Sample records for poor solution flow

  1. A GENERAL MASS-CONSERVATIVE NUMERICAL SOLUTION FOR THE UNSATURATED FLOW EQUATION

    EPA Science Inventory

    Numerical approximations based on different forms of the governing partial differential equation can lead to significantly different results for unsaturated flow problems. Numerical solution based on the standard h-based form of Richards equation generally yields poor results, ch...

  2. Modeling preferential water flow and solute transport in unsaturated soil using the active region model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, F.; Wang, K.; Zhang, R.

    2009-03-15

    Preferential flow and solute transport are common processes in the unsaturated soil, in which distributions of soil water content and solute concentrations are often characterized as fractal patterns. An active region model (ARM) was recently proposed to describe the preferential flow and transport patterns. In this study, ARM governing equations were derived to model the preferential soil water flow and solute transport processes. To evaluate the ARM equations, dye infiltration experiments were conducted, in which distributions of soil water content and Cl{sup -} concentration were measured. Predicted results using the ARM and the mobile-immobile region model (MIM) were compared withmore » the measured distributions of soil water content and Cl{sup -} concentration. Although both the ARM and the MIM are two-region models, they are fundamental different in terms of treatments of the flow region. The models were evaluated based on the modeling efficiency (ME). The MIM provided relatively poor prediction results of the preferential flow and transport with negative ME values or positive ME values less than 0.4. On the contrary, predicted distributions of soil water content and Cl- concentration using the ARM agreed reasonably well with the experimental data with ME values higher than 0.8. The results indicated that the ARM successfully captured the macroscopic behavior of preferential flow and solute transport in the unsaturated soil.« less

  3. Flow of wormlike micellar solutions around confined microfluidic cylinders.

    PubMed

    Zhao, Ya; Shen, Amy Q; Haward, Simon J

    2016-10-26

    Wormlike micellar (WLM) solutions are frequently used in enhanced oil and gas recovery applications in porous rock beds where complex microscopic geometries result in mixed flow kinematics with strong shear and extensional components. Experiments with WLM solutions through model microfluidic porous media have revealed a variety of complex flow phenomena, including the formation of stable gel-like structures known as a Flow-Induced Structured Phase (FISP), which undoubtedly play an important role in applications of WLM fluids, but are still poorly understood. A first step in understanding flows of WLM fluids through porous media can be made by examining the flow around a single micro-scale cylinder aligned on the flow axis. Here we study flow behavior of an aqueous WLM solution consisting of cationic surfactant cetyltrimethylammonium bromide (CTAB) and a stable hydrotropic salt 3-hydroxy naphthalene-2-carboxylate (SHNC) in microfluidic devices with three different cylinder blockage ratios, β. We observe a rich sequence of flow instabilities depending on β as the Weissenberg number (Wi) is increased to large values while the Reynolds number (Re) remains low. Instabilities upstream of the cylinder are associated with high stresses in fluid that accelerates into the narrow gap between the cylinder and the channel wall; vortex growth upstream is reminiscent of that seen in microfluidic contraction geometries. Instability downstream of the cylinder is associated with stresses generated at the trailing stagnation point and the resulting flow modification in the wake, coupled with the onset of time-dependent flow upstream and the asymmetric division of flow around the cylinder.

  4. Prediction of High-Lift Flows using Turbulent Closure Models

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.; Ying, Susan X.; Bertelrud, Arild

    1997-01-01

    The flow over two different multi-element airfoil configurations is computed using linear eddy viscosity turbulence models and a nonlinear explicit algebraic stress model. A subset of recently-measured transition locations using hot film on a McDonnell Douglas configuration is presented, and the effect of transition location on the computed solutions is explored. Deficiencies in wake profile computations are found to be attributable in large part to poor boundary layer prediction on the generating element, and not necessarily inadequate turbulence modeling in the wake. Using measured transition locations for the main element improves the prediction of its boundary layer thickness, skin friction, and wake profile shape. However, using measured transition locations on the slat still yields poor slat wake predictions. The computation of the slat flow field represents a key roadblock to successful predictions of multi-element flows. In general, the nonlinear explicit algebraic stress turbulence model gives very similar results to the linear eddy viscosity models.

  5. Production of Monodisperse Cerium Oxide Microspheres with Diameters near 100 µm by Internal-Gelation Sol-Gel Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce

    Cerium dioxide microspheres with uniform diameters between 65 – 211 µm were fabricated using internal gelation sol-gel methods. Although uniform microspheres are produced for nuclear fuel applications with diameters above 300 µm, sol-gel microspheres with diameters of 50 - 200 µm have historically been made by emulsion techniques and had poor size uniformity [1, 2]. An internal gelation, sol-gel apparatus was designed and constructed to accommodate the production of small, uniform microspheres whereby cerium-containing solutions were dispersed into flowing silicone oil and heated in a gelation column to initiate solidification [3, 4]. Problems with premature feed gelation and microsphere coalescencemore » were overcome by equipment modifications unique among known internal gelation setups. Microspheres were fabricated and sized in batches as a function of dispersing needle diameter and silicone oil flow rate in the two-fluid nozzle in order to determine the range of sizes possible and corresponding degree of monodispersity. Initial experiments with poor size uniformity were linked to microsphere coalescence in the gelation column prior to solidification as well as excessive flow rates for the cerium feed solution. Average diameter standard deviations as low as 2.23% were observed after optimization of flow rates and minimization of coalescence reactions.« less

  6. Production of monodisperse cerium oxide microspheres with diameters near 100 µm by internal-gelation sol–gel methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce D.

    Cerium dioxide microspheres with uniform diameters between 65 – 211 µm were fabricated using internal gelation sol-gel methods. Although uniform microspheres are produced for nuclear fuel applications with diameters above 300 µm, sol-gel microspheres with diameters of 50 - 200 µm have historically been made by emulsion techniques and had poor size uniformity [1, 2]. An internal gelation, sol-gel apparatus was designed and constructed to accommodate the production of small, uniform microspheres whereby cerium-containing solutions were dispersed into flowing silicone oil and heated in a gelation column to initiate solidification [3, 4]. Problems with premature feed gelation and microsphere coalescencemore » were overcome by equipment modifications unique among known internal gelation setups. Microspheres were fabricated and sized in batches as a function of dispersing needle diameter and silicone oil flow rate in the two-fluid nozzle in order to determine the range of sizes possible and corresponding degree of monodispersity. Initial experiments with poor size uniformity were linked to microsphere coalescence in the gelation column prior to solidification as well as excessive flow rates for the cerium feed solution. Average diameter standard deviations as low as 2.23% were observed after optimization of flow rates and minimization of coalescence reactions.« less

  7. Solutal Marangoni flows of miscible liquids drive transport without surface contamination

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsoo; Muller, Koen; Shardt, Orest; Afkhami, Shahriar; Stone, Howard A.

    2017-11-01

    Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea, estuaries, food processing, cosmetic and beverage industries, lab-on-a-chip devices, and polymer processing. However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.

  8. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2

    PubMed Central

    Zhao, Zheng; Xie, Maobin; Li, Yi; Chen, Aizheng; Li, Gang; Zhang, Jing; Hu, Huawen; Wang, Xinyu; Li, Shipu

    2015-01-01

    In order to enhance the bioavailability of poorly water-soluble curcumin, solution-enhanced dispersion by supercritical carbon dioxide (CO2) (SEDS) was employed to prepare curcumin nanoparticles for the first time. A 24 full factorial experiment was designed to determine optimal processing parameters and their influence on the size of the curcumin nanoparticles. Particle size was demonstrated to increase with increased temperature or flow rate of the solution, or with decreased precipitation pressure, under processing conditions with different parameters considered. The single effect of the concentration of the solution on particle size was not significant. Curcumin nanoparticles with a spherical shape and the smallest mean particle size of 325 nm were obtained when the following optimal processing conditions were adopted: P =20 MPa, T =35°C, flow rate of solution =0.5 mL·min−1, concentration of solution =0.5%. Fourier transform infrared (FTIR) spectroscopy measurement revealed that the chemical composition of curcumin basically remained unchanged. Nevertheless, X-ray powder diffraction (XRPD) and thermal analysis indicated that the crystalline state of the original curcumin decreased after the SEDS process. The solubility and dissolution rate of the curcumin nanoparticles were found to be higher than that of the original curcumin powder (approximately 1.4 μg/mL vs 0.2 μg/mL in 180 minutes). This study revealed that supercritical CO2 technologies had a great potential in fabricating nanoparticles and improving the bioavailability of poorly water-soluble drugs. PMID:25995627

  9. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2.

    PubMed

    Zhao, Zheng; Xie, Maobin; Li, Yi; Chen, Aizheng; Li, Gang; Zhang, Jing; Hu, Huawen; Wang, Xinyu; Li, Shipu

    2015-01-01

    In order to enhance the bioavailability of poorly water-soluble curcumin, solution-enhanced dispersion by supercritical carbon dioxide (CO2) (SEDS) was employed to prepare curcumin nanoparticles for the first time. A 2(4) full factorial experiment was designed to determine optimal processing parameters and their influence on the size of the curcumin nanoparticles. Particle size was demonstrated to increase with increased temperature or flow rate of the solution, or with decreased precipitation pressure, under processing conditions with different parameters considered. The single effect of the concentration of the solution on particle size was not significant. Curcumin nanoparticles with a spherical shape and the smallest mean particle size of 325 nm were obtained when the following optimal processing conditions were adopted: P = 20 MPa, T = 35°C, flow rate of solution = 0.5 mL·min(-1), concentration of solution = 0.5%. Fourier transform infrared (FTIR) spectroscopy measurement revealed that the chemical composition of curcumin basically remained unchanged. Nevertheless, X-ray powder diffraction (XRPD) and thermal analysis indicated that the crystalline state of the original curcumin decreased after the SEDS process. The solubility and dissolution rate of the curcumin nanoparticles were found to be higher than that of the original curcumin powder (approximately 1.4 μg/mL vs 0.2 μg/mL in 180 minutes). This study revealed that supercritical CO2 technologies had a great potential in fabricating nanoparticles and improving the bioavailability of poorly water-soluble drugs.

  10. Numerical solutions of the Navier-Stokes equations for transonic afterbody flows

    NASA Technical Reports Server (NTRS)

    Swanson, R. C., Jr.

    1980-01-01

    The time dependent Navier-Stokes equations in mass averaged variables are solved for transonic flow over axisymmetric boattail plume simulator configurations. Numerical solution of these equations is accomplished with the unsplit explict finite difference algorithm of MacCormack. A grid subcycling procedure and computer code vectorization are used to improve computational efficiency. The two layer algebraic turbulence models of Cebeci-Smith and Baldwin-Lomax are employed for investigating turbulence closure. Two relaxation models based on these baseline models are also considered. Results in the form of surface pressure distribution for three different circular arc boattails at two free stream Mach numbers are compared with experimental data. The pressures in the recirculating flow region for all separated cases are poorly predicted with the baseline turbulence models. Significant improvements in the predictions are usually obtained by using the relaxation models.

  11. Enhancing resolution of free-flow zone electrophoresis via a simple sheath-flow sample injection.

    PubMed

    Yang, Ying; Kong, Fan-Zhi; Liu, Ji; Li, Jun-Min; Liu, Xiao-Ping; Li, Guo-Qing; Wang, Ju-Fang; Xiao, Hua; Fan, Liu-Yin; Cao, Cheng-Xi; Li, Shan

    2016-07-01

    In this work, a simple and novel sheath-flow sample injection method (SFSIM) is introduced to reduce the band broadening of free-flow zone electrophoresis separation in newly developed self-balance free-flow electrophoresis instrument. A needle injector was placed in the center of the separation inlet, into which the BGE and sample solution were pumped simultaneously. BGE formed sheath flow outside the sample stream, resulting in less band broadening related to hydrodynamics and electrodynamics. Hemoglobin and C-phycocyanin were successfully separated by the proposed method in contrast to the poor separation of free-flow electrophoresis with the traditional injection method without sheath flow. About 3.75 times resolution enhancement could be achieved by sheath-flow sample injection method. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cadmium removal using Cladophora in batch, semi-batch and flow reactors.

    PubMed

    Sternberg, Steven P K; Dorn, Ryan W

    2002-02-01

    This study presents the results of using viable algae to remove cadmium from a synthetic wastewater. In batch and semi-batch tests, a local strain of Cladophora algae removed 80-94% of the cadmium introduced. The flow experiments that followed were conducted using non-local Cladophora parriaudii. Results showed that the alga removed only 12.7(+/-6.4)% of the cadmium introduced into the reactor. Limited removal was the result of insufficient algal quantities and poor contact between the algae and cadmium solution.

  13. Natural convection in binary gases driven by combined horizontal thermal and vertical solutal gradients

    NASA Technical Reports Server (NTRS)

    Weaver, J. A.; Viskanta, Raymond

    1992-01-01

    An investigation of natural convection is presented to examine the influence of a horizontal temperature gradient and a concentration gradient occurring from the bottom to the cold wall in a cavity. As the solutal buoyancy force changes from augmenting to opposing the thermal buoyancy force, the fluid motion switches from unicellular to multicellular flow (fluid motion is up the cold wall and down the hot wall for the bottom counterrotating flow cell). Qualitatively, the agreement between predicted streamlines and smoke flow patterns is generally good. In contrast, agreement between measured and predicted temperature and concentration distributions ranges from fair to poor. Part of the discrepancy can be attributed to experimental error. However, there remains considerable discrepancy between data and predictions due to the idealizations of the mathematical model, which examines only first-order physical effects. An unsteady flow, variable thermophysical properties, conjugate effects, species interdiffusion, and radiation were not accounted for in the model.

  14. Flow of variably fluidized granular masses across three-dimensional terrain I. Coulomb mixture theory

    USGS Publications Warehouse

    Iverson, R.M.; Denlinger, R.P.

    2001-01-01

    Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.

  15. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory

    NASA Astrophysics Data System (ADS)

    Iverson, Richard M.; Denlinger, Roger P.

    2001-01-01

    Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, three-dimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.

  16. How important is exact knowledge of preferential flowpath locations and orientations for understanding spatiotemporally integrated spring hydrologic and transport response?

    NASA Astrophysics Data System (ADS)

    Henson, W.; De Rooij, R.; Graham, W. D.

    2016-12-01

    The Upper Floridian Aquifer is hydrogeologically complex; limestone dissolution has led to vertical and horizontal preferential flow paths. Locations of karst conduits are unknown and conduit properties are poorly constrained. Uncertainty in effects of conduit location, size, and density, network geometry and connectivity on hydrologic and transport responses is not well quantified, leading to limited use of discrete-continuum models that incorporate conduit networks for regional-scale hydrologic regulatory models. However, conduit networks typically dominate flow and contaminant transport in karst aquifers. We evaluated sensitivity of simulated water and nitrate fluxes and flow paths to karst conduit geometry in a springshed representative of Silver Springs, Florida, using a novel calcite dissolution conduit-generation algorithm coupled with a discrete-continuum flow and transport model (DisCo). Monte Carlo simulations of conduit generation, groundwater flow, and conservative solute transport indicate that, if a first magnitude spring system conduit network developed (i.e., spring flow >2.8 m3/s), the uncertainty in hydraulic and solute pulse response metrics at the spring vent was minimally related to locational uncertainty of network elements. Across the ensemble of realizations for various distributions of conduits, first magnitude spring hydraulic pulse metrics (e.g., steady-flow, peak flow, and recession coefficients) had < 0.01 coefficient of variation (CV). Similarly, spring solute breakthrough curve moments had low CV (<0.08); peak arrival had CV=0.06, mean travel time had CV=0.05, and travel time standard deviation had CV=0.08. Nevertheless, hydraulic and solute pulse response metrics were significantly different than those predicted by an equivalent porous-media model. These findings indicate that regional-scale decision models that incorporate karst preferential flow paths within an uncertainty framework can be used to better constrain aquifer-vulnerability estimates, despite lacking information about actual conduit locations.

  17. Experimental study of solute transport in pool-pipe system and its significance on karst hydrogeology

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Chang, Y.; Peng, F.; Wu, J.

    2016-12-01

    Study of solute transport in karst conduit is of great significance for prediction and prevention of groundwater pollution in southwest karst region. Solute transport in karst conduit is strongly influenced by pools which often develop along karst conduit. In order to investigate the effect of transient storage within pools on solute transport in the conduit, a pool-pipe system was built in the laboratory and some tracer tests were performed in various flow conditions to characterize the solute transport in different pool-pipe structures. The Qtracer2 program was used to obtain solute transport parameters. We used retardation coefficient R to characterize the difference between the 1-D analytical solution of the classical advection-dispersion equation and experimental results. The experimental results reveal that the concentration peak decreases with the number of pools whereas the dispersion coefficient and dispersivity increase gradually. Adding transient storage increases retardation as tailing of the breakthrough curve(BTC) is growing with the number of pools. This demonstrates that transient storage within pools is transformed to retardation. The symmetrical pool has longer tails compared to the asymmetrical pool. The concentration peak lag behind significantly due to the asymmetrical pool. A decrease in dispersivity and tailing of the BTC is observed in all pipes with the increase of flow velocities. The 1-D analytical solution of the classical advection-dispersion equation is well fitted to BTC of a single pipe in maximum flow velocity but is poorly fitted to other BTCs with appreciable tails. Therefore, it requires an appropriate model to explain tailing of the BTC. The conclusion has important significance for understanding of solute transport process in karst conduit. Future work will focus on using the appropriate model to explain tailing of the BTC.

  18. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System.

    PubMed

    Janoschka, Tobias; Martin, Norbert; Hager, Martin D; Schubert, Ulrich S

    2016-11-07

    Redox-flow batteries (RFB) can easily store large amounts of electric energy and thereby mitigate the fluctuating output of renewable power plants. They are widely discussed as energy-storage solutions for wind and solar farms to improve the stability of the electrical grid. Most common RFB concepts are based on strongly acidic metal-salt solutions or poorly performing organics. Herein we present a battery which employs the highly soluble N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) and the viologen derivative N,N'-dimethyl-4,4-bipyridinium dichloride (MV) in a simple and safe aqueous solution as redox-active materials. The resulting battery using these electrolyte solutions has capacities of 54 Ah L -1 , giving a total energy density of 38 Wh L -1 at a cell voltage of 1.4 V. With peak current densities of up to 200 mA cm -2 the TEMPTMA/MV system is a suitable candidate for compact high-capacity and high-power applications. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Which key properties controls the preferential transport in the vadose zone under transient hydrological conditions

    NASA Astrophysics Data System (ADS)

    Groh, J.; Vanderborght, J.; Puetz, T.; Gerke, H. H.; Rupp, H.; Wollschlaeger, U.; Stumpp, C.; Priesack, E.; Vereecken, H.

    2015-12-01

    Understanding water flow and solute transport in the unsaturated zone is of great importance for an appropriate land use management strategy. The quantification and prediction of water and solute fluxes through the vadose zone can help to improve management practices in order to limit potential risk on our fresh water resources. Water related solute transport and residence time is strongly affected by preferential flow paths in the soil. Water flow in soils depends on soil properties and site factors (climate or experiment conditions, land use) and are therefore important factors to understand preferential solute transport in the unsaturated zone. However our understanding and knowledge of which on-site properties or conditions define and enhance preferential flow and transport is still poor and mostly limited onto laboratory experimental conditions (small column length and steady state boundary conditions). Within the TERENO SOILCan lysimeter network, which was designed to study the effects of climate change on soil functions, a bromide tracer was applied on 62 lysimeter at eight different test sites between Dec. 2013 and Jan. 2014. The TERENO SOILCan infrastructure offers the unique possibility to study the occurrence of preferential flow and transport of various soil types under different natural transient hydrological conditions and land use (crop, bare and grassland) at eight TERENO SOILCan observatories. Working with lysimeter replicates at each observatory allows defining the spatial variability of preferential transport and flow. Additionally lysimeters in the network were transferred within and between observatories in order to subject them to different rainfall and temperature regimes and enable us to relate the soil type susceptibility of preferential flow and transport not only to site specific physical and land use properties, but also to different transient boundary conditions. Comparison and statistical analysis between preferential flow indicators 5% arrival time and potential key soil properties, site factors and boundary conditions will be presented in order to identify key properties which control the preferential transport in the vadose zone under transient hydrological conditions.

  20. Recent development in osmotic dehydration of fruit and vegetables: a review.

    PubMed

    Chandra, Suresh; Kumari, Durvesh

    2015-01-01

    Osmotic dehydration of fruits and vegetables is achieved by placing the solid/semi solid, whole or in pieces, in a hypertonic solution (sugar and/or salt) with a simultaneous counter diffusion of solutes from the osmotic solution into the tissues. Osmotic dehydration is recommended as a processing method to obtain better quality of food products. Partial dehydration allows structural, nutritional, sensory, and other functional properties of the raw material to be modified. However, the food industry uptake of osmotic dehydration of foods has not been extensive as expected due to the poor understanding of the counter current flow phenomena associated with it. However, these flows are in a dynamic equilibrium with each other and significantly influence the final product in terms of preservation, nutrition, and organoleptic properties. The demand of healthy, natural, nutritious, and tasty processed food products continuously increases, not only for finished products, but also for ingredient to be included in complex foods such as ice cream, cereals, dairy, confectionaries, and bakery products.

  1. Global convergence of inexact Newton methods for transonic flow

    NASA Technical Reports Server (NTRS)

    Young, David P.; Melvin, Robin G.; Bieterman, Michael B.; Johnson, Forrester T.; Samant, Satish S.

    1990-01-01

    In computational fluid dynamics, nonlinear differential equations are essential to represent important effects such as shock waves in transonic flow. Discretized versions of these nonlinear equations are solved using iterative methods. In this paper an inexact Newton method using the GMRES algorithm of Saad and Schultz is examined in the context of the full potential equation of aerodynamics. In this setting, reliable and efficient convergence of Newton methods is difficult to achieve. A poor initial solution guess often leads to divergence or very slow convergence. This paper examines several possible solutions to these problems, including a standard local damping strategy for Newton's method and two continuation methods, one of which utilizes interpolation from a coarse grid solution to obtain the initial guess on a finer grid. It is shown that the continuation methods can be used to augment the local damping strategy to achieve convergence for difficult transonic flow problems. These include simple wings with shock waves as well as problems involving engine power effects. These latter cases are modeled using the assumption that each exhaust plume is isentropic but has a different total pressure and/or temperature than the freestream.

  2. Adaptive mesh strategies for the spectral element method

    NASA Technical Reports Server (NTRS)

    Mavriplis, Catherine

    1992-01-01

    An adaptive spectral method was developed for the efficient solution of time dependent partial differential equations. Adaptive mesh strategies that include resolution refinement and coarsening by three different methods are illustrated on solutions to the 1-D viscous Burger equation and the 2-D Navier-Stokes equations for driven flow in a cavity. Sharp gradients, singularities, and regions of poor resolution are resolved optimally as they develop in time using error estimators which indicate the choice of refinement to be used. The adaptive formulation presents significant increases in efficiency, flexibility, and general capabilities for high order spectral methods.

  3. Euler equation computations for the flow over a hovering helicopter rotor

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas Wesley

    1988-01-01

    A numerical solution technique is developed for computing the flow field around an isolated helicopter rotor in hover. The flow is governed by the compressible Euler equations which are integrated using a finite volume approach. The Euler equations are coupled to a free wake model of the rotary wing vortical wake. This wake model is incorporated into the finite volume solver using a prescribed flow, or perturbation, technique which eliminates the numerical diffusion of vorticity due to the artificial viscosity of the scheme. The work is divided into three major parts: (1) comparisons of Euler solutions to experimental data for the flow around isolated wings show good agreement with the surface pressures, but poor agreement with the vortical wake structure; (2) the perturbation method is developed and used to compute the interaction of a streamwise vortex with a semispan wing. The rapid diffusion of the vortex when only the basic Euler solver is used is illustrated, and excellent agreement with experimental section lift coefficients is demonstrated when using the perturbation approach; and (3) the free wake solution technique is described and the coupling of the wake to the Euler solver for an isolated rotor is presented. Comparisons with experimental blade load data for several cases show good agreement, with discrepancies largely attributable to the neglect of viscous effects. The computed wake geometries agree less well with experiment, the primary difference being that too rapid a wake contraction is predicted for all the cases.

  4. A new method for the prediction of combustion instability

    NASA Astrophysics Data System (ADS)

    Flanagan, Steven Meville

    This dissertation presents a new approach to the prediction of combustion instability in solid rocket motors. Previous attempts at developing computational tools to solve this problem have been largely unsuccessful, showing very poor agreement with experimental results and having little or no predictive capability. This is due primarily to deficiencies in the linear stability theory upon which these efforts have been based. Recent advances in linear instability theory by Flandro have demonstrated the importance of including unsteady rotational effects, previously considered negligible. Previous versions of the theory also neglected corrections to the unsteady flow field of the first order in the mean flow Mach number. This research explores the stability implications of extending the solution to include these corrections. Also, the corrected linear stability theory based upon a rotational unsteady flow field extended to first order in mean flow Mach number has been implemented in two computer programs developed for the Macintosh platform. A quasi one-dimensional version of the program has been developed which is based upon an approximate solution to the cavity acoustics problem. The three-dimensional program applies Greens's Function Discretization (GFD) to the solution for the acoustic mode shapes and frequency. GFD is a recently developed numerical method for finding fully three dimensional solutions for this class of problems. The analysis of complex motor geometries, previously a tedious and time consuming task, has also been greatly simplified through the development of a drawing package designed specifically to facilitate the specification of typical motor geometries. The combination of the drawing package, improved acoustic solutions, and new analysis, results in a tool which is capable of producing more accurate and meaningful predictions than have been possible in the past.

  5. Assessment of applications of transport models on regional scale solute transport

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.

    2017-12-01

    Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.

  6. Characterization of a protein conjugate using an asymmetrical-flow field-flow fractionation and a size-exclusion chromatography with multi-detection system.

    PubMed

    Rebolj, Katja; Pahovnik, David; Zagar, Ema

    2012-09-04

    In this study we present detailed characterization of a protein-PEG conjugate using two separation techniques, that is, asymmetrical-flow field-flow fractionation (AF4) and size-exclusion chromatography (SEC), which were online coupled to a series of successively connected detectors: an ultraviolet, a multiangle light-scattering, a quasi-elastic light-scattering, and a refractive-index detector (UV-MALS(QELS)-RI). Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used as a complementary characterization technique. The results of AF4 as well as SEC on two columns connected in series, with both separation techniques coupled to a multidetection system, indicate the uniform molar mass and chemical composition of the conjugate, that is, the molar ratio of protein to PEG is 1/1, the presence of minute amounts of residual unreacted protein and the aggregates with the same chemical composition as that of the conjugate. Since the portion of aggregated species is smaller in the acetate buffer solution containing 5% sorbitol than in the acetate buffer solution with 200-mM sodium chloride, the former buffer solution is more suitable for conjugate storage. The separation using only one SEC column results in poorly resolved peaks of the PEGylated protein conjugate and the aggregates, whereas MALDI-TOF MS analysis reveal the presence of the residual protein, but not the aggregates.

  7. UV-vis Imaging of Piroxicam Supersaturation, Precipitation, and Dissolution in a Flow-Through Setup.

    PubMed

    Sun, Yu; Chapman, Alex; Larsen, Susan W; Jensen, Henrik; Petersen, Nickolaj J; Goodall, David M; Østergaard, Jesper

    2018-06-05

    Evaluation of drug precipitation is important in order to address challenges regarding low and variable bioavailability of poorly water-soluble drugs, to assess potential risk of patient safety with infusion therapy, and to explore injectable in situ suspension-forming drug delivery systems. Generally, drug precipitation is assessed in vitro through solution concentration analysis methods. Dual-wavelength UV-vis imaging is a novel imaging technique that may provide an opportunity for simultaneously monitoring changes in both solution and solid phases during precipitation. In the present study, a multimodal approach integrating UV-vis imaging, light microscopy, and Raman spectroscopy was developed for characterization of piroxicam supersaturation, precipitation, and dissolution in a flow-through setup. A solution of piroxicam dissolved in 1-methyl-2-pyrrolidinone was injected into a flowing aqueous environment (pH 7.4), causing piroxicam to precipitate. Imaging at 405 and 280 nm monitored piroxicam concentration distributions during precipitation and revealed different supersaturation levels dependent on the initial concentration of the piroxicam solution. The combination with imaging at 525 nm, light microscopy, and Raman spectroscopy measurements demonstrated concentration-dependent precipitation and the formation, growth, and dissolution of individual particles. Results emphasize the importance of the specific hydrodynamic conditions on the piroxicam precipitation. The approach used may facilitate comprehensive understanding of drug precipitation and dissolution processes and may be developed further into a basic tool for formulation screening and development.

  8. Hydrodynamical simulations of Pinwheel nebula WR 104

    NASA Astrophysics Data System (ADS)

    Lamberts, A.; Fromang, S.; Dubus, G.

    2010-12-01

    The interaction of stellar winds from two companion stars leads to the formation of a shocked structure. Several analytic solutions have been developped to model this phenomenon. We compare our 2D and 3D hydrodynamical simulations to these results and highlight their shortcomings. Analytic solutions do not take orbital motion into account although this drastically changes the structure at large distances, turning it into a spiral. This is observed in Pinwheel Nebulae, binaries composed of a Wolf-Rayet star and an early-type star. Their infrared emission is due to dust whose origin is stil poorly constrained. We perform large scale 2D simulations of one particular system, WR 104. Including the orbital motion, we follow the flow up to a few steps of the spiral. This is made possible using adaptive mesh refinement. We determine the properties of the gas in the winds and confirm the flow in the spiral has a ballistic motion.

  9. Regional-scale analysis of karst underground flow deduced from tracing experiments: examples from carbonate aquifers in Malaga province, southern Spain

    NASA Astrophysics Data System (ADS)

    Barberá, J. A.; Mudarra, M.; Andreo, B.; De la Torre, B.

    2018-02-01

    Tracer concentration data from field experiments conducted in several carbonate aquifers (Malaga province, southern Spain) were analyzed following a dual approach based on the graphical evaluation method (GEM) and solute transport modeling to decipher flow mechanisms in karst systems at regional scale. The results show that conduit system geometry and flow conditions are the principal factors influencing tracer migration through the examined karst flow routes. Solute transport is mainly controlled by longitudinal advection and dispersion throughout the conduit length, but also by flow partitioning between mobile and immobile fluid phases, while the matrix diffusion process appears to be less relevant. The simulation of tracer breakthrough curves (BTCs) suggests that diffuse and concentrated flow through the unsaturated zone can have equivalent transport properties under extreme recharge, with high flow velocities and efficient mixing due to the high hydraulic gradients generated. Tracer mobilization within the saturated zone under low flow conditions mainly depends on the hydrodynamics (rather than on the karst conduit development), which promote a lower longitudinal advection and retardation in the tracer migration, resulting in a marked tailing effect of BTCs. The analytical advection-dispersion equation better approximates the effective flow velocity and longitudinal dispersion estimations provided by the GEM, while the non-equilibrium transport model achieves a better adjustment of most asymmetric and long-tailed BTCs. The assessment of karst underground flow properties from tracing tests at regional scale can aid design of groundwater management and protection strategies, particularly in large hydrogeological systems (i.e. transboundary carbonate aquifers) and/or in poorly investigated ones.

  10. Stochastic porous media modeling and high-resolution schemes for numerical simulation of subsurface immiscible fluid flow transport

    NASA Astrophysics Data System (ADS)

    Brantson, Eric Thompson; Ju, Binshan; Wu, Dan; Gyan, Patricia Semwaah

    2018-04-01

    This paper proposes stochastic petroleum porous media modeling for immiscible fluid flow simulation using Dykstra-Parson coefficient (V DP) and autocorrelation lengths to generate 2D stochastic permeability values which were also used to generate porosity fields through a linear interpolation technique based on Carman-Kozeny equation. The proposed method of permeability field generation in this study was compared to turning bands method (TBM) and uniform sampling randomization method (USRM). On the other hand, many studies have also reported that, upstream mobility weighting schemes, commonly used in conventional numerical reservoir simulators do not accurately capture immiscible displacement shocks and discontinuities through stochastically generated porous media. This can be attributed to high level of numerical smearing in first-order schemes, oftentimes misinterpreted as subsurface geological features. Therefore, this work employs high-resolution schemes of SUPERBEE flux limiter, weighted essentially non-oscillatory scheme (WENO), and monotone upstream-centered schemes for conservation laws (MUSCL) to accurately capture immiscible fluid flow transport in stochastic porous media. The high-order schemes results match well with Buckley Leverett (BL) analytical solution without any non-oscillatory solutions. The governing fluid flow equations were solved numerically using simultaneous solution (SS) technique, sequential solution (SEQ) technique and iterative implicit pressure and explicit saturation (IMPES) technique which produce acceptable numerical stability and convergence rate. A comparative and numerical examples study of flow transport through the proposed method, TBM and USRM permeability fields revealed detailed subsurface instabilities with their corresponding ultimate recovery factors. Also, the impact of autocorrelation lengths on immiscible fluid flow transport were analyzed and quantified. A finite number of lines used in the TBM resulted into visual artifact banding phenomenon unlike the proposed method and USRM. In all, the proposed permeability and porosity fields generation coupled with the numerical simulator developed will aid in developing efficient mobility control schemes to improve on poor volumetric sweep efficiency in porous media.

  11. Flow, Transport, and Reaction in Porous Media: Percolation Scaling, Critical-Path Analysis, and Effective Medium Approximation

    NASA Astrophysics Data System (ADS)

    Hunt, Allen G.; Sahimi, Muhammad

    2017-12-01

    We describe the most important developments in the application of three theoretical tools to modeling of the morphology of porous media and flow and transport processes in them. One tool is percolation theory. Although it was over 40 years ago that the possibility of using percolation theory to describe flow and transport processes in porous media was first raised, new models and concepts, as well as new variants of the original percolation model are still being developed for various applications to flow phenomena in porous media. The other two approaches, closely related to percolation theory, are the critical-path analysis, which is applicable when porous media are highly heterogeneous, and the effective medium approximation—poor man's percolation—that provide a simple and, under certain conditions, quantitatively correct description of transport in porous media in which percolation-type disorder is relevant. Applications to topics in geosciences include predictions of the hydraulic conductivity and air permeability, solute and gas diffusion that are particularly important in ecohydrological applications and land-surface interactions, and multiphase flow in porous media, as well as non-Gaussian solute transport, and flow morphologies associated with imbibition into unsaturated fractures. We describe new applications of percolation theory of solute transport to chemical weathering and soil formation, geomorphology, and elemental cycling through the terrestrial Earth surface. Wherever quantitatively accurate predictions of such quantities are relevant, so are the techniques presented here. Whenever possible, the theoretical predictions are compared with the relevant experimental data. In practically all the cases, the agreement between the theoretical predictions and the data is excellent. Also discussed are possible future directions in the application of such concepts to many other phenomena in geosciences.

  12. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operationmore » agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of heap leaching.« less

  13. Consistent initial conditions for the Saint-Venant equations in river network modeling

    NASA Astrophysics Data System (ADS)

    Yu, Cheng-Wei; Liu, Frank; Hodges, Ben R.

    2017-09-01

    Initial conditions for flows and depths (cross-sectional areas) throughout a river network are required for any time-marching (unsteady) solution of the one-dimensional (1-D) hydrodynamic Saint-Venant equations. For a river network modeled with several Strahler orders of tributaries, comprehensive and consistent synoptic data are typically lacking and synthetic starting conditions are needed. Because of underlying nonlinearity, poorly defined or inconsistent initial conditions can lead to convergence problems and long spin-up times in an unsteady solver. Two new approaches are defined and demonstrated herein for computing flows and cross-sectional areas (or depths). These methods can produce an initial condition data set that is consistent with modeled landscape runoff and river geometry boundary conditions at the initial time. These new methods are (1) the pseudo time-marching method (PTM) that iterates toward a steady-state initial condition using an unsteady Saint-Venant solver and (2) the steady-solution method (SSM) that makes use of graph theory for initial flow rates and solution of a steady-state 1-D momentum equation for the channel cross-sectional areas. The PTM is shown to be adequate for short river reaches but is significantly slower and has occasional non-convergent behavior for large river networks. The SSM approach is shown to provide a rapid solution of consistent initial conditions for both small and large networks, albeit with the requirement that additional code must be written rather than applying an existing unsteady Saint-Venant solver.

  14. Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Thomas, James L. (Technical Monitor)

    2003-01-01

    The accuracy of the least-squares technique for gradient reconstruction on unstructured meshes is examined. While least-squares techniques produce accurate results on arbitrary isotropic unstructured meshes, serious difficulties exist for highly stretched meshes in the presence of surface curvature. In these situations, gradients are typically under-estimated by up to an order of magnitude. For vertex-based discretizations on triangular and quadrilateral meshes, and cell-centered discretizations on quadrilateral meshes, accuracy can be recovered using an inverse distance weighting in the least-squares construction. For cell-centered discretizations on triangles, both the unweighted and weighted least-squares constructions fail to provide suitable gradient estimates for highly stretched curved meshes. Good overall flow solution accuracy can be retained in spite of poor gradient estimates, due to the presence of flow alignment in exactly the same regions where the poor gradient accuracy is observed. However, the use of entropy fixes has the potential for generating large but subtle discretization errors.

  15. Cold storage of rat hepatocyte suspensions for one week in a customized cold storage solution--preservation of cell attachment and metabolism.

    PubMed

    Pless-Petig, Gesine; Singer, Bernhard B; Rauen, Ursula

    2012-01-01

    Primary hepatocytes are of great importance for basic research as well as cell transplantation. However, their stability, especially in suspension, is very low. This feature severely compromises storage and shipment. Based on previous studies with adherent cells, we here assessed cold storage injury in rat hepatocyte suspensions and aimed to find a cold storage solution that preserves viability, attachment ability and functionality of these cells. Rat hepatocyte suspensions were stored in cell culture medium, organ preservation solutions and modified TiProtec solutions at 4°C for one week. Viability and cell volume were determined by flow cytometry. Thereafter, cells were seeded and density and metabolic capacity (reductive metabolism, forskolin-induced glucose release, urea production) of adherent cells were assessed. Cold storage injury in hepatocyte suspensions became evident as cell death occurring during cold storage or rewarming or as loss of attachment ability. Cell death during cold storage was not dependent on cell swelling and was almost completely inhibited in the presence of glycine and L-alanine. Cell attachment could be greatly improved by use of chloride-poor solutions and addition of iron chelators. Using a chloride-poor, potassium-rich storage solution containing glycine, alanine and iron chelators, cultures with 75% of the density of control cultures and with practically normal cell metabolism could be obtained after one week of cold storage. In the solution presented here, cold storage injury of hepatocyte suspensions, differing from that of adherent hepatocytes, was effectively inhibited. The components which acted on the different injurious processes were identified.

  16. A Membrane‐Free Redox Flow Battery with Two Immiscible Redox Electrolytes

    PubMed Central

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc

    2017-01-01

    Abstract Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short‐lifetimes, and expensive ion‐selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane‐free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof‐of‐concept of a membrane‐free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L−1, and is able to deliver 90 % of its theoretical capacity while showing excellent long‐term performance (coulombic efficiency of 100 % and energy efficiency of 70 %). PMID:28658538

  17. Dynamics of hairpin vortices and polymer-induced turbulent drag reduction.

    PubMed

    Kim, Kyoungyoun; Adrian, Ronald J; Balachandar, S; Sureshkumar, R

    2008-04-04

    It has been known for over six decades that the dissolution of minute amounts of high molecular weight polymers in wall-bounded turbulent flows results in a dramatic reduction in turbulent skin friction by up to 70%. First principles simulations of turbulent flow of model polymer solutions can predict the drag reduction (DR) phenomenon. However, the essential dynamical interactions between the coherent structures present in turbulent flows and polymer conformation field that lead to DR are poorly understood. We examine this connection via dynamical simulations that track the evolution of hairpin vortices, i.e., counter-rotating pairs of quasistreamwise vortices whose nonlinear autogeneration and growth, decay and breakup are centrally important to turbulence stress production. The results show that the autogeneration of new vortices is suppressed by the polymer stresses, thereby decreasing the turbulent drag.

  18. A coupled metabolic-hydraulic model and calibration scheme for estimating of whole-river metabolism during dynamic flow conditions

    USGS Publications Warehouse

    Payn, Robert A.; Hall, Robert O Jr.; Kennedy, Theodore A.; Poole, Geoff C; Marshall, Lucy A.

    2017-01-01

    Conventional methods for estimating whole-stream metabolic rates from measured dissolved oxygen dynamics do not account for the variation in solute transport times created by dynamic flow conditions. Changes in flow at hourly time scales are common downstream of hydroelectric dams (i.e. hydropeaking), and hydrologic limitations of conventional metabolic models have resulted in a poor understanding of the controls on biological production in these highly managed river ecosystems. To overcome these limitations, we coupled a two-station metabolic model of dissolved oxygen dynamics with a hydrologic river routing model. We designed calibration and parameter estimation tools to infer values for hydrologic and metabolic parameters based on time series of water quality data, achieving the ultimate goal of estimating whole-river gross primary production and ecosystem respiration during dynamic flow conditions. Our case study data for model design and calibration were collected in the tailwater of Glen Canyon Dam (Arizona, USA), a large hydropower facility where the mean discharge was 325 m3 s 1 and the average daily coefficient of variation of flow was 0.17 (i.e. the hydropeaking index averaged from 2006 to 2016). We demonstrate the coupled model’s conceptual consistency with conventional models during steady flow conditions, and illustrate the potential bias in metabolism estimates with conventional models during unsteady flow conditions. This effort contributes an approach to solute transport modeling and parameter estimation that allows study of whole-ecosystem metabolic regimes across a more diverse range of hydrologic conditions commonly encountered in streams and rivers.

  19. Thrust and efficiency model for electron-driven magnetic nozzles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, Justin M.; Choueiri, Edgar Y.

    2013-10-15

    A performance model is presented for magnetic nozzle plasmas driven by electron thermal expansion to investigate how the thrust coefficient and beam divergence efficiency scale with the incoming plasma flow and magnetic field geometry. Using a transformation from cylindrical to magnetic coordinates, an approximate analytical solution is derived to the axisymmetric two-fluid equations for a collisionless plasma flow along an applied magnetic field. This solution yields an expression for the half-width at half-maximum of the plasma density profile in the far-downstream region, from which simple scaling relations for the thrust coefficient and beam divergence efficiency are derived. It is foundmore » that the beam divergence efficiency is most sensitive to the density profile of the flow into the nozzle throat, with the highest efficiencies occurring for plasmas concentrated along the nozzle axis. Increasing the expansion ratio of the magnetic field leads to efficiency improvements that are more pronounced for incoming plasmas that are not concentrated along the axis. This implies that the additional magnet required to increase the expansion ratio may be worth the added complexity for plasma sources that exhibit poor confinement.« less

  20. Global Change Drought in the Southwest: New Management Options

    NASA Astrophysics Data System (ADS)

    Udall, B. H.; Overpeck, J. T.

    2015-12-01

    Long held worries about future runoff declines in the Colorado River under climate change are proving to be more than just theory. Fifteen years into this century flows of the Colorado are already declining due mostly to unprecedented temperatures, and as warming proceeds, declines in river flow will grow larger. Temperature-driven droughts, some lasting decades and much more severe than the current 15-year drought, will also become more commonplace if climate change continues unabated. Current projections of future water availability almost universally understate the risk of large Colorado flow reductions under business-as-usual warming. Betting on highly uncertain projections of increased precipitation to overcome even part of the flow reductions due to virtually certain warming is a poor risk management strategy. Many of the existing water policy arrangements in the Colorado River Basin will fail in the 21st century unless innovative new solutions are developed under leadership from the federal government and its basin state partners.

  1. Analysis and modeling of localized invariant solutions in pipe flow

    NASA Astrophysics Data System (ADS)

    Ritter, Paul; Zammert, Stefan; Song, Baofang; Eckhardt, Bruno; Avila, Marc

    2018-01-01

    Turbulent spots surrounded by laminar flow are a landmark of transitional shear flows, but the dependence of their kinematic properties on spatial structure is poorly understood. We here investigate this dependence in pipe flow for Reynolds numbers between 1500 and 5000. We compute spatially localized relative periodic orbits in long pipes and show that their upstream and downstream fronts decay exponentially towards the laminar profile. This allows us to model the fronts by employing the linearized Navier-Stokes equations, and the resulting model yields the spatial decay rate and the front velocity profiles of the periodic orbits as a function of Reynolds number, azimuthal wave number, and propagation speed. In addition, when applied to a localized turbulent puff, the model is shown to accurately approximate the spatial decay rate of its upstream and downstream tails. Our study provides insight into the relationship between the kinematics and spatial structure of localized turbulence and more generally into the physics of localization.

  2. Improved computational treatment of transonic flow about swept wings

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F.; Bailey, F. R.; Frick, J.

    1976-01-01

    Relaxation solutions to classical three-dimensional small-disturbance (CSD) theory for transonic flow about lifting swept wings are reported. For such wings, the CSD theory was found to be a poor approximation to the full potential equation in regions of the flow field that are essentially two-dimensional in a plane normal to the sweep direction. The effect of this deficiency on the capture of embedded shock waves in terms of (1) the conditions under which shock waves can exist and (2) the relations they must satisfy when they do exist is emphasized. A modified small-disturbance (MSD) equation, derived by retaining two previously neglected terms, was proposed and shown to be a consistent approximation to the full potential equation over a wider range of sweep angles. The effect of these extra terms is demonstrated by comparing CSD, MSD, and experimental wing surface pressures.

  3. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Small-scale modelling of cementation by descending silica-bearing fluids: Explanation of the origin of arenitic caves in South American tepuis

    NASA Astrophysics Data System (ADS)

    Aubrecht, R.; Lánczos, T.; Schlögl, J.; Audy, M.

    2017-12-01

    Geoscientific research was performed on South American table mountains (tepuis) and in their sandstone cave systems. To explain speleogenesis in these poorly soluble rocks, two theories were introduced: a) arenization theory implying selective weathering of quartz along grain boundaries and releasing of sand grains, b) selective lithification theory implying cementation by descending silica-bearing fluid flow. The latter theory presumes that the descending fluid flow becomes unstable on the interface between two layers with different porosity and splits to separate flow channels (so-called ;finger flow;). The arenites outside these channels remain uncemented. To verify the latter theory, small-scale modelling was performed, using layered sands and sodium-silicate solution. Fine to medium sand was used (0.08-0.5 mm), along with a coarse sand fraction (0.5-1.5 mm). The sands were layered and compacted in a transparent plastic boxes. Three liters of sodium-silicate solution (so-called water glass) were left to drip for several hours to the top of the sediment. The fine-grained layers were perfectly laterally impregnated, whereas the descending fluid flows split to ;fingers; in the coarse-grained layers due their higher hydraulic conductivity. This small-scale laboratory simulation mimics the real diagenesis by descending silica-bearing fluids and matches the real phenomena observed on the tepuis. The resulting cemented constructions closely mimic many geomorphological features observed on tepuis and inside their caves, e.g. ;finger-flow; pillars, overhangs, imperfectly formed (aborted) pillars in forms of hummocks hanging from ceilings, locally also thicker central pillars that originated by merging of smaller fluid-flow channels. The modelling showed that selective lithification theory can explain most of the geomorphological aspects related to the speleogenesis in tepuis.

  5. Open-ocean boundary conditions from interior data: Local and remote forcing of Massachusetts Bay

    USGS Publications Warehouse

    Bogden, P.S.; Malanotte-Rizzoli, P.; Signell, R.

    1996-01-01

    Massachusetts and Cape Cod Bays form a semienclosed coastal basin that opens onto the much larger Gulf of Maine. Subtidal circulation in the bay is driven by local winds and remotely driven flows from the gulf. The local-wind forced flow is estimated with a regional shallow water model driven by wind measurements. The model uses a gravity wave radiation condition along the open-ocean boundary. Results compare reasonably well with observed currents near the coast. In some offshore regions however, modeled flows are an order of magnitude less energetic than the data. Strong flows are observed even during periods of weak local wind forcing. Poor model-data comparisons are attributable, at least in part, to open-ocean boundary conditions that neglect the effects of remote forcing. Velocity measurements from within Massachusetts Bay are used to estimate the remotely forced component of the flow. The data are combined with shallow water dynamics in an inverse-model formulation that follows the theory of Bennett and McIntosh [1982], who considered tides. We extend their analysis to consider the subtidal response to transient forcing. The inverse model adjusts the a priori open-ocean boundary condition, thereby minimizing a combined measure of model-data misfit and boundary condition adjustment. A "consistency criterion" determines the optimal trade-off between the two. The criterion is based on a measure of plausibility for the inverse solution. The "consistent" inverse solution reproduces 56% of the average squared variation in the data. The local-wind-driven flow alone accounts for half of the model skill. The other half is attributable to remotely forced flows from the Gulf of Maine. The unexplained 44% comes from measurement errors and model errors that are not accounted for in the analysis. 

  6. Dissolution kinetics of iron-, manganese-, and copper-containing synthetic hydroxyapatites

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Hossner, L. R.; Ming, D. W.

    2005-01-01

    Micronutrient-substituted synthetic hydroxyapatite (SHA) is being evaluated by the National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program for crop production on long-duration human missions to the International Space Station or for future Lunar or Martian outposts. The stirred-flow technique was utilized to characterize Ca, P, Fe, Mn, and Cu release characteristics from Fe-, Mn-, and Cu-containing SHA in deionized (DI) water, citric acid, and diethylene-triamine-pentaacetic acid (DTPA). Initially, Ca and P release rates decreased rapidly with time and were controlled by a non-SHA calcium phosphate phase(s) with low Ca/P solution molar ratios (0.91-1.51) relative to solid SHA ratios (1.56-1.64). At later times, Ca/P solution molar ratios (1.47-1.79) were near solid SHA ratios and release rates decreased slowly indicating that SHA controlled Ca and P release. Substituted SHA materials had faster dissolution rates relative to unsubstituted SHA. The initial metal release rate order was Mn >> Cu > Fe which followed metal-oxide/phosphate solubility suggesting that poorly crystalline metal-oxides/phosphates were dominating metal release. Similar metal release rates for all substituted SHA (approximately 0.01 cmol kg-1 min-1) at the end of the DTPA experiment indicated that SHA dissolution was supplying the metals into solution and that poorly crystalline metal-oxide/phosphates were not controlling metal release. Results indicate that non-SHA Ca-phosphate phases and poorly crystalline metal-oxide/phosphates will contribute Ca, P, and metals. After these phases have dissolved, substituted SHA will be the source of Ca, P, and metals for plants.

  7. Solution-mediated phase transformation of haloperidol mesylate in the presence of sodium lauryl sulfate.

    PubMed

    Greco, Kristyn; Bogner, Robin

    2011-09-01

    Forming a salt is a common way to increase the solubility of a poorly soluble compound. However, the solubility enhancement gained by salt formation may be lost due to solution-mediated phase transformation (SMPT) during dissolution. The SMPT of a salt can occur due to a supersaturated solution near the dissolving surface caused by pH or other solution conditions. In addition to changes in pH, surfactants are also known to affect SMPT. In this study, SMPT of a highly soluble salt, haloperidol mesylate, at pH 7 in the presence of a commonly used surfactant, sodium lauryl sulfate (SLS), was investigated. Dissolution experiments were performed using a flow-through dissolution apparatus with solutions containing various concentrations of SLS. Compacts of haloperidol mesylate were observed during dissolution in the flow-through apparatus using a stereomicroscope. Raman microscopy was used to characterize solids. The dissolution of haloperidol mesylate was significantly influenced by the addition of sodium lauryl sulfate. In conditions where SMPT was expected, the addition of SLS at low concentrations (0.1-0.2 mM) reduced the dissolution of haloperidol mesylate. In solutions containing concentrations of SLS above the critical micelle concentration (CMC) (10-15 mM), the dissolution of haloperidol mesylate increased compared to below the CMC. The solids recovered from solubility experiments of haloperidol mesylate indicated that haloperidol free base precipitated at all concentrations of SLS. Above 5 mM of SLS, Raman microscopy suggested a new form, perhaps the estolate salt. The addition of surfactant in solids that undergo solution-mediated phase transformation can add complexity to the dissolution profiles and conversion.

  8. Comparison of 2-Octanol and Tributyl Phosphate in Recovery of Tungsten from Sulfuric-Phosphoric Acid Leach Solution of Scheelite

    NASA Astrophysics Data System (ADS)

    Liao, Yulong; Zhao, Zhongwei

    2018-04-01

    Tungsten was recovered from sulfuric-phosphoric acid leach solution of scheelite using 2-octanol and tributyl phosphate (TBP). Approximately 76% of the tungsten and less than 6.2% of the iron were extracted when using 70% 2-octanol, showing good selectivity for tungsten over iron; the tungsten extraction could not be significantly enhanced using a three-stage countercurrent simulation test. Moreover, more than 99.2% of the W and 91.0% of the Fe were extracted when using 70% TBP, showing poor selectivity, but after pretreating the leach solution with iron powder, less than 5.5% of the Fe was extracted. The loaded phases were stripped using deionized water and ammonia solution. The maximum stripping rate of tungsten from loaded 2-octanol was 45.6% when using water, compared with only 13.1% from loaded TBP. Tungsten was efficiently stripped from loaded phases using ammonia solution without formation of Fe(OH)3 precipitate. Finally, a flow sheet for recovery of tungsten with TBP is proposed.

  9. Economic development: the middle class and international migration in the Dominican Republic.

    PubMed

    Bray, D

    1984-01-01

    "The Dominican Republic is classified as one of a group of Latin American and Caribbean countries whose international migratory flows appear to be primarily composed of the urban middle class, rather than the rural poor. It is argued that Dominican middle class international migration has emerged as a partial solution to a political economic crisis that was dramatized by the April Revolution of 1965 and deepened through the 1970s with the failure of industrialization strategies to generate significant changes in the class structure." excerpt

  10. Surface nanodroplets for highly efficient liquid-liquid microextraction

    NASA Astrophysics Data System (ADS)

    Li, Miaosi; Lu, Ziyang; Yu, Haitao; Zhang, Xuehua

    2016-11-01

    Nanoscale droplets on a substrate are an essential element for a wide range of applications, such as laboratory-on-chip devices, simple and highly efficient miniaturized reactors for concentrating products, high-throughput single-bacteria or single-biomolecular analysis, encapsulation, and high-resolution imaging techniques. The solvent exchange process is a simple bottom-up approach for producing droplets at solid-liquid interfaces that are only several tens to hundreds of nanometers in height, or a few femtoliters in volume Oil nanodroplets can be produced on a substrate by solvent exchange in which a good solvent of oil is displaced by a poor solvent. Our previous work has significantly advanced understanding of the principle of solvent exchange, and the droplet size can be well-controlled by several parameters, including flow rates, flow geometry, gravitational effect and composition of solutions. In this work, we studied the microextraction effect of surface nanodroplets. Oil nanodroplets have been demonstrated to provide highly-efficient liquid-liquid microextraction of hydrophobic solute in a highly diluted solution. This effect proved the feasibility of nanodroplets as a platform for preconcentrating compounds for in situ highly sensitive microanalysis without further separation. Also the long lifetime and temporal stability of surface nanodroplets allow for some long-term extraction process and extraction without addition of stabilisers.

  11. A Membrane-Free Redox Flow Battery with Two Immiscible Redox Electrolytes.

    PubMed

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2017-10-02

    Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short-lifetimes, and expensive ion-selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane-free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof-of-concept of a membrane-free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L -1 , and is able to deliver 90 % of its theoretical capacity while showing excellent long-term performance (coulombic efficiency of 100 % and energy efficiency of 70 %). © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Leachate migration from an in-situ oil-shale retort near Rock Springs, Wyoming

    USGS Publications Warehouse

    Glover, Kent C.

    1988-01-01

    Hydrogeologic factors influencing leachate movement from an in-situ oil-shale retort near Rock Springs, Wyoming, were investigated through models of ground-water flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed ? mile downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-foot sandstone at the top of the aquifer. Ground-water flow in the study area is complexly three dimensional and is characterized by large vertical variations in hydraulic head. The solute-transport model was used to predict the concentration of thiocyanate at a point where ground water discharges to the land surface. Leachate with peak concentrations of thiocyanate--45 milligrams per liter or approximately one-half the initial concentration of retort water--was estimated to reach the discharge area during January 1985. This report describes many of th3 advantages, as well as the problems, of site-specific studies. Data such as the distribution of thin, permeable beds or fractures might introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily into site-specific models. Solute migration in the study area occurs primarily in thin, permeable beds rather than in oil-shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site-specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site-specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and ground-water velocity will be poorly estimated.

  13. Leachate migration from an in situ oil-shale retort near Rock Springs, Wyoming

    USGS Publications Warehouse

    Glover, K.C.

    1986-01-01

    Geohydrologic factors influencing leachate movement from an in situ oil shale retort near Rock Springs, Wyoming, were investigated by developing models of groundwater flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed 1/2 mi downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-ft sandstone at the top of the aquifer. Groundwater flow in the study area is complexly 3-D and is characterized by large vertical variations in hydraulic head. The solute transport model was used to predict the concentration of thiocyanate at a point where groundwater discharges to the land surface. Leachates with peak concentrations of thiocyanate--45 mg/L or approximately one-half the initial concentration of retort water--were estimated to reach the discharge area during January 1985. Advantages as well as the problems of site specific studies are described. Data such as the distribution of thin permeable beds or fractures may introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily in site specific models. Solute migration in the study area primarily occurs in thin permeable beds rather than in oil shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and groundwater velocity will be estimated poorly. (Author 's abstract)

  14. Solitary solutions including spatially localized chaos and their interactions in two-dimensional Kolmogorov flow.

    PubMed

    Hiruta, Yoshiki; Toh, Sadayoshi

    2015-12-01

    Two-dimensional Kolmogorov flow in wide periodic boxes is numerically investigated. It is shown that the total flow rate in the direction perpendicular to the force controls the characteristics of the flow, especially the existence of spatially localized solitary solutions such as traveling waves, periodic solutions, and chaotic solutions, which can behave as elementary components of the flow. We propose a procedure to construct approximate solutions consisting of solitary solutions. It is confirmed by direct numerical simulations that these solutions are stable and represent interactions between elementary components such as collisions, coexistence, and collapse of chaos.

  15. Procedures for Computing Transonic Flows for Control of Adaptive Wind Tunnels. Ph.D. Thesis - Technische Univ., Berlin, Mar. 1986

    NASA Technical Reports Server (NTRS)

    Rebstock, Rainer

    1987-01-01

    Numerical methods are developed for control of three dimensional adaptive test sections. The physical properties of the design problem occurring in the external field computation are analyzed, and a design procedure suited for solution of the problem is worked out. To do this, the desired wall shape is determined by stepwise modification of an initial contour. The necessary changes in geometry are determined with the aid of a panel procedure, or, with incident flow near the sonic range, with a transonic small perturbation (TSP) procedure. The designed wall shape, together with the wall deflections set during the tunnel run, are the input to a newly derived one-step formula which immediately yields the adapted wall contour. This is particularly important since the classical iterative adaptation scheme is shown to converge poorly for 3D flows. Experimental results obtained in the adaptive test section with eight flexible walls are presented to demonstrate the potential of the procedure. Finally, a method is described to minimize wall interference in 3D flows by adapting only the top and bottom wind tunnel walls.

  16. Program VSAERO theory document: A computer program for calculating nonlinear aerodynamic characteristics of arbitrary configurations

    NASA Technical Reports Server (NTRS)

    Maskew, Brian

    1987-01-01

    The VSAERO low order panel method formulation is described for the calculation of subsonic aerodynamic characteristics of general configurations. The method is based on piecewise constant doublet and source singularities. Two forms of the internal Dirichlet boundary condition are discussed and the source distribution is determined by the external Neumann boundary condition. A number of basic test cases are examined. Calculations are compared with higher order solutions for a number of cases. It is demonstrated that for comparable density of control points where the boundary conditions are satisfied, the low order method gives comparable accuracy to the higher order solutions. It is also shown that problems associated with some earlier low order panel methods, e.g., leakage in internal flows and junctions and also poor trailing edge solutions, do not appear for the present method. Further, the application of the Kutta conditions is extremely simple; no extra equation or trailing edge velocity point is required. The method has very low computing costs and this has made it practical for application to nonlinear problems requiring iterative solutions for wake shape and surface boundary layer effects.

  17. Helicon thruster plasma modeling: Two-dimensional fluid-dynamics and propulsive performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahedo, Eduardo; Navarro-Cavalle, Jaume

    2013-04-15

    An axisymmetric macroscopic model of the magnetized plasma flow inside the helicon thruster chamber is derived, assuming that the power absorbed from the helicon antenna emission is known. Ionization, confinement, subsonic flows, and production efficiency are discussed in terms of design and operation parameters. Analytical solutions and simple scaling laws for ideal plasma conditions are obtained. The chamber model is then matched with a model of the external magnetic nozzle in order to characterize the whole plasma flow and assess thruster performances. Thermal, electric, and magnetic contributions to thrust are evaluated. The energy balance provides the power conversion between ionsmore » and electrons in chamber and nozzle, and the power distribution among beam power, ionization losses, and wall losses. Thruster efficiency is assessed, and the main causes of inefficiency are identified. The thermodynamic behavior of the collisionless electron population in the nozzle is acknowledged to be poorly known and crucial for a complete plasma expansion and good thrust efficiency.« less

  18. Wind tunnel seeding particles for laser velocimeter

    NASA Technical Reports Server (NTRS)

    Ghorieshi, Anthony

    1992-01-01

    The design of an optimal air foil has been a major challenge for aerospace industries. The main objective is to reduce the drag force while increasing the lift force in various environmental air conditions. Experimental verification of theoretical and computational results is a crucial part of the analysis because of errors buried in the solutions, due to the assumptions made in theoretical work. Experimental studies are an integral part of a good design procedure; however, empirical data are not always error free due to environmental obstacles or poor execution, etc. The reduction of errors in empirical data is a major challenge in wind tunnel testing. One of the recent advances of particular interest is the use of a non-intrusive measurement technique known as laser velocimetry (LV) which allows for obtaining quantitative flow data without introducing flow disturbing probes. The laser velocimeter technique is based on measurement of scattered light by the particles present in the flow but not the velocity of the flow. Therefore, for an accurate flow velocity measurement with laser velocimeters, two criterion are investigated: (1) how well the particles track the local flow field, and (2) the requirement of light scattering efficiency to obtain signals with the LV. In order to demonstrate the concept of predicting the flow velocity by velocity measurement of particle seeding, the theoretical velocity of the gas flow is computed and compared with experimentally obtained velocity of particle seeding.

