the molecular interactions between drug, surfactant, and polymer, not only in the solution phase but also in the drug-rich "oily" phase caused by supersaturation.

  7. Arginine mimetic structures in biologically active antagonists and inhibitors.

    PubMed

    Masic, Lucija Peterlin

    2006-01-01

    Peptidomimetics have found wide application as bioavailable, biostable, and potent mimetics of naturally occurring biologically active peptides. L-Arginine is a guanidino group-containing basic amino acid, which is positively charged at neutral pH and is involved in many important physiological and pathophysiological processes. Many enzymes display a preference for the arginine residue that is found in many natural substrates and in synthetic inhibitors of many trypsin-like serine proteases, e.g. thrombin, factor Xa, factor VIIa, trypsin, and in integrin receptor antagonists, used to treat many blood-coagulation disorders. Nitric oxide (NO), which is produced by oxidation of L-arginine in an NADPH- and O(2)-dependent process catalyzed by isoforms of nitric oxide synthase (NOS), exhibits diverse roles in both normal and pathological physiologies and has been postulated to be a contributor to the etiology of various diseases. Development of NOS inhibitors as well as analogs and mimetics of the natural substrate L-arginine, is desirable for potential therapeutic use and for a better understanding of their conformation when bound in the arginine binding site. The guanidino residue of arginine in many substrates, inhibitors, and antagonists forms strong ionic interactions with the carboxylate of an aspartic acid moiety, which provides specificity for the basic amino acid residue in the active side. However, a highly basic guanidino moiety incorporated in enzyme inhibitors or receptor antagonists is often associated with low selectivity and poor bioavailability after peroral application. Thus, significant effort is focused on the design and preparation of arginine mimetics that can confer selective inhibition for specific trypsin-like serine proteases and NOS inhibitors as well as integrin receptor antagonists and possess reduced basicity for enhanced oral bioavailability. This review will describe the survey of arginine mimetics designed to mimic the function of the arginine moiety in numerous peptidomimetic compounds (thrombin inhibitors, factor Xa inhibitors, factor VIIa inhibitors, integrin receptor antagonists, nitric oxide synthase inhibitors), with the aim of obtaining better activity, selectivity and oral bioavailability.

  8. Nanosizing of valsartan by high pressure homogenization to produce dissolution enhanced nanosuspension: pharmacokinetics and pharmacodyanamic study.

    PubMed

    Gora, Shayana; Mustafa, Gulam; Sahni, Jasjeet Kaur; Ali, Javed; Baboota, Sanjula

    2016-01-01

    The purpose of the present study was to formulate and evaluate nanosuspension of Valsartan (VAL), a poorly water soluble and low bioavailable drug (solubility of 0.18 mg mL(-1); 23% of oral bioavailability) with the aim of improving the aqueous solubility thus the bioavailability and consequently better anti-hypertensive activity. Valsartan nanosuspension (VAL-NS) was prepared using high-pressure homogenization followed by lyophilisation. The screening of homogenization factors influencing nanosuspension was done by 3-factorial, 3-level Box-Behnken statistical design. Model suggested the influential role of homogenization pressure and cycles on drug nanosizing. The optimized formulation containing Poloxamer(-1)88 (PXM 188) was homogenized for 2 cycles at 500 and 1000 bar, followed by 5 cycles at 1500 bars. The size analysis and transmission electron microscopy showed nanometric size range and uniform shape of the nanosuspension. The in vitro dissolution showed an enhanced release of VAL from nanosuspension (VAL-NS) compared to physical mixture with PXM 188. Pharmacodynamic results showed that, oral administration of VAL-NS significantly lowered (p ≤ 0.001) blood pressure in comparison to non-homogenized VAL (VAL-Susp) in Wistar rat. The level of VAL in rat plasma treated with VAL-NS showed significant difference (p ≤ 0.005) in Cmax (1627.47 ± 112.05 ng mL(-1)), Tmax (2.00 h) and AUC0→24 (13279.2 ± 589.426 ng h mL(-1)) compared to VAL-Susp that was found to be 1384.73 ± 98.76 ng mL(-1), 3.00 h and 9416.24 ± 218.48 ng h mL(-1) respectively. The lower Tmax value, proved the enhanced dissolution rate of VAL. The overall results proved that newly developed VAL-NS increased the plasma bioavailability and pharmacodyanamic potential over the reference formulation containing crude VAL.

  9. Methotrexate-loaded porous polymeric adsorbents as oral sustained release formulations.

    PubMed

    Wang, Xiuyan; Yan, Husheng

    2017-09-01

    Methotrexate as a model drug with poor aqueous solubility was adsorbed into porous polymeric adsorbents, which was used as oral sustained release formulations. In vitro release assay in simulated gastrointestinal fluids showed that the methotrexate-loaded adsorbents showed distinct sustained release performance. The release rate increased with increase in pore size of the adsorbents. In vivo pharmacokinetic study showed that the maximal plasma methotrexate concentrations after oral administration of free methotrexate and methotrexate-loaded DA201-H (a commercial porous polymeric adsorbent) to rats occurred at 40min and 5h post-dose, respectively; and the plasma concentrations decreased to 22% after 5h for free methotrexate and 44% after 24h for methotrexate-loaded DA201-H, respectively. The load of methotrexate into the porous polymeric adsorbents not only resulted in obvious sustained release, but also enhanced the oral bioavailability of methotrexate. The areas under the curve, AUC 0-24 and AUC 0-inf , for methotrexate-loaded DA201-H increased 3.3 and 7.7 times, respectively, compared to those for free methotrexate. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Liquid and solid self-microemulsifying drug delivery systems for improving the oral bioavailability of andrographolide from a crude extract of Andrographis paniculata.

    PubMed

    Sermkaew, Namfa; Ketjinda, Wichan; Boonme, Prapaporn; Phadoongsombut, Narubodee; Wiwattanapatapee, Ruedeekorn

    2013-11-20

    The purpose of this study was to develop self-microemulsifying formulations of an Andrographis paniculata extract in liquid and pellet forms for an improved oral delivery of andrographolide. The optimized liquid self-microemulsifying drug delivery system (SMEDDS) was composed of A. paniculata extract (11.1%), Capryol 90 (40%), Cremophor RH 40 (40%) and Labrasol (8.9%). This liquid SMEDDS was further adsorbed onto colloidal silicon dioxide and microcrystalline cellulose, and converted to SMEDDS pellets by the extrusion/spheronization technique. The microemulsion droplet sizes of the liquid and pellet formulations after dilution with water were in the range of 23.4 and 30.3 nm. The in vitro release of andrographolide from the liquid SMEDDS and SMEDDS pellets was 97.64% (SD 1.97%) and 97.74% (SD 3.36%) within 15 min, respectively while the release from the initial extract was only 10%. The oral absorption of andrographolide was determined in rabbits. The C(max) value of andrographolide from the A. paniculata extract liquid SMEDDS and SMEDDS pellet formulations (equivalent to 17.5mg/kg of andrographolide) was 6-fold and 5-fold greater than the value from the initial extract in aqueous suspension (equivalent to 35 mg/kg of andrographolide), respectively. In addition, the AUC(0-12h) was increased 15-fold by the liquid SMEDDS and 13-fold by the SMEDDS pellets compared to the extract in aqueous suspension, respectively. The results clearly indicated that the liquid and solid SMEDDS could be effectively used to improve the dissolution and oral bioavailability that would also enable a reduction in the dose of the poorly water soluble A. paniculata extract. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. The Endocannabinoid Reuptake Inhibitor WOBE437 Is Orally Bioavailable and Exerts Indirect Polypharmacological Effects via Different Endocannabinoid Receptors.

    PubMed

    Reynoso-Moreno, Inés; Chicca, Andrea; Flores-Soto, Mario E; Viveros-Paredes, Juan M; Gertsch, Jürg

    2018-01-01

    Different anandamide (AEA) transport inhibitors show antinociceptive and antiinflammatory effects in vivo , but due to their concomitant inhibition of fatty acid amide hydrolase (FAAH) and overall poor bioavailability, they cannot be used unequivocally to study the particular role of endocannabinoid (EC) transport in pathophysiological conditions in vivo . Here, the potent and selective endocannabinoid reuptake inhibitor WOBE437, which inhibits AEA and 2-arachidonoylglycerol (2-AG) transport, was tested for its oral bioavailability to the brain. WOBE437 is assumed to locally increase EC levels in tissues in which facilitated EC reuptake intermediates subsequent hydrolysis. Given the marked polypharmacology of ECs, we hypothesized to see differential effects on distinct EC receptors in animal models of acute and chronic pain/inflammation. In C57BL6/J male mice, WOBE437 was orally bioavailable with an estimated t max value of ≤20 min in plasma (C max ∼ 2000 pmol/mL after 50 mg/kg, p.o.) and brain (C max ∼ 500 pmol/g after 50 mg/kg, p.o.). WOBE437 was cleared from the brain after approximately 180 min. In addition, in BALB/c male mice, acute oral administration of WOBE437 (50 mg/kg) exhibited similar brain concentrations after 60 min and inhibited analgesia in the hot plate test in a cannabinoid CB1 receptor-dependent manner, without inducing catalepsy or affecting locomotion. WOBE437 significantly elevated AEA in the somatosensory cortex, while showing dose-dependent biphasic effects on 2-AG levels in plasma but no significant changes in N -acylethanolamines other than AEA in any of the tissues. In order to explore the presumed polypharmacology mediated via elevated EC levels, we tested this EC reuptake inhibitor in complete Freud's adjuvant induced monoarthritis in BALB/c mice as a model of chronic inflammation. Repetitive doses of WOBE437 (10 mg/kg, i.p.) attenuated allodynia and edema via cannabinoid CB2, CB1, and PPARγ receptors. The allodynia inhibition of WOBE437 treatment for 3 days was fully reversed by antagonists of any of the receptors. In the single dose treatment the CB2 and TRPV1 antagonists significantly blocked the effect of WOBE437. Overall, our results show the broad utility of WOBE437 for animal experimentation for both p.o. and i.p. administrations. Furthermore, the data indicate the possible involvement of EC reuptake/transport in pathophysiological processes related to pain and inflammation.

  12. Influence of processing parameters on morphology of polymethoxyflavone in emulsions.

    PubMed

    Ting, Yuwen; Li, Colin C; Wang, Yin; Ho, Chi-Tang; Huang, Qingrong

    2015-01-21

    Polymethoxyflavones (PMFs) are groups of compounds isolated from citrus peels that have been documented with wide arrays of health-promoting bioactivities. Because of their hydrophobic structure and high melting point, crystallized PMFs usually have poor systemic bioavailability when consumed orally. To improve the oral efficiency of PMFs, a viscoelastic emulsion system was formulated. Because of the crystalline nature, the inclusion of PMFs into the emulsion system faces great challenges in having sufficient loading capacity and stabilities. In this study, the process of optimizing the quality of emulsion-based formulation intended for PMF oral delivery was systematically studied. With alteration of the PMF loading concentration, processing temperature, and pressure, the emulsion with the desired droplet and crystal size can be effectively fabricated. Moreover, storage temperatures significantly influenced the stability of the crystal-containing emulsion system. The results from this study are a good illustration of system optimization and serve as a great reference for future formulation design of other hydrophobic crystalline compounds.

  13. A report from the pediatric formulations task force: perspectives on the state of child-friendly oral dosage forms.

    PubMed

    Zajicek, Anne; Fossler, Michael J; Barrett, Jeffrey S; Worthington, Jeffrey H; Ternik, Robert; Charkoftaki, Georgia; Lum, Susan; Breitkreutz, Jörg; Baltezor, Mike; Macheras, Panos; Khan, Mansoor; Agharkar, Shreeram; MacLaren, David Douglas

    2013-10-01

    Despite the fact that a significant percentage of the population is unable to swallow tablets and capsules, these dosage forms continue to be the default standard. These oral formulations fail many patients, especially children, because of large tablet or capsule size, poor palatability, and lack of correct dosage strength. The clinical result is often lack of adherence and therapeutic failure. The American Association of Pharmaceutical Scientists formed a Pediatric Formulations Task Force, consisting of members with various areas of expertise including pediatrics, formulation development, clinical pharmacology, and regulatory science, in order to identify pediatric, manufacturing, and regulatory issues and areas of needed research and regulatory guidance. Dosage form and palatability standards for all pediatric ages, relative bioavailability requirements, and small batch manufacturing capabilities and creation of a viable economic model were identified as particular needs. This assessment is considered an important first step for a task force seeking creative approaches to providing more appropriate oral formulations for children.

  14. In Vitro And In Vivo Approaches For The Measurement Of Oral Bioavailability Of Lead (Pb) In Contaminated Soils: A Review

    EPA Science Inventory

    We reviewed the published evidence of lead (Pb) contamination of urban soils, soil Pb risk to children through hand-to-mouth activity, reduction of soil Pb bioavailability due to soil amendments, and methods to assess bioaccessibility which correlate with bioavailability of soil ...

  15. Controlled-release systemic delivery - a new concept in cancer chemoprevention

    PubMed Central

    2012-01-01

    Many chemopreventive agents have encountered bioavailability issues in pre-clinical/clinical studies despite high oral doses. We report here a new concept utilizing polycaprolactone implants embedded with test compounds to obtain controlled systemic delivery, circumventing oral bioavailability issues and reducing the total administered dose. Compounds were released from the implants in vitro dose dependently and for long durations (months), which correlated with in vivo release. Polymeric implants of curcumin significantly inhibited tissue DNA adducts following the treatment of rats with benzo[a]pyrene, with the total administered dose being substantially lower than typical oral doses. A comparison of bioavailability of curcumin given by implants showed significantly higher levels of curcumin in the plasma, liver and brain 30 days after treatment compared with the dietary route. Withaferin A implants resulted in a nearly 60% inhibition of lung cancer A549 cell xenografts, but no inhibition occurred when the same total dose was administered intraperitoneally. More than 15 phytochemicals have been tested successfully by this formulation. Together, our data indicate that this novel implant-delivery system circumvents oral bioavailability issues, provides continuous delivery for long durations and lowers the total administered dose, eliciting both chemopreventive/chemotherapeutic activities. This would also allow the assessment of activity of minor constituents and synthetic metabolites, which otherwise remain uninvestigated in vivo. PMID:22696595

  16. Enhanced oral bioavailability of vinpocetine through mechanochemical salt formation: physico-chemical characterization and in vivo studies.

    PubMed

    Hasa, Dritan; Voinovich, Dario; Perissutti, Beatrice; Grassi, Mario; Bonifacio, Alois; Sergo, Valter; Cepek, Cinzia; Chierotti, Michele R; Gobetto, Roberto; Dall'Acqua, Stefano; Invernizzi, Sergio

    2011-08-01

    Enhancing oral bioavailability of vinpocetine by forming its amorphous citrate salt through a solvent-free mechanochemical process, in presence of micronised crospovidone and citric acid. The impact of formulation and process variables (amount of polymer and citric acid, and milling time) on vinpocetine solubilization kinetics from the coground was studied through an experimental design. The best performing samples were characterized by employing a multidisciplinary approach, involving Differential scanning calorimetry, X-ray diffraction, Raman imaging/spectroscopy, X-ray photoelectron spectroscopy, solid-state NMR spectroscopy, porosimetry and in vivo studies on rats to ascertain the salt formation, their solid-state characteristics and oral bioavailability in comparison to vinpocetine citrate salt (Oxopocetine(®)). The analyses attested that the mechanochemical process is a viable way to produce in absence of solvents vinpocetine citrate salt in an amorphous state. From the in vivo studies on rats the obtained salt was four times more bioavailable than its physical mixture and bioequivalent to the commercial salt produced by conventional synthetic process implying the use of solvent.

  17. Elevating bioavailability of cyclosporine a via encapsulation in artificial oil bodies stabilized by caleosin.

    PubMed

    Chen, Miles C M; Wang, Jui-Ling; Tzen, Jason T C

    2005-01-01

    To elevate its bioavailability via oral administration, cyclosporine A (CsA), a hydrophobic drug, was either incorporated into olive oil directly or encapsulated in artificial oil bodies (AOBs) constituted with olive oil and phospholipid in the presence or absence of recombinant caleosin purified from Escherichia coli. The bioavailabilities of CsA in these formulations were assessed in Wistar rats in comparison with the commercial formulation, Sandimmun Neoral. Among these tests, CsA-loaded AOBs stabilized by the recombinant caleosin exhibited better bioavailability than the commercial formulation and possessed the highest maximum whole blood concentration (C(max)), 1247.4 +/- 106.8 ng/mL, in the experimental animals 4.3 +/- 0.7 h (t(max)) after oral administration. C(max) and the area under the plasma concentration-time curve (AUC(0-24)) were individually increased by 50.8% and 71.3% in the rats fed with caleosin-stabilized AOBs when compared with those fed with the reference Sandimmun Neoral. The results suggest that constitution of AOBs stabilized by caleosin may be a suitable technique to encapsulate hydrophobic drugs for oral administration.

  18. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study.