  19. Electroosmotic flow hysteresis for dissimilar ionic solutions

    PubMed Central

    Lim, An Eng; Lam, Yee Cheong

    2015-01-01

    Electroosmotic flow (EOF) with two or more fluids is commonly encountered in various microfluidics applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during the displacement flow of solutions with dissimilar ionic species. In this investigation, electroosmotic displacement flow involving dissimilar ionic solutions was studied experimentally through a current monitoring method and numerically through finite element simulations. The flow hysteresis can be characterized by the turning and displacement times; turning time refers to the abrupt gradient change of current-time curve while displacement time is the time for one solution to completely displace the other solution. Both experimental and simulation results illustrate that the turning and displacement times for a particular solution pair can be directional-dependent, indicating that the flow conditions in the microchannel are not the same in the two different flow directions. The mechanics of EOF hysteresis was elucidated through the theoretical model which includes the ionic mobility of each species, a major governing parameter. Two distinct mechanics have been identified as the causes for the EOF hysteresis involving dissimilar ionic solutions: the widening/sharpening effect of interfacial region between the two solutions and the difference in ion concentration distributions (and thus average zeta potentials) in different flow directions. The outcome of this investigation contributes to the fundamental understanding of flow behavior in microfluidic systems involving solution pair with dissimilar ionic species. PMID:25945139

  20. Export of nutrients and major ionic solutes from a rain forest catchment in the Central Amazon Basin

    NASA Astrophysics Data System (ADS)

    Lesack, Lance F. W.

    1993-03-01

    The relative roles of base flow runoff versus storm flow runoff versus subsurface outflow in controlling total export of solutes from a 23.4-ha catchment of undisturbed rain forest in the central Amazon Basin were evaluated from water and solute flux measurements performed over a 1 year period. Solutes exported via 173 storms during the study were estimated from stream water samples collected during base flow conditions and during eight storms, and by utilizing a hydrograph separation technique in combination with a mixing model to partition storm flow from base flow fluxes. Solutes exported by subsurface outflow were estimated from groundwater samples from three nests of piezometers installed into the streambed, and concurrent measurements of hydraulic conductivity and hydraulic head gradients. Base flow discharge represented 92% of water outflow from the basin and was the dominant pathway of solute export. Although storm flow discharge represented only 5% of total water outflow, storm flow solute fluxes represented up to 25% of the total annual export flux, though for many solutes the portion was less. Subsurface outflow represented only 2.5% of total water outflow, and subsurface solute fluxes never represented more than 5% of the total annual export flux. Measurement errors were relatively high for storm flow and subsurface outflow fluxes, but cumulative measurement errors associated with the total solute fluxes exported from the catchment, in most cases, ranged from only ±7% to 14% because base flow fluxes were measured relatively well. The export fluxes of most solutes are substantially less than previously reported for comparable small catchments in the Amazon basin, and these differences cannot be reconciled by the fact that storm flow and subsurface outflows were not appropriately measured in previous studies.

  1. High speed flow past wings

    NASA Technical Reports Server (NTRS)

    Norstrud, H.

    1973-01-01

    The analytical solution to the transonic small perturbation equation which describes steady compressible flow past finite wings at subsonic speeds can be expressed as a nonlinear integral equation with the perturbation velocity potential as the unknown function. This known formulation is substituted by a system of nonlinear algebraic equations to which various methods are applicable for its solution. Due to the presence of mathematical discontinuities in the flow solutions, however, a main computational difficulty was to ensure uniqueness of the solutions when local velocities on the wing exceeded the speed of sound. For continuous solutions this was achieved by embedding the algebraic system in an one-parameter operator homotopy in order to apply the method of parametric differentiation. The solution to the initial system of equations appears then as a solution to a Cauchy problem where the initial condition is related to the accompanying incompressible flow solution. In using this technique, however, a continuous dependence of the solution development on the initial data is lost when the solution reaches the minimum bifurcation point. A steepest descent iteration technique was therefore, added to the computational scheme for the calculation of discontinuous flow solutions. Results for purely subsonic flows and supersonic flows with and without compression shocks are given and compared with other available theoretical solutions.

  2. Production of monodisperse cerium oxide microspheres with diameters near 100 μm by internal-gelation sol–gel methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce D.

    Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slidesmore » for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.« less

  3. Production of Monodisperse Cerium Oxide Microspheres with Diameters near 100 µm by Internal Gelation Sol-Gel Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce

    2018-05-01

    Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slidesmore » for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.« less

  4. Generation of Complex Karstic Conduit Networks with a Hydro-chemical Model

    NASA Astrophysics Data System (ADS)

    De Rooij, R.; Graham, W. D.

    2016-12-01

    The discrete-continuum approach is very well suited to simulate flow and solute transport within karst aquifers. Using this approach, discrete one-dimensional conduits are embedded within a three-dimensional continuum representative of the porous limestone matrix. Typically, however, little is known about the geometry of the karstic conduit network. As such the discrete-continuum approach is rarely used for practical applications. It may be argued, however, that the uncertainty associated with the geometry of the network could be handled by modeling an ensemble of possible karst conduit networks within a stochastic framework. We propose to generate stochastically realistic karst conduit networks by simulating the widening of conduits as caused by the dissolution of limestone over geological relevant timescales. We illustrate that advanced numerical techniques permit to solve the non-linear and coupled hydro-chemical processes efficiently, such that relatively large and complex networks can be generated in acceptable time frames. Instead of specifying flow boundary conditions on conduit cells to recharge the network as is typically done in classical speleogenesis models, we specify an effective rainfall rate over the land surface and let model physics determine the amount of water entering the network. This is advantageous since the amount of water entering the network is extremely difficult to reconstruct, whereas the effective rainfall rate may be quantified using paleoclimatic data. Furthermore, we show that poorly known flow conditions may be constrained by requiring a realistic flow field. Using our speleogenesis model we have investigated factors that influence the geometry of simulated conduit networks. We illustrate that our model generates typical branchwork, network and anastomotic conduit systems. Flow, solute transport and water ages in karst aquifers are simulated using a few illustrative networks.

  5. Soil Susceptibility to Macropore Flow Across a Desert-Oasis Ecotone of the Hexi Corridor, Northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Zhao, Wenzhi; He, Jianhua; Fu, Li

    2018-02-01

    Macropore flow not only provides a fast pathway for water and solute transport and increases the risks of water and nutrient loss but also enhances soil aeration and groundwater recharge. However, macropore flow characteristics in irrigated oasis soils subject to continuous crop cultivation are poorly understood. This study was to investigate the effect of continuous cultivation on soil properties and macropore flow and to quantify the changes in macropore flow characteristics in an old oasis field (>50 years of cultivation, OOF), young oasis field (20 years, YOF), and adjacent uncultivated sandy area (0 year, USL) in Northwest China. Triplicate soil samples were collected from each site to investigate soil properties. Dye tracer experiments with also three replicates were conducted at each site. The degree of macropore flow (i.e., parameters of macropore flow) was highest at the OOF, intermediate at the YOF, and minimal at the USL. The macropore flow fraction (i.e., fraction of total infiltration flows through macropore flow pathways) at the OOF was 3.4 times greater than at the USL. The heterogeneous infiltration pattern at the OOF was dominated by macropore flow, while funnel flow was predominant at the USL. Long-term irrigation with silt-laden river water has increased silt + clay contents of the oasis soils. Irrigation and high-input crop cultivation also increased organic matter. These changes in soil properties contributed to the interaggregate voids formation. The conversion of native desert soils to irrigated croplands increases the degree of macropore flow, which might enhance groundwater recharge in the desert-oasis ecotone.

  6. Topological transitions in unidirectional flow of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Cummings, Linda; Anderson, Thomas; Mema, Ensela; Kondic, Lou

    2015-11-01

    Recent experiments by Sengupta et al. (Phys. Rev. Lett. 2013) revealed interesting transitions that can occur in flow of nematic liquid crystal under carefully controlled conditions within a long microfluidic channel of rectangular cross-section, with homeotropic anchoring at the walls. At low flow rates the director field of the nematic adopts a configuration that is dominated by the surface anchoring, being nearly parallel to the channel height direction over most of the cross-section; but at high flow rates there is a transition to a flow-dominated state, where the director configuration at the channel centerline is aligned with the flow (perpendicular to the channel height direction). We analyze simple channel-flow solutions to the Leslie-Ericksen model for nematics. We demonstrate that two solutions exist, at all flow rates, but that there is a transition between the elastic free energies of these solutions: the anchoring-dominated solution has the lowest energy at low flow rates, and the flow-dominated solution has lowest energy at high flow rates. NSF DMS 1211713.

  7. An analytic, approximate method for modeling steady, three-dimensional flow to partially penetrating wells

    NASA Astrophysics Data System (ADS)

    Bakker, Mark

    2001-05-01

    An analytic, approximate solution is derived for the modeling of three-dimensional flow to partially penetrating wells. The solution is written in terms of a correction on the solution for a fully penetrating well and is obtained by dividing the aquifer up, locally, in a number of aquifer layers. The resulting system of differential equations is solved by application of the theory for multiaquifer flow. The presented approach has three major benefits. First, the solution may be applied to any groundwater model that can simulate flow to a fully penetrating well; the solution may be superimposed onto the solution for the fully penetrating well to simulate the local three-dimensional drawdown and flow field. Second, the approach is applicable to isotropic, anisotropic, and stratified aquifers and to both confined and unconfined flow. Third, the solution extends over a small area around the well only; outside this area the three-dimensional effect of the partially penetrating well is negligible, and no correction to the fully penetrating well is needed. A number of comparisons are made to existing three-dimensional, analytic solutions, including radial confined and unconfined flow and a well in a uniform flow field. It is shown that a subdivision in three layers is accurate for many practical cases; very accurate solutions are obtained with more layers.

  8. The impact of splay faults on fluid flow, solute transport, and pore pressure distribution in subduction zones: A case study offshore the Nicoya Peninsula, Costa Rica

    NASA Astrophysics Data System (ADS)

    Lauer, Rachel M.; Saffer, Demian M.

    2015-04-01

    Observations of seafloor seeps on the continental slope of many subduction zones illustrate that splay faults represent a primary hydraulic connection to the plate boundary at depth, carry deeply sourced fluids to the seafloor, and are in some cases associated with mud volcanoes. However, the role of these structures in forearc hydrogeology remains poorly quantified. We use a 2-D numerical model that simulates coupled fluid flow and solute transport driven by fluid sources from tectonically driven compaction and smectite transformation to investigate the effects of permeable splay faults on solute transport and pore pressure distribution. We focus on the Nicoya margin of Costa Rica as a case study, where previous modeling and field studies constrain flow rates, thermal structure, and margin geology. In our simulations, splay faults accommodate up to 33% of the total dewatering flux, primarily along faults that outcrop within 25 km of the trench. The distribution and fate of dehydration-derived fluids is strongly dependent on thermal structure, which determines the locus of smectite transformation. In simulations of a cold end-member margin, smectite transformation initiates 30 km from the trench, and 64% of the dehydration-derived fluids are intercepted by splay faults and carried to the middle and upper slope, rather than exiting at the trench. For a warm end-member, smectite transformation initiates 7 km from the trench, and the associated fluids are primarily transmitted to the trench via the décollement (50%), and faults intercept only 21% of these fluids. For a wide range of splay fault permeabilities, simulated fluid pressures are near lithostatic where the faults intersect overlying slope sediments, providing a viable mechanism for the formation of mud volcanoes.

  9. FORTRAN program for calculating velocities and streamlines on the hub-shroud mid-channel flow surface of an axial- or mixed-flow turbomachine. 1: User's manual

    NASA Technical Reports Server (NTRS)

    Katsanis, T.

    1973-01-01

    A FORTRAN 4 computer program has been developed that obtains a subsonic or shock-free transonic flow solution on the hub-shroud mid-channel flow surface of a turbomachine. The blade row may be fixed or rotating, and may be twisted and leaned. Flow may be axial or mixed, up to 45 deg from axial. Upstream and downstream flow variables may vary from hub to shroud, and provision is made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the flow surface; and approximate blade surface velocities. Subsonic solutions are obtained by a finite-difference stream-function solution. Transonic solutions are obtained by a velocity-gradient method, using information from a finite-difference stream-function solution at a reduced mass flow.

  10. FORTRAN program for calculating velocities and streamlines on the hub-shroud mid-channel flow surface of an axial-or mixed-flow turbomachine. 2: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Katsanis, T.; Mcnally, W. D.

    1974-01-01

    A FORTRAN-IV computer program, MERIDL, has been developed that obtains a subsonic or shock-free transonic flow solution on the hub-shroud mid-channel flow surface of a turbomachine. The blade row may be fixed or rotating and may be twisted and leaned. Flow may be axial or mixed, up to 45 deg from axial. Upstream and downstream flow variables can vary from hub to shroud, and provision is made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the flow surface and approximate blade surface velocities. Subsonic solutions are obtained by a finite-difference stream-function solution. Transonic solutions are obtained by a velocity-gradient method, using information from a finite-difference stream-function solution at a reduced mass flow.

  11. Exact solutions of the Navier-Stokes equations generalized for flow in porous media

    NASA Astrophysics Data System (ADS)

    Daly, Edoardo; Basser, Hossein; Rudman, Murray

    2018-05-01

    Flow of Newtonian fluids in porous media is often modelled using a generalized version of the full non-linear Navier-Stokes equations that include additional terms describing the resistance to flow due to the porous matrix. Because this formulation is becoming increasingly popular in numerical models, exact solutions are required as a benchmark of numerical codes. The contribution of this study is to provide a number of non-trivial exact solutions of the generalized form of the Navier-Stokes equations for parallel flow in porous media. Steady-state solutions are derived in the case of flows in a medium with constant permeability along the main direction of flow and a constant cross-stream velocity in the case of both linear and non-linear drag. Solutions are also presented for cases in which the permeability changes in the direction normal to the main flow. An unsteady solution for a flow with velocity driven by a time-periodic pressure gradient is also derived. These solutions form a basis for validating computational models across a wide range of Reynolds and Darcy numbers.

  12. ANALYTICAL SOLUTION TO SATURATED FLOW IN A FINITE STRATIFIED AQUIFER

    EPA Science Inventory

    An analytical solution for the flow of water in a saturated-stratified aquitard-aquifer-aquitard system of finite length is presented. The analytical solution assumes one-dimensional horizontal flow in the aquifer and two-dimensional flow in the aquitards. Several examples are gi...

  13. Comparison of NACA 0012 Laminar Flow Solutions: Structured and Unstructured Grid Methods

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Langer, S.

    2016-01-01

    In this paper we consider the solution of the compressible Navier-Stokes equations for a class of laminar airfoil flows. The principal objective of this paper is to demonstrate that members of this class of laminar flows have steady-state solutions. These laminar airfoil flow cases are often used to evaluate accuracy, stability and convergence of numerical solution algorithms for the Navier-Stokes equations. In recent years, such flows have also been used as test cases for high-order numerical schemes. While generally consistent steady-state solutions have been obtained for these flows using higher order schemes, a number of results have been published with various solutions, including unsteady ones. We demonstrate with two different numerical methods and a range of meshes with a maximum density that exceeds 8 × 106 grid points that steady-state solutions are obtained. Furthermore, numerical evidence is presented that even when solving the equations with an unsteady algorithm, one obtains steady-state solutions.

  14. The effect of poorly absorbed solute on intestinal absorption.

    PubMed

    Menzies, I S; Jenkins, A P; Heduan, E; Catt, S D; Segal, M B; Creamer, B

    1990-12-01

    To determine the effects of poorly absorbed solute on intestinal absorption, the urinary recovery of ingested lactulose, L-rhamnose, D-xylose, and 3-O-methyl-D-glucose was measured after simultaneous ingestion of various 'loads' of mannitol given in iso-osmolar solution. Mannitol reduced intestinal uptake of the poorly absorbed test sugars, lactulose and L-rhamnose; uptake of D-xylose and 3-O-methyl-D-glucose, which are absorbed by carrier-mediated transport largely from the jejunum, was less affected. The dose-response effect of mannitol on the absorption of L-rhamnose was approximately exponential; doses of 5, 10, and 20 g mannitol reduced the average urinary excretion of L-rhamnose by 34.7%, 51.7%, and 61.2%, respectively. In this respect, an osmotically equivalent load of lactulose, ingested as 'solute', was approximately twice as effective as mannitol in reducing L-rhamnose absorption, probably because lactulose is more poorly absorbed than mannitol (less than 1.0% versus 32-41%). Ingestion of other poorly absorbed solutes such as raffinose, sorbitol, xylitol, magnesium sulphate, and sodium sulphate also significantly depressed the absorption of L-rhamnose; in contrast, more efficiently absorbed solutes, such as sodium chloride, glucose, glycerol, and urea had little effect.

  15. Solution of plane cascade flow using improved surface singularity methods

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.

    1981-01-01

    A solution method has been developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those found in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.

  16. An exact closed form solution for constant area compressible flow with friction and heat transfer

    NASA Technical Reports Server (NTRS)

    Sturas, J. I.

    1971-01-01

    The well-known differential equation for the one-dimensional flow of a compressible fluid with heat transfer and wall friction has no known solution in closed form for the general case. This report presents a closed form solution for the special case of constant heat flux per unit length and constant specific heat. The solution was obtained by choosing the square of a dimensionless flow parameter as one of the independent variables to describe the flow. From this exact solution, an approximate simplified form is derived that is applicable for predicting subsonic flow performance characteristics for many types of constant area passages in internal flow. The data included in this report are considered sufficiently accurate for use as a guide in analyzing and designing internal gas flow systems.

  17. Advanced in Visualization of 3D Time-Dependent CFD Solutions

    NASA Technical Reports Server (NTRS)

    Lane, David A.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming increasingly feasible because of the progress in computing systems. Unfortunately, many existing flow visualization systems were developed for time-independent (steady) solutions and do not adequately depict solutions from unsteady flow simulations. Furthermore, most systems only handle one time step of the solutions individually and do not consider the time-dependent nature of the solutions. For example, instantaneous streamlines are computed by tracking the particles using one time step of the solution. However, for streaklines and timelines, particles need to be tracked through all time steps. Streaklines can reveal quite different information about the flow than those revealed by instantaneous streamlines. Comparisons of instantaneous streamlines with dynamic streaklines are shown. For a complex 3D flow simulation, it is common to generate a grid system with several millions of grid points and to have tens of thousands of time steps. The disk requirement for storing the flow data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging problem with today's computer hardware technology. Even interactive visualization of one time step of the flow data can be a problem for some existing flow visualization systems because of the size of the grid. Current approaches for visualizing complex 3D time-dependent CFD solutions are described. The flow visualization system developed at NASA Ames Research Center to compute time-dependent particle traces from unsteady CFD solutions is described. The system computes particle traces (streaklines) by integrating through the time steps. This system has been used by several NASA scientists to visualize their CFD time-dependent solutions. The flow visualization capabilities of this system are described, and visualization results are shown.

  18. Free flow cell electrophoresis using zwitterionic buffer

    NASA Technical Reports Server (NTRS)

    Rodkey, R. Scott

    1990-01-01

    Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.

  19. Identification of groundwater parameters at Columbus, Mississippi, using a 3D inverse flow and transport model

    USGS Publications Warehouse

    Barlebo, H.C.; Rosbjerg, D.; Hill, M.C.

    1996-01-01

    An extensive amount of data including hydraulic heads, hydraulic conductivities and concentrations of several solutes from controlled injections have been collected during the MADE 1 and MADE 2 experiments at a heterogeneous site near Columbus, Mississippi. In this paper the use of three-dimensional inverse groundwater models including simultaneous estimation of flow and transport parameters is proposed to help identify the dominant characteristics at the site. Simulations show that using a hydraulic conductivity distribution obtained from 2187 borehole flowmeter tests directly in the model produces poor matches to the measured hydraulic heads and tritium concentrations. Alternatively, time averaged hydraulic head maps are used to define zones of constant hydraulic conductivity to be estimated. Preliminary simulations suggest that in the case of conservative transport many, but not all, of the major plume characteristics can be explained by large-scale heterogeneity in recharge and hydraulic conductivity.

  20. Analytical Modeling of Groundwater Seepages to St. Lucie Estuary

    NASA Astrophysics Data System (ADS)

    Lee, J.; Yeh, G.; Hu, G.

    2008-12-01

    In this paper, six analytical models describing hydraulic interaction of stream-aquifer systems were applied to St Lucie Estuary (SLE) River Estuaries. These are analytical solutions for: (1) flow from a finite aquifer to a canal, (2) flow from an infinite aquifer to a canal, (3) the linearized Laplace system in a seepage surface, (4) wave propagation in the aquifer, (5) potential flow through stratified unconfined aquifers, and (6) flow through stratified confined aquifers. Input data for analytical solutions were obtained from monitoring wells and river stages at seepage-meter sites. Four transects in the study area are available: Club Med, Harbour Ridge, Lutz/MacMillan, and Pendarvis Cove located in the St. Lucie River. The analytical models were first calibrated with seepage meter measurements and then used to estimate of groundwater discharges into St. Lucie River. From this process, analytical relationships between the seepage rate and river stages and/or groundwater tables were established to predict the seasonal and monthly variation in groundwater seepage into SLE. It was found the seepage rate estimations by analytical models agreed well with measured data for some cases but only fair for some other cases. This is not unexpected because analytical solutions have some inherently simplified assumptions, which may be more valid for some cases than the others. From analytical calculations, it is possible to predict approximate seepage rates in the study domain when the assumptions underlying these analytical models are valid. The finite and infinite aquifer models and the linearized Laplace method are good for sites Pendarvis Cove and Lutz/MacMillian, but fair for the other two sites. The wave propagation model gave very good agreement in phase but only fairly agreement in magnitude for all four sites. The stratified unconfined and confined aquifer models gave similarly good agreements with measurements at three sites but poorly at the Club Med site. None of the analytical models presented here can fit the data at this site. To give better estimates at all sites numerical modeling that couple river hydraulics and groundwater flow involving less simplifications of and assumptions for the system may have to be adapted.

  1. Where Do All the Phytoplankton Go? Challenges in Keeping Track of Viable Cells in Phytoplankton Communities Using Flow Cytometry and Cell Staining

    NASA Astrophysics Data System (ADS)

    Simmons, L. J.; Fobbe, D. J.; Berges, J. A.

    2016-02-01

    Understanding the dynamics of phytoplankton communities has traditionally focused on differences in growth and related processes among taxa. It is now appreciated that differences in mortality could be equally important in contributing to these dynamics. Studying mortality in communities is difficult, especially on relevant time scales, which could be as short as hours to days. Flow cytometry can potentially provide solutions, because it can allow discrimination of different taxa, and when combined with staining, distinguish live and dead cells. We applied flow cytometry and staining to phytoplankton communities in a model system: a small, well-studied, urban pond in southeastern Wisconsin. Using flow cytometry, it was possible to resolve up to six dominant taxa (most <37 µm) and track them through an annual cycle. However, the axes traditionally used, forward scatter (FSC, related to cell size) and red fluorescence (FL3, related to chlorophyll a content) offered poor discrimination. Addition of orange fluorescence (FL2, traditionally related to phycobilipigments) and side scatter (SSC, related to cell surface characteristics) improved separation of taxa, but reproducibility (i.e. the specific position of the taxa on axes) was also more sensitive to environmental variation in the case of the fluorescence parameters. Dead cells could be distinguished by green fluorescence (FL1, using SYTOX Green©), but the stain also affected other fluorescence channels, requiring compensation. Correlations of numbers of dead cells with environmental factors (e.g. temperature, nutrient concentrations, irradiance) were generally poor, suggesting the greater importance of biotic versus abiotic variables in community mortality dynamics. Ongoing work is focusing on the effects of viral pathogens, grazing and allelopathic interactions using experimental manipulations and individual-based modeling.

  2. Solution of plane cascade flow using improved surface singularity methods. [application of panel method to internal aerodynamics

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.

    1981-01-01

    A solution method was developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.

  3. Tradeoff between mixing and transport for electroosmotic flow in heterogeneous microchannels with nonuniform surface potentials.

    PubMed

    Tian, Fuzhi; Li, Baoming; Kwok, Daniel Y

    2005-02-01

    Electroosmotic flow (EOF) is a phenomenon associated with the movement of an aqueous solution induced by the application of an electric field in microchannels. The characteristics of EOF depend on the nature of the surface potential, i.e., whether it is uniform or nonuniform. In this paper, a lattice Boltzmann model (LBM) combined with the Poisson-Boltzmann equation is used to simulate flow field in a rectangular microchannel with nonuniform (step change) surface potentials. The simulation results indicate that local circulations can occur near a heterogeneous region with nonuniform surface potentials, in agreement with those by other authors. Largest circulations, which imply a highest mixing efficiency due to convection and short-range diffusion, were found when the average surface potential is zero, regardless of whether the distribution of the heterogeneous patches is symmetric or asymmetric. In this work, we have illustrated that there is a trade-off between the mixing and liquid transport in EOF microfluidics. One should not simply focus on mixing and neglect liquid transport, as performed in the literature. Excellent mixing could lead to a poor transport of electroosmotic flow in microchannels.

  4. A closed-form solution for steady-state coupled phloem/xylem flow using the Lambert-W function.

    PubMed

    Hall, A J; Minchin, P E H

    2013-12-01

    A closed-form solution for steady-state coupled phloem/xylem flow is presented. This incorporates the basic Münch flow model of phloem transport, the cohesion model of xylem flow, and local variation in the xylem water potential and lateral water flow along the transport pathway. Use of the Lambert-W function allows this solution to be obtained under much more general and realistic conditions than has previously been possible. Variation in phloem resistance (i.e. viscosity) with solute concentration, and deviations from the Van't Hoff expression for osmotic potential are included. It is shown that the model predictions match those of the equilibrium solution of a numerical time-dependent model based upon the same mechanistic assumptions. The effect of xylem flow upon phloem flow can readily be calculated, which has not been possible in any previous analytical model. It is also shown how this new analytical solution can handle multiple sources and sinks within a complex architecture, and can describe competition between sinks. The model provides new insights into Münch flow by explicitly including interactions with xylem flow and water potential in the closed-form solution, and is expected to be useful as a component part of larger numerical models of entire plants. © 2013 John Wiley & Sons Ltd.

  5. Analytical and experimental analysis of solute transport in heterogeneous porous media.

    PubMed

    Wu, Lei; Gao, Bin; Tian, Yuan; Muñoz-Carpena, Rafael

    2014-01-01

    Knowledge of solute transport in heterogeneous porous media is crucial to monitor contaminant fate and transport in soil and groundwater systems. In this study, we present new findings from experimental and mathematical analysis to improve current understanding of solute transport in structured heterogeneous porous media. Three saturated columns packed with different sand combinations were used to examine the breakthrough behavior of bromide, a conservative tracer. Experimental results showed that bromide had different breakthrough responses in the three types of sand combinations, indicating that heterogeneity in hydraulic conductivity has a significant effect on the solute transport in structured heterogeneous porous media. Simulations from analytical solutions of a two-domain solute transport model matched experimental breakthrough data well for all the experimental conditions tested. Experimental and model results show that under saturated flow conditions, advection dominates solute transport in both fast-flow and slow-flow domains. The sand with larger hydraulic conductivity provided a preferential flow path for solute transport (fast-flow domain) that dominates the mass transfer in the heterogeneous porous media. Importantly, the transport in the slow-flow domain and mass exchange between the domains also contribute to the flow and solute transport processes and thus must be considered when investigating contaminant transport in heterogeneous porous media.

  6. Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong

    1989-01-01

    Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.

  7. Generalizations of holographic renormalization group flows

    NASA Astrophysics Data System (ADS)

    Suh, Minwoo

    The AdS/CFT correspondence conjectures the duality between type IIB supergravity on AdS5 × S5 and N = 4 super Yang-Mills theory. Mass deformations of N = 4 super Yang-Mills theory drive renormalization group (RG) flows. Holographic RG flows are described by domain wall solutions interpolating between AdS5 geometries at critical points of N = 8 gauged supergravity in five dimensions. In this thesis we study two directions of generalizations of holographic RG flows. First, motivated by the Janus solutions, we study holographic RG flows with dilaton and axion fields. To be specific, we consider the SU (3)-invariant flow with dilaton and axion fields, and discover the known supersymmetric Janus solution in five dimensions. Then, by employing the lift ansatz, we uplift the supersymmetric Janus solution of the SU(3)-invariant truncation with dilaton and axion fields to a solution of type IIB supergravity. We identify the uplifted solution to be one of the known supersymmetric Janus solution in type IIB supergravity. Furthermore, we consider the SU(2) × U(1)-invariant N = 2 and N = 1 supersymmetric flows with dilaton and axion fields. Second, motivated by the development in AdS/CMT, we study holographic RG flows with gauge fields. We consider the SU(3)-invariant flow with electric potentials or magnetic fields, and find first-order systems of flow equations for each case.

  8. Monitoring of adult Lost River and shortnose suckers in Clear Lake Reservoir, California, 2008–2010

    USGS Publications Warehouse

    Hewitt, David A.; Hayes, Brian S.

    2013-01-01

    Problems with inferring status and population dynamics from size composition data can be overcome by a robust capture-recapture program that follows the histories of PIT-tagged individuals. Inferences from such a program are currently hindered by poor detection rates during spawning seasons with low flows in Willow Creek, which indicate that a key assumption of capture-recapture models is violated. We suggest that the most straightforward solution to this issue would be to collect detection data during the spawning season using remote PIT tag antennas in the strait between the west and east lobes of the lake.

  9. Catalytic and electrocatalytic hydrogenolysis of brominated diphenyl ethers.

    PubMed

    Bonin, Pascale M L; Edwards, Patrick; Bejan, Dorin; Lo, Chun Chi; Bunce, Nigel J; Konstantinov, Alexandre D

    2005-02-01

    Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental contaminants due to their use as additive flame-retardants. Conventional catalytic hydrogenolysis in methanol solution and electrocatalytic hydrogenolysis in aqueous methanol were examined as methods for debrominating mono- and di-bromodiphenyl ethers, as well as a commercial penta-PBDE mixture, in each case using palladium on alumina as the catalyst. Electrocatalytic hydrogenolysis employed a divided flow-through batch cell, with reticulated vitreous carbon cathodes and IrO2/Ti dimensionally stable anodes. Both methods gave efficient sequential debromination, with essentially complete removal of bromine from the PBDEs, but the electrocatalytic method was limited by the poor solubility of PBDEs in aqueous methanol.

  10. MAG3D and its application to internal flowfield analysis

    NASA Technical Reports Server (NTRS)

    Lee, K. D.; Henderson, T. L.; Choo, Y. K.

    1992-01-01

    MAG3D (multiblock adaptive grid, 3D) is a 3D solution-adaptive grid generation code which redistributes grid points to improve the accuracy of a flow solution without increasing the number of grid points. The code is applicable to structured grids with a multiblock topology. It is independent of the original grid generator and the flow solver. The code uses the coordinates of an initial grid and the flow solution interpolated onto the new grid. MAG3D uses a numerical mapping and potential theory to modify the grid distribution based on properties of the flow solution on the initial grid. The adaptation technique is discussed, and the capability of MAG3D is demonstrated with several internal flow examples. Advantages of using solution-adaptive grids are also shown by comparing flow solutions on adaptive grids with those on initial grids.

  11. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    NASA Astrophysics Data System (ADS)

    Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.; Stone, Howard A.

    2017-10-01

    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formed at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. We also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.

  12. Microfluidic flows of wormlike micellar solutions.

    PubMed

    Zhao, Ya; Cheung, Perry; Shen, Amy Q

    2014-09-01

    The widespread use of wormlike micellar solutions is commonly found in household items such as cosmetic products, industrial fluids used in enhanced oil recovery and as drag reducing agents, and in biological applications such as drug delivery and biosensors. Despite their extensive use, there are still many details about the microscopic micellar structure and the mechanisms by which wormlike micelles form under flow that are not clearly understood. Microfluidic devices provide a versatile platform to study wormlike micellar solutions under various flow conditions and confined geometries. A review of recent investigations using microfluidics to study the flow of wormlike micelles is presented here with an emphasis on three different flow types: shear, elongation, and complex flow fields. In particular, we focus on the use of shear flows to study shear banding, elastic instabilities of wormlike micellar solutions in extensional flow (including stagnation and contraction flow field), and the use of contraction geometries to measure the elongational viscosity of wormlike micellar solutions. Finally, we showcase the use of complex flow fields in microfluidics to generate a stable and nanoporous flow-induced structured phase (FISP) from wormlike micellar solutions. This review shows that the influence of spatial confinement and moderate hydrodynamic forces present in the microfluidic device can give rise to a host of possibilities of microstructural rearrangements and interesting flow phenomena. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A new approach for solving the three-dimensional steady Euler equations. I - General theory

    NASA Technical Reports Server (NTRS)

    Chang, S.-C.; Adamczyk, J. J.

    1986-01-01

    The present iterative procedure combines the Clebsch potentials and the Munk-Prim (1947) substitution principle with an extension of a semidirect Cauchy-Riemann solver to three dimensions, in order to solve steady, inviscid three-dimensional rotational flow problems in either subsonic or incompressible flow regimes. This solution procedure can be used, upon discretization, to obtain inviscid subsonic flow solutions in a 180-deg turning channel. In addition to accurately predicting the behavior of weak secondary flows, the algorithm can generate solutions for strong secondary flows and will yield acceptable flow solutions after only 10-20 outer loop iterations.

  14. A new approach for solving the three-dimensional steady Euler equations. I - General theory

    NASA Astrophysics Data System (ADS)

    Chang, S.-C.; Adamczyk, J. J.

    1986-08-01

    The present iterative procedure combines the Clebsch potentials and the Munk-Prim (1947) substitution principle with an extension of a semidirect Cauchy-Riemann solver to three dimensions, in order to solve steady, inviscid three-dimensional rotational flow problems in either subsonic or incompressible flow regimes. This solution procedure can be used, upon discretization, to obtain inviscid subsonic flow solutions in a 180-deg turning channel. In addition to accurately predicting the behavior of weak secondary flows, the algorithm can generate solutions for strong secondary flows and will yield acceptable flow solutions after only 10-20 outer loop iterations.

  15. Sirolimus formulation with improved pharmacokinetic properties produced by a continuous flow method.

    PubMed

    Solymosi, Tamás; Angi, Réka; Basa-Dénes, Orsolya; Ránky, Soma; Ötvös, Zsolt; Glavinas, Hristos; Filipcsei, Genovéva; Heltovics, Gábor

    2015-08-01

    The oral bioavailability of Sirolimus is limited by poor dissolution of the compound in the gastrointestinal tract resulting in a low bioavailability and large inter-individual differences in blood levels. Several different formulation approaches were applied to overcome these disadvantageous pharmacokinetic properties including the marketed oral solution and a tablet form containing wet milled nanocrystals. These approaches deliver improved pharmacokinetics, yet, they share the characteristics of complex production method and composition. We have developed a nanostructured Sirolimus formulation prepared by the controlled continuous flow precipitation of the compound from its solution in the presence of stabilizers. We have shown that contrary to the batch production the process could be easily intensified and scaled up; apparently the uniformity of the precipitation is heavily dependent on the production parameters, most likely the mixing of the solvent and antisolvent. We compared the physicochemical and pharmacokinetic properties of the nanostructured formula with the marketed nanoformula. We found that our method produces particles in the size range of less than 100nm. The solid form redispersed instantaneously in water and in biorelevant media. Both the solid form and the redispersed colloid solution showed excellent stability even in accelerated test conditions. The oral administration of the nanostructured formula resulted in faster absorption, higher exposure and higher trough concentrations when compared to the marked form. These advantageous properties could allow the development of solid oral Sirolimus formulae with lower strength and gel based topical delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A zonal method for modeling powered-lift aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Roberts, D. W.

    1989-01-01

    A zonal method for modeling powered-lift aircraft flow fields is based on the coupling of a three-dimensional Navier-Stokes code to a potential flow code. By minimizing the extent of the viscous Navier-Stokes zones the zonal method can be a cost effective flow analysis tool. The successful coupling of the zonal solutions provides the viscous/inviscid interations that are necessary to achieve convergent and unique overall solutions. The feasibility of coupling the two vastly different codes is demonstrated. The interzone boundaries were overlapped to facilitate the passing of boundary condition information between the codes. Routines were developed to extract the normal velocity boundary conditions for the potential flow zone from the viscous zone solution. Similarly, the velocity vector direction along with the total conditions were obtained from the potential flow solution to provide boundary conditions for the Navier-Stokes solution. Studies were conducted to determine the influence of the overlap of the interzone boundaries and the convergence of the zonal solutions on the convergence of the overall solution. The zonal method was applied to a jet impingement problem to model the suckdown effect that results from the entrainment of the inviscid zone flow by the viscous zone jet. The resultant potential flow solution created a lower pressure on the base of the vehicle which produces the suckdown load. The feasibility of the zonal method was demonstrated. By enhancing the Navier-Stokes code for powered-lift flow fields and optimizing the convergence of the coupled analysis a practical flow analysis tool will result.

  17. Gas pre-warming for improving performances of heated humidifiers in neonatal ventilation.

    PubMed

    Schena, E; De Paolis, E; Silvestri, S

    2011-01-01

    Adequate temperature and humidification of gas delivered must be performed during long term neonatal ventilation to avoid potential adverse health effects. Literature shows that performances of heated humidifiers are, at least in some cases, quite poor. In this study, a novel approach to gas conditioning, consisting of gas warming upstream the humidification chamber, is presented. Gas pre-warming, in combination with a control strategy based on a mathematical model taking into account a number of parameters, allows to significantly improve the heated humidifier performances. The theoretical model has been validated and experimental trials have been carried out in the whole volumetric flow-rate (Q) range of neonatal ventilation (lower than 10 L · min(-1)). Experimental results (temperature values ranging from 36 °C to 38 °C and relative humidity values from 90 % to 98 % in the whole range of Q) show values very close to the ideal thermo-hygrometric conditions. The proposed solution allows to avoid vapor condensation at low flow rates and decrease of relative humidity at high flow rates.

  18. Optimal estimation of spatially variable recharge and transmissivity fields under steady-state groundwater flow. Part 2. Case study

    NASA Astrophysics Data System (ADS)

    Graham, Wendy D.; Neff, Christina R.

    1994-05-01

    The first-order analytical solution of the inverse problem for estimating spatially variable recharge and transmissivity under steady-state groundwater flow, developed in Part 1 is applied to the Upper Floridan Aquifer in NE Florida. Parameters characterizing the statistical structure of the log-transmissivity and head fields are estimated from 152 measurements of transmissivity and 146 measurements of hydraulic head available in the study region. Optimal estimates of the recharge, transmissivity and head fields are produced throughout the study region by conditioning on the nearest 10 available transmissivity measurements and the nearest 10 available head measurements. Head observations are shown to provide valuable information for estimating both the transmissivity and the recharge fields. Accurate numerical groundwater model predictions of the aquifer flow system are obtained using the optimal transmissivity and recharge fields as input parameters, and the optimal head field to define boundary conditions. For this case study, both the transmissivity field and the uncertainty of the transmissivity field prediction are poorly estimated, when the effects of random recharge are neglected.

  19. A coupled Eulerian/Lagrangian method for the solution of three-dimensional vortical flows

    NASA Technical Reports Server (NTRS)

    Felici, Helene Marie

    1992-01-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of three-dimensional rotational flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method using particle markers is added to the Eulerian time-marching procedure and provides a correction of the Eulerian solution. In turn, the Eulerian solutions is used to integrate the Lagrangian state-vector along the particles trajectories. The Lagrangian correction technique does not require any a-priori information on the structure or position of the vortical regions. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers, used as 'accuracy boosters,' take advantage of the accurate convection description of the Lagrangian solution and enhance the vorticity and entropy capturing capabilities of standard Eulerian finite-volume methods. The combined solution procedures is tested in several applications. The convection of a Lamb vortex in a straight channel is used as an unsteady compressible flow preservation test case. The other test cases concern steady incompressible flow calculations and include the preservation of turbulent inlet velocity profile, the swirling flow in a pipe, and the constant stagnation pressure flow and secondary flow calculations in bends. The last application deals with the external flow past a wing with emphasis on the trailing vortex solution. The improvement due to the addition of the Lagrangian correction technique is measured by comparison with analytical solutions when available or with Eulerian solutions on finer grids. The use of the combined Eulerian/Lagrangian scheme results in substantially lower grid resolution requirements than the standard Eulerian scheme for a given solution accuracy.

  20. Mathematical modelling of the transport of a poorly sorted granular mixture as a debris-flow. The case of Madeira Island torrential floods in 2010

    NASA Astrophysics Data System (ADS)

    Ferreira, Rui M. L.; Oliveira, Rodrigo P.; Conde, Daniel

    2016-04-01

    On the 20th February 2010, heavy rainfall was registered at Madeira Island, North Atlantic. Stony debris flows, mudflows and mudslides ensued causing severe property loss, 1.5 m thick sediment deposits at downtown Funchal including 16th century monuments, and a death toll of 47 lives. Debris-flow fronts propagated downstream while carrying very high concentrations of solid material. These two-phase solid-fluid flows were responsible for most of the infrastructural damage across the island, due to their significantly increased mass and momentum. The objective of the present modelling work is to validate a 2DH model for torrential flows featuring the transport and interaction of several size fractions of a poorly-sorted granular mixture typical of stony debris flow in Madeira. The module for the transport of poorly-sorted material was included in STAV-2D (CERIS-IST), a shallow-water and morphology solver based on a finite-volume method using a flux-splitting technique featuring a reviewed Roe-Riemann solver, with appropriate source-term formulations to ensure full conservativeness. STAV-2D also includes formulations of flow resistance and bedload transport adequate for debris-flows with natural mobile beds (Ferreira et al., 2009) and has been validated with both theoretical solutions and laboratory data (Soares-Frazão et al., 2012; Canelas et al., 2013). The modelling of the existing natural and built environment is fully explicit. All buildings, streets and channels are accurately represented within the mesh geometry. Such detail is relevant for the reliability of the validation using field data, since the major sedimentary deposits within the urban meshwork of Funchal were identified and characterized in terms of volume and grain size distribution during the aftermath of the 20th February of 2010 event. Indeed, the measure of the quality of the numerical results is the agreement between simulated and estimated volume of deposited sediment and between estimated and modelled grain-size distribution of the deposits. The formulations expressing closures for size fraction interaction and active layer dynamics are discussed. The simulation tool resulting from this modelling effort is expected to help the establishment of new methodologies and parameters for hydraulic design and hazard assessment in the Island of Madeira. Acknowledgements This work was partially funded by FEDER, program COMPETE, and by national funds through Portuguese Foundation for Science and Technology (FCT) project RECI/ECM-HID/0371/2012. References Canelas, R.; Murillo, J. & Ferreira, R.M.L. (2013). Two-dimensional depth-averaged modelling of dambreak flows over mobile beds. Journal of Hydraulic Research, 51(4), 392-407. Ferreira, R. M. L., Franca, M. J., Leal, J. G., & Cardoso, A. H. (2009). Mathematical modelling of shallow flows: Closure models drawn from grain-scale mechanics of sediment transport and flow hydrodynamics. Canadian Journal of Civil Engineering, 36(10), 1605-1621. Soares-Frazão and IAHR Working group for Dam-break flows over mobile beds (2012) Dam-break flows over mobile beds: Experiments and benchmark tests for numerical models. Journal of Hydraulic Research, 50(4), 364-375. DOI: 10.1080/00221686.2012.689682

  1. Supersonic Flow of Chemically Reacting Gas-Particle Mixtures. Volume 2: RAMP - A Computer Code for Analysis of Chemically Reacting Gas-Particle Flows

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A computer program written in conjunction with the numerical solution of the flow of chemically reacting gas-particle mixtures was documented. The solution to the set of governing equations was obtained by utilizing the method of characteristics. The equations cast in characteristic form were shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The characteristic directions for the gas-particle system are found to be the conventional gas Mach lines, the gas streamlines and the particle streamlines. The basic mesh construction for the flow solution is along streamlines and normals to the streamlines for axisymmetric or two-dimensional flow. The analysis gives detailed information of the supersonic flow and provides for a continuous solution of the nozzle and exhaust plume flow fields. Boundary conditions for the flow solution are either the nozzle wall or the exhaust plume boundary.

  2. Dimensions of flow during an experiential wilderness science program

    NASA Astrophysics Data System (ADS)

    Wang, Robert

    Over the past twenty-five years, there has been an alarming decline in academic performance among American students. This trend is seen in failing test scores, poor attendance, and low first-year retention rates at post-secondary institutions. There have been numerous studies that have examined this issue but few to offer solutions. Mihalyi Csikszentmihalyi, the originator of flow theory, suggests that poor academic performance might be best explained in terms of lack of student motivation and engagement (flow) rather than a lack of cognitive abilities. This study was designed to examine a series of activities conducted during an Experiential Wilderness Science Program at a college located in the Rocky Mountain region. Specifically, this study measured student engagement for each activity and described the dimensions (phenomenological, instructional, etc.) that were present when there was a high frequency of engagement among program participants. A combined quantitative and qualitative research methodology was utilized. The Experience Sampling Form (ESF) was administered to 41 freshman students participating in a 3-day wilderness science program to measure the frequency of engagement (flow) for nine different activities. A qualitative investigation using journals, participant interviews, and focus groups was used to describe the dimensions that were present when a high frequency of engagement among program participants was observed. Results revealed that engagement (flow) was highest during two challenge education activities and during a river sampling activity. Dimensions common among these activities included: an environment dimension, a motivation dimension, and an instruction dimension. The environment dimension included: incorporating novel learning activities, creating student interests, and introducing an element of perceived risk. The motivation dimension included: developing internal loci of control, facilitating high levels of self-efficacy, and developing intrinsic and extrinsic motivation. The instructional dimension included: selecting appropriate subject matter, using proper instructional methods, utilizing appropriate activity levels, and selecting proper goals.

  3. Effect of graphite oxide solution concentration on the properties of multilayer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umar, Marjoni Imamora Ali; Yap, Chi Chin; Awang, Rozidawati

    2013-11-27

    This paper reports the influence of graphite oxide (GO) solution concentration on the optical and electrical properties of multilayer graphene (MLG) films. Graphene oxide (GrO) films were deposited on the glass substrates by spin coating aqueous solutions of GO with different concentrations (7, 8, 9, 10 and 11 mg/ml). The GrO films were then thermally reduced at temperature of 500°C in argon flow for half an hour to form MLG films. Both the transmittance and sheet resistance decreased with the GO concentration from 8 mg/ml to 9 mg/ml, possibly due to thicker and uniform coverage of MLG over the substrate.more » However, the transmittance and sheet resistance increased rapidly as the GO concentration reached 11 mg/ml, which can be attributed to poor film quality. The MLG film obtained at concentration of 10 mg/ml showed the highest transmittance/sheet resistance ratio with 69 % transmittance and sheet resistance of 292 ± 63 kΩ/sq. The optimum MLG film was utilized as counter electrode in dye sensitized solar cells based on ZnO nanorods.« less

  4. Triple loop heat exchanger for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    A triple loop heat exchanger for an absorption refrigeration system is disclosed. The triple loop heat exchanger comprises portions of a strong solution line for conducting relatively hot, strong solution from a generator to a solution heat exchanger of the absorption refrigeration system, conduit means for conducting relatively cool, weak solution from the solution heat exchanger to the generator, and a bypass system for conducting strong solution from the generator around the strong solution line and around the solution heat exchanger to an absorber of the refrigeration system when strong solution builds up in the generator to an undesirable level. The strong solution line and the conduit means are in heat exchange relationship with each other in the triple loop heat exchanger so that, during normal operation of the refrigeration system, heat is exchanged between the relatively hot, strong solution flowing through the strong solution line and the relatively cool, weak solution flowing through the conduit means. Also, the strong solution line and the bypass system are in heat exchange relationship in the triple loop heat exchanger so that if the normal flow path of relatively hot, strong solution flowing from the generator to an absorber is blocked, then this relatively, hot strong solution which will then be flowing through the bypass system in the triple loop heat exchanger, is brought into heat exchange relationship with any strong solution which may have solidified in the strong solution line in the triple loop heat exchanger to thereby aid in desolidifying any such solidified strong solution.

  5. Effects of dialysate flow configurations in continuous renal replacement therapy on solute removal: computational modeling.

    PubMed

    Kim, Jeong Chul; Cruz, Dinna; Garzotto, Francesco; Kaushik, Manish; Teixeria, Catarina; Baldwin, Marie; Baldwin, Ian; Nalesso, Federico; Kim, Ji Hyun; Kang, Eungtaek; Kim, Hee Chan; Ronco, Claudio

    2013-01-01

    Continuous renal replacement therapy (CRRT) is commonly used for critically ill patients with acute kidney injury. During treatment, a slow dialysate flow rate can be applied to enhance diffusive solute removal. However, due to the lack of the rationale of the dialysate flow configuration (countercurrent or concurrent to blood flow), in clinical practice, the connection settings of a hemodiafilter are done depending on nurse preference or at random. In this study, we investigated the effects of flow configurations in a hemodiafilter during continuous venovenous hemodialysis on solute removal and fluid transport using computational fluid dynamic modeling. We solved the momentum equation coupling solute transport to predict quantitative diffusion and convection phenomena in a simplified hemodiafilter model. Computational modeling results showed superior solute removal (clearance of urea: 67.8 vs. 45.1 ml/min) and convection (filtration volume: 29.0 vs. 25.7 ml/min) performances for the countercurrent flow configuration. Countercurrent flow configuration enhances convection and diffusion compared to concurrent flow configuration by increasing filtration volume and equilibrium concentration in the proximal part of a hemodiafilter and backfiltration of pure dialysate in the distal part. In clinical practice, the countercurrent dialysate flow configuration of a hemodiafilter could increase solute removal in CRRT. Nevertheless, while this configuration may become mandatory for high-efficiency treatments, the impact of differences in solute removal observed in slow continuous therapies may be less important. Under these circumstances, if continuous therapies are prescribed, some of the advantages of the concurrent configuration in terms of simpler circuit layout and simpler machine design may overcome the advantages in terms of solute clearance. Different dialysate flow configurations influence solute clearance and change major solute removal mechanisms in the proximal and distal parts of a hemodiafilter. Advantages of each configuration should be balanced against the overall performance of the treatment and its simplicity in terms of treatment delivery and circuit handling procedures. Copyright © 2013 S. Karger AG, Basel.

  6. Modelling the effect of intervillous flow on solute transfer based on 3D imaging of the human placental microstructure.

    PubMed

    Perazzolo, S; Lewis, R M; Sengers, B G

    2017-12-01

    A healthy pregnancy depends on placental transfer from mother to fetus. Placental transfer takes place at the micro scale across the placental villi. Solutes from the maternal blood are taken up by placental villi and enter the fetal capillaries. This study investigated the effect of maternal blood flow on solute uptake at the micro scale. A 3D image based modelling approach of the placental microstructures was undertaken. Solute transport in the intervillous space was modelled explicitly and solute uptake with respect to different maternal blood flow rates was estimated. Fetal capillary flow was not modelled and treated as a perfect sink. For a freely diffusing small solute, the flow of maternal blood through the intervillous space was found to be limiting the transfer. Ignoring the effects of maternal flow resulted in a 2.4 ± 0.4 fold over-prediction of transfer by simple diffusion, in absence of binding. Villous morphology affected the efficiency of solute transfer due to concentration depleted zones. Interestingly, less dense microvilli had lower surface area available for uptake which was compensated by increased flow due to their higher permeability. At super-physiological pressures, maternal flow was not limiting, however the efficiency of uptake decreased. This study suggests that the interplay between maternal flow and villous structure affects the efficiency of placental transfer but predicted that flow rate will be the major determinant of transfer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Computations of ideal and real gas high altitude plume flows

    NASA Technical Reports Server (NTRS)

    Feiereisen, William J.; Venkatapathy, Ethiraj

    1988-01-01

    In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.

  8. Multi-Layer Self-Nanoemulsifying Pellets: an Innovative Drug Delivery System for the Poorly Water-Soluble Drug Cinnarizine.

    PubMed

    Shahba, Ahmad Abdul-Wahhab; Ahmed, Abid Riaz; Alanazi, Fars Kaed; Mohsin, Kazi; Abdel-Rahman, Sayed Ibrahim

    2018-04-25

    Beside their solubility limitations, some poorly water-soluble drugs undergo extensive degradation in aqueous and/or lipid-based formulations. Multi-layer self-nanoemulsifying pellets (ML-SNEP) introduce an innovative delivery system based on isolating the drug from the self-nanoemulsifying layer to enhance drug aqueous solubility and minimize degradation. In the current study, various batches of cinnarizine (CN) ML-SNEP were prepared using fluid bed coating and involved a drug-free self-nanoemulsifying layer, protective layer, drug layer, moisture-sealing layer, and/or an anti-adherent layer. Each layer was optimized based on coating outcomes such as coating recovery and mono-pellets%. The optimized ML-SNEP were characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), in vitro dissolution, and stability studies. The optimized ML-SNEP were free-flowing, well separated with high coating recovery. SEM showed multiple well-defined coating layers. The acidic polyvinylpyrrolidone:CN (4:1) solution presented excellent drug-layering outcomes. DSC and XRD confirmed CN transformation into amorphous state within the drug layer. The isolation between CN and self-nanoemulsifying layer did not adversely affect drug dissolution. CN was able to spontaneously migrate into the micelles arising from the drug-free self-nanoemulsifying layer. ML-SNEP showed superior dissolution compared to Stugeron® tablets at pH 1.2 and 6.8. Particularly, on shifting to pH 6.8, ML-SNEP maintained > 84% CN in solution while Stugeron® tablets showed significant CN precipitation leaving only 7% CN in solution. Furthermore, ML-SNEP (comprising Kollicoat® Smartseal 30D) showed robust stability and maintained > 97% intact CN within the accelerated storage conditions. Accordingly, ML-SNEP offer a novel delivery system that combines both enhanced solubilization and stabilization of unstable poorly soluble drugs.

  9. Using colloidal silica as isolator, diverter and blocking agent for subsurface geological applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.

    A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.

  10. An analytical solution for Dean flow in curved ducts with rectangular cross section

    NASA Astrophysics Data System (ADS)

    Norouzi, M.; Biglari, N.

    2013-05-01

    In this paper, a full analytical solution for incompressible flow inside the curved ducts with rectangular cross-section is presented for the first time. The perturbation method is applied to solve the governing equations and curvature ratio is considered as the perturbation parameter. The previous perturbation solutions are usually restricted to the flow in curved circular or annular pipes related to the overly complex form of solutions or singularity situation for flow in curved ducts with non-circular shapes of cross section. This issue specifies the importance of analytical studies in the field of Dean flow inside the non-circular ducts. In this study, the main flow velocity, stream function of lateral velocities (secondary flows), and flow resistance ratio in rectangular curved ducts are obtained analytically. The effect of duct curvature and aspect ratio on flow field is investigated as well. Moreover, it is important to mention that the current analytical solution is able to simulate the Taylor-Görtler and Dean vortices (vortices in stable and unstable situations) in curved channels.

  11. Modeling of Compressible Flow with Friction and Heat Transfer Using the Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak; Majumdar, Alok

    2007-01-01

    The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.

  12. Concentration-Discharge Relationships, Nested Reaction Fronts, and the Balance of Oxidative and Acid-Base Weathering Fluxes in an Alpine Catchment, East River, Colorado

    NASA Astrophysics Data System (ADS)

    Winnick, M.; Carroll, R. W. H.; Williams, K. H.; Maxwell, R. M.; Maher, K.

    2016-12-01

    Although important for solute production and transport, the varied interactions between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the headwaters of the East River, CO, a high-elevation shale-dominated catchment system in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with well-defined clockwise hysteresis, indicating the mobilization and depletion of DOC in the upper soil horizons and highlighting the importance of shallow flowpaths through the snowmelt period. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both carbonic acid and sulfuric acid derived from oxidation of pyrite in the shale bedrock. Sulfuric acid weathering in the deep subsurface dominates during base flow conditions when waters have infiltrated below the hypothesized pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during the snowmelt period as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This increase in CO2(aq) at the expense of HCO3- results in outgassing of CO2 when waters equilibrate to surface conditions, and reduces the export of carbon and alkalinity from the East River by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering therefore have the capacity to substantially alter the cycling of carbon in the East River catchment. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.

  13. Concentration Dependence of VO2+ Crossover of Nafion for Vanadium Redox Flow Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, Jamie; Jones, Amanda; Zawodzinski, Thomas A

    2013-01-01

    The VO2+ crossover, or permeability, through Nafion in a vanadium redox flow battery (VRFB) was monitored as a function of sulfuric acid concentration and VO2+ concentration. A vanadium rich solution was flowed on one side of the membrane through a flow field while symmetrically on the other side a blank or vanadium deficit solution was flowed. The blank solution was flowed through an electron paramagnetic resonance (EPR) cavity and the VO2+ concentration was determined from the intensity of the EPR signal. Concentration values were fit using a solution of Fick s law that allows for the effect of concentration changemore » on the vanadium rich side. The fits resulted in permeability values of VO2+ ions across the membrane. Viscosity measurements of many VO2+ and H2SO4 solutions were made at 30 60 C. These viscosity values were then used to determine the effect of the viscosity of the flowing solution on the permeability of the ion. 2013 The Electrochemical Society. [DOI: 10.1149/2.004306jes] All rights reserved.« less

  14. Modeling Three-Dimensional Flow in Confined Aquifers by Superposition of Both Two- and Three-Dimensional Analytic Functions

    NASA Astrophysics Data System (ADS)

    Haitjema, Henk M.

    1985-10-01

    A technique is presented to incorporate three-dimensional flow in a Dupuit-Forchheimer model. The method is based on superposition of approximate analytic solutions to both two- and three-dimensional flow features in a confined aquifer of infinite extent. Three-dimensional solutions are used in the domain of interest, while farfield conditions are represented by two-dimensional solutions. Approximate three- dimensional solutions have been derived for a partially penetrating well and a shallow creek. Each of these solutions satisfies the condition that no flow occurs across the confining layers of the aquifer. Because of this condition, the flow at some distance of a three-dimensional feature becomes nearly horizontal. Consequently, remotely from a three-dimensional feature, its three-dimensional solution is replaced by a corresponding two-dimensional one. The latter solution is trivial as compared to its three-dimensional counterpart, and its use greatly enhances the computational efficiency of the model. As an example, the flow is modeled between a partially penetrating well and a shallow creek that occur in a regional aquifer system.

  15. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.

    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formedmore » at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. As a result, we also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.« less

  16. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    DOE PAGES

    Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.; ...

    2017-11-16

    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formedmore » at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. As a result, we also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.« less

  17. Approximate Solutions for Ideal Dam-Break Sediment-Laden Flows on Uniform Slopes

    NASA Astrophysics Data System (ADS)

    Ni, Yufang; Cao, Zhixian; Borthwick, Alistair; Liu, Qingquan

    2018-04-01

    Shallow water hydro-sediment-morphodynamic (SHSM) models have been applied increasingly widely in hydraulic engineering and geomorphological studies over the past few decades. Analytical and approximate solutions are usually sought to verify such models and therefore confirm their credibility. Dam-break flows are often evoked because such flows normally feature shock waves and contact discontinuities that warrant refined numerical schemes to solve. While analytical and approximate solutions to clear-water dam-break flows have been available for some time, such solutions are rare for sediment transport in dam-break flows. Here we aim to derive approximate solutions for ideal dam-break sediment-laden flows resulting from the sudden release of a finite volume of frictionless, incompressible water-sediment mixture on a uniform slope. The approximate solutions are presented for three typical sediment transport scenarios, i.e., pure advection, pure sedimentation, and concurrent entrainment and deposition. Although the cases considered in this paper are not real, the approximate solutions derived facilitate suitable benchmark tests for evaluating SHSM models, especially presently when shock waves can be numerically resolved accurately with a suite of finite volume methods, while the accuracy of the numerical solutions of contact discontinuities in sediment transport remains generally poorer.

  18. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations.

    PubMed

    Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K

    2011-11-01

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density.

  19. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process.

    PubMed

    Anwar, Mohammed; Ahmad, Iqbal; Warsi, Musarrat H; Mohapatra, Sharmistha; Ahmad, Niyaz; Akhter, Sohail; Ali, Asgar; Ahmad, Farhan J

    2015-10-01

    The biomedical applications of curcumin (CUR) are limited due to its poor oral bioavailability. In this work, CUR nanoparticles were successfully prepared by combining the supercritical anti-solvent (SAS) process with Tween 80 as a solubilizing agent and permeation enhancer. Different processing parameters that can govern the mean particle size and size distribution of nanoparticles were well investigated by manipulating the types of solvents, mixing vessel pressure, mixing vessel temperature, CO2 flow rate, solution flow rate and solution concentration. Solid state characterization was done by Fourier Transform infrared spectroscopy, differential scanning calorimetry, dynamic light scattering, scanning electron microscopy, and powder X-ray diffraction study. Solubility and dissolution profile of SAS-processed CUR were found to be significantly increased in comparison with native CUR. Further, a validated ultra-performance liquid chromatographic method with quadrupole-time of flight-mass spectrometry was developed to investigate the pharmacokinetic parameters after a single oral dose (100mg/kg) administration of CUR (before/after SAS-processed) in male Wistar rats. From the plasma concentration vs. time profile graph, oral bioavailability of SAS-processed CUR was found to be increased approximately 11.6-fold (p<0.001) as compared to native CUR. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Sheath liquid interface for the coupling of normal-phase liquid chromatography with electrospray mass spectrometry and its application to the analysis of neoflavonoids.

    PubMed

    Charles, Laurence; Laure, Frédéric; Raharivelomanana, Phila; Bianchini, Jean-Pierre

    2005-01-01

    A novel interface that allows normal-phase liquid chromatography to be coupled with electrospray ionization (ESI) is reported. A make-up solution of 60 mM ammonium acetate in methanol, infused at a 5 microl min(-1) flow-rate at the tip of the electrospray probe, provides a sheath liquid which is poorly miscible with the chromatographic effluent, but promotes efficient ionization of the targeted analytes. Protonated molecules generated in the ESI source were subjected to tandem mass spectrometric experiments in a triple-quadrupole mass spectrometer. The main fragmentation reactions were characterized for each analyte and specific mass spectral transitions were used to acquire chromatographic data in the multiple reaction monitoring detection mode. Results obtained during optimization of the sheath liquid composition and flow-rate suggest that the electrospray process was mainly under the control of the make-up solution, and that it forms an external charged layer around a neutral chromatographic mobile phase core. This sheath liquid interface was implemented for the analysis of some neoflavonoid compounds and its performance was evaluated. Limits of detection were established for calophillolide, inophyllum B, inophyllum P and inophyllum C at 100, 25, 15 and 100 ng ml(-1), respectively.

  1. Seasonal dynamics of groundwater-lake interactions at Doñana National Park, Spain

    USGS Publications Warehouse

    Sacks, Laura A.; Herman, Janet S.; Konikow, Leonard F.; Vela, Antonio L.

    1992-01-01

    The hydrologic and solute budgets of a lake can be strongly influenced by transient groundwater flow. Several shallow interdunal lakes in southwest Spain are in close hydraulic connection with the shallow ground water. Two permanent lakes and one intermittent lake have chloride concentrations that differ by almost an order of magnitude. A two-dimensional solute-transport model, modified to simulate transient groundwater-lake interaction, suggests that the rising water table during the wet season leads to local flow reversals toward the lakes. Response of the individual lakes, however, varies depending on the lake's position in the regional flow system. The most dilute lake is a flow-through lake during the entire year; the through flow is driven by regional groundwater flow. The other permanent lake, which has a higher solute concentration, undergoes seasonal groundwater flow reversals at its downgradient end, resulting in complex seepage patterns and higher solute concentrations in the ground water near the lake. The solute concentration of the intermittent lake is influenced more strongly by the seasonal wetting and drying cycle than by the regional flow system. Although evaporation is the major process affecting the concentration of conservative solutes in the lakes, geochemical and biochemical reactions influence the concentration of nonconservative solutes. Probable reactions in the lakes include biological uptake of solutes and calcite precipitation; probable reactions as lake water seeps into the aquifer are sulfate reduction and calcite dissolution. Seepage reversals can result in water composition that appears inconsistent with predictions based on head measurements because, under transient flow conditions, the flow direction at any instant may not satisfactorily depict the source of the water. Understanding the dynamic nature of groundwater-lake interaction aids in the interpretation of hydrologic and chemical relations between the lakes and the ground water.

  2. Breakdown of Burton Prim Slichter approach and lateral solute segregation in radially converging flows

    NASA Astrophysics Data System (ADS)

    Priede, J.; Gerbeth, G.

    2005-11-01

    A theoretical study is presented of the effect of a radially converging melt flow, which is directed away from the solidification front, on the radial solute segregation in simple solidification models. We show that the classical Burton-Prim-Slichter (BPS) solution describing the effect of a diverging flow on the solute incorporation into the solidifying material breaks down for the flows converging along the solidification front. The breakdown is caused by a divergence of the integral defining the effective boundary layer thickness which is the basic concept of the BPS theory. Although such a divergence can formally be avoided by restricting the axial extension of the melt to a layer of finite height, radially uniform solute distributions are possible only for weak melt flows with an axial velocity away from the solidification front comparable to the growth rate. There is a critical melt velocity for each growth rate at which the solution passes through a singularity and becomes physically inconsistent for stronger melt flows. To resolve these inconsistencies we consider a solidification front presented by a disk of finite radius R0 subject to a strong converging melt flow and obtain an analytic solution showing that the radial solute concentration depends on the radius r as ˜ln(R0/r) and ˜ln(R0/r) close to the rim and at large distances from it. The logarithmic increase of concentration is limited in the vicinity of the symmetry axis by the diffusion becoming effective at a distance comparable to the characteristic thickness of the solute boundary layer. The converging flow causes a solute pile-up forming a logarithmic concentration peak at the symmetry axis which might be an undesirable feature for crystal growth processes.

  3. On the Flow of a Compressible Fluid by the Hodograph Method. II - Fundamental Set of Particular Flow Solutions of the Chaplygin Differential Equation

    NASA Technical Reports Server (NTRS)

    Garrick, I. E.; Kaplan, Carl

    1944-01-01

    The differential equation of Chaplygin's jet problem is utilized to give a systematic development of particular solutions of the hodograph flow equations, which extends the treatment of Chaplygin into the supersonic range and completes the set of particular solutions. The particular solutions serve to place on a reasonable basis the use of velocity correction formulas for the comparison of incompressible and compressible flows. It is shown that the geometric-mean type of velocity correction formula introduced in part I has significance as an over-all type of approximation in the subsonic range. A brief review of general conditions limiting the potential flow of an adiabatic compressible fluid is given and application is made to the particular solutions, yielding conditions for the existence of singular loci in the supersonic range. The combining of particular solutions in accordance with prescribed boundary flow conditions is not treated in the present paper.

  4. Numerical Analysis of Intra-Cavity and Power-Stream Flow Interaction in Multiple Gas-Turbine Disk-Cavities

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.; Steinetz, B. M.

    1995-01-01

    A numerical analysis methodology and solutions of the interaction between the power stream and multiply-connected multi-cavity sealed secondary flow fields are presented. Flow solutions for a multi-cavity experimental rig were computed and compared with experimental data of Daniels and Johnson. The flow solutions illustrate the complex coupling between the main-path and the cavity flows as well as outline the flow thread that exists throughout the subplatform multiple cavities and seals. The analysis also shows that the de-coupled solutions on single cavities is inadequate. The present results show trends similar to the T-700 engine data that suggests the changes in the CDP seal altered the flow fields throughout the engine and affected the engine performance.

  5. Method for non-contact particle manipulation and control of particle spacing along an axis

    DOEpatents

    Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde

    2013-09-10

    One or more of the embodiments of the present invention provide for a method of non-contact particle manipulation and control of particle spacing along an axis which includes axial and radial acoustic standing wave fields. Particles are suspended in an aqueous solution, and this solution then flows into the cylindrical flow channel. While the solution flows through the flow channel, the outer structure of the flow channel is vibrated at a resonant frequency, causing a radial acoustic standing wave field to form inside the flow channel in the solution. These radial acoustic standing waves focus the particles suspended in the solution to the center axis of the cylindrical flow channel. At the same time, a transducer is used to create an axial acoustic standing wave field in the flow channel parallel to the axis of the flow channel. This drives the particles, which are already being focused to the center axis of the flow channel, to nodes or anti-nodes of the axial standing wave at half-wavelength intervals, depending on whether the particles are more or less dense and more or less compressible than the surrounding fluid.

  6. Is this elderly patient dehydrated? Diagnostic accuracy of hydration assessment using physical signs, urine, and saliva markers.

    PubMed

    Fortes, Matthew B; Owen, Julian A; Raymond-Barker, Philippa; Bishop, Claire; Elghenzai, Salah; Oliver, Samuel J; Walsh, Neil P

    2015-03-01

    Dehydration in older adults contributes to increased morbidity and mortality during hospitalization. As such, early diagnosis of dehydration may improve patient outcome and reduce the burden on healthcare. This prospective study investigated the diagnostic accuracy of routinely used physical signs, and noninvasive markers of hydration in urine and saliva. Prospective diagnostic accuracy study. Hospital acute medical care unit and emergency department. One hundred thirty older adults [59 males, 71 females, mean (standard deviation) age = 78 (9) years]. Participants with any primary diagnosis underwent a hydration assessment within 30 minutes of admittance to hospital. Hydration assessment comprised 7 physical signs of dehydration [tachycardia (>100 bpm), low systolic blood pressure (<100 mm Hg), dry mucous membrane, dry axilla, poor skin turgor, sunken eyes, and long capillary refill time (>2 seconds)], urine color, urine specific gravity, saliva flow rate, and saliva osmolality. Plasma osmolality and the blood urea nitrogen to creatinine ratio were assessed as reference standards of hydration with 21% of participants classified with water-loss dehydration (plasma osmolality >295 mOsm/kg), 19% classified with water-and-solute-loss dehydration (blood urea nitrogen to creatinine ratio >20), and 60% classified as euhydrated. All physical signs showed poor sensitivity (0%-44%) for detecting either form of dehydration, with only low systolic blood pressure demonstrating potential utility for aiding the diagnosis of water-and-solute-loss dehydration [diagnostic odds ratio (OR) = 14.7]. Neither urine color, urine specific gravity, nor saliva flow rate could discriminate hydration status (area under the receiver operating characteristic curve = 0.49-0.57, P > .05). In contrast, saliva osmolality demonstrated moderate diagnostic accuracy (area under the receiver operating characteristic curve = 0.76, P < .001) to distinguish both dehydration types (70% sensitivity, 68% specificity, OR = 5.0 (95% confidence interval 1.7-15.1) for water-loss dehydration, and 78% sensitivity, 72% specificity, OR = 8.9 (95% confidence interval 2.5-30.7) for water-and-solute-loss dehydration). With the exception of low systolic blood pressure, which could aid in the specific diagnosis of water-and-solute-loss dehydration, physical signs and urine markers show little utility to determine if an elderly patient is dehydrated. Saliva osmolality demonstrated superior diagnostic accuracy compared with physical signs and urine markers, and may have utility for the assessment of both water-loss and water-and-solute-loss dehydration in older individuals. It is particularly noteworthy that saliva osmolality was able to detect water-and-solute-loss dehydration, for which a measurement of plasma osmolality would have no diagnostic utility. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  7. Finite element analysis of transonic flows in cascades: Importance of computational grids in improving accuracy and convergence

    NASA Technical Reports Server (NTRS)

    Ecer, A.; Akay, H. U.

    1981-01-01

    The finite element method is applied for the solution of transonic potential flows through a cascade of airfoils. Convergence characteristics of the solution scheme are discussed. Accuracy of the numerical solutions is investigated for various flow regions in the transonic flow configuration. The design of an efficient finite element computational grid is discussed for improving accuracy and convergence.

  8. Modeling the Migration of Fluids in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Wilson, C. R.; Spiegelman, M.; Van Keken, P. E.; Vrijmoed, J. C.; Hacker, B. R.

    2011-12-01

    Fluids play a major role in the formation of arc volcanism and the generation of continental crust. Progressive dehydration reactions in the downgoing slab release fluids to the hot overlying mantle wedge, causing flux melting and the migration of melts to the volcanic front. While the qualitative concept is well established, the quantitative details of fluid release and especially that of fluid migration and generation of hydrous melting in the wedge is still poorly understood. Here we present new models of the fluid migration through the mantle wedge for subduction zones. We use an existing set of high resolution metamorphic models (van Keken et al, 2010) to predict the regions of water release from the sediments, upper and lower crust, and upper most mantle. We use this water flux as input for the fluid migration calculation based on new finite element models built on advanced computational libraries (FEniCS/PETSc) for efficient and flexible solution of coupled multi-physics problems. The first generation of one-way coupled models solves for the evolution of porosity and fluid-pressure/flux throughout the slab and wedge given solid flow, viscosity and thermal fields from separate solutions to the incompressible Stokes and energy equations in the mantle wedge. These solutions are verified by comparing to previous benchmark studies (van Keken et al, 2008) and global suites of thermal subduction models (Syracuse et al, 2010). Fluid flow depends on both permeability and the rheology of the slab-wedge system as interaction with rheological variability can induce additional pressure gradients that affect the fluid flow pathways. These non-linearities have been shown to explain laboratory-scale observations of melt band orientation in labratory experiments and numerical simulations of melt localization in shear bands (Katz et al 2006). Our second generation of models dispense with the pre-calculation of incompressible mantle flow and fully couple the now compressible system of mantle and fluid flow equations, introducing complex feedbacks between the rheology, temperature, permeability, strain rate and porosity. Using idealized subduction zone geometries we investigate the effects of this non-linearity and explore the sensitivity of fluid flow paths for a range of fluid flow parameters with emphasis on variability of the location of the volcanic arc with respect to flow paths. We also estimate the expected degrees of hydrous melting using a variety of wet-melting parameterizations (e.g., Katz et al, 2003, Kelley et al, 2010). The current models only include dehydration reactions but work continues on the next generation of models which will include both dehydration and hydration reactions as well as parameterized flux melting in a consistent reactive-flow framework.

  9. Numerical techniques for the solution of the compressible Navier-Stokes equations and implementation of turbulence models. [separated turbulent boundary layer flow problems

    NASA Technical Reports Server (NTRS)

    Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.

    1975-01-01

    The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.

  10. A method to approximate a closest loadability limit using multiple load flow solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yorino, Naoto; Harada, Shigemi; Cheng, Haozhong

    A new method is proposed to approximate a closest loadability limit (CLL), or closest saddle node bifurcation point, using a pair of multiple load flow solutions. More strictly, the obtainable points by the method are the stationary points including not only CLL but also farthest and saddle points. An operating solution and a low voltage load flow solution are used to efficiently estimate the node injections at a CLL as well as the left and right eigenvectors corresponding to the zero eigenvalue of the load flow Jacobian. They can be used in monitoring loadability margin, in identification of weak spotsmore » in a power system and in the examination of an optimal control against voltage collapse. Most of the computation time of the proposed method is taken in calculating the load flow solution pair. The remaining computation time is less than that of an ordinary load flow.« less

  11. The calculation of steady non-linear transonic flow over finite wings with linear theory aerodynamics

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1976-01-01

    The feasibility of calculating steady mean flow solutions for nonlinear transonic flow over finite wings with a linear theory aerodynamic computer program is studied. The methodology is based on independent solutions for upper and lower surface pressures that are coupled through the external flow fields. Two approaches for coupling the solutions are investigated which include the diaphragm and the edge singularity method. The final method is a combination of both where a line source along the wing leading edge is used to account for blunt nose airfoil effects; and the upper and lower surface flow fields are coupled through a diaphragm in the plane of the wing. An iterative solution is used to arrive at the nonuniform flow solution for both nonlifting and lifting cases. Final results for a swept tapered wing in subcritical flow show that the method converges in three iterations and gives excellent agreement with experiment at alpha = 0 deg and 2 deg. Recommendations are made for development of a procedure for routine application.

  12. Flow distribution during infusion of UW and HTK solution in anaesthetised rats.

    PubMed

    Jansson, Leif; Carlsson, Per-Ola; Bodin, Birgitta; Källskog, Orjan

    2011-06-01

    Organ transplantation necessitates the use of preservation solutions to maintain the integrity of the organs during retrieval. The aim of this study was to investigate the flow distribution in abdominal organs in rats during acute infusion of preservation solution. Microspheres were used to estimate the distribution of flow in the pancreas, duodenum, ileum, colon, liver, kidneys and lungs in untreated Wistar-Furth rats and in animals with an opened abdominal cavity and catheterised aorta. Some animals were infused by free flow of 5 ml of UW, HTK or Ringer solution containing microspheres at a pressure of 100 cm H(2)O through an intra-aortic catheter. Opening of the abdominal cavity did not affect any of the organ blood flow values. However, the fraction of total pancreatic blood flow diverted through the islets increased. During infusion of microsphere-containing UW, HTK or Ringer solution, splanchnic and renal organ flow values, represented by microsphere contents, were similar. The fraction of microspheres found in the islets was lower in UW-infused rats. The number of microspheres present in the lungs or liver was very low, suggesting that shunting was negligible. Infusion of HTK and UW solution into anaesthetised rats results in a flow distribution which is similar to that in normal animals in most abdominal organs, but there is a reduction in islet blood perfusion by UW but not HTK solution.

  13. Numerical Simulations of Laminar Air-Water Flow of a Non-linear Progressive Wave at Low Wind Speed

    NASA Astrophysics Data System (ADS)

    Wen, X.; Mobbs, S.

    2014-03-01

    A numerical simulation for two-dimensional laminar air-water flow of a non-linear progressive water wave with large steepness is performed when the background wind speed varies from zero to the wave phase speed. It is revealed that in the water the difference between the analytical solution of potential flow and numerical solution of viscous flow is very small, indicating that both solutions of the potential flow and viscous flow describe the water wave very accurately. In the air the solutions of potential and viscous flows are very different due to the effects of viscosity. The velocity distribution in the airflow is strongly influenced by the background wind speed and it is found that three wind speeds, , (the maximum orbital velocity of a water wave), and (the wave phase speed), are important in distinguishing different features of the flow patterns.

  14. Separated flow over bodies of revolution using an unsteady discrete-vorticity cross wake. Part 1: Theory and application

    NASA Technical Reports Server (NTRS)

    Marshall, F. J.; Deffenbaugh, F. D.

    1974-01-01

    A method is developed to determine the flow field of a body of revolution in separated flow. The technique employed is the use of the computer to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the required two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separation regions and wake vortex patterns are determined.

  15. Separated flow over bodies of revolution using an unsteady discrete-vorticity cross wake. Part 2: Computer program description

    NASA Technical Reports Server (NTRS)

    Marshall, F. J.; Deffenbaugh, F. D.

    1974-01-01

    A method is developed to determine the flow field of a body of revolution in separated flow. The computer was used to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separated regions and wake vortex patterns are determined. The computer program developed to perform the numerical calculations is described.

  16. Unsteady fluid flow in a slightly curved pipe: A comparative study of a matched asymptotic expansions solution with a single analytical solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messaris, Gerasimos A. T., E-mail: messaris@upatras.gr; School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras; Hadjinicolaou, Maria

    The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient inmore » a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions, a factor that may contribute jointly with other pathological factors to the faster aging of the arterial system and the possible malfunction of the aorta.« less

  17. Unsteady fluid flow in a slightly curved pipe: A comparative study of a matched asymptotic expansions solution with a single analytical solution

    NASA Astrophysics Data System (ADS)

    Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.

    2016-08-01

    The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions, a factor that may contribute jointly with other pathological factors to the faster aging of the arterial system and the possible malfunction of the aorta.

  18. Flow rate and source reservoir identification from airborne chemical sampling of the uncontrolled Elgin platform gas release

    NASA Astrophysics Data System (ADS)

    Lee, James D.; Mobbs, Stephen D.; Wellpott, Axel; Allen, Grant; Bauguitte, Stephane J.-B.; Burton, Ralph R.; Camilli, Richard; Coe, Hugh; Fisher, Rebecca E.; France, James L.; Gallagher, Martin; Hopkins, James R.; Lanoiselle, Mathias; Lewis, Alastair C.; Lowry, David; Nisbet, Euan G.; Purvis, Ruth M.; O'Shea, Sebastian; Pyle, John A.; Ryerson, Thomas B.

    2018-03-01

    An uncontrolled gas leak from 25 March to 16 May 2012 led to evacuation of the Total Elgin wellhead and neighbouring drilling and production platforms in the UK North Sea. Initially the atmospheric flow rate of leaking gas and condensate was very poorly known, hampering environmental assessment and well control efforts. Six flights by the UK FAAM chemically instrumented BAe-146 research aircraft were used to quantify the flow rate. The flow rate was calculated by assuming the plume may be modelled by a Gaussian distribution with two different solution methods: Gaussian fitting in the vertical and fitting with a fully mixed layer. When both solution methods were used they compared within 6 % of each other, which was within combined errors. Data from the first flight on 30 March 2012 showed the flow rate to be 1.3 ± 0.2 kg CH4 s-1, decreasing to less than half that by the second flight on 17 April 2012. δ13CCH4 in the gas was found to be -43 ‰, implying that the gas source was unlikely to be from the main high pressure, high temperature Elgin gas field at 5.5 km depth, but more probably from the overlying Hod Formation at 4.2 km depth. This was deemed to be smaller and more manageable than the high pressure Elgin field and hence the response strategy was considerably simpler. The first flight was conducted within 5 days of the blowout and allowed a flow rate estimate within 48 h of sampling, with δ13CCH4 characterization soon thereafter, demonstrating the potential for a rapid-response capability that is widely applicable to future atmospheric emissions of environmental concern. Knowledge of the Elgin flow rate helped inform subsequent decision making. This study shows that leak assessment using appropriately designed airborne plume sampling strategies is well suited for circumstances where direct access is difficult or potentially dangerous. Measurements such as this also permit unbiased regulatory assessment of potential impact, independent of the emitting party, on timescales that can inform industry decision makers and assist rapid-response planning by government.

  19. Asymptotic research of transonic gas flows

    NASA Astrophysics Data System (ADS)

    Velmisov, Petr A.; Tamarova, Yuliya A.

    2017-12-01

    The article is dedicated to the development asymptotic theory of gas flowing at speed next to sound velocity, particularly of gas transonic flows, i.e. the flows, containing both, subsonic and supersonic areas. The main issue, when styding such flows, are nonlinearity and combined type of equations, describing the transonic flow. Based on asymptotic nonlinear equation obtained in the article, the gas transonic flows is studied, considering transverse disturbance with respect to the main flow. The asymptotic conditions at shock-wave front and conditions on the streamlined surface are found. Moreover, the equation of sound surface and asymptotic formula defining the pressure are recorded. Several exact particular solutions of such equation are given, and their application to solve several tasks of transonic aerodynamics is indicated. Specifically, the polynomial form solution describing gas axisymmetric flows in Laval nozzles with constant acceleration in direction of the nozzle's axis and flow swirling is obtained. The solutions describing the unsteady flow along the channels between spinning surfaces are presented. The asymptotic equation is obtained, describing the flow, appearing during non-separated and separated flow past, closely approximated to cylindrical one. Specific solutions are given, based on which the examples of steady flow are formed.

  20. Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions

    NASA Astrophysics Data System (ADS)

    Fang, Tiegang

    2014-05-01

    In this paper, the magnetohydrodynamic (MHD) flow over a nonlinearly (power-law velocity) moving surface is investigated analytically and solutions are presented for a few special conditions. The solutions are obtained in closed forms with hyperbolic functions. The effects of the magnetic, the wall moving, and the mass transpiration parameters are discussed. These solutions are important to show the flow physics as well as to be used as bench mark problems for numerical validation and development of new solution schemes.

  1. Multigrid solution of internal flows using unstructured solution adaptive meshes

    NASA Technical Reports Server (NTRS)

    Smith, Wayne A.; Blake, Kenneth R.

    1992-01-01

    This is the final report of the NASA Lewis SBIR Phase 2 Contract Number NAS3-25785, Multigrid Solution of Internal Flows Using Unstructured Solution Adaptive Meshes. The objective of this project, as described in the Statement of Work, is to develop and deliver to NASA a general three-dimensional Navier-Stokes code using unstructured solution-adaptive meshes for accuracy and multigrid techniques for convergence acceleration. The code will primarily be applied, but not necessarily limited, to high speed internal flows in turbomachinery.

  2. Deceleration of a supersonic flow behind a curved shock wave with isentropic precompression

    NASA Technical Reports Server (NTRS)

    Dulov, V. G.; Shchepanovskiy, V. A.

    1985-01-01

    Three-dimensional supersonic flows of an ideal fluid in the neighborhood of bodies formed by being cut out along the streamlines of an axisymmetric flow are investigated. The flow consists of a region of isoentropic compression and a region of vortex flow. An exact solution with variable entropy is used to describe the flow in the vortex region. In the continuous flow region an approximate solution is constructed by expanding the solution in a series in a small parameter. The effect of the shape of the excision and the vorticity of the flow on compression of the jet and and the total pressure loss coefficient is studied.

  3. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface.

  4. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface. Copyright 2009 by the American Geophysical Union.

  5. Analytical solutions for solute transport in groundwater and riverine flow using Green's Function Method and pertinent coordinate transformation method

    NASA Astrophysics Data System (ADS)

    Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen

    2017-04-01

    In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn't exist for both spatially and temporally variations of dispersion coefficient and velocity. In this study, the existing analytical solutions from previous widely known studies are used for comparison as validation tools to verify the proposed analytical solution as well as the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) code and the developed 1D finite difference code (FDM). All such solutions show perfect match with the respective proposed solutions.

  6. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    USGS Publications Warehouse

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  7. Study of the buffering capacity, pH and salivary flow rate in type 2 well-controlled and poorly controlled diabetic patients.

    PubMed

    Bernardi, Maria José; Reis, Alessandra; Loguercio, Alessandro Dourado; Kehrig, Ruth; Leite, Mariana Ferreira; Nicolau, José

    2007-01-01

    This study measured the flow rate, pH and buffering capacity of saliva from well- and poorly metabolically controlled Type 2 diabetic patients in three cities of the southern part of Brazil, compared with healthy individuals from the same cities. Whole saliva was collected by mechanical stimulation and buffering capacity and glucose level were measured. Blood was collected after 12 hours fasting and glucose and glycosylated haemoglobin concentrations were determined. The data were analysed by one-way ANOVA and Student-Newman-Keuls (alpha= 0.05). The flow rate was lower in the Type 2 diabetic patients, regardless of whether they were well or poorly metabolically controlled, compared with healthy individuals (p < 0.05). Salivary glucose concentration was higher in both diabetic patient groups, i.e. well and poorly metabolically controlled, than in the control (p < 0.05). The metabolic control of hyperglycaemia was not sufficient to improve the salivary flow rate or the salivary glucose concentration.

  8. A grid generation and flow solution method for the Euler equations on unstructured grids

    NASA Astrophysics Data System (ADS)

    Anderson, W. Kyle

    1994-01-01

    A grid generation and flow solution algorithm for the Euler equations on unstructured grids is presented. The grid generation scheme utilizes Delaunay triangulation and self-generates the field points for the mesh based on cell aspect ratios and allows for clustering near solid surfaces. The flow solution method is an implicit algorithm in which the linear set of equations arising at each time step is solved using a Gauss Seidel procedure which is completely vectorizable. In addition, a study is conducted to examine the number of subiterations required for good convergence of the overall algorithm. Grid generation results are shown in two dimensions for a National Advisory Committee for Aeronautics (NACA) 0012 airfoil as well as a two-element configuration. Flow solution results are shown for two-dimensional flow over the NACA 0012 airfoil and for a two-element configuration in which the solution has been obtained through an adaptation procedure and compared to an exact solution. Preliminary three-dimensional results are also shown in which subsonic flow over a business jet is computed.

  9. Flow induced/ refined solution crystallization of a semiconducting polymer

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc A.

    Organic photovoltaics, a new generation of solar cells, has gained scientific and economic interests due to the ability of solution-processing and potentially low-cost power production. Though, the low power conversion efficiency of organic/ plastic solar cells is one of the most pertinent challenges that has appealed to research communities from many different fields including materials science and engineering, electrical engineering, chemical engineering, physics and chemistry. This thesis focuses on investigating and controlling the morphology of a semi-conducting, semi-crystalline polymer formed under shear-flow. Molecular structures and processing techniques are critical factors that significantly affect the morphology formation in the plastic solar cells, thus influencing device performance. In this study, flow-induced solution crystallization of poly (3-hexylthiophene) (P3HT) in a poor solvent, 2-ethylnapthalene (2-EN) was utilized to make a paint-like, structural liquid. The polymer crystals observed in this structured paint are micrometers long, nanometers in cross section and have a structure similar to that formed under quiescent conditions. There is pi-pi stacking order along the fibril axis, while polymer chain folding occurs along the fibril width and the order of the side-chain stacking is along fibril height. It was revealed that shear-flow not only induces P3HT crystallization from solution, but also refines and perfects the P3HT crystals. Thus, a general strategy to refine the semiconducting polymer crystals from solution under shear-flow has been developed and employed by simply tuning the processing (shearing) conditions with respect to the dissolution temperature of P3HT in 2-EN. The experimental results demonstrated that shear removes defects and allows more perfect crystals to be formed. There is no glass transition temperature observed in the crystals formed using the flow-induced crystallization indicating a significantly different morphology formation in comparison to that of the pristine (as-received) P3HT. As a result, single P3HT crystals with high surface energy chain folds were analyzed and determined. Previous reported results of infinite melting enthalpy of extended chain P3HT crystals are much higher than the result discovered in this study. The findings in this study revealed that the infinite melting enthalpy of chain-folded P3HT crystals is considerably decreased due to the presence of this P3HT chain-folded surface energy. In this study, the kinetics and mechanism of P3HT crystallization under shear-flow was thoroughly investigated as well. A homogeneous nucleation of P3HT was observed that allows one dimensional fibril crystal growth. The micrometer long P3HT crystals are formed and limited by the contact time between the P3HT molecules. Furthermore, it was found that phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles inhibit the crystallization of P3HT under shear. However, the shear-flow leads to nanophase agglomeration of PCBM and creates percolation of P3HT fibril crystal networks and the PCBM phase separated domains that apparently present better pathways for transporting electrons and holes. Interestingly, the structured liquid was simply applied onto substrates with a paintbrush resulting in similar device performance to those made with current techniques in which the morphology is commonly formed during application or post-processing steps. These detailed findings are given and discussed in the thesis.

  10. Upscaling permeability for three-dimensional fractured porous rocks with the multiple boundary method

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Hiller, Thomas

    2018-02-01

    Upscaling permeability of grid blocks is crucial for groundwater models. A novel upscaling method for three-dimensional fractured porous rocks is presented. The objective of the study was to compare this method with the commonly used Oda upscaling method and the volume averaging method. First, the multiple boundary method and its computational framework were defined for three-dimensional stochastic fracture networks. Then, the different upscaling methods were compared for a set of rotated fractures, for tortuous fractures, and for two discrete fracture networks. The results computed by the multiple boundary method are comparable with those of the other two methods and fit best the analytical solution for a set of rotated fractures. The errors in flow rate of the equivalent fracture model decrease when using the multiple boundary method. Furthermore, the errors of the equivalent fracture models increase from well-connected fracture networks to poorly connected ones. Finally, the diagonal components of the equivalent permeability tensors tend to follow a normal or log-normal distribution for the well-connected fracture network model with infinite fracture size. By contrast, they exhibit a power-law distribution for the poorly connected fracture network with multiple scale fractures. The study demonstrates the accuracy and the flexibility of the multiple boundary upscaling concept. This makes it attractive for being incorporated into any existing flow-based upscaling procedures, which helps in reducing the uncertainty of groundwater models.

  11. Simulation of turbulent separated flows using a novel, evolution-based, eddy-viscosity formulation

    NASA Astrophysics Data System (ADS)

    Castellucci, Paul

    Currently, there exists a lack of confidence in the computational simulation of turbulent separated flows at large Reynolds numbers. The most accurate methods available are too computationally costly to use in engineering applications. Thus, inexpensive models, developed using the Reynolds-averaged Navier-Stokes (RANS) equations, are often extended beyond their applicability. Although these methods will often reproduce integrated quantities within engineering tolerances, such metrics are often insensitive to details within a separated wake, and therefore, poor indicators of simulation fidelity. Using concepts borrowed from large-eddy simulation (LES), a two-equation RANS model is modified to simulate the turbulent wake behind a circular cylinder. This modification involves the computation of one additional scalar field, adding very little to the overall computational cost. When properly inserted into the baseline RANS model, this modification mimics LES in the separated wake, yet reverts to the unmodified form at the cylinder surface. In this manner, superior predictive capability may be achieved without the additional cost of fine spatial resolution associated with LES near solid boundaries. Simulations using modified and baseline RANS models are benchmarked against both LES and experimental data for a circular cylinder wake at Reynolds number 3900. In addition, the computational tool used in this investigation is subject to verification via the Method of Manufactured Solutions. Post-processing of the resultant flow fields includes both mean value and triple-decomposition analysis. These results reveal substantial improvements using the modified system and appear to drive the baseline wake solution toward that of LES, as intended.

  12. Polysaccharide-thickened aqueous fluoride solutions for rapid destruction of the nerve agent VX. Introducing the opportunity for extensive decontamination scenarios.

    PubMed

    Elias, Shlomi; Saphier, Sigal; Columbus, Ishay; Zafrani, Yossi

    2014-01-01

    Among the chemical warfare agents, the extremely toxic nerve agent VX (O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothioate) is a target of high importance in the development of decontamination methods, due to its indefinite persistence on common environmental surfaces. Liquid decontaminants are mostly characterized by high corrosivity, usually offer poor coverage, and tend to flow and accumulate in low areas. Therefore, the development of a noncorrosive decontaminant, sufficiently viscous to resist dripping from the contaminated surface, is necessary. In the present paper we studied different polysaccharides-thickened fluoride aqueous solutions as noncorrosive decontaminants for rapid and efficient VX degradation to the nontoxic product EMPA (ethyl methylphosphonic acid). Polysaccharides are environmentally benign, natural, and inexpensive. Other known decontaminants cannot be thickened by polysaccharides, due to the sensitivity of the latter toward basic or oxidizing agents. We found that the efficiency of VX degradation in these viscous solutions in terms of kinetics and product identity is similar to that of KF aqueous solutions. Guar gum (1.5 wt %) with 4 wt % KF was chosen for further evaluation. The benign nature, rheological properties, adhering capabilities to different surfaces, and decontamination from a porous matrix were examined. This formulation showed promising properties for implementation as a spray decontaminant for common and sensitive environmental surfaces.

  13. Verification assessment of piston boundary conditions for Lagrangian simulation of compressible flow similarity solutions

    DOE PAGES

    Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.

    2015-12-10

    This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less

  14. Verification assessment of piston boundary conditions for Lagrangian simulation of compressible flow similarity solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.

    This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less

  15. Solute transport along preferential flow paths in unsaturated fractures

    USGS Publications Warehouse

    Su, Grace W.; Geller, Jil T.; Pruess, Karsten; Hunt, James R.

    2001-01-01

    Laboratory experiments were conducted to study solute transport along preferential flow paths in unsaturated, inclined fractures. Qualitative aspects of solute transport were identified in a miscible dye tracer experiment conducted in a transparent replica of a natural granite fracture. Additional experiments were conducted to measure the breakthrough curves of a conservative tracer introduced into an established preferential flow path in two different fracture replicas and a rock‐replica combination. The influence of gravity was investigated by varying fracture inclination. The relationship between the travel times of the solute and the relative influence of gravity was substantially affected by two modes of intermittent flow that occurred: the snapping rivulet and the pulsating blob modes. The measured travel times of the solute were evaluated with three transfer function models: the axial dispersion, the reactors‐in‐series, and the lognormal models. The three models described the solute travel times nearly equally well. A mechanistic model was also formulated to describe transport when the pulsating blob mode occurred which assumed blobs of water containing solute mixed with residual pools of water along the flow path.

  16. Process dominance shift in solute chemistry as revealed by long-term high-frequency water chemistry observations of groundwater flowing through weathered argillite underlying a steep forested hillslope

    NASA Astrophysics Data System (ADS)

    Kim, Hyojin; Bishop, James K. B.; Dietrich, William E.; Fung, Inez Y.

    2014-09-01

    Significant solute flux from the weathered bedrock zone - which underlies soils and saprolite - has been suggested by many studies. However, controlling processes for the hydrochemistry dynamics in this zone are poorly understood. This work reports the first results from a four-year (2009-2012) high-frequency (1-3 day) monitoring of major solutes (Ca, Mg, Na, K and Si) in the perched, dynamic groundwater in a 4000 m2 zero-order basin located at the Angelo Coast Range Reserve, Northern California. Groundwater samples were autonomously collected at three wells (downslope, mid-slope, and upslope) aligned with the axis of the drainage. Rain and throughfall samples, profiles of well headspace pCO2, vertical profiles and time series of groundwater temperature, and contemporaneous data from an extensive hydrologic and climate sensor network provided the framework for data analysis. All runoff at this soil-mantled site occurs by vertical unsaturated flow through a 5-25 m thick weathered argillite and then by lateral flows to the adjacent channel as groundwater perched over fresher bedrock. Driven by strongly seasonal rainfall, over each of the four years of observations, the hydrochemistry of the groundwater at each well repeats an annual cycle, which can be explained by two end-member processes. The first end-member process, which dominates during the winter high-flow season in mid- and upslope areas, is CO2 enhanced cation exchange reaction in the vadose zone in the more shallow conductive weathered bedrock. This process rapidly increases the cation concentrations of the infiltrated rainwater, which is responsible for the lowest cation concentration of groundwater. The second-end member process occurs in the deeper perched groundwater and either dominates year-round (at the downslope well) or becomes progressively dominant during low flow season at the two upper slope wells. This process is the equilibrium reaction with minerals such as calcite and clay minerals, but not with primary minerals, suggesting the critical role of the residence time of the water. Collectively, our measurements reveal that the hydrochemistry dynamics of the groundwater in the weathered bedrock zone is governed by two end-member processes whose dominance varies with critical zone structure, the relative importance of vadose versus groundwater zone processes, and thus with the seasonal variation of the chemistry of recharge and runoff.

  17. Unsteady free convection flow of viscous fluids with analytical results by employing time-fractional Caputo-Fabrizio derivative (without singular kernel)

    NASA Astrophysics Data System (ADS)

    Ali Shah, Nehad; Mahsud, Yasir; Ali Zafar, Azhar

    2017-10-01

    This article introduces a theoretical study for unsteady free convection flow of an incompressible viscous fluid. The fluid flows near an isothermal vertical plate. The plate has a translational motion with time-dependent velocity. The equations governing the fluid flow are expressed in fractional differential equations by using a newly defined time-fractional Caputo-Fabrizio derivative without singular kernel. Explicit solutions for velocity, temperature and solute concentration are obtained by applying the Laplace transform technique. As the fractional parameter approaches to one, solutions for the ordinary fluid model are extracted from the general solutions of the fractional model. The results showed that, for the fractional model, the obtained solutions for velocity, temperature and concentration exhibit stationary jumps discontinuity across the plane at t=0 , while the solutions are continuous functions in the case of the ordinary model. Finally, numerical results for flow features at small-time are illustrated through graphs for various pertinent parameters.

  18. On the Solution of the Three-Dimensional Flowfield About a Flow-Through Nacelle. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Compton, William Bernard

    1985-01-01

    The solution of the three dimensional flow field for a flow through nacelle was studied. Both inviscid and viscous inviscid interacting solutions were examined. Inviscid solutions were obtained with two different computational procedures for solving the three dimensional Euler equations. The first procedure employs an alternating direction implicit numerical algorithm, and required the development of a complete computational model for the nacelle problem. The second computational technique employs a fourth order Runge-Kutta numerical algorithm which was modified to fit the nacelle problem. Viscous effects on the flow field were evaluated with a viscous inviscid interacting computational model. This model was constructed by coupling the explicit Euler solution procedure with a flag entrainment boundary layer solution procedure in a global iteration scheme. The computational techniques were used to compute the flow field for a long duct turbofan engine nacelle at free stream Mach numbers of 0.80 and 0.94 and angles of attack of 0 and 4 deg.

  19. Hydrodynamics beyond Navier-Stokes: the slip flow model.

    PubMed

    Yudistiawan, Wahyu P; Ansumali, Santosh; Karlin, Iliya V

    2008-07-01

    Recently, analytical solutions for the nonlinear Couette flow demonstrated the relevance of the lattice Boltzmann (LB) models to hydrodynamics beyond the continuum limit [S. Ansumali, Phys. Rev. Lett. 98, 124502 (2007)]. In this paper, we present a systematic study of the simplest LB kinetic equation-the nine-bit model in two dimensions--in order to quantify it as a slip flow approximation. Details of the aforementioned analytical solution are presented, and results are extended to include a general shear- and force-driven unidirectional flow in confined geometry. Exact solutions for the velocity, as well as for pertinent higher-order moments of the distribution functions, are obtained in both Couette and Poiseuille steady-state flows for all values of rarefaction parameter (Knudsen number). Results are compared with the slip flow solution by Cercignani, and a good quantitative agreement is found for both flow situations. Thus, the standard nine-bit LB model is characterized as a valid and self-consistent slip flow model for simulations beyond the Navier-Stokes approximation.

  20. Phase-Field Simulation of Concentration and Temperature Distribution During Dendritic Growth in a Forced Liquid Metal Flow

    NASA Astrophysics Data System (ADS)

    Du, Lifei; Zhang, Rong

    2014-12-01

    A phase-field model with convection is employed to investigate the effect of liquid flow on the dendritic structure formation of a Ni-Cu alloy during rapid solidification. Temperature and solute diffusion are significantly changed with induced liquid metal flow, and distribution changes of concentration and temperature are also analyzed and discussed. The solute segregation is affected due to the concentration diffusion layer thickness change caused by the liquid flow. The flow reduces the solute segregation in the upstream and leads to a fast dendrite growing, while solidifying in the downstream gets constrained with the large solute diffusion layer. Increasing flow velocity increases the asymmetry of dendrite morphology with much more suppressed growth in the downstream. The temperature distribution is also asymmetrical due to the non-uniform latent heat released during solidification coupling with heat diffusion changed by the liquid flow. Therefore, the forced liquid flow significantly affects the dendrite morphology, concentration, and temperature distributions in the solidifying microstructure.

  1. Methods of silver recovery from radiographs - comparative study

    NASA Astrophysics Data System (ADS)

    Canda, L. R.; Ardelean, E.; Hepuţ, T.

    2018-01-01

    Management and recovery of waste are activities with multiple impacts: technologically (by using waste on current production flows, thus replacing poor raw materials), economically (can substantially reduce manufacturing costs by recycling waste), social (by creating new jobs where it is necessary to process the waste in a form more suited to technological flows) and ecologically (by removing waste that is currently produced or already stored - but poses a threat to the health of the population and / or to the environment). This is also the case for medical waste, for example radiographs, which are currently produced in large quantities, for which replacement solutions are sought, but are currently stored by archiving in hospital units. The paper presents two methods used for this kind of waste management, the result being the recovery of silver, material with applications and with increasing price, but also the proper disposal of the polymeric support. This analysis aims at developing a more efficient recycling technology for medical radiographs.

  2. Changes in Wetting Hysteresis During Bioremediation: Changes in fluid flow behavior monitored with low-frequency seismic attenuation

    NASA Astrophysics Data System (ADS)

    Wempe, W.; Spetzler, H.; Kittleson, C.; Pursley, J.

    2003-12-01

    We observed significant reduction in wetting hysteresis with time while a diesel-contaminated quartz crystal was dipped in and out of an oil-reducing bacteria solution. This wetting hysteresis is significantly greater than the wetting hysteresis when the diesel-contaminated quartz crystal is dipped in and out of (1) water, (2) diesel and (3) the bacterial food solution that does not contain bacteria. The reduction in wetting hysteresis of the bacteria solution on the quartz surface results from a reduction in the advancing contact angle formed at the air-liquid-quartz contact with time; the receding contact angle remains the same with time. Our results suggest that the bacteria solution moves across the quartz surface with less resistance after bioremediation has begun. These results imply that bioremediation may influence fluid flow behavior with time. For many fluid-solid systems there is a difference between the contact angle while a contact line advances and recedes across a solid surface; this difference is known as wetting hysteresis. Changes in wetting hysteresis can occur from changes in surface tension or the surface topography. Low contact angle values indicate that the liquid spreads or wets well, while high values indicate poor wetting or non-wetting. Contact angles are estimated in the lab by measuring the weight of the meniscus formed at the air-liquid-quartz interface and by knowing the fluid surface tension. In the lab, we have been able to use low-frequency seismic attenuation data to detect changes in the wetting characteristics of glass plates and of Berea sandstone. The accepted seismic attenuation mechanism is related to the loss of seismic energy due to the hysteresis of meniscus movement (wetting hysteresis) when a pore containing two fluids is stressed at very low frequencies (< 10 Hz). When fluid-fluid-solid systems that exhibit wettability hysteresis are stressed at low frequencies, we observe seismic attenuation, whereas in a system that does not exhibit wettability hysteresis we do not. From our wettability hysteresis results, we conclude that we may be able to monitor bioremediation progress using seismic attenuation data. We are measuring low-frequency seismic attenuation in the lab while flowing bacteria solution through Berea sandstone and we are testing this application in the field.

  3. Cascade Optimization Strategy Maximizes Thrust for High-Speed Civil Transport Propulsion System Concept

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The design of a High-Speed Civil Transport (HSCT) air-breathing propulsion system for multimission, variable-cycle operations was successfully optimized through a soft coupling of the engine performance analyzer NASA Engine Performance Program (NEPP) to a multidisciplinary optimization tool COMETBOARDS that was developed at the NASA Lewis Research Center. The design optimization of this engine was cast as a nonlinear optimization problem, with engine thrust as the merit function and the bypass ratios, r-values of fans, fuel flow, and other factors as important active design variables. Constraints were specified on factors including the maximum speed of the compressors, the positive surge margins for the compressors with specified safety factors, the discharge temperature, the pressure ratios, and the mixer extreme Mach number. Solving the problem by using the most reliable optimization algorithm available in COMETBOARDS would provide feasible optimum results only for a portion of the aircraft flight regime because of the large number of mission points (defined by altitudes, Mach numbers, flow rates, and other factors), diverse constraint types, and overall poor conditioning of the design space. Only the cascade optimization strategy of COMETBOARDS, which was devised especially for difficult multidisciplinary applications, could successfully solve a number of engine design problems for their flight regimes. Furthermore, the cascade strategy converged to the same global optimum solution even when it was initiated from different design points. Multiple optimizers in a specified sequence, pseudorandom damping, and reduction of the design space distortion via a global scaling scheme are some of the key features of the cascade strategy. HSCT engine concept, optimized solution for HSCT engine concept. A COMETBOARDS solution for an HSCT engine (Mach-2.4 mixed-flow turbofan) along with its configuration is shown. The optimum thrust is normalized with respect to NEPP results. COMETBOARDS added value in the design optimization of the HSCT engine.

  4. Finite element analysis of low speed viscous and inviscid aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1977-01-01

    A weak interaction solution algorithm was established for aerodynamic flow about an isolated airfoil. Finite element numerical methodology was applied to solution of each of differential equations governing potential flow, and viscous and turbulent boundary layer and wake flow downstream of the sharp trailing edge. The algorithm accounts for computed viscous displacement effects on the potential flow. Closure for turbulence was accomplished using both first and second order models. The COMOC finite element fluid mechanics computer program was modified to solve the identified equation systems for two dimensional flows. A numerical program was completed to determine factors affecting solution accuracy, convergence and stability for the combined potential, boundary layer, and parabolic Navier-Stokes equation systems. Good accuracy and convergence are demonstrated. Each solution is obtained within the identical finite element framework of COMOC.

  5. VERTPAK1. Code Verification Analytic Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golis, M.J.

    1983-04-01

    VERTPAK1 is a package of analytical solutions used in verification of numerical codes that simulate fluid flow, rock deformation, and solute transport in fractured and unfractured porous media. VERTPAK1 contains the following: BAREN, an analytical solution developed by Barenblatt, Zhelton and Kochina (1960) for describing transient flow to a well penetrating a (double porosity) confined aquifer; GIBMAC, an analytical solution developed by McNamee and Gibson (1960) for describing consolidation of a semi-infinite soil medium subject to a strip (plane strain) or cylindrical (axisymmetric) loading; GRINRH, an analytical solution developed by Gringarten (1971) for describing transient flow to a partially penetratingmore » well in a confined aquifer containing a single horizontal fracture; GRINRV, an analytical solution developed by Gringarten, Ramey, and Raghavan (1974) for describing transient flow to a fully penetrating well in a confined aquifer containing a single vertical fracture; HART, an analytical solution given by Nowacki (1962) and implemented by HART (1981) for describing the elastic behavior of an infinite solid subject to a line heat source; LESTER, an analytical solution presented by Lester, Jansen, and Burkholder (1975) for describing one-dimensional transport of radionuclide chains through an adsorbing medium; STRELT, an analytical solution presented by Streltsova-Adams (1978) for describing transient flow to a fully penetrating well in a (double porosity) confined aquifer; and TANG, an analytical solution developed by Tang, Frind, and Sudicky (1981) for describing solute transport in a porous medium containing a single fracture.« less

  6. Quasi-2D Unsteady Flow Solver Module for Rocket Engine and Propulsion System Simulations

    DTIC Science & Technology

    2006-06-14

    Conference, Sacramento, CA, 9-12 July 2006. 14. ABSTRACT A new quasi-two-dimensional procedure is presented for the transient solution of real-fluid flows...solution procedures is being developed in parallel to provide verification test cases. The solution procedure for both codes is coupled with a state-of...Davis, Davis, CA, 95616 A new quasi-two-dimensional procedure is presented for the transient solution of real- fluid flows in lines and volumes

  7. Numerical calculation of flow fields about rectangular wings of finite thickness in supersonic flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.

    1973-01-01

    The calculation of the outer inviscid flow about a rectangular wing moving at supersonic speeds is reported. The inviscid equations of motion governing the flow generated by the wing form a set of hyperbolic differential equations. The flow field about the rectangular wing is separated into three regions consisting of the forebody, the afterbody, and the wing wake. Solutions for the forebody are obtained using conical flow techniques while the afterbody and the wing wake regions are treated as initial value problems. The numerical solutions are compared in the two dimensional regions with known exact solutions.

  8. Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models

    NASA Astrophysics Data System (ADS)

    Luther, K.; Haitjema, H. M.

    2000-04-01

    We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.

  9. Aerodynamic optimization by simultaneously updating flow variables and design parameters

    NASA Technical Reports Server (NTRS)

    Rizk, M. H.

    1990-01-01

    The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures that are very costly. An alternative approach is presented based on the idea of updating the flow variable iterative solutions and the design parameter iterative solutions simultaneously. Two schemes based on this idea are applied to problems of correcting wind tunnel wall interference and optimizing advanced propeller designs. The first of these schemes is applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the computation of a single flow solution. The second scheme is suitable for application to general aerodynamic problems. It requires the computation of several flow solutions in parallel. In both schemes, the design parameters are updated as the iterative flow solutions evolve. Computations are performed to test the schemes' efficiency, accuracy, and sensitivity to variations in the computational parameters.

  10. Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Meakin, Paul

    2013-10-01

    An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5]more » for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.« less

  11. Modeling flow and solute transport in irrigation furrows

    USDA-ARS?s Scientific Manuscript database

    This paper presents an internally coupled flow and solute transport model for free-draining irrigation furrows. Furrow hydraulics is simulated with a numerical zero-inertia model and solute transport is computed with a model based on a numerical solution of the cross-section averaged advection-dispe...

  12. Small molecule antagonists of the urokinase (uPA): urokinase receptor (uPAR) interaction with high reported potencies show only weak effects in cell-based competition assays employing the native uPAR ligand.

    PubMed

    De Souza, Melissa; Matthews, Hayden; Lee, Jodi A; Ranson, Marie; Kelso, Michael J

    2011-04-15

    Binding of the urokinase-type plasminogen activator (uPA) to its cell-surface-bound receptor uPAR and upregulation of the plasminogen activation system (PAS) correlates with increased metastasis and poor prognosis in several tumour types. Disruptors of the uPA:uPAR interaction represent promising anti-tumour/metastasis agents and several approaches have been explored for this purpose, including the use of small molecule antagonists. Two highly potent non-peptidic antagonists 1 and 2 (IC(50)1=0.8 nM, IC(50)2=33 nM) from the patent literature were reportedly identified using competition assays employing radiolabelled uPAR-binding uPA fragments and appeared as useful pharmacological tools for studying the PAS. Before proceeding to such studies, confirmation was sought that 1 and 2 retained their potencies in physiologically relevant cell-based competition assays employing uPAR's native binding partner high molecular weight uPA (HMW-uPA). This study describes a new solution phase synthesis of 1, a mixed solid/solution phase synthesis of 2 and reports the activities of 1 and 2 in semi-quantitative competition flow cytometry assays and quantitative cell-based uPA activity assays that employed HMW-uPA as the competing ligand. The flow cytometry experiments revealed that high concentrations of 2 (10-100 μM) are required to compete with HMW-uPA for uPAR binding and that 1 shows no antagonist effects at 100 μM. The cell-based enzyme activity assays similarly revealed that 1 and 2 are poor inhibitors of cell surface-bound HMW-uPA activity (IC(50) >100 μM for 1 and 2). The report highlights the dangers of identifying false-positive lead uPAR antagonists from competition assays employing labelled competing ligands other than the native HMW-uPA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. A Semi-Analytical Solution to Time Dependent Groundwater Flow Equation Incorporating Stream-Wetland-Aquifer Interactions

    NASA Astrophysics Data System (ADS)

    Boyraz, Uǧur; Melek Kazezyılmaz-Alhan, Cevza

    2017-04-01

    Groundwater is a vital element of hydrologic cycle and the analytical & numerical solutions of different forms of groundwater flow equations play an important role in understanding the hydrological behavior of subsurface water. The interaction between groundwater and surface water bodies can be determined using these solutions. In this study, new hypothetical approaches are implemented to groundwater flow system in order to contribute to the studies on surface water/groundwater interactions. A time dependent problem is considered in a 2-dimensional stream-wetland-aquifer system. The sloped stream boundary is used to represent the interaction between stream and aquifer. The rest of the aquifer boundaries are assumed as no-flux boundary. In addition, a wetland is considered as a surface water body which lies over the whole aquifer. The effect of the interaction between the wetland and the aquifer is taken into account with a source/sink term in the groundwater flow equation and the interaction flow is calculated by using Darcy's approach. A semi-analytical solution is developed for the 2-dimensional groundwater flow equation in 5 steps. First, Laplace and Fourier cosine transforms are employed to obtain the general solution in Fourier and Laplace domain. Then, the initial and boundary conditions are applied to obtain the particular solution. Finally, inverse Fourier transform is carried out analytically and inverse Laplace transform is carried out numerically to obtain the final solution in space and time domain, respectively. In order to verify the semi-analytical solution, an explicit finite difference algorithm is developed and analytical and numerical solutions are compared for synthetic examples. The comparison of the analytical and numerical solutions shows that the analytical solution gives accurate results.

  14. Nonlinear dynamics of coiling, and mounding in viscoelastic jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Ober, Thomas; McKinley, Gareth

    2009-11-01

    Free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes like bottle filling, remain poorly understood in terms of fundamental fluid dynamics. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities, and model yield-stress fluids. We systematically vary the height of the drop and the flow rate in order to study the effects of varying geometric and kinematic parameters. We observe that for fluids with higher elastic relaxation times, folding is the preferred mode. In contrast, for low elasticity fluids we observe complex nonlinear dynamics consisting of coiling, folding, and irregular meandering as the height of the fall increases. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo" or the Kaye effect. Upon increasing the flow rate to very high values, the ``leaping shampoo" state disappears and is replaced by a pronounced mounding or ``heaping". A subsequent increase in the flow rate results in finger-like protrusions to emerge out of the mound and climb up towards the nozzle. This novel transition is currently under investigation and remains a theoretical challenge.

  15. Properties of two-temperature dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Dihingia, Indu K.; Das, Santabrata; Mandal, Samir

    2018-04-01

    We study the properties of two-temperature accretion flow around a non-rotating black hole in presence of various dissipative processes where pseudo-Newtonian potential is adopted to mimic the effect of general relativity. The flow encounters energy loss by means of radiative processes acted on the electrons and at the same time, flow heats up as a consequence of viscous heating effective on ions. We assumed that the flow is exposed with the stochastic magnetic fields that leads to Synchrotron emission of electrons and these emissions are further strengthen by Compton scattering. We obtain the two-temperature global accretion solutions in terms of dissipation parameters, namely, viscosity (α) and accretion rate ({\\dot{m}}), and find for the first time in the literature that such solutions may contain standing shock waves. Solutions of this kind are multitransonic in nature, as they simultaneously pass through both inner critical point (xin) and outer critical point (xout) before crossing the black hole horizon. We calculate the properties of shock-induced global accretion solutions in terms of the flow parameters. We further show that two-temperature shocked accretion flow is not a discrete solution, instead such solution exists for wide range of flow parameters. We identify the effective domain of the parameter space for standing shock and observe that parameter space shrinks as the dissipation is increased. Since the post-shock region is hotter due to the effect of shock compression, it naturally emits hard X-rays, and therefore, the two-temperature shocked accretion solution has the potential to explain the spectral properties of the black hole sources.

  16. Semi-analytical solution for flow in a leaky unconfined aquifer toward a partially penetrating pumping well

    NASA Astrophysics Data System (ADS)

    Malama, Bwalya; Kuhlman, Kristopher L.; Barrash, Warren

    2008-07-01

    SummaryA semi-analytical solution is presented for the problem of flow in a system consisting of unconfined and confined aquifers, separated by an aquitard. The unconfined aquifer is pumped continuously at a constant rate from a well of infinitesimal radius that partially penetrates its saturated thickness. The solution is termed semi-analytical because the exact solution obtained in double Laplace-Hankel transform space is inverted numerically. The solution presented here is more general than similar solutions obtained for confined aquifer flow as we do not adopt the assumption of unidirectional flow in the confined aquifer (typically assumed to be horizontal) and the aquitard (typically assumed to be vertical). Model predicted results show significant departure from the solution that does not take into account the effect of leakage even for cases where aquitard hydraulic conductivities are two orders of magnitude smaller than those of the aquifers. The results show low sensitivity to changes in radial hydraulic conductivities for aquitards that are two or more orders of magnitude smaller than those of the aquifers, in conformity to findings of earlier workers that radial flow in aquitards may be neglected under such conditions. Hence, for cases were aquitard hydraulic conductivities are two or more orders of magnitude smaller than aquifer conductivities, the simpler models that restrict flow to the radial direction in aquifers and to the vertical direction in aquitards may be sufficient. However, the model developed here can be used to model flow in aquifer-aquitard systems where radial flow is significant in aquitards.

  17. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 4: Advanced fan section aerodynamic analysis

    NASA Technical Reports Server (NTRS)

    Crook, Andrew J.; Delaney, Robert A.

    1992-01-01

    The purpose of this study is the development of a three-dimensional Euler/Navier-Stokes flow analysis for fan section/engine geometries containing multiple blade rows and multiple spanwise flow splitters. An existing procedure developed by Dr. J. J. Adamczyk and associates and the NASA Lewis Research Center was modified to accept multiple spanwise splitter geometries and simulate engine core conditions. The procedure was also modified to allow coarse parallelization of the solution algorithm. This document is a final report outlining the development and techniques used in the procedure. The numerical solution is based upon a finite volume technique with a four stage Runge-Kutta time marching procedure. Numerical dissipation is used to gain solution stability but is reduced in viscous dominated flow regions. Local time stepping and implicit residual smoothing are used to increase the rate of convergence. Multiple blade row solutions are based upon the average-passage system of equations. The numerical solutions are performed on an H-type grid system, with meshes being generated by the system (TIGG3D) developed earlier under this contract. The grid generation scheme meets the average-passage requirement of maintaining a common axisymmetric mesh for each blade row grid. The analysis was run on several geometry configurations ranging from one to five blade rows and from one to four radial flow splitters. Pure internal flow solutions were obtained as well as solutions with flow about the cowl/nacelle and various engine core flow conditions. The efficiency of the solution procedure was shown to be the same as the original analysis.

  18. Thin airfoil theory based on approximate solution of the transonic flow equation

    NASA Technical Reports Server (NTRS)

    Spreiter, John R; Alksne, Alberta Y

    1957-01-01

    A method is presented for the approximate solution of the nonlinear equations transonic flow theory. Solutions are found for two-dimensional flows at a Mach number of 1 and for purely subsonic and purely supersonic flows. Results are obtained in closed analytic form for a large and significant class of nonlifting airfoils. At a Mach number of 1 general expressions are given for the pressure distribution on an airfoil of specified geometry and for the shape of an airfoil having a prescribed pressure distribution. Extensive comparisons are made with available data, particularly for a Mach number of 1, and with existing solutions.

  19. Separation of metal ions from aqueous solutions

    DOEpatents

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  20. An experimental study of wall-injected flows in a rectangular cylinder

    NASA Astrophysics Data System (ADS)

    Perrotta, A.; Romano, G. P.; Favini, B.

    2018-01-01

    An experimental investigation of the flow inside a rectangular cylinder with air injected continuously along the wall is performed. This kind of flow is a two-dimensional approximation of what happens inside a solid rocket motor, where the lateral grain burns expelling exhaust gas or in processes with air filtration or devices to attain uniform flows. We propose a brief derivation of some analytical solutions and a comparison between these solutions and experimental data, which are obtained using the particle image velocimetry technique, to provide a global reconstruction of the flowfield. The flow, which enters orthogonal to the injecting wall, turns suddenly its direction being pushed towards the exit of the chamber. Under the incompressible and inviscid flow hypothesis, two analytical solutions are reported and compared. The first one, known as Hart-McClure solution, is irrotational and the injection velocity is non-perpendicular to the injecting wall. The other one, due to Taylor and Culick, has non-zero vorticity and constant, vertical injection velocity. The comparison with laminar solutions is useful to assess whether transition to turbulence is reached and how the disturbance thrown in by the porous injection influences and modifies those solutions.