    PubMed

    Fares, Ahmed R; ElMeshad, Aliaa N; Kassem, Mohamed A A

    2018-11-01

    This study aims at preparing and optimizing lacidipine (LCDP) polymeric micelles using thin film hydration technique in order to overcome LCDP solubility-limited oral bioavailability. A two-factor three-level central composite face-centered design (CCFD) was employed to optimize the formulation variables to obtain LCDP polymeric micelles of high entrapment efficiency and small and uniform particle size (PS). Formulation variables were: Pluronic to drug ratio (A) and Pluronic P123 percentage (B). LCDP polymeric micelles were assessed for entrapment efficiency (EE%), PS and polydispersity index (PDI). The formula with the highest desirability (0.959) was chosen as the optimized formula. The values of the formulation variables (A and B) in the optimized polymeric micelles formula were 45% and 80%, respectively. Optimum LCDP polymeric micelles had entrapment efficiency of 99.23%, PS of 21.08 nm and PDI of 0.11. Optimum LCDP polymeric micelles formula was physically characterized using transmission electron microscopy. LCDP polymeric micelles showed saturation solubility approximately 450 times that of raw LCDP in addition to significantly enhanced dissolution rate. Bioavailability study of optimum LCDP polymeric micelles formula in rabbits revealed a 6.85-fold increase in LCDP bioavailability compared to LCDP oral suspension.

  19. Oral delivery of peptides and proteins using lipid-based drug delivery systems.

    PubMed

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-10-01

    In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism by which intestinal absorption of peptides and proteins is promoted. The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides and proteins. Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve the design and development of lipid-based DDS with the desired bioavailability and therapeutic profile.

  20. Design of Curcumin Loaded PLGA Nanoparticles Formulation with Enhanced Cellular Uptake, and Increased Bioactivity in vitro and Superior Bioavailability in vivo

    PubMed Central

    Anand, Preeta; Nair, Harish B.; Sung, Bokyung; Kunnumakkara, Ajaikumar B.; Yadav, Vivek R.; Tekmal, Rajeshwar R.; Aggarwal, Bharat B.

    2011-01-01

    Curcumin, a yellow pigment present in the spice turmeric (Curcuma longa), has been linked with antioxidant, anti-inflammatory, anti-proliferative, anticancer, antidiabetic, antirheumatic, and antiviral effects, but its optimum potential is limited by its lack of solubility in aqueous solvents and poor oral bioavailability. We employed a polymer-based nanoparticle approach to improve bioavailability. Curcumin was encapsulated with 97.5% efficiency in biodegradable nanoparticulate formulation based on poly (lactide-co-glycolide) (PLGA) and a stabilizer polyethylene glycol (PEG)-5000. Dynamic laser light scattering and transmission electron microscopy indicated a particle diameter of 80.9 nm. This curcumin, renamed from hereon “as curcumin (NP)”, was characterized for its biological activity. In vitro curcumin (NP) exhibited very rapid (2 h vs > 72 h) and more efficient cellular uptake then curcumin. Estrase staining revealed that curcumin (NP) was at least as potent as or more potent than curcumin in inducing apoptosis of leukemic cells and in suppressing proliferation of various tumor cell lines. When examined by electrophoretic gel shift mobility assay, curcumin (NP) was more active than curcumin in inhibiting TNF-induced NF-κB activation and in suppression of NF-κB-regulated proteins involved in cell proliferation (cyclin D1), invasion (MMP-9), and angiogenesis (VEGF). In mice, curcumin (NP) was more bioavailable and had a longer half-life than curcumin. Overall we demonstrate that curcumin-loaded PLGA nanoparticles formulation has enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo over curcumin. PMID:19735646

  1. Nanoparticle-in-microparticle oral drug delivery system of a clinically relevant darunavir/ritonavir antiretroviral combination.

    PubMed

    Augustine, Robin; Ashkenazi, Dana Levin; Arzi, Roni Sverdlov; Zlobin, Vita; Shofti, Rona; Sosnik, Alejandro

    2018-05-01

    Nanonizationhas been extensively investigated to increase theoral bioavailability of hydrophobicdrugsin general andantiretrovirals(ARVs)used inthe therapy of the human immunodeficiency virus (HIV) infection in particular. Weanticipatedthatin the caseofprotease inhibitors, a family of pH-dependent ARVsthatdisplay high aqueous solubility undertheacidconditionsof thestomach andextremely low solubilityunder the neutral ones ofthe small intestine, this strategy might failowing to an uncontrolled dissolution-re-precipitation process that will take place along the gastrointestinal tract.To tackle thisbiopharmaceutical challenge, in this work, wedesigned, produced and fully characterized a novelNanoparticle-in-MicroparticleDelivery System(NiMDS)comprised of pure nanoparticlesofthefirst-line protease inhibitor darunavir(DRV) and itsboosting agentritonavir (RIT) encapsulated within film-coated microparticles.For this, a clinically relevant combination of pure DRV and RIT nanoparticles wassynthesized by a sequential nanoprecipitation/solvent diffusion and evaporation method employing sodium alginateas viscosity stabilizer. Then, pure nanoparticles were encapsulated within calcium alginate/chitosanmicroparticlesthat were film-coated with a series ofpoly(methacrylate) copolymers with differential solubility in the gastrointestinal tract. This coating ensured full stability under gastric-like pH and sustained drug release under intestinal one. PharmacokineticstudiesconductedinalbinoSpragueDawleyratsshowed that DRV/RIT-loadedNiMDSs containing 17% w/w drug loading based on dry weight significantlyincreasedthe oral bioavailabilityof DRVby 2.3-foldwith respect to both theunprocessedandthenanonized DRV/RIT combinations that showed statistically similar performance. Moreover, they highlighted the limited advantage of only drugnanonizationto improve the oral pharmacokinetics of protease inhibitors and the potential of our novel delivery approach to improve the oral pharmacokinetics of nanonized poorly water-soluble drugs displaying pH-dependent solubility. Protease inhibitors (PIs) are gold-standard drugs in many ARV cocktails. Darunavir (DRV) is the latest approved PI and it is included in the 20th WHO Model List of Essential Medicines. PIs poorly-water soluble at intestinal pH and more soluble under gastric conditions. Drug nanonization represents one of the most common nanotechnology strategies to increase dissolution rate of hydrophobic drugs and thus, their oral bioavailability. For instance, pure drug nanosuspensions became the most clinically relevant nanoformulation. However, according to the physicochemical properties of PIs, nanonization does not appear as a very beneficial strategy due to the fast dissolution rate anticipated under the acid conditions of the stomach and their uncontrolled recrystallization and precipitation in the small intestine that might result in the formation of particles of unpredictable size and structure (e.g., crystallinity and polymorphism) and consequently, unknown dissolution rate and bioavailability. In this work, we developed a sequential nanoprecipitation method for the production of pure nanoparticles of DRV and its boosting agent ritonavir in a clinically relevant 8:1 wt ratio using alginate as viscosity stabilizer and used this nanosuspension to produce a novel kind of nanoparticle-in-microparticle delivery system that was fully characterized and the pharmacokinetics assessed in rats. The most significant points of the current manuscript are. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Pharmacokinetics and Bioavailability of the Isoflavones Formononetin and Ononin and Their in Vitro Absorption in Ussing Chamber and Caco-2 Cell Models.

    PubMed

    Luo, Li-Yu; Fan, Miao-Xuan; Zhao, Hai-Yu; Li, Ming-Xing; Wu, Xu; Gao, Wen-Yuan

    2018-03-21

    Formononetin and its glycoside ononin are bioactive isoflavones widely present in legumes. The present study investigated the pharmacokinetics, bioavailability, and in vitro absorption of formononetin and ononin. After an oral administration to rats, formononetin showed a higher systemic exposure over ononin. The oral bioavailability of formononetin and ononin were 21.8% and 7.3%, respectively. Ononin was more bioavailable than perceived, and its bioavailability reached 21.7% when its metabolite formononetin was taken into account. Both formononetin and ononin exhibited better absorption in large intestine segments than that in small intestine segments. Formononetin displayed a better permeability in all intestinal segments over ononin. Transport of formononetin across Caco-2 cell monolayer was mainly through passive diffusion, while ononin was actively pumped out by MRP2 but not P-gp. The results provide evidence for better understanding of the pharmacological actions of formononetin and ononin, which advocates more in vivo evaluations or human trials.

  3. Physicochemical properties and oral bioavailability of ursolic acid nanoparticles using supercritical anti-solvent (SAS) process.

    PubMed

    Yang, Lei; Sun, Zhen; Zu, Yuangang; Zhao, Chunjian; Sun, Xiaowei; Zhang, Zhonghua; Zhang, Lin

    2012-05-01

    The objective of the study was to prepare ursolic acid (UA) nanoparticles using the supercritical anti-solvent (SAS) process and evaluate its physicochemical properties and oral bioavailability. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during SAS process, were investigated. Particles with mean particle size ranging from 139.2±19.7 to 1039.8±65.2nm were obtained by varying the process parameters. The UA was characterised by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, thermal gravimetric analysis, specific surface area, dissolution test and bioavailability test. It was concluded that physicochemical properties and bioavailability of crystalline UA could be improved by physical modification, such as particle size reduction and generation of amorphous state using SAS process. Further, SAS process was a powerful methodology for improving the physicochemical properties and bioavailability of UA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Bioavailability and in vivo release behavior of controlled-release multiple-unit theophylline dosage forms in beagle dogs, cynomolgus monkeys, and göttingen minipigs.

    PubMed

    Ikegami, Kengo; Tagawa, Kozo; Osawa, Takashi

    2006-09-01

    To determine the usefulness of monkey as an animal model, bioavailability and in vivo release behaviors of theophylline (TP) after oral administration of controlled-release beads in dogs, monkeys, and minipigs were evaluated. Controlled-release beads were prepared using a centrifugal-fluid type granulator, that is, CF-granulator, and Ethylcellulose (EC) was used as controlled-release coating agent. Aqueous solution and EC-coated beads, which contained TP were orally administered to animals after at least 1-week intervals. In dogs and minipigs, their relative bioavailabilities of EC-coated beads were 33.1% and 47.0%, respectively, and in vivo TP release from EC-coated beads in the gastrointestinal tract of dogs and minipigs were not reflected in vitro data. In monkeys, relative bioavailability of EC-coated beads was 80.0% and the highest among the three species, and release amount of TP from EC-coated beads at 24 h after oral administration was 82.8% and 92.4%, which was almost correlated to in vitro data. Therefore, the discrepancy of the relative bioavailability in three species is considered to be due to the difference of in vivo release behavior of TP. The monkey may be useful animal model for bioavailability studies of controlled-release dosage forms of TP from the viewpoint of in vitro-in vivo release correlation. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association.

  5. A new mechanism for increasing the oral bioavailability of scutellarin with Cremophor EL: Activation of MRP3 with concurrent inhibition of MRP2 and BCRP.

    PubMed

    Xiao, Lu; Yi, Tao; Chen, Min; Lam, Christopher Wai Kei; Zhou, Hua

    2016-10-10

    Efflux transporters are extensively distributed and expressed in the intestinal epithelium and contribute to the low oral bioavailability of flavonoids and flavonoid glucuronides by pumping these compounds back into intestinal lumen. Our previous study has shown the inhibitory effect of Cremophor EL, a non-ionic surfactant, on efflux transporter multidrug resistance-associated protein (MRP) 2. In the current study, by using membranes overexpressing several common ATP-binding cassette (ABC) transporters including P-glycoprotein (P-gp), MRP1, MRP2, MRP3 and breast cancer resistance protein (BCRP), scutellarin, a poorly water-soluble flavonoid, was identified as the substrate of MPR2, MRP3 and BCRP. The effects of Cremophor EL on the transmembrane transportation of scutellarin by MRP2, BCRP, and MRP3 were investigated with inside-out Sf9 vesicles. Results showed that at nontoxic concentrations, Cremophor EL enhanced the transportation of scutellarin by MRP3 and inhibited the efflux transportation of scutellarin by MRP2 and BCRP concurrently. The relations between Cremophor EL and these transporters were explored using MDCK II-MRP2, MDCK II-BCRP, and MDCK II-MRP3 cell models. Compared with the control group, 5μg/ml Cremophor EL decreased the Papp(BL-AP) of scutellarin in MDCK II-MRP2 cell monolayers by >4 fold (from 13.57±0.76×10(-7) to 2.90±0.14×10(-7)cm/s), and the Papp(BL-AP) in MDCK II-BCRP cell monolayers decreased from 9.12±0.15×10(-7) to 6.34±0.08×10(-7)cm/s. On MDCK II-MRP3 cell monolayers, 5μg/ml Cremophor EL increased the Papp(AP-BL) of scutellarin by 3.5 fold (from 7.88±0.43×10(-7) to 2.79±1.61×10(-6)cm/s), and caused an over 5-fold increase in Papp(AP-BL)/Papp(BL-AP). These findings suggested that Cremophor EL possesses the potent ability of inhibiting MRP2 and BCRP, as well as activating MRP3 effectively. In vivo pharmacokinetic research in rats further confirmed the improvement of oral absorption of scutellarin by Cremophor EL. In summary, our present study has identified a new mechanism for increasing the oral absorption and bioavailability of poorly absorbed drugs in which Cremophor EL increased MRP3 mediated transport but reduced MRP2 and BCRP mediated efflux concurrently, thereby enhancing the entry of drugs from enterocytes into the blood circulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition.

    PubMed

    Ling, Guixia; Zhang, Peng; Zhang, Wenping; Sun, Jin; Meng, Xiaoxue; Qin, Yimeng; Deng, Yihui; He, Zhonggui

    2010-12-01

    To improve the encapsulation efficiency and oral bioavailability of vincristine sulfate (VCR), novel self-assembled dextran sulphate-PLGA hybrid nanoparticles (DPNs) were successfully developed using self-assembly and nanoprecipitation method. By introducing the negative polymer of dextran sulphate sodium (DS), VCR was highly encapsulated (encapsulation efficiency up to 93.6%) into DPNs by forming electrostatic complex. In vitro release of VCR solution (VCR-Sol) and VCR-loaded DPNs (VCR-DPNs) in pH 7.4 PBS showed that about 80.4% of VCR released from VCR-DPNs after 96h and burst release was effectively reduced, indicating pronounced sustained-release characteristics. In vivo pharmacokinetics in rats after oral administration of VCR-Sol and VCR-DPNs indicated that the apparent bioavailability of VCR-DPNs was increased to approximate 3.3-fold compared to that of VCR-Sol. The cellular uptake experiments were conducted by quantitative assay of VCR cellular accumulation and fluorescence microscopy imaging of fluorescent labeled DPNs in two human breast cancer cells including MCF-7 and P-glycoprotein over-expressing MCF-7/Adr cells. The relative cellular uptake of VCR-DPNs was 12.4-fold higher than that of VCR-Sol in MCF-7/Adr cells implying that P-glycoprotein-mediated drug efflux was diminished by the introduction of DPNs. The new DPNs might provide an effective strategy for oral delivery of VCR with improved encapsulation efficiency and oral bioavailability. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Enhanced oral bioavailability of docetaxel by lecithin nanoparticles: preparation, in vitro, and in vivo evaluation

    PubMed Central

    Hu, Kaili; Cao, Shan; Hu, Fuqiang; Feng, Jianfang

    2012-01-01

    The aim of this research work was to investigate the potential of lecithin nanoparticles (LNs) in improving the oral bioavailability of docetaxel. Docetaxel-loaded LNs (DTX-LNs) were prepared from oil-in-water emulsions and characterized in terms of morphology, size, zeta potential, and encapsulation efficiency. The in vitro release of docetaxel from the nanoparticles was studied by using dialysis bag method. Caco-2 cell monolayer was used for the in vitro permeation study of DTX-LNs. Bioavailability studies were conducted in rats and different pharmacokinetic parameters were evaluated after oral administration of DTX-LNs. The results showed that DTX-LNs had a mean diameter of 360 ± 8 nm and exhibited spherical shape with smooth surface under transmission electron microscopy. The DTX-LNs showed a sustained-release profile, with about 80% of docetaxel released within 72 hours. The apical to basolateral transport of docetaxel across the Caco-2 cell monolayer from the DTX-LNs was 2.14 times compared to that of the docetaxel solution (0.15 × 10−5 ± 0.016 × 10−5 cm/second versus 0.07 × 10−5 ± 0.003 × 10−5 cm/second). The oral bioavailability of the DTX-LNs was 3.65 times that of docetaxel solution (8.75% versus 2.40%). These results indicate that DTX-LNs were valuable as an oral drug delivery system to enhance the absorption of docetaxel. PMID:22848177

  8. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations.

    PubMed

    Vyas, Tushar K; Shahiwala, Aliasgar; Amiji, Mansoor M

    2008-01-22

    The aim of this investigation was to develop novel oil-in-water (o/w) nanoemulsions containing Saquinavir (SQV), an anti-HIV protease inhibitor, for enhanced oral bioavailability and brain disposition. SQV was dissolved in different types of edible oils rich in essential polyunsaturated fatty acids (PUFA) to constitute the internal oil phase of the nanoemulsions. The external phase consisted of surfactants Lipoid-80 and deoxycholic acid dissolved in water. The nanoemulsions with an average oil droplet size of 100-200 nm, containing tritiated [(3)H]-SQV, were administered orally and intravenously to male Balb/c mice. The SQV bioavailability as well as distribution in different organ systems was examined. SQV concentrations in the systemic circulation administered in flax-seed oil nanoemulsions were threefold higher as compared to the control aqueous suspension. The oral bioavailability and distribution to the brain, a potential sanctuary site for HIV, were significantly enhanced with SQV delivered in nanoemulsion formulations. In comparing SQV in flax-seed oil nanoemulsion with aqueous suspension, the maximum concentration (C(max)) and the area-under-the-curve (AUC) values were found to be five- and threefold higher in the brain, respectively, suggesting enhanced rate and extent of SQV absorption following oral administration of nanoemulsions. The results of this study show that oil-in-water nanoemulsions made with PUFA-rich oils may be very promising for HIV/AIDS therapy, in particular, for reducing the viral load in important anatomical reservoir sites.