  1. Interstitial fluid flow and drug delivery in vascularized tumors: a computational model.

    PubMed

    Welter, Michael; Rieger, Heiko

    2013-01-01

    Interstitial fluid is a solution that bathes and surrounds the human cells and provides them with nutrients and a way of waste removal. It is generally believed that elevated tumor interstitial fluid pressure (IFP) is partly responsible for the poor penetration and distribution of therapeutic agents in solid tumors, but the complex interplay of extravasation, permeabilities, vascular heterogeneities and diffusive and convective drug transport remains poorly understood. Here we consider-with the help of a theoretical model-the tumor IFP, interstitial fluid flow (IFF) and its impact upon drug delivery within tumor depending on biophysical determinants such as vessel network morphology, permeabilities and diffusive vs. convective transport. We developed a vascular tumor growth model, including vessel co-option, regression, and angiogenesis, that we extend here by the interstitium (represented by a porous medium obeying Darcy's law) and sources (vessels) and sinks (lymphatics) for IFF. With it we compute the spatial variation of the IFP and IFF and determine its correlation with the vascular network morphology and physiological parameters like vessel wall permeability, tissue conductivity, distribution of lymphatics etc. We find that an increased vascular wall conductivity together with a reduction of lymph function leads to increased tumor IFP, but also that the latter does not necessarily imply a decreased extravasation rate: Generally the IF flow rate is positively correlated with the various conductivities in the system. The IFF field is then used to determine the drug distribution after an injection via a convection diffusion reaction equation for intra- and extracellular concentrations with parameters guided by experimental data for the drug Doxorubicin. We observe that the interplay of convective and diffusive drug transport can lead to quite unexpected effects in the presence of a heterogeneous, compartmentalized vasculature. Finally we discuss various strategies to increase drug exposure time of tumor cells.

  2. Dynamically consistent parameterization of mesoscale eddies. Part III: Deterministic approach

    NASA Astrophysics Data System (ADS)

    Berloff, Pavel

    2018-07-01

    This work continues development of dynamically consistent parameterizations for representing mesoscale eddy effects in non-eddy-resolving and eddy-permitting ocean circulation models and focuses on the classical double-gyre problem, in which the main dynamic eddy effects maintain eastward jet extension of the western boundary currents and its adjacent recirculation zones via eddy backscatter mechanism. Despite its fundamental importance, this mechanism remains poorly understood, and in this paper we, first, study it and, then, propose and test its novel parameterization. We start by decomposing the reference eddy-resolving flow solution into the large-scale and eddy components defined by spatial filtering, rather than by the Reynolds decomposition. Next, we find that the eastward jet and its recirculations are robustly present not only in the large-scale flow itself, but also in the rectified time-mean eddies, and in the transient rectified eddy component, which consists of highly anisotropic ribbons of the opposite-sign potential vorticity anomalies straddling the instantaneous eastward jet core and being responsible for its continuous amplification. The transient rectified component is separated from the flow by a novel remapping method. We hypothesize that the above three components of the eastward jet are ultimately driven by the small-scale transient eddy forcing via the eddy backscatter mechanism, rather than by the mean eddy forcing and large-scale nonlinearities. We verify this hypothesis by progressively turning down the backscatter and observing the induced flow anomalies. The backscatter analysis leads us to formulating the key eddy parameterization hypothesis: in an eddy-permitting model at least partially resolved eddy backscatter can be significantly amplified to improve the flow solution. Such amplification is a simple and novel eddy parameterization framework implemented here in terms of local, deterministic flow roughening controlled by single parameter. We test the parameterization skills in an hierarchy of non-eddy-resolving and eddy-permitting modifications of the original model and demonstrate, that indeed it can be highly efficient for restoring the eastward jet extension and its adjacent recirculation zones. The new deterministic parameterization framework not only combines remarkable simplicity with good performance but also is dynamically transparent, therefore, it provides a powerful alternative to the common eddy diffusion and emerging stochastic parameterizations.

  3. Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  4. Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  5. Theoretical analysis of incompressible flow through a radial-inlet centrifugal impeller at various weight flows

    NASA Technical Reports Server (NTRS)

    Kramer, James J; Prian, Vasily D; Wu, Chung-Hua

    1956-01-01

    A method for the solution of the incompressible nonviscous flow through a centrifugal impeller, including the inlet region, is presented. Several numerical solutions are obtained for four weight flows through an impeller at one operating speed. These solutions are refined in the leading-edge region. The results are presented in a series of figures showing streamlines and relative velocity contours. A comparison is made with the results obtained by using a rapid approximate method of analysis.

  6. Aerodynamic optimization by simultaneously updating flow variables and design parameters with application to advanced propeller designs

    NASA Technical Reports Server (NTRS)

    Rizk, Magdi H.

    1988-01-01

    A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.

  7. Surface tension effects on fully developed liquid layer flow over a convex corner

    NASA Astrophysics Data System (ADS)

    Bhatti, Ifrah; Farid, Saadia; Ullah, Saif; Riaz, Samia; Faryad, Maimoona

    2018-04-01

    This investigation deals with the study of fully developed liquid layer flow along with surface tension effects, confronting a convex corner in the direction of fluid flow. At the point of interaction, the related equations are formulated using double deck structure and match asymptotic techniques. Linearized solutions for small angle are obtained analytically. The solutions corresponding to similar flow neglecting surface tension effects are also recovered as special case of our general solutions. Finally, the influence of pertinent parameters on the flow, as well as a comparison between models, are shown by graphical illustration.

  8. A theoretical method for the analysis and design of axisymmetric bodies. [flow distribution and incompressible fluids

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.

    1975-01-01

    A theoretical method is presented for the computation of the flow field about an axisymmetric body operating in a viscous, incompressible fluid. A potential flow method was used to determine the inviscid flow field and to yield the boundary conditions for the boundary layer solutions. Boundary layer effects in the forces of displacement thickness and empirically modeled separation streamlines are accounted for in subsequent potential flow solutions. This procedure is repeated until the solutions converge. An empirical method was used to determine base drag allowing configuration drag to be computed.

  9. A 3-D Coupled CFD-DSMC Solution Method With Application to the Mars Sample Return Orbiter

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.; Gnoffo, Peter A.

    2000-01-01

    A method to obtain coupled Computational Fluid Dynamics-Direct Simulation Monte Carlo (CFD-DSMC), 3-D flow field solutions for highly blunt bodies at low incidence is presented and applied to one concept of the Mars Sample Return Orbiter vehicle as a demonstration of the technique. CFD is used to solve the high-density blunt forebody flow defining an inflow boundary condition for a DSMC solution of the afterbody wake flow. By combining the two techniques in flow regions where most applicable, the entire mixed flow field is modeled in an appropriate manner.

  10. VERTPAK1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golis, M.J.

    1983-04-01

    VERTPAK1 is a package of analytical solutions used in verification of numerical codes that simulate fluid flow, rock deformation, and solute transport in fractured and unfractured porous media. VERTPAK1 contains the following: BAREN, an analytical solution developed by Barenblatt, Zhelton and Kochina (1960) for describing transient flow to a well penetrating a (double porosity) confined aquifer; GIBMAC, an analytical solution developed by McNamee and Gibson (1960) for describing consolidation of a semi-infinite soil medium subject to a strip (plane strain) or cylindrical (axisymmetric) loading; GRINRH, an analytical solution developed by Gringarten (1971) for describing transient flow to a partially penetratingmore » well in a confined aquifer containing a single horizontal fracture; GRINRV, an analytical solution developed by Gringarten, Ramey, and Raghavan (1974) for describing transient flow to a fully penetrating well in a confined aquifer containing a single vertical fracture; HART, an analytical solution given by Nowacki (1962) and implemented by HART (1981) for describing the elastic behavior of an infinite solid subject to a line heat source; LESTER, an analytical solution presented by Lester, Jansen, and Burkholder (1975) for describing one-dimensional transport of radionuclide chains through an adsorbing medium; STRELT, an analytical solution presented by Streltsova-Adams (1978) for describing transient flow to a fully penetrating well in a (double porosity) confined aquifer; and TANG, an analytical solution developed by Tang, Frind, and Sudicky (1981) for describing solute transport in a porous medium containing a single fracture.« less

  11. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar.« less

  12. Experimental investigation of a transonic potential flow around a symmetric airfoil

    NASA Technical Reports Server (NTRS)

    Hiller, W. J.; Meier, G. E. A.

    1981-01-01

    Experimental flow investigations on smooth airfoils were done using numerical solutions for transonic airfoil streaming with shockless supersonic range. The experimental flow reproduced essential sections of the theoretically computed frictionless solution. Agreement is better in the expansion part of the of the flow than in the compression part. The flow was nearly stationary in the entire velocity range investigated.

  13. Transient well flow in layered aquifer systems: the uniform well-face drawdown solution

    NASA Astrophysics Data System (ADS)

    Hemker, C. J.

    1999-11-01

    Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow component only. In the present work the hybrid solution has been modified by replacing the previously assumed uniform well-face gradient (UWG) boundary condition in such a way that the drawdown remains uniform along the well screen. The resulting uniform well-face drawdown (UWD) solution also includes the effects of a finite diameter well, wellbore storage and a thin skin, while partial penetration and vertical heterogeneity are accommodated by the one-dimensional discretization. Solutions are proposed for well flow caused by constant, variable and slug discharges. The model was verified by comparing wellbore drawdowns and well-face flux distributions with published numerical solutions. Differences between UWG and UWD well flow will occur in all situations with vertical flow components near the well, which is demonstrated by considering: (1) partially penetrating wells in confined aquifers, (2) fully penetrating wells in unconfined aquifers with delayed response and (3) layered aquifers and leaky multiaquifer systems. The presented solution can be a powerful tool for solving many well-hydraulic problems, including well tests, flowmeter tests, slug tests and pumping tests. A computer program for the analysis of pumping tests, based on the hybrid analytical-numerical technique and UWG or UWD conditions, is available from the author.

  14. Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.

    PubMed

    Peng, Ran; Li, Dongqing

    2015-02-15

    Effects of ionic concentration gradient on electroosmotic flow (EOF) mixing of one stream of a high concentration electrolyte solution with a stream of a low concentration electrolyte solution in a microchannel are investigated numerically. The concentration field, flow field and electric field are strongly coupled via concentration dependent zeta potential, dielectric constant and electric conductivity. The results show that the electric field and the flow velocity are non-uniform when the concentration dependence of these parameters is taken into consideration. It is also found that when the ionic concentration of the electrolyte solution is higher than 1M, the electrolyte solution essentially cannot enter the channel due to the extremely low electroosmotic flow mobility. The effects of the concentration dependence of zeta potential, dielectric constant and electric conductivity on electroosmotic flow mixing are studied. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. PDF approach for compressible turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.

    1993-01-01

    The objective of the present work is to develop a probability density function (pdf) turbulence model for compressible reacting flows for use with a CFD flow solver. The probability density function of the species mass fraction and enthalpy are obtained by solving a pdf evolution equation using a Monte Carlo scheme. The pdf solution procedure is coupled with a compressible CFD flow solver which provides the velocity and pressure fields. A modeled pdf equation for compressible flows, capable of capturing shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed, and an averaging procedure is developed to provide smooth Monte-Carlo solutions to ensure convergence. Two supersonic diffusion flames are studied using the proposed pdf model and the results are compared with experimental data; marked improvements over CFD solutions without pdf are observed. Preliminary applications of pdf to 3D flows are also reported.

  16. Reference Solutions for Benchmark Turbulent Flows in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Pandya, Mohagna J.; Rumsey, Christopher L.

    2016-01-01

    A grid convergence study is performed to establish benchmark solutions for turbulent flows in three dimensions (3D) in support of turbulence-model verification campaign at the Turbulence Modeling Resource (TMR) website. The three benchmark cases are subsonic flows around a 3D bump and a hemisphere-cylinder configuration and a supersonic internal flow through a square duct. Reference solutions are computed for Reynolds Averaged Navier Stokes equations with the Spalart-Allmaras turbulence model using a linear eddy-viscosity model for the external flows and a nonlinear eddy-viscosity model based on a quadratic constitutive relation for the internal flow. The study involves three widely-used practical computational fluid dynamics codes developed and supported at NASA Langley Research Center: FUN3D, USM3D, and CFL3D. Reference steady-state solutions computed with these three codes on families of consistently refined grids are presented. Grid-to-grid and code-to-code variations are described in detail.

  17. Topologically massive gravity and Ricci-Cotton flow

    NASA Astrophysics Data System (ADS)

    Lashkari, Nima; Maloney, Alexander

    2011-05-01

    We consider topologically massive gravity (TMG), which is three-dimensional general relativity with a cosmological constant and a gravitational Chern-Simons term. When the cosmological constant is negative the theory has two potential vacuum solutions: anti-de Sitter space and warped anti-de Sitter space. The theory also contains a massive graviton state which renders these solutions unstable for certain values of the parameters and boundary conditions. We study the decay of these solutions due to the condensation of the massive graviton mode using Ricci-Cotton flow, which is the appropriate generalization of Ricci flow to TMG. When the Chern-Simons coupling is small the AdS solution flows to warped AdS by the condensation of the massive graviton mode. When the coupling is large the situation is reversed, and warped AdS flows to AdS. Minisuperspace models are constructed where these flows are studied explicitly.

  18. Flowing partially penetrating well: solution to a mixed-type boundary value problem

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Kabala, Z. J.; Medina, M. A.

    A new semi-analytic solution to the mixed-type boundary value problem for a flowing partially penetrating well with infinitesimal skin situated in an anisotropic aquifer is developed. The solution is suited to aquifers having a semi-infinite vertical extent or to packer tests with aquifer horizontal boundaries far enough from the tested area. The problem reduces to a system of dual integral equations (DE) and further to a deconvolution problem. Unlike the analogous Dagan's steady-state solution [Water Resour. Res. 1978; 14:929-34], our DE solution does not suffer from numerical oscillations. The new solution is validated by matching the corresponding finite-difference solution and is computationally much more efficient. An automated (Newton-Raphson) parameter identification algorithm is proposed for field test inversion, utilizing the DE solution for the forward model. The procedure is computationally efficient and converges to correct parameter values. A solution for the partially penetrating flowing well with no skin and a drawdown-drawdown discontinuous boundary condition, analogous to that by Novakowski [Can. Geotech. J. 1993; 30:600-6], is compared to the DE solution. The D-D solution leads to physically inconsistent infinite total flow rate to the well, when no skin effect is considered. The DE solution, on the other hand, produces accurate results.

  19. Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat

    2008-01-15

    Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, themore » bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)« less

  20. MERIDL- VELOCITIES AND STREAMLINES ON THE HUB-SHROUD MIDCHANNEL STREAM SURFACE OF AN AXIAL, RADIAL, OR MIXED FLOW TURBOMACHINE OR ANNULAR DUCT

    NASA Technical Reports Server (NTRS)

    Katsanis, T.

    1994-01-01

    This computer program was developed for calculating the subsonic or transonic flow on the hub-shroud mid-channel stream surface of a single blade row of a turbomachine. The design and analysis of blades for compressors and turbines ideally requires methods for analyzing unsteady, three-dimensional, turbulent viscous flow through a turbomachine. Since an exact solution is impossible at present, solutions on two-dimensional surfaces are calculated to obtain a quasi-three dimensional solution. When three-dimensional effects are important, significant information can be obtained from a solution on a cross-sectional surface of the passage normal to the flow. With this program, a solution to the equations of flow on the meridional surface can be carried out. This solution is chosen when the turbomachine under consideration has significant variation in flow properties in the hubshroud direction, especially when input is needed for use in blade-to-blade calculations. The program can also perform flow calculations for annular ducts without blades. This program should prove very useful in the design and analysis of any turbomachine. This program calculates a solution for two-dimensional, adiabatic shockfree flow. The flow must be essentially subsonic, but there may be local areas of supersonic flow. To obtain the solution, this program uses both the finite difference and the quasi-orthogonal (velocity gradient) methods combined in a way that takes maximum advantage of both. The finite-difference method solves a finite-difference equation along the meridional stream surface in a very efficient manner but is limited to subsonic velocities. This approach must be used in cases where the blade aspect ratios are above one, cases where the passage is curved, and cases with low hub-tip-ratio blades. The quasi-orthogonal method solves the velocity gradient equation on the meridional surface and is used if it is necessary to extend the range of solutions into the transonic regime. In general the blade row may be fixed or rotating and the blades may be twisted and leaned. The flow may be axial, radial, or mixed. The upstream and downstream flow conditions can vary from hub to shroud with provisions made for an approximate correction for loss of stagnation pressure. Also, viscous forces are neglected along solution mesh lines running from hub to tip. The capabilities of this program include handling of nonaxial flows without restriction, annular ducts without blades, and specified streamwise loss distributions. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 700K of 8 bit bytes. This core requirement can be reduced depending on the size of the problem and the desired solution accuracy. This program was developed in 1977.

  1. Micellar Polymer Encapsulation of Enzymes.

    PubMed

    Besic, Sabina; Minteer, Shelley D

    2017-01-01

    Although enzymes are highly efficient and selective catalysts, there have been problems incorporating them into fuel cells. Early enzyme-based fuel cells contained enzymes in solution rather than immobilized on the electrode surface. One problem utilizing an enzyme in solution is an issue of transport associated with long diffusion lengths between the site of bioelectrocatalysis and the electrode. This issue drastically decreases the theoretical overall power output due to the poor electron conductivity. On the other hand, enzymes immobilized at the electrode surface have eliminated the issue of poor electron conduction due to close proximity of electron transfer between electrode and the biocatalyst. Another problem is inefficient and short term stability of catalytic activity within the enzyme that is suspended in free flowing solution. Enzymes in solutions are only stable for hours to days, whereas immobilized enzymes can be stable for weeks to months and now even years. Over the last decade, there has been substantial research on immobilizing enzymes at electrode surfaces for biofuel cell and sensor applications. The most commonly used techniques are sandwich or wired. Sandwich techniques are powerful and successful for enzyme immobilization; however, the enzymes optimal activity is not retained due to the physical distress applied by the polymer limiting its applications as well as the non-uniform distribution of the enzyme and the diffusion of analyte through the polymer is slowed significantly. Wired techniques have shown to extend the lifetime of an enzyme at the electrode surface; however, this technique is very hard to master due to specific covalent bonding of enzyme and polymer which changes the three-dimensional configuration of enzyme and with that decreases the optimal catalytic activity. This chapter details encapsulation techniques where an enzyme will be immobilized within the pores/pockets of the hydrophobically modified micellar polymers such as Nafion ® and chitosan. This strategy has been shown to safely immobilize enzymes at electrode surfaces with storage and continuous operation lifetime of more than 2 years.

  2. Bifunctional Crosslinking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries.

    PubMed

    Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K

    2014-06-02

    A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV).

  3. Study of the convective fluid flows with evaporation on the basis of the exact solution in a three-dimensional infinite channel

    NASA Astrophysics Data System (ADS)

    Bekezhanova, V. B.; Goncharova, O. N.

    2017-09-01

    The solution of special type of the Boussinesq approximation of the Navier - Stokes equations is used to simulate the two-layer evaporative fluid flows. This solution is the 3D generalization of the Ostroumov - Birikh solution of the equations of free convection. Modeling of the 3D fluid flows is performed in an infinite channel of the rectangular cross section without assumption of the axis-symmetrical character of the flows. Influence of gravity and evaporation on the dynamic and thermal phenomena in the system is studied. The fluid flow patterns are determined by various thermal, mechanical and structural effects. Numerical investigations are performed for the liquid - gas system like ethanol - nitrogen and HFE-7100 - nitrogen under conditions of normal and low gravity. The solution allows one to describe a formation of the thermocapillary rolls and multi-vortex structures in the system. Alteration of topology and character of the flows takes place with change of the intensity of the applied thermal load, thermophysical properties of working media and gravity action. Flows with translational, translational-rotational or partially reverse motion can be formed in the system.

  4. Nonlinear storage models of unconfined flow through a shallow aquifer on an inclined base and their quasi-steady flow application

    NASA Astrophysics Data System (ADS)

    Varvaris, Ioannis; Gravanis, Elias; Koussis, Antonis; Akylas, Evangelos

    2013-04-01

    Hillslope processes involving flow through an inclined shallow aquifer range from subsurface stormflow to stream base flow (drought flow, or groundwater recession flow). In the case of recharge, the infiltrating water moves vertically as unsaturated flow until it reaches the saturated groundwater, where the flow is approximately parallel to the base of the aquifer. Boussinesq used the Dupuit-Forchheimer (D-F) hydraulic theory to formulate unconfined groundwater flow through a soil layer resting on an impervious inclined bed, deriving a nonlinear equation for the flow rate that consists of a linear gravity-driven component and a quadratic pressure-gradient component. Inserting that flow rate equation into the differential storage balance equation (volume conservation) Boussinesq obtained a nonlinear second-order partial differential equation for the depth. So far however, only few special solutions have been advanced for that governing equation. The nonlinearity of the equation of Boussinesq is the major obstacle to deriving a general analytical solution for the depth profile of unconfined flow on a sloping base with recharge (from which the discharges could be then determined). Henderson and Wooding (1964) were able to obtain an exact analytical solution for steady unconfined flow on a sloping base, with recharge, and their work deserves special note in the realm of solutions of the nonlinear equation of Boussinesq. However, the absence of a general solution for the transient case, which is of practical interest to hydrologists, has been the motivation for developing approximate solutions of the non-linear equation of Boussinesq. In this work, we derive the aquifer storage function by integrating analytically over the aquifer base the depth profiles resulting from the complete nonlinear Boussinesq equation for steady flow. This storage function consists of a linear and a nonlinear outflow-dependent term. Then, we use this physics-based storage function in the transient storage balance over the hillslope, obtaining analytical solutions of the outflow and the storage, for recharge and drainage, via a quasi-steady flow calculation. The hydraulically derived storage model is thus embedded in a quasi-steady approximation of transient unconfined flow in sloping aquifers. We generalise this hydrologic model of groundwater flow by modifying the storage function to be the weighted sum of the linear and the nonlinear storage terms, determining the weighting factor objectively from a known integral quantity of the flow (either an initial volume of water stored in the aquifer or a drained water volume). We demonstrate the validity of this model through comparisons with experimental data and simulation results.

  5. Polymer relaxation and stretching dynamics in semi-dilute DNA solutions: a single molecule study

    NASA Astrophysics Data System (ADS)

    Hsiao, Kai-Wen; Brockman, Christopher; Schroeder, Charles

    2015-03-01

    In this work, we study polymer relaxation and stretching dynamics in semi-dilute DNA solutions using single molecule techniques. Using this approach, we uncover a unique scaling relation for longest polymer relaxation time that falls in the crossover regime described by semi-flexible polymer solutions, which is distinct from truly flexible polymer chains. In addition, we performed a series of step-strain experiments on single polymers in semi-dilute solutions in planar extensional flow using an automated microfluidic trap. In this way, we are able to precisely control the flow strength and the amount of strain applied to single polymer chains, thereby enabling direct observation of the full stretching and relaxation process in semi-dilute solutions during transient start-up and flow cessation. Interestingly, we observe polymer individualism in the conformation of single chains in semi-dilute solutions, which to our knowledge has not yet been observed. In addition, we observe the relaxation data can be explained by a multi-exponential decay process after flow cessation in semi-dilute solutions. Overall, our work reports key advance in non-dilute polymer systems from a molecular perspective via direct observation of dynamics in strong flows. DOW fellowship.

  6. A novel heterogeneous algorithm to simulate multiphase flow in porous media on multicore CPU-GPU systems

    NASA Astrophysics Data System (ADS)

    McClure, J. E.; Prins, J. F.; Miller, C. T.

    2014-07-01

    Multiphase flow implementations of the lattice Boltzmann method (LBM) are widely applied to the study of porous medium systems. In this work, we construct a new variant of the popular "color" LBM for two-phase flow in which a three-dimensional, 19-velocity (D3Q19) lattice is used to compute the momentum transport solution while a three-dimensional, seven velocity (D3Q7) lattice is used to compute the mass transport solution. Based on this formulation, we implement a novel heterogeneous GPU-accelerated algorithm in which the mass transport solution is computed by multiple shared memory CPU cores programmed using OpenMP while a concurrent solution of the momentum transport is performed using a GPU. The heterogeneous solution is demonstrated to provide speedup of 2.6 × as compared to multi-core CPU solution and 1.8 × compared to GPU solution due to concurrent utilization of both CPU and GPU bandwidths. Furthermore, we verify that the proposed formulation provides an accurate physical representation of multiphase flow processes and demonstrate that the approach can be applied to perform heterogeneous simulations of two-phase flow in porous media using a typical GPU-accelerated workstation.

  7. On the onset of secondary flow and unsteady solutions through a loosely coiled rectangular duct for large aspect ratio

    NASA Astrophysics Data System (ADS)

    Shaha, Poly Rani; Rudro, Sajal Kanti; Poddar, Nayan Kumar; Mondal, Rabindra Nath

    2016-07-01

    The study of flows through coiled ducts and channels has attracted considerable attention not only because of their ample applications in Chemical, Mechanical, Civil, Nuclear and Biomechanical engineering but also because of their ample applications in other areas, such as blood flow in the veins and arteries of human and other animals. In this paper, a numerical study is presented for the fully developed two-dimensional flow of viscous incompressible fluid through a loosely coiled rectangular duct of large aspect ratio. Numerical calculations are carried out by using a spectral method, and covering a wide range of the Dean number, Dn, for two types of curvatures of the duct. The main concern of the present study is to find out effects of curvature as well as formation of secondary vortices on unsteady solutions whether the unsteady flow is steady-state, periodic, multi-periodic or chaotic, if Dn is increased. Time evolution calculations as well as their phase spaces are performed with a view to study the non-linear behavior of the unsteady solutions, and it is found that the steady-state flow turns into chaotic flow through various flow instabilities, if Dn is increased no matter what the curvature is. It is found that the unsteady flow is a steady-state solution for small Dn's and oscillates periodically or non-periodically (chaotic) between two- and twelve-vortex solutions, if Dn is increased. It is also found that the chaotic solution is weak for small Dn's but strong as Dn becomes large. Axial flow distribution is also investigated and shown in contour plots.

  8. On the onset of secondary flow and unsteady solutions through a loosely coiled rectangular duct for large aspect ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaha, Poly Rani; Poddar, Nayan Kumar; Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com

    The study of flows through coiled ducts and channels has attracted considerable attention not only because of their ample applications in Chemical, Mechanical, Civil, Nuclear and Biomechanical engineering but also because of their ample applications in other areas, such as blood flow in the veins and arteries of human and other animals. In this paper, a numerical study is presented for the fully developed two-dimensional flow of viscous incompressible fluid through a loosely coiled rectangular duct of large aspect ratio. Numerical calculations are carried out by using a spectral method, and covering a wide range of the Dean number, Dn,more » for two types of curvatures of the duct. The main concern of the present study is to find out effects of curvature as well as formation of secondary vortices on unsteady solutions whether the unsteady flow is steady-state, periodic, multi-periodic or chaotic, if Dn is increased. Time evolution calculations as well as their phase spaces are performed with a view to study the non-linear behavior of the unsteady solutions, and it is found that the steady-state flow turns into chaotic flow through various flow instabilities, if Dn is increased no matter what the curvature is. It is found that the unsteady flow is a steady-state solution for small Dn’s and oscillates periodically or non-periodically (chaotic) between two- and twelve-vortex solutions, if Dn is increased. It is also found that the chaotic solution is weak for small Dn’s but strong as Dn becomes large. Axial flow distribution is also investigated and shown in contour plots.« less

  9. An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.

    2001-01-01

    We present below an analytical solution to model the one-dimensional transient flow of a Bingham viscoplastic material in a fracture with parallel walls (smooth or rough) that is subjected to an applied pressure gradient. The solution models the acceleration and the deceleration of the material as the pressure gradient changes with time. Two cases are considered: A pressure gradient applied over a finite time interval and an applied pressure gradient that is constant over time. The solution is expressed in dimensionless form and can therefore be used for a wide range of Bingham viscoplastic materials. The solution is also capable of capturing the transition that takes place in a fracture between viscoplastic flow and rigid plug flow. Also, it shows the development of a rigid central layer in fractures, the extent of which depends on the fluid properties (viscosity and yield stress), the magnitude of the pressure gradient, and the fracture aperture and surface roughness. Finally, it is shown that when a pressure gradient is applied and kept constant, the solution for the fracture flow rate converges over time to a steady-state solution that can be defined as a modified cubic law. In this case, the fracture transmissivity is found to be a non-linear function of the head gradient. This solution provides a tool for a better understanding of the flow of Bingham materials in rock fractures, interfaces, and cracks. ?? 2001 Elsevier Science Ltd. All rights reserved.

  10. Ionization of Interstellar Hydrogen

    NASA Astrophysics Data System (ADS)

    Whang, Y. C.

    1996-09-01

    Interstellar hydrogen can penetrate through the heliopause, enter the heliosphere, and may become ionized by photoionization and by charge exchange with solar wind protons. A fluid model is introduced to study the flow of interstellar hydrogen in the heliosphere. The flow is governed by moment equations obtained from integration of the Boltzmann equation over the velocity space. Under the assumption that the flow is steady axisymmetric and the pressure is isotropic, we develop a method of solution for this fluid model. This model and the method of solution can be used to study the flow of neutral hydrogen with various forms of ionization rate β and boundary conditions for the flow on the upwind side. We study the solution of a special case in which the ionization rate β is inversely proportional to R2 and the interstellar hydrogen flow is uniform at infinity on the upwind side. We solve the moment equations directly for the normalized density NH/NN∞, bulk velocity VH/VN∞, and temperature TH/TN∞ of interstellar hydrogen as functions of r/λ and z/λ, where λ is the ionization scale length. The solution is compared with the kinetic theory solution of Lallement et al. The fluid solution is much less time-consuming than the kinetic theory solutions. Since the ionization rate for production of pickup protons is directly proportional to the local density of neutral hydrogen, the high-resolution solution of interstellar neutral hydrogen obtained here will be used to study the global distribution of pickup protons.

  11. Exact and approximate solutions for transient squeezing flow

    NASA Astrophysics Data System (ADS)

    Lang, Ji; Santhanam, Sridhar; Wu, Qianhong

    2017-10-01

    In this paper, we report two novel theoretical approaches to examine a fast-developing flow in a thin fluid gap, which is widely observed in industrial applications and biological systems. The problem is featured by a very small Reynolds number and Strouhal number, making the fluid convective acceleration negligible, while its local acceleration is not. We have developed an exact solution for this problem which shows that the flow starts with an inviscid limit when the viscous effect has no time to appear and is followed by a subsequent developing flow, in which the viscous effect continues to penetrate into the entire fluid gap. An approximate solution is also developed using a boundary layer integral method. This solution precisely captures the general behavior of the transient fluid flow process and agrees very well with the exact solution. We also performed numerical simulation using Ansys-CFX. Excellent agreement between the analytical and the numerical solutions is obtained, indicating the validity of the analytical approaches. The study presented herein fills the gap in the literature and will have a broad impact on industrial and biomedical applications.

  12. Cell-flow technique.

    PubMed

    Hess, George P; Lewis, Ryan W; Chen, Yongli

    2014-10-01

    Various devices have been used to flow neurotransmitter solutions over cells containing receptors (e.g., ligand-gated ion channels) for whole-cell current recordings. With many of the devices, the orientation between the porthole of the flow device and the cell is not maintained absolutely constant. Orientation is critical for reproducibility in kinetic experiments. To be able to change the composition of the flowing solution during an experiment and still maintain a constant orientation, we use the cell-flow device described here. A peristaltic pump, a stainless steel U-tube, two different sizes of peristaltic tubing, and a solenoid valve are required to create a simple solution exchange system that can rapidly apply and remove solutions over the surface of a cell in tens of milliseconds. This system allows one to test multiple conditions on a cell containing the receptor of interest while constantly "washing" the cell with extracellular buffer solution between experimental applications. The use of the solenoid valve allows for the application of solutions to be precisely timed and controlled by a computer during electrophysiological current recording. © 2014 Cold Spring Harbor Laboratory Press.

  13. Three-Dimensional Flow Generated by a Partially Penetrating Well in a Two-Aquifer System

    NASA Astrophysics Data System (ADS)

    Sepulveda, N.

    2007-12-01

    An analytical solution is presented for three-dimensional (3D) flow in a confined aquifer and the overlying storative semiconfining layer and unconfined aquifer. The equation describing flow caused by a partially penetrating production well is solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Previous solutions for a partially penetrating well did not account for 3D flow or storativity in the semiconfining unit. The 3D and two- dimensional (2D) flow solutions in the semiconfining layer are compared for various hydraulic conductivity ratios between the aquifer and the semiconfining layer. Analysis of the drawdown data from an aquifer test in central Florida showed that the 3D solution in the semiconfining layer provides a more unique identification of the hydraulic parameters than the 2D solution. The analytical solution could be used to analyze, with higher accuracy, the effect that pumping water from the lower aquifer in a two-aquifer system has on wetlands.

  14. An analysis of numerical convergence in discrete velocity gas dynamics for internal flows

    NASA Astrophysics Data System (ADS)

    Sekaran, Aarthi; Varghese, Philip; Goldstein, David

    2018-07-01

    The Discrete Velocity Method (DVM) for solving the Boltzmann equation has significant advantages in the modeling of non-equilibrium and near equilibrium flows as compared to other methods in terms of reduced statistical noise, faster solutions and the ability to handle transient flows. Yet the DVM performance for rarefied flow in complex, small-scale geometries, in microelectromechanical (MEMS) devices for instance, is yet to be studied in detail. The present study focuses on the performance of the DVM for locally large Knudsen number flows of argon around sharp corners and other sources for discontinuities in the distribution function. Our analysis details the nature of the solution for some benchmark cases and introduces the concept of solution convergence for the transport terms in the discrete velocity Boltzmann equation. The limiting effects of the velocity space discretization are also investigated and the constraints on obtaining a robust, consistent solution are derived. We propose techniques to maintain solution convergence and demonstrate the implementation of a specific strategy and its effect on the fidelity of the solution for some benchmark cases.

  15. A biogeochemical comparison of two well-buffered catchments with contrasting histories of acid deposition

    USGS Publications Warehouse

    Shanley, J.B.; Kram, P.; Hruska, J.; Bullen, T.D.

    2004-01-01

    Much of the biogeochemical cycling research in catchments in the past 25 years has been driven by acid deposition research funding. This research has focused on vulnerable base-poor systems; catchments on alkaline lithologies have received little attention. In regions of high acid loadings, however, even well-buffered catchments are susceptible to forest decline and episodes of low alkalinity in streamwater. As part of a collaboration between the Czech and U.S. Geological Surveys, we compared biogeochemical patterns in two well-studied, well-buffered catchments: Pluhuv Bor in the western Czech Republic, which has received high loading of atmospheric acidity, and Sleepers River Research Watershed in Vermont, U.S.A., where acid loading has been considerably less. Despite differences in lithology, wetness, forest type, and glacial history, the catchments displayed similar patterns of solute concentrations and flow. At both catchments, base cation and alkalinity diluted with increasing flow, whereas nitrate and dissolved organic carbon increased with increasing flow. Sulfate diluted with increasing flow at Sleepers River, while at Pluhuv Bor the sulfate-flow relation shifted from positive to negative as atmospheric sulfur (S) loadings decreased and soil S pools were depleted during the 1990s. At high flow, alkalinity decreased to near 100 ??eq L-1 at Pluhuv Bor compared to 400 ??eq L-1 at Sleepers River. Despite the large amounts of S flushed from Pluhuv Bor soils, these alkalinity declines were caused solely by dilution, which was greater at Pluhuv Bor relative to Sleepers River due to greater contributions from shallow flow paths at high flow. Although the historical high S loading at Pluhuv Bor has caused soil acidification and possible forest damage, it has had little effect on the acid/base status of streamwater in this well-buffered catchment. ?? 2004 Kluwer Academic Publishers.

  16. Apparent dispersion in transient groundwater flow

    USGS Publications Warehouse

    Goode, Daniel J.; Konikow, Leonard F.

    1990-01-01

    This paper investigates the effects of large-scale temporal velocity fluctuations, particularly changes in the direction of flow, on solute spreading in a two-dimensional aquifer. Relations for apparent longitudinal and transverse dispersivity are developed through an analytical solution for dispersion in a fluctuating, quasi-steady uniform flow field, in which storativity is zero. For transient flow, spatial moments are evaluated from numerical solutions. Ignored or unknown transients in the direction of flow primarily act to increase the apparent transverse dispersivity because the longitudinal dispersivity is acting in a direction that is not the assumed flow direction. This increase is a function of the angle between the transient flow vector and the assumed steady state flow direction and the ratio of transverse to longitudinal dispersivity. The maximum effect on transverse dispersivity occurs if storativity is assumed to be zero, such that the flow field responds instantly to boundary condition changes.

  17. Elastic instability in stratified core annular flow.

    PubMed

    Bonhomme, Oriane; Morozov, Alexander; Leng, Jacques; Colin, Annie

    2011-06-01

    We study experimentally the interfacial instability between a layer of dilute polymer solution and water flowing in a thin capillary. The use of microfluidic devices allows us to observe and quantify in great detail the features of the flow. At low velocities, the flow takes the form of a straight jet, while at high velocities, steady or advected wavy jets are produced. We demonstrate that the transition between these flow regimes is purely elastic--it is caused by the viscoelasticity of the polymer solution only. The linear stability analysis of the flow in the short-wave approximation supplemented with a kinematic criterion captures quantitatively the flow diagram. Surprisingly, unstable flows are observed for strong velocities, whereas convected flows are observed for low velocities. We demonstrate that this instability can be used to measure the rheological properties of dilute polymer solutions that are difficult to assess otherwise.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isfahani, RN; Moghaddam, S

    An experimental study on absorption characteristics of water vapor into a thin lithium bromide (LiBr) solution flow is presented. The LiBr solution flow is constrained between a superhydrophobic vapor permeable wall and a solid surface that removes the heat of absorption. As opposed to conventional falling film absorbers, in this configuration, the solution film thickness and velocity can be controlled independently to enhance the absorption rate. The effects of water vapor pressure, cooling surface temperature, solution film thickness, and solution flow velocity on the absorption rate are studied. An absorption rate of approximately 0.006 kg/m(2) s was measured at amore » LiBr solution channel thickness and flow velocity of 100 mu m and 5 mm/s, respectively. The absorption rate increased linearly with the water vapor driving potential at the test conditions of this study. It was demonstrated that decreasing the solution film thickness and increasing the solution velocity enhance the absorption rate. The high absorption rate and the inherently compact form of the proposed,absorber facilitate development of compact small-scale waste heat or solar-thermal driven cooling systems. Published by Elsevier Ltd.« less

  19. Effect of Gravity Level on the Particle Shape and Size During Zeolite Crystal Growth

    NASA Technical Reports Server (NTRS)

    Song, Hong-Wei; Ilebusi, Olusegun J.; Sacco, Albert, Jr.

    2003-01-01

    A microscopic diffusion model is developed to represent solute transport in the boundary layer of a growing zeolite crystal. This model is used to describe the effect of gravity on particle shape and solute distribution. Particle dynamics and crystal growth kinetics serve as the boundary conditions of flow and convection-diffusion equations. A statistical rate theory is used to obtain the rate of solute transport across the growing interface, which is expressed in terms of concentration and velocity of solute species. Microgravity can significantly decrease the solute velocity across the growing interface compared to its earth-based counterpart. The extent of this reduction highly depends on solute diffusion constant in solution. Under gravity, the flow towards the crystal enhances solute transport rate across the growing interface while the flow away from crystals reduces this rate, suggesting a non-uniform growth rate and thus an elliptic final shape. However, microgravity can significantly reduce the influence of flow and obtain a final product with perfect spherical shape. The model predictions compare favorably with the data of space experiment of zeolites grown in space.

  20. Variations in peak nasal inspiratory flow among healthy students after using saline solutions.

    PubMed

    Olbrich Neto, Jaime; Olbrich, Sandra Regina Leite Rosa; Mori, Natália Leite Rosa; Oliveira, Ana Elisa de; Corrente, José Eduardo

    2016-01-01

    Nasal hygiene with saline solutions has been shown to relieve congestion, reduce the thickening of the mucus and keep nasal cavity clean and moist. Evaluating whether saline solutions improve nasal inspiratory flow among healthy children. Students between 8 and 11 years of age underwent 6 procedures with saline solutions at different concentrations. The peak nasal inspiratory flow was measured before and 30 min after each procedure. Statistical analysis was performed by means of t test, analysis of variance, and Tukey's test, considering p<0.05. We evaluated 124 children at all stages. There were differences on the way a same concentration was used. There was no difference between 0.9% saline solution and 3% saline solution by using a syringe. The 3% saline solution had higher averages of peak nasal inspiratory flow, but it was not significantly higher than the 0.9% saline solution. It is important to offer various options to patients. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  1. International Conference on Numerical Methods in Fluid Dynamics, 7th, Stanford University, Stanford and Moffett Field, CA, June 23-27, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C. (Editor); Maccormack, R. W.

    1981-01-01

    Topics discussed include polygon transformations in fluid mechanics, computation of three-dimensional horseshoe vortex flow using the Navier-Stokes equations, an improved surface velocity method for transonic finite-volume solutions, transonic flow calculations with higher order finite elements, the numerical calculation of transonic axial turbomachinery flows, and the simultaneous solutions of inviscid flow and boundary layer at transonic speeds. Also considered are analytical solutions for the reflection of unsteady shock waves and relevant numerical tests, reformulation of the method of characteristics for multidimensional flows, direct numerical simulations of turbulent shear flows, the stability and separation of freely interacting boundary layers, computational models of convective motions at fluid interfaces, viscous transonic flow over airfoils, and mixed spectral/finite difference approximations for slightly viscous flows.

  2. Impact of laminar flow velocity of different acids on enamel calcium loss.

    PubMed

    Attin, T; Becker, K; Wiegand, A; Tauböck, T T; Wegehaupt, F J

    2013-03-01

    The aim of the study was to evaluate the impact of flow velocity under laminar flow conditions of different acidic solutions on enamel erosion. A total of 240 bovine enamel specimens were prepared and allocated to 30 groups (n = 8 each). Samples of 18 groups were superfused in a flow chamber system with laminar flow behavior using 1 ml of citric acid or hydrochloric acid (HCl) of pH 2.0, 2.6 or 3.0. Flow rates in the sample chamber were adjusted to 10, 60 or 100 μl/min. To simulate turbulent flow behavior, samples of six groups were immersed in 1 ml of the respective solution, which was vortexed (15 min, 600 rpm). For simulating non-agitated conditions, specimens of the remaining six groups were immersed in 1 ml of the respective solution without stirring. Calcium in the solutions, released from the enamel samples, was determined using Arsenazo III method. For acidic solutions of pH 2.6 and 3.0, erosive potential of citric acid was equivalent to that of HCl at a flow of 100 μl/min. The same observation was made for the samples subjected to turbulent conditions at pH 3. At all other conditions, citric acid induced a significantly higher calcium loss than HCl. It is concluded that under slow laminar flow conditions, flow rate variations lead to higher erosive impact of citric acid compared to hydrochloric acid at pH 2.0, but not at pH ≥ 2.6 and increasing laminar flow or turbulent conditions. Erosive enamel dissolution under laminar flow conditions is a complex issue influenced by flow rate and acidic substrate.

  3. Study on rheological properties of CMC/Eu-Tb solutions with different concentrations

    NASA Astrophysics Data System (ADS)

    Fu, Z. C.; Ye, J.; Xiong, J.

    2018-05-01

    The rheological properties of polymer solution are sensitive to variations in the polymer structure. Carboxymethyl cellulose (CMC) aqueous solution has been used in many fields, such as food, medicine and paper industry. In this paper, the effects of different concentrations (2% - 6%) of CMC/Eu-Tb on their rheological properties were investigeted, including steady-state flow and viscoelastic response. The results show that, the viscosity of CMC/Eu-Tb is lower than that of CMC, at the same concentrations; the products solutions present a nearly Newtonian behavior at the low concentrations (2% - 3%); while at the higher concentrations (4% - 6%), the products solutions present a pseudoplastic behavior; shear-thinning behavior is due to the polymer chains unravel under the action of flow and the molecular chains are oriented in the flow direction. The results also show that the viscosity of the solutions decreases with increasing temperature. Dynamic rheological tests show that CMC/Eu-Tb has viscoelasticity in the concentrations of 2% - 6%. At lower concentrations, the elastic modulus G‧ is slightly higher than the viscous modulus G″, and as the concentrations increase, the elastic modulus G‧ is significantly higher than the viscous modulus G″. It means that at the lower solution concentrations, the solutions tend to be less elastic and easier to flow. Most of the energies are lost through the viscous flow. As the solution concentrations increase, the solutions tend to be more elastic, and the system tends to form a gel.

  4. Time-evolving bubbles in two-dimensional stokes flow

    NASA Technical Reports Server (NTRS)

    Tanveer, Saleh; Vasconcelos, Giovani L.

    1994-01-01

    A general class of exact solutions is presented for a time evolving bubble in a two-dimensional slow viscous flow in the presence of surface tension. These solutions can describe a bubble in a linear shear flow as well as an expanding or contracting bubble in an otherwise quiescent flow. In the case of expanding bubbles, the solutions have a simple behavior in the sense that for essentially arbitrary initial shapes the bubble will asymptote an expanding circle. Contracting bubbles, on the other hand, can develop narrow structures ('near-cusps') on the interface and may undergo 'break up' before all the bubble-fluid is completely removed. The mathematical structure underlying the existence of these exact solutions is also investigated.

  5. Laser speckle contrast imaging of cerebral blood flow of newborn mice at optical clearing

    NASA Astrophysics Data System (ADS)

    Timoshina, Polina A.; Zinchenko, Ekaterina M.; Tuchina, Daria K.; Sagatova, Madina M.; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.

    2017-03-01

    In this work, we consider the use of optical clearing agents to improve imaging quality of the cerebral blood flow of newborn mice. Aqueous 60%-glycerol solution, aqueous 70%-OmnipaqueTM(300) solution and OmnipaqueTM (300) solution in water/DMSO(25%/5%) were selected as the optical clearing agents. Laser speckle contrast imaging (LSCI) was used for imaging of cerebral blood flow in newborn mice brain during topical optical clearing of tissuesin the area of the fontanelle. These results demonstrate the effectiveness of glycerol and Omnipaque solutions as optical clearing agents for investigation of cerebral blood flow in newborn mice without scalp removing and skull thinning.

  6. Effect of Temperature and Fluid Flow on Dendrite Growth During Solidification of Al-3 Wt Pct Cu Alloy by the Two-Dimensional Cellular Automaton Method

    NASA Astrophysics Data System (ADS)

    Gu, Cheng; Wei, Yanhong; Liu, Renpei; Yu, Fengyi

    2017-12-01

    A two-dimensional cellular automaton-finite volume model was developed to simulate dendrite growth of Al-3 wt pct Cu alloy during solidification to investigate the effect of temperature and fluid flow on dendrite morphology, solute concentration distribution, and dendrite growth velocity. Different calculation conditions that may influence the results of the simulation, including temperature and flow, were considered. The model was also employed to study the effect of different undercoolings, applied temperature fields, and forced flow velocities on solute segregation and dendrite growth. The initial temperature and fluid flow have a significant impact on the dendrite morphologies and solute profiles during solidification. The release of energy is operated with solidification and results in the increase of temperature. A larger undercooling leads to larger solute concentration near the solid/liquid interface and solute concentration gradient at the same time-step. Solute concentration in the solid region tends to increase with the increase of undercooling. Four vortexes appear under the condition when natural flow exists: the two on the right of the dendrite rotate clockwise, and those on the left of the dendrite rotate counterclockwise. With the increase of forced flow velocity, the rejected solute in the upstream region becomes easier to be washed away and enriched in the downstream region, resulting in acceleration of the growth of the dendrite in the upstream and inhibiting the downstream dendrite growth. The dendrite perpendicular to fluid flow shows a coarser morphology in the upstream region than that of the downstream. Almost no secondary dendrite appears during the calculation process.

  7. A dual potential formulation of the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Gegg, S. G.; Pletcher, R. H.; Steger, J. L.

    1989-01-01

    A dual potential formulation for numerically solving the Navier-Stokes equations is developed and presented. The velocity field is decomposed using a scalar and vector potential. Vorticity and dilatation are used as the dependent variables in the momentum equations. Test cases in two dimensions verify the capability to solve flows using approximations from potential flow to full Navier-Stokes simulations. A three-dimensional incompressible flow formulation is also described. An interesting feature of this approach to solving the Navier-Stokes equations is the decomposition of the velocity field into a rotational part (vector potential) and an irrotational part (scalar potential). The Helmholtz decomposition theorem allows this splitting of the velocity field. This approach has had only limited use since it increases the number of dependent variables in the solution. However, it has often been used for incompressible flows where the solution scheme is known to be fast and accurate. This research extends the usage of this method to fully compressible Navier-Stokes simulations by using the dilatation variable along with vorticity. A time-accurate, iterative algorithm is used for the uncoupled solution of the governing equations. Several levels of flow approximation are available within the framework of this method. Potential flow, Euler and full Navier-Stokes solutions are possible using the dual potential formulation. Solution efficiency can be enhanced in a straightforward way. For some flows, the vorticity and/or dilatation may be negligible in certain regions (e.g., far from a viscous boundary in an external flow). It is possible to drop the calculation of these variables then and optimize the solution speed. Also, efficient Poisson solvers are available for the potentials. The relative merits of non-primitive variables versus primitive variables for solution of the Navier-Stokes equations are also discussed.

  8. Brief description as of April, 1968, of the geology and hydrology of the Lake Minnequa area, Pueblo, Colorado, and suggested solutions for trouble caused by a high water table

    USGS Publications Warehouse

    Scott, Glenn R.

    1972-01-01

    Lake Minnequa lies in a poorly drained broad upland buried valley west of the valley of Salt Creek. Immediately north of Lake Minnequa the buried valley is sharply constricted in sees. 11 and 12, T. 21 S., R. 65 W., where it is entrenched in a buried ridge of bedrock (see geologic map).  The bedrock throughout the buried valley is composed of calcareous shale, limestone, and chalk of the Smoky Hill Shale Member of the Niobrara Formation.  These beds are relatively impermeable to the flow of ground water, but contribute large quantities of sodium sulfate to both the surface and ground water.

  9. Implementation of Finite Volume based Navier Stokes Algorithm Within General Purpose Flow Network Code

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok

    2012-01-01

    This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.

  10. Investigation of the required length for fully developed pipe flow with drag-reducing polymer solutions

    NASA Astrophysics Data System (ADS)

    Farsiani, Yasaman; Elbing, Brian

    2015-11-01

    Adding trace amounts of long chain polymers into a liquid flow is known to reduce skin friction drag by up to 80%. While polymer drag reduction (PDR) has been successfully implemented in internal flows, diffusion and degradation have limited its external flow applications. A weakness in many previous PDR studies is that there was no characterization of the polymer being injected into the turbulent boundary layer, which can be accomplished by testing a sample in a pressure-drop tube. An implicit assumption in polymer characterization is that the flow is fully developed at the differential pressure measurement. While available data in the literature shows that the entry length to achieve fully developed flow increases with polymeric solutions, it is unclear how long is required to achieve fully developed flow for non-Newtonian turbulent flows. In the present study, the pressure-drop is measured across a 1.05 meter length section of a 1.04 cm inner diameter pipe. Differential pressure is measured with a pressure transducer for different entry lengths, flow and polymer solution properties. This presentation will present preliminary data on the required entrance length as well as characterization of polymer solution an estimate of the mean molecular weight.

  11. Integrating petrography, mineralogy and hydrochemistry to constrain the influence and distribution of groundwater contributions to baseflow in poorly productive aquifers: insights from Gortinlieve catchment, Co. Donegal, NW Ireland.

    PubMed

    Caulfield, John; Chelliah, Merlyn; Comte, Jean-Christophe; Cassidy, Rachel; Flynn, Raymond

    2014-12-01

    Identifying groundwater contributions to baseflow forms an essential part of surface water body characterisation. The Gortinlieve catchment (5 km(2)) comprises a headwater stream network of the Carrigans River, itself a tributary of the River Foyle, NW Ireland. The bedrock comprises poorly productive metasediments that are characterised by fracture porosity. We present the findings of a multi-disciplinary study that integrates new hydrochemical and mineralogical investigations with existing hydraulic, geophysical and structural data to identify the scales of groundwater flow and the nature of groundwater/bedrock interaction (chemical denudation). At the catchment scale, the development of deep weathering profiles is controlled by NE-SW regional scale fracture zones associated with mountain building during the Grampian orogeny. In-situ chemical denudation of mineral phases is controlled by micro- to meso-scale fractures related to Alpine compression during Palaeocene to Oligocene times. The alteration of primary muscovite, chlorite (clinochlore) and albite along the surfaces of these small-scale fractures has resulted in the precipitation of illite, montmorillonite and illite-montmorillonite clay admixtures. The interconnected but discontinuous nature of these small-scale structures highlights the role of larger scale faults and fissures in the supply and transportation of weathering solutions to/from the sites of mineral weathering. The dissolution of primarily mineral phases releases the major ions Mg, Ca and HCO3 that are shown to subsequently form the chemical makeup of groundwaters. Borehole groundwater and stream baseflow hydrochemical data are used to constrain the depths of groundwater flow pathways influencing the chemistry of surface waters throughout the stream profile. The results show that it is predominantly the lower part of the catchment, which receives inputs from catchment/regional scale groundwater flow, that is found to contribute to the maintenance of annual baseflow levels. This study identifies the importance of deep groundwater in maintaining annual baseflow levels in poorly productive bedrock systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Direct multiangle solution for poorly stratified atmospheres

    Treesearch

    Vladimir Kovalev; Cyle Wold; Alexander Petkov; Wei Min Hao

    2012-01-01

    The direct multiangle solution is considered, which allows improving the scanning lidar-data-inversion accuracy when the requirement of the horizontally stratified atmosphere is poorly met. The signal measured at zenith or close to zenith is used as a core source for extracting optical characteristics of the atmospheric aerosol loading. The multiangle signals are used...

  13. Three-Dimensional Flow of an Oldroyd-B Fluid with Variable Thermal Conductivity and Heat Generation/Absorption

    PubMed Central

    Shehzad, Sabir Ali; Alsaedi, Ahmed; Hayat, Tasawar; Alhuthali, M. Shahab

    2013-01-01

    This paper looks at the series solutions of three dimensional boundary layer flow. An Oldroyd-B fluid with variable thermal conductivity is considered. The flow is induced due to stretching of a surface. Analysis has been carried out in the presence of heat generation/absorption. Homotopy analysis is implemented in developing the series solutions to the governing flow and energy equations. Graphs are presented and discussed for various parameters of interest. Comparison of present study with the existing limiting solution is shown and examined. PMID:24223780

  14. STUDIES ON THE ANOMALOUS VISCOSITY AND FLOW-BIREFRINGENCE OF PROTEIN SOLUTIONS

    PubMed Central

    Lawrence, A. S. C.; Needham, Joseph; Shen, Shih-Chang

    1944-01-01

    1. A coaxial viscosimeter which permits the simultaneous determination of relative and anomalous viscosity and of flow-birefringence is described. Flow-anomaly and flow-birefringence are regarded as characteristic of elongated micelles and molecules. 2. Such methods have been applied to dilute solutions of proteins. The conditions under which the coaxial (Couette) viscosimeter measures the viscosity of the bulk phase and the surface film phase respectively have been investigated and are described. 3. The general behaviour of protein solutions subjected to shear is summarised. PMID:19873384

  15. Evaluation of truncation error and adaptive grid generation for the transonic full potential flow calculations

    NASA Technical Reports Server (NTRS)

    Nakamura, S.

    1983-01-01

    The effects of truncation error on the numerical solution of transonic flows using the full potential equation are studied. The effects of adapting grid point distributions to various solution aspects including shock waves is also discussed. A conclusion is that a rapid change of grid spacing is damaging to the accuracy of the flow solution. Therefore, in a solution adaptive grid application an optimal grid is obtained as a tradeoff between the amount of grid refinement and the rate of grid stretching.

  16. Research on the sonic boom problem. Part 1: Second-order solutions for the flow field around slender bodies in supersonic flow for sonic boom analysis

    NASA Technical Reports Server (NTRS)

    Landahl, M.; Loefgren, P.

    1973-01-01

    A second-order theory for supersonic flow past slender bodies is presented. Through the introduction of characteristic coordinates as independent variables and the expansion procedure proposed by Lin and Oswatitsch, a uniformly valid solution is obtained for the whole flow field in the axisymmetric case and for far field in the general three-dimensional case. For distances far from the body the theory is an extension of Whitham's first-order solution and for the domain close to the body it is a modification of Van Dyke's second-order solution in the axisymmetric case. From the theory useful formulas relating flow deflections to the Whitham F-function are derived, which permits one to determine the sonic boom strength from wind tunnel measurements fairly close to the body.

  17. Stability of exact solutions describing two-layer flows with evaporation at the interface

    NASA Astrophysics Data System (ADS)

    Bekezhanova, V. B.; Goncharova, O. N.

    2016-12-01

    A new exact solution of the equations of free convection has been constructed in the framework of the Oberbeck-Boussinesq approximation of the Navier-Stokes equations. The solution describes the joint flow of an evaporating viscous heat-conducting liquid and gas-vapor mixture in a horizontal channel. In the gas phase the Dufour and Soret effects are taken into account. The consideration of the exact solution allows one to describe different classes of flows depending on the values of the problem parameters and boundary conditions for the vapor concentration. A classification of solutions and results of the solution analysis are presented. The effects of the external disturbing influences (of the liquid flow rates and longitudinal gradients of temperature on the channel walls) on the stability characteristics have been numerically studied for the system HFE7100-nitrogen in the common case, when the longitudinal temperature gradients on the boundaries of the channel are not equal. In the system both monotonic and oscillatory modes can be formed, which damp or grow depending on the values of the initial perturbations, flow rates and temperature gradients. Hydrodynamic perturbations are most dangerous under large gas flow rates. The increasing oscillatory perturbations are developed due to the thermocapillary effect under large longitudinal gradients of temperature. The typical forms of the disturbances are shown.

  18. A stationary bulk planar ideal flow solution for the double shearing model

    NASA Astrophysics Data System (ADS)

    Lyamina, E. A.; Kalenova, N. V.; Date, P. P.

    2018-04-01

    This paper provides a general ideal flow solution for the double shearing model of pressure-dependent plasticity. This new solution is restricted to a special class of stationary planar flows. A distinguished feature of this class of solutions is that one family of characteristic lines is straight. The solution is analytic. The mapping between Cartesian and principal lines based coordinate systems is given in parametric form with characteristic coordinates being the parameters. A simple relation that connects the scale factor for one family of coordinate curves of the principal lines based coordinate system and the magnitude of velocity is derived. The original ideal flow theory is widely used as the basis for inverse methods for the preliminary design of metal forming processes driven by minimum plastic work. The new theory extends this area of application to granular materials.

  19. A continuous-flow capillary mixing method to monitor reactions on the microsecond time scale.

    PubMed Central

    Shastry, M C; Luck, S D; Roder, H

    1998-01-01

    A continuous-flow capillary mixing apparatus, based on the original design of Regenfuss et al. (Regenfuss, P., R. M. Clegg, M. J. Fulwyler, F. J. Barrantes, and T. M. Jovin. 1985. Rev. Sci. Instrum. 56:283-290), has been developed with significant advances in mixer design, detection method and data analysis. To overcome the problems associated with the free-flowing jet used for observation in the original design (instability, optical artifacts due to scattering, poor definition of the geometry), the solution emerging from the capillary is injected directly into a flow-cell joined to the tip of the outer capillary via a ground-glass joint. The reaction kinetics are followed by measuring fluorescence versus distance downstream from the mixer, using an Hg(Xe) arc lamp for excitation and a digital camera with a UV-sensitized CCD detector for detection. Test reactions involving fluorescent dyes indicate that mixing is completed within 15 micros of its initiation and that the dead time of the measurement is 45 +/- 5 micros, which represents a >30-fold improvement in time resolution over conventional stopped-flow instruments. The high sensitivity and linearity of the CCD camera have been instrumental in obtaining artifact-free kinetic data over the time window from approximately 45 micros to a few milliseconds with signal-to-noise levels comparable to those of conventional methods. The scope of the method is discussed and illustrated with an example of a protein folding reaction. PMID:9591695

  20. An Investigation of Transonic Resonance in a Mach 2.2 Round Convergent-Divergent Nozzle

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III; Zaman, Khairul B. M. Q.

    2015-01-01

    Hot-wire and acoustic measurements were taken for a round convergent nozzle and a round convergent-divergent (C-D) nozzle at a jet Mach number of 0.61. The C-D nozzle had a design Mach number of 2.2. Compared to the convergent nozzle jet flow, the Mach 2.2 nozzle jet flow produced excess broadband noise (EBBN). It also produced a transonic resonance tone at 1200 Herz. Computational simulations were performed for both nozzle flows. A steady Reynolds-Averaged Navier-Stokes simulation was performed for the convergent nozzle jet flow. For the Mach 2.2 nozzle flow, a steady RANS simulation, an unsteady RANS (URANS) simulation, and an unsteady Detached Eddy Simulation (DES) were performed. The RANS simulation of the convergent nozzle showed good agreement with the hot-wire velocity and turbulence measurements, though the decay of the potential core was over-predicted. The RANS simulation of the Mach 2.2 nozzle showed poor agreement with the experimental data, and more closely resembled an ideally-expanded jet. The URANS simulation also showed qualitative agreement with the hot-wire data, but predicted a transonic resonance at 1145 Herz. The DES showed good agreement with the hot-wire velocity and turbulence data. The DES also produced a transonic tone at 1135 Herz. The DES solution showed that the destabilization of the shock-induced separation region inside the nozzle produced increased levels of turbulence intensity. This is likely the source of the EBBN.

  1. Redox flow batteries based on supporting solutions containing chloride

    DOEpatents

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-01-14

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  2. Redox flow batteries based on supporting solutions containing chloride

    DOEpatents

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2015-07-07

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  3. Redox flow batteries based on supporting solutions containing chloride

    DOEpatents

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2015-09-01

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  4. Development of a solution adaptive unstructured scheme for quasi-3D inviscid flows through advanced turbomachinery cascades

    NASA Technical Reports Server (NTRS)

    Usab, William J., Jr.; Jiang, Yi-Tsann

    1991-01-01

    The objective of the present research is to develop a general solution adaptive scheme for the accurate prediction of inviscid quasi-three-dimensional flow in advanced compressor and turbine designs. The adaptive solution scheme combines an explicit finite-volume time-marching scheme for unstructured triangular meshes and an advancing front triangular mesh scheme with a remeshing procedure for adapting the mesh as the solution evolves. The unstructured flow solver has been tested on a series of two-dimensional airfoil configurations including a three-element analytic test case presented here. Mesh adapted quasi-three-dimensional Euler solutions are presented for three spanwise stations of the NASA rotor 67 transonic fan. Computed solutions are compared with available experimental data.

  5. Redox flow batteries based on supporting solutions containing chloride

    DOEpatents

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2017-11-14

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  6. Water movement through plant roots - exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties

    NASA Astrophysics Data System (ADS)

    Meunier, Félicien; Couvreur, Valentin; Draye, Xavier; Zarebanadkouki, Mohsen; Vanderborght, Jan; Javaux, Mathieu

    2017-12-01

    In 1978, Landsberg and Fowkes presented a solution of the water flow equation inside a root with uniform hydraulic properties. These properties are root radial conductivity and axial conductance, which control, respectively, the radial water flow between the root surface and xylem and the axial flow within the xylem. From the solution for the xylem water potential, functions that describe the radial and axial flow along the root axis were derived. These solutions can also be used to derive root macroscopic parameters that are potential input parameters of hydrological and crop models. In this paper, novel analytical solutions of the water flow equation are developed for roots whose hydraulic properties vary along their axis, which is the case for most plants. We derived solutions for single roots with linear or exponential variations of hydraulic properties with distance to root tip. These solutions were subsequently combined to construct single roots with complex hydraulic property profiles. The analytical solutions allow one to verify numerical solutions and to get a generalization of the hydric behaviour with the main influencing parameters of the solutions. The resulting flow distributions in heterogeneous roots differed from those in uniform roots and simulations led to more regular, less abrupt variations of xylem suction or radial flux along root axes. The model could successfully be applied to maize effective root conductance measurements to derive radial and axial hydraulic properties. We also show that very contrasted root water uptake patterns arise when using either uniform or heterogeneous root hydraulic properties in a soil-root model. The optimal root radius that maximizes water uptake under a carbon cost constraint was also studied. The optimal radius was shown to be highly dependent on the root hydraulic properties and close to observed properties in maize roots. We finally used the obtained functions for evaluating the impact of root maturation versus root growth on water uptake. Very diverse uptake strategies arise from the analysis. These solutions open new avenues to investigate for optimal genotype-environment-management interactions by optimization, for example, of plant-scale macroscopic hydraulic parameters used in ecohydrogolocial models.

  7. Choice of boundary condition for lattice-Boltzmann simulation of moderate-Reynolds-number flow in complex domains.

    PubMed

    Nash, Rupert W; Carver, Hywel B; Bernabeu, Miguel O; Hetherington, James; Groen, Derek; Krüger, Timm; Coveney, Peter V

    2014-02-01

    Modeling blood flow in larger vessels using lattice-Boltzmann methods comes with a challenging set of constraints: a complex geometry with walls and inlets and outlets at arbitrary orientations with respect to the lattice, intermediate Reynolds (Re) number, and unsteady flow. Simple bounce-back is one of the most commonly used, simplest, and most computationally efficient boundary conditions, but many others have been proposed. We implement three other methods applicable to complex geometries [Guo, Zheng, and Shi, Phys. Fluids 14, 2007 (2002); Bouzidi, Firdaouss, and Lallemand, Phys. Fluids 13, 3452 (2001); Junk and Yang, Phys. Rev. E 72, 066701 (2005)] in our open-source application hemelb. We use these to simulate Poiseuille and Womersley flows in a cylindrical pipe with an arbitrary orientation at physiologically relevant Re number (1-300) and Womersley (4-12) numbers and steady flow in a curved pipe at relevant Dean number (100-200) and compare the accuracy to analytical solutions. We find that both the Bouzidi-Firdaouss-Lallemand (BFL) and Guo-Zheng-Shi (GZS) methods give second-order convergence in space while simple bounce-back degrades to first order. The BFL method appears to perform better than GZS in unsteady flows and is significantly less computationally expensive. The Junk-Yang method shows poor stability at larger Re number and so cannot be recommended here. The choice of collision operator (lattice Bhatnagar-Gross-Krook vs multiple relaxation time) and velocity set (D3Q15 vs D3Q19 vs D3Q27) does not significantly affect the accuracy in the problems studied.

  8. A block-based algorithm for the solution of compressible flows in rotor-stator combinations

    NASA Technical Reports Server (NTRS)

    Akay, H. U.; Ecer, A.; Beskok, A.

    1990-01-01

    A block-based solution algorithm is developed for the solution of compressible flows in rotor-stator combinations. The method allows concurrent solution of multiple solution blocks in parallel machines. It also allows a time averaged interaction at the stator-rotor interfaces. Numerical results are presented to illustrate the performance of the algorithm. The effect of the interaction between the stator and rotor is evaluated.

  9. Higher and lowest order mixed finite element approximation of subsurface flow problems with solutions of low regularity

    NASA Astrophysics Data System (ADS)

    Bause, Markus

    2008-02-01

    In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.

  10. A similarity hypothesis for the two-point correlation tensor in a temporally evolving plane wake

    NASA Technical Reports Server (NTRS)

    Ewing, D. W.; George, W. K.; Moser, R. D.; Rogers, M. M.

    1995-01-01

    The analysis demonstrated that the governing equations for the two-point velocity correlation tensor in the temporally evolving wake admit similarity solutions, which include the similarity solutions for the single-point moment as a special case. The resulting equations for the similarity solutions include two constants, beta and Re(sub sigma), that are ratios of three characteristic time scales of processes in the flow: a viscous time scale, a time scale characteristic of the spread rate of the flow, and a characteristic time scale of the mean strain rate. The values of these ratios depend on the initial conditions of the flow and are most likely measures of the coherent structures in the initial conditions. The occurrences of these constants in the governing equations for the similarity solutions indicates that these solutions, in general, will only be the same for two flows if these two constants are equal (and hence the coherent structures in the flows are related). The comparisons between the predictions of the similarity hypothesis and the data presented here and elsewhere indicate that the similarity solutions for the two-point correlation tensors provide a good approximation of the measures of those motions that are not significantly affected by the boundary conditions caused by the finite extent of real flows. Thus, the two-point similarity hypothesis provides a useful tool for both numerical and physical experimentalist that can be used to examine how the finite extent of real flows affect the evolution of the different scales of motion in the flow.

  11. An analytical model for flow induced by a constant-head pumping in a leaky unconfined aquifer system with considering unsaturated flow

    NASA Astrophysics Data System (ADS)

    Lin, Ye-Chen; Li, Ming-Hsu; Yeh, Hund-Der

    2017-09-01

    A new mathematical model is developed to describe the flow in response to a constant-head pumping (or constant-head test, CHT) in a leaky unconfined aquifer system of infinite lateral extent with considering unsaturated flow. The model consists of an unsaturated zone on the top, an unconfined aquifer in the middle, and a second aquifer (aquitard) at the bottom. The unsaturated flow is described by Richard's equation, and the flows in unconfined aquifer and second layer are governed by the groundwater flow equation. The well partially penetrates the unconfined aquifer with a constant head in the well due to CHT. The governing equations of the model are linearized by the perturbation method and Gardner's exponential model is adopted to describe the soil retention curves. The solution of the model for drawdown distribution is obtained by applying the methods of Laplace transform and Weber transform. Then the solution for the wellbore flowrate is derived from the drawdown solution with Darcy's law. The issue of the equivalence of normalized drawdown predicted by the present solution for constant-head pumping and Tartakovsky and Neuman's (2007) solution for constant-rate pumping is discussed. On the basis of the wellbore flowrate solution, the results of the sensitivity analysis indicate that the wellbore flowrate is very sensitive to the changes in the radial hydraulic conductivity and the thickness of the saturated zone. Moreover, the results predicted from the present wellbore flowrate solution indicate that this new solution can reduce to Chang's et al. (2010a) solution for homogenous aquifers when the dimensionless unsaturated exponent approaches 100. The unsaturated zone can be considered as infinite extent in the vertical direction if the thickness ratio of the unsaturated zone to the unconfined aquifer is equal to or greater than one. As for the leakage effect, it can be ignored when the vertical hydraulic conductivity ratio (i.e., the vertical hydraulic conductivity of the lower layer over that of the unconfined aquifer) is smaller than 0.1. The present solution is compared with the numerical solution from FEMWATER for validation and the results indicate good match between these two solutions. Finally, the present solution is applied to a set of field drawdown data obtained from a CHT for the estimation of hydrogeologic parameters.

  12. Development and Application of a Low-Volume Flow System for Solution-State in Vivo NMR.

    PubMed

    Tabatabaei Anaraki, Maryam; Dutta Majumdar, Rudraksha; Wagner, Nicole; Soong, Ronald; Kovacevic, Vera; Reiner, Eric J; Bhavsar, Satyendra P; Ortiz Almirall, Xavier; Lane, Daniel; Simpson, Myrna J; Heumann, Hermann; Schmidt, Sebastian; Simpson, André J

    2018-06-18

    In vivo nuclear magnetic resonance (NMR) spectroscopy is a particularly powerful technique, since it allows samples to be analyzed in their natural, unaltered state, criteria paramount for living organisms. In this study, a novel continuous low-volume flow system, suitable for in vivo NMR metabolomics studies, is demonstrated. The system allows improved locking, shimming, and water suppression, as well as allowing the use of trace amounts of expensive toxic contaminants or low volumes of precious natural environmental samples as stressors. The use of a double pump design with a sump slurry pump return allows algal food suspensions to be continually supplied without the need for filters, eliminating the possibility of clogging and leaks. Using the flow system, the living organism can be kept alive without stress indefinitely. To evaluate the feasibility and applicability of the flow system, changes in the metabolite profile of 13 C enriched Daphnia magna over a 24-h period are compared when feeding laboratory food vs exposing them to a natural algal bloom sample. Clear metabolic changes are observed over a range of metabolites including carbohydrates, lipids, amino acids, and a nucleotide demonstrating in vivo NMR as a powerful tool to monitor environmental stress. The particular bloom used here was low in microcystins, and the metabolic stress impacts are consistent with the bloom being a poor food source forcing the Daphnia to utilize their own energy reserves.

  13. Effects of the Canopy and Flux Tube Anchoring on Evaporation Flow of a Solar Flare

    NASA Astrophysics Data System (ADS)

    Unverferth, John; Longcope, Dana

    2018-06-01

    Spectroscopic observations of flare ribbons typically show chromospheric evaporation flows, which are subsonic for their high temperatures. This contrasts with many numerical simulations where evaporation is typically supersonic. These simulations typically assume flow along a flux tube with a uniform cross-sectional area. A simple model of the magnetic canopy, however, includes many regions of low magnetic field strength, where flux tubes achieve local maxima in their cross-sectional area. These are analgous to a chamber in a flow tube. We find that one-third of all field lines in a model have some form of chamber through which evaporation flow must pass. Using a one-dimensional isothermal hydrodynamic code, we simulated supersonic flow through an assortment of chambers and found that a subset of solutions exhibit a stationary standing shock within the chamber. These shocked solutions have slower and denser upflows than a flow through a uniform tube would. We use our solution to construct synthetic spectral lines and find that the shocked solutions show higher emission and lower Doppler shifts. When these synthetic lines are combined into an ensemble representing a single canopy cell, the composite line appears slower, even subsonic, than expected due to the outsized contribution from shocked solutions.

  14. Fluid flow and convective transport of solutes within the intervertebral disc.

    PubMed

    Ferguson, Stephen J; Ito, Keita; Nolte, Lutz P

    2004-02-01

    Previous experimental and analytical studies of solute transport in the intervertebral disc have demonstrated that for small molecules diffusive transport alone fulfils the nutritional needs of disc cells. It has been often suggested that fluid flow into and within the disc may enhance the transport of larger molecules. The goal of the study was to predict the influence of load-induced interstitial fluid flow on mass transport in the intervertebral disc. An iterative procedure was used to predict the convective transport of physiologically relevant molecules within the disc. An axisymmetric, poroelastic finite-element structural model of the disc was developed. The diurnal loading was divided into discrete time steps. At each time step, the fluid flow within the disc due to compression or swelling was calculated. A sequentially coupled diffusion/convection model was then employed to calculate solute transport, with a constant concentration of solute being provided at the vascularised endplates and outer annulus. Loading was simulated for a complete diurnal cycle, and the relative convective and diffusive transport was compared for solutes with molecular weights ranging from 400 Da to 40 kDa. Consistent with previous studies, fluid flow did not enhance the transport of low-weight solutes. During swelling, interstitial fluid flow increased the unidirectional penetration of large solutes by approximately 100%. Due to the bi-directional temporal nature of disc loading, however, the net effect of convective transport over a full diurnal cycle was more limited (30% increase). Further study is required to determine the significance of large solutes and the timing of their delivery for disc physiology.

  15. Experimental testing and modeling analysis of solute mixing at water distribution pipe junctions.

    PubMed

    Shao, Yu; Jeffrey Yang, Y; Jiang, Lijie; Yu, Tingchao; Shen, Cheng

    2014-06-01

    Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. The effect can lead to different outcomes of water quality modeling and, hence, drinking water management in a distribution network. Here we have investigated solute mixing behavior in pipe junctions of five hydraulic types, for which flow distribution factors and analytical equations for network modeling are proposed. First, based on experiments, the degree of mixing at a cross is found to be a function of flow momentum ratio that defines a junction flow distribution pattern and the degree of departure from complete mixing. Corresponding analytical solutions are also validated using computational-fluid-dynamics (CFD) simulations. Second, the analytical mixing model is further extended to double-Tee junctions. Correspondingly the flow distribution factor is modified to account for hydraulic departure from a cross configuration. For a double-Tee(A) junction, CFD simulations show that the solute mixing depends on flow momentum ratio and connection pipe length, whereas the mixing at double-Tee(B) is well represented by two independent single-Tee junctions with a potential water stagnation zone in between. Notably, double-Tee junctions differ significantly from a cross in solute mixing and transport. However, it is noted that these pipe connections are widely, but incorrectly, simplified as cross junctions of assumed complete solute mixing in network skeletonization and water quality modeling. For the studied pipe junction types, analytical solutions are proposed to characterize the incomplete mixing and hence may allow better water quality simulation in a distribution network. Published by Elsevier Ltd.

  16. Lithium-Based High Energy Density Flow Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  17. Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory.

    PubMed

    Pellegrino, J; Wright, S; Ranvill, J; Amy, G

    2005-01-01

    Flow-Field Flow Fractionation (FI-FFF) is an idealization of the cross flow membrane filtration process in that, (1) the filtration flux and crossflow velocity are constant from beginning to end of the device, (2) the process is a relatively well-defined laminar-flow hydrodynamic condition, and (3) the solutes are introduced as a pulse-input that spreads due to interactions with each other and the membrane in the dilute-solution limit. We have investigated the potential for relating FI-FFF measurements to membrane fouling. An advection-dispersion transport model was used to provide 'ideal' (defined as spherical, non-interacting solutes) solute residence time distributions (RTDs) for comparison with 'real' RTDs obtained experimentally at different cross-field velocities and solution ionic strength. An RTD moment analysis based on a particle diameter probability density function was used to extract "effective" characteristic properties, rather than uniquely defined characteristics, of the standard solute mixture. A semi-empirical unsteady-state, flux decline model was developed that uses solute property parameters. Three modes of flux decline are included: (1) concentration polarization, (2) cake buildup, and (3) adsorption on/in pores, We have used this model to test the hypothesis-that an analysis of a residence time distribution using FI-FFF can describe 'effective' solute properties or indices that can be related to membrane flux decline in crossflow membrane filtration. Constant flux filtration studies included the changes of transport hydrodynamics (solvent flux to solute back diffusion (J/k) ratios), solution ionic strength, and feed water composition for filtration using a regenerated cellulose ultrafiltration membrane. Tests of the modeling hypothesis were compared with experimental results from the filtration measurements using several correction parameters based on the mean and variance of the solute RTDs. The corrections used to modify the boundary layer mass transfer coefficient and the specific resistance of cake or adsorption layers demonstrated that RTD analysis is potentially useful technique to describe colloid properties but requires improvements.

  18. Effectiveness and Mechanism of Preoperative Lugol Solution for Reducing Thyroid Blood Flow in Patients with Euthyroid Graves' Disease.

    PubMed

    Huang, Shih-Ming; Liao, Wei-Ting; Lin, Chiou-Feng; Sun, H Sunny; Chow, Nan-Haw

    2016-03-01

    To reduce intraoperative and postoperative complications, using Lugol solution to preoperatively prepare patients with Graves' disease has (1) rapidly reduced the severity of thyrotoxicosis and (2) reduced the vascularity of the thyroid gland. The vascularity reduction normally accompanies reducing the severity of thyrotoxicosis. However, the effects and mechanism of Lugol solution for reducing blood flow have not been well investigated in the patients with euthyroid (normally functioning thyroid) Graves' disease. Twenty-five patients with euthyroid Graves' disease being preoperatively treated with Lugol solution for 10 days were measured, at baseline and on the operative day, for (1) superior thyroid artery blood flow; (2) systemic angiogenic factor (VEGF); and (3) systemic inflammatory factor [interleukin (IL)-16]. All three parameters were significantly (p < 0.0001) lower after 10 days of Lugol solution treatment. The average reductions were blood flow: 60% (0.294 vs. 0.117 L/min), serum VEGF: 55% (169.8 vs. 76.7 pg/mL), and serum IL-16: 50% (427.2 vs. 214.2; pg/mL). Lugol solution significantly reduced thyroid arterial blood flow, VEGF, and IL-16, even in patients with euthyroid Graves' disease. We recommend routine preoperative Lugol solution treatment for all patients with Graves' disease.

  19. Boomerang RG flows in M-theory with intermediate scaling

    NASA Astrophysics Data System (ADS)

    Donos, Aristomenis; Gauntlett, Jerome P.; Rosen, Christopher; Sosa-Rodriguez, Omar

    2017-07-01

    We construct novel RG flows of D=11 supergravity that asymptotically approach AdS 4 × S 7 in the UV with deformations that break spatial translations in the dual field theory. In the IR the solutions return to exactly the same AdS 4 × S 7 vacuum, with a renormalisation of relative length scales, and hence we refer to the flows as `boomerang RG flows'. For sufficiently large deformations, on the way to the IR the solutions also approach two distinct intermediate scaling regimes, each with hyperscaling violation. The first regime is Lorentz invariant with dynamical exponent z = 1 while the second has z = 5/2. Neither ofthe two intermediatescaling regimesare associatedwith exact hyperscaling violation solutions of D = 11 supergravity. The RG flow solutions are constructed using the four dimensional N = 2 STU gauged supergravity theory with vanishing gauge fields, but non-vanishing scalar and pseudoscalar fields. In the ABJM dual field theory the flows are driven by spatially modulated deformation parameters for scalar and fermion bilinear operators.

  20. Drag Reduction Effect of BSA Monodispersed Solution in Microtube Flow

    NASA Astrophysics Data System (ADS)

    Kanda, Kensuke; Yang, Ming

    In recent biological and chemical analyses, microchips have attracted attention because of advantages such as high efficiency, small heat capacity, and high-speed reaction. Biochemical reagents and samples flow into the chips with the wall surface biologically or chemically modified. The mechanisms of the complex flow are not well-known. In this paper, the mechanisms are investigated using pressure drop measurements of the flow of BSA-(bovine serum albumin, protein generally used in analytical fields) dispersed solutions in microtubes with three kinds of surfaces: glass, PEEK (polyetheretherketone) and Hirec-X1 (a highly water-repellent agent, NTT-AT Co.), which have different properties. In the cases in which BSA solution flows on the Hirec-X1 and on the PEEK surface, results show reductions in the friction factor. On the other hand, in the case in which non BSA solution flow on any surface, results agree well with the Hagen-Poiseuille equation. Furthermore, reduction ratio in the friction factor depends on the concentration of BSA. These results imply that the interaction between the wall and the bio-molecules influences the behavior of the flow in microtubes.

  1. The numerical calculation of laminar boundary-layer separation

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.; Steger, J. L.

    1974-01-01

    Iterative finite-difference techniques are developed for integrating the boundary-layer equations, without approximation, through a region of reversed flow. The numerical procedures are used to calculate incompressible laminar separated flows and to investigate the conditions for regular behavior at the point of separation. Regular flows are shown to be characterized by an integrable saddle-type singularity that makes it difficult to obtain numerical solutions which pass continuously into the separated region. The singularity is removed and continuous solutions ensured by specifying the wall shear distribution and computing the pressure gradient as part of the solution. Calculated results are presented for several separated flows and the accuracy of the method is verified. A computer program listing and complete solution case are included.

  2. Experimental Testing and Modeling Analysis of Solute Mixing at Water Distribution Pipe Junctions

    EPA Science Inventory

    Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. Here we have categorized pipe junctions into five hydraulic types, for which flow distribution factors and analytical equations for describing the solute mixing ...

  3. Supersonic flow of chemically reacting gas-particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A numerical solution for chemically reacting supersonic gas-particle flows in rocket nozzles and exhaust plumes was described. The gas-particle flow solution is fully coupled in that the effects of particle drag and heat transfer between the gas and particle phases are treated. Gas and particles exchange momentum via the drag exerted on the gas by the particles. Energy is exchanged between the phases via heat transfer (convection and/or radiation). Thermochemistry calculations (chemical equilibrium, frozen or chemical kinetics) were shown to be uncoupled from the flow solution and, as such, can be solved separately. The solution to the set of governing equations is obtained by utilizing the method of characteristics. The equations cast in characteristic form are shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The particle distribution is represented in the numerical solution by a finite distribution of particle sizes.

  4. A semi-analytical solution for slug tests in an unconfined aquifer considering unsaturated flow

    NASA Astrophysics Data System (ADS)

    Sun, Hongbing

    2016-01-01

    A semi-analytical solution considering the vertical unsaturated flow is developed for groundwater flow in response to a slug test in an unconfined aquifer in Laplace space. The new solution incorporates the effects of partial penetrating, anisotropy, vertical unsaturated flow, and a moving water table boundary. Compared to the Kansas Geological Survey (KGS) model, the new solution can significantly improve the fittings of the modeled to the measured hydraulic heads at the late stage of slug tests in an unconfined aquifer, particularly when the slug well has a partially submerged screen and moisture drainage above the water table is significant. The radial hydraulic conductivities estimated with the new solution are comparable to those from the KGS, Bouwer and Rice, and Hvorslev methods. In addition, the new solution also can be used to examine the vertical conductivity, specific storage, specific yield, and the moisture retention parameters in an unconfined aquifer based on slug test data.

  5. Solution of transonic flows by an integro-differential equation method

    NASA Technical Reports Server (NTRS)

    Ogana, W.

    1978-01-01

    Solutions of steady transonic flow past a two-dimensional airfoil are obtained from a singular integro-differential equation which involves a tangential derivative of the perturbation velocity potential. Subcritical flows are solved by taking central differences everywhere. For supercritical flows with shocks, central differences are taken in subsonic flow regions and backward differences in supersonic flow regions. The method is applied to a nonlifting parabolic-arc airfoil and to a lifting NACA 0012 airfoil. Results compare favorably with those of finite-difference schemes.

  6. $$ \\mathcal{N} $$ = 2 supersymmetric Janus solutions and flows: From gauged supergravity to M theory

    DOE PAGES

    Pilch, Krzysztof; Tyukov, Alexander; Warner, Nicholas P.

    2016-05-02

    In this study, we investigate a family of SU(3)×U(1)×U(1)-invariant holographic flows and Janus solutions obtained from gaugedmore » $$ \\mathcal{N} $$ = 8 supergravity in four dimensions. We give complete details of how to use the uplift formulae to obtain the corresponding solutions in M theory. While the flow solutions appear to be singular from the four-dimensional perspective, we find that the eleven-dimensional solutions are much better behaved and give rise to interesting new classes of compactification geometries that are smooth, up to orbifolds, in the infra-red limit. Our solutions involve new phases in which M2 branes polarize partially or even completely into M5 branes. We derive the eleven-dimensional supersymmetries and show that the eleven-dimensional equations of motion and BPS equations are indeed satisfied as a consequence of their four-dimensional counterparts. Apart from elucidating a whole new class of eleven-dimensional Janus and flow solutions, our work provides extensive and highly non-trivial tests of the recently-derived uplift formulae.« less

  7. Application of an unstructured grid flow solver to planes, trains and automobiles

    NASA Technical Reports Server (NTRS)

    Spragle, Gregory S.; Smith, Wayne A.; Yadlin, Yoram

    1993-01-01

    Rampant, an unstructured flow solver developed at Fluent Inc., is used to compute three-dimensional, viscous, turbulent, compressible flow fields within complex solution domains. Rampant is an explicit, finite-volume flow solver capable of computing flow fields using either triangular (2d) or tetrahedral (3d) unstructured grids. Local time stepping, implicit residual smoothing, and multigrid techniques are used to accelerate the convergence of the explicit scheme. The paper describes the Rampant flow solver and presents flow field solutions about a plane, train, and automobile.

  8. The effect of viscosity on steady transonic flow with a nodal solution topology

    NASA Technical Reports Server (NTRS)

    Owocki, Stanley P.; Zank, Gary P.

    1991-01-01

    The effect of viscosity on a steady, transonic flow for which the inviscid limit has a nodal solution topology near the critical point is investigated. For the accelerating case, viscous solutions tend to repel each other, so that a very delicate choice of initial conditions is required to prevent them from diverging. Only the two critical solutions extend to arbitrarily large distances into both the subsonic and supersonic flows. For the decelerating case, the solutions tend to attract, and so an entire two-parameter family of solutions now extends over large distances. The general effect of viscosity on the solution degeneracy of a nodal topology is thus to reduce or limit it for the accelerating case and to enhance it for the decelerating case. The astrophysical implications of these findings are addressed.

  9. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.

    PubMed

    Huang, Zhonghui; Scicolone, James V; Han, Xi; Davé, Rajesh N

    2015-01-30

    The improvements in the flow and packing of fine pharmaceutical powder blends due to dry coating of micronized acetaminophen (mAPAP, ∼11μm), a model poorly flowing drug, are quantified. Poor flow and packing density of fine excipients (∼20μm) allowed testing the hypothesis that dry coating of cohesive API may counteract poor flow and packing of fine pharmaceutical powder blends. Further, fine excipients could improve compaction and reduce segregation tendency. It was found that flow function coefficient (FFC) and bulk density enhancements for 10%, 30%, and 60% (w/w), API loading blends with dry coated API are significantly higher than those without coated silica. At the highest API loading, for which coarser excipients were also used as reference, the flow and packing of dry coated mAPAP blends were significantly increased regardless of the excipient particle size, exceeding those of a well compacting excipient, Avicel 102. In addition, tensile strength of tablets with fine excipients was significantly higher, indicating improved compactibility. These results show for the first time that dry coating of fine, cohesive API powder leads to significantly improved flow and packing of high API loading blends consisting of fine excipients, while achieving improved tablet compactibility, suggesting suitability for direct compaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Profiling of poorly stratified atmospheres with scanning lidar

    Treesearch

    C. E. Wold; V. A. Kovalev; A. P. Petkov; W. M. Hao

    2012-01-01

    The direct multiangle solution may allow inversion of the scanning lidar data even when the requirement of the horizontally stratified atmosphere is poorly met. The solution is based on two principles: (1) The signal measured in zenith is the core source for extracting the information about the atmospheric aerosol loading, and (2) The multiangle signals are used as...

  11. Investigation of particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid.

    PubMed

    Yuan, Dan; Zhang, Jun; Yan, Sheng; Peng, Gangrou; Zhao, Qianbin; Alici, Gursel; Du, Hejun; Li, Weihua

    2016-08-01

    In this work, particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid was experimentally investigated. The 4.8-μm micro-particles were dispersed in a polyethylene oxide (PEO) viscoelastic solution, and then the solution was injected into a straight rectangular channel with a deionised (DI) water Newtonian sheath flow. Micro-particles suspended in PEO solution migrated laterally to a DI water stream, but migration in the opposite direction from a DI water stream to a PEO solution stream or from one DI water stream to another DI water stream could not be achieved. The lateral migration of particles depends on the viscoelastic properties of the sample fluids. Furthermore, the effects of channel length, flow rate, and PEO concentration were studied. By using viscoelastic sample flow and Newtonian sheath flow, a selective particle lateral migration can be achieved in a simple straight channel, without any external force fields. This particle lateral migration technique could be potentially used in solution exchange fields such as automated cell staining and washing in microfluidic platforms, and holds numerous biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A three-dimensional analytical model to simulate groundwater flow during operation of recirculating wells

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Goltz, Mark N.

    2005-11-01

    The potential for using pairs of so-called horizontal flow treatment wells (HFTWs) to effect in situ capture and treatment of contaminated groundwater has recently been demonstrated. To apply this new technology, design engineers need to be able to simulate the relatively complex groundwater flow patterns that result from HFTW operation. In this work, a three-dimensional analytical solution for steady flow in a homogeneous, anisotropic, contaminated aquifer is developed to efficiently calculate the interflow of water circulating between a pair of HFTWs and map the spatial extent of contaminated groundwater flowing from upgradient that is captured. The solution is constructed by superposing the solutions for the flow fields resulting from operation of partially penetrating wells. The solution is used to investigate the flow resulting from operation of an HFTW well pair and to quantify how aquifer anisotropy, well placement, and pumping rate impact capture zone width and interflow. The analytical modeling method presented here provides a fast and accurate technique for representing the flow field resulting from operation of HFTW systems, and represents a tool that can be useful in designing in situ groundwater contamination treatment systems.

  13. Flow through three-dimensional arrangements of cylinders with alternating streamwise planar tilt

    NASA Astrophysics Data System (ADS)

    Sahraoui, M.; Marshall, H.; Kaviany, M.

    1993-09-01

    In this report, fluid flow through a three-dimensional model for the fibrous filters is examined. In this model, the three-dimensional Stokes equation with the appropriate periodic boundary conditions is solved using the finite volume method. In addition to the numerical solution, we attempt to model this flow analytically by using the two-dimensional extended analytic solution in each of the unit cells of the three-dimensional structure. Particle trajectories computed using the superimposed analytic solution of the flow field are closed to those computed using the numerical solution of the flow field. The numerical results show that the pressure drop is not affected significantly by the relative angle of rotation of the cylinders for the high porosity used in this study (epsilon = 0.8 and epsilon = 0.95). The numerical solution and the superimposed analytic solution are also compared in terms of the particle capture efficiency. The results show that the efficiency predictions using the two methods are within 10% for St = 0.01 and 5% for St = 100. As the the porosity decreases, the three-dimensional effect becomes more significant and a difference of 35% is obtained for epsilon = 0.8.

  14. Exact coherent structures in an asymptotically reduced description of parallel shear flows

    NASA Astrophysics Data System (ADS)

    Beaume, Cédric; Knobloch, Edgar; Chini, Gregory P.; Julien, Keith

    2015-02-01

    A reduced description of shear flows motivated by the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow (Wang J, Gibson J and Waleffe F 2007 Phys. Rev. Lett. 98 204501) is constructed. Exact time-independent nonlinear solutions of the reduced equations corresponding to both lower and upper branch states are found for a sinusoidal, body-forced shear flow. The lower branch solution is characterized by fluctuations that vary slowly along the critical layer while the upper branch solutions display a bimodal structure and are more strongly focused on the critical layer. The reduced equations provide a rational framework for investigations of subcritical spatiotemporal patterns in parallel shear flows.

  15. Gradient flow of O(N) nonlinear sigma model at large N

    DOE PAGES

    Aoki, Sinya; Kikuchi, Kengo; Onogi, Tetsuya

    2015-04-28

    Here, we study the gradient flow equation for the O(N) nonlinear sigma model in two dimensions at large N. We parameterize solution of the field at flow time t in powers of bare fields by introducing the coefficient function X n for the n-th power term (n = 1, 3, ··· ). Reducing the flow equation by keeping only the contributions at leading order in large N, we obtain a set of equations for X n ’s, which can be solved iteratively starting from n = 1. For n = 1 case, we find an explicit form of the exactmore » solution. Using this solution, we show that the two point function at finite flow time t is finite. As an application, we obtain the non-perturbative running coupling defined from the energy density. We also discuss the solution for n = 3 case.« less

  16. Global m-Equivariant Solutions of Nematic Liquid Crystal Flows in Dimension Two

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Yu, Yong

    2017-11-01

    In this article we construct a global solution of the simplified Ericksen-Leslie system. We show that the velocity of the solution can be decomposed into the sum of three parts. The main flow is governed by the Oseen vortex with the same circulation Reynolds number as the initial fluid. The secondary flow has finite kinetic energy and decay in the speed (1 + t)-2 as t → ∞. The third part is a minor flow whose kinetic energy decays faster than the secondary flow. As for the orientation variable, our solution has a phase function which diverges logarithmically to ∞ as t → ∞. This indicates that the orientation variable will keep rotating around the z-axis while t → ∞. This phenomenon results from a non-trivial coupling between the orientation variable and a fluid with a non-zero circulation Reynolds number.

  17. Graphics and Flow Visualization of Computer Generated Flow Fields

    NASA Technical Reports Server (NTRS)

    Kathong, M.; Tiwari, S. N.

    1987-01-01

    Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.

  18. Vorticity interaction effects on blunt bodies. [hypersonic viscous shock layers

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Wilcox, D. C.

    1977-01-01

    Numerical solutions of the viscous shock layer equations governing laminar and turbulent flows of a perfect gas and radiating and nonradiating mixtures of perfect gases in chemical equilibrium are presented for hypersonic flow over spherically blunted cones and hyperboloids. Turbulent properties are described in terms of the classical mixing length. Results are compared with boundary layer and inviscid flowfield solutions; agreement with inviscid flowfield data is satisfactory. Agreement with boundary layer solutions is good except in regions of strong vorticity interaction; in these flow regions, the viscous shock layer solutions appear to be more satisfactory than the boundary layer solutions. Boundary conditions suitable for hypersonic viscous shock layers are devised for an advanced turbulence theory.

  19. Multibunch solutions of the differential-difference equation for traffic flow

    PubMed

    Nakanishi

    2000-09-01

    The Newell-Whitham type of car-following model, with a hyperbolic tangent as the optimal velocity function, has a finite number of exact steady traveling wave solutions that can be expressed in terms of elliptic theta functions. Each such solution describes a density wave with a definite number of car bunches on a circuit. In our numerical simulations, we observe a transition process from uniform flow to congested flow described by a one-bunch analytic solution, which appears to be an attractor of the system. In this process, the system exhibits a series of transitions through which it comes to assume configurations closely approximating multibunch solutions with successively fewer bunches.

  20. Boundary-Layer Stability Analysis of the Mean Flows Obtained Using Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liao, Wei; Malik, Mujeeb R.; Lee-Rausch, Elizabeth M.; Li, Fei; Nielsen, Eric J.; Buning, Pieter G.; Chang, Chau-Lyan; Choudhari, Meelan M.

    2012-01-01

    Boundary-layer stability analyses of mean flows extracted from unstructured-grid Navier- Stokes solutions have been performed. A procedure has been developed to extract mean flow profiles from the FUN3D unstructured-grid solutions. Extensive code-to-code validations have been performed by comparing the extracted mean ows as well as the corresponding stability characteristics to the predictions based on structured-grid solutions. Comparisons are made on a range of problems from a simple at plate to a full aircraft configuration-a modified Gulfstream-III with a natural laminar flow glove. The future aim of the project is to extend the adjoint-based design capability in FUN3D to include natural laminar flow and laminar flow control by integrating it with boundary-layer stability analysis codes, such as LASTRAC.

  1. A comparative study of computational solutions to flow over a backward-facing step

    NASA Technical Reports Server (NTRS)

    Mizukami, M.; Georgiadis, N. J.; Cannon, M. R.

    1993-01-01

    A comparative study was conducted for computational fluid dynamic solutions to flow over a backward-facing step. This flow is a benchmark problem, with a simple geometry, but involves complicated flow physics such as free shear layers, reattaching flow, recirculation, and high turbulence intensities. Three Reynolds-averaged Navier-Stokes flow solvers with k-epsilon turbulence models were used, each using a different solution algorithm: finite difference, finite element, and hybrid finite element - finite difference. Comparisons were made with existing experimental data. Results showed that velocity profiles and reattachment lengths were predicted reasonably well by all three methods, while the skin friction coefficients were more difficult to predict accurately. It was noted that, in general, selecting an appropriate solver for each problem to be considered is important.

  2. SEPARATION OF THORIUM FROM URANIUM

    DOEpatents

    Bane, R.W.

    1959-09-01

    A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.

  3. A note on the solutions of some nonlinear equations arising in third-grade fluid flows: an exact approach.

    PubMed

    Aziz, Taha; Mahomed, F M

    2014-01-01

    In this communication, we utilize some basic symmetry reductions to transform the governing nonlinear partial differential equations arising in the study of third-grade fluid flows into ordinary differential equations. We obtain some simple closed-form steady-state solutions of these reduced equations. Our solutions are valid for the whole domain [0,∞) and also satisfy the physical boundary conditions. We also present the numerical solutions for some of the underlying equations. The graphs corresponding to the essential physical parameters of the flow are presented and discussed.

  4. Wind-US Unstructured Flow Solutions for a Transonic Diffuser

    NASA Technical Reports Server (NTRS)

    Mohler, Stanley R., Jr.

    2005-01-01

    The Wind-US Computational Fluid Dynamics flow solver computed flow solutions for a transonic diffusing duct. The calculations used an unstructured (hexahedral) grid. The Spalart-Allmaras turbulence model was used. Static pressures along the upper and lower wall agreed well with experiment, as did velocity profiles. The effect of the smoothing input parameters on convergence and solution accuracy was investigated. The meaning and proper use of these parameters are discussed for the benefit of Wind-US users. Finally, the unstructured solver is compared to the structured solver in terms of run times and solution accuracy.

  5. A Note on the Solutions of Some Nonlinear Equations Arising in Third-Grade Fluid Flows: An Exact Approach

    PubMed Central

    Mahomed, F. M.

    2014-01-01

    In this communication, we utilize some basic symmetry reductions to transform the governing nonlinear partial differential equations arising in the study of third-grade fluid flows into ordinary differential equations. We obtain some simple closed-form steady-state solutions of these reduced equations. Our solutions are valid for the whole domain [0,∞) and also satisfy the physical boundary conditions. We also present the numerical solutions for some of the underlying equations. The graphs corresponding to the essential physical parameters of the flow are presented and discussed. PMID:25143962

  6. Effect of slip on existence, uniqueness, and behavior of similarity solutions for steady incompressible laminar flow in porous tubes and channels

    NASA Astrophysics Data System (ADS)

    Chellam, Shankararaman; Liu, Mei

    2006-08-01

    The existence and multiplicity of similarity solutions for steady, fully developed, incompressible laminar flow in uniformly porous tubes and channels with one or two permeable walls is investigated from first principles. A fourth-order ordinary differential equation obtained by simplifying the Navier-Stokes equations by introducing Berman's stream function [A. S. Berman, J. Appl. Phys. 24, 1232 (1953)] and Terrill's transformation [R. M. Terrill, Aeronaut. Q. 15, 299 (1964)] is probed analytically. In this work that considers only symmetric flows for symmetric ducts; the no-slip boundary condition at porous walls is relaxed to account for momentum transfer within the porous walls. By employing the Saffman [P. G. Saffman, Stud. Appl. Math. 50, 93 (1971)] form of the slip boundary condition, the uniqueness of similarity solutions is investigated theoretically in terms of the signs of the guesses for the missing initial conditions. Solutions were obtained for all wall Reynolds numbers for channel flows whereas no solutions existed for intermediate values for tube flows. Introducing slip did not fundamentally change the number or the character of solutions corresponding to different sections. However, the range of wall Reynolds numbers for which similarity solutions are theoretically impossible in tube flows was found to be a weak function of the slip coefficient. Slip also weakly influenced the transition wall Reynolds number corresponding to flow in the direction of a favorable axial pressure gradient to one in the direction of an adverse pressure gradient. Momentum transfer from the longitudinal axis to the walls appears to occur more efficiently in porous channels compared to porous tubes even in the presence of slip.

  7. Hydrogeomorphology of the hyporheic zone: stream solute and fine particle interactions with a dynamic streambed

    USGS Publications Warehouse

    Harvey, J.W.; Drummond, J.D.; Martin, R.L.; McPhillips, L.E.; Packman, A.I.; Jerolmack, D.J.; Stonedahl, S.H.; Aubeneau, A.F.; Sawyer, A.H.; Larsen, L.G.; Tobias, C.R.

    2012-01-01

    Hyporheic flow in streams has typically been studied separately from geomorphic processes. We investigated interactions between bed mobility and dynamic hyporheic storage of solutes and fine particles in a sand-bed stream before, during, and after a flood. A conservatively transported solute tracer (bromide) and a fine particles tracer (5 μm latex particles), a surrogate for fine particulate organic matter, were co-injected during base flow. The tracers were differentially stored, with fine particles penetrating more shallowly in hyporheic flow and retained more efficiently due to the high rate of particle filtration in bed sediment compared to solute. Tracer injections lasted 3.5 h after which we released a small flood from an upstream dam one hour later. Due to shallower storage in the bed, fine particles were rapidly entrained during the rising limb of the flood hydrograph. Rather than being flushed by the flood, we observed that solutes were stored longer due to expansion of hyporheic flow paths beneath the temporarily enlarged bedforms. Three important timescales determined the fate of solutes and fine particles: (1) flood duration, (2) relaxation time of flood-enlarged bedforms back to base flow dimensions, and (3) resulting adjustments and lag times of hyporheic flow. Recurrent transitions between these timescales explain why we observed a peak accumulation of natural particulate organic matter between 2 and 4 cm deep in the bed, i.e., below the scour layer of mobile bedforms but above the maximum depth of particle filtration in hyporheic flow paths. Thus, physical interactions between bed mobility and hyporheic transport influence how organic matter is stored in the bed and how long it is retained, which affects decomposition rate and metabolism of this southeastern Coastal Plain stream. In summary we found that dynamic interactions between hyporheic flow, bed mobility, and flow variation had strong but differential influences on base flow retention and flood mobilization of solutes and fine particulates. These hydrogeomorphic relationships have implications for microbial respiration of organic matter, carbon and nutrient cycling, and fate of contaminants in streams.

  8. Physics of lithium bromide (LiBr) solution dewatering through vapor venting membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isfahani, RN; Fazeli, A; Bigham, S

    2014-01-01

    The physics of water desorption from a lithium bromide (LiBr) solution flow through an array of microchannels capped by a porous membrane is studied. The membrane allows the vapor to exit the flow and retains the liquid. Effects of different parameters such as wall temperature, solution and vapor pressures, and solution mass flux on the desorption rate were studied. Two different mechanisms of desorption are analyzed. These mechanisms consisted of: (1) direct diffusion of water molecules out of the solution and their subsequent flow through the membrane and (2) formation of water vapor bubbles within the solution and their ventingmore » through the membrane. Direct diffusion was the dominant desorption mode at low surface temperatures and its magnitude was directly related to the vapor pressure, the solution concentration, and the heated wall temperature. Desorption at the boiling regime was predominantly controlled by the solution flow pressure and mass flux. Microscale visualization studies suggested that at a critical mass flux, some bubbles are carried out of the desorber through the solution microchannels rather than being vented through the membrane. Overall, an order of magnitude higher desorption rate compare to a previous study on a membrane-based desorber was achieved. Published by Elsevier Ltd.« less

  9. Improved Measurement of B(sub 22) of Macromolecules in a Flow Cell

    NASA Technical Reports Server (NTRS)

    Wilson, Wilbur; Fanguy, Joseph; Holman, Steven; Guo, Bin

    2008-01-01

    An improved apparatus has been invented for use in determining the osmotic second virial coefficient of macromolecules in solution. In a typical intended application, the macromolecules would be, more specifically, protein molecules, and the protein solution would be pumped through a flow cell to investigate the physical and chemical conditions that affect crystallization of the protein in question. Some background information is prerequisite to a meaningful description of the novel aspects of this apparatus. A method of determining B22 from simultaneous measurements of the static transmittance (taken as an indication of concentration) and static scattering of light from the same location in a flowing protein solution was published in 2004. The apparatus used to implement the method at that time included a dual-detector flow cell, which had two drawbacks: a) The amount of protein required for analysis of each solution condition was of the order of a milligram - far too large a quantity for a high-throughput analysis system, for which microgram or even nanogram quantities of protein per analysis are desirable. b) The design of flow cell was such that two light sources were used to probe different regions of the flowing solution. Consequently, the apparatus did not afford simultaneous measurements at the same location in the solution and, hence, did not guarantee an accurate determination of B22.

  10. Quantification of Marangoni flows and film morphology during solid film formation by inkjet printing

    NASA Astrophysics Data System (ADS)

    Ishizuka, Hirotaka; Fukai, Jun

    2018-01-01

    We visualized experimentally the internal flow inside inkjet droplets of polystyrene-anisole solution during solid film formation on substrates at room temperature. The effects of contact angle and evaporation rate on the internal flow and film morphology were quantitatively investigated. The transport process during film formation was examined by measuring the relationship between internal flow and film morphology, which provided three remarkable findings. First, self-pinning and the strength of outward flow on the free surface under 2.3 Pa s determined film morphology. The solute distribution, corresponding to rim areas in ring-like films and a convex trough in dot-like films, had already developed at self-pinning. Second, the mass fraction at self-pinning close to the contact line converged to one, regardless of the film morphology. This implies that self-pinning is independent of parameters such as the contact angle and evaporation rate. Third, at room temperature, the solutal Marangoni numbers were 20-30 times larger than the thermal ones. Thus, the outward flow on the free surface caused by the solutal Marangoni effect dominates in droplets before self-pinning. The solutal Marangoni number at self-pinning and thickness variation at the center of the film displayed a good relationship for droplets with different contact angles and evaporation rates. This suggests that film morphology can be technically controlled by solutal Marangoni number at room temperature.

  11. Direct flow crystal growth system

    DOEpatents

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  12. Behavior of neutral solutes in pressurized flow driven electrochromatography using a mixed stationary phase of ODS and anion-exchange.

    PubMed

    Kitagawa, Shinya; Tsuda, Takao

    2003-05-02

    The behavior of neutral sample solutes in pressurized flow driven electrochromatography using a mixed stationary phase, which consisted of ODS and anion-exchange (ODS-SAX), was studied. Applications of both positive and negative voltage on a column induced increases in retention factors of sample solutes. The direction of an electroosmotic flow under applications of positive and negative voltage were the same, therefore, the sign of the surface charge density under positive and negative voltage was opposite. We proposed a new equation for the relationship between applied voltage and surface charge density, and the practical electroosmotic flow conformed to this equation. Studying the electroosmotic flow using our proposed equation revealed that the applied negative voltage accelerates the protonation of the quaternary ammonium group and dissociation of the silanol group on packing materials. The retention behavior of a neutral solute was affected by the existence of the charged functional groups. We propose that this phenomenon is applicable to the control of the retention behavior of a sample solute using an electric field.

  13. Steady hydromagnetic flows in open magnetic fields. I - A class of analytic solutions. [for stellar winds

    NASA Technical Reports Server (NTRS)

    Low, B. C.; Tsinganos, K.

    1986-01-01

    In the case of an establishment of theoretical models of the hydromagnetic solar wind, the inclusion of the effects of the magnetic field in the solar wind makes it extremely dificult to solve the mathematical problem. This paper has the objective to present a set of particular analytic solutions. The general formulation of Tsinganos (1982) is used to identify a class of analytic solutions to the equations of steady hydromagnetic flows in spherical coordinates. Flow in an open magnetic field are studied, taking into account the problem in dimensionless form, the special case of radial flows with alpha = 0, general radial flows, illustrative examples for flows in which alpha is not equal to 0, a parametric study of nonradial flows in which alpha is not equal to zero, variations in the parameter nu, and variations in the initial speed eta.

  14. Are faults preferential flow paths through semiarid and arid vadose zones?

    NASA Astrophysics Data System (ADS)

    Sigda, John M.; Wilson, John L.

    2003-08-01

    Numerous faults crosscut the poorly lithified, basin-fill sands found in New Mexico's Rio Grande rift and in other extensional regimes. The deformational processes that created these faults sharply reduced both fault porosity and fault saturated hydraulic conductivity by altering grains and pores, particularly in structures referred to as deformation bands. The resulting pore distribution changes, which create barriers to saturated flow, should enhance fault unsaturated flow relative to parent sand under the relatively dry conditions of the semiarid southwest. We report the first measurements of unsaturated hydraulic properties for undisturbed fault materials, using samples from a small-displacement normal fault and parent sands in the Bosque del Apache Wildlife Refuge, central New Mexico. Fault samples were taken from a narrow zone of deformation bands. The unsaturated flow apparatus (UFA) centrifuge system was used to measure both relative permeability and moisture retention curves. We compared these relations and fitted hydraulic conductivity-matric potential models to test whether the fault has significantly different unsaturated hydraulic properties than its parent sand. Saturated conductivity is 3 orders of magnitude less in the fault than the undeformed sand. As matric potential decreases from 0 to -200 cm, unsaturated conductivity decreases roughly 1 order of magnitude in the fault but 5-6 orders of magnitude in undeformed sands. Fault conductivity is greater by 2-6 orders of magnitude at matric potentials between -200 and -1000 cm, which are typical potentials for semiarid and arid vadose zones. Fault deformation bands have much higher air-entry matric potential values than parent sands and remain close to saturation well after the parent sands have begun to approach residual moisture content. Under steady state, one-dimensional, gravity-driven flow conditions, moisture transport and solute advection is 102-106 times larger in the fault material than parent sands. Faults are sufficiently conductive to hasten the downward movement of water and solutes through vadose-zone sands under semiarid and arid conditions like those in the Rio Grande rift, thereby potentially enhancing recharge, contaminant migration, and diagenesis.

  15. A flow study in radial inflow turbine scroll-nozzle assembly

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Baskharone, E.; Tabakoff, W.

    1978-01-01

    The present analysis describes the flow behavior in the combined scroll-nozzle assembly of a radial inflow turbine. This model was chosen to provide a better understanding of the mutual interaction effects of these two components on the flow. The finite element method is used in the solution of the flow field in this multiply connected domain. The mass flow rates in the different nozzle channels is not presumed constant, but is determined from the solution.

  16. Laboratory analog and numerical study of groundwater flow and solute transport in a karst aquifer with conduit and matrix domains.

    PubMed

    Faulkner, Jonathan; Hu, Bill X; Kish, Stephen; Hua, Fei

    2009-11-03

    New mathematical and laboratory methods have been developed for simulating groundwater flow and solute transport in karst aquifers having conduits imbedded in a porous medium, such as limestone. The Stokes equations are used to model the flow in the conduits and the Darcy equation is used for the flow in the matrix. The Beavers-Joseph interface boundary conditions are adopted to describe the flow exchange at the interface boundary between the two domains. A laboratory analog is used to simulate the conduit and matrix domains of a karst aquifer. The conduit domain is located at the bottom of the transparent plexiglas laboratory analog and glass beads occupy the remaining space to represent the matrix domain. Water flows into and out of the two domains separately and each has its own supply and outflow reservoirs. Water and solute are exchanged through an interface between the two domains. Pressure transducers located within the matrix and conduit domains of the analog provide data that is processed and stored in digital format. Dye tracing experiments are recorded using time-lapse imaging. The data and images produced are analyzed by a spatial analysis program. The experiments provide not only hydraulic head distribution but also capture solute front images and mass exchange measurements between the conduit and matrix domains. In the experiment, we measure and record pressures, and quantify flow rates and solute transport. The results present a plausible argument that laboratory analogs can characterize groundwater water flow, solute transport, and mass exchange between the conduit and matrix domains in a karst aquifer. The analog validates the predictions of a numerical model and demonstrates the need of laboratory analogs to provide verification of proposed theories and the calibration of mathematical models.

  17. Some exact velocity profiles for granular flow in converging hoppers

    NASA Astrophysics Data System (ADS)

    Cox, Grant M.; Hill, James M.

    2005-01-01

    Gravity flow of granular materials through hoppers occurs in many industrial processes. For an ideal cohesionless granular material, which satisfies the Coulomb-Mohr yield condition, the number of known analytical solutions is limited. However, for the special case of the angle of internal friction δ equal to ninety degrees, there exist exact parametric solutions for the governing coupled ordinary differential equations for both two-dimensional wedges and three-dimensional cones, both of which involve two arbitrary constants of integration. These solutions are the only known analytical solutions of this generality. Here, we utilize the double-shearing theory of granular materials to determine the velocity field corresponding to these exact parametric solutions for the two problems of gravity flow through converging wedge and conical hoppers. An independent numerical solution for other angles of internal friction is shown to coincide with the analytical solution.

  18. Unsteady magnetohydrodynamics mixed convection flow in a rotating medium with double diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiann, Lim Yeou; Ismail, Zulkhibri; Khan, Ilyas

    2015-05-15

    Exact solutions of an unsteady Magnetohydrodynamics (MHD) flow over an impulsively started vertical plate in a rotating medium are presented. The effects of thermal radiative and thermal diffusion on the fluid flow are also considered. The governing equations are modelled and solved for velocity, temperature and concentration using Laplace transforms technique. Expressions of velocity, temperature and concentration profiles are obtained and their numerical results are presented graphically. Skin friction, Sherwood number and Nusselt number are also computed and presented in tabular forms. The determined solutions can generate a large class of solutions as special cases corresponding to different motions withmore » technical relevance. The results obtained herein may be used to verify the validation of obtained numerical solutions for more complicated fluid flow problems.« less

  19. High Fidelity Modeling of Field-Reversed Configuration (FRC) Thrusters (Briefing Charts)

    DTIC Science & Technology

    2017-05-24

    Converged Math → Irrelevant Solutions? Validation: Fluids Example Stoke’s Flow MARTIN, SOUSA, TRAN (AFRL/RQRS) DISTRIBUTION A - APPROVED FOR PUBLIC RELEASE...Convergence Tests Converged Math → Irrelevant Solutions? Must be Aware of Valid Assumption Regions Validation: Fluids Example Stoke’s Flow Potential...AND VALIDATION Verification: Asymptotic Models → Analytical Solutions Yields Exact Convergence Tests Converged Math → Irrelevant Solutions? Must be

  20. Supersymmetric Janus solutions of dyonic ISO(7)-gauged N = 8 supergravity

    NASA Astrophysics Data System (ADS)

    Suh, Minwoo

    2018-04-01

    We study supersymmetric Janus solutions of dyonic ISO(7)-gauged N = 8 supergravity. We mostly find Janus solutions flowing to 3d N = 8 SYM phase which is the worldvolume theory on D2-branes and non-conformal. There are also solutions flowing from the critical points which are dual to 3d SCFTs from deformations of the D2-brane theory.

  1. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; ...

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 -3 s -1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords« less

  2. Body-force-driven multiplicity and stability of combined free and forced convection in rotating curved ducts: Coriolis force

    NASA Astrophysics Data System (ADS)

    Yang, T.; Wang, L.

    A numerical study is made on the fully developed bifurcation structure and stability of forced convection in a rotating curved duct of square cross-section. Solution structure is determined as variation of a parameter that indicates the effect of rotation (Coriolis-force-driven multiplicity). Three solutions for the flows in a stationary curved duct obtained in the work of Yang and Wang [1] are used as initial solutions of continuation calculations to unfold the solution branches. Twenty-one solution branches are found comparing with five obtained by Selmi and Nandakumar [2]. Dynamic responses of the multiple solutions to finite random disturbances are examined by the direct transient computation. Results show that characteristics of physically realizable fully developed flows changes significantly with variation of effect of rotation. Fourteen sub-ranges are identified according to characteristics of physically realizable solutions. As rotation effect changes, possible physically realizable fully-developed flows can be stable steady 2-cell state, stable multi-cell state, temporal periodic oscillation between symmetric/asymmetric 2-cell/4-cell flows, temporal oscillation with intermittency, temporal chaotic oscillation and temporal oscillation with pseudo intermittency. Among these possible physically realizable fully developed flows, stable multi-cell state and stable steady 2-cell state exist as dual stable. And oscillation with pseudo intermittency is a new phenomenon. In addition to the temporal oscillation with intermittency, sudden shift from stationary stable solution to temporal chaotic oscillation is identified to be another way of onset of chaos.

  3. Reliable experimental setup to test the pressure modulation of Baerveldt Implant tubes for reducing post-operative hypotony

    NASA Astrophysics Data System (ADS)

    Ramani, Ajay

    Glaucoma encompasses a group of conditions that result in damage to the optic nerve and can cause loss of vision and blindness. The nerve is damaged due to an increase in the eye's internal (intraocular) pressure (IOP) above the nominal range of 15 -- 20 mm Hg. There are many treatments available for this group of diseases depending on the complexity and stage of nerve degradation. In extreme cases where drugs or laser surgery do not create better conditions for the patient, ophthalmologists use glaucoma drainage devices to help alleviate the IOP. Many drainage implants have been developed over the years and are in use; but two popular implants are the Baerveldt Glaucoma Implant and the Ahmed Glaucoma Valve Implant. Baerveldt Implants are non-valved and provide low initial resistance to outflow of fluid, resulting in post-operative complications such as hypotony, where the IOP drops below 5 mm of Hg. Ahmed Glaucoma Valve Implants are valved implants which initially restrict the amount of fluid flowing out of the eye. The long term success rates of Baerveldt Implants surpass those of Ahmed Valve Implants because of post-surgical issues; but Baerveldt Implants' initial effectiveness is poor without proper flow restriction. This drives the need to develop new ways to improve the initial effectiveness of Baerveldt Implants. A possible solution proposed by our research team is to place an insert in the Baerveldt Implant tube of inner diameter 305 microns. The insert must be designed to provide flow resistance for the early time frame [e.g., first 30 -- 60 post-operative days] until sufficient scar tissue has formed on the implant. After that initial stage with the insert, the scar tissue will provide the necessary flow resistance to maintain the IOP above 5 mm Hg. The main objective of this project was to develop and validate an experimental apparatus to measure pressure drop across a Baerveldt Implant tube, with and without inserts. This setup will be used in the future to evaluate custom inserts and their effects on the pressure drop over 4 -- 6 weeks. The design requirements were: simulate physiological conditions [flow rate between 1.25 and 2.5 mul/min], evaluate small inner diameter tubes [50 and 75 mum] and annuli, and demonstrate reliability and repeatability. The current study was focused on benchmarking the experimental setup for the IOP range of 15 -- 20 mm Hg. Repeated experiments have been conducted using distilled water with configurations [diameter of tube, insert diameter, lengths of insert and tube, and flow rate] that produce pressure variations which include the 15 -- 20 mm Hg range. Two similar setups were assembled and evaluated for repeatability between the two. Experimental measurements of pressure drop were validated using theoretical calculations. Theory predicted a range of expected values by considering manufacturing and performance tolerances of the apparatus components: tube diameter, insert diameter, and the flow-rate and pressure [controlled by pump]. In addition, preliminary experiments evaluated the dissolution of suture samples in a balanced salt solution and in distilled water. The balanced salt solution approximates the eye's aqueous humor properties, and it was expected that the salt and acid would help to hydrolyze sutures much faster than distilled water. Suture samples in a balanced salt solution showed signs of deterioration [flaking] within 23 days, and distilled water samples showed only slight signs of deterioration after about 30 days. These preliminary studies indicate that future dissolution and flow experiments should be conducted using the balanced salt solution. Also, the absorbable sutures showed signs of bulk erosion/deterioration in a balanced salt solution after 14 days, which indicates that they may not be suitable as inserts in the implant tubes because flakes could block the tube entrance. Further long term studies should be performed in order to understand the effects of constant fluid movement over the surfaces of the absorbable sutures, by better means of rocking/shaking test suture samples to simulate flow conditions. (Abstract shortened by UMI.).

  4. A 2D nonlinear multiring model for blood flow in large elastic arteries

    NASA Astrophysics Data System (ADS)

    Ghigo, Arthur R.; Fullana, Jose-Maria; Lagrée, Pierre-Yves

    2017-12-01

    In this paper, we propose a two-dimensional nonlinear ;multiring; model to compute blood flow in axisymmetric elastic arteries. This model is designed to overcome the numerical difficulties of three-dimensional fluid-structure interaction simulations of blood flow without using the over-simplifications necessary to obtain one-dimensional blood flow models. This multiring model is derived by integrating over concentric rings of fluid the simplified long-wave Navier-Stokes equations coupled to an elastic model of the arterial wall. The resulting system of balance laws provides a unified framework in which both the motion of the fluid and the displacement of the wall are dealt with simultaneously. The mathematical structure of the multiring model allows us to use a finite volume method that guarantees the conservation of mass and the positivity of the numerical solution and can deal with nonlinear flows and large deformations of the arterial wall. We show that the finite volume numerical solution of the multiring model provides at a reasonable computational cost an asymptotically valid description of blood flow velocity profiles and other averaged quantities (wall shear stress, flow rate, ...) in large elastic and quasi-rigid arteries. In particular, we validate the multiring model against well-known solutions such as the Womersley or the Poiseuille solutions as well as against steady boundary layer solutions in quasi-rigid constricted and expanded tubes.

  5. A Green's function formulation for a nonlinear potential flow solution applicable to transonic flow

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Fox, C. H., Jr.

    1977-01-01

    Routine determination of inviscid subsonic flow fields about wing-body-tail configurations employing a Green's function approach for numerical solution of the perturbation velocity potential equation is successfully extended into the high subsonic subcritical flow regime and into the shock-free supersonic flow regime. A modified Green's function formulation, valid throughout a range of Mach numbers including transonic, that takes an explicit accounting of the intrinsic nonlinearity in the parent governing partial differential equations is developed. Some considerations pertinent to flow field predictions in the transonic flow regime are discussed.