  9. Effect of short-term drinking water exposure to dichloroacetate on its pharmacokinetics and oral bioavailability in human volunteers: a stable isotope study.

    PubMed

    Schultz, Irvin R; Shangraw, Robert E

    2006-07-01

    Dichloroacetic acid (DCAA) is a by-product of drinking water disinfection, is a known rodent hepatocarcinogen, and is also used therapeutically to treat a variety of metabolic disorders in humans. We measured DCAA bioavailability in 16 human volunteers (eight men, eight women) after simultaneous administration of oral and iv DCAA doses. Volunteers consumed DCAA-free bottled water for 2 weeks to wash out background effects of DCAA. Subsequently, each subject consumed (12)C-DCAA (2 mg/kg) dissolved in 500 ml water over a period of 3 min. Five minutes after the start of the (12)C-DCAA consumption, (13)C-labeled DCAA (0.3 mg/kg) was administered iv over 20 s and plasma (12)C/(13)C-DCAA concentrations measured at predetermined time points over 4 h. Volunteers subsequently consumed for 14 consecutive days DCAA 0.02 microg/kg/day dissolved in 500 ml water to simulate a low-level chronic DCAA intake. Afterward, the (12)C/(13)C-DCAA administrations were repeated. Study end points were calculation of AUC(0-->infinity), apparent volume of distribution (V(ss)), total body clearance (Cl(b)), plasma elimination half-life (t((1/2),beta)), oral absorption rate (K(a)), and oral bioavailability. Oral bioavailability was estimated from dose-adjusted AUC ratios and by using a compartmental pharmacokinetic model after simultaneous fitting of oral and iv DCAA concentration-time profiles. DCAA bioavailability had large interindividual variation, ranging from 27 to 100%. In the absence of prior DCAA intake, there were no significant differences (p > 0.05) in any pharmacokinetic parameters between male and female volunteers, although there was a trend that women absorbed DCAA more rapidly (increased K(a)), and cleared DCAA more slowly (decreased Cl(b)), than men. Only women were affected by previous 14-day DCAA exposure, which increased the AUC(0-->infinity) for both oral and iv DCAA doses (p < 0.04 and p < 0.014, respectively) with a corresponding decrease in the Cl(b).

  10. Transport of curcumin derivatives in Caco-2 cell monolayers.

    PubMed

    Zeng, Zhen; Shen, Zhe L; Zhai, Shuo; Xu, Jia L; Liang, Hui; Shen, Qin; Li, Qing Y

    2017-08-01

    Curcumin (Cur) is a strong natural antioxidant, who can prevent multiple diseases such as anti-cancer, anti-inflammatory, have a resistance to alzheimer's disease and various malignant diseases. But it has poor oral bioavailability due to its poor aqueous solubility, as well as instability. While its novel derivatives (CB and FE), showed better anti-tumor activity, better anti-oxidant activity and better stability than the original drug (Cur). The aim of this study was to study the intestinal transport of Cur, CB and FE using an in vitro Caco-2 cell monolayer model. The results showed that Cur had a lower permeability coefficient (1.13×10 -6 ±0.11×10 -6 cm/s) for apical-to-basolated (AP-BL) transport at 25μM, while the transport rate for AP to BL flux of CB (3.18×10 -6 ±0.31×10 -6 cm/s) and FE (5.28×10 -6 ±0.83×10 -6 cm/s) were significantly greater than that of Cur. The efflux ratio (ER) value at the concentration of 25μM was 1.31 for Cur, 1.26 for CB and 1.33 for FE, suggesting there was no active efflux involved in the translocation across the Caco-2 cell monolayers for the three compounds. Furthermore, the transport flux of CB and FE was in a concentration dependent manner, suggesting the intestinal transport mechanism in them was passive transport. In summary, the results demonstrated that both the intestinal permeability of CB and FE across Caco-2 cell monolayers was significantly improved compare to Cur. Thus they might show a higher oral bioavailability in vivo, and show the potential application in clinic or nutraceutical. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Curcumin improves intestinal barrier function: modulation of intracellular signaling, and organization of tight junctions.

    PubMed

    Wang, Jing; Ghosh, Siddhartha S; Ghosh, Shobha

    2017-04-01

    Association between circulating lipopolysaccharide (LPS) and metabolic diseases (such as type 2 diabetes and atherosclerosis) has shifted the focus from high-fat high-cholesterol containing Western-type diet (WD)-induced changes in gut microbiota per se to release of gut bacteria-derived products (e.g., LPS) into circulation due to intestinal barrier dysfunction as the possible mechanism for the chronic inflammatory state underlying the development of these diseases. We demonstrated earlier that oral supplementation with curcumin attenuates WD-induced development of type 2 diabetes and atherosclerosis. Poor bioavailability of curcumin has precluded the establishment of a causal relationship between oral supplementation and it is in vivo effects. We hypothesized that curcumin attenuates WD-induced chronic inflammation and associated metabolic diseases by modulating the function of intestinal epithelial cells (IECs) and the intestinal barrier function. The objective of the present study was to delineate the underlying mechanisms. The human IEC lines Caco-2 and HT-29 were used for these studies and modulation of direct as well as indirect effects of LPS on intracellular signaling as well as tight junctions were examined. Pretreatment with curcumin significantly attenuated LPS-induced secretion of master cytokine IL-1β from IECs and macrophages. Furthermore, curcumin also reduced IL-1β-induced activation of p38 MAPK in IECs and subsequent increase in expression of myosin light chain kinase involved in the phosphorylation of tight junction proteins and ensuing disruption of their normal arrangement. The major site of action of curcumin is, therefore, likely the IECs and the intestinal barrier, and by reducing intestinal barrier dysfunction, curcumin modulates chronic inflammatory diseases despite poor bioavailability. Copyright © 2017 the American Physiological Society.

  12. Evaluation of kinetic parameters of natural phytoalexin in resveratrol orally administered in wine to rats.

    PubMed

    Bertelli, A A; Giovannini, L; Stradi, R; Urien, S; Tillement, J P; Bertelli, A

    1998-01-01

    In view of the increasing interest in the biological activity of resveratrol, one of the components of red wine which is considered to be one of the main ingredients responsible for the beneficial effect of wine on human health, we have studied plasma kinetics and tissue bioavailability of this compound after red wine oral administration in rats. Plasma pharmacokinetics after oral administration of resveratrol could be described by an open one- or two-compartment model. Tissue concentrations show a significant cardiac bioavailability, and a strong affinity for the liver and kidneys.

  13. Template-directed hydrothermal synthesis of hydroxyapatite as a drug delivery system for the poorly water-soluble drug carvedilol

    NASA Astrophysics Data System (ADS)

    Zhao, Qinfu; Wang, Tianyi; Wang, Jing; Zheng, Li; Jiang, Tongying; Cheng, Gang; Wang, Siling

    2011-09-01

    In order to improve the dissolution rate and increase the bioavailability of a poorly water-soluble drug, intended to be administered orally, the biocompatible and bioactive mesoporous hydroxyapatite (HA) was successfully synthesized. In the present study, mesoporous HA nanoparticles were produced using Pluronic block co-polymer F127 and cetyltrimethylammonium bromide (CTAB) as templates by the hydrothermal method. The obtained mesoporous HA was employed as a drug delivery carrier to investigate the drug storage/release properties using carvedilol (CAR) as a model drug. Characterizations of the raw CAR powder, mesoporous HA and CAR-loaded HA were carried out by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, N2 adsorption/desorption, thermogravimetric analysis (TGA), and UV-VIS spectrophotometry. The results demonstrated that CAR was successfully incorporated into the mesoporous HA host. In vitro drug release studies showed that mesoporous HA had a high drug load efficiency and provided immediate release of CAR compared with micronized raw drug in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8). Consequently, mesoporous HA is a good candidate as a drug carrier for the oral delivery of poorly water-soluble drugs.

  14. Pluronic-Functionalized Silica-Lipid Hybrid Microparticles: Improving the Oral Delivery of Poorly Water-Soluble Weak Bases.

    PubMed

    Rao, Shasha; Richter, Katharina; Nguyen, Tri-Hung; Boyd, Ben J; Porter, Christopher J H; Tan, Angel; Prestidge, Clive A

    2015-12-07

    A Pluronic-functionalized silica-lipid hybrid (Plu-SLH) microparticle system for the oral delivery of poorly water-soluble, weak base drugs is reported for the first time. A highly effective Plu-SLH microparticle system was composed of Labrasol as the lipid phase, Pluronic F127 as the polymeric precipitation inhibitor (PPI), and silica nanoparticles as the solid carrier. For the model drug cinnarizine (CIN), the Plu-SLH delivery system was shown to offer significant biopharmaceutical advantages in comparison with unformulated drug and drug in the silica-lipid hybrid (SLH) system. In vitro two-phase dissolution studies illustrated significantly reduced pH provoked CIN precipitation and an 8- to 14-fold improvement in the extent of dissolution in intestinal conditions. In addition, under simulated intestinal digesting conditions, the Plu-SLH provided approximately three times more drug solubilization than the SLH. Oral administration in rats resulted in superior bioavailability for Plu-SLH microparticles, i.e., 1.6- and 2.1-fold greater than the SLH and the unformulated CIN, respectively. A physical mixture of Pluronic and SLH (Plu&SLH), having the same composition as Plu-SLH, was also evaluated, but showed no significant increase in CIN absorption when compared to unmodified CIN or SLH. This work represents the first study where different methods of incorporating PPI to formulate solid-state lipid-based formulations were compared for the impact on the biopharmaceutical performance. The data suggest that the novel physicochemical properties and structure of the fabricated Plu-SLH microparticle delivery system play an important role in facilitating the synergistic advantage of Labrasol and Pluronic F127 in preventing drug precipitation, and the Plu-SLH provides efficient oral delivery of poorly water-soluble weak bases.

  15. Development and characterisation of sustained release solid dispersion oral tablets containing the poorly water soluble drug disulfiram.

    PubMed

    Shergill, Mandip; Patel, Mina; Khan, Siraj; Bashir, Ayesha; McConville, Christopher

    2016-01-30

    Administration of drugs via the oral route is the most common and preferred route due to its ease of administration, cost-effectiveness and flexibility in design. However, if the drug being administered has limited aqueous solubility it can result in poor bioavailability. Furthermore, the low pH of the stomach as well as enzymatic activity can result in drugs delivered via the oral route being rapidly metabolised and degraded. Here we demonstrate the development and characterisation of sustained release solid dispersion oral tablets, containing the poorly water-soluble drug disulfiram (DSF). The tablets, which are manufactured from two different polymers (Kolliphor(®) P 188 and P 237) specifically designed for the manufacture of solid dispersions and two different polymers (Kollidon(®) SR and HPMC) specifically designed to provide sustained release, can enhance the solubility of DSF, sustain its release, while protecting it from degradation in simulated gastric fluid (SGF). The paper demonstrates that when using the hot melt method at 80°C the DSF loading capacity of the Kolliphor(®) P 188 and P 237 polymers is approximately 43 and 46% respectively, with the DSF completely in an amorphous state. The addition of 80% Kollidon(®) SR to the formulation completely protected the DSF in SGF for up to 70 min with 16% degradation after 120 min, while 75% degradation occurred after 120 min with the addition of 80% HPMC. The release rate of DSF can be manipulated by both the loading and type of sustained release polymer used, with HPMC providing for a much faster release rate compared to Kollidon(®) SR. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Spirocyclic ureas: orally bioavailable 11 beta-HSD1 inhibitors identified by computer-aided drug design.

    PubMed

    Tice, Colin M; Zhao, Wei; Xu, Zhenrong; Cacatian, Salvacion T; Simpson, Robert D; Ye, Yuan-Jie; Singh, Suresh B; McKeever, Brian M; Lindblom, Peter; Guo, Joan; Krosky, Paula M; Kruk, Barbara A; Berbaum, Jennifer; Harrison, Richard K; Johnson, Judith J; Bukhtiyarov, Yuri; Panemangalore, Reshma; Scott, Boyd B; Zhao, Yi; Bruno, Joseph G; Zhuang, Linghang; McGeehan, Gerard M; He, Wei; Claremon, David A

    2010-02-01

    Structure-guided drug design led to the identification of a class of spirocyclic ureas which potently inhibit human 11beta-HSD1 in vitro. Lead compound 10j was shown to be orally bioavailable in three species, distributed into adipose tissue in the mouse, and its (R) isomer 10j2 was efficacious in a primate pharmacodynamic model. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  17. Influence of eutrophication on metal bioaccumulation and oral bioavailability in oysters, Crassostrea angulata.

    PubMed

    Li, Shun-Xing; Chen, Li-Hui; Zheng, Feng-Ying; Huang, Xu-Guang

    2014-07-23

    Oysters (Crassostrea angulata) are often exposed to eutrophication. However, how these exposures influence metal bioaccumulation and oral bioavailability (OBA) in oysters is unknown. After a four month field experimental cultivation, bioaccumulation factors (BAF) of metals (Fe, Cu, As, Cd, and Pb) from seawater to oysters and metal oral bioavailability in oysters by bionic gastrointestinal tract were determined. A positive effect of macronutrient (nitrate N and total P) concentration in seawater on BAF of Cd in oysters was observed, but such an effect was not significant for Fe, Cu, Pb, and As. Only OBA of As was significantly positively correlated to N and P contents. For Fe, OBA was negatively correlated with N. The regular variation of the OBA of Fe and As may be due to the effect of eutrophication on the synthesis of metal granules and heat-stable protein in oysters, respectively.

  18. Role of oxate, phytate, tannins and cooking on iron bioavailability from foods commonly consumed in Mexico.

    PubMed

    Sotelo, Angela; González-Osnaya, Liliana; Sánchez-Chinchillas, Argelia; Trejo, Alberto

    2010-02-01

    The objectives of this research were to assess the bioavailability of iron in foodstuffs found in the Mexican diet, to provide data on the content of iron absorption inhibitors present in plant origin products and to assess the inhibitory effect of these compounds and of cooking on iron bioavailability; therefore, total content and bioavailable iron, tannins, phytic and oxalic acid were determined in vegetables, cereals, legumes and animal products, before and after cooking. Vegetables, although rich in iron, have poor iron bioavailability and a high content of inhibitory factors; cooking reduced the content of iron and inhibitory factors, whereas in animal products the treatment of cooking did not significantly reduce it. Iron bioavailability, phytate content and the phytate to iron molar ratio predicted poor iron bioavailability and, therefore, a negative impact on the nutritional status of people who rely on them as staple foods could be expected.

  19. Curcumin Encapsulated in Milk Exosomes Resists Human Digestion and Possesses Enhanced Intestinal Permeability in Vitro.

    PubMed

    Vashisht, Monika; Rani, Payal; Onteru, Suneel Kumar; Singh, Dheer

    2017-11-01

    Exosomes, the extracellular secretary nano-vesicles, act as carriers of biomolecules to the target cells. They exhibit several attributes of an efficient drug delivery system. Curcumin, despite having numerous bioactive and therapeutic properties, has limited pharmaceutical use due to its poor water solubility, stability, and low systemic bioavailability. Hence, this study aims to enhance the therapeutic potential of curcumin, a model hydrophobic drug, by its encapsulation into milk exosomes. In the present study, we investigated the stability of free curcumin and exosomal curcumin in PBS and in vitro digestive processes. Additionally, their uptake and trans-epithelial transport were studied on Caco-2 cells. Curcumin in milk exosomes had higher stability in PBS, sustained harsh digestive processes, and crossed the intestinal barrier than free curcumin. In conclusion, the encapsulation of curcumin into the exosomes enhances its stability, solubility, and bioavailability. Therefore, the present study demonstrated that milk exosomes act as stable oral drug delivery vehicles.

  20. Construction and characterization of curcumin nanoparticles system

    NASA Astrophysics Data System (ADS)

    Sun, Weitong; Zou, Yu; Guo, Yaping; Wang, Lu; Xiao, Xue; Sun, Rui; Zhao, Kun

    2014-03-01

    This study was aimed at developing a nanoparticles system for curcumin, a widely used traditional Chinese medicine, but with the disadvantage of poor aqueous solubility. The objective was intended to improve in vitro release characteristics, enhance blood and gastrointestinal stability, increase bioavailability and pharmacological activities. Curcumin nanoparticles system (Cur-NS) was prepared by ionotropic gelation technique. Cur-NS was characterized by particle size, zeta potential, drug entrapment efficiency, drug loading, and physical stability, respectively. Cur-NS presented controlled release properties, and the release properties of Cur from NS were fit non-Fickian mechanism, controlled by the expected diffusional release and the erosion or solubilization from the crosslink layer of polymer carrier. In addition, the pharmacokinetic study in rats revealed a notable improved oral bioavailability of Cur, and the anti-tumor activity in vivo of Cur-NS on tumor growth was investigated. Cur-NS significantly inhibited tumor effect compared with non-vehicle group, thus making it a potential candidate for cancer therapy.

  1. Effect of polacrilin potassium as disintegrant on bioavailability of diclofenac potassium in tablets : a technical note.

    PubMed

    Bele, Mrudula H; Derle, Diliprao V

    2012-09-01

    Polacrilin potassium is an ion exchange resin used in oral pharmaceutical formulations as a tablet disintegrant. It is a weakly acidic cation exchange resin. Chemically, it is a partial potassium salt of a copolymer of methacrylic acid with divinyl benzene. It ionizes to an anionic polymer chain and potassium cations. It was hypothesized that polacrilin potassium may be able to improve the permeability of anionic drugs according to the Donnan membrane phenomenon. The effect of polacrilin potassium on the permeability of diclofenac potassium, used as a model anionic drug, was tested in vitro using diffusion cells and in vivo by monitoring serum levels in rats. The amount of drug permeated across a dialysis membrane in vitro was significantly more in the presence of polacrilin potassium. Significant improvement was found in the extent of drug absorption in vivo. It could be concluded that polacrilin potassium may be used as a high-functionality excipient for improving the bioavailability of anionic drugs having poor gastrointestinal permeability.

  2. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin.

    PubMed

    Mohanty, Chandana; Das, Manasi; Sahoo, Sanjeeb K

    2012-11-01

    Curcumin is a safe, affordable and natural bioactive molecule of turmeric (Curcuma longa). It has gained considerable attention in recent years for its multiple pharmacological activities. However, its optimum pharmaceutical potential has been limited by its lack of aqueous solubility and poor bioavailability. To mitigate the above limitations, recently various nanostructured water-soluble delivery systems were developed to increase the solubility and bioavailability of curcumin. Major reasons contributing to the low bioavailability of curcumin appear to be owing to its poor solubility, low absorption, rapid metabolism and rapid systemic elimination. The present review summarizes the strategies using curcumin in various nanocarrier delivery systems to overcome poor solubility and inconsistent bioavailability of curcumin and describes the current status and challenges for the future. The development of various drug delivery systems to deliver curcumin will certainly provide a step up towards augmenting the therapeutic activity of curcumin thereby increasing the solubility and bioavailability of curcumin. However, the future of such delivery technology will be highly dependent on the development of safe, non-toxic and non-immunogenic nanocarriers.

  3. Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions.

    PubMed

    Adiwidjaja, Jeffry; McLachlan, Andrew J; Boddy, Alan V

    2017-09-01

    Curcumin has been extensively studied for its anti-cancer properties. While a diverse array of in vitro and preclinical research support the prospect of curcumin use as an anti-cancer therapeutic, most human studies have failed to meet the intended clinical expectation. Poor systemic availability of orally-administered curcumin may account for this disparity. Areas covered: This descriptive review aims to concisely summarise available clinical studies investigating curcumin pharmacokinetics when administered in different formulations. A critical analysis of pharmacokinetic- and pharmacodynamic-based interactions of curcumin with concomitantly administered drugs is also provided. Expert opinion: The encouraging clinical results of curcumin administration are currently limited to people with colorectal cancer, given that sufficient curcumin concentrations persist in colonic mucosa. Higher parent curcumin systemic exposure, which can be achieved by several newer formulations, has important implications for optimal treatment of cancers other than those in gastrointestinal tract. Curcumin-drug pharmacokinetic interactions are also almost exclusively in the enterocytes, owing to extensive first pass metabolism and poor curcumin bioavailability. Greater scope of these interactions, i.e. modulation of the systemic elimination of co-administered drugs, may be expected from more-bioavailable curcumin formulations. Further studies are still warranted, especially with newer formulations to support the inclusion of curcumin in cancer therapy regimens.

  4. Impact of gastrointestinal lipolysis on oral lipid-based formulations and bioavailability of lipophilic drugs.

    PubMed

    Carrière, Frédéric

    2016-06-01

    Oil-in-water emulsions are common vehicles for lipids as nutrients and for the delivery of poorly water-soluble drugs. Enhancing oral bioavailability of these drugs using lipid-based formulations (LBF) or self-emulsifying drug delivery systems is one of the current challenges in pharmaceutical industry. Many of the compounds found in LBF (acylglycerols, surfactants with esterified fatty acids, …) are however potential substrates for digestive enzymes. Their digestion (or lipolysis) in the gastrointestinal (GI) tract is critical for drug dissolution and absorption: it can be beneficial (drug solubilization/dispersion) or deleterous (drug precipitation) depending on the drug-LBF association. A better understanding of the fate of LBF in the GI tract is therefore required to engineer efficient lipid-based drug delivery systems. In vitro models for testing simultaneously LBF digestion and drug dispersion are in development to predict drug solubilization and bioavailability, select the best drug-LBF association and obtain better in vitro-in vivo correlations. So far, research in this area has focused on LBF lipolysis under intestinal conditions because the small intestine is the main target for drug delivery and absorption, as well as the main site of digestion by pancreatic enzymes. Lipolysis however starts within the stomach through the action of gastric lipase, the first enzyme involved in fat digestion in humans. In vitro digestion experiments show that most LBFs are submitted to gastric lipolysis, and therefore, both intragastric and intestinal digestions are critical for the fate of LBF and drug solubility. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  5. A Target-Specific Oral Formulation of Doxorubicin-Protein Nanoparticles: Efficacy and Safety in Hepatocellular Cancer

    PubMed Central

    Golla, Kishore; Bhaskar, Cherukuvada; Ahmed, Farhan; Kondapi, Anand K.

    2013-01-01

    Background/Aims: Hepatocellular carcinoma (HCC) also known as malignant hepatoma is a most common liver cancer. Doxorubicin (Doxo) is an anti-cancer drug having activity against a wide spectrum of cancer types. Clinical Utility of doxo has been limited due to its poor bioavailability and toxicity to heart and spleen. Furthermore, cancer chemotherapeutics have limited oral absorption. Transferrin family proteins are highly abundant and plays important role in transport and storage of iron in cells and tissues. Since apotransferrin and lactoferrin receptors are highly expressed on the surface of metabolically active cancer cells, the principal objective of present study is to evaluate efficacy of doxorubicin loaded apotransferrin and lactoferrin nanoparticles (apodoxonano or lactodoxonano) in oral treatment of HCC in rats. Study Design: HCC was induced in rats by supplementing 100 mg/L of diethylnitrosamine (DENA) in drinking water for 8 weeks. A week after the last day of DENA administration, rats were divided into four groups, each group comprising of five animals. Each group was administered with one of the drug viz., saline, doxorubicin (doxo), apodoxonano and lactodoxonano (4 mg/ kg equivalent of drug). In each case, they received 8 doses of the drug orally with six day interval. One week after the last dose, anticancer activity was evaluated by counting the liver nodules, H & E analysis of tissue sections and expression levels of angiogenic and antitumor markers. Results: In rats treated with apodoxonano and lactodoxonano, the number of neoplastic nodules was significantly lower than that of rats administered with saline or with doxo. Apodoxonano and lactodoxonano did not exhibit decrease in mean body weight, which was markedly reduced by 22% in the case of doxo administered rats. In rats treated with nanoformulations, the number of liver nodules was found reduced by >93%. Both nanoformulations showed significantly high localization in liver compared to doxo. Conclusions: Apodoxonano and lactodoxonano showed improved efficacy, bioavailability and safety compared to doxo for treatment of HCC in rats when administered orally. PMID:24155776

  6. Functionalized PLA-PEG nanoparticles targeting intestinal transporter PepT1 for oral delivery of acyclovir.

    PubMed

    Gourdon, Betty; Chemin, Caroline; Moreau, Amélie; Arnauld, Thomas; Baumy, Philippe; Cisternino, Salvatore; Péan, Jean-Manuel; Declèves, Xavier

    2017-08-30

    Targeting intestinal di- and tri-peptide transporter PepT1 with prodrugs is a successful strategy to improve oral drug bioavailability, as demonstrated with valacyclovir, a prodrug of acyclovir. The aim of this new drug delivery strategy is to over-concentrate a poorly absorbed drug on the intestinal membrane surface by targeting PepT1 with functionalized polymer nanoparticles. In the present study, poly(lactic acid)-poly(ethylene glycol)-ligand (PLA-PEG-ligand) nanoparticles were obtained by nanoprecipitation. A factorial experimental design allowed us to identify size-influent parameters and to obtain optimized ≈30nm nanoparticles. Valine, Glycylsarcosine, Valine-Glycine, and Tyrosine-Valine were chemically linked to PLA-PEG. In Caco-2 cell monolayer model, competition between functionalized nanoparticles and [ 3 H]Glycylsarcosine, a strong substrate of PepT1, reduced [ 3 H]Glycylsarcosine transport from 22 to 46%. Acyclovir was encapsulated with a drug load of ≈10% in valine-functionalized nanoparticles, resulting in a 2.7-fold increase in permeability as compared to the free drug. An in vivo pharmacokinetic study in mice compared oral absorption of acyclovir after administration of 25mg/kg of valacyclovir, free or encapsulated acyclovir in functionalized nanoparticles. Acyclovir encapsulation did not statistically modify AUC or C max , but increased t 1/2 and MRT 1.3-fold as compared to free acyclovir. This new strategy is promising for poorly absorbed drugs by oral administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Stable isotope-labelled intravenous microdose for absolute bioavailability and effect of grapefruit juice on ibrutinib in healthy adults.

    PubMed

    de Vries, Ronald; Smit, Johan W; Hellemans, Peter; Jiao, James; Murphy, Joseph; Skee, Donna; Snoeys, Jan; Sukbuntherng, Juthamas; Vliegen, Maarten; de Zwart, Loeckie; Mannaert, Erik; de Jong, Jan

    2016-02-01

    Ibrutinib, an inhibitor of Bruton's tyrosine kinase, is used in the treatment of mantle cell lymphoma or chronic lymphocytic leukaemia. Ibrutinib undergoes extensive rapid oxidative metabolism mediated by cytochrome P450 3A both at the level of first pass and clearance, which might result in low oral bioavailability. The present study was designed to investigate the absolute bioavailability (F) of ibrutinib in the fasting and fed state and assess the effect of grapefruit juice (GFJ) on the systemic exposure of ibrutinib in order to determine the fraction escaping the gut (Fg ) and the fraction escaping hepatic extraction (Fh ) in the fed state. All participants received treatment A [560 mg oral ibrutinib, under fasting conditions], B (560 mg PO ibrutinib, fed, administered after drinking glucose drink) and C (140 mg oral ibrutinib, fed, with intake of GFJ before dosing). A single intravenous (i.v.) dose of 100 μg (13) C6 -ibrutinib was administered 2 h after each oral dose. The estimated 'F' for treatments A, B and C was 3.9%, 8.4% and 15.9%, respectively. Fg and Fh in the fed state were 47.0% and 15.9%, respectively. Adverse events were mild to moderate in severity (Grade 1-2) and resolved without sequelae by the end of the study. The absolute oral bioavailability of ibrutinib was low, ranging from 3.9% in the fasting state to 8.4% when administered 30 min before a standard breakfast without GFJ and 15.9% with GFJ. Ibrutinib was well tolerated following a single oral and i.v. dose, under both fasted and fed conditions and regardless of GFJ intake status. © 2015 The British Pharmacological Society.

  8. Stable isotope‐labelled intravenous microdose for absolute bioavailability and effect of grapefruit juice on ibrutinib in healthy adults

    PubMed Central

    Smit, Johan W.; Hellemans, Peter; Jiao, James; Murphy, Joseph; Skee, Donna; Snoeys, Jan; Sukbuntherng, Juthamas; Vliegen, Maarten; de Zwart, Loeckie; Mannaert, Erik; de Jong, Jan

    2016-01-01

    Aims Ibrutinib, an inhibitor of Bruton's tyrosine kinase, is used in the treatment of mantle cell lymphoma or chronic lymphocytic leukaemia. Ibrutinib undergoes extensive rapid oxidative metabolism mediated by cytochrome P450 3A both at the level of first pass and clearance, which might result in low oral bioavailability. The present study was designed to investigate the absolute bioavailability (F) of ibrutinib in the fasting and fed state and assess the effect of grapefruit juice (GFJ) on the systemic exposure of ibrutinib in order to determine the fraction escaping the gut (Fg) and the fraction escaping hepatic extraction (Fh) in the fed state. Methods All participants received treatment A [560 mg oral ibrutinib, under fasting conditions], B (560 mg PO ibrutinib, fed, administered after drinking glucose drink) and C (140 mg oral ibrutinib, fed, with intake of GFJ before dosing). A single intravenous (i.v.) dose of 100 μg 13C6‐ibrutinib was administered 2 h after each oral dose. Results The estimated ‘F’ for treatments A, B and C was 3.9%, 8.4% and 15.9%, respectively. Fg and Fh in the fed state were 47.0% and 15.9%, respectively. Adverse events were mild to moderate in severity (Grade 1–2) and resolved without sequelae by the end of the study. Conclusion The absolute oral bioavailability of ibrutinib was low, ranging from 3.9% in the fasting state to 8.4% when administered 30 min before a standard breakfast without GFJ and 15.9% with GFJ. Ibrutinib was well tolerated following a single oral and i.v. dose, under both fasted and fed conditions and regardless of GFJ intake status. PMID:26382728

  9. Oral availability of bilastine.

    PubMed

    Sádaba, B; Gómez-Guiu, A; Azanza, J R; Ortega, I; Valiente, R

    2013-05-01

    Bilastine (Bilaxten™) is a novel non-sedating H1 receptor antagonist (antihistamine) developed in the dosage form of oral tablets and indicated for the treatment of allergic rhinitis (seasonal and perennial) and urticaria. Several clinical trials have been performed in order to determine the efficacy and safety of bilastine. The aim of this trial was to study the absolute oral bioavailability of bilastine in humans. Twelve male and female adults were recruited into a single centre for a randomized, single-dose, open-label, controlled two-arm crossover study with a minimum 14-day washout period between the two single doses. Two single doses of bilastine were administered: a 20-mg oral tablet and a 10-mg intravenous formulation. Blood and urine samples were collected between 0 and 72 h post each administration. The clinical trial was carried out under quality assurance and quality control systems with standard operating procedures to ensure that the study was conducted and data generated in compliance with the protocol, Good Clinical Practice standards, International Conference on Harmonisation and other applicable regulations. Oral bioavailability of bilastine was 60.67 % with a 90 % parametric confidence interval of 53.79-67.56. The maximum bilastine concentration was measured 1.31 h after oral administration. Pharmacokinetic parameters were similar to those observed in previous studies. Tolerance to treatment was good, with no adverse events related to study medication. The absorption of bilastine after oral administration to healthy subjects was rapid. The absolute oral bioavailability was moderate.

  10. Chlorogenic acid stabilized nanostructured lipid carriers (NLC) of atorvastatin: formulation, design and in vivo evaluation.

    PubMed

    Khan, Saba; Baboota, Sanjula; Ali, Javed; Narang, R S; Narang, Jasjeet K

    2016-01-01

    The present work was aimed at developing an optimized oral nanostructured lipid carrier (NLC) formulation of poorly soluble atorvastatin Ca (AT Ca) and assessing its in vitro release, oral bioavailability and pharmacodynamic activity. In this study, chlorogenic acid, a novel excipient having synergistic cholesterol lowering activity was utilized and explored in NLC formulation development. The drug-loaded NLC formulations were prepared using a high pressure homogenization technique and optimized by the Box-Behnken statistical design using the Design-Expert software. The optimized NLC formulation was composed of oleic acid and stearic acid as lipid phase (0.9% w/v), poloxamer 188 as surfactant (1% w/v) and chlorogenic acid (0.05% w/v). The mean particle size, polydispersity index (PDI) and % drug entrapment efficiency of optimized NLC were 203.56 ± 8.57 nm, 0.27 ± 0.028 and 83.66 ± 5.69, respectively. In vitro release studies showed that the release of drug from optimized NLC formulations were markedly enhanced as compared to solid lipid nanoparticles (SLN) and drug suspension. The plasma concentration time profile of AT Ca in rats showed 3.08- and 4.89-fold increase in relative bioavailability of developed NLC with respect to marketed preparation (ATORVA® tablet) and drug suspension, respectively. Pharmacodynamic study suggested highly significant (**p < 0.01) reduction in the cholesterol and triglyceride values by NLC in comparison with ATORVA® tablet. Therefore, the results of in vivo studies demonstrated promising prospects for successful oral delivery of AT Ca by means of its chlorogenic acid integrated NLC.

  11. Decreased absorption as a possible cause for the lower bioavailability of a sustained-release propranolol.

    PubMed

    Takahashi, H; Ogata, H; Warabioka, R; Kashiwada, K; Ohira, M; Someya, K

    1990-03-01

    The influence of sustained absorption on the oral availability of propranolol (P) and the metabolic disposition of P were investigated by obtaining the partial metabolic clearances (CLm) following long-acting P (LA) dosing in comparison with the conventional propranolol tablet (CP). Ten healthy volunteers were given a single oral dose of an LA capsule (60 mg) and CP (20 mg x 3) using a crossover design. Blood and urine samples were collected over 24- and 48-h postdose periods, respectively. Concentrations of P, propranolol glucuronide (PG), 4-hydroxypropranolol (4P), 4-hydroxypropranolol glucuronide (4PG), 4-hydroxypropranolol sulfate (4PS), and naphthoxylactic acid (NLA) were determined by HPLC with fluorescence and UV detection. Significant differences were observed between LA and CP in the area under the plasma concentration-time curves (AUCs) for P, PG, and NLA and in the amounts excreted into urine (Ae) for all measured metabolites (i.e., PG, 4P, 4PG, 4PS, and NLA). The parallel decrease of the AUC for P and the excreted amounts of all measured metabolites following LA dosing resulted in partial metabolic clearances (CLm) and renal clearances (CL) for P and its metabolites that were similar to those observed for CP. Therefore, the hepatic metabolism of P would not be affected by the slower absorption at a single oral dose of 60 mg. These results indicate that the poor absorption of P from the gastrointestinal tract might be one of the factors causing the low bioavailability of P observed after administration of the sustained-release formulation.

  12. Preparation and evaluation of valsartan by a novel semi-solid self-microemulsifying delivery system using Gelucire 44/14.