  6. Traffic Flow Management Using Aggregate Flow Models and the Development of Disaggregation Methods

    NASA Technical Reports Server (NTRS)

    Sun, Dengfeng; Sridhar, Banavar; Grabbe, Shon

    2010-01-01

    A linear time-varying aggregate traffic flow model can be used to develop Traffic Flow Management (tfm) strategies based on optimization algorithms. However, there are no methods available in the literature to translate these aggregate solutions into actions involving individual aircraft. This paper describes and implements a computationally efficient disaggregation algorithm, which converts an aggregate (flow-based) solution to a flight-specific control action. Numerical results generated by the optimization method and the disaggregation algorithm are presented and illustrated by applying them to generate TFM schedules for a typical day in the U.S. National Airspace System. The results show that the disaggregation algorithm generates control actions for individual flights while keeping the air traffic behavior very close to the optimal solution.

  7. Least-squares/parabolized Navier-Stokes procedure for optimizing hypersonic wind tunnel nozzles

    NASA Technical Reports Server (NTRS)

    Korte, John J.; Kumar, Ajay; Singh, D. J.; Grossman, B.

    1991-01-01

    A new procedure is demonstrated for optimizing hypersonic wind-tunnel-nozzle contours. The procedure couples a CFD computer code to an optimization algorithm, and is applied to both conical and contoured hypersonic nozzles for the purpose of determining an optimal set of parameters to describe the surface geometry. A design-objective function is specified based on the deviation from the desired test-section flow-field conditions. The objective function is minimized by optimizing the parameters used to describe the nozzle contour based on the solution to a nonlinear least-squares problem. The effect of the changes in the nozzle wall parameters are evaluated by computing the nozzle flow using the parabolized Navier-Stokes equations. The advantage of the new procedure is that it directly takes into account the displacement effect of the boundary layer on the wall contour. The new procedure provides a method for optimizing hypersonic nozzles of high Mach numbers which have been designed by classical procedures, but are shown to produce poor flow quality due to the large boundary layers present in the test section. The procedure is demonstrated by finding the optimum design parameters for a Mach 10 conical nozzle and a Mach 6 and a Mach 15 contoured nozzle.

  8. The pharmacotherapy of the HeartMate II, a continuous flow left ventricular assist device, in patients with advanced heart failure: integration of disease, device, and drug.

    PubMed

    Jennings, Douglas L; Chambers, Rachel M; Schillig, Jessica M

    2010-10-01

    Advanced heart failure continues to be a significant cause of morbidity and mortality in the US. Patients with advanced heart failure have a poor prognosis without cardiac transplantation. The use of left ventricular assist devices (LVADs) as destination therapy for these patients is therefore expected to increase in the coming years as technology advances. The HeartMate II, a continuous flow implantable device, is currently the only LVAD that has been approved by the Food and Drug Administration for destination therapy in patients with advanced heart failure. The pharmacotherapy associated with this device is very complex and, therefore, the need for expertly trained clinical pharmacists to care for this expanding patient population will also likely increase. Unfortunately, most pharmacists are unfamiliar with the effect of LVADs on the physiology and pharmacotherapy of a patient's heart failure. The purpose of this article is to give clinical pharmacists an introduction to the most common pharmacotherapeutic issues for patients with LVADs and present practical solutions for managing common drug therapy problems.

  9. Lagoon Restoration Project: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This project is a multiyear effort focusing on energy flow in the Palace of Fine Arts lagoon just outside the Exploratorium in San Francisco. Phase 1 was a pilot study to determine the feasibility of improving biological energy flow through the small freshwater lagoon, using the expertise and resources of an environmental artist in collaboration with museum biologists and arts department staff. The primary outcome of Phase 1 is an experimental fountain exhibit inside the museum designed by public artist Laurie Lundquist with Exploratorium staff. This fountain, with signage, functions both as a model for natural aeration and filtration systemsmore » and as a focal point for museum visitors to learn about how biological processes cycle energy through aquatic systems. As part of the study of the lagoon`s health, volunteers continued biweekly bird consus from March through September, 1994. The goal was to find out whether the poor water quality of the lagoon is affecting the birds. Limited dredging was undertaken by the city Parks and Recreation Department. However, a more peermanent solution to the lagoon`s ecological problems would require an ambitious redesign of the lagoon.« less

  10. The Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1998-01-01

    The solar dynamo is the process by which the Sun's magnetic field is generated through the interaction of the field with convection and rotation. In this, it is kin to planetary dynamos and other stellar dynamos. Although the precise mechanism by which the Sun generates its field remains poorly understood despite decades of theoretical and observational work, recent advances suggest that solutions to this solar dynamo problem may be forthcoming. Two basic processes are involved in dynamo activity. When the fluid stresses dominate the magnetic stresses (high plasma beta = 8(pi)rho/B(sup 2)), shear flows can stretch magnetic field lines in the direction of the shear (the "alpha effect") and helical flows can lift and twist field lines into orthogonal planes (the "alpha effect"). These two processes can be active anywhere in the solar convection zone but with different results depending upon their relative strengths and signs. Little is known about how and where these processes occur. Other processes, such as magnetic diffusion and the effects of the fine scale structure of the solar magnetic field, pose additional problems.

  11. On accelerated flow of MHD powell-eyring fluid via homotopy analysis method

    NASA Astrophysics Data System (ADS)

    Salah, Faisal; Viswanathan, K. K.; Aziz, Zainal Abdul

    2017-09-01

    The aim of this article is to obtain the approximate analytical solution for incompressible magnetohydrodynamic (MHD) flow for Powell-Eyring fluid induced by an accelerated plate. Both constant and variable accelerated cases are investigated. Approximate analytical solution in each case is obtained by using the Homotopy Analysis Method (HAM). The resulting nonlinear analysis is carried out to generate the series solution. Finally, Graphical outcomes of different values of the material constants parameters on the velocity flow field are discussed and analyzed.

  12. Time-dependent solution for axisymmetric flow over a blunt body with ideal gas, CF4, or equilibrium air chemistry

    NASA Technical Reports Server (NTRS)

    Hamilton, H. H., II; Spall, J. R.

    1986-01-01

    A time-asymptotic method has been used to obtain steady-flow solutions for axisymmetric inviscid flow over several blunt bodies including spheres, paraboloids, ellipsoids, and spherically blunted cones. Comparisons with experimental data and results of other computational methods have demonstrated that accurate solutions can be obtained using this approach. The method should prove useful as an analysis tool for comparing with experimental data and for making engineering calculations for blunt reentry vehicles.

  13. Time-dependent solution for axisymmetric flow over a blunt body with ideal gas, CF4, or equilibrium air chemistry

    NASA Astrophysics Data System (ADS)

    Hamilton, H. H., II; Spall, J. R.

    1986-07-01

    A time-asymptotic method has been used to obtain steady-flow solutions for axisymmetric inviscid flow over several blunt bodies including spheres, paraboloids, ellipsoids, and spherically blunted cones. Comparisons with experimental data and results of other computational methods have demonstrated that accurate solutions can be obtained using this approach. The method should prove useful as an analysis tool for comparing with experimental data and for making engineering calculations for blunt reentry vehicles.

  14. Dual Solutions for Nonlinear Flow Using Lie Group Analysis

    PubMed Central

    Awais, Muhammad; Hayat, Tasawar; Irum, Sania; Saleem, Salman

    2015-01-01

    `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM) fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered. PMID:26575996

  15. Comparison of a 3-D CFD-DSMC Solution Methodology With a Wind Tunnel Experiment

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.; Horvath, Thomas J.

    2002-01-01

    A solution method for problems that contain both continuum and rarefied flow regions is presented. The methodology is applied to flow about the 3-D Mars Sample Return Orbiter (MSRO) that has a highly compressed forebody flow, a shear layer where the flow separates from a forebody lip, and a low density wake. Because blunt body flow fields contain such disparate regions, employing a single numerical technique to solve the entire 3-D flow field is often impractical, or the technique does not apply. Direct simulation Monte Carlo (DSMC) could be employed to solve the entire flow field; however, the technique requires inordinate computational resources for continuum and near-continuum regions, and is best suited for the wake region. Computational fluid dynamics (CFD) will solve the high-density forebody flow, but continuum assumptions do not apply in the rarefied wake region. The CFD-DSMC approach presented herein may be a suitable way to obtain a higher fidelity solution.

  16. Resolvent analysis of exact coherent solutions

    NASA Astrophysics Data System (ADS)

    Rosenberg, Kevin; McKeon, Beverley

    2017-11-01

    Exact coherent solutions have been hypothesized to constitute the state-space skeleton of turbulent trajectories and thus are of interest as a means to better understand the underlying dynamics of turbulent flows. An asymptotic description of how these types of solutions self-sustain was provided by Hall & Sherwin. Here we offer a fully-nonlinear perspective on the self-sustainment of these solutions in terms of triadic scale interactions and use the resolvent framework of McKeon & Sharma to interpret these results from an input/output point of view. We analyze traveling wave solutions and periodic orbits in channel flow, and demonstrate how resolvent analysis can be used to obtain low-dimensional representations of these flows. We gratefully acknowledge funding from the AFOSR (FA9550-16-1-0361) and J.S. Park, M.D. Graham, and J.F. Gibson for providing data for the ECS solutions.

  17. Finite-analytic numerical solution of heat transfer in two-dimensional cavity flow

    NASA Technical Reports Server (NTRS)

    Chen, C.-J.; Naseri-Neshat, H.; Ho, K.-S.

    1981-01-01

    Heat transfer in cavity flow is numerically analyzed by a new numerical method called the finite-analytic method. The basic idea of the finite-analytic method is the incorporation of local analytic solutions in the numerical solutions of linear or nonlinear partial differential equations. In the present investigation, the local analytic solutions for temperature, stream function, and vorticity distributions are derived. When the local analytic solution is evaluated at a given nodal point, it gives an algebraic relationship between a nodal value in a subregion and its neighboring nodal points. A system of algebraic equations is solved to provide the numerical solution of the problem. The finite-analytic method is used to solve heat transfer in the cavity flow at high Reynolds number (1000) for Prandtl numbers of 0.1, 1, and 10.

  18. Investigating the use of a rational Runge Kutta method for transport modelling

    NASA Astrophysics Data System (ADS)

    Dougherty, David E.

    An unconditionally stable explicit time integrator has recently been developed for parabolic systems of equations. This rational Runge Kutta (RRK) method, proposed by Wambecq 1 and Hairer 2, has been applied by Liu et al.3 to linear heat conduction problems in a time-partitioned solution context. An important practical question is whether the method has application for the solution of (nearly) hyperbolic equations as well. In this paper the RRK method is applied to a nonlinear heat conduction problem, the advection-diffusion equation, and the hyperbolic Buckley-Leverett problem. The method is, indeed, found to be unconditionally stable for the linear heat conduction problem and performs satisfactorily for the nonlinear heat flow case. A heuristic limitation on the utility of RRK for the advection-diffusion equation arises in the Courant number; for the second-order accurate one-step two-stage RRK method, a limiting Courant number of 2 applies. First order upwinding is not as effective when used with RRK as with Euler one-step methods. The method is found to perform poorly for the Buckley-Leverett problem.

  19. A general theory of two- and three-dimensional rotational flow in subsonic and transonic turbomachines

    NASA Technical Reports Server (NTRS)

    Wu, Chung-Hua

    1993-01-01

    This report represents a general theory applicable to axial, radial, and mixed flow turbomachines operating at subsonic and supersonic speeds with a finite number of blades of finite thickness. References reflect the evolution of computational methods used, from the inception of the theory in the 50's to the high-speed computer era of the 90's. Two kinds of relative stream surfaces, S(sub 1) and S(sub 2), are introduced for the purpose of obtaining a three-dimensional flow solution through the combination of two-dimensional flow solutions. Nonorthogonal curvilinear coordinates are used for the governing equations. Methods of computing transonic flow along S(sub 1) and S(sub 2) stream surfaces are given for special cases as well as for fully three-dimensional transonic flows. Procedures pertaining to the direct solutions and inverse solutions are presented. Information on shock wave locations and shapes needed for computations are discussed. Experimental data from a Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V. (DFVLR) rotor and from a Chinese Academy of Sciences (CAS) transonic compressor rotor are compared with the computed flow properties.

  20. Numerical analysis of the transient response of an axisymmetric ablative char layer considering internal flow effects

    NASA Technical Reports Server (NTRS)

    Pittman, C. M.; Howser, L. M.

    1972-01-01

    The differential equations governing the transient response of the char layer of an ablating axisymmetric body, internal pyrolysis gas flow effects being considered, have been derived. These equations have been expanded into finite difference form and programed for numerical solution on a digital computer. Numerical results compare favorably with simplified exact solutions. The complete numerical analysis was used to obtain solutions for two representative body shapes subjected to a typical entry heating environment. Pronounced effects of the lateral flow of pyrolysis gases on the mass flow field within the char layer and the associated surface and pyrolysis interface recession rates are shown.

  1. Computation of viscous incompressible flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    1989-01-01

    Incompressible Navier-Stokes solution methods and their applications to three-dimensional flows are discussed. A brief review of existing methods is given followed by a detailed description of recent progress on development of three-dimensional generalized flow solvers. Emphasis is placed on primitive variable formulations which are most promising and flexible for general three-dimensional computations of viscous incompressible flows. Both steady- and unsteady-solution algorithms and their salient features are discussed. Finally, examples of real world applications of these flow solvers are given.

  2. Exhaust plume impingement of chemically reacting gas-particle flows

    NASA Technical Reports Server (NTRS)

    Smith, S. D.; Penny, M. M.; Greenwood, T. F.; Roberts, B. B.

    1975-01-01

    A series of computer codes has been developed to predict gas-particle flows and resulting impingement forces, moments and heating rates to surfaces immersed in the flow. The gas-particle flow solution is coupled via heat transfer and drag between the phases with chemical effects included in the gas phase. The flow solution and impingement calculations are discussed. Analytical results are compared with test data obtained to evaluate gas-particle effects on the Space Shuttle thermal protection system during the staging maneuver.

  3. Sensitivity of Simulated Warm Rain Formation to Collision and Coalescence Efficiencies, Breakup, and Turbulence: Comparison of Two Bin-Resolved Numerical Models

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann; Seifert, Axel; Ackerman, Andrew; Jensen, Eric

    2004-01-01

    Numerical models that resolve cloud particles into discrete mass size distributions on an Eulerian grid provide a uniquely powerful means of studying the closely coupled interaction of aerosols, cloud microphysics, and transport that determine cloud properties and evolution. However, such models require many experimentally derived paramaterizations in order to properly represent the complex interactions of droplets within turbulent flow. Many of these parameterizations remain poorly quantified, and the numerical methods of solving the equations for temporal evolution of the mass size distribution can also vary considerably in terms of efficiency and accuracy. In this work, we compare results from two size-resolved microphysics models that employ various widely-used parameterizations and numerical solution methods for several aspects of stochastic collection.

  4. Applicability of an ultrasonic nebulization system for the airways delivery of beclomethasone dipropionate in a murine model of asthma.

    PubMed

    Hrvacić, Boska; Bosnjak, Berislav; Tudja, Marijan; Mesić, Milan; Merćep, Mladen

    2006-08-01

    We have assessed the use of an ultrasonic nebulization system (UNS), composed of ultrasonic nebulizer and diffusion dryer filled with charcoal, for the effective delivery of beclomethasone to the airways in a murine asthma model. Solution of beclomethasone in ethanol was aerosolized using an ultrasonic nebulizer. Passage of the aerosol through a drying column containing charcoal and deionizer produced dry beclomethasone particles. Particles were delivered to BALB/c mice placed in a whole-body exposition chamber 1 h before intranasal challenge with ovalbumine. Efficacy of beclomethasone delivery was evaluated by examining bronchoalveolar lavage fluid (BALF) cytology. Effect of three UNS system parameters on aerosol particle size was investigated. The critical parameter affecting the size of dry particles was beclomethasone concentration in aerosolized solution and solution flow rate while power level of ultrasonic nebulizer generator had no effect. Administration of beclomethasone at calculated dose of 150 microg/kg to mice significantly decreased total cell number and relative eosinophil number in BALF. The UNS system produces a monodisperse aerosol that can be used for inhalative delivery of poorly water soluble substances to experimental animals. The UNS system minimizes formulation requirements and allows rapid and relatively simple efficacy and toxicity testing in animals.

  5. Soap film gas flowmeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalin, H.S.; Bermudez, J.E.; Fleming, W.T.

    1987-09-08

    A soap film gas flowmeter is described comprising: a flow tube having a hollow body with opposite open ends through which a soap film is propelled and a first closed chamber housing a soap solution. It also includes means for supporting the flow tube in a substantially vertical position with the open bottom end of the flow tube disposed in the first chamber above the soap solution; a second closed chamber into which the open top end of the flow tube extends and gas inlet means for introducing gas into the first chamber at a flow rate to be measuredmore » using the flowmeters. A gas exit means is included for discharging the gas introduced into the first chamber through the second chamber. Plus there are means for generating a single soap bubble from the soap solution substantially at the bottom end of the flow tube and a relatively large opening in the flowtube for providing an open passageway for inlet gas to pass through the flowtube when the bottom open end of the flowtube is covered by the soap solution.« less

  6. An interaction algorithm for prediction of mean and fluctuating velocities in two-dimensional aerodynamic wake flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Orzechowski, J. A.

    1980-01-01

    A theoretical analysis is presented yielding sets of partial differential equations for determination of turbulent aerodynamic flowfields in the vicinity of an airfoil trailing edge. A four phase interaction algorithm is derived to complete the analysis. Following input, the first computational phase is an elementary viscous corrected two dimensional potential flow solution yielding an estimate of the inviscid-flow induced pressure distribution. Phase C involves solution of the turbulent two dimensional boundary layer equations over the trailing edge, with transition to a two dimensional parabolic Navier-Stokes equation system describing the near-wake merging of the upper and lower surface boundary layers. An iteration provides refinement of the potential flow induced pressure coupling to the viscous flow solutions. The final phase is a complete two dimensional Navier-Stokes analysis of the wake flow in the vicinity of a blunt-bases airfoil. A finite element numerical algorithm is presented which is applicable to solution of all partial differential equation sets of inviscid-viscous aerodynamic interaction algorithm. Numerical results are discussed.

  7. Similarity solutions of time-dependent relativistic radiation-hydrodynamical plane-parallel flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2018-04-01

    Similarity solutions are examined for the frequency-integrated relativistic radiation-hydrodynamical flows, which are described by the comoving quantities. The flows are vertical plane-parallel time-dependent ones with a gray opacity coefficient. For adequate boundary conditions, the flows are accelerated in a somewhat homologous manner, but terminate at some singular locus, which originates from the pathological behavior in relativistic radiation moment equations truncated in finite orders.

  8. Similarity solutions of time-dependent relativistic radiation-hydrodynamical plane-parallel flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2018-06-01

    Similarity solutions are examined for the frequency-integrated relativistic radiation-hydrodynamical flows, which are described by the comoving quantities. The flows are vertical plane-parallel time-dependent ones with a gray opacity coefficient. For adequate boundary conditions, the flows are accelerated in a somewhat homologous manner, but terminate at some singular locus, which originates from the pathological behavior in relativistic radiation moment equations truncated in finite orders.

  9. Survey of Turbulence Models for the Computation of Turbulent Jet Flow and Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, N.

    1999-01-01

    The report presents an overview of jet noise computation utilizing the computational fluid dynamic solution of the turbulent jet flow field. The jet flow solution obtained with an appropriate turbulence model provides the turbulence characteristics needed for the computation of jet mixing noise. A brief account of turbulence models that are relevant for the jet noise computation is presented. The jet flow solutions that have been directly used to calculate jet noise are first reviewed. Then, the turbulent jet flow studies that compute the turbulence characteristics that may be used for noise calculations are summarized. In particular, flow solutions obtained with the k-e model, algebraic Reynolds stress model, and Reynolds stress transport equation model are reviewed. Since, the small scale jet mixing noise predictions can be improved by utilizing anisotropic turbulence characteristics, turbulence models that can provide the Reynolds stress components must now be considered for jet flow computations. In this regard, algebraic stress models and Reynolds stress transport models are good candidates. Reynolds stress transport models involve more modeling and computational effort and time compared to algebraic stress models. Hence, it is recommended that an algebraic Reynolds stress model (ASM) be implemented in flow solvers to compute the Reynolds stress components.

  10. Self-Similar Compressible Free Vortices

    NASA Technical Reports Server (NTRS)

    vonEllenrieder, Karl

    1998-01-01

    Lie group methods are used to find both exact and numerical similarity solutions for compressible perturbations to all incompressible, two-dimensional, axisymmetric vortex reference flow. The reference flow vorticity satisfies an eigenvalue problem for which the solutions are a set of two-dimensional, self-similar, incompressible vortices. These solutions are augmented by deriving a conserved quantity for each eigenvalue, and identifying a Lie group which leaves the reference flow equations invariant. The partial differential equations governing the compressible perturbations to these reference flows are also invariant under the action of the same group. The similarity variables found with this group are used to determine the decay rates of the velocities and thermodynamic variables in the self-similar flows, and to reduce the governing partial differential equations to a set of ordinary differential equations. The ODE's are solved analytically and numerically for a Taylor vortex reference flow, and numerically for an Oseen vortex reference flow. The solutions are used to examine the dependencies of the temperature, density, entropy, dissipation and radial velocity on the Prandtl number. Also, experimental data on compressible free vortex flow are compared to the analytical results, the evolution of vortices from initial states which are not self-similar is discussed, and the energy transfer in a slightly-compressible vortex is considered.

  11. A Generalized Wall Function

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Potapczuk, Mark G.; Lumley, J. L.

    1999-01-01

    The asymptotic solutions, described by Tennekes and Lumley (1972), for surface flows in a channel, pipe or boundary layer at large Reynolds numbers are revisited. These solutions can be extended to more complex flows such as the flows with various pressure gradients, zero wall stress and rough surfaces, etc. In computational fluid dynamics (CFD), these solutions can be used as the boundary conditions to bridge the near-wall region of turbulent flows so that there is no need to have the fine grids near the wall unless the near-wall flow structures are required to resolve. These solutions are referred to as the wall functions. Furthermore, a generalized and unified law of the wall which is valid for whole surface layer (including viscous sublayer, buffer layer and inertial sublayer) is analytically constructed. The generalized law of the wall shows that the effect of both adverse and favorable pressure gradients on the surface flow is very significant. Such as unified wall function will be useful not only in deriving analytic expressions for surface flow properties but also bringing a great convenience for CFD methods to place accurate boundary conditions at any location away from the wall. The extended wall functions introduced in this paper can be used for complex flows with acceleration, deceleration, separation, recirculation and rough surfaces.

  12. Exact and Approximate Solutions for Transient Squeezing Flow

    NASA Astrophysics Data System (ADS)

    Lang, Ji; Santhanam, Sridhar; Wu, Qianhong

    2017-11-01

    In this paper, we report two novel theoretical approaches to examine a fast-developing flow in a thin fluid gap, which is widely observed in industrial applications and biological systems. The problem is featured by a very small Reynolds number and Strouhal number, making the fluid convective acceleration is negligible, while its local acceleration is not. We have developed an exact solution for this problem which shows that the flow starts with an inviscid limit when the viscous effect has no time to appear, and is followed by a subsequent developing flow, in which the viscous effect continues to penetrate into the entire fluid gap. An approximate solution is also developed using a boundary layer integral method. This solution precisely captures the general behavior of the transient fluid flow process, and agrees very well with the exact solution. We also performed numerical simulation using Ansys-CFX. Excellent agreement between the analytical and the numerical solutions is obtained, indicating the validity of the analytical approaches. The study presented herein fills the gap in the literature, and will have a broad impact in industrial and biomedical applications. This work is supported by National Science Foundation CBET Fluid Dynamics Program under Award #1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).

  13. Combined Microfluidic-Eectric Diffused Mixing of Living Cells in Continuous Flow

    NASA Astrophysics Data System (ADS)

    Ming-Wen Wang,

    2010-02-01

    The mixing process is a crucially important stage in the operation of biological and chemical microfluidic devices. If the mixing is inadequate, reactants do not fully interact with each other, and the device may not operate properly. This paper describes a simplified microfluidic mixer (different from a chaotic mixer) which can uniformly mix a buffer solution with living cells by applying an AC electric charge. Diffusion of the living cells into the buffer solution occurs rapidly following the interface of the flow stream with the electric charge; no further agitating step is needed. To accomplish this, an asymmetric pair of electrodes was integrated at the inlets of the buffer solution and the cells fluid. When the buffer solution and the cells fluid were introduced into one flow path, they remained limited to that flow stream. When the electrodes were charged, however, the cells in a short distance were efficiently moved into the solution flow, and the original fluids were mixed. The mixing efficiency depends on the polarizability of the cells, and this in turn is governed by the dielectric properties of the cells, the medium, and the solvent. This micro device, capable of efficiently mixing living cells with a buffer solution, may potentially allow biological mixing to be done outside of hospitals, in facilities without biological analyzing instruments.

  14. On the existence of solutions of an equation arising in the theory of laminar flow in a uniformly porous channel with injection

    NASA Technical Reports Server (NTRS)

    Shih, K. G.

    1986-01-01

    The existence of concave solutions of Berman's equation which describes the laminar flow in channels with injection through porous walls is established. It was found that the (unique) concave solutions exist for all injection Reynolds number R < 0.

  15. The coupling of fluids, dynamics, and controls on advanced architecture computers

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher

    1995-01-01

    This grant provided for the demonstration of coupled controls, body dynamics, and fluids computations in a workstation cluster environment; and an investigation of the impact of peer-peer communication on flow solver performance and robustness. The findings of these investigations were documented in the conference articles.The attached publication, 'Towards Distributed Fluids/Controls Simulations', documents the solution and scaling of the coupled Navier-Stokes, Euler rigid-body dynamics, and state feedback control equations for a two-dimensional canard-wing. The poor scaling shown was due to serialized grid connectivity computation and Ethernet bandwidth limits. The scaling of a peer-to-peer communication flow code on an IBM SP-2 was also shown. The scaling of the code on the switched fabric-linked nodes was good, with a 2.4 percent loss due to communication of intergrid boundary point information. The code performance on 30 worker nodes was 1.7 (mu)s/point/iteration, or a factor of three over a Cray C-90 head. The attached paper, 'Nonlinear Fluid Computations in a Distributed Environment', documents the effect of several computational rate enhancing methods on convergence. For the cases shown, the highest throughput was achieved using boundary updates at each step, with the manager process performing communication tasks only. Constrained domain decomposition of the implicit fluid equations did not degrade the convergence rate or final solution. The scaling of a coupled body/fluid dynamics problem on an Ethernet-linked cluster was also shown.

  16. Global low-energy weak solution and large-time behavior for the compressible flow of liquid crystals

    NASA Astrophysics Data System (ADS)

    Wu, Guochun; Tan, Zhong

    2018-06-01

    In this paper, we consider the weak solution of the simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows in R3. When the initial data are of small energy and initial density is positive and essentially bounded, we prove the existence of a global weak solution in R3. The large-time behavior of a global weak solution is also established.

  17. Is thermal dispersivity significant for the use of heat as a tracer?

    NASA Astrophysics Data System (ADS)

    Rau, G. C.; Andersen, M. S.; Acworth, I.

    2011-12-01

    Heat profiles are regularly used to estimate sediment thermal parameters and to quantify vertical water flow velocity in fully saturated porous media. However, it has been pointed out by several authors that there is disagreement regarding the use of thermal dispersivity in heat transport models [e.g. Anderson, 2005]. Some researchers argue that this term should be treated analogous to solute transport [e.g. de Marsily, 1986], whilst others state that because heat diffusion is much faster than solute diffusion the dispersivity term can be neglected [e.g. Ingebritsen and Sanford, 1998]. This issue has never been properly addressed experimentally for environmentally relevant conditions. In order to address this question a hydraulic laboratory experiment was designed to investigate heat transport for different steady-state uniform flow velocities in the Darcy range (between 0 and 100 m/d) through homogeneous sand. For each flow velocity a point heat source at the center of the tank was instantaneously activated, and the thermal response was measured at 27 different locations using high resolution temperature probes. For the same flow velocities, a solute slug was injected in the center of the tank and the solute slug breakthrough was measured using 3 fluid EC sensors at different distances downstream of the injection point. This enabled direct comparison of solute and heat transport under identical conditions. The recorded temperature time-series data were used to calculate the thermal properties of the sand for conduction only, and estimate water flow velocity and thermal dispersion. The recorded EC time-series data were used to independently estimate water flow velocity but also solute dispersivity. The analytical solution for the solute transport case [Hunt, 1978] was adapted for heat transport and extended to account for slightly non-ideal experiment conditions. Velocity results independently derived from solute and heat show a discrepancy of up to 20%. The reason for this is not clear. Furthermore, the results show that thermal dispersivity can best be approximated with a square dependency on flow velocity. This agrees with earlier experiments in ideal materials by Green et al. [1964] as well as theoretical derivations [Kaviany, 1995]. However, this is in contrast to the linear dispersion model which has been adapted from solute transport and is commonly used in groundwater studies. The experimental results can be visualized in a conceptual plot devised by Bear [1972] for solute dispersion data (Figure 1). From this it becomes clear that the heat and solute transport Peclet numbers differs by several orders of magnitude for the same flow velocity and material because diffusion of heat is much faster than solute diffusion. As a result, the same Darcy flow range covers a different Peclet number range in heat transport and solute transport. This explains the controversy in the hydrologic community regarding the use of thermal dispersivity in transport models. In summary, for this experiment thermal dispersivity can be neglected when thermal Pe < 0.5, but should be considered for Pe > 0.5 with a square dependency on velocity.

  18. Nucleation of protein crystals under the influence of solution shear flow.

    PubMed

    Penkova, Anita; Pan, Weichun; Hodjaoglu, Feyzim; Vekilov, Peter G

    2006-09-01

    Several recent theories and simulations have predicted that shear flow could enhance, or, conversely, suppress the nucleation of crystals from solution. Such modulations would offer a pathway for nucleation control and provide a novel explanation for numerous mysteries in nucleation research. For experimental tests of the effects of shear flow on protein crystal nucleation, we found that if a protein solution droplet of approximately 5 microL (2-3 mm diameter at base) is held on a hydrophobic substrate in an enclosed environment and in a quasi-uniform constant electric field of 2 to 6 kV cm(-1), a rotational flow with a maximum rate at the droplet top of approximately 10 microm s(-1) is induced. The shear rate varies from 10(-3) to 10(-1) s(-1). The likely mechanism of the rotational flow involves adsorption of the protein and amphiphylic buffer molecules on the air-water interface and their redistribution in the electric field, leading to nonuniform surface tension of the droplet and surface tension-driven flow. Observations of the number of nucleated crystals in 24- and 72-h experiments with the proteins ferritin, apoferritin, and lysozyme revealed that the crystals are typically nucleated at a certain radius of the droplet, that is, at a preferred shear rate. Variations of the rotational flow velocity resulted in suppression or enhancement of the total number of nucleated crystals of ferritin and apoferritin, while all solution flow rates were found to enhance lysozyme crystal nucleation. These observations show that shear flow may strongly affect nucleation, and that for some systems, an optimal flow velocity, leading to fastest nucleation, exists. Comparison with the predictions of theories and simulations suggest that the formation of ordered nuclei in a "normal" protein solution cannot be affected by such low shear rates. We conclude that the flow acts by helping or suppressing the formation of ordered nuclei within mesoscopic metastable dense liquid clusters. Such clusters were recently shown to exist in protein solutions and to constitute the first step in the nucleation mechanism of many protein and nonproteinsystems.

  19. Nonlinear theory of magnetohydrodynamic flows of a compressible fluid in the shallow water approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimachkov, D. A., E-mail: klimchakovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru

    2016-09-15

    Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describesmore » static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the height of the free boundary on the density of the fluid. Self-similar continuous and discontinuous solutions are obtained for a system on a slope, and a solution is found to the initial discontinuity decay problem in this case.« less

  20. Extensional flow of blood analog solutions in microfluidic devices

    PubMed Central

    Sousa, P. C.; Pinho, F. T.; Oliveira, M. S. N.; Alves, M. A.

    2011-01-01

    In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic and abrupt contractions∕expansions. The hyperbolic shape was selected in order to impose a nearly constant strain rate at the centerline of the microchannels and achieve a quasihomogeneous and strong extensional flow often found in features of the human microcirculatory system such as stenoses. The two blood analog fluids used are aqueous solutions of a polyacrylamide (125 ppm w∕w) and of a xanthan gum (500 ppm w∕w), which were characterized rheologically in steady-shear flow using a rotational rheometer and in extension using a capillary breakup extensional rheometer (CaBER). Both blood analogs exhibit a shear-thinning behavior similar to that of whole human blood, but their relaxation times, obtained from CaBER experiments, are substantially different (by one order of magnitude). Visualizations of the flow patterns using streak photography, measurements of the velocity field using microparticle image velocimetry, and pressure-drop measurements were carried out experimentally for a wide range of flow rates. The experimental results were also compared with the numerical simulations of the flow of a Newtonian fluid and a generalized Newtonian fluid with shear-thinning behavior. Our results show that the flow patterns of the two blood analog solutions are considerably different, despite their similar shear rheology. Furthermore, we demonstrate that the elastic properties of the fluid have a major impact on the flow characteristics, with the polyacrylamide solution exhibiting a much stronger elastic character. As such, these properties must be taken into account in the choice or development of analog fluids that are adequate to replicate blood behavior at the microscale. PMID:21483662

  1. HST3D; a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems

    USGS Publications Warehouse

    Kipp, K.L.

    1987-01-01

    The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the dependent variables versus time. (Lantz-PTT)

  2. Immortal solution of the Ricci flow

    NASA Astrophysics Data System (ADS)

    Ruan, Qihua; Chen, Zhihua

    2005-12-01

    For any complete noncompact K$\\ddot{a}$hler manifold with nonnegative and bounded holomorphic bisectional curvature,we provide the necessary and sufficient condition for non-ancient solution to the Ricci flow in this paper.

  3. Axially grooved heat pipe study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A technology evaluation study on axially grooved heat pipes is presented. The state-of-the-art is reviewed and present and future requirements are identified. Analytical models, the Groove Analysis Program (GAP) and a closed form solution, were developed to facilitate parametric performance evaluations. GAP provides a numerical solution of the differential equations which govern the hydrodynamic flow. The model accounts for liquid recession, liquid/vapor shear interaction, puddle flow as well as laminar and turbulent vapor flow conditions. The closed form solution was developed to reduce computation time and complexity in parametric evaluations. It is applicable to laminar and ideal charge conditions, liquid/vapor shear interaction, and an empirical liquid flow factor which accounts for groove geometry and liquid recession effects. The validity of the closed form solution is verified by comparison with GAP predictions and measured data.

  4. Development of an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yoojin

    In this study, we have developed an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs where fluid flow through the fracture is radial. The dimensionless forms of the governing equations and the initial and boundary conditions in the radial flow system can be written in a form identical to those in the linear flow system developed by Jung and Pruess [Jung, Y., and K. Pruess (2012), A Closed-Form Analytical Solution for Thermal Single-Well Injection-Withdrawal Tests, Water Resour. Res., 48, W03504, doi:10.1029/2011WR010979], and therefore the analytical solutions developed in Jung and Pruess (2012) can be applied to computemore » the time dependence of temperature recovery at the injection/withdrawal well in a horizontally oriented fracture with radial flow.« less

  5. Numerical solutions of the Navier-Stokes equations for the supersonic laminar flow over a two-dimensional compression corner

    NASA Technical Reports Server (NTRS)

    Carter, J. E.

    1972-01-01

    Numerical solutions have been obtained for the supersonic, laminar flow over a two-dimensional compression corner. These solutions were obtained as steady-state solutions to the unsteady Navier-Stokes equations using the finite difference method of Brailovskaya, which has second-order accuracy in the spatial coordinates. Good agreement was obtained between the computed results and wall pressure distributions measured experimentally for Mach numbers of 4 and 6.06, and respective Reynolds numbers, based on free-stream conditions and the distance from the leading edge to the corner. In those calculations, as well as in others, sufficient resolution was obtained to show the streamline pattern in the separation bubble. Upstream boundary conditions to the compression corner flow were provided by numerically solving the unsteady Navier-Stokes equations for the flat plate flow field, beginning at the leading edge. The compression corner flow field was enclosed by a computational boundary with the unknown boundary conditions supplied by extrapolation from internally computed points.

  6. Fast preconditioned multigrid solution of the Euler and Navier-Stokes equations for steady, compressible flows

    NASA Astrophysics Data System (ADS)

    Caughey, David A.; Jameson, Antony

    2003-10-01

    New versions of implicit algorithms are developed for the efficient solution of the Euler and Navier-Stokes equations of compressible flow. The methods are based on a preconditioned, lower-upper (LU) implementation of a non-linear, symmetric Gauss-Seidel (SGS) algorithm for use as a smoothing algorithm in a multigrid method. Previously, this method had been implemented for flows in quasi-one-dimensional ducts and for two-dimensional flows past airfoils on boundary-conforming O-type grids for a variety of symmetric limited positive (SLIP) spatial approximations, including the scalar dissipation and convective upwind split pressure (CUSP) schemes. Here results are presented for both inviscid and viscous (laminar) flows past airfoils on boundary-conforming C-type grids. The method is significantly faster than earlier explicit or implicit methods for inviscid problems, allowing solution of these problems to the level of truncation error in three to five multigrid cycles. Viscous solutions still require as many as twenty multigrid cycles.

  7. Complexity of the laminar-turbulent boundary in pipe flow

    NASA Astrophysics Data System (ADS)

    Budanur, Nazmi Burak; Hof, Björn

    2018-05-01

    Over the past decade, the edge of chaos has proven to be a fruitful starting point for investigations of shear flows when the laminar base flow is linearly stable. Numerous computational studies of shear flows demonstrated the existence of states that separate laminar and turbulent regions of the state space. In addition, some studies determined invariant solutions that reside on this edge. In this paper, we study the unstable manifold of one such solution with the aid of continuous symmetry reduction, which we formulate here for the simultaneous quotiening of axial and azimuthal symmetries. Upon our investigation of the unstable manifold, we discover a previously unknown traveling-wave solution on the laminar-turbulent boundary with a relatively complex structure. By means of low-dimensional projections, we visualize different dynamical paths that connect these solutions to the turbulence. Our numerical experiments demonstrate that the laminar-turbulent boundary exhibits qualitatively different regions whose properties are influenced by the nearby invariant solutions.

  8. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane withmore » a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments tested the separation efficiency of the bentonite membrane for each of the dilutions. We found that membrane efficiency decreased with increasing solute concentration and with increasing TDS. The rejection of SO{sub 4}{sup 2-} was greater than Cl{sup -}. This may be because the SO{sub 4}{sup 2-} concentration was much lower than the Cl{sup -} concentration in the waters tested. The cation rejection sequence varied with solute concentration and TDS. The solute rejection sequence for multi-component solutions is difficult to predict for synthetic membranes; it may not be simple for clay membranes either. The permeate flows in our experiments were 4.1 to 5.4% of the total flow. This suggests that very thin clay membranes may be useful for some separations. Work on development of a spiral-wound clay membrane module found that it is difficult to maintain compaction of the membrane if the membrane is rolled and then inserted in the outer tube. A different design was tried using a cylindrical clay membrane and this also proved difficult to assemble with adequate membrane compaction. The next step is to form the membrane in place using hydraulic pressure on a thin slurry of clay in either water or a nonpolar organic solvent such as ethanol. Technology transfer efforts included four manuscripts submitted to peer-reviewed journals, two abstracts, and chairing a session on clays as membranes at the Clay Minerals Society annual meeting.« less

  9. Modeling flow in wetlands and underlying aquifers using a discharge potential formulation

    NASA Astrophysics Data System (ADS)

    Gusyev, M. A.; Haitjema, H. M.

    2011-09-01

    SummaryAn accurate assessment of water and nutrient balances in large scale wetland systems such as the Florida Everglades requires conjunctive modeling of surface water flow in wetlands and groundwater flow in underlying aquifers. Earlier work was based on the finite difference code MODFLOW with a special "wetlands package." This model treats the wetland flow as laminar with a very high transmissivity that is proportional to the wetland water depth cubed. However, these MODFLOW solutions appear sensitive to this highly non-linear wetland transmissivity, particularly under conditions of low vegetation density when the model may fail to converge. We propose to formulate the governing differential equation in terms of a discharge potential instead of potentiometric heads as done in MODFLOW, but otherwise using the same assumptions as in its wetlands package. We tested our approach on a few cases of one- and two-dimensional flow, both with a constant and a varying wetland bottom elevation. For the latter the discharge potential represents an irrotational part of the flow field which is combined with a component of the flow field that contains the curl. We found that both the robustness and the accuracy of the solution in terms of potentials was superior to the solution in terms of heads. In some cases the latter solution failed altogether, even for simple one-dimensional flow. We applied our method to model the effects of wetland hydrology on the nutrient redistribution in and near tree islands. We found that the subtle velocity distributions near these tree islands, as resulted from our conjunctive wetlands and groundwater flow solution, could help explain the increased nutrient depositions at these islands, particularly at the head of the islands, where, consequently, most of the vegetation occurs.

  10. Probability density function approach for compressible turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.

    1994-01-01

    The objective of the present work is to extend the probability density function (PDF) tubulence model to compressible reacting flows. The proability density function of the species mass fractions and enthalpy are obtained by solving a PDF evolution equation using a Monte Carlo scheme. The PDF solution procedure is coupled with a compression finite-volume flow solver which provides the velocity and pressure fields. A modeled PDF equation for compressible flows, capable of treating flows with shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed. Two super sonic diffusion flames are studied using the proposed PDF model and the results are compared with experimental data; marked improvements over solutions without PDF are observed.

  11. Second-order small disturbance theory for hypersonic flow over power-law bodies. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1974-01-01

    A mathematical method for determining the flow field about power-law bodies in hypersonic flow conditions is developed. The second-order solutions, which reflect the effects of the second-order terms in the equations, are obtained by applying the method of small perturbations in terms of body slenderness parameter to the zeroth-order solutions. The method is applied by writing each flow variable as the sum of a zeroth-order and a perturbation function, each multiplied by the axial variable raised to a power. The similarity solutions are developed for infinite Mach number. All results obtained are for no flow through the body surface (as a boundary condition), but the derivation indicates that small amounts of blowing or suction through the wall can be accommodated.

  12. Choice of boundary condition for lattice-Boltzmann simulation of moderate-Reynolds-number flow in complex domains

    NASA Astrophysics Data System (ADS)

    Nash, Rupert W.; Carver, Hywel B.; Bernabeu, Miguel O.; Hetherington, James; Groen, Derek; Krüger, Timm; Coveney, Peter V.

    2014-02-01

    Modeling blood flow in larger vessels using lattice-Boltzmann methods comes with a challenging set of constraints: a complex geometry with walls and inlets and outlets at arbitrary orientations with respect to the lattice, intermediate Reynolds (Re) number, and unsteady flow. Simple bounce-back is one of the most commonly used, simplest, and most computationally efficient boundary conditions, but many others have been proposed. We implement three other methods applicable to complex geometries [Guo, Zheng, and Shi, Phys. Fluids 14, 2007 (2002), 10.1063/1.1471914; Bouzidi, Firdaouss, and Lallemand, Phys. Fluids 13, 3452 (2001), 10.1063/1.1399290; Junk and Yang, Phys. Rev. E 72, 066701 (2005), 10.1103/PhysRevE.72.066701] in our open-source application hemelb. We use these to simulate Poiseuille and Womersley flows in a cylindrical pipe with an arbitrary orientation at physiologically relevant Re number (1-300) and Womersley (4-12) numbers and steady flow in a curved pipe at relevant Dean number (100-200) and compare the accuracy to analytical solutions. We find that both the Bouzidi-Firdaouss-Lallemand (BFL) and Guo-Zheng-Shi (GZS) methods give second-order convergence in space while simple bounce-back degrades to first order. The BFL method appears to perform better than GZS in unsteady flows and is significantly less computationally expensive. The Junk-Yang method shows poor stability at larger Re number and so cannot be recommended here. The choice of collision operator (lattice Bhatnagar-Gross-Krook vs multiple relaxation time) and velocity set (D3Q15 vs D3Q19 vs D3Q27) does not significantly affect the accuracy in the problems studied.

  13. Interactions among hydraulic conductivity distributions, subsurface topography, and transport thresholds revealed by a multitracer hillslope irrigation experiment

    DOE PAGES

    Jackson, C. Rhett; Du, Enhao; Klaus, Julian; ...

    2016-08-12

    Interactions among hydraulic conductivity distributions, subsurface topography, and lateral flow are poorly understood. We applied 407 mm of water and a suite of tracers over 51 h to a 12 by 16.5 m forested hillslope segment to determine interflow thresholds, preferential pathway pore velocities, large-scale conductivities, the time series of event water fractions, and the fate of dissolved nutrients. The 12% hillslope featured loamy sand A and E horizons overlying a sandy clay loam Bt at 1.25 m average depth. Interflow measured from two drains within an interception trench commenced after 131 and 208 mm of irrigation. Cumulative interflow equaledmore » 49% of applied water. Conservative tracer differences between the collection drains indicated differences in flow paths and storages within the plot. Event water fractions rose steadily throughout irrigation, peaking at 50% sixteen h after irrigation ceased. Data implied that tightly held water exchanged with event water throughout the experiment and a substantial portion of preevent water was released from the argillic layer. Surface-applied dye tracers bypassed the matrix, with peak concentrations measured shortly after flow commencement, indicating preferential network conductivities of 864–2240 mm/h, yet no macropore flow was observed. Near steady-state flow conditions indicated average conductivities of 460 mm/h and 2.5 mm/h for topsoils and the Bt horizon, respectively. Low ammonium and phosphorus concentrations in the interflow suggested rapid uptake or sorption, while higher nitrate concentrations suggested more conservative transport. Lastly, these results reveal how hydraulic conductivity variation and subsurface topographic complexity explain otherwise paradoxical solute and flow behaviors.« less

  14. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2006-01-01

    It has been long known that land surface topography governs both groundwater flow patterns at the regional-to-continental scale and on smaller scales such as in the hyporheic zone of streams. Here we show that the surface topography can be separated in a Fourier-series spectrum that provides an exact solution of the underlying three-dimensional groundwater flows. The new spectral solution offers a practical tool for fast calculation of subsurface flows in different hydrological applications and provides a theoretical platform for advancing conceptual understanding of the effect of landscape topography on subsurface flows. We also show how the spectrum of surface topography influences the residence time distribution for subsurface flows. The study indicates that the subsurface head variation decays exponentially with depth faster than it would with equivalent two-dimensional features, resulting in a shallower flow interaction. Copyright 2006 by the American Geophysical Union.

  15. Interaction between mean flow and turbulence in two dimensions

    PubMed Central

    2016-01-01

    This short note is written to call attention to an analytic approach to the interaction of developed turbulence with mean flows of simple geometry (jets and vortices). It is instructive to compare cases in two and three dimensions and see why the former are solvable and the latter are not (yet). We present the analytical solutions for two-dimensional mean flows generated by an inverse turbulent cascade on a sphere and in planar domains of different aspect ratios. These solutions are obtained in the limit of small friction when the flow is strong while turbulence can be considered weak and treated perturbatively. I then discuss when these simple solutions can be realized and when more complicated flows may appear instead. The next step of describing turbulence statistics inside a flow and directions of possible future progress are briefly discussed at the end. PMID:27493579

  16. An upwind space-time conservation element and solution element scheme for solving dusty gas flow model

    NASA Astrophysics Data System (ADS)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    An upwind space-time conservation element and solution element (CE/SE) scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme.

  17. Calculation of afterbody flows with a composite velocity formulation

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Rubin, S. G.; Khosla, P. K.

    1983-01-01

    A recently developed technique for numerical solution of the Navier-Stokes equations for subsonic, laminar flows is investigated. It is extended here to allow for the computation of transonic and turbulent flows. The basic approach involves a multiplicative composite of the appropriate velocity representations for the inviscid and viscous flow regions. The resulting equations are structured so that far from the surface of the body the momentum equations lead to the Bernoulli equation for the pressure, while the continuity equation reduces to the familiar potential equation. Close to the body surface, the governing equations and solution techniques are characteristic of those describing interacting boundary layers. The velocity components are computed with a coupled strongly implicity procedure. For transonic flows the artificial compressibility method is used to treat supersonic regions. Calculations are made for both laminar and turbulent flows over axisymmetric afterbody configurations. Present results compare favorably with other numerical solutions and/or experimental data.

  18. Base flow recession from unsaturated-saturated porous media considering lateral unsaturated discharge and aquifer compressibility

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Schilling, Keith

    2017-09-01

    Unsaturated flow is an important process in base flow recessions and its effect is rarely investigated. A mathematical model for a coupled unsaturated-saturated flow in a horizontally unconfined aquifer with time-dependent infiltrations is presented. The effects of the lateral discharge of the unsaturated zone and aquifer compressibility are specifically taken into consideration. Semianalytical solutions for hydraulic heads and discharges are derived using Laplace transform and Cosine transform. The solutions are compared with solutions of the linearized Boussinesq equation (LB solution) and the linearized Laplace equation (LL solution), respectively. A larger dimensionless constitutive exponent κD (a smaller retention capacity) of the unsaturated zone leads to a smaller discharge during the infiltration period and a larger discharge after the infiltration. The lateral discharge of the unsaturated zone is significant when κD≤1, and becomes negligible when κD≥100. The compressibility of the aquifer has a nonnegligible impact on the discharge at early times. For late times, the power index b of the recession curve -dQ/dt˜ aQb, is 1 and independent of κD, where Q is the base flow and a is a constant lumped aquifer parameter. For early times, b is approximately equal to 3 but it approaches infinity when t→0. The present solution is applied to synthetic and field cases. The present solution matched the synthetic data better than both the LL and LB solutions, with a minimum relative error of 16% for estimate of hydraulic conductivity. The present solution was applied to the observed streamflow discharge in Iowa, and the estimated values of the aquifer parameters were reasonable.

  19. Asymptotic theory of two-dimensional trailing-edge flows

    NASA Technical Reports Server (NTRS)

    Melnik, R. E.; Chow, R.

    1975-01-01

    Problems of laminar and turbulent viscous interaction near trailing edges of streamlined bodies are considered. Asymptotic expansions of the Navier-Stokes equations in the limit of large Reynolds numbers are used to describe the local solution near the trailing edge of cusped or nearly cusped airfoils at small angles of attack in compressible flow. A complicated inverse iterative procedure, involving finite-difference solutions of the triple-deck equations coupled with asymptotic solutions of the boundary values, is used to accurately solve the viscous interaction problem. Results are given for the correction to the boundary-layer solution for drag of a finite flat plate at zero angle of attack and for the viscous correction to the lift of an airfoil at incidence. A rational asymptotic theory is developed for treating turbulent interactions near trailing edges and is shown to lead to a multilayer structure of turbulent boundary layers. The flow over most of the boundary layer is described by a Lighthill model of inviscid rotational flow. The main features of the model are discussed and a sample solution for the skin friction is obtained and compared with the data of Schubauer and Klebanoff for a turbulent flow in a moderately large adverse pressure gradient.

  20. Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method

    NASA Astrophysics Data System (ADS)

    Lai, Wencong; Khan, Abdul A.

    2018-04-01

    A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.

  1. Approximate Solutions for Flow with a Stretching Boundary due to Partial Slip

    PubMed Central

    Filobello-Nino, U.; Vazquez-Leal, H.; Sarmiento-Reyes, A.; Benhammouda, B.; Jimenez-Fernandez, V. M.; Pereyra-Diaz, D.; Perez-Sesma, A.; Cervantes-Perez, J.; Huerta-Chua, J.; Sanchez-Orea, J.; Contreras-Hernandez, A. D.

    2014-01-01

    The homotopy perturbation method (HPM) is coupled with versions of Laplace-Padé and Padé methods to provide an approximate solution to the nonlinear differential equation that describes the behaviour of a flow with a stretching flat boundary due to partial slip. Comparing results between approximate and numerical solutions, we concluded that our results are capable of providing an accurate solution and are extremely efficient. PMID:27433526

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bena, Iosif; Bobev, Nikolay; Warner, Nicholas P.

    We discuss 'spectral-flow' coordinate transformations that take asymptotically four-dimensional solutions into other asymptotically four-dimensional solutions. We find that spectral flow can relate smooth three-charge solutions with a multicenter Taub-NUT base to solutions where one or several Taub-NUT centers are replaced by two-charge supertubes, and vice versa. We further show that multiparameter spectral flows can map such Taub-NUT centers to more singular centers that are either D2-D0 or pure D0-brane sources. Since supertubes can depend on arbitrary functions, we establish that the moduli space of smooth horizonless black-hole microstate solutions is classically of infinite dimension. We also use the physics ofmore » supertubes to argue that some multicenter solutions that appear to be bound states from a four-dimensional perspective are in fact not bound states when considered from a five- or six-dimensional perspective.« less

  3. Analytical Solution for Flow to a Partially Penetrating Well with Storage in a Confined Aquifer

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Mishra, P. K.; Neuman, S. P.

    2009-12-01

    Analytical solutions for radial flow toward a pumping well are commonly applied to analyze pumping tests conducted in confined aquifers. However, the existing analytical solutions are not capable to simultaneously take into account aquifer anisotropy, partial penetration, and wellbore storage capacity of pumping well. Ignoring these effects may have important impact on the estimated aquifer properties. We present a new analytical solution for three-dimensional, axially symmetric flow to a pumping well in confined aquifer that accouts for aquifer anisotropy, partial penetration and wellbore storage capacity of pumping well. Our analytical reduces to that of Papadopulos et.al. [1967] when the pumping well is fully penetrating, Hantush [1964] when the pumping well has no wellbore storage, and Theis [1935] when both conditions are fulfilled. The solution is evaluated through numerical inversion of its Laplace transform. We use our new solution to analyze data from synthetic and real pumping tests.

  4. Macropore system characteristics controls on non-reactive solute transport at different flow rates

    NASA Astrophysics Data System (ADS)

    Larsbo, Mats; Koestel, John

    2014-05-01

    Preferential flow and transport in macroporous soils are important pathways for the leaching of agrochemicals through soils. Preferential solute transport in soil is to a large extent determined by the macropore system characteristics and the water flow conditions. The importance of different characteristics of the macropore system is likely to vary with the flow conditions. The objective of this study was to determine which properties of the macropore system that control the shape of non-reactive tracer solute breakthrough curves at different steady-state flow rates. We sampled five undisturbed columns (20 cm high, 20 cm diameter) from the soil surface of four soils with clay contents between 21 and 50 %. Solute transport experiments were carried out under unsaturated conditions at 2, 4, 6, 8 and 12 mm h-1 flow rates. For each flow rate a pulse of potassium bromide solution was applied at the soil surface and the electrical conductivity was measured with high temporal resolution in the column effluent. We used the 5 % arrival time and the holdback factor to estimate the degree of preferential transport from the resulting breakthrough curves. Unsaturated hydraulic conductivities were measured at the soil surface of the columns using a tension disc infiltrometer. The macropore system was imaged by industrial X-ray computed tomography at a resolution of 125 μm in all directions. Measures of the macropore system characteristics including measures of pore continuity were calculated from these images using the ImageJ software. Results show that the degree of preferential transport is generally increasing with flow rate when larger pores become active in the transport. The degree of preferential flow was correlated to measures of macropore topology. This study show that conclusions drawn from experiments carried out at one flow rate should generally not be extrapolated to other flow rates.

  5. Some Basic Aspects of Magnetohydrodynamic Boundary-Layer Flows

    NASA Technical Reports Server (NTRS)

    Hess, Robert V.

    1959-01-01

    An appraisal is made of existing solutions of magnetohydrodynamic boundary-layer equations for stagnation flow and flat-plate flow, and some new solutions are given. Since an exact solution of the equations of magnetohydrodynamics requires complicated simultaneous treatment of the equations of fluid flow and of electromagnetism, certain simplifying assumptions are generally introduced. The full implications of these assumptions have not been brought out properly in several recent papers. It is shown in the present report that for the particular law of deformation which the magnetic lines are assumed to follow in these papers a magnet situated inside the missile nose would not be able to take up any drag forces; to do so it would have to be placed in the flow away from the nose. It is also shown that for the assumption that potential flow is maintained outside the boundary layer, the deformation of the magnetic lines is restricted to small values. The literature contains serious disagreements with regard to reductions in heat-transfer rates due to magnetic action at the nose of a missile, and these disagreements are shown to be mainly due to different interpretations of reentry conditions rather than more complicated effects. In the present paper the magnetohydrodynamic boundary-layer equation is also expressed in a simple form that is especially convenient for physical interpretation. This is done by adapting methods to magnetic forces which in the past have been used for forces due to gravitational or centrifugal action. The simplified approach is used to develop some new solutions of boundary-layer flow and to reinterpret certain solutions existing in the literature. An asymptotic boundary-layer solution representing a fixed velocity profile and shear is found. Special emphasis is put on estimating skin friction and heat-transfer rates.

  6. Study of the Stability of Compressible Couette Flow.

    NASA Astrophysics Data System (ADS)

    Girard, Jeffrey John

    This study is concerned with a two-dimensional disturbance of plane Couette flow. All reviewed analyses of the basic problem have led to the conclusion that the flow is unconditionally stable. All of the literature assumed the fluid was incompressible. The assumption that a fluid is incompressible neglects solutions to the problem. The motivation of the analysis presented herein is a hypothesis that some of the acoustic disturbances in the fluid, usually neglected, may interact with the mean vorticity to produce more sound. This hypothesis was discussed by Vaidya (1988). The fluid considered herein has been a viscous, heat-conducting, ideal gas. For the cases investigated in this study, most solutions exhibited stability. There were found, however, solutions at somewhat unrealistically high Mach numbers which exhibited unstable nature. Further, it was found that for even low Mach number flows, the sound solution was the least stable solution. It is thought that the interaction between the sound perturbation and the mean flow has fed energy to the disturbance from the mean flow. Enough energy was transferred to balance some of the viscous dissipation. At low Mach numbers, for the investigated cases, not enough energy was transferred to tip the flow to instability. The established theory has been challenged. All previous analysis of the basic infinitesimal perturbation problem has suggested unconditional stability. This work has shown some unstable regimes. This keeps the hope alive that analysis may one day explain the experimental evidence (which is at much lower Mach numbers). The future work should concentrate on the sound solution for this problem. It has been shown to be the least stable, though it is usually neglected. An attempt should be made to investigate the possibility of reducing the lowest Mach number for instability. Suggestions for this have been provided in Chapter 4.

  7. Solute transport with time-variable flow paths during upward and downward flux in a heterogeneous unsaturated porous medium

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan

    2014-05-01

    To acquire knowledge of solute transport through the unsaturated zone in the shallow subsurface is decisive to assess groundwater quality, nutrient cycling or to plan remediation strategies. The shallow subsurface is characterized by structural heterogeneity and strongly influenced by atmospheric conditions. This leads to changing flow directions, strong temporal changes in saturation and heterogeneous water fluxes during infiltration and evaporation events. Recent studies (e.g. Lehmann and Or, 2009; Bechtold et al.,2011) demonstrated the importance of lateral flow and solute transport during evaporation conditions (upward flux). The heterogeneous structure in these studies was constructed using two types of sand with strong material contrasts and arranged in parallel with a vertical orientation. Lateral transport and redistribution of solute from coarse to fine media was observed deeper in the soil column and from fine to coarse close to the soil surface. However, if boundary conditions are reversed due to precipitation, the flow field is not necessarily reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport under those conditions. In this contribution we analyze transport of a solute in the shallow subsurface to assess effects resulting from the temporal change of heterogeneous soil structures due to dynamic flow conditions. Two-dimensional numerical simulations of unsaturated flow and transport are conducted using a coupled finite volume and random walk particle tracking algorithm to quantify solute transport and leaching rates. Following previous studies (Lehmann and Or, 2009; Bechtold et al., 2011), the chosen domain is composed of two materials, coarse and fine sand, arranged in parallel with a vertical orientation. Hence, one sharp interface of strong material heterogeneity is induced. During evaporation both sands are assumed to stay under liquid-flow dominated evaporation conditions ("stage 1"). Simulations considering dynamic (infiltration-evaporation) and steady (solely infiltration) boundary conditions are carried out. The influence of dynamic boundary conditions (intensity and duration of precipitation and evaporation events) is examined in a multitude of simulations. If flow rates smaller than the saturated hydraulic conductivity of both materials are chosen to be applied as boundary condition, simulation results indicate that the flow field within the domain is exactly reversed. However, if applied flow rates exceed the saturated hydraulic conductivity of one material, the flow field is not just reversed, but different flow paths during downward and upward flow are observed. Results show the tendency of faster solute leaching under dynamic boundary conditions compared to steady infiltration conditions with the same net-infiltration rate. We use a double domain transport method as an upscaled model to reproduce vertically averaged concentration profiles with net flux only and compare the model parameters for information about flow dynamics and soil heterogeneity.

  8. Highly elastic polymer solutions under shear: Polymer migration, viscoelastic instabilities, and anomalous rheology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M.J.; Muller, S.J.