    PubMed

    Zhao, Kun; Yuan, Yue; Wang, Hui; Li, Panpan; Bao, Zhihong; Li, Yue

    2016-10-01

    The aim of the present study was to develop a novel semi-solid self-microemulsifying drug delivery system (SMEDDS) using Gelucire(®) 44/14 as oil with strong solid character to improve the oral bioavailability of poorly soluble drug valsartan. The solubility of valsartan in various excipients was determined, the pseudo-ternary phase diagram was constructed in order to screen the optimal excipients, and DSC analysis was performed to evaluate the melting point of SMEDDS. The optimal drug-loaded SMEDDS formulation was consisted of 30% Gelucire(®) 44/14 (oil), 40% Solutol(®) HS 15 (surfactant), and 30% Transcutol(®) P (cosurfactant) (w/w) with 80 mg valsartan/g excipients. The average droplet sizes of the optimized blank and drug-loaded SMEDDS formulations were 26.20 ± 1.43 and 33.34 ± 2.15 nm, and the melting points of them were 35.6 and 36.8 °C, respectively. The in vitro dissolution rate of optimal semi-solid SMEDDS was increased compared with commercial capsules, resulting in the 2.72-fold and 2.97-fold enhancement of Cmax and AUC0-t after oral administration in rats, respectively. These results indicated that the novel semi-solid SMEDDS formulation could potentially improve the oral bioavailability of valsartan, and the semi-solid SMEDDS was a desirable system than the traditional liquid SMEDDS because it was convenient for preparation, storage and transportation due to semi-solid state at room temperature and melted state at body temperature.

  13. Low bioavailability of ergotamine tartrate after oral and rectal administration in migraine sufferers.

    PubMed Central

    Ibraheem, J J; Paalzow, L; Tfelt-Hansen, P

    1983-01-01

    Fifteen migraine patients were administered 2 mg ergotamine tartrate in a partial cross-over design as a single, oral tablet, rectal suppository and rectal solution. Eight of these patients were in a previous investigation given 0.5 mg ergotamine tartrate intravenously. The blood samples were taken up to 54 h after oral and suppository while it was followed for only 3 h after rectal solution. The chemical analysis was performed by applying h.p.l.c. method with a limit of sensitivity of 0.1 ng/ml ergotamine base in plasma. No ergotamine was detected in the blood samples after the oral route, whereas small and very variable quantities was found in blood after the rectal route. Regular calculation of bioavailability could therefore not be performed. An estimate of the maximal possible bioavailability was found to yield a mean value of 2% (tablets); 5% (suppositories) and 6% (rectal solution). Rectal solution elicited faster absorption and the extent of absorption was significantly higher (P less than 0.05) than for the suppository. PMID:6419759

  14. N-trimethyl chitosan nanoparticles and CSKSSDYQC peptide: N-trimethyl chitosan conjugates enhance the oral bioavailability of gemcitabine to treat breast cancer.

    PubMed

    Chen, Guanyu; Svirskis, Darren; Lu, Weiyue; Ying, Man; Huang, Yuan; Wen, Jingyuan

    2018-05-10

    Gemcitabine is a nucleoside analogue effective against a number of cancers. However, the full potential of this drug has not been realised, in part due to low oral bioavailability and frequent dosing requirements. This study reports the synthesis, in-vitro, ex-vivo and in-vivo evaluation of trimethyl chitosan (TMC) - CSKSSDYQC (CSK) peptide conjugates capable of enhancing the oral bioavailability of gemcitabine due to the ability to target intestinal goblet cells and promote intestinal cellular uptake. TMC was synthesized by a novel two-step methylation method to improve quanternization and yield. The CSK-TMC conjugates were prepared by ionic gelation to achieve particles sized at 173.6 ± 6.8 nm, zeta potential of +18.5 ± 0.2 mV and entrapment efficiency of 66.4 ± 0.1%, capable of sustained drug release. By encapsulating gemcitabine into CSK-TMC conjugates, an increased amount of drug permeated through porcine intestinal epithelial membranes compared with the unconjugated TMC nanoparticles (NPs). The rate of cellular uptake of drug loaded conjugates into HT29-MTX-E12 intestinal goblet cells, was time- and concentration-dependant. The conjugates underwent active transport associated with adsorptive mediated, clathrin and caveolae mediated endocytosis. In cellular transport studies, drug loaded conjugates had greater drug transport capability compared with drug solution and TMC NPs over the co-cultured Caco-2/HT29-MTX-E12 cell monolayer. The drug loaded conjugates exhibited electrostatic interaction with the intestinal epithelial cells. Both P-glycoprotein (P-gp) and multiple resistance protein-2 (MRP2) efflux affected the cellular transport of the conjugates. Importantly, during the pharmacokinetic studies, the orally administrated drug loaded into TMC NPs showed an improved oral bioavailability of 54.0%, compared with gemcitabine solution of 9.9%. Notable, the CSK-TMC conjugates further improved oral bioavailability to 60.1% and reduced the tumour growth rate in a BALB/c nude mouse model, with a 5.1-fold and 3.3-fold reduction compare with the non-treated group and gemcitabine solution group. Furthermore, no major evidence of toxicity was discernible on histologic studies of selected organs. In conclusion, the presented CSK-TMC conjugates and TMC nanoparticles both significantly improve the oral bioavailability of gemcitabine and have the potential for the treatment of breast cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle.

    PubMed

    Hu, Liandong; Jia, Yanhong; Niu, Feng; Jia, Zheng; Yang, Xun; Jiao, Kuiliang

    2012-07-25

    A new microemulsions system of curcumin (CUR-MEs) was successfully developed to improve the solubility and bioavailability of curcumin. Several formulations of the microemulsions system were prepared and evaluated using different ratios of oils, surfactants, and co-surfactants (S&CoS). The optimal formulation, which consists of Capryol 90 (oil), Cremophor RH40 (surfactant), and Transcutol P aqueous solution (co-surfactant), could enhance the solubility of curcumin up to 32.5 mg/mL. The pharmacokinetic study of microemulsions was performed in rats compared to the corresponding suspension. The stability of microemulsions after dilution was excellence. Microemulsions have significantly increased the C(max) and area under the curve (AUC) in comparison to that in suspension (p < 0.05). The relative bioavailability of curcumin in microemulsions was 22.6-fold higher than that in suspension. The results indicated that the CUR-MEs could be used as an effective formulation for enhancing the oral bioavailability of curcumin.

  16. Porous aerosil loading probucol using supercritical carbon dioxide: preparation, in vitro and in vivo characteristics.

    PubMed

    Chu, Chunxia; Liu, Muhua; Wang, Dongmei; Guan, Jibin; Cai, Cuifang; Sun, Yuanpeng; Zhang, Tianhong

    2014-06-01

    The aim of this study was to enhance the dissolution rate and oral bioavailability of probucol. Probucol was adsorbed onto aerosils via supercritical carbon dioxide (ScCO2) and the physicochemistry properties of probucol-aerosil powder were evaluated by differential scanning calorimetry, X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Tablets of the probucol-aerosil powder were prepared by direct compression method. In the dissolution test, the probucol-aerosil tablets showed a significant enhanced dissolution rate compared with commercial tablets. Bioavailability study was carried out in beagle dogs. Probucol-aerosil tablets exhibited higher AUC and Cmax than commercial tablets. The improved dissolution and bioavailability of probucol-aerosil tablets were attributed to the amorphous state and good dispersion of probucol. It is a feasible method to enhance the oral bioavailability by adsorbing probucol onto aerosils via ScCO2.

  17. The Oral Bioavailability of Trans-Resveratrol from a Grapevine-Shoot Extract in Healthy Humans is Significantly Increased by Micellar Solubilization.

    PubMed

    Calvo-Castro, Laura A; Schiborr, Christina; David, Franziska; Ehrt, Heidi; Voggel, Jenny; Sus, Nadine; Behnam, Dariush; Bosy-Westphal, Anja; Frank, Jan

    2018-05-01

    Grapevine-shoot extract Vineatrol30 contains abundant resveratrol monomers and oligomers with health-promoting potential. However, the oral bioavailability of these compounds in humans is low (˂1-2%). The aim of this study was to improve the oral bioavailability of resveratrol from vineatrol by micellar solubilization. Twelve healthy volunteers (six women, six men) randomly ingested a single dose of 500 mg vineatrol (30 mg trans-resveratrol, 75 mg trans-ε-viniferin) as native powder or liquid micelles. Plasma and urine were collected at baseline and over 24 h after intake. Resveratrol and viniferin were analyzed by HPLC. The area under the plasma concentration-time curve (AUC) and mean maximum plasma trans-resveratrol concentrations were 5.0-fold and 10.6-fold higher, respectively, after micellar supplementation relative to the native powder. However, no detectable amounts of trans-ε-viniferin were found in either plasma or urine. The transepithelial permeability of trans-resveratrol and trans-ε-viniferin across differentiated Caco-2 monolayers was consistent to the absorbed fractions in vivo. The oral bioavailability of trans-resveratrol from the grapevine-shoot extract Vineatrol30 was significantly increased using a liquid micellar formulation, without any treatment-related adverse effects, making it a suitable system for improved supplementation of trans-resveratrol. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enhanced oral bioavailability and sustained delivery of glimepiride via niosomal encapsulation: in-vitro characterization and in-vivo evaluation.

    PubMed

    Mohsen, Amira Mohamed; AbouSamra, Mona Mahmoud; ElShebiney, Shaimaa Ahmed

    2017-08-01

    This study was designed to investigate the potency of niosomes, for glimepiride (GLM) encapsulation, aiming at enhancing its oral bioavailability and hypoglycemic efficacy. Niosomes containing nonionic surfactants (NIS) were prepared by thin film hydration technique and characterized. In-vitro release study was performed using a dialysis technique. In-vivo pharmacodynamic studies, as well as pharmacokinetic evaluation were performed on alloxan-induced diabetic rats. GLM niosomes exhibited high-entrapment efficiency percentages (E.E. %) up to 98.70% and a particle size diameter ranging from 186.8 ± 18.69 to 797.7 ± 12.45 nm, with negatively charged zeta potential (ZP). Different GLM niosomal formulation showed retarded in vitro release, compared to free drug. In-vivo studies revealed the superiority of GLM niosomes in lowering blood glucose level (BGL) and in maintaining a therapeutic level of GLM for a longer period of time, as compared to free drug and market product. There was no significant difference between mean plasma AUC 0-48 hr of GLM-loaded niosomes and that of market product. GLM-loaded niosomes exhibited seven-fold enhancement in relative bioavailability in comparison with free drug. These findings reinforce the potential use of niosomes for enhancing the oral bioavailability and prolonged delivery of GLM via oral administration.

  19. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals

    PubMed Central

    Sun, Jiao; Wang, Fan; Sui, Yue; She, Zhennan; Zhai, Wenjun; Wang, Chunling; Deng, Yihui

    2012-01-01

    In this paper work, four naked nanocrystals (size range 80–700 nm) were prepared without any surfactant or polymer using the solvent/nonsolvent method. The effects of particle size on their solubility, dissolution, and oral bioavailability were investigated. Solubility and dissolution testing were performed in three types of dissolution medium, and the studies demonstrated that the equilibrium solubilities of coenzyme Q10 nanocrystals and bulk drugs were not affected by the dissolution media but the kinetic solubilities were. Kinetic solubility curves and changes in particle size distribution were determined and well explained by the proposed solubilization model for the nanocrystals and bulk drugs. The particle size effect on dissolution was clearly influenced by the diffusion coefficients of the various dissolution media, and the dissolution velocity of coenzyme Q10 increased as particle size decreased. The bioavailability of coenzyme Q10 after oral administration in beagle dogs was improved by reducing the particle size. For 700 nm nanocrystals, the AUC0–48 was 4.4-fold greater than that for the coarse suspensions, but a further decrease in particle size from 700 nm to 120 nm did not contribute to improvement in bioavailability until the particle size was reduced to 80 nm, when bioavailability was increased by 7.3-fold. PMID:23166438

  20. Rectal bioavailability of delta-9-tetrahydrocannabinol from the hemisuccinate ester in monkeys.

    PubMed

    ElSohly, M A; Stanford, D F; Harland, E C; Hikal, A H; Walker, L A; Little, T L; Rider, J N; Jones, A B

    1991-10-01

    Oral administration of delta-9-tetrahydrocannabinal (delta 9-THC) was shown to result in low and erratic bioavailability, while the drug showed no bioavailability from various suppository formulations. delta 9-THC-Hemisuccinate was formulated as a prodrug for delta 9-THC in suppositories using Witepsol H15 base. The bioavailability of delta 9-THC from this formulation was evaluated in monkeys. The plasma levels of delta 9-THC and its metabolite 11-nor-delta 9-THC-9-COOH were determined using GC/MS analysis. The calculated bioavailability of delta 9-THC from this formulation was found to be 13.5%. Non-compartmental analysis of the plasma concentration data using statistical moments showed the mean residence time (MRT) for delta 9-THC in the body to be 3 h following iv administration of delta 9-THC or its hemisuccinate ester (3.4 and 2.7 h, respectively), as compared with 5.8 h following rectal administration of the delta 9-THC hemisuccinate. The observed rectal bioavailability of delta 9-THC from suppositories containing the hemisuccinate ester as a prodrug is of significant importance in developing an alternative approach to oral administration of the drug.

  1. Anti-inflammation effects of Sophora flavescens nanoparticles.

    PubMed

    Han, Chun-Chao; Wang, Yingzi

    2012-08-01

    The roots of Sophora flavescens was reported to possess many pharmacological activities including anti-inflammatory, antiashmatic, antithelmintic, free radical scavenging and antimicrobial activities. However, the low saturated solubility and dissolution velocity of S. flavescens lead to poor bioavailability. The S. flavescens nanoparticles (SFNP) were prepared by a combination of ultrasound and hydrolysis developed by the authors. The drug dissolution profiles of SFNP in both pH 6.8 and pH 2 media showed complete dissolution within 30 min. The seropharmacology study showed that oral S. flavescens absorption in the SFNP was significantly increased. Anti-inflammation assay revealed the therapeutic efficiency of S. flavescens significantly enhanced upon nanoparticle formation.

  2. Impact of Mucositis on Absorption and Systemic Drug Exposure of Isavuconazole.

    PubMed

    Kovanda, Laura L; Marty, Francisco M; Maertens, Johan; Desai, Amit V; Lademacher, Christopher; Engelhardt, Marc; Lu, Qiaoyang; Hope, William W

    2017-06-01

    Isavuconazonium sulfate is the water-soluble prodrug of isavuconazole. Population analyses have demonstrated relatively predictable pharmacokinetic (PK) behavior in diverse patient populations. We evaluated the impact of mucositis on the oral isavuconazole exposure using population PK modeling. This study included patients treated in two phase 3 trials of isavuconazole, SECURE for treatment of invasive aspergillosis (IA) and other filamentous fungi and VITAL for patients with mucormycosis, invasive fungal disease (IFD) caused by other rare fungi, or IA and renal impairment. Mucositis was reported by site investigators and its impact on oral bioavailability was assessed. Use of the oral formulation was at the discretion of the investigator. Patients with plasma samples collected during the use of isavuconazonium sulfate were included in the construction of population PK model. Of 250 patients included, 56 patients had mucositis at therapy onset or as an adverse event during oral isavuconazole therapy. Levels of oral bioavailability were comparable, at 98.3% and 99.8%, respectively. The average drug exposures (average area under the curve [AUC ave ]) calculated from either the mean or median parameter estimates were not different between patients with and without mucositis. Mortality and overall clinical responses were similar between patients receiving oral therapy with and without mucositis. We found that isavuconazole exposures and clinical outcomes in this subset of patients with mucositis who were able to take oral isavuconazonium sulfate were comparable to those in patients without mucositis, despite the difference in oral bioavailability. Therefore, mucositis may not preclude use of the oral formulation of isavuconazonium sulfate. Copyright © 2017 Kovanda et al.

  3. Impact of Mucositis on Absorption and Systemic Drug Exposure of Isavuconazole

    PubMed Central

    Marty, Francisco M.; Maertens, Johan; Desai, Amit V.; Lademacher, Christopher; Engelhardt, Marc; Lu, Qiaoyang

    2017-01-01

    ABSTRACT Isavuconazonium sulfate is the water-soluble prodrug of isavuconazole. Population analyses have demonstrated relatively predictable pharmacokinetic (PK) behavior in diverse patient populations. We evaluated the impact of mucositis on the oral isavuconazole exposure using population PK modeling. This study included patients treated in two phase 3 trials of isavuconazole, SECURE for treatment of invasive aspergillosis (IA) and other filamentous fungi and VITAL for patients with mucormycosis, invasive fungal disease (IFD) caused by other rare fungi, or IA and renal impairment. Mucositis was reported by site investigators and its impact on oral bioavailability was assessed. Use of the oral formulation was at the discretion of the investigator. Patients with plasma samples collected during the use of isavuconazonium sulfate were included in the construction of population PK model. Of 250 patients included, 56 patients had mucositis at therapy onset or as an adverse event during oral isavuconazole therapy. Levels of oral bioavailability were comparable, at 98.3% and 99.8%, respectively. The average drug exposures (average area under the curve [AUCave]) calculated from either the mean or median parameter estimates were not different between patients with and without mucositis. Mortality and overall clinical responses were similar between patients receiving oral therapy with and without mucositis. We found that isavuconazole exposures and clinical outcomes in this subset of patients with mucositis who were able to take oral isavuconazonium sulfate were comparable to those in patients without mucositis, despite the difference in oral bioavailability. Therefore, mucositis may not preclude use of the oral formulation of isavuconazonium sulfate. PMID:28289034

  4. Pharmaceutical development and optimization of azithromycin suppository for paediatric use.

    PubMed

    Kauss, Tina; Gaubert, Alexandra; Boyer, Chantal; Ba, Boubakar B; Manse, Muriel; Massip, Stephane; Léger, Jean-Michel; Fawaz, Fawaz; Lembege, Martine; Boiron, Jean-Michel; Lafarge, Xavier; Lindegardh, Niklas; White, Nicholas J; Olliaro, Piero; Millet, Pascal; Gaudin, Karen

    2013-01-30

    Pharmaceutical development and manufacturing process optimization work was undertaken in order to propose a potential paediatric rectal formulation of azithromycin as an alternative to existing oral or injectable formulations. The target product profile was to be easy-to-use, cheap and stable in tropical conditions, with bioavailability comparable to oral forms, rapidly achieving and maintaining bactericidal concentrations. PEG solid solution suppositories were characterized in vitro using visual, HPLC, DSC, FTIR and XRD analyses. In vitro drug release and in vivo bioavailability were assessed; a study in rabbits compared the bioavailability of the optimized solid solution suppository to rectal solution and intra-venous product (as reference) and to the previous, non-optimized formulation (suspended azithromycin suppository). The bioavailability of azithromycin administered as solid solution suppositories relative to intra-venous was 43%, which compared well to the target of 38% (oral product in humans). The results of 3-month preliminary stability and feasibility studies were consistent with industrial production scale-up. This product has potential both as a classical antibiotic and as a product for use in severely ill children in rural areas. Industrial partners for further development are being sought. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Pharmaceutical development and optimization of azithromycin suppository for paediatric use

    PubMed Central

    Kauss, Tina; Gaubert, Alexandra; Boyer, Chantal; Ba, Boubakar B.; Manse, Muriel; Massip, Stephane; Léger, Jean-Michel; Fawaz, Fawaz; Lembege, Martine; Boiron, Jean-Michel; Lafarge, Xavier; Lindegardh, Niklas; White, Nicholas J.; Olliaro, Piero; Millet, Pascal; Gaudin, Karen

    2013-01-01

    Pharmaceutical development and manufacturing process optimization work was undertaken in order to propose a potential paediatric rectal formulation of azithromycin as an alternative to existing oral or injectable formulations. The target product profile was to be easy-to-use, cheap and stable in tropical conditions, with bioavailability comparable to oral forms, rapidly achieving and maintaining bactericidal concentrations. PEG solid solution suppositories were characterized in vitro using visual, HPLC, DSC, FTIR and XRD analyses. In vitro drug release and in vivo bioavailability were assessed; a study in rabbits compared the bioavailability of the optimized solid solution suppository to rectal solution and intra-venous product (as reference) and to the previous, non-optimized formulation (suspended azithromycin suppository). The bioavailability of azithromycin administered as solid solution suppositories relative to intra-venous was 43%, which compared well to the target of 38% (oral product in humans). The results of 3-month preliminary stability and feasibility studies were consistent with industrial production scale-up. This product has potential both as a classical antibiotic and as a product for use in severely ill children in rural areas. Industrial partners for further development are being sought. PMID:23220079

  6. Enhanced oral bioavailability and controlled release of dutasteride by a novel dry elixir.

    PubMed

    Jang, Dong-Jin; Kim, Sung Tae; Oh, Euichaul; Ban, Eunmi

    2014-01-01

    To develop a solid dosage form of dutasteride for improving its oral bioavailability, a novel dry elixir (DE) system was fabricated. DEs incorporating dextrin and/or xanthan gum were prepared using spray-drying and evaluated by morphology, ethanol content, crystallinity, dissolution and oral bioavailability. DEs were spherical with a smooth surface and had an average particle size of 20-25 μm. The ethanol content could be easily varied by controlling the spray-drying temperature. The dissolution profiles of dutasteride from each DE proved to be much faster than that of dutasteride powder due to the amorphous state and a high amount of incorporated ethanol. In particular, the pharmacokinetic profiles of dutasteride were significantly altered depending on the proportions of dextrin and xanthan gum. Blood concentrations of dutasteride from DE formulations were similar to those of market products and much greater than those of native dutasteride. Interestingly, the dissolution and pharmacokinetic profiles were easily controlled by changing the ratio of dextrin to xanthan gum. The data suggests that a DE using dextrin and/or xanthan gum could provide an applicable solid dosage form to improve the dissolution and bio-availability of dutasteride as well as to modulate its pharmacokinetics.

  7. Development of optimized self-nano-emulsifying drug delivery systems (SNEDDS) of carvedilol with enhanced bioavailability potential.

    PubMed

    Singh, Bhupinder; Khurana, Lalit; Bandyopadhyay, Shantanu; Kapil, Rishi; Katare, O O P

    2011-11-01

    Carvedilol, a widely prescribed cardiovascular drug for hypertension and congestive heart failure, exhibits low and variable bioavailability owing to poor absorption and extensive hepatic first-pass metabolism. The current research work, therefore, entails formulation development of liquid self-nano-emulsifying drug delivery systems (SNEDDS) to enhance the bioavailability of carvedilol by facilitating its transport via lymphatic circulation. The formulation constituents, i.e. lipids, surfactants, and co-surfactants, were selected on the basis of solubility studies. Pseudo-ternary phase diagrams were constructed to embark upon the selection of blend of lipidic (i.e. Capmul PG8) and hydrophilic components (i.e. Cremophor EL as surfactant and Transcutol HP as co-surfactant) for efficient and robust formulation of SNEDDS. The SNEDDS, systematically optimized employing a central composite design (CCD), were evaluated for various response variables viz drug release parameters, emulsification time, emulsion droplet size, and mean dissolution time. In vitro drug release studies depicted that the release from SNEDDS systems followed a non-Fickian kinetic behavior. The TEM imaging of the optimized formulation affirmed the uniform shape and nano size of the system. Accelerated studies of the optimized formulation indicated high stability of the formulation for 6 months. The in situ perfusion studies carried out in wistar rats construed several fold augmentation in the permeability and absorption potential of the optimized formulation vis-à-vis marketed formulation. Thus, the present studies ratified the potential of SNEDDS in augmenting the oral bioavailability of BCS class II drugs.

  8. Improvement of effect of water-in-oil microemulsion as an oral delivery system for fexofenadine: in vitro and in vivo studies

    PubMed Central

    Gundogdu, E; Alvarez, I Gonzalez; Karasulu, E

    2011-01-01

    Fexofenadine (FEX) has high solubility and low permeability (BCS, Class III). In this work, novel FEX loaded water in oil microemulsion (w/o) was designed to improve bioavailability and compared with Fexofen® syrup in in vitro and in vivo studies. In addition, pharmacokinetic parameters in permeability studies were estimated by using WinNonLin software program. w/o microemulsion system was optimized using a pseudoternary phase diagram, composed of span 80/lutrol F 68 (9.5:0.5 w/w), oleic acide, isopropyl alcohol and water as surfactant mixture; oil and cosurfactant was developed for oral drug delivery. w/o microemulsion systems were characterized by phase behavior, particle size, viscosity and solubilization capacity. In vitro studies were studied using Caco-2 cell monolayer. Pharmacokinetic parameters of w/o microemulsion were investigated in rabbits and compared to Fexofen® syrup. Fexofen® syrup and microemulsion were administered by oral gavage at 6 mg/kg of the same concentration. The experimental results indicated that microemulsion (HLB = 5.53) formed nanometer sized droplets (33.29 ± 1.76) and had good physical stability. This microemulsion increased the oral bioavailability of FEX which was highly water-soluble but fairly impermeable. The relative bioavailability of FEX microemulsion was about 376.76% compared with commercial syrup in rabbits. In vitro experiments were further employed for the enhanced effect of the microemulsion for FEX. These results suggest that novel w/o microemulsion plays an important role in enhancing oral bioavailability of low permeability drugs. PMID:21904453

  9. Development of coated nifedipine dry elixir as a long acting oral delivery with bioavailability enhancement.

    PubMed

    Choi, Jae-Yoon; Jin, Su-Eon; Park, Youmie; Lee, Hyo-Jong; Park, Yohan; Maeng, Han-Joo; Kim, Chong-Kook

    2011-10-01

    To develop the long acting nifedipine oral delivery with bioavailability enhancement, a nifedipine dry elixir (NDE) containing nifedipine ethanol solution in dextrin shell was prepared using a spray-dryer, and then coated nifedipine dry elixir (CNDE) was prepared by coating NDE with Eudragit acrylic resin. The physical characteristics and bioavailability of NDE and CNDE were evaluated, and then compared to those of nifedipine powder. NDE and CNDE, which were spherical in shape, had about 6.64 and 8.68-8.75 μm of geometric mean diameters, respectively. The amount of nifedipine dissolved from NDE for 60 min increased about 7- and 40-fold compared to nifedipine powder in pH 1.2 simulated gastric fluid and pH 6.8 simulated intestinal fluid, respectively. Nifedipine released from CNDE was retarded in both dissolution media compared with that from NDE. After oral administration of NDE, the C(max) and AUC(0→8h) of nifedipine in rat increased about 13- and 7-fold, respectively, and the Tmax of nifedipine was reduced significantly compared with those after oral administration of nifedipine powder alone. The AUC(0→8h) and T(max) of nifedipine in CNDE increased markedly and the C(max) of nifedipine in CNDE was significantly reduced compared to those in NDE. It is concluded that CNDE, which could lower the initial burst-out plasma concentration and maintain the plasma level of nifedipine over a longer period with bioavailability enhancement, might be one of potential alternatives to the marketed long acting oral delivery system for nifedipine.

  10. Pharmacokinetics of S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide in rats, a non-steroidal selective androgen receptor modulator

    PubMed Central

    KEARBEY, J. D.; WU, D.; GAO, W.; MILLER, D. D.; DALTON, J. T.

    2007-01-01

    1. S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide (also known as S-4) is a non-steroidal selective androgen receptor modulator demonstrating tissue-selective androgenic and anabolic effects. The purpose of the present study was to examine the systemic pharmacokinetics, elimination and oral bioavailability of S-4 in rats. 2. Thirty-five male Sprague–Dawley rats weighing approximately 250 g were randomly assigned to one of seven treatment groups. Intravenous doses of 0.5, 1, 10, and 30 mg kg−1 were given via a jugular catheter. Oral doses of 1, 10 and 30 mg kg−1 were administered via gavage. Plasma concentrations were determined using a validated high-performance liquid chromatography or by a high-performance liquid chromatography/mass spectrometry method. 3. Clearances ranged between 1.0 and 2.1 ml min−1 kg−1 and varied with dose. The volume of distribution was approximately 0.448 l kg−1 in all treatment groups. Oral bioavailability was also dose dependent, with the lower doses showing complete oral bioavailability. The half-life of S-4 over the dose range tested was between 2.6 and 5.3 h. 4. It was demonstrated that S-4 is rapidly absorbed, slowly cleared, and has a moderate volume of distribution in rats. The pharmacokinetics and oral bioavailability of S-4 indicate that it is an excellent candidate for clinical development. PMID:15204699

  11. Development of flurbiprofen-loaded nanoparticles with a narrow size distribution using sucrose.

    PubMed

    Oh, Dong Hoon; Yan, Yi-Dong; Kim, Dong Wuk; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2014-02-01

    A novel flurbiprofen-loaded nanoemulsion which gave uniform emulsion droplets with a narrow size distribution was previously reported to be prepared using membrane emulsification method. The purpose of this study is to develop a novel flurbiprofen-loaded nanoparticle with a narrow size distribution and improved bioavailability. The nanoparticle was prepared by solidifying nanoemulsion using sucrose as a carrier via spray drying method. Its physicochemical properties were investigated using SEM, DSC and PXRD. Furthermore, dissolution and bioavailability in rats were evaluated compared to a flurbiprofen-loaded commercial product. The flurbiprofen-loaded nanoparticles with flurbiprofen/sucrose/surfactant mixture (1/20/2, weight ratio) gave good solidification and no stickiness. They associated with about 70,000-fold improved drug solubility and had a mean size of about 300 nm with a narrow size distribution. Flurbiprofen was present in a changed amorphous state in these nanoparticles. Moreover, the nanoparticles gave significantly shorter Tmax, and higher AUC and Cmax of the drug compared to the commercial product (p < 0.05). In particular, they showed about nine-fold higher AUC of the drug than did the commercial product. These flurbiprofen-loaded nanoparticles prepared with sucrose by the membrane emulsification and spray drying method would be a potential candidate for orally delivering poorly water-soluble flurbiprofen with enhanced bioavailability.

  12. Nanocrystal for ocular drug delivery: hope or hype.

    PubMed

    Sharma, Om Prakash; Patel, Viral; Mehta, Tejal

    2016-08-01

    The complexity of the structure and nature of the eye emanates a challenge for drug delivery to formulation scientists. Lower bioavailability concern of conventional ocular formulation provokes the interest of researchers in the development of novel drug delivery system. Nanotechnology-based formulations have been extensively investigated and found propitious in improving bioavailability of drugs by overcoming ocular barriers prevailing in the eye. The advent of nanocrystals helped in combating the problem of poorly soluble drugs specifically for oral and parenteral drug delivery and led to development of various marketed products. Nanocrystal-based formulations explored for ocular drug delivery have been found successful in achieving increase in retention time, bioavailability, and permeability of drugs across the corneal and conjunctival epithelium. In this review, we have highlighted the ocular physiology and barriers in drug delivery. A comparative analysis of various nanotechnology-based ocular formulations is done with their pros and cons. Consideration is also given to various methods of preparation of nanocrystals with their patented technology. This article highlights the success achieved in conquering various challenges of ocular delivery by the use of nanocrystals while emphasizing on its advantages and application for ocular formulation. The perspectives of nanocrystals as an emerging flipside to explore the frontiers of ocular drug delivery are discussed.

  13. Sugar-based novel niosomal nanocarrier system for enhanced oral bioavailability of levofloxacin.

    PubMed

    Imran, Muhammad; Shah, Muhammad Raza; Ullah, Farhat; Ullah, Shafi; Elhissi, Abdelbary M A; Nawaz, Waqas; Ahmad, Farid; Sadiq, Abdul; Ali, Imdad

    2016-11-01

    Vesicular systems have attracted great attention in drug delivery because of their amphiphilicity, biodegradability, non-toxicity and potential for increasing drug bioavailability. A novel sugar-based double-tailed surfactant containing renewable block was synthesized for preparing niosomal vesicles that could be exploited for Levofloxacin encapsulation, aiming to increase its oral bioavailability. The surfactant was characterized by 1 H NMR, mass spectroscopy and Fourier transform infrared spectroscopy (FT-IR). Its biocompatibility was studied against cell cultures and human blood hemolysis. In vivo acute toxicity was evaluated in mice. The vesicle morphology, size, drug-excipients interaction and entrapment efficiency (EE) were examined using atomic force microscope (AFM), dynamic light scattering (DLS), FT-IR and HPLC. Oral bioavailability studies of Levofloxacin in surfactant-based niosomal formulation were carried out using rabbits and plasma samples were analyzed using HPLC. Vesicles were spherical in shape and the size was 190.31 ± 4.51 nm with a polydispersity index (PDI) of 0.29 ± 0.03. The drug EE in niosomes was 68.28 ± 3.45%. When applied on cell lines, high cell viability was observed even after prolonged exposure at high concentrations. It caused 5.77 ± 1.34% hemolysis at 1000 μg/mL and was found to be safe up to 2000 mg/kg. Elevated Levofloxacin plasma concentration was achieved when delivered with novel vesicles. The surfactant was demonstrated to be safe and effective as carrier of Levofloxacin. The study suggests that this sugar-based double-tailed nonionic surfactant could be promising nano-vesicular system for delivery and enhancing oral bioavailability of the hydrophobic Levofloxacin.

  14. Effects of crystalline state and self-nanoemulsifying drug delivery system (SNEDDS) on oral bioavailability of the novel anti-HIV compound 6-benzyl-1-benzyloxymethyl-5-iodouracil in rats.

    PubMed

    Lu, Ying-Yuan; Dai, Wen-Bing; Wang, Xin; Wang, Xiao-Wei; Liu, Jun-Yi; Li, Pu; Lou, Ya-Qing; Lu, Chuang; Zhang, Qiang; Zhang, Guo-Liang

    2018-02-01

    The objective of this study was to investigate the effect of crystalline state and a formulation of self-nanoemulsifying drug delivery system (SNEDDS) on oral bioavailability of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1), a novel non-nucleoside reverse transcriptase inhibitor, in rats. The crystalline states of W-1 were characterized by scanning electron microscope (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). The SNEDDS was formulated by medium-chain lipids, characterized by droplet particle size. The plasma concentrations of W-1 were measured by high performance liquid chromatography (HPLC). The results indicated that W-1 compound were presented as crystalline forms, A and B, the degree of crystallization in form B was higher than that in form A. The SNEDDS of W-1 displayed a significant increase in the dissolution rate than W-1 powder. Furthermore, after oral administration of W-1 (100 mg/kg), the pharmacokinetic parameters of form A, form B, and W-1 SNEDDS were as follows: AUC 0-t 526.4 ± 123.5, 305.1 ± 58.5 and 2297 ± 451 ng h/mL (p < .05, when W-1 SNEDDS were compared with either form A or form B), respectively. With SNEDDS formulation, the relative bioavailabilities were enhanced by 4.36-fold and 7.53-fold over the form A and form B of W-1, respectively. In conclusion, the present results suggested that the crystalline states of W-1 might lead to the lower oral bioavailability, and SNEDDS formulation is a promising strategy of improving bioavailability, in spite of that crystalline states usually carry small lot-to-lot variability.