    1996-12-31

    The use of highly elastic polymer solutions has been remarkably successful in elucidating the behavior of polymeric materials under flowing conditions. Here, we present the results of an extensive experimental study into the shear behavior of an athermal, dilute, binary polymer solution that is believed to be free of many of these effects. Under extended shearing, we observe the migration of polymer species: after shearing for several hundred hours, concentrations that are more than double the initial uniform value can be achieved. Although the solutions are well-described by dumbbell models in shear flows on short-time scales, theoretical predictions substantially underestimatemore » the rate of migration. Flow visualization and rheometric experiments suggest that the origin of this discrepancy could be the anomalous long-time rheology of these solutions. While these fluids display the well-known elastic instability in cone and plate flow above a critical Deborah number, extended shearing reveals that the toroidal secondary flow is eventually replaced by a purely azimuthal shearing flow. In addition, when sheared below the critical condition for the instability, the solutions exhibit a slow but reversible decay in normal stresses. The shear-induced migration of polymer species has been predicted by numerous theoretical studies. However, observations on the highly elastic polymer solutions that are most likely to show polymer migration, are complicated by a number of different physical processes that occur as a result of shearing. These phenomena, which include shear-induced phase separation, elastically-induced hydrodynamic instabilities, mixed solvent effects, shear-induced aggregation, and anomalous transient shear and normal stress behavior are often observed at times earlier than and at shear rates less than those where migration is predicted to occur; hence, the experimental detection of polymer migration has been thwarted by these other physical processes.« less

  9. Convective transport resistance in the vitreous humor

    NASA Astrophysics Data System (ADS)

    Penkova, Anita; Sadhal, Satwindar; Ratanakijsuntorn, Komsan; Moats, Rex; Tang, Yang; Hughes, Patrick; Robinson, Michael; Lee, Susan

    2012-11-01

    It has been established by MRI visualization experiments that the convection of nanoparticles and large molecules with high rate of water flow in the vitreous humor will experience resistance, depending on the respective permeabilities of the injected solute. A set of experiments conducted with Gd-DTPA (Magnevist, Bayer AG, Leverkusen, Germany) and 30 nm gadolinium-based particles (Gado CELLTrackTM, Biopal, Worcester, MA) as MRI contrast agents showed that the degree of convective transport in this Darcy-type porous medium varies between the two solutes. These experiments consisted of injecting a mixture of the two (a 30 μl solution of 2% Magnevist and 1% nanoparticles) at the middle of the vitreous of an ex vivo whole bovine eye and subjecting the vitreous to water flow rate of 100 μl/min. The water (0.9% saline solution) was injected at the top of the eye, and was allowed to drain through small slits cut at the bottom of the eyeball. After 50 minutes of pumping, MRI images showed that the water flow carried the Gd-DTPA farther than the nanoparticles, even though the two solutes, being mixed, were subjected to the same convective flow conditions. We find that the convected solute lags the water flow, depending on the solute permeability. The usual convection term needs to be adjusted to allow for the filtration effect on the larger particles in the form (1- σ) u . ∇ c with important implications for the modeling of such systems.

  10. Singlet oxygen generation on porous superhydrophobic surfaces: effect of gas flow and sensitizer wetting on trapping efficiency.

    PubMed

    Zhao, Yuanyuan; Liu, Yang; Xu, Qianfeng; Barahman, Mark; Bartusik, Dorota; Greer, Alexander; Lyons, Alan M

    2014-11-13

    We describe physical-organic studies of singlet oxygen generation and transport into an aqueous solution supported on superhydrophobic surfaces on which silicon-phthalocyanine (Pc) particles are immobilized. Singlet oxygen ((1)O2) was trapped by a water-soluble anthracene compound and monitored in situ using a UV-vis spectrometer. When oxygen flows through the porous superhydrophobic surface, singlet oxygen generated in the plastron (i.e., the gas layer beneath the liquid) is transported into the solution within gas bubbles, thereby increasing the liquid-gas surface area over which singlet oxygen can be trapped. Higher photooxidation rates were achieved in flowing oxygen, as compared to when the gas in the plastron was static. Superhydrophobic surfaces were also synthesized so that the Pc particles were located in contact with, or isolated from, the aqueous solution to evaluate the relative effectiveness of singlet oxygen generated in solution and the gas phase, respectively; singlet oxygen generated on particles wetted by the solution was trapped more efficiently than singlet oxygen generated in the plastron, even in the presence of flowing oxygen gas. A mechanism is proposed that explains how Pc particle wetting, plastron gas composition and flow rate as well as gas saturation of the aqueous solution affect singlet oxygen trapping efficiency. These stable superhydrophobic surfaces, which can physically isolate the photosensitizer particles from the solution may be of practical importance for delivering singlet oxygen for water purification and medical devices.

  11. Micromixer based on viscoelastic flow instability at low Reynolds number.

    PubMed

    Lam, Y C; Gan, H Y; Nguyen, N T; Lie, H

    2009-03-30

    We exploited the viscoelasticity of biocompatible dilute polymeric solutions, namely, dilute poly(ethylene oxide) solutions, to significantly enhance mixing in microfluidic devices at a very small Reynolds number, i.e., Re approximately 0.023, but large Peclet and elasticity numbers. With an abrupt contraction microgeometry (8:1 contraction ratio), two different dilute poly(ethylene oxide) solutions were successfully mixed with a short flow length at a relatively fast mixing time of <10 mus. Microparticle image velocimetry was employed in our investigations to characterize the flow fields. The increase in velocity fluctuation with an increase in flow rate and Deborah number indicates the increase in viscoelastic flow instability. Mixing efficiency was characterized by fluorescent concentration measurements. Our results showed that enhanced mixing can be achieved through viscoelastic flow instability under situations where molecular-diffusion and inertia effects are negligible. This approach bypasses the laminar flow limitation, usually associated with a low Reynolds number, which is not conducive to mixing.

  12. Micromixer based on viscoelastic flow instability at low Reynolds number

    PubMed Central

    Lam, Y. C.; Gan, H. Y.; Nguyen, N. T.; Lie, H.

    2009-01-01

    We exploited the viscoelasticity of biocompatible dilute polymeric solutions, namely, dilute poly(ethylene oxide) solutions, to significantly enhance mixing in microfluidic devices at a very small Reynolds number, i.e., Re≈0.023, but large Peclet and elasticity numbers. With an abrupt contraction microgeometry (8:1 contraction ratio), two different dilute poly(ethylene oxide) solutions were successfully mixed with a short flow length at a relatively fast mixing time of <10 μs. Microparticle image velocimetry was employed in our investigations to characterize the flow fields. The increase in velocity fluctuation with an increase in flow rate and Deborah number indicates the increase in viscoelastic flow instability. Mixing efficiency was characterized by fluorescent concentration measurements. Our results showed that enhanced mixing can be achieved through viscoelastic flow instability under situations where molecular-diffusion and inertia effects are negligible. This approach bypasses the laminar flow limitation, usually associated with a low Reynolds number, which is not conducive to mixing. PMID:19693399

  13. A package for 3-D unstructured grid generation, finite-element flow solution and flow field visualization

    NASA Technical Reports Server (NTRS)

    Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald

    1990-01-01

    A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.

  14. Plane Poiseuille flow of a rarefied gas in the presence of strong gravitation.

    PubMed

    Doi, Toshiyuki

    2011-02-01

    Plane Poiseuille flow of a rarefied gas, which flows horizontally in the presence of strong gravitation, is studied based on the Boltzmann equation. Applying the asymptotic analysis for a small variation in the flow direction [Y. Sone, Molecular Gas Dynamics (Birkhäuser, 2007)], the two-dimensional problem is reduced to a one-dimensional problem, as in the case of a Poiseuille flow in the absence of gravitation, and the solution is obtained in a semianalytical form. The reduced one-dimensional problem is solved numerically for a hard sphere molecular gas over a wide range of the gas-rarefaction degree and the gravitational strength. The presence of gravitation reduces the mass flow rate, and the effect of gravitation is significant for large Knudsen numbers. To verify the validity of the asymptotic solution, a two-dimensional problem of a flow through a long channel is directly solved numerically, and the validity of the asymptotic solution is confirmed. ©2011 American Physical Society

  15. Calculation of linearized supersonic flow over slender cones of arbitrary cross section

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1972-01-01

    Supersonic linearized conical-flow theory is used to determine the flow over slender pointed cones having horizontal and vertical planes of symmetry. The geometry of the cone cross sections and surface velocities are expanded in Fourier series. The symmetry condition permits the uncoupling of lifting and nonlifting solutions. The present method reduces to Ward's theory for flow over a cone of elliptic cross section. Results are also presented for other shapes. Results by this method diverge for cross-sectional shapes where the maximum thickness is large compared with the minimum thickness. However, even for these slender-body shapes, lower order solutions are good approximations to the complete solution.

  16. Detecting Human Hydrologic Alteration from Diversion Hydropower Requires Universal Flow Prediction Tools: A Proposed Framework for Flow Prediction in Poorly-gauged, Regulated Rivers

    NASA Astrophysics Data System (ADS)

    Kibler, K. M.; Alipour, M.

    2016-12-01

    Achieving the universal energy access Sustainable Development Goal will require great investment in renewable energy infrastructure in the developing world. Much growth in the renewable sector will come from new hydropower projects, including small and diversion hydropower in remote and mountainous regions. Yet, human impacts to hydrological systems from diversion hydropower are poorly described. Diversion hydropower is often implemented in ungauged rivers, thus detection of impact requires flow analysis tools suited to prediction in poorly-gauged and human-altered catchments. We conduct a comprehensive analysis of hydrologic alteration in 32 rivers developed with diversion hydropower in southwestern China. As flow data are sparse, we devise an approach for estimating streamflow during pre- and post-development periods, drawing upon a decade of research into prediction in ungauged basins. We apply a rainfall-runoff model, parameterized and forced exclusively with global-scale data, in hydrologically-similar gauged and ungauged catchments. Uncertain "soft" data are incorporated through fuzzy numbers and confidence-based weighting, and a multi-criteria objective function is applied to evaluate model performance. Testing indicates that the proposed framework returns superior performance (NSE = 0.77) as compared to models parameterized by rote calibration (NSE = 0.62). Confident that the models are providing `the right answer for the right reasons', our analysis of hydrologic alteration based on simulated flows indicates statistically significant hydrologic effects of diversion hydropower across many rivers. Mean annual flows, 7-day minimum and 7-day maximum flows decreased. Frequency and duration of flow exceeding Q25 decreased while duration of flows sustained below the Q75 increased substantially. Hydrograph rise and fall rates and flow constancy increased. The proposed methodology may be applied to improve diversion hydropower design in data-limited regions.

  17. Three-Dimensional Boundary-Layer program (BL3D) for swept subsonic or supersonic wings with application to laminar flow control

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1993-01-01

    The theory, formulation, and solution of three-dimensional, compressible attached laminar flows, applied to swept wings in subsonic or supersonic flow are discussed. Several new features and modifications to an earlier general procedure described in NASA CR 4269, Jan. 1990 are incorporated. Details of interfacing the boundary-layer computation with solution of the inviscid Euler equations are discussed. A description of the computer program, complete with user's manual and example cases, is also included. Comparison of solutions with Navier-Stokes computations with or without boundary-layer suction is given. Output of solution profiles and derivatives required in boundary-layer stability analysis is provided.

  18. Two-dimensional compressible flow in centrifugal compressors with straight blades

    NASA Technical Reports Server (NTRS)

    Stanitz, John D; Ellis, Gaylord O

    1950-01-01

    Six numerical examples are presented for steady, two-dimensional, compressible, nonviscous flow in centrifugal compressors with thin straight blades, the center lines of which generate the surface of a right circular cone when rotated about the axis of the compressor. A seventh example is presented for incompressible flow. The solutions were obtained in a region of the compressors, including the impeller tip, that was considered to be unaffected by the diffuser vanes or by the impeller-inlet configuration. Each solution applies to radial and mixed flow compressors with various cone angles but with the same angle between blades on the conic flow surface. The solution also apply to radial and mixed flow turbines with the rotation and the flow direction reversed. The effects of variations in the following parameters were investigated: (1) flow rate, (2) impeller-tip speed, (3) variation of passage height with radius, and (4) angle between blades on conic flow surface. The numerical results are presented in plots of the streamlines and constant Mach number lines. Correlation equations are developed whereby the flow conditions in any impeller with straight blades can be determined (in the region investigated by this analysis) for all operating conditions.

  19. Single polymer dynamics in semi-dilute unentangled and entangled solutions: from molecular conformation to normal stress

    NASA Astrophysics Data System (ADS)

    Schroeder, Charles

    Semi-dilute polymer solutions are encountered in a wide array of applications such as advanced 3D printing technologies. Semi-dilute solutions are characterized by large fluctuations in concentration, such that hydrodynamic interactions, excluded volume interactions, and transient chain entanglements may be important, which greatly complicates analytical modeling and theoretical treatment. Despite recent progress, we still lack a complete molecular-level understanding of polymer dynamics in these systems. In this talk, I will discuss three recent projects in my group to study semi-dilute solutions that focus on single molecule studies of linear and ring polymers and a new method to measure normal stresses in microfluidic devices based on the Stokes trap. In the first effort, we use single polymer techniques to investigate the dynamics of semi-dilute unentangled and semi-dilute entangled DNA solutions in extensional flow, including polymer relaxation from high stretch, transient stretching dynamics in step-strain experiments, and steady-state stretching in flow. In the semi-dilute unentangled regime, our results show a power-law scaling of the longest polymer relaxation time that is consistent with scaling arguments based on the double cross-over regime. Upon increasing concentration, we observe a transition region in dynamics to the entangled regime. We also studied the transient and steady-state stretching dynamics in extensional flow using the Stokes trap, and our results show a decrease in transient polymer stretch and a milder coil-to-stretch transition for semi-dilute polymer solutions compared to dilute solutions, which is interpreted in the context of a critical Weissenberg number Wi at the coil-to-stretch transition. Interestingly, we observe a unique set of polymer conformations in semi-dilute unentangled solutions that are highly suggestive of transient topological entanglements in solutions that are nominally unentangled at equilibrium. Taken together, these results suggest that the transient stretching pathways in semi-dilute solution extensional flows are qualitatively different than for both dilute solutions and for semi-dilute solutions in shear flow. In a second effort, we studied the dynamics of ring polymers in background solutions of semi-dilute linear polymers. Interestingly, we observe strikingly large fluctuations in steady-state polymer extension for ring polymers in flow, which occurs due to the interplay between polymer topology and concentration leading to chain `threading' in flow. In a third effort, we developed a new microfluidic method to measure normal stress and extensional viscosity that can be loosely described as passive yet non-linear microrheology. In particular, we incorporated 3-D particle imaging velocimetry (PIV) with the Stokes trap to study extensional flow-induced particle migration in semi-dilute polymer solutions. Experimental results are analyzed using the framework of a second-order-fluid model, which allows for measurement of normal stress and extensional viscosity in semi-dilute polymer solutions, all of which is a first-of-its-kind demonstration. Microfluidic measurements of extensional viscosity are directly compared to the dripping-onto-substrate or DOS method, and good agreement is generally observed. Overall, our work aims to provide a molecular-level understanding of the role of polymer topology and concentration on bulk rheological properties by using single polymer techniques.

  20. A high order accurate finite element algorithm for high Reynolds number flow prediction

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1978-01-01

    A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.

  1. A solution algorithm for fluid–particle flows across all flow regimes

    DOE PAGES

    Kong, Bo; Fox, Rodney O.

    2017-05-12

    Many fluid–particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are closepacked as well as very dilute regions where particle–particle collisions are rare. Thus, in order to simulate such fluid–particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in themore » flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas–particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid–particle flows.« less

  2. A solution algorithm for fluid-particle flows across all flow regimes

    NASA Astrophysics Data System (ADS)

    Kong, Bo; Fox, Rodney O.

    2017-09-01

    Many fluid-particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are close-packed as well as very dilute regions where particle-particle collisions are rare. Thus, in order to simulate such fluid-particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in the flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas-particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid-particle flows.

  3. A solution algorithm for fluid–particle flows across all flow regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Bo; Fox, Rodney O.

    Many fluid–particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are closepacked as well as very dilute regions where particle–particle collisions are rare. Thus, in order to simulate such fluid–particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in themore » flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas–particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid–particle flows.« less

  4. Conical flow near singular rays. [shock generation in ideal gas

    NASA Technical Reports Server (NTRS)

    Zahalak, G. I.; Myers, M. K.

    1974-01-01

    The steady flow of an ideal gas past a conical body is investigated by the method of matched asymptotic expansions, with particular emphasis on the flow near the singular ray occurring in linearized theory. The first-order problem governing the flow in this region is formulated, leading to the equation of Kuo, and an approximate solution is obtained in the case of compressive flow behind the main front. This solution is compared with the results of previous investigations with a view to assessing the applicability of the Lighthill-Whitham theories.

  5. Intra-Wellbore Head Losses in a Horizontal Well with both Kinematic and Frictional Effects in an Anisotropic Confined Aquifer between Two Streams

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhan, H.

    2017-12-01

    Horizontal drilling becomes an appealing technology for water exploration or aquifer remediation in recent decades, due to the decreasing operational cost and many technical advantages over the vertical wells. However, many previous studies on the flow into horizontal wells were based on the uniform flux boundary condition (UFBC) for treating horizontal wells, which could not reflect the physical processes of flow inside the well accurately. In this study, we investigated transient flow into a horizontal well in an anisotropic confined aquifer between two streams for three types of boundary conditions of treating the horizontal well, including UFBC, uniform head boundary condition (UHBC), and mixed-type boundary condition (MTBC). The MTBC model considered both kinematic and frictional effects inside the horizontal well, in which the kinematic effect referred to the accelerational and fluid inflow effects. The new solution of UFBC was derived by superimposing the point sink/source solutions along the axis of the horizontal well with a uniform strength. The solutions of UHBC and MTBC were obtained by a hybrid analytical-numerical method, and an iterative method was proposed to determine the minimum well segment number required to yield sufficiently accurate answer. The results showed that the differences among the UFBC, UHBC, MTBCFriction and MTBC solutions were obvious, in which MTBCFriction represented the solutions considering the frictional effect but ignoring the kinematic effect. The MTBCFriction and MTBC solutions were sensitive to the flow rate, and the difference of these two solutions increases with the flow rate, suggesting that the kinematic effect could not be ignored for studying flow to a horizontal well, especially when the flow rate is great. The well specific inflow (WSI) (which is the inflow per unit screen length at a specified location of the horizontal well) increased with the distance along the wellbore for the MTBC model at early stage, while the minimum WSI moved to the well center with time going, following a cubic polynomial function.

  6. Effect of temperature and aging time on the rheological behavior of aqueous poly(ethylene glycol)/Laponite RD dispersions.

    PubMed

    Morariu, Simona; Bercea, Maria

    2012-01-12

    The viscoelastic properties of 2% poly(ethylene glycol) aqueous solutions containing Laponite RD from 1% to 4% were investigated by oscillatory and flow measurements in the temperature range of 15-40 °C. The enhancement of the clay content from mixture causes the increase of the viscoelastic moduli and the change of the flow from liquid-like behavior (Maxwellian fluid) to a solid-like one at a set temperature. The longest relaxation times (τ(1)) of the mixtures with low clay concentrations (1% and 2%) are not affected by changes in temperature unlike the samples having high content of clay at which τ(1) increases above 30 °C and below 17.5 °C. The characteristic behavior of the mixtures with the high clay concentration could be explained by considering the effect of Brownian motion on the network structure formed in these dispersions as well as by the poor solubility of poly(ethylene glycol) in water at high temperatures. The flow activation energy was determined and discussed. An abrupt increase of the flow activation energy was evidenced between 2% and 3% Laponite RD. The rheological measurements carried out at different rest times showed a decrease of the gelation time from 1 week to 2 h when the clay concentration increases from 2% to 4%. The aging kinetics of poly(ethylene glycol)/Laponite RD/water mixtures, investigated at 25 °C, revealed the increase of the viscosity-rate kinetic constant by increasing the clay concentration.

  7. Finite Element Analysis of Magnetic Damping Effects on G-Jitter Induced Fluid Flow

    NASA Technical Reports Server (NTRS)

    Pan, Bo; Li, Ben Q.; deGroh, Henry C., III

    1997-01-01

    This paper reports some interim results on numerical modeling and analyses of magnetic damping of g-jitter driven fluid flow in microgravity. A finite element model is developed to represent the fluid flow, thermal and solute transport phenomena in a 2-D cavity under g-jitter conditions with and without an applied magnetic field. The numerical model is checked by comparing with analytical solutions obtained for a simple parallel plate channel flow driven by g-jitter in a transverse magnetic field. The model is then applied to study the effect of steady state g-jitter induced oscillation and on the solute redistribution in the liquid that bears direct relevance to the Bridgman-Stockbarger single crystal growth processes. A selection of computed results is presented and the results indicate that an applied magnetic field can effectively damp the velocity caused by g-jitter and help to reduce the time variation of solute redistribution.

  8. Some calculations of transonic potential flow for the NACA 64A006 airfoil with oscillating flap

    NASA Technical Reports Server (NTRS)

    Bennett, R. M.; Bland, S. R.

    1978-01-01

    A method for calculating the transonic flow over steady and oscillating airfoils was developed by Isogai. It solves the full potential equation with a semi-implicit, time-marching, finite difference technique. Steady flow solutions are obtained from time asymptotic solutions for a steady airfoil. Corresponding oscillatory solutions are obtained by initiating an oscillation and marching in time for several cycles until a converged periodic solution is achieved. In this paper the method is described in general terms, and results are compared with experimental data for both steady flow and for oscillations at several values of reduced frequency. Good agreement for static pressures is shown for subcritical speeds, with increasing deviation as Mach number is increased into the supercritical speed range. Fair agreement with experiment was obtained at high reduced frequencies with larger deviations at low reduced frequencies.

  9. An Eulerian/Lagrangian coupling procedure for three-dimensional vortical flows

    NASA Technical Reports Server (NTRS)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of 3D vortical flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method, added to the Eulerian time-marching procedure, provides a correction of the Eulerian solution. In turn, the Eulerian solution is used to integrate the Lagrangian state-vector along the particles trajectories. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers describe accurately the convection properties and enhance the vorticity and entropy capturing capabilities of the Eulerian solver. The Eulerian/Lagrangian coupling strategies are discussed and the combined scheme is tested on a constant stagnation pressure flow in a 90 deg bend and on a swirling pipe flow. As the numerical diffusion is reduced when using the Lagrangian correction, a vorticity gradient augmentation is identified as a basic problem of this inviscid calculation.

  10. Saturated-unsaturated flow in a compressible leaky-unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, Phoolendra K.; Vesselinov, Velimir V.; Kuhlman, Kristopher L.

    2012-06-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  11. Radial flow towards well in leaky unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Kuhlman, K. L.

    2012-12-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large- diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  12. Finite analytic numerical solution of heat transfer and flow past a square channel cavity

    NASA Technical Reports Server (NTRS)

    Chen, C.-J.; Obasih, K.

    1982-01-01

    A numerical solution of flow and heat transfer characteristics is obtained by the finite analytic method for a two dimensional laminar channel flow over a two-dimensional square cavity. The finite analytic method utilizes the local analytic solution in a small element of the problem region to form the algebraic equation relating an interior nodal value with its surrounding nodal values. Stable and rapidly converged solutions were obtained for Reynolds numbers ranging to 1000 and Prandtl number to 10. Streamfunction, vorticity and temperature profiles are solved. Local and mean Nusselt number are given. It is found that the separation streamlines between the cavity and channel flow are concave into the cavity at low Reynolds number and convex at high Reynolds number (Re greater than 100) and for square cavity the mean Nusselt number may be approximately correlated with Peclet number as Nu(m) = 0.365 Pe exp 0.2.

  13. Infiltration Processes and Flow Velocities Across the Landscape: When and Where is Macropore Flow Relevant?

    NASA Astrophysics Data System (ADS)

    Demand, D.; Blume, T.; Weiler, M.

    2017-12-01

    Preferential flow in macropores significantly affects the distributions of water and solutes in soil and many studies showed its relevance worldwide. Although some models include this process as a second pore domain, little is known about the spatial patterns and temporal dynamics. For example, while flow in the matrix is usually modeled and parameterized based on soil texture, an influence of texture on non-capillary flow for a given land-use class is poorly understood. To investigate the temporal and spatial dynamics on preferential flow we used a four-year soil moisture dataset from the mesoscale Attert catchment (288 km²) in Luxembourg. This dataset contains time series from 126 soil profiles in different textures and two land-use classes (forest, grassland). The soil moisture probes were installed in 10, 30 and 50 cm depth and measured in a 5-minute temporal resolution. Events were defined by a soil moisture increase higher than the instrument noise after a precipitation sum of more than 1 mm. Precipitation was measured next to the profiles so that each location could be associated to its unique precipitation characteristics. For every event and profile the soil moisture reaction was classified in sequential (ordered by depth) and non-sequential response. A non-sequential soil moisture reaction was used as an indicator of preferential flow. For sequential flow, the velocity was determined by the first reaction between two vertically adjacent sensors. The sensor reaction and wetting front velocity was analyzed in the context of precipitation characteristics and initial soil water content. Grassland sites showed a lower proportion of non-sequential flow than forest sites. For forest, non-sequential response is dependent on texture, rainfall intensity and initial water content. This is less distinct for the grassland sites. Furthermore, sequential reactions show higher flow velocities at sites, which also have high percentage of non-sequential response. In contrast, grassland sites show a more homogenous wetting front independent of soil texture. Compared against common modelling approaches of soil water flow, measured velocities show clear evidence of preferential flow, especially for forest soils. The analysis also shows that vegetation can alter the soil properties above the textural properties alone.

  14. Flow Generated by a Partially Penetrating Well in a Leaky Two-Aquifer System with a Storative Semiconfining Layer

    NASA Astrophysics Data System (ADS)

    Sepulveda, N.; Rohrer, K.

    2008-05-01

    The permeability of the semiconfining layers of the highly productive Floridan Aquifer System may be large enough to invalidate the assumptions of the leaky aquifer theory. These layers are the intermediate confining and the middle semiconfining units. The analysis of aquifer-test data with analytical solutions of the ground-water flow equation developed with the approximation of a low hydraulic conductivity ratio between the semiconfining layer and the aquifer may lead to inaccurate hydraulic parameters. An analytical solution is presented here for the flow in a confined leaky aquifer, the overlying storative semiconfining layer, and the unconfined aquifer, generated by a partially penetrating well in a two-aquifer system, and allowing vertical and lateral flow components to occur in the semiconfining layer. The equations describing flow caused by a partially penetrating production well are solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Analysis of the drawdown data from an aquifer test performed in central Florida showed that the flow solution presented here for the semiconfining layer provides a better match and a more unique identification of the hydraulic parameters than an analytical solution that considers only vertical flow in the semiconfining layer.

  15. Separated flows near the nose of a body of revolution

    NASA Technical Reports Server (NTRS)

    Lin, S. P.

    1986-01-01

    The solution of the Navier-Stokes equations for the problem of cross-flow separataion about a deforming cylinder was achieved by iteration. It was shown that the separation starts at the rear stagnation point and the point of primary separation moves upstram along the cylinder surface. A general method of linear stability analysis for nonparallel external flows was constructed, which consists of representing the eigenfunctions with complete orthogonal sets and forms characteristic equations with the Galerkin method. The method was applied to the Kovasznay flow which is an exact solution of the Navier-Stokes equation. The results show that when the critical parameter is exceeded, there are only a few isolated unstable eigen-frequencies. Another exact solution is shown to be absolutely and monotonically stable with respect to infinitesimal disturbances of all frequencies. The flow is also globally, asymptotically, and monotonically stable in the mean with respect o three-dimensional disturbances. This result forms the sound foundation of rigorous stability analysis for nonparallel flows, and provides an invaluable test ground for future studies of nonparallel flows in which the basic states do not posses exact solutions. The application of this method to the study of the formation of spiral vorticies near the nose of a rotating body of revolution is underway. The same method will be applied to the stability analysis of reversed flow over a plate with suction.

  16. An implicit scheme with memory reduction technique for steady state solutions of DVBE in all flow regimes

    NASA Astrophysics Data System (ADS)

    Yang, L. M.; Shu, C.; Yang, W. M.; Wu, J.

    2018-04-01

    High consumption of memory and computational effort is the major barrier to prevent the widespread use of the discrete velocity method (DVM) in the simulation of flows in all flow regimes. To overcome this drawback, an implicit DVM with a memory reduction technique for solving a steady discrete velocity Boltzmann equation (DVBE) is presented in this work. In the method, the distribution functions in the whole discrete velocity space do not need to be stored, and they are calculated from the macroscopic flow variables. As a result, its memory requirement is in the same order as the conventional Euler/Navier-Stokes solver. In the meantime, it is more efficient than the explicit DVM for the simulation of various flows. To make the method efficient for solving flow problems in all flow regimes, a prediction step is introduced to estimate the local equilibrium state of the DVBE. In the prediction step, the distribution function at the cell interface is calculated by the local solution of DVBE. For the flow simulation, when the cell size is less than the mean free path, the prediction step has almost no effect on the solution. However, when the cell size is much larger than the mean free path, the prediction step dominates the solution so as to provide reasonable results in such a flow regime. In addition, to further improve the computational efficiency of the developed scheme in the continuum flow regime, the implicit technique is also introduced into the prediction step. Numerical results showed that the proposed implicit scheme can provide reasonable results in all flow regimes and increase significantly the computational efficiency in the continuum flow regime as compared with the existing DVM solvers.

  17. Analysis of the flow field generated near an aircraft engine operating in reverse thrust. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ledwith, W. A., Jr.

    1972-01-01

    A computer solution is developed to the exhaust gas reingestion problem for aircraft operating in the reverse thrust mode on a crosswind-free runway. The computer program determines the location of the inlet flow pattern, whether the exhaust efflux lies within the inlet flow pattern or not, and if so, the approximate time before the reversed flow reaches the engine inlet. The program is written so that the user is free to select discrete runway speeds or to study the entire aircraft deceleration process for both the far field and cross-ingestion problems. While developed with STOL applications in mind, the solution is equally applicable to conventional designs. The inlet and reversed jet flow fields involved in the problem are assumed to be noninteracting. The nacelle model used in determining the inlet flow field is generated using an iterative solution to the Neuman problem from potential flow theory while the reversed jet flow field is adapted using an empirical correlation from the literature. Sample results obtained using the program are included.

  18. Refinement of current monitoring methodology for electroosmotic flow assessment under low ionic strength conditions

    PubMed Central

    Saucedo-Espinosa, Mario A.; Lapizco-Encinas, Blanca H.

    2016-01-01

    Current monitoring is a well-established technique for the characterization of electroosmotic (EO) flow in microfluidic devices. This method relies on monitoring the time response of the electric current when a test buffer solution is displaced by an auxiliary solution using EO flow. In this scheme, each solution has a different ionic concentration (and electric conductivity). The difference in the ionic concentration of the two solutions defines the dynamic time response of the electric current and, hence, the current signal to be measured: larger concentration differences result in larger measurable signals. A small concentration difference is needed, however, to avoid dispersion at the interface between the two solutions, which can result in undesired pressure-driven flow that conflicts with the EO flow. Additional challenges arise as the conductivity of the test solution decreases, leading to a reduced electric current signal that may be masked by noise during the measuring process, making for a difficult estimation of an accurate EO mobility. This contribution presents a new scheme for current monitoring that employs multiple channels arranged in parallel, producing an increase in the signal-to-noise ratio of the electric current to be measured and increasing the estimation accuracy. The use of this parallel approach is particularly useful in the estimation of the EO mobility in systems where low conductivity mediums are required, such as insulator based dielectrophoresis devices. PMID:27375813

  19. Non-linear dynamics and alternating 'flip' solutions in ferrofluidic Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Altmeyer, Sebastian

    2018-04-01

    This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined between two concentric independently rotating cylinders. We detected alternating 'flip' solutions which are flow states featuring typical characteristics of slow-fast-dynamics in dynamical systems. The flip corresponds to a temporal change in the axial wavenumber and we find them to appear either as pure 2-fold axisymmetric (due to the symmetry-breaking nature of the applied transversal magnetic field) or involving non-axisymmetric, helical modes in its interim solution. The latter ones show features of typical ribbon solutions. In any case the flip solutions have a preferential first axial wavenumber which corresponds to the more stable state (slow dynamics) and second axial wavenumber, corresponding to the short appearing more unstable state (fast dynamics). However, in both cases the flip time grows exponential with increasing the magnetic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to exist, with lifetime going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical, ordinary (usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of ferrofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of mildly chaotic dynamics seems to be a more appropriate expression for the observed motion.

  20. Further investigation of a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Weatherill, W. H.; Ehlers, F. E.; Yip, E.; Sebastian, J. D.

    1980-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. The steady velocity potential is obtained first from the well-known nonlinear equation for steady transonic flow. The unsteady velocity potential is then obtained from a linear differential equation in complex form with spatially varying coefficients. Since sinusoidal motion is assumed, the unsteady equation is independent of time. An out-of-core direct solution procedure was developed and applied to two-dimensional sections. Results are presented for a section of vanishing thickness in subsonic flow and an NACA 64A006 airfoil in supersonic flow. Good correlation is obtained in the first case at values of Mach number and reduced frequency of direct interest in flutter analyses. Reasonable results are obtained in the second case. Comparisons of two-dimensional finite difference solutions with exact analytic solutions indicate that the accuracy of the difference solution is dependent on the boundary conditions used on the outer boundaries. Homogeneous boundary conditions on the mesh edges that yield complex eigenvalues give the most accurate finite difference solutions. The plane outgoing wave boundary conditions meet these requirements.

  1. Spatial Convergence of Three Dimensional Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Anderson, W. Kyle

    2016-01-01

    Finite-volume and finite-element schemes, both implemented within the FUN3D flow solver, are evaluated for several test cases described on the Turbulence-Modeling Resource (TMR) web site. The cases include subsonic flow over a hemisphere cylinder, subsonic flow over a swept bump configuration, and supersonic flow in a square duct. The finite- volume and finite-element schemes are both used to obtain solutions for the first two cases, whereas only the finite-volume scheme is used for the supersonic duct. For the hemisphere cylinder, finite-element solutions obtained on tetrahedral meshes are compared with finite- volume solutions on mixed-element meshes. For the swept bump, finite-volume solutions have been obtained for both hexahedral and tetrahedral meshes and are compared with finite-element solutions obtained on tetrahedral meshes. For the hemisphere cylinder and the swept bump, solutions are obtained on a series of meshes with varying grid density and comparisons are made between drag coefficients, pressure distributions, velocity profiles, and profiles of the turbulence working variable. The square duct shows small variation due to element type or the spatial accuracy of turbulence model convection. It is demonstrated that the finite-element scheme on tetrahedral meshes yields similar accuracy as the finite- volume scheme on mixed-element and hexahedral grids, and demonstrates less sensitivity to the mesh topology (biased tetrahedral grids) than the finite-volume scheme.

  2. The thermodynamic and hydrodynamic properties of macromolecules that influence the hydrodynamics of porous systems.

    PubMed

    Comper, W D

    1994-06-21

    The water flow across porous, semipermeable membranes associated with osmosis and filtration under a variety of conditions is analysed and compared to macromolecular diffusion across free-liquid boundaries, diffusion and sedimentation in the ultracentrifuge, and tracer diffusion of water. This study establishes that osmosis can be explained in terms of the irreversible thermodynamics of diffusion. For macromolecular osmotically active solutes in the semidilute concentration regime the water flows across semipermeable porous membranes are interpreted in terms of a rate-limiting solute-solvent exchange layer that exists on the solution side of the membrane adjacent to the membrane pore; both osmosis and filtration will be governed by these exchange layers. These exchange layers also yield unique properties of their constituent molecules in systems where there is osmotic equilibration between solutions of different solutes. This study also establishes the need to consider the internal osmotic pressure of membranes in the pressure balance associated with the flow across the membrane. The complex situation of partially permeable membranes is analysed for the simple case where there are no mechanical gradients and there is only one osmotically active solution that creates a rate-limiting exchange layer. This treatment predicts that the flow will be governed primarily by the osmotic pressure difference associated with the partitioning of the solute at the membrane-solution interface.

  3. One-dimensional analytical solution for hydraulic head and numerical solution for solute transport through a horizontal fracture for submarine groundwater discharge.

    PubMed

    He, Cairong; Wang, Tongke; Zhao, Zhixue; Hao, Yonghong; Yeh, Tian-Chyi J; Zhan, Hongbin

    2017-11-01

    Submarine groundwater discharge (SGD) has been recognized as a major pathway of groundwater flow to coastal oceanic environments. It could affect water quality and marine ecosystems due to pollutants and trace elements transported through groundwater. Relations between different characteristics of aquifers and SGD have been investigated extensively before, but the role of fractures in SGD still remains unknown. In order to better understand the mechanism of groundwater flow and solute transport through fractures in SGD, one-dimensional analytical solutions of groundwater hydraulic head and velocity through a synthetic horizontal fracture with periodic boundary conditions were derived using a Laplace transform technique. Then, numerical solutions of solute transport associated with the given groundwater velocity were developed using a finite-difference method. The results indicated that SGD associated with groundwater flow and solute transport was mainly controlled by sea level periodic fluctuations, which altered the hydraulic head and the hydraulic head gradient in the fracture. As a result, the velocity of groundwater flow associated with SGD also fluctuated periodically. We found that the pollutant concentration associated with SGD oscillated around a constant value, and could not reach a steady state. This was particularly true at locations close to the seashore. This finding of the role of fracture in SGD will assist pollution remediation and marine conservation in coastal regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. One-dimensional analytical solution for hydraulic head and numerical solution for solute transport through a horizontal fracture for submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    He, Cairong; Wang, Tongke; Zhao, Zhixue; Hao, Yonghong; Yeh, Tian-Chyi J.; Zhan, Hongbin

    2017-11-01

    Submarine groundwater discharge (SGD) has been recognized as a major pathway of groundwater flow to coastal oceanic environments. It could affect water quality and marine ecosystems due to pollutants and trace elements transported through groundwater. Relations between different characteristics of aquifers and SGD have been investigated extensively before, but the role of fractures in SGD still remains unknown. In order to better understand the mechanism of groundwater flow and solute transport through fractures in SGD, one-dimensional analytical solutions of groundwater hydraulic head and velocity through a synthetic horizontal fracture with periodic boundary conditions were derived using a Laplace transform technique. Then, numerical solutions of solute transport associated with the given groundwater velocity were developed using a finite-difference method. The results indicated that SGD associated with groundwater flow and solute transport was mainly controlled by sea level periodic fluctuations, which altered the hydraulic head and the hydraulic head gradient in the fracture. As a result, the velocity of groundwater flow associated with SGD also fluctuated periodically. We found that the pollutant concentration associated with SGD oscillated around a constant value, and could not reach a steady state. This was particularly true at locations close to the seashore. This finding of the role of fracture in SGD will assist pollution remediation and marine conservation in coastal regions.

  5. Effects of ions on the solubility transition and the phase-separation of N-isopropylacrylamide in water.

    PubMed

    Sasaki, Shigeo; Okabe, Satoshi

    2011-11-10

    The effects of NaCl, NaOH, and HCl on the solubility transition and the phase-separation of N-isopropylacrylamide (NIPA) were investigated for the purpose of clarifying the physicochemical mechanism of salting-out and salting-in phenomena. The discrete change in the solubility of NIPA in the salt-free water at the solubility transition (reported in J. Phys. Chem. B 2010, 114, 14995-15002) decreased with the addition of HCl and disappeared in the HCl solutions at concentrations higher than 2 M, while it increased with additions of NaOH and NaCl. A difference in NIPA concentration between the phase-separated solutions decreases with the addition of HCl and increases with additions of NaOH and NaCl. Partition coefficients of HCl in the phase-separated NIPA-rich solutions are higher than those in the NIPA poor solutions, while partition coefficients of NaCl and NaOH between the NIPA-rich and -poor solutions have trends opposite to those of HCl. The present results clearly indicate that the HCl favors the dehydrated NIPA and stabilizes the H(2)O-poor state of the NIPA molecule more than NaCl.

  6. A multi-tracer approach coupled to numerical models to improve understanding of mountain block processes in a high elevation, semi-humid catchment

    NASA Astrophysics Data System (ADS)

    Dwivedi, R.; McIntosh, J. C.; Meixner, T.; Ferré, T. P. A.; Chorover, J.

    2016-12-01

    Mountain systems are critical sources of recharge to adjacent alluvial basins in dryland regions. Yet, mountain systems face poorly defined threats due to climate change in terms of reduced snowpack, precipitation changes, and increased temperatures. Fundamentally, the climate risks to mountain systems are uncertain due to our limited understanding of natural recharge processes. Our goal is to combine measurements and models to provide improved spatial and temporal descriptions of groundwater flow paths and transit times in a headwater catchment located in a sub-humid region. This information is important to quantifying groundwater age and, thereby, to providing more accurate assessments of the vulnerability of these systems to climate change. We are using: (a) combination of geochemical composition, along with 2H/18O and 3H isotopes to improve an existing conceptual model for mountain block recharge (MBR) for the Marshall Gulch Catchment (MGC) located within the Santa Catalina Mountains. The current model only focuses on shallow flow paths through the upper unconfined aquifer with no representation of the catchment's fractured-bedrock aquifer. Groundwater flow, solute transport, and groundwater age will be modeled throughout MGC using COMSOL Multiphysics® software. Competing models in terms of spatial distribution of required hydrologic parameters, e.g. hydraulic conductivity and porosity, will be proposed and these models will be used to design discriminatory data collection efforts based on multi-tracer methods. Initial end-member mixing results indicate that baseflow in MGC, if considered the same as the streamflow during the dry periods, is not represented by the chemistry of deep groundwater in the mountain system. In the ternary mixing space, most of the samples plot outside the mixing curve. Therefore, to further constrain the contributions of water from various reservoirs we are collecting stable water isotopes, tritium, and solute chemistry of precipitation, shallow groundwater, local spring water, MGC streamflow, and at a drainage location much lower than MGC outlet to better define and characterize each end-member of the ternary mixing model. Consequently, the end-member mixing results are expected to facilitate us in better understanding the MBR processes in and beyond MGC. Mountain systems are critical sources of recharge to adjacent alluvial basins in dryland regions. Yet, mountain systems face poorly defined threats due to climate change in terms of reduced snowpack, precipitation changes, and increased temperatures. Fundamentally, the climate risks to mountain systems are uncertain due to our limited understanding of natural recharge processes. Our goal is to combine measurements and models to provide improved spatial and temporal descriptions of groundwater flow paths and transit times in a headwater catchment located in a sub-humid region. This information is important to quantifying groundwater age and, thereby, to providing more accurate assessments of the vulnerability of these systems to climate change. We are using: (a) combination of geochemical composition, along with 2H/18O and 3H isotopes to improve an existing conceptual model for mountain block recharge (MBR) for the Marshall Gulch Catchment (MGC) located within the Santa Catalina Mountains. The current model only focuses on shallow flow paths through the upper unconfined aquifer with no representation of the catchment's fractured-bedrock aquifer. Groundwater flow, solute transport, and groundwater age will be modeled throughout MGC using COMSOL Multiphysics® software. Competing models in terms of spatial distribution of required hydrologic parameters, e.g. hydraulic conductivity and porosity, will be proposed and these models will be used to design discriminatory data collection efforts based on multi-tracer methods. Initial end-member mixing results indicate that baseflow in MGC, if considered the same as the streamflow during the dry periods, is not represented by the chemistry of deep groundwater in the mountain system. In the ternary mixing space, most of the samples plot outside the mixing curve. Therefore, to further constrain the contributions of water from various reservoirs we are collecting stable water isotopes, tritium, and solute chemistry of precipitation, shallow groundwater, local spring water, MGC streamflow, and at a drainage location much lower than MGC outlet to better define and characterize each end-member of the ternary mixing model. Consequently, the end-member mixing results are expected to facilitate us in better understanding the MBR processes in and beyond MGC.

  7. A generalized volumetric dispersion model for a class of two-phase separation/reaction: finite difference solutions

    NASA Astrophysics Data System (ADS)

    Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut

    2017-03-01

    This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.

  8. Direct estimation of mass flow and diffusion of nitrogen compounds in solution and soil.

    PubMed

    Oyewole, Olusegun Ayodeji; Inselsbacher, Erich; Näsholm, Torgny

    2014-02-01

    Plant nutrient uptake from soil is mainly governed by diffusion and transpirationally induced mass flow, but the current methods for assessing the relative importance of these processes are indirect. We developed a microdialysis method using solutions of different osmotic potentials as perfusates to simulate diffusion and mass flow processes, and assessed how induced mass flow affected fluxes of nitrogen (N) compounds in solution and in boreal forest soil. Varying the osmotic potential of perfusates induced vertical fluxes in the direction of the dialysis membranes at rates of between 1 × 10(-8) and 3 × 10(-7)  m s(-1) , thus covering the estimated range of water velocities perpendicular to root surfaces and induced by transpiration. Mass flow increased N fluxes in solution but even more so in soil. This effect was explained by an indirect effect of mass flow on rates of diffusive fluxes, possibly caused by the formation of steeper gradients in concentrations of N compounds from membrane surfaces out in the soil. Our results suggest that transpiration may be an essential driver of plant N acquisition. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  9. Magnetized, mass-loaded, rotating accretion flows

    NASA Astrophysics Data System (ADS)

    Toniazzo, T.; Hartquist, T. W.; Durisen, R. H.

    2001-03-01

    We present a semi-analytical investigation of a simple one-dimensional, steady-state model for a mass-loaded, rotating, magnetized, hydrodynamical flow. Our approach is analogous to one used in early studies of magnetized winds. The model represents the infall towards a central point mass of the gas generated in a cluster of stars surrounding it, as is likely to occur in some active nuclei and starburst galaxies. We describe the properties of the different classes of infall solutions. We find that the flow becomes faster than the fast-mode speed, and hence decoupled from the centre, only for a limited range of parameter values, and when magnetic stresses are ineffective. Such flow is slowed as it approaches a centrifugal barrier, implying the existence of an accretion disc. When the flow does not become super-fast and the magnetic torque is insufficient, no steady solution extending inward to the centre exists. Finally, with a larger magnetic torque, solutions representing steady sub-Alfvénic flows are found, which can resemble spherical hydrodynamical infall. Such solutions, if applicable, would imply that rotation is not important and that any accretion disc formed would be of very limited size.

  10. Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D convection diffusion problems

    NASA Astrophysics Data System (ADS)

    Ge, Yongbin; Cao, Fujun

    2011-05-01

    In this paper, a multigrid method based on the high order compact (HOC) difference scheme on nonuniform grids, which has been proposed by Kalita et al. [J.C. Kalita, A.K. Dass, D.C. Dalal, A transformation-free HOC scheme for steady convection-diffusion on non-uniform grids, Int. J. Numer. Methods Fluids 44 (2004) 33-53], is proposed to solve the two-dimensional (2D) convection diffusion equation. The HOC scheme is not involved in any grid transformation to map the nonuniform grids to uniform grids, consequently, the multigrid method is brand-new for solving the discrete system arising from the difference equation on nonuniform grids. The corresponding multigrid projection and interpolation operators are constructed by the area ratio. Some boundary layer and local singularity problems are used to demonstrate the superiority of the present method. Numerical results show that the multigrid method with the HOC scheme on nonuniform grids almost gets as equally efficient convergence rate as on uniform grids and the computed solution on nonuniform grids retains fourth order accuracy while on uniform grids just gets very poor solution for very steep boundary layer or high local singularity problems. The present method is also applied to solve the 2D incompressible Navier-Stokes equations using the stream function-vorticity formulation and the numerical solutions of the lid-driven cavity flow problem are obtained and compared with solutions available in the literature.

  11. Using genetic algorithms to determine near-optimal pricing, investment and operating strategies in the electric power industry

    NASA Astrophysics Data System (ADS)

    Wu, Dongjun

    Network industries have technologies characterized by a spatial hierarchy, the "network," with capital-intensive interconnections and time-dependent, capacity-limited flows of products and services through the network to customers. This dissertation studies service pricing, investment and business operating strategies for the electric power network. First-best solutions for a variety of pricing and investment problems have been studied. The evaluation of genetic algorithms (GA, which are methods based on the idea of natural evolution) as a primary means of solving complicated network problems, both w.r.t. pricing: as well as w.r.t. investment and other operating decisions, has been conducted. New constraint-handling techniques in GAs have been studied and tested. The actual application of such constraint-handling techniques in solving practical non-linear optimization problems has been tested on several complex network design problems with encouraging initial results. Genetic algorithms provide solutions that are feasible and close to optimal when the optimal solution is know; in some instances, the near-optimal solutions for small problems by the proposed GA approach can only be tested by pushing the limits of currently available non-linear optimization software. The performance is far better than several commercially available GA programs, which are generally inadequate in solving any of the problems studied in this dissertation, primarily because of their poor handling of constraints. Genetic algorithms, if carefully designed, seem very promising in solving difficult problems which are intractable by traditional analytic methods.

  12. Economic Justification Of Robust Or Adaptive Planning And Design Of Resilient Water Resources Systems Under Deep Uncertainty: A Case Study In The Iolanda Water Treatment Plant Of Lusaka, Zambia

    NASA Astrophysics Data System (ADS)

    Mendoza, G.; Tkach, M.; Kucharski, J.; Chaudhry, R.

    2017-12-01

    This discussion is focused around the application of a bottom-up vulnerability assessment procedure for planning of climate resilience to a water treament plant for teh city of Iolanda, Zambia. This project is a Millennium Challenge Corporation (MCC) innitiaive with technical support by the UNESCO category II, International Center for Integrated Water Resources Management (ICIWaRM) with secretariat at the US Army Corps of Engineers Institute for Water Resources. The MCC is an innovative and independent U.S. foreign aid agency that is helping lead the fight against global poverty. The bottom-up vulnerability assessmentt framework examines critical performance thresholds, examines the external drivers that would lead to failure, establishes plausibility and analytical uncertainty that would lead to failure, and provides the economic justification for robustness or adaptability. This presentation will showcase the experiences in the application of the bottom-up framework to a region that is very vulnerable to climate variability, has poor instituional capacities, and has very limited data. It will illustrate the technical analysis and a decision process that led to a non-obvious climate robust solution. Most importantly it will highlight the challenges of utilizing discounted cash flow analysis (DCFA), such as net present value, in justifying robust or adaptive solutions, i.e. comparing solution under different future risks. We highlight a solution to manage the potential biases these DCFA procedures can incur.

  13. A dual-porosity model for simulating solute transport in oil shale

    USGS Publications Warehouse

    Glover, K.C.

    1987-01-01

    A model is described for simulating three-dimensional groundwater flow and solute transport in oil shale and associated geohydrologic units. The model treats oil shale as a dual-porosity medium by simulating flow and transport within fractures using the finite-element method. Diffusion of solute between fractures and the essentially static water of the shale matrix is simulated by including an analytical solution that acts as a source-sink term to the differential equation of solute transport. While knowledge of fracture orientation and spacing is needed to effectively use the model, it is not necessary to map the locations of individual fractures. The computer program listed in the report incorporates many of the features of previous dual-porosity models while retaining a practical approach to solving field problems. As a result the theory of solute transport is not extended in any appreciable way. The emphasis is on bringing together various aspects of solute transport theory in a manner that is particularly suited to the unusual groundwater flow and solute transport characteristics of oil shale systems. (Author 's abstract)

  14. Calculation of three-dimensional (3-D) internal flow by means of the velocity-vorticity formulation on a staggered grid

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1995-01-01

    A method has been developed to accurately compute the viscous flow in three-dimensional (3-D) enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body fitted computational mesh incorporating a staggered grid methodology. In the staggered grid method, the three components of vorticity are defined at the centers of the computational cell sides, while the velocity components are defined as normal vectors at the centers of the computational cell faces. The staggered grid orientation provides for the accurate definition of the vorticity components at the vorticity locations, the divergence of vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is obtained by utilizing a fractional step solution technique in the three coordinate directions. The boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution. The method provides for the non-iterative solution of the flow field and satisfies the conservation of mass and divergence of vorticity to machine zero at each time step. To test the method, the calculation of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability of the method to predict the flow in arbitrary cavities, results will he shown for both cubic and curved cavities.

  15. Axisymmetric flows from fluid injection into a confined porous medium

    NASA Astrophysics Data System (ADS)

    Guo, Bo; Zheng, Zhong; Celia, Michael A.; Stone, Howard A.

    2016-02-01

    We study the axisymmetric flows generated from fluid injection into a horizontal confined porous medium that is originally saturated with another fluid of different density and viscosity. Neglecting the effects of surface tension and fluid mixing, we use the lubrication approximation to obtain a nonlinear advection-diffusion equation that describes the time evolution of the sharp fluid-fluid interface. The flow behaviors are controlled by two dimensionless groups: M, the viscosity ratio of displaced fluid relative to injected fluid, and Γ, which measures the relative importance of buoyancy and fluid injection. For this axisymmetric geometry, the similarity solution involving R2/T (where R is the dimensionless radial coordinate and T is the dimensionless time) is an exact solution to the nonlinear governing equation for all times. Four analytical expressions are identified as asymptotic approximations (two of which are new solutions): (i) injection-driven flow with the injected fluid being more viscous than the displaced fluid (Γ ≪ 1 and M < 1) where we identify a self-similar solution that indicates a parabolic interface shape; (ii) injection-driven flow with injected and displaced fluids of equal viscosity (Γ ≪ 1 and M = 1), where we find a self-similar solution that predicts a distinct parabolic interface shape; (iii) injection-driven flow with a less viscous injected fluid (Γ ≪ 1 and M > 1) for which there is a rarefaction wave solution, assuming that the Saffman-Taylor instability does not occur at the reservoir scale; and (iv) buoyancy-driven flow (Γ ≫ 1) for which there is a well-known self-similar solution corresponding to gravity currents in an unconfined porous medium [S. Lyle et al. "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)]. The various axisymmetric flows are summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime. The implications of the regime diagram are discussed using practical engineering projects of geological CO2 sequestration, enhanced oil recovery, and underground waste disposal.

  16. A hybridized method for computing high-Reynolds-number hypersonic flow about blunt bodies

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.; Hamilton, H. H., II

    1979-01-01

    A hybridized method for computing the flow about blunt bodies is presented. In this method the flow field is split into its viscid and inviscid parts. The forebody flow field about a parabolic body is computed. For the viscous solution, the Navier-Stokes equations are solved on orthogonal parabolic coordinates using explicit finite differencing. The inviscid flow is determined by using a Moretti type scheme in which the Euler equations are solved, using explicit finite differences, on a nonorthogonal coordinate system which uses the bow shock as an outer boundary. The two solutions are coupled along a common data line and are marched together in time until a converged solution is obtained. Computed results, when compared with experimental and analytical results, indicate the method works well over a wide range of Reynolds numbers and Mach numbers.

  17. RG flows and instantons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gava, Edi

    2012-09-24

    In these two lectures I discuss RG flow solutions in (1,0) six dimensional supergravity involving SU(2) Yang-Mills instantons. in the conformally flat part of the 6D metric. The solutions interpolate between two (4,0) supersymmetric AdS{sub 3} Multiplication-Sign S{sup 3} backgrounds with different values of AdS{sub 3} and S{sup 3} radii and describe RG flows in the dual 2D SCFT. The flows described are of v.e.v. type, driven by a vacuum expectation value of a (not exactly) marginal operator of dimension 2 in the UV. We give an interpretation of the supergravity solution in terms of the D1/D5 system in typemore » I string theory on K3, whose effective field theory is expected to flow to a (4,0) SCFT in the infrared.« less

  18. Commercial turbofan engine exhaust nozzle flow analyses using PAB3D

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Uenishi, K.; Carlson, John R.; Keith, B. D.

    1992-01-01

    Recent developments of a three-dimensional (PAB3D) code have paved the way for a computational investigation of complex aircraft aerodynamic components. The PAB3D code was developed for solving the simplified Reynolds Averaged Navier-Stokes equations in a three-dimensional multiblock/multizone structured mesh domain. The present analysis was applied to commercial turbofan exhaust flow systems. Solution sensitivity to grid density is presented. Laminar flow solutions were developed for all grids and two-equation k-epsilon solutions were developed for selected grids. Static pressure distributions, mass flow and thrust quantities were calculated for on-design engine operating conditions. Good agreement between predicted surface static pressures and experimental data was observed at different locations. Mass flow was predicted within 0.2 percent of experimental data. Thrust forces were typically within 0.4 percent of experimental data.

  19. Application of a flux-split algorithm to chemically relaxing, hypervelocity blunt-body flows

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A.

    1987-01-01

    Viscous, nonequilibrium, hypervelocity flow fields over two axisymmetric configurations are numerically simulated using a factored, implicit, flux-split algorithm. The governing gas-dynamic and species-continuity equations for laminar flow are presented. The gas-dynamics/nonequilibrium-chemistry coupling procedure is developed as part of the solution procedure and is described in detail. Numerical solutions are presented for hypervelocity flows over a hemisphere and over an axisymmetric aeroassisted orbital transfer vehicle using three different chemistry models. The gas models considered are those for an ideal gas, for a frozen gas, and for chemically relaxing air consisting of five species. The calculated results are compared with existing numerical solutions in the literature along the stagnation line of the hemisphere. The effects of free-stream Reynolds number on the nonequilibrium flow field are discussed.

  20. Magnetically driven relativistic jets and winds: Exact solutions

    NASA Technical Reports Server (NTRS)

    Contopoulos, J.

    1994-01-01

    We present self-consistent solutions of the full set of ideal MHD equations which describe steady-state relativistic cold outflows from thin accretion disks. The magnetic field forms a spiral which is anchored in the disk, rotates with it, and accelerates the flow out of the disk plane. The collimation at large distances depends on the total amount of electric current that flows along the jet. We considered various distributions of electric current and derived the result that in straight jets which extend to infinite distances, a strong electric current flows along their axis of symmetry. The asymptotic flow velocities are of the order of the initial rotational velocity at the base of the flow (a few tenths of the speed of light). The solutions are applied to both galactic (small-scale) and extragalactic (large-scale) jets.

  1. Comparison of DSMC and CFD Solutions of Fire II Including Radiative Heating

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Johnston, Christopher O.; Lewis, Mark J.

    2011-01-01

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. These flows may also contain significant radiative heating. To prepare for these missions, NASA is developing the capability to simulate rarefied, ionized flows and to then calculate the resulting radiative heating to the vehicle's surface. In this study, the DSMC codes DAC and DS2V are used to obtain charge-neutral ionization solutions. NASA s direct simulation Monte Carlo code DAC is currently being updated to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced Quantum-Kinetic chemistry model, and to include electronic energy levels as an additional internal energy mode. The Fire II flight test is used in this study to assess these new capabilities. The 1634 second data point was chosen for comparisons to be made in order to include comparisons to computational fluid dynamics solutions. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid. It is shown that there can be quite a bit of variability in the vibrational temperature inferred from DSMC solutions and that, from how radiative heating is computed, the electronic temperature is much better suited for radiative calculations. To include the radiative portion of heating, the flow-field solutions are post-processed by the non-equilibrium radiation code HARA. Acceptable agreement between CFD and DSMC flow field solutions is demonstrated and the progress of the updates to DAC, along with an appropriate radiative heating solution, are discussed. In addition, future plans to generate more high fidelity radiative heat transfer solutions are discussed.

  2. Flow of viscoelastic fluids around a sharp microfluidic bend: Role of wormlike micellar structure

    NASA Astrophysics Data System (ADS)

    Hwang, Margaret Y.; Mohammadigoushki, Hadi; Muller, Susan J.

    2017-04-01

    We examine the flow and instabilities of three viscoelastic fluids—a semidilute aqueous solution of polyethylene oxide (PEO) and two wormlike micellar solutions of cetylpyridinium chloride and sodium salicylate—around a microfluidic 90∘ bend, in which shear deformation and streamline curvature dominate. Similar to results reported by Gulati et al. [S. Gulati et al., Phys. Rev. E 78, 036314 (2008), 10.1103/PhysRevE.78.036314; S. Gulati et al., J. Rheol. 54, 375 (2010), 10.1122/1.3308643] for PEO solutions, we report a critical Weissenberg number (Wi) for the onset of lip vortex formation upstream of the corner. However, the decreased aspect ratio (channel depth to width) results in a slightly higher critical Wi and a vortex that grows more slowly. We consider wormlike micellar solutions of two salt to surfactant concentration ratios R =0.55 and R =0.79 . At R =0.55 , the wormlike micelles are linear and exhibit strong viscoelastic behavior, but at R =0.79 , the wormlike micelles become branched and exhibit shear-banding behavior. Microfluidic experiments on the R =0.55 solution reveal two flow transitions. The first transition, at Wi =6 , is characterized by the formation of a stationary lip vortex upstream of the bend; at the second transition, at Wi =20 , the vortex fluctuates in time and changes size. The R =0.79 solution also exhibits two transitions. The first transition at Wi =4 is characterized by the appearance of two intermittent vortices, one at the lip and one at the far outside corner. Increasing the flow rate to Wi >160 results in a transition to a second unstable regime, where there is only a lip vortex that fluctuates in size. The difference in flow transitions in PEO and wormlike micellar solutions presumably arises from the additional contribution of wormlike micellar breakage and reformation under shear. The flow transitions in wormlike micellar solutions are also significantly affected by chain branching.

  3. A Review of Darcy's Law: Limitations and Alternatives for Predicting Solute Transport

    NASA Astrophysics Data System (ADS)

    Steenhuis, Tammo; Kung, K.-J. Sam; Jaynes, Dan; Helling, Charles S.; Gish, Tim; Kladivko, Eileen

    2016-04-01

    Darcy's Law that was derived originally empirically 160 years ago, has been used successfully in calculating the (Darcy) flux in porous media throughout the world. However, field and laboratory experiments have demonstrated that the Darcy flux employed in the convective disperse equation could only successfully predict solute transport under two conditions: (1) uniformly or densely packed porous media; and (2) field soils under relatively dry condition. Employing the Darcy flux for solute transport in porous media with preferential flow pathways was problematic. In this paper we examine the theoretical background behind these field and laboratory observations and then provide an alternative to predict solute movement. By examining the characteristics of the momentum conservation principles on which Darcy's law is based, we show under what conditions Darcy flux can predict solute transport in porous media of various complexity. We find that, based on several case studies with capillary pores, Darcy's Law inherently merges momentum and in that way erases information on pore-scale velocities. For that reason the Darcy flux cannot predict flow in media with preferential flow conduits where individual pore velocities are essential in predicting the shape of the breakthrough curve and especially "the early arrival" of solutes. To overcome the limitations of the assumption in Darcy's law, we use Jury's conceptualization and employ the measured chemical breakthrough curve as input to characterize the impact of individual preferential flow pathways on chemical transport. Specifically, we discuss how best to take advantage of Jury's conceptualization to extract the pore-scale flow velocity to accurately predict chemical transport through soils with preferential flow pathways.