  15. Effects of solid dispersion and self-emulsifying formulations on the solubility, dissolution, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in total flavones of Hippophae rhamnoides L.

    PubMed

    Zhao, Guoying; Duan, Jingze; Xie, Yan; Lin, Guobei; Luo, Huilin; Li, Guowen; Yuan, Xiurong

    2013-07-01

    The aim of this study was to investigate the effects of solid dispersions (SD) and self-emulsifying (SE) formulations on the solubility and absorption properties of active components in total flavones of Hippophae rhamnoides L. (TFH). The solubility, dissolution rate, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in TFH SD/SE formulations and TFH were compared. The results showed that the solubility and dissolution rate of isorhamnetin, quercetin and kaempferol in SD/SE formulations were significantly enhanced compared to those in TFH, however, their intestinal permeability was comparable. The bioavailability of isorhamnetin, quercetin and kaempferol in rats remarkably increased after oral administration of TFH SD formulations compared to TFH, but there was no significant increase after oral administration of TFH SE formulations. The results of this study indicated the SD formulations on the improvement of pharmacokinetic properties of isorhamnetin, quercetin and kaempferol in TFH were much better than those of SE formulations. The improvement of pharmacokinetic properties of isorhamnetin, quercetin and kaempferol in TFH by SD formulations was probably ascribed to the enhancement of the solubility and dissolution of the three components, but was not relevant to the intestinal permeability. Therefore, as for herb extracts containing multiple components, especially for their major components with poor water solubility, solid dispersion formulations might have the better potential to enhance their bioavailability.

  16. Critical Evaluation of Human Oral Bioavailability for Pharmaceutical Drugs by Using Various Cheminformatics Approaches

    PubMed Central

    Kim, Marlene; Sedykh, Alexander; Chakravarti, Suman K.; Saiakhov, Roustem D.; Zhu, Hao

    2014-01-01

    Purpose Oral bioavailability (%F) is a key factor that determines the fate of a new drug in clinical trials. Traditionally, %F is measured using costly and time -consuming experimental tests. Developing computational models to evaluate the %F of new drugs before they are synthesized would be beneficial in the drug discovery process. Methods We employed Combinatorial Quantitative Structure-Activity Relationship approach to develop several computational %F models. We compiled a %F dataset of 995 drugs from public sources. After generating chemical descriptors for each compound, we used random forest, support vector machine, k nearest neighbor, and CASE Ultra to develop the relevant QSAR models. The resulting models were validated using five-fold cross-validation. Results The external predictivity of %F values was poor (R2=0.28, n=995, MAE=24), but was improved (R2=0.40, n=362, MAE=21) by filtering unreliable predictions that had a high probability of interacting with MDR1 and MRP2 transporters. Furthermore, classifying the compounds according to the %F values (%F<50% as “low”, %F≥50% as ‘high”) and developing category QSAR models resulted in an external accuracy of 76%. Conclusions In this study, we developed predictive %F QSAR models that could be used to evaluate new drug compounds, and integrating drug-transporter interactions data greatly benefits the resulting models. PMID:24306326

  17. Enhancing the oral bioavailability of biochanin A by encapsulation in mixed micelles containing Pluronic F127 and Plasdone S630

    PubMed Central

    Wu, Xiaoyan; Ge, Weihong; Shao, Tengfei; Wu, Weijun; Hou, Jian; Cui, Li; Wang, Jing; Zhang, Zhenghai

    2017-01-01

    Biochanin A (BCA), a natural dietary isoflavone, has been reported to show anticancer activities. However, its low biological availability and poor aqueous solubility limit its usefulness as a chemotherapeutic agent. We developed BCA-loaded micelles with Pluronic F127 and Plasdone S630 (BCA-FS). The optimized, spherical-shaped BCA-FS was obtained at a ratio of 1:1 (F127:S630). The particle size was 25.17±1.2 nm, and the zeta potential was −10.9±0.24 mV. BCA solubility in water increased to 5.0 mg/mL after encapsulation, and the drug-loading efficiency was 5.88%±0.76%. In vitro release experiments showed a delayed release of BCA from the mixed micelles. Furthermore, the BCA absorption permeability across a Caco-2 cell monolayer from the apical side to the basolateral side increased by 54% in BCA-FS. A pharmacokinetics evaluation showed a 2.16-fold increase in the relative oral bioavailability of BCA-FS compared with raw BCA, indicating that the mixed micelles may promote absorption in the gastrointestinal tract. A gastrointestinal safety assay was used to assess the reliability and safety of BCA-FS. On the basis of these findings, we conclude that this simple nanomicelle system could be leveraged to deliver BCA and other hydrophobic drugs. PMID:28260893

  18. FV-100: the most potent and selective anti-varicella zoster virus agent reported to date.

    PubMed

    Migliore, Marco

    2010-01-05

    Bicyclic aryl furano pyrimidines represent the most potent anti-varicella zoster virus (VZV) agents reported to date. Lead compounds have 50% effective concentration (EC(50)) values in vitro that are in the subnanomolar range and selectivity index values that exceed 1 million. They have an absolute requirement for VZV thymidine kinase and most likely act as their phosphate forms. Some structural modification (such as aryl substitution in the base moiety) is tolerated, whereas little sugar modification is acceptable. The Cf1743 compound has proved to be significantly more potent than all reference anti-VZV compounds, as measured either by inhibition of infectious virus particles and/or viral DNA production; however, the high lipophilicity and very low water solubility of this compound gives poor oral bioavailability (<14%). Use of the modified cyclodextrin captisol and the synthesis of the 5'-monophosphate prodrug of Cf1743 has significantly improved water solubility, but does not give any enhancement in oral bioavailability. By contrast, the synthesis of the ether series does not give any further improvement in terms of solubility. The most promising prodrug to emerge to date is the hydrochloric salt of the 5'-valyl-ester, designated as FV-100. Its uptake into cells has been studied using fluorescent microscopy and biological assays, which have indicated that the compound is efficiently taken up by the cells after a short period of incubation.

  19. Self-emulsifying drug delivery systems (SEDDS): formulation development, characterization, and applications.

    PubMed

    Singh, Bhupinder; Bandopadhyay, Shantanu; Kapil, Rishi; Singh, Ramandeep; Katare, O

    2009-01-01

    Self-emulsifying drug delivery systems (SEDDS) possess unparalleled potential in improving oral bioavailability of poorly water-soluble drugs. Following their oral administration, these systems rapidly disperse in gastrointestinal fluids, yielding micro- or nanoemulsions containing the solubilized drug. Owing to its miniscule globule size, the micro/nanoemulsifed drug can easily be absorbed through lymphatic pathways, bypassing the hepatic first-pass effect. We present an exhaustive and updated account of numerous literature reports and patents on diverse types of self-emulsifying drug formulations, with emphasis on their formulation, characterization, and systematic optimization strategies. Recent advancements in various methodologies employed to characterize their globule size and shape, ability to encapsulate the drug, gastrointestinal and thermodynamic stability, rheological characteristics, and so forth, are discussed comprehensively to guide the formula-tor in preparing an effective and robust SEDDS formulation. Also, this exhaustive review offers an explicit discussion on vital applications of the SEDDS in bioavailability enhancement of various drugs, outlining an overview on myriad in vitro, in situ, and ex vivo techniques to assess the absorption and/ or permeation potential of drugs incorporated in the SEDDS in animal and cell line models, and the subsequent absorption pathways followed by them. In short, the current article furnishes an updated compilation of wide-ranging information on all the requisite vistas of the self-emulsifying formulations, thus paving the way for accelerated progress into the SEDDS application in pharmaceutical research.

  20. Enhancing the oral bioavailability of biochanin A by encapsulation in mixed micelles containing Pluronic F127 and Plasdone S630.

    PubMed

    Wu, Xiaoyan; Ge, Weihong; Shao, Tengfei; Wu, Weijun; Hou, Jian; Cui, Li; Wang, Jing; Zhang, Zhenghai

    2017-01-01

    Biochanin A (BCA), a natural dietary isoflavone, has been reported to show anticancer activities. However, its low biological availability and poor aqueous solubility limit its usefulness as a chemotherapeutic agent. We developed BCA-loaded micelles with Pluronic F127 and Plasdone S630 (BCA-FS). The optimized, spherical-shaped BCA-FS was obtained at a ratio of 1:1 (F127:S630). The particle size was 25.17±1.2 nm, and the zeta potential was -10.9±0.24 mV. BCA solubility in water increased to 5.0 mg/mL after encapsulation, and the drug-loading efficiency was 5.88%±0.76%. In vitro release experiments showed a delayed release of BCA from the mixed micelles. Furthermore, the BCA absorption permeability across a Caco-2 cell monolayer from the apical side to the basolateral side increased by 54% in BCA-FS. A pharmacokinetics evaluation showed a 2.16-fold increase in the relative oral bioavailability of BCA-FS compared with raw BCA, indicating that the mixed micelles may promote absorption in the gastrointestinal tract. A gastrointestinal safety assay was used to assess the reliability and safety of BCA-FS. On the basis of these findings, we conclude that this simple nanomicelle system could be leveraged to deliver BCA and other hydrophobic drugs.

  1. Discovery of an Acrylic Acid Based Tetrahydroisoquinoline as an Orally Bioavailable Selective Estrogen Receptor Degrader for ERα+ Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burks, Heather E.; Abrams, Tinya; Kirby, Christina A.

    Tetrahydroisoquinoline 40 has been identified as a potent ERα antagonist and selective estrogen receptor degrader (SERD), exhibiting good oral bioavailability, antitumor efficacy, and SERD activity in vivo. We outline the discovery and chemical optimization of the THIQ scaffold leading to THIQ 40 and showcase the racemization of the scaffold, pharmacokinetic studies in preclinical species, and the in vivo efficacy of THIQ 40 in a MCF-7 human breast cancer xenograft model.

  2. Development of Self Emulsifying Formulations of Poorly Soluble Naproxen for Enhanced Drug Delivery.

    PubMed

    Penjuri, Subhash C B; Saritha, Damineni; Ravouru, Nagaraju; Poreddy, Srikanth R

    2016-01-01

    The objective of this investigation was to develop a self emulsifying drug delivery system (SEDDS) of naproxen, a poorly water soluble drug, which could improve its solubility and oral bioavailability. The recent patents on SEDDS of abiraterone acetate (WO2014/009434 A1) and tamoxifen (WO2013/0080083) helped in selecting the naproxen and excipients. Phase diagrams were constructed and the formulations were taken from the micro emulsion region. Formulations were subjected to thermodynamic stability, dispersibility and precipitation tests for optimization. Physico chemical characterization was carried out by FTIR and DSC studies. The selected SEDDS consisted of IPM+labrafac lipophile WL 1349, tween 80, PEG 400 and naproxen. The optimized formulation has globule size- 187.6 nm, zeta potential- -9.81 mv, viscosity- 1.772 cps and infinite dilution ability. In vitro drug release was 98.21% and was found to be significantly different from the marketed product and plain drug. After oral administration in rats the SEDDS of naproxen showed anti inflammatory activity (69.82%) which was much improved as compared to the marketed formulation. The Cmax, AUC0t of naproxen was boosted with SEDDS to 133.63 g/ml and 698.29 hr. g/ml respectively. The optimized formulation was found to be stable for 6 months during stability studies conducted according to the ICH Q1A (R2) guidelines. Thus this developed self emulsifying drug delivery system may be a useful tool to enhance the solubility of oral poorly water soluble drug naproxen. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Design and in vivo evaluation of a patch system based on thiolated polymers.

    PubMed

    Hoyer, Herbert; Greindl, Melanie; Bernkop-Schnürch, Andreas

    2009-02-01

    A new oral patch delivery system has been designed to increase the overall oral bioavailability of drugs within the gastrointestinal tract. The patch system consists of four layered films: a mucoadhesive matrix layer, a water insoluble backing layer, a middle layer and an enteric surface layer. The separation layer between the two matrix layers contained lactose, starch and confectioners' sugar. The matrix layer, exhibiting a diameter of 2.5 mm and a weight of 5 mg, comprised Polycarbophil-cysteine conjugate (49%), fluoresceine isothiocyanate-dextran (26%), glutathione (5%), and mannitol (20%). A standard tablet formulation consisting of the same matrix served as control. Entire fluoresceine isothiocyanate-dextran (FD(4)) was released from the delivery system within 2 h. For in vivo studies patch systems were administered orally to male Sprague-Dawley rats. Maximum FD(4) concentration in blood of the patch system was 46.1 +/- 8.9 ng/mL and was reached 3 h after administration. In contrast c(max) of control tablets displayed 50.5 +/- 14.9 ng/mL after 2 h and the absorption of FD(4) after administration in oral solution was negligible. The absolute bioavailability of orally administered patch systems and control tablets was 0.54% and 0.32% respectively. Results of this study indicate that a prolonged and higher oral bioavailability of FD(4) is obtained with patches than with tablets.

  4. Comparative preclinical pharmacokinetics study of 3,3′-diindolylmethane formulations: is personalized treatment and targeted chemoprevention in the horizon?

    PubMed Central

    2013-01-01

    Background 3,3′-Diindolylmethane (DIM) is known as an agent of natural origin that provides protection against different cancers due to the broad spectrum of its biological activities in vivo. However, this substance has a very poor biodistribution and absorption in animal tissues. This preclinical trial was conducted to evaluate the pharmacokinetics and bioavailability of various DIM formulations in animal model. Materials and methods The pharmacokinetic parameters of one crystalline DIM formulation and one liquid DIM formulation (oil solution) compared to non-formulated crystalline DIM (control) were tested in 200 rats. The formulations were orally administered to animals by gavage at doses of 200 mg/kg per DIM (crystalline DIM formulation and non-formulated crystalline DIM) and 0.1 mg/kg per DIM (DIM in oil solution). DIM plasma elimination was measured using HPLC method; after that, the area under the curve (AUC), relative bioavailability, and absolute bioavailability were estimated for two formulations in relation to non-formulated crystalline DIM. Results and conclusion The highest bioavailability was achieved by administering liquid DIM (oil solution), containing cod liver oil and polysorbate. The level of DIM in rat blood plasma was about fivefold higher, though the 2,000-fold lower dose was administered compared to crystalline DIM forms. The novel pharmacological DIM substance with high bioavailability may be considered as a promising targeted antitumor chemopreventive agent. It could be used to prevent breast and ovarian cancer development in patients with heterozygous inherited and sporadic BRCA1 gene mutations. Further preclinical and clinical trials are needed to prove this concept. PMID:24325835

  5. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect.

    PubMed

    Yin, Juntao; Hou, Yantao; Yin, Yuyun; Song, Xiaoyong

    2017-01-01

    Diabetes mellitus is an incurable metabolic disorder that seriously threatens human health. At present, there is no effective medication available to defeat it. This work intended to develop selenium-coated nanostructured lipid carriers (SeNLCs) for enhancing the oral bioavailability and the curative effect of berberine, an antidiabetic phytomedicine. Berberine-loaded SeNLCs (BB-SeNLCs) were prepared by hot-melt dispersion/homogenization procedure followed by in situ reduction. BB-SeNLCs were characterized by particle size, morphology, entrapment efficiency (EE) and in vitro release. Pharmacokinetics of berberine solution, berberine-loaded NLCs (BB-NLCs) and BB-SeNLCs were studied in Sprague Dawley rats administered by oral gavage. The prepared BB-SeNLCs were around 160 nm in particle size with an EE of 90%. In addition, BB-SeNLCs exhibited a better sustained release of berberine compared to the plain NLCs. After oral administration, BB-SeNLCs greatly enhanced the oral bioavailability of berberine, which was approximately 6.63 times as much as that of berberine solution. The hypoglycemic effect of BB-SeNLCs was also significantly superior to that of BB-NLCs and berberine solution. It turned out that sustained drug release and good intestinal absorption, plus the synergy of selenium, were basically responsible for enhanced oral bioavailability and hypoglycemic effect. Our findings show that SeNLCs are promising nanocarriers for oral delivery of berberine to strengthen the antidiabetic action.

  6. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect

    PubMed Central

    Yin, Juntao; Hou, Yantao; Yin, Yuyun; Song, Xiaoyong

    2017-01-01

    Diabetes mellitus is an incurable metabolic disorder that seriously threatens human health. At present, there is no effective medication available to defeat it. This work intended to develop selenium-coated nanostructured lipid carriers (SeNLCs) for enhancing the oral bioavailability and the curative effect of berberine, an antidiabetic phytomedicine. Berberine-loaded SeNLCs (BB-SeNLCs) were prepared by hot-melt dispersion/homogenization procedure followed by in situ reduction. BB-SeNLCs were characterized by particle size, morphology, entrapment efficiency (EE) and in vitro release. Pharmacokinetics of berberine solution, berberine-loaded NLCs (BB-NLCs) and BB-SeNLCs were studied in Sprague Dawley rats administered by oral gavage. The prepared BB-SeNLCs were around 160 nm in particle size with an EE of 90%. In addition, BB-SeNLCs exhibited a better sustained release of berberine compared to the plain NLCs. After oral administration, BB-SeNLCs greatly enhanced the oral bioavailability of berberine, which was approximately 6.63 times as much as that of berberine solution. The hypoglycemic effect of BB-SeNLCs was also significantly superior to that of BB-NLCs and berberine solution. It turned out that sustained drug release and good intestinal absorption, plus the synergy of selenium, were basically responsible for enhanced oral bioavailability and hypoglycemic effect. Our findings show that SeNLCs are promising nanocarriers for oral delivery of berberine to strengthen the antidiabetic action. PMID:29263662

  7. Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action.

    PubMed

    Voruganti, Sukesh; Qin, Jiang-Jiang; Sarkar, Sushanta; Nag, Subhasree; Walbi, Ismail A; Wang, Shu; Zhao, Yuqing; Wang, Wei; Zhang, Ruiwen

    2015-08-28

    The Mouse Double Minute 2 (MDM2) oncogene plays a critical role in cancer development and progression through p53-dependent and p53-independent mechanisms. Both natural and synthetic MDM2 inhibitors have been shown anticancer activity against several human cancers. We have recently identified a novel ginsenoside, 25-OCH3-PPD (GS25), one of the most active anticancer ginsenosides discovered thus far, and have demonstrated its MDM2 inhibition and anticancer activity in various human cancer models, including prostate cancer. However, the oral bioavailability of GS25 is limited, which hampers its further development as an oral anticancer agent. The present study was designed to develop a novel nanoparticle formulation for oral delivery of GS25. After GS25 was successfully encapsulated into PEG-PLGA nanoparticles (GS25NP) and its physicochemical properties were characterized, the efficiency of MDM2 targeting, anticancer efficacy, pharmacokinetics, and safety were evaluated in in vitro and in vivo models of human prostate cancer. Our results indicated that, compared with the unencapsulated GS25, GS25NP demonstrated better MDM2 inhibition, improved oral bioavailability and enhanced in vitro and in vivo activities. In conclusion, the validated nano-formulation for GS25 oral delivery improves its molecular targeting, oral bioavailability and anticancer efficacy, providing a basis for further development of GS25 as a novel agent for cancer therapy and prevention.

  8. Pre-systemic metabolism of orally administered drugs and strategies to overcome it.

    PubMed

    Pereira de Sousa, Irene; Bernkop-Schnürch, Andreas

    2014-10-28

    The oral bioavailability of numerous drugs is not only limited by poor solubility and/or poor membrane permeability as addressed by the biopharmaceutical classification system (BCS) but also by a pre-systemic metabolism taking place to a high extent in the intestine. Enzymes responsible for metabolic reactions in the intestine include cytochromes P450 (CYP450), transferases, peptidases and proteases. Furthermore, in the gut nucleases, lipases as well as glycosidases influence the metabolic pathway of drugs and nutrients. A crucial role is also played by the intestinal microflora able to metabolize a wide broad of pharmaceutical compounds. Strategies to provide a protective effect towards an intestinal pre-systemic metabolism are based on the co-administration of enzyme inhibitor being optimally immobilized on unabsorbable and undegradable polymeric excipients in order to keep them concentrated there where an inhibitory effect is needed. Furthermore, certain polymeric excipients such as polyacrylates exhibit per se enzyme inhibitory properties. In addition, by incorporating drugs in cyclodextrines, in self-emulsifying drug delivery systems (SEDDS) or liposomes a protective effect towards an intestinal enzymatic attack can be achieved. Being aware of the important role of this pre-systemic metabolism by integrating it in the BCS as third dimension and keeping strategies to overcome this enzymatic barrier in mind, the therapeutic efficacy of many orally given drugs can certainly be substantially improved. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Bioavailability enhancers of herbal origin: An overview

    PubMed Central

    Kesarwani, Kritika; Gupta, Rajiv

    2013-01-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds. PMID:23620848

  10. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery.

    PubMed

    Teixeira, M C; Carbone, C; Souto, E B

    2017-10-01

    Solid lipid nanoparticle (SLN), nanostructured lipid carriers (NLC) and hybrid nanoparticles, have gained increasing interest as drug delivery systems because of their potential to load and release drugs from the Biopharmaceutical classification system (BCS) of class II (low solubility and high permeability) and of class IV (low solubility and low permeability). Lipid properties (e.g. high solubilizing potential, biocompatibility, biotolerability, biodegradability and distinct route of absorption) contribute for the improvement of the bioavailability of these drugs for a set of administration routes. Their interest continues to grow, as translated by the number of patents being field worldwide. This paper discusses the recent advances on the use of SLN, NLC and lipid-polymer hybrid nanoparticles for the loading of lipophilic, poorly water-soluble and poorly permeable drugs, being developed for oral, topical, parenteral and ocular administration, also discussing the industrial applications of these systems. A review of the patents filled between 2014 and 2017, concerning the original inventions of lipid nanocarriers, is also provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Pharmacokinetics of hederacoside C, an active ingredient in AG NPP709, in rats.

    PubMed

    Kim, Ju Myung; Yoon, Ji Na; Jung, Ji Won; Choi, Hye Duck; Shin, Young June; Han, Chang Kyun; Lee, Hye Suk; Kang, Hee Eun

    2013-11-01

    1. Hederacoside C (HDC) is one of the active ingredients in Hedera helix leaf extract (Ivy Ex.) and AG NPP709, a new botanical drug to treat acute respiratory infection and chronic inflammatory bronchitis. However, information regarding its pharmacokinetic properties remains limited. 2. Here, we report the pharmacokinetics of HDC in rats after intravenous administration of HDC (3, 12.5, and 25 mg/kg) and after oral administration of HDC, Ivy Ex., and AG NPP709 (equivalent to 12.5, 25, and 50 mg/kg HDC). 3. Linear pharmacokinetics of HDC were identified upon its intravenous administration at doses of 3-25 mg/kg. Intravenous administration of HDC results in relatively slow clearance (1.46-2.08 mL/min/kg) and a small volume of distribution at steady state (138-222 mL/kg), while oral administration results in a low absolute oral bioavailability (F) of 0.118-0.250%. The extremely low F of HDC may be due to poor absorption of HDC from the gastrointestinal (GI) tract and/or its decomposition therein. 4. The oral pharmacokinetics of HDC did not differ significantly among pure HDC, Ivy Ex., and AG NPP709.

  12. Excipient-mediated alteration in drug bioavailability in the rat depends on the sex of the animal.

    PubMed

    Mai, Yang; Afonso-Pereira, Francisco; Murdan, Sudaxshina; Basit, Abdul W

    2017-09-30

    The pharmaceutical excipient, polyethylene glycol 400 (PEG 400), unexpectedly alters the bioavailability of the BCS class III drug ranitidine in a sex-dependent manner. As ranitidine is a substrate for the efflux transporter P-glycoprotein (P-gp), we hypothesized that the sex-related influence could be due to interactions between PEG 400 and P-gp. In this study, we tested this hypothesis by: i) measuring the influence of PEG 400 on the oral bioavailability of another P-gp substrate (ampicillin) and of a non-P-gp substrate (metformin); and ii) measuring the effect of PEG 400 on drug bioavailability in the presence of a P-gp inhibitor (cyclosporine A) in male and female rats. We found that PEG 400 significantly increased (p<0.05) the bioavailability of ampicillin (the P-gp substrate) in male rats, but not in female ones. In contrast, PEG 400 had no influence on the bioavailability of the non-P-gp substrate, metformin in male or female rats. Inhibition of P-gp by oral pre-treatment with cyclosporine A increased the bioavailability of the P-gp substrates (ampicillin and ranitidine) in males and females (p<0.05), and to a greater extent in males, but had no influence on the bioavailability of metformin in either male or female rats. These results prove the hypothesis that the sex-specific effect of PEG 400 on the bioavailability of certain drugs is due to the interaction of PEG 400 with the efflux transporter P-gp. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Absolute Bioavailability of Osimertinib in Healthy Adults.

    PubMed

    Vishwanathan, Karthick; So, Karen; Thomas, Karen; Bramley, Alex; English, Stephen; Collier, Jo

    2018-04-23

    Osimertinib is a third-generation, central nervous system-active, epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) selective for EGFR-TKI sensitizing and T790M resistance mutations. This phase 1, open-label study (NCT02491944) investigated absolute bioavailability and pharmacokinetics (PK) of oral and intravenous (IV) osimertinib. Ten healthy subjects (21-61 years) received a single oral 80-mg dose concomitantly with a 100 μg (containing 1 μCi) IV microtracer dose of [ 14 C]osimertinib. Oral and IV PK were determined simultaneously for osimertinib and its active metabolites, AZ5104 and AZ7550. High-performance liquid chromatography and accelerator mass spectrometry were used to characterize IV dose PK. Geometric mean absolute oral bioavailability of osimertinib was 69.8% (90% confidence interval, 66.7, 72.9). Oral osimertinib was slowly absorbed (median time to maximum plasma concentration [t max ] 7.0 hours). Following t max , plasma concentrations fell in an apparent monophasic manner. IV clearance and volume of distribution were 16.8 L/h and 1285 L, respectively. Arithmetic mean elimination half-life estimates were 59.7, 52.6, and 72.6 hours for osimertinib, AZ5104, and AZ7550, respectively (oral dosing), and 54.9, 68.4, and 99.7 hours for [ 14 C]osimertinib, [ 14 C]AZ5104, and [ 14 C]AZ7550, respectively (IV dosing). Oral osimertinib was well absorbed. Simultaneous IV and oral PK analysis proved useful for complete understanding of osimertinib PK and showed that the first-pass effect was minimal for osimertinib. © 2018, The American College of Clinical Pharmacology.

  14. Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability.

    PubMed

    Huang, Yanting; Zhang, Bowen; Gao, Yuan; Zhang, Jianjun; Shi, Limin

    2014-08-01

    The purpose of this study was to investigate the effect of preparation methods on cocrystallization between baicalein (BE) and nicotinamide (NCT), their intermolecular interaction, and to demonstrate that BE-NCT cocrystal can achieve the simultaneous enhancement in solubility, dissolution, and oral bioavailability of BE. The cocrystals from three preparation methods have the similar differential scanning calorimetry thermograms and X-ray powder diffraction patterns. Compared with crystalline BE, BE-NCT cocrystal has significantly improved the solubility and dissolution of BE. In addition, the cocrystal exhibits a 2.49-fold higher peak plasma concentration (Cmax) and 2.80-fold higher area under the curve (AUC) in rats. This prominent improvement in oral bioavailability is even greater than the previously reported BE nanocrystal. This investigation enriched the present understanding of cocrystals on their behavior in vitro and in vivo, and built the groundwork for future development of BE as a promising compound into efficacious drug products. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Enhancing oral bioavailability using preparations of apigenin-loaded W/O/W emulsions: In vitro and in vivo evaluations.

    PubMed

    Kim, Bum-Keun; Cho, Ah-Ra; Park, Dong-June

    2016-09-01

    We analyzed the physical properties and digestibility of apigenin-loaded emulsions as they passed through a simulated digestion model. As the emulsion passed through the simulated stages of digestion, the particle size and zeta potential of all the samples changed, except for the soybean oil-Tween 80 emulsion, in which zeta potential remained constant, through all stages, indicating that soybean oil-Tween 80 emulsions may have an effect on stability during all stages of digestion. Fluorescence microscopy was used to observe the morphology of the emulsions at each step. The in vivo pharmacokinetics revealed that apigenin-loaded soybean oil-Tween 80 emulsions had a higher oral bioavailability than did the orally administrated apigenin suspensions. These results suggest that W/O/W multiple emulsions formulated with soybean oil and tween 80 have great potential as targeted delivery systems for apigenin, and may enhance in vitro and in vivo bioavailability when they pass through the digestive tract. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Influence of Mycotoxins and a Mycotoxin Adsorbing Agent on the Oral Bioavailability of Commonly Used Antibiotics in Pigs

    PubMed Central

    Goossens, Joline; Vandenbroucke, Virginie; Pasmans, Frank; De Baere, Siegrid; Devreese, Mathias; Osselaere, Ann; Verbrugghe, Elin; Haesebrouck, Freddy; De Saeger, Sarah; Eeckhout, Mia; Audenaert, Kris; Haesaert, Geert; De Backer, Patrick; Croubels, Siska

    2012-01-01

    It is recognized that mycotoxins can cause a variety of adverse health effects in animals, including altered gastrointestinal barrier function. It is the aim of the present study to determine whether mycotoxin-contaminated diets can alter the oral bioavailability of the antibiotics doxycycline and paromomycin in pigs, and whether a mycotoxin adsorbing agent included into diets interacts with those antibiotics. Experiments were conducted with pigs utilizing diets that contained blank feed, mycotoxin-contaminated feed (T-2 toxin or deoxynivalenol), mycotoxin-contaminated feed supplemented with a glucomannan mycotoxin binder, or blank feed supplemented with mycotoxin binder. Diets with T-2 toxin and binder or deoxynivalenol and binder induced increased plasma concentrations of doxycycline administered as single bolus in pigs compared to diets containing blank feed. These results suggest that complex interactions may occur between mycotoxins, mycotoxin binders, and antibiotics which could alter antibiotic bioavailability. This could have consequences for animal toxicity, withdrawal time for oral antibiotics, or public health. PMID:22606377

  17. Orally Bioavailable Metal Chelators and Radical Scavengers: Multifunctional Antioxidants for the Coadjutant Treatment of Neurodegenerative Diseases.

    PubMed

    Kawada, Hiroyoshi; Kador, Peter F

    2015-11-25

    Neurodegenerative diseases are associated with oxidative stress that is induced by the presence of reactive oxygen species and the abnormal cellular accumulation of transition metals. Here, a new series of orally bioavailable multifunctional antioxidants (MFAO-2s) possessing a 2-diacetylamino-5-hydroxypyrimidine moiety is described. These MFAO-2s demonstrate both free radical and metal attenuating properties that are similar to the original published MFAO-1s that are based on 1-N,N'-dimethylsulfamoyl-1-4-(2-pyrimidyl)piperazine. Oral bioavailability studies in C57BL/6 mice demonstrate that the MFAO-2s accumulate in the brain at significantly higher levels than the MFAO-1s while achieving similar neural retina levels. The MFAO-2s protect human neuroblastoma and retinal pigmented epithelial cells against hydroxyl radicals in a dose-dependent manner by maintaining cell viability and intracellular glutathione levels. The MFAO-2s outperform clioquinol, a metal attenuator that has been investigated for the treatment of Alzheimer's disease.

  18. Pediatric oral formulation of dendrimer-N-acetyl-l-cysteine conjugates for the treatment of neuroinflammation.

    PubMed

    Yellepeddi, Venkata K; Mohammadpour, Raziye; Kambhampati, Siva P; Sayre, Casey; Mishra, Manoj K; Kannan, Rangaramanujam M; Ghandehari, Hamidreza

    2018-04-20

    N-Acetyl-l-cysteine (NAC) commonly used as an antidote in acetaminophen poisoning has shown promise in the treatment of neurological disorders such as cerebral palsy (CP). However, NAC suffers from drawbacks such as poor oral bioavailability and suboptimal blood-brain-barrier (BBB) permeability limiting its clinical success. It was previously demonstrated that intravenous administration of dendrimer-NAC (D-NAC) conjugates have shown significant promise in the targeted treatment of neuroinflammation, in multiple preclinical models. Development of an oral formulation of D-NAC may open new administrative routes for this compound. Here, we report the gastrointestinal stability, in vitro transepithelial permeability, and in vivo oral absorption and pharmacokinetics in rats of a pediatric formulation of D-NAC containing Capmul MCM (glycerol monocaprylate) as a penetration enhancer. D-NAC was stable for 6 h in all five simulated gastrointestinal fluids with no signs of chemical degradation. The apparent permeability (P app ) of D-NAC increased 9-fold in the formulation containing Capmul. The area under the curve [AUC] 0-∞ of D-NAC with Capmul increased by 47% when compared to D-NAC alone. These results indicate that an oral pediatric formulation containing D-NAC and Capmul can be an effective option for the treatment of neuroinflammation. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Pharmacokinetics of paracetamol (acetaminophen) after intravenous and oral administration.

    PubMed

    Rawlins, M D; Henderson, D B; Hijab, A R

    1977-04-20

    Plasma paracetamol concentrations were measured in 6 volunteers after single intravenous (1000 mg) and oral (500 mg, 1000 mg and 2000 mg) doses of the drug. Paracetamol levels declined multiphasically with a mean clearance after intravenous administration of 352 +/- 40 ml/min. A two-compartment open model appeared to describe the decline adequately. Comparison of the areas under the plasma concentration-time curves (AUC) indicated that oral bioavailability increased from 0.63 +/- 0.02 after 500 mg, to 0.89 +/- 0.04 and 0.87 +/- 0.08 after 1000 mg and 2000 mg, respectively. As a consequence of the incomplete bioavailability of paracetamol, as well as its multicompartmental distribution, accurate estimates of its distribution volume and clearance cannot be obtained if the drug is given orally. However, an estimate of its total plasma clearance may be derived from the AUC after a 500 mg oral dose.

  20. Improving oral bioavailability of cyclic peptides by N-methylation.

    PubMed

    Räder, Andreas F B; Reichart, Florian; Weinmüller, Michael; Kessler, Horst

    2018-06-01

    The renaissance of peptides in pharmaceutical industry results from their importance in many biological functions. However, low metabolic stability and the lack of oral availability of most peptides is a certain limitation. Whereas metabolic instability may be often overcome by development of small cyclic peptides containing d-amino acids, the very low oral availability of most peptides is a serious limitation for some medicinal applications. The situation is complicated because a twofold optimization - biological activity and oral availability - is required to overcome this problem. Moreover, most simple "rules" for achieving oral availability are not general and are applicable only to limited cases. Many structural modifications for increasing biological activities and metabolic stabilities of cyclic peptides have been described, of which N-alkylation is probably the most common. This mini-review focuses on the effects of N-methylation of cyclic peptides in strategies to optimize bioavailabilities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

Top