  4. Effects of wood on debris flow runout in small mountain watersheds.

    Treesearch

    Stephen T. Lancaster; Shannon K. Hayes

    2003-01-01

    Debris flows have typically been viewed as two-phase mixtures of sediment and water, but in forested mountain landscapes, wood can represent a sizable fraction of total flow volume. The effects of this third phase on flow behavior are poorly understood. To evaluate whether wood can have a significant effect on debris flow runout in small mountainous watersheds, we used...

  5. Optimization of the Implementation of Managed Aquifer Recharge - Effects of Aquifer Heterogeneity

    NASA Astrophysics Data System (ADS)

    Maliva, Robert; Missimer, Thomas; Kneppers, Angeline

    2010-05-01

    Managed aquifer recharge (MAR) has become a key component of integrated water resources management, especially in water scarce regions. MAR can serve the dual role of increasing the supply of available water and improving the quality of recharged water through natural attenuation processes. The performance of MAR systems is highly dependent upon site-specific hydrogeological conditions. Aquifer heterogeneity, such as the presence of high-permeability preferential flow zones and dual or even the so-called triple-porosity conditions, has been responsible for the under performance or failure of some MAR systems. Aquifer heterogeneity can result in much more rapid and unpredictable movement and mixing of recharged water and the bypassing of natural attenuation processes. A critical element of MAR projects is a detailed aquifer characterization and the development of groundwater flow and solute transport models at the appropriate spatial and temporal scales that accurately simulate local heterogeneous flow systems. Geochemical modeling based on high-quality, site-specific mineralogical and water chemistry data can also be used to predict the potential for adverse water-rock interactions such as the leaching of arsenic and trace metals into recharged water. Hydrogeological conditions that could lead to poor system performance should be identified early in the project development before the investment is made to construct a full-scale system. Hydrogeological conditions that have lead to poor MAR system performance are typically identifiable at the exploratory well stage of projects. Early detection of adverse hydrogeological conditions provides an opportunity to either abandon a likely under-performing project, select an alternative site with more favorable conditions, or modify the system design to be more compatible with local hydrogeology. Advanced borehole geophysical techniques and workflow software can allow for enhanced aquifer characterization and thus allow for more successful MAR implementation as a tool for improved water resources management.

  6. Interstitial Fluid Flow and Drug Delivery in Vascularized Tumors: A Computational Model

    PubMed Central

    Welter, Michael; Rieger, Heiko

    2013-01-01

    Interstitial fluid is a solution that bathes and surrounds the human cells and provides them with nutrients and a way of waste removal. It is generally believed that elevated tumor interstitial fluid pressure (IFP) is partly responsible for the poor penetration and distribution of therapeutic agents in solid tumors, but the complex interplay of extravasation, permeabilities, vascular heterogeneities and diffusive and convective drug transport remains poorly understood. Here we consider–with the help of a theoretical model–the tumor IFP, interstitial fluid flow (IFF) and its impact upon drug delivery within tumor depending on biophysical determinants such as vessel network morphology, permeabilities and diffusive vs. convective transport. We developed a vascular tumor growth model, including vessel co-option, regression, and angiogenesis, that we extend here by the interstitium (represented by a porous medium obeying Darcy's law) and sources (vessels) and sinks (lymphatics) for IFF. With it we compute the spatial variation of the IFP and IFF and determine its correlation with the vascular network morphology and physiological parameters like vessel wall permeability, tissue conductivity, distribution of lymphatics etc. We find that an increased vascular wall conductivity together with a reduction of lymph function leads to increased tumor IFP, but also that the latter does not necessarily imply a decreased extravasation rate: Generally the IF flow rate is positively correlated with the various conductivities in the system. The IFF field is then used to determine the drug distribution after an injection via a convection diffusion reaction equation for intra- and extracellular concentrations with parameters guided by experimental data for the drug Doxorubicin. We observe that the interplay of convective and diffusive drug transport can lead to quite unexpected effects in the presence of a heterogeneous, compartmentalized vasculature. Finally we discuss various strategies to increase drug exposure time of tumor cells. PMID:23940570

  7. Solute movement in drained fen peat: a field tracer study in a Somerset (UK) wetland

    NASA Astrophysics Data System (ADS)

    Baird, Andrew J.; Gaffney, Simon W.

    2000-10-01

    Little is known about solute transport in peats, despite the obvious importance of solute transport on eco-hydrological processes in both managed and natural peatlands. To address this lack of knowledge, we investigated solute transport processes in an agricultural fen peat using a conservative KBr tracer. The main aim of the study was to elucidate solute transport behaviour in general in this peat, with a more specific aim of investigating whether preferential or bypassing flow occurred. The tracer moved through the peat more rapidly than expected, and the pattern of movement showed clear evidence of plot-scale bypassing flow. The data also provide evidence that bypassing flow occurs in pores at smaller scales. The implications of this study for management of wetland pastures in the Somerset Moors in south-west England are discussed.

  8. Microscopic and low Reynolds number flows between two intersecting permeable walls

    NASA Astrophysics Data System (ADS)

    Egashira, R.; Fujikawa, T.; Yaguchi, H.; Fujikawa, S.

    2018-06-01

    Two-dimensional Navier–Stokes equations are solved in an analytical way to clarify characteristics of low-Re flows in a microscopic channel consisting of two intersecting permeable walls, the intersection of which is supposed to be a sink or a source. Such flows are, therefore, considered to be an extension of the so-called Jeffery–Hamel flow to the permeable wall case. A set of nonlinear forth-order ordinary differential equations are obtained, and their solutions are sought for the small permeable velocity compared with the main flow one by a perturbation method. The solutions contain the solutions found in the past, such as the flow between two parallel permeable walls studied by Berman and the Jeffery–Hamel flow between the impermeable walls as special cases. Velocity distribution and friction loss in pressure along the main stream are represented in the explicit manner and compared with those of the Jeffery–Hamel flow. Numerical examples show that the wall permeability has a great influence on the friction loss. Furthermore, it is shown that the convergent main flow accompanied with the fluid addition through the walls is inversely directed away from the origin due to the balance of the main flow and the permeable one, while the flow accompanied with fluid suction is just directed toward the origin regardless of conditions.

  9. Anomalous Diffusion of Particles Dispersed in Xanthan Solutions Subjected to Shear Flow

    NASA Astrophysics Data System (ADS)

    Takikawa, Yoshinori; Yasuta, Muneharu; Fujii, Shuji; Orihara, Hiroshi; Tanaka, Yoshimi; Nishinari, Katsuyoshi

    2018-05-01

    Xanthan gum exhibits viscoelastic and shear-thinning properties. We investigate the Brownian motion of particles dispersed in xanthan gum solutions that are subjected to simple shear flow. The mean square displacements (MSDs) are obtained in both the flow and vorticity directions. In the absence of shear flow, subdiffusion is observed, MSD ∝ tα with α < 1, where t is time. In the presence of shear flow, however, the exponent α becomes larger together with the MSD itself in both the flow and vorticity directions. We show that the diffusion is enhanced by Taylor dispersion in the flow direction, whereas in the vorticity direction it is enhanced by nonthermal self-diffusion.

  10. Turbulent Recirculating Flows in Isothermal Combustor Geometries

    NASA Technical Reports Server (NTRS)

    Lilley, D.; Rhode, D.

    1985-01-01

    Computer program developed that provides mathematical solution to design and construction of combustion chambers for jet engines. Improved results in areas of combustor flow fields accomplished by this computerprogram solution, cheaper and quicker than experiments involving real systems for models.

  11. Turbofan forced mixer-nozzle internal flowfield. Volume 3: A computer code for 3-D mixing in axisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Kreskovsky, J. P.; Briley, W. R.; Mcdonald, H.

    1982-01-01

    A finite difference method is developed for making detailed predictions of three dimensional subsonic turbulent flow in turbofan lobe mixers. The governing equations are solved by a forward-marching solution procedure which corrects an inviscid potential flow solution for viscous and thermal effects, secondary flows, total pressure distortion and losses, internal flow blockage and pressure drop. Test calculations for a turbulent coaxial jet flow verify that the turbulence model performs satisfactorily for this relatively simple flow. Lobe mixer flows are presented for two geometries typical of current mixer design. These calculations included both hot and cold flow conditions, and both matched and mismatched Mach number and total pressure in the fan and turbine streams.

  12. Ventricular shunt tap as a predictor of proximal shunt malfunction in children: a prospective study.

    PubMed

    Rocque, Brandon G; Lapsiwala, Samir; Iskandar, Bermans J

    2008-06-01

    The clinical diagnosis of cerebrospinal fluid (CSF) shunt malfunction can be challenging. In this prospective study, the authors evaluated a common method of interrogating shunts: the shunt tap; specifically, its ability to predict proximal malfunction. The authors performed standardized shunt taps in a consecutive series of cases involving children with suspected or proven shunt malfunction, assessing flow and, when possible, opening pressure. Data were collected prospectively, and results analyzed in light of surgical findings. A shunt tap was performed prior to 68 operative explorations in 51 patients. Of the 68 taps, 28 yielded poor or no CSF flow on aspiration. After 26 of these 28 procedures, proximal catheter obstruction was identified. After 28 taps with good CSF return and normal or low opening pressure, 18 shunts were found to have a proximal obstruction, 8 had no obstruction, and 2 had a distal obstruction. Another 12 taps with good CSF flow had high opening pressure; subsequent surgery showed distal obstruction in 11 of the shunts, and proximal obstruction in 1. The positive predictive value of poor flow was 93%, while good flow on shunt tap predicted adequate proximal catheter function in only 55% of cases. Poor flow of CSF on shunt tap is highly predictive of obstruction of the proximal catheter. Because not all patients with good flow on shunt tap underwent surgical shunt exploration, the specificity of this test cannot be determined. Nonetheless, a shunt tap that reveals good flow with a normal opening pressure can be misleading, and management of such cases should be based on clinical judgment.

  13. Validation of polyethylene glycol 3350 as a poorly absorbable marker for intestinal perfusion studies.

    PubMed

    Schiller, L R; Santa Ana, C A; Porter, J; Fordtran, J S

    1997-01-01

    Polyethylene glycol (PEG) has been used as a poorly absorbable marker in intestinal perfusion studies, but there is controversy about the absorbability of PEG, particularly when glucose-sodium cotransport is occurring. Total intestinal perfusion studies were done in five normal humans using three solutions containing 1 g/liter PEG 3350 and designed to produce low rates of water absorption, high rates of water absorption, or high rates of glucose-sodium cotransport. Water absorption rates were calculated by traditional nonabsorbable marker equations and by a novel balance technique in which absorption was taken as the difference between the volumes of solution infused and recovered during steady-state conditions. Effluent PEG recovery was 99 +/- 4%, 109 +/- 2%, and 104 +/- 6% of the amount infused with each solution. Water absorption rates measured by use of PEG concentrations were similar to those calculated by the balance technique (r = 0.99). The complete recovery of PEG confirms the poor absorbability of PEG 3350, and the excellent agreement between techniques validates PEG as a poorly absorbed marker, even when glucose-sodium cotransport is occurring.

  14. On a solution of the nonlinear differential equation for transonic flow past a wave-shaped wall

    NASA Technical Reports Server (NTRS)

    Kaplan, Carl

    1952-01-01

    The Prandtl-Busemann small-perturbation method is utilized to obtain the flow of a compressible fluid past an infinitely long wave-shaped wall. When the essential assumption for transonic flow (that all Mach numbers in the region of flow are nearly unity) is introduced, the expression for the velocity potential takes the form of a power series in the transonic similarity parameter. On the basis of this form of the solution, an attempt is made to solve the nonlinear differential equation for transonic flow past the wavy wall. The analysis utilized exhibits clearly the difficulties inherent in nonlinear-flow problems.

  15. Single water channels of aquaporin-1 do not obey the Kedem-Katchalsky equations.

    PubMed

    Curry, M R; Shachar-Hill, B; Hill, A E

    2001-05-15

    The Kedem-Katchalsky (KK) equations are often used to obtain information about the osmotic properties and conductance of channels to water. Using human red cell membranes, in which the osmotic flow is dominated by Aquaporin-1, we show here that compared to NaCl the reflexion coefficient of the channel for methylurea, when corrected for solute volume exchange and for the water permeability of the lipid membrane, is 0.54. The channels are impermeable to these two solutes which would seem to rule out flow interaction and require a reflexion coefficient close to 1.0 for both. Thus, two solutes can give very different osmotic flow rates through a semi-permeable pore, a result at variance with both classical theory and the KK formulation. The use of KK equations to analyze osmotic volume changes, which results in a single hybrid reflexion coefficient for each solute, may explain the discrepancy in the literature between such results and those where the equations have not been employed. Osmotic reflexion coefficients substantially different from 1.0 cannot be ascribed to the participation of other 'hidden' parallel aqueous channels consistently with known properties of the membrane. Furthermore, we show that this difference cannot be due to second-order effects, such as a solute-specific interaction with water in only part of the channel, because the osmosis is linear with driving force down to zero solute concentration, a finding which also rules out the involvement of unstirred-layer effects. Reflexion coefficients smaller than 1.0 do not necessitate water-solute flow interaction in permeable aqueous channels; rather, the osmotic behaviour of impermeable molecular-sized pores can be explained by differences in the fundamental nature of water flow in regions either accessible or inaccessible to solute, created by a varying cross-section of the channel.

  16. The analysis of a nonsimilar laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Stalmach, D. D.; Bertin, J. J.

    1978-01-01

    A computer code is described which yields accurate solutions for a broad range of laminar, nonsimilar boundary layers, providing the inviscid flow field is known. The boundary layer may be subject to mass injection for perfect-gas, nonreacting flows. If no mass injection is present, the code can be used with either perfect-gas or real-gas thermodynamic models. Solutions, ranging from two-dimensional similarity solutions to solutions for the boundary layer on the Space Shuttle Orbiter during reentry conditions, have been obtained with the code. Comparisons of these solutions, and others, with solutions presented in the literature; and with solutions obtained from other codes, demonstrate the accuracy of the present code.

  17. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate gels that were stable to injection of alkaline-surfactant-polymer solutions at 72 F were stable to injection of alkaline-surfactant-polymer solutions at 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Xanthan gum-chromium acetate gels maintained gel integrity in linear corefloods after injection of an alkaline-surfactant-polymer solution at 125 F. At 175 F, Xanthan gum-chromium acetate gels were not stable either with or without subsequent alkaline-surfactant-polymer solution injection. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls when a gel was placed in the B sand. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl more oil than only water injection.« less

  18. Active and hibernating turbulence in minimal channel flow of newtonian and polymeric fluids.

    PubMed

    Xi, Li; Graham, Michael D

    2010-05-28

    Turbulent channel flow of drag-reducing polymer solutions is simulated in minimal flow geometries. Even in the Newtonian limit, we find intervals of "hibernating" turbulence that display many features of the universal maximum drag reduction asymptote observed in polymer solutions: weak streamwise vortices, nearly nonexistent streamwise variations, and a mean velocity gradient that quantitatively matches experiments. As viscoelasticity increases, the frequency of these intervals also increases, while the intervals themselves are unchanged, leading to flows that increasingly resemble maximum drag reduction.

  19. Unstructured mesh algorithms for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.

  20. Exact solution for flow in a porous pipe with unsteady wall suction and/or injection

    NASA Astrophysics Data System (ADS)

    Tsangaris, S.; Kondaxakis, D.; Vlachakis, N. W.

    2007-10-01

    This paper presents an extension of the exact solution of the steady laminar axisymmetric flow in a straight pipe of circular cross section with porous wall, given by R.M. Terrill, to the case of unsteady wall injection and/or suction. The cases of the pulsating parabolic profile and of the developed pulsating flow are investigated as examples. The pulsating flow in porous ducts has many applications in biomedical engineering and in other engineering areas.

  1. Boundary Layer Flow Over a Moving Wavy Surface

    NASA Astrophysics Data System (ADS)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a novel self-similar solution is obtained from the first order set of equations. A second order solution is also obtained, stressing the role of small curvature on the boundary layer flow. The proposed model and solution for the boundary layer problem overlaying a moving wavy surface can also be used as a base flow for stability problems that can develop in a boundary layer, including phases of transitional states.

  2. Boundary layers at the interface of two different shear flows

    NASA Astrophysics Data System (ADS)

    Weidman, Patrick D.; Wang, C. Y.

    2018-05-01

    We present solutions for the boundary layer between two uniform shear flows flowing in the same direction. In the upper layer, the flow has shear strength a, fluid density ρ1, and kinematic viscosity ν1, while the lower layer has shear strength b, fluid density ρ2, and kinematic viscosity ν2. Similarity transformations reduce the boundary-layer equations to a pair of ordinary differential equations governed by three dimensionless parameters: the shear strength ratio γ = b/a, the density ratio ρ = ρ2/ρ1, and the viscosity ratio ν = ν2/ν1. Further analysis shows that an affine transformation reduces this multi-parameter problem to a single ordinary differential equation which may be efficiently integrated as an initial-value problem. Solutions of the original boundary-value problem are shown to agree with the initial-value integrations, but additional dual and quadruple solutions are found using this method. We argue on physical grounds and through bifurcation analysis that these additional solutions are not tenable. The present problem is applicable to the trailing edge flow over a thin airfoil with camber.

  3. Turbulent Fluid Motion 6: Turbulence, Nonlinear Dynamics, and Deterministic Chaos

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1996-01-01

    Several turbulent and nonturbulent solutions of the Navier-Stokes equations are obtained. The unaveraged equations are used numerically in conjunction with tools and concepts from nonlinear dynamics, including time series, phase portraits, Poincare sections, Liapunov exponents, power spectra, and strange attractors. Initially neighboring solutions for a low-Reynolds-number fully developed turbulence are compared. The turbulence is sustained by a nonrandom time-independent external force. The solutions, on the average, separate exponentially with time, having a positive Liapunov exponent. Thus, the turbulence is characterized as chaotic. In a search for solutions which contrast with the turbulent ones, the Reynolds number (or strength of the forcing) is reduced. Several qualitatively different flows are noted. These are, respectively, fully chaotic, complex periodic, weakly chaotic, simple periodic, and fixed-point. Of these, we classify only the fully chaotic flows as turbulent. Those flows have both a positive Liapunov exponent and Poincare sections without pattern. By contrast, the weakly chaotic flows, although having positive Liapunov exponents, have some pattern in their Poincare sections. The fixed-point and periodic flows are nonturbulent, since turbulence, as generally understood, is both time-dependent and aperiodic.

  4. Viscid/inviscid interaction analysis of thrust augmenting ejectors

    NASA Technical Reports Server (NTRS)

    Bevilacqua, P. M.; Dejoode, A. D.

    1979-01-01

    A method was developed for calculating the static performance of thrust augmenting ejectors by matching a viscous solution for the flow through the ejector to an inviscid solution for the flow outside the ejector. A two dimensional analysis utilizing a turbulence kinetic energy model is used to calculate the rate of entrainment by the jets. Vortex panel methods are then used with the requirement that the ejector shroud must be a streamline of the flow induced by the jets to determine the strength of circulation generated around the shroud. In effect, the ejector shroud is considered to be flying in the velocity field of the jets. The solution is converged by iterating between the rate of entrainment and the strength of the circulation. This approach offers the advantage of including external influences on the flow through the ejector. Comparisons with data are presented for an ejector having a single central nozzle and Coanda jet on the walls. The accuracy of the matched solution is found to be especially sensitive to the jet flap effect of the flow just downstream of the ejector exit.

  5. A longitudinal analysis of salivary flow in control subjects and older adults with type 2 diabetes.

    PubMed

    Chávez, E M; Borrell, L N; Taylor, G W; Ship, J A

    2001-02-01

    Many diabetics complain of xerostomia, a condition that can affect oral health, nutritional status, and diet selection. This study's purposes were (1) to investigate the effect on salivary flow of type 2 diabetes and change in glycemic control in a group of older adults over time and (2) to compare flow rates with subjective complaints of xerostomia. A total of 39 older adults, 24 with type 2 diabetes and 15 who were nondiabetic (controls), aged 54-90 years, participated in a 1-year follow-up study. Diabetic status was determined by means of glycosylated hemoglobin (HbA1c) levels and 2-hour glucose tolerance tests. Poor glycemic control was defined as HbA1c > 9%. Unstimulated whole, unstimulated parotid, and stimulated parotid saliva flow rates were measured for all subjects by a single examiner at baseline and 1 year later. Each subject completed a standardized xerostomia questionnaire at every visit. Age, sex, and duration of diabetes did not adversely affect salivary flow rates. Subjects with poorly controlled diabetes had significantly lower stimulated parotid saliva flow rates at both visits. There were no significant changes in flow rates over time on the basis of diabetic status or glycemic control. Subjects with diabetes reported significantly more complaints of thirst but not of xerostomia at 1 year. These results suggest that older adults with poorly controlled diabetes may have impaired salivary flow in comparison with subjects with better controlled diabetes and nondiabetic subjects, yet they may not have concomitant xerostomic complaints. There were no significant changes in salivary flow rates or glycemic control over the 1-year period.

  6. Multiple Long-Time Solutions for Intermediate Reynolds Number Flow past a Circular Cylinder with a Nonlinear Inertial and Dissipative Attachment

    NASA Astrophysics Data System (ADS)

    Blanchard, Antoine B. E.; Bergman, Lawrence A.; Vakakis, Alexander F.; Pearlstein, Arne J.

    2016-11-01

    We consider two-dimensional flow past a linearly-sprung cylinder allowed to undergo rectilinear motion normal to the mean flow, with an attached "nonlinear energy sink" consisting of a mass allowed to rotate about the cylinder axis, and whose rotational motion is linearly damped by a viscous damper. For Re < 50, where the flow is expected to be two-dimensional, we use different inlet transients to identify multiple long-time solutions, and to study how they depend on Re and a dimensionless spring constant. For fixed values of the ratio of cylinder density to fluid density, dimensionless damping coefficient, and ratio of the rotating mass to the total mass, we find that different inlet transients lead to different long-time solutions, including solutions that are steady and symmetric (with a motionless cylinder), time-periodic, quasi-periodic, and chaotic. The results show that over a wide range of the parameters, the steady symmetric motionless-cylinder solution is locally, but not globally, stable. Supported by NSF Grant CMMI-1363231.

  7. Numerical Solution of the Flow of a Perfect Gas Over A Circular Cylinder at Infinite Mach Number

    NASA Technical Reports Server (NTRS)

    Hamaker, Frank M.

    1959-01-01

    A solution for the two-dimensional flow of an inviscid perfect gas over a circular cylinder at infinite Mach number is obtained by numerical methods of analysis. Nonisentropic conditions of curved shock waves and vorticity are included in the solution. The analysis is divided into two distinct regions, the subsonic region which is analyzed by the relaxation method of Southwell and the supersonic region which was treated by the method of characteristics. Both these methods of analysis are inapplicable on the sonic line which is therefore considered separately. The shapes of the sonic line and the shock wave are obtained by iteration techniques. The striking result of the solution is the strong curvature of the sonic line and of the other lines of constant Mach number. Because of this the influence of the supersonic flow on the sonic line is negligible. On comparison with Newtonian flow methods, it is found that the approximate methods show a larger variation of surface pressure than is given by the present solution.

  8. A modified Dodge algorithm for the parabolized Navier-Stokes equation and compressible duct flows

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1981-01-01

    A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitive agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions.

  9. A study of the effects of macrosegregation and buoyancy-driven flow in binary mixture solidification

    NASA Technical Reports Server (NTRS)

    Sinha, S. K.; Sundararajan, T.; Garg, V. K.

    1993-01-01

    A generalized anisotropic porous medium approach is developed for modelling the flow, heat and mass transport processes during binary mixture solidification. Transient predictions are obtained using FEM, coupled with an implicit time-marching scheme, for solidification inside a two-dimensional rectangular enclosure. A parametric study focusing attention on the effects of solutal buoyancy and thermal buoyancy is presented. It is observed that three parameters, namely the thermal Rayleigh number, the solutal Rayleigh number, and the relative density change parameter, significantly alter the flow fields in the liquid and the mushy regions. Depending upon the nature of these flow fields, the solute enrichment caused by macrosegregation may occur in the top or the bottom region of the enclosure.

  10. Reduction of numerical diffusion in three-dimensional vortical flows using a coupled Eulerian/Lagrangian solution procedure

    NASA Technical Reports Server (NTRS)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A new approach based on the coupling of an Eulerian and a Lagrangian solver, aimed at reducing the numerical diffusion errors of standard Eulerian time-marching finite-volume solvers, is presented. The approach is applied to the computation of the secondary flow in two bent pipes and the flow around a 3D wing. Using convective point markers the Lagrangian approach provides a correction of the basic Eulerian solution. The Eulerian flow in turn integrates in time the Lagrangian state-vector. A comparison of coarse and fine grid Eulerian solutions makes it possible to identify numerical diffusion. It is shown that the Eulerian/Lagrangian approach is an effective method for reducing numerical diffusion errors.

  11. Analysis of strong-interaction dynamic stall for laminar flow on airfoils

    NASA Technical Reports Server (NTRS)

    Gibeling, H. J.; Shamroth, S. J.; Eiseman, P. R.

    1978-01-01

    A compressible Navier-Stokes solution procedure is applied to the flow about an isolated airfoil. Two major problem areas were investigated. The first area is that of developing a coordinate system and an initial step in this direction has been taken. An airfoil coordinate system obtained from specification of discrete data points developed and the heat conduction equation has been solved in this system. Efforts required to allow the Navier-Stokes equations to be solved in this system are discussed. The second problem area is that of obtaining flow field solutions. Solutions for the flow about a circular cylinder and an isolated airfoil are presented. In the former case, the prediction is shown to be in good agreement with data.

  12. Approximate Analytical Solutions for Hypersonic Flow Over Slender Power Law Bodies

    NASA Technical Reports Server (NTRS)

    Mirels, Harold

    1959-01-01

    Approximate analytical solutions are presented for two-dimensional and axisymmetric hypersonic flow over slender power law bodies. Both zero order (M approaches infinity) and first order (small but nonvanishing values of 1/(M(Delta)(sup 2) solutions are presented, where M is free-stream Mach number and Delta is a characteristic slope. These solutions are compared with exact numerical integration of the equations of motion and appear to be accurate particularly when the shock is relatively close to the body.

  13. Numerical solution for the interaction of shock wave with laminar boundary layer in two-dimensional flow on a flat plate. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Landau, U.

    1984-01-01

    The finite difference computation method was investigated for solving problems of interaction between a shock wave and a laminar boundary layer, through solution of the complete Navier-Stokes equations. This method provided excellent solutions, was simple to perform and needed a relatively short solution time. A large number of runs for various flow conditions could be carried out from which the interaction characteristics and principal factors that influence interaction could be studied.

  14. Aqueous electrolytes for redox flow battery systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tianbiao; Li, Bin; Wei, Xiaoliang

    An aqueous redox flow battery system includes an aqueous catholyte and an aqueous anolyte. The aqueous catholyte may comprise (i) an optionally substituted thiourea or a nitroxyl radical compound and (ii) a catholyte aqueous supporting solution. The aqueous anolyte may comprise (i) metal cations or a viologen compound and (ii) an anolyte aqueous supporting solution. The catholyte aqueous supporting solution and the anolyte aqueous supporting solution independently may comprise (i) a proton source, (ii) a halide source, or (iii) a proton source and a halide source.

  15. Analytical solution of groundwater flow in a sloping aquifer with stream-aquifer interaction.

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhan, H.

    2017-12-01

    This poster presents a new analytical solution to study water exchange, hydraulic head distribution and water flow in a stream-unconfined aquifer interaction system with a sloping bed and stream of varying heads in presence of two thin vertical sedimentary layers. The formation of a clogging bed of fine-grained sediments allows the interfaces among a sloping aquifer and two rivers as the third kind and Cauchy boundary conditions. The numerical solution of the corresponding nonlinear Boussinesq equation is also developed to compare the performance of the analytical solution. The effects of precipitation recharge, bed slope and stage variation rate of two rivers for water flow in the sloping aquifer are discussed in the results.

  16. [Which technique should be used in the phenotyping of lymphocytic alveolitis: Immunocytochemistry or flow cytometry].

    PubMed

    Mlika, Mona; Kasmi, Rihem; Safra, Ines; Braham, Emna; Chebbi, Chokri; Mezni, Faouzi El

    2017-10-01

    Diffuse interstitial pneumonias are considered as a group of multiple affections characterized by challenging diagnoses because of the lack of specific clinical signs. Radiologic investigations highlight the diagnoses in most of the cases but bronchoalveolar lavage plays a key role in the diagnostic diagram. We aim to compare the immunocytochemical technique and the flow cytometry in the phenotyping of lymphocytic alveolitis. We described a series of 32 lymphocytic alveolitis, which were analyzed using immunocytochemistry and flow cytometry. We found a good reproducibility between the immunocytochemistry performed on smears and cytoblocks (kappa=0.7) and a poor reproducibility between immunocytochemistry and flow cytometry (kappa=0.35). Our study emphasized on the poor reproducibility between immunocytochemistry and flow cytometry. Further studies about the reliability of both techniques are needed especially in discordant cases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Impact of bimodal textural heterogeneity and connectivity on flow and transport through unsaturated mine waste rock

    NASA Astrophysics Data System (ADS)

    Appels, Willemijn M.; Ireson, Andrew M.; Barbour, S. Lee

    2018-02-01

    Mine waste rock dumps have highly variable flowpaths caused by contrasting textures and geometry of materials laid down during the 'plug dumping' process. Numerical experiments were conducted to investigate how these characteristics control unsaturated zone flow and transport. Hypothetical profiles of inner-lift structure were generated with multiple point statistics and populated with hydraulic parameters of a finer and coarser material. Early arrival of water and solutes at the bottom of the lifts was observed after spring snowmelt. The leaching efficiency, a measure of the proportion of a resident solute that is flushed out of the rock via infiltrating snowmelt or rainfall, was consistently high, but modified by the structure and texture of the lift. Under high rates of net percolation during snowmelt, preferential flow was generated in coarse textured part of the rock, and solutes in the fine textured parts of the rock remained stagnant. Under lower rates of net percolation during the summer and fall, finer materialswere flushed too, and the spatial variability of solute concentration in the lift was reduced. Layering of lifts leads to lower flow rates at depth, minimizing preferential flow and increased leaching of resident solutes. These findings highlight the limited role of large scale connected geometries on focusing flow and transport under dynamic surface net percolation conditions. As such, our findings agree with recent numerical results from soil studies with Gaussian connected geometries as well as recent experimental findings, emphasizing the dominant role of matrix flow and high leaching efficiency in large waste rock dumps.

  18. Colloid Mobilization in a Fractured Soil: Effect of Pore-Water Exchange between Preferential Flow Paths and Soil Matrix.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2016-03-01

    Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils.

  19. The effect of preoperative Lugol's iodine on intraoperative bleeding in patients with hyperthyroidism.

    PubMed

    Yilmaz, Yeliz; Kamer, Kemal Erdinc; Ureyen, Orhan; Sari, Erdem; Acar, Turan; Karahalli, Onder

    2016-08-01

    To investigate the effect of preoperative Lugol's iodine on intraoperative bleeding in patients with hyperthyroidism. This controlled, randomized, prospective cohort was carried out on 40 patients who admitted for surgery due to hyperthyroidism. Cases were randomly assigned to receive either preoperative treatment with Lugol solution (Group 1) or no preoperative treatment with Lugol solution (Group 2). Group 3 (n = 10) consisted of healthy adults with no known history and signs of hyperthyroidism. Blood flow through the thyroid arteries of patients was measured by color flow Doppler ultrasonography. Free T3, free T4, TSH, thyroid volume and the resistance index of the four main thyroid arteries were measured in all patients. There was not a significant difference between gender, preoperative serum thyroid hormone levels, or thyroid gland volumes between groups 1 and 2. The mean blood flow of the patients in Group 1 was significantly lower than values in Group 2. When age, gender, thyroid hormone, TSH, thyroid volume, blood flow, and Lugol solution treatment were included as independent variables, Lugol solution treatment (OR, 7.40; 95% CI, 1.02-58.46; p = 0.001) was found to be the only significant independent determinant of intraoperative blood loss. Lugol solution treatment resulted in a 7.40-fold decrease in the rate of intraoperative blood loss. Preoperative Lugol solution treatment was found to be a significant independent determinant of intraoperative blood loss. Moreover, preoperative Lugol solution treatment decreased the rate of blood flow, and intraoperative blood loss during thyroidectomy.

  20. Fluid-Structure Interaction Effects on Mass Flow Rates in Solid Rocket Motors

    DTIC Science & Technology

    2015-09-02

    FEA ) is explored. A propellant flap in a cross flow is analyzed. Comparisons are made between an analytical solution, a solely CFD solution, a manual...finite element analysis ( FEA ) is explored.  A  propellant flap in a cross flow is analyzed.  Comparisons are made between an analytical  solution, a...Condition Zones ..................................................................... 11  Figure 6: Pressure Boundary Condition Applied to  FEA  model

  1. Stopped-in-loop flow analysis of trace vanadium in water.

    PubMed

    Teshima, Norio; Ohno, Shinsuke; Sakai, Tadao

    2007-01-01

    The new concept of stopped-in-loop flow analysis (SIL-FA) is proposed, and an SIL-FA method for the catalytic determination of vanadium is demonstrated. In an SIL format, a sample solution merges with reagent(s), and the well-mixed solution is loaded into a loop. The solution in the loop is separated by a six-way switching valve from the main stream. While the reaction proceeds in the stationary loop, the SIL-FA system does not need to establish a baseline continuously. This leads to a reduction in reagent consumption and waste generation compared with traditional flow injection analysis.

  2. Rapid and efficient mixing in a slip-driven three-dimensional flow in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Pacheco, J. Rafael; Ping Chen, Kang; Hayes, Mark A.

    2006-08-01

    A method for generating mixing in an electroosmotic flow of an electrolytic solution in a three-dimensional channel is proposed. When the width-to-height aspect ratio of the channel cross-section is large, mixing of a blob of a solute in a slip-driven three-dimensional flow in a rectangular channel can be used to model and assess the effectiveness of this method. It is demonstrated through numerical simulations that under certain operating conditions, rapid and efficient mixing can be achieved. Future investigation will include the solution of the exact equations and experimentation.

  3. On the anomaly of velocity-pressure decoupling in collocated mesh solutions

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook; Vanoverbeke, Thomas

    1991-01-01

    The use of various pressure correction algorithms originally developed for fully staggered meshes can yield a velocity-pressure decoupled solution for collocated meshes. The mechanism that causes velocity-pressure decoupling is identified. It is shown that the use of a partial differential equation for the incremental pressure eliminates such a mechanism and yields a velocity-pressure coupled solution. Example flows considered are a three dimensional lid-driven cavity flow and a laminar flow through a 90 deg bend square duct. Numerical results obtained using the collocated mesh are in good agreement with the measured data and other numerical results.

  4. Influence of numerical dissipation in computing supersonic vortex-dominated flows

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.; Chuang, A.

    1986-01-01

    Steady supersonic vortex-dominated flows are solved using the unsteady Euler equations for conical and three-dimensional flows around sharp- and round-edged delta wings. The computational method is a finite-volume scheme which uses a four-stage Runge-Kutta time stepping with explicit second- and fourth-order dissipation terms. The grid is generated by a modified Joukowski transformation. The steady flow solution is obtained through time-stepping with initial conditions corresponding to the freestream conditions, and the bow shock is captured as a part of the solution. The scheme is applied to flat-plate and elliptic-section wings with a leading edge sweep of 70 deg at an angle of attack of 10 deg and a freestream Mach number of 2.0. Three grid sizes of 29 x 39, 65 x 65 and 100 x 100 have been used. The results for sharp-edged wings show that they are consistent with all grid sizes and variation of the artificial viscosity coefficients. The results for round-edged wings show that separated and attached flow solutions can be obtained by varying the artificial viscosity coefficients. They also show that the solutions are independent of the way time stepping is done. Local time-stepping and global minimum time-steeping produce same solutions.

  5. Physical vapor transport of mercurous chloride under a nonlinear thermal profile

    NASA Technical Reports Server (NTRS)

    Mennetrier, Christophe; Duval, Walter M. B.; Singh, Narsingh B.

    1992-01-01

    Our study investigates numerically the flow field characteristics during the growth of mercurous chloride (Hg2Cl2) crystals in a rectangular ampoule under terrestrial and microgravity conditions for a nonlinear thermal gradient. With a residual gas lighter than the nutrient, the solutal Grashof number is dominant. We observe that in tilted configurations, when solutal convection is dominant, the maximum transport rate occurs at approximately 40 percent. For the vertical configurations, we were able to obtain solutions only for the cases either below the critical Rayleigh numbers or the stabilized configurations. The total mass flux decreases exponentially with an increase of pressure of residual gas, but it increases following a power law with the temperature difference driving the transport. The nonlinear thermal gradient appears to destabilize the flow field when thermal convection is dominant for both vertical top-heated and bottom-heated configurations. However, when the solutal Grashof number is dominant, the density gradient resulting from the solutal gradient appears to stabilize the flow for the bottom-heated configuration. The flow field for the top-heated configuration is destabilized for high Grashof numbers. The microgravity environment provides a means for lowering convection. For gravity levels of 10(exp -3) g(0) or less, the Stefan wind drives the flow, and no recirculating cell is predicted.

  6. On the motion of viscous fluids in the presence of diffusion

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo

    1988-01-01

    The flow of a viscous incompressible two-component fluid with Fick's-law diffusion is investigated analytically. The existence of a unique global solution for small values of the diffusion coefficient (lambda) is proved for two-dimensional flow. The two- and three-dimensional solutions are also shown to converge toward the solutions of the Navier-Stokes equations for inhomogeneous fluids as lambda approaches zero.

  7. Dynamics of polymers in elongational flow studied by the neutron spin-echo technique

    NASA Astrophysics Data System (ADS)

    Rheinstädter, Maikel C.; Sattler, Rainer; Häußler, Wolfgang; Wagner, Christian

    2010-09-01

    The nanoscale fluctuation dynamics of semidilute high molecular weight polymer solutions of polyethylenoxide (PEO) in D 2O under non-equilibrium flow conditions were studied by the neutron spin-echo technique. The sample cell was in contraction flow geometry and provided a pressure driven flow with a high elongational component that stretched the polymers most efficiently. Neutron scattering experiments in dilute polymer solutions are challenging because of the low polymer concentration and corresponding small quasi-elastic signals. A relaxation process with relaxation times of about 10 ps was observed, which shows anisotropic dynamics with applied flow.

  8. AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.

    1994-01-01

    The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified with fourth-degree polynomial functions of path distance from the maximum thickness point. Input to the aerodynamic and blading design program includes the annulus profile, the overall compressor mass flow, the pressure ratio, and the rotative speed. A number of input parameters are also used to specify and control the blade row aerodynamics and geometry. The output from the aerodynamic solution has an overall blade row and compressor performance summary followed by blade element parameters for the individual blade rows. If desired, the blade coordinates in the streamwise direction for internal flow analysis codes and the coordinates on plane sections through blades for fabrication drawings may be stored and printed. The aerodynamic and blading design program for multistage axial-flow compressors is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 470K of 8 bit bytes. This program was developed in 1981.

  9. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel.

    PubMed

    Park, H M; Lee, W M

    2008-07-01

    Many lab-on-a-chip based microsystems process biofluids such as blood and DNA solutions. These fluids are viscoelastic and show extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. In the present paper, we investigate viscoelastic electroosmotic flows through a rectangular straight microchannel with and without pressure gradient. It is shown that the volumetric flow rates of viscoelastic fluids are significantly different from those of Newtonian fluids under the same external electric field and pressure gradient. Moreover, when pressure gradient is imposed on the microchannel there appear appreciable secondary flows in the viscoelastic fluids, which is never possible for Newtonian laminar flows through straight microchannels. The retarded or enhanced volumetric flow rates and secondary flows affect dispersion of solutes in the microchannel nontrivially.

  10. Topics in structural dynamics: Nonlinear unsteady transonic flows and Monte Carlo methods in acoustics

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.

    1974-01-01

    The results are reported of two unrelated studies. The first was an investigation of the formulation of the equations for non-uniform unsteady flows, by perturbation of an irrotational flow to obtain the linear Green's equation. The resulting integral equation was found to contain a kernel which could be expressed as the solution of the adjoint flow equation, a linear equation for small perturbations, but with non-constant coefficients determined by the steady flow conditions. It is believed that the non-uniform flow effects may prove important in transonic flutter, and that in such cases, the use of doublet type solutions of the wave equation would then prove to be erroneous. The second task covered an initial investigation into the use of the Monte Carlo method for solution of acoustical field problems. Computed results are given for a rectangular room problem, and for a problem involving a circular duct with a source located at the closed end.

  11. Numerical aerodynamic simulation facility. [for flows about three-dimensional configurations

    NASA Technical Reports Server (NTRS)

    Bailey, F. R.; Hathaway, A. W.

    1978-01-01

    Critical to the advancement of computational aerodynamics capability is the ability to simulate flows about three-dimensional configurations that contain both compressible and viscous effects, including turbulence and flow separation at high Reynolds numbers. Analyses were conducted of two solution techniques for solving the Reynolds averaged Navier-Stokes equations describing the mean motion of a turbulent flow with certain terms involving the transport of turbulent momentum and energy modeled by auxiliary equations. The first solution technique is an implicit approximate factorization finite-difference scheme applied to three-dimensional flows that avoids the restrictive stability conditions when small grid spacing is used. The approximate factorization reduces the solution process to a sequence of three one-dimensional problems with easily inverted matrices. The second technique is a hybrid explicit/implicit finite-difference scheme which is also factored and applied to three-dimensional flows. Both methods are applicable to problems with highly distorted grids and a variety of boundary conditions and turbulence models.

  12. Computation of incompressible viscous flows through artificial heart devices with moving boundaries

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Rogers, Stuart; Kwak, Dochan; Chang, I.-DEE

    1991-01-01

    The extension of computational fluid dynamics techniques to artificial heart flow simulations is illustrated. Unsteady incompressible Navier-Stokes equations written in 3-D generalized curvilinear coordinates are solved iteratively at each physical time step until the incompressibility condition is satisfied. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. The efficiency and robustness of the time accurate formulation of the algorithm are tested by computing the flow through model geometries. A channel flow with a moving indentation is computed and validated with experimental measurements and other numerical solutions. In order to handle the geometric complexity and the moving boundary problems, a zonal method and an overlapping grid embedding scheme are used, respectively. Steady state solutions for the flow through a tilting disk heart valve was compared against experimental measurements. Good agreement was obtained. The flow computation during the valve opening and closing is carried out to illustrate the moving boundary capability.

  13. Nonequilibrium thermodynamics of dilute polymer solutions in flow.

    PubMed

    Latinwo, Folarin; Hsiao, Kai-Wen; Schroeder, Charles M

    2014-11-07

    Modern materials processing applications and technologies often occur far from equilibrium. To this end, the processing of complex materials such as polymer melts and nanocomposites generally occurs under strong deformations and flows, conditions under which equilibrium thermodynamics does not apply. As a result, the ability to determine the nonequilibrium thermodynamic properties of polymeric materials from measurable quantities such as heat and work is a major challenge in the field. Here, we use work relations to show that nonequilibrium thermodynamic quantities such as free energy and entropy can be determined for dilute polymer solutions in flow. In this way, we determine the thermodynamic properties of DNA molecules in strong flows using a combination of simulations, kinetic theory, and single molecule experiments. We show that it is possible to calculate polymer relaxation timescales purely from polymer stretching dynamics in flow. We further observe a thermodynamic equivalence between nonequilibrium and equilibrium steady-states for polymeric systems. In this way, our results provide an improved understanding of the energetics of flowing polymer solutions.

  14. Modeling solute transport in a heterogeneous unsaturated porous medium under dynamic boundary conditions on different spatial scales

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel

    2013-04-01

    Understanding transport of solutes/contaminants through unsaturated soil in the shallow subsurface is vital to assess groundwater quality, nutrient cycling or to plan remediation projects. Alternating precipitation and evaporation conditions causing upward and downward flux with differing flow paths, changes in saturation and related structural heterogeneity make the description of transport in the unsaturated zone near the soil-surface a complex problem. Preferential flow paths strongly depend, among other things, on the saturation of a medium. Recent studies (e.g. Bechtold et al., 2011) showed lateral flow and solute transport during evaporation conditions (upward flux) in vertically layered sand columns. Results revealed that during evaporation water and solute are redistributed laterally from coarse to fine media deeper in the soil, and towards zones of lowest hydraulic head near to the soil surface. These zones at the surface can be coarse or fine grained depending on saturation status and evaporation flux. However, if boundary conditions are reversed and precipitation is applied, the flow field is not reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport in the shallow unsaturated zone. In this contribution, we analyze transport of a solute in the shallow subsurface to assess effects resulting from the superposition of heterogeneous soil structures and dynamic flow conditions on various spatial scales. Two-dimensional numerical simulations of unsaturated flow and transport in heterogeneous porous media under changing boundary conditions are carried out using a finite-volume code coupled to a particle tracking algorithm to quantify solute transport and leaching rates. In order to validate numerical simulations, results are qualitatively compared to those of a physical experiment (Bechtold et al., 2011). Numerical simulations differ in lateral scale reaching from 0.2 m to 1.5 m, while the height of the domain is kept constant to 1.5m. Strong material heterogeneity is realized through vertical layers of coarse and fine sand. Both materials remain permanently under liquid-flow-dominated ('stage1') evaporation conditions. Spatial moments as well as the dilution index (Kitanidis, 1994) are used for quantification of transport behaviour. Results show that, while all simulations led to anomalous transport, infiltration-evaporation cycles lead to faster solute leaching rates than solely infiltration at the same net-infiltration rate in both homogeneous and heterogeneous media. Flow and transport-paths significantly differed between infiltration and evaporation, resulting in lateral water fluxes and hence lateral solute transport. Variation of the width of the model domain shows faster leaching rates for domains with small horizontal extent.

  15. Impact of meander geometry and stream flow events on residence times and solute transport in the intra-meander flow

    NASA Astrophysics Data System (ADS)

    Nasir Mahmood, Muhammad; Schmidt, Christian; Trauth, Nico

    2017-04-01

    Stream morphological features, in combination with hydrological variability play a key role in water and solute exchange across surface and subsurface waters. Meanders are prominent morphological features within stream systems which exhibit unique hydrodynamics. The water surface elevation difference across the inner bank of a meander induces lateral hyporheic exchange within the intra-meander region. This hyporheic flow is characterized by considerably prolonged flow paths and residence times (RT) compared to smaller scales of hyporheic exchange. In this study we examine the impact of different meander geometries on the intra-meander hyporheic flow field and solute mobilization under both steady state and transient flow conditions. We developed a number of artificial meander shape scenarios, representing various meander evolution stages, ranging from a typical initial to advanced stage (near cut off ) meander. Three dimensional steady state numerical groundwater flow simulations including the unsaturated zone were performed for the intra-meander region. The meandering stream was implemented in the model by adjusting the top layers of the modelling domain to the streambed elevation and assigning linearly decreasing head boundary conditions to the streambed cells. Residence times for the intra-meander region were computed by advective particle tracking across the inner bank of meander. Selected steady state cases were extended to transient flow simulations to evaluate the impact of stream discharge events on the temporal behavior of the water exchange and solute transport in the intra-meander region. The transient stream discharge was simulated for a number of discharge events of variable duration and peak height using the surface water model HEC-RAS. Transient hydraulic heads obtained from the surface water model were applied as transient head boundary conditions to the streambed cells of the groundwater model. A solute concentration source was added in the unsaturated zone to evaluate the effect of transient flow conditions on solute mobilization. Our preliminary results indicate that residence times ranging from 0.5 to 250 hours are influenced by meander geometry, as well as the size of the intra-meander area. In general, we found that larger intra-meander areas lead to longer flow paths and higher mean intra-meander residence times (MRTs). The shortest RTs were observed near the meander neck in all scenarios, a feature most predominant in more developed meander resulting shorter MRTs. Transient modelling results show that fluctuations in stream hydraulic head influence the transport and zonation of the solute concentration in the intra-meander area with higher and longer stream discharge events leading to stronger mobilization and removal of solutes dominated mainly around meander neck area.

  16. Variational method enabling simplified solutions to the linearized Boltzmann equation for oscillatory gas flows

    NASA Astrophysics Data System (ADS)

    Ladiges, Daniel R.; Sader, John E.

    2018-05-01

    Nanomechanical resonators and sensors, operated in ambient conditions, often generate low-Mach-number oscillating rarefied gas flows. Cercignani [C. Cercignani, J. Stat. Phys. 1, 297 (1969), 10.1007/BF01007482] proposed a variational principle for the linearized Boltzmann equation, which can be used to derive approximate analytical solutions of steady (time-independent) flows. Here we extend and generalize this principle to unsteady oscillatory rarefied flows and thus accommodate resonating nanomechanical devices. This includes a mathematical approach that facilitates its general use and allows for systematic improvements in accuracy. This formulation is demonstrated for two canonical flow problems: oscillatory Couette flow and Stokes' second problem. Approximate analytical formulas giving the bulk velocity and shear stress, valid for arbitrary oscillation frequency, are obtained for Couette flow. For Stokes' second problem, a simple system of ordinary differential equations is derived which may be solved to obtain the desired flow fields. Using this framework, a simple and accurate formula is provided for the shear stress at the oscillating boundary, again for arbitrary frequency, which may prove useful in application. These solutions are easily implemented on any symbolic or numerical package, such as Mathematica or matlab, facilitating the characterization of flows produced by nanomechanical devices and providing insight into the underlying flow physics.

  17. Multi-Scale Thermal Heat Tracer Tests for Characterizing Transport Processes and Flow Channelling in Fractured Media: Theory and Field Experiments

    NASA Astrophysics Data System (ADS)

    de La Bernardie, J.; Klepikova, M.; Bour, O.; Le Borgne, T.; Dentz, M.; Guihéneuf, N.; Gerard, M. F.; Lavenant, N.

    2017-12-01

    The characterization of flow and transport in fractured media is particularly challenging because hydraulic conductivity and transport properties are often strongly dependent on the geometric structure of the fracture surfaces. Here we show how thermal tracer tests may be an excellent complement to conservative solute tracer tests to infer fracture geometry and flow channeling. We performed a series of thermal tracer tests at different scales in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). The first type of thermal tracer tests are push-pull tracer tests at different scales. The temporal and spatial scaling of heat recovery, measured from thermal breakthrough curves, shows a clear signature of flow channeling. In particular, the late time tailing of heat recovery under channeled flow is shown to diverge from the T(t) α t-1,5 behavior expected for the classical parallel plate model and follow the scaling T(t) α 1/t(logt)2 for a simple channel modeled as a tube. Flow channeling is also manifested on the spatial scaling of heat recovery as flow channeling affects the decay of the thermal breakthrough peak amplitude and the increase of the peak time with scale. The second type of thermal tracer tests are flow-through tracer tests where a pulse of hot water was injected in a fracture isolated by a double straddle packer while pumping at the same flow rate in another fracture at a distance of about 10 meters to create a dipole flow field. Comparison with a solute tracer test performed under the same conditions also present a clear signature of flow channeling. We derive analytical expressions for the retardation and decay of the thermal breakthrough peak amplitude for different fracture geometries and show that the observed differences between thermal and solute breakthrough can be explained only by channelized flow. These results suggest that heat transport is much more sensitive to fracture heterogeneity and flow channeling than conservative solute transport. These findings, which bring new insights on the effect of flow channeling on heat transfer in fractured rocks, show how heat recovery in geothermal systems may be controlled by fracture geometry. This highlights the interest of thermal tracer tests as a complement to solute tracers tests to infer fracture aperture and geometry.

  18. Analytic solutions for Long's equation and its generalization

    NASA Astrophysics Data System (ADS)

    Humi, Mayer

    2017-12-01

    Two-dimensional, steady-state, stratified, isothermal atmospheric flow over topography is governed by Long's equation. Numerical solutions of this equation were derived and used by several authors. In particular, these solutions were applied extensively to analyze the experimental observations of gravity waves. In the first part of this paper we derive an extension of this equation to non-isothermal flows. Then we devise a transformation that simplifies this equation. We show that this simplified equation admits solitonic-type solutions in addition to regular gravity waves. These new analytical solutions provide new insights into the propagation and amplitude of gravity waves over topography.

  19. Fluid Flow and Solidification Under Combined Action of Magnetic Fields and Microgravity

    NASA Technical Reports Server (NTRS)

    Li, B. Q.; Shu, Y.; Li, K.; deGroh, H. C.

    2002-01-01

    Mathematical models, both 2-D and 3-D, are developed to represent g-jitter induced fluid flows and their effects on solidification under combined action of magnetic fields and microgravity. The numerical model development is based on the finite element solution of governing equations describing the transient g-jitter driven fluid flows, heat transfer and solutal transport during crystal growth with and without an applied magnetic field in space vehicles. To validate the model predictions, a ground-based g-jitter simulator is developed using the oscillating wall temperatures where timely oscillating fluid flows are measured using a laser PIV system. The measurements are compared well with numerical results obtained from the numerical models. Results show that a combined action derived from magnetic damping and microgravity can be an effective means to control the melt flow and solutal transport in space single crystal growth systems.

  20. BPS objects in D = 7 supergravity and their M-theory origin

    NASA Astrophysics Data System (ADS)

    Dibitetto, Giuseppe; Petri, Nicolò

    2017-12-01

    We study several different types of BPS flows within minimal N=1 , D = 7 supergravity with SU(2) gauge group and non-vanishing topological mass. After reviewing some known domain wall solutions involving only the metric and the ℝ+ scalar field, we move to considering more general flows involving a "dyonic" profile for the 3-form gauge potential. In this context, we consider flows featuring a Mkw3 as well as an AdS3 slicing, write down the corresponding flow equations, and integrate them analytically to obtain many examples of asymptotically AdS7 solutions in presence of a running 3-form. Furthermore, we move to adding the possibility of non-vanishing vector fields, find the new corresponding flows and integrate them numerically. Finally, we discuss the eleven-dimensional interpretation of the aforementioned solutions as effective descriptions of M2 - M5 bound states.

  1. Numerical Analysis of Incipient Separation on 53 Deg Swept Diamond Wing

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.

    2015-01-01

    A systematic analysis of incipient separation and subsequent vortex formation from moderately swept blunt leading edges is presented for a 53 deg swept diamond wing. This work contributes to a collective body of knowledge generated within the NATO/STO AVT-183 Task Group titled 'Reliable Prediction of Separated Flow Onset and Progression for Air and Sea Vehicles'. The objective is to extract insights from the experimentally measured and numerically computed flow fields that might enable turbulence experts to further improve their models for predicting swept blunt leading-edge flow separation. Details of vortex formation are inferred from numerical solutions after establishing a good correlation of the global flow field and surface pressure distributions between wind tunnel measurements and computed flow solutions. From this, significant and sometimes surprising insights into the nature of incipient separation and part-span vortex formation are derived from the wealth of information available in the computational solutions.

  2. Study of microvascular non-Newtonian blood flow modulated by electroosmosis.

    PubMed

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh

    2018-05-01

    An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip.

    PubMed

    Park, H M; Kim, T W

    2009-01-21

    Electrokinetic flows through hydrophobic microchannels experience velocity slip at the microchannel wall, which affects volumetric flow rate and solute retention time. The usual method of predicting the volumetric flow rate and velocity profile for hydrophobic microchannels is to solve the Navier-Stokes equation and the Poisson-Boltzmann equation for the electric potential with the boundary condition of velocity slip expressed by the Navier slip coefficient, which is computationally demanding and defies analytic solutions. In the present investigation, we have devised a simple method of predicting the velocity profiles and volumetric flow rates of electrokinetic flows by extending the concept of the Helmholtz-Smoluchowski velocity to microchannels with Navier slip. The extended Helmholtz-Smoluchowski velocity is simple to use and yields accurate results as compared to the exact solutions. Employing the extended Helmholtz-Smoluchowski velocity, the analytical expressions for volumetric flow rate and velocity profile for electrokinetic flows through rectangular microchannels with Navier slip have been obtained at high values of zeta potential. The range of validity of the extended Helmholtz-Smoluchowski velocity is also investigated.

  4. Pinching solutions of slender cylindrical jets

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.; Orellana, Oscar

    1993-01-01

    Simplified equations for slender jets are derived for a circular jet of one fluid flowing into an ambient second fluid, the flow being confined in a circular tank. Inviscid flows are studied which include both surface tension effects and Kelvin-Helmholtz instability. For slender jets a coupled nonlinear system of equations is found for the jet shape and the axial velocity jump across it. The equations can break down after a finite time and similarity solutions are constructed, and studied analytically and numerically. The break-ups found pertain to the jet pinching after a finite time, without violation of the slender jet ansatz. The system is conservative and admissible singular solutions are those which conserve the total energy, mass, and momentum. Such solutions are constructed analytically and numerically, and in the case of vortex sheets with no surface tension certain solutions are given in closed form.

  5. Saturated-unsaturated flow to a partially penetrating well with storage in a compressible aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Neuman, S. P.

    2010-12-01

    Mishra and Neuman [2010] developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or the unsaturated zone. We extend their solution to the case of a finite diameter pumping well with storage. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten - Mualem constitutive model; and use our solution to analyze drawdown data from a pumping test conducted at the Borden site in Ontario, Canada.

  6. Numerical Simulation of Subsonic and Transonic Propeller Flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron

    1988-01-01

    The numerical simulation of 3-D transonic flow about a system of propeller blades is investigated. In particular, it is shown that the use of helical coordinates significantly simplifies the form of the governing equation when the propeller system is assumed to be surrounded by an irrotational flow field of an inviscid fluid. The unsteady small disturbance equation, valid for lightly loaded blades and expressed in helical coordinates, is derived from the general blade-fixed potential equation, given for an arbitrary coordinate system. The use of a coordinate system which inherently adapts to the mean flow results in a disturbance equation requiring relatively few terms to accurately model the physics of the flow. Furthermore, the helical coordinate system presented here is novel in that it is periodic in the circumferential direction while, simultaneously, maintaining orthogonal properties at the mean blade locations. The periodic characteristic allows a complete cascade of blades to be treated, and the orthogonality property affords straightforward treatment of blade boundary conditions. An ADI numerical scheme is used to compute the solution of the steady flow as an asymptotic limit of an unsteady flow. As an example of the method, solutions are presented for subsonic and transonic flow about a 5 percent thick bicircular arc blade of an 8-bladed cascade. Both high and low advance ratio cases are computed and include a lifting as well as nonlifting cases. The nonlifting solutions obtained are compared to solutions from a Euler code.

  7. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann

    1993-01-01

    A general solution adaptive scheme-based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  8. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann; Usab, William J., Jr.

    1993-01-01

    A general solution adaptive scheme based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  9. On Fully Developed Channel Flows: Some Solutions and Limitations, and Effects of Compressibility, Variable Properties, and Body Forces

    NASA Technical Reports Server (NTRS)

    Maslen, Stephen H.

    1959-01-01

    An examination of the effects of compressibility, variable properties, and body forces on fully developed laminar flow has indicated several limitations on such streams. In the absence of a pressure gradient, but presence of a body force (e.g., gravity), an exact fully developed gas flow results. For a liquid this follows also for the case of a constant streamwise pressure gradient. These motions are exact in the sense of a Couette flow. In the liquid case two solutions (not a new result) can occur for the same boundary conditions. An approximate analytic solution was found which agrees closely with machine calculations.In the case of approximately exact flows, it turns out that for large temperature variations across the channel the effects of convection (due to, say, a wall temperature gradient) and frictional heating must be negligible. In such a case the energy and momentum equations are separated, and the solutions are readily obtained. If the temperature variations are small, then both convection effects and frictional heating can consistently be considered. This case becomes the constant-property incompressible case (or quasi-incompressible case for free-convection flows) considered by many authors. Finally there is a brief discussion of cases wherein streamwise variations of all quantities are allowed but only a such form that independent variables are separable. For the case where the streamwise velocity varies inversely as the square root distance along the channel a solution is given.

  10. Direction dependence of displacement time for two-fluid electroosmotic flow.

    PubMed

    Lim, Chun Yee; Lam, Yee Cheong

    2012-03-01

    Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings.

  11. Direction dependence of displacement time for two-fluid electroosmotic flow

    PubMed Central

    Lim, Chun Yee; Lam, Yee Cheong

    2012-01-01

    Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings. PMID:22662083

  12. Implementation of Flow Tripping Capability in the USM3D Unstructured Flow Solver

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Abdol-Harrid, Khaled S.; Campbell, Richard L.; Frink, Neal T.

    2006-01-01

    A flow tripping capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. The capability is based on prescribing an appropriate profile of turbulence model variables to energize the boundary layer in a plane normal to a specified trip region on the body surface. We demonstrate this approach using the k-e two-equation turbulence model of USM3D. Modification to the solution procedure primarily consists of developing a data structure to identify all unstructured tetrahedral grid cells located in the plane normal to a specified surface trip region and computing a function based on the mean flow solution to specify the modified profile of the turbulence model variables. We leverage this data structure and also show an adjunct approach that is based on enforcing a laminar flow condition on the otherwise fully turbulent flow solution in user specified region. The latter approach is applied for the solutions obtained using other one- and two-equation turbulence models of USM3D. A key ingredient of the present capability is the use of a graphical user-interface tool PREDISC to define a trip region on the body surface in an existing grid. Verification of the present modifications is demonstrated on three cases, namely, a flat plate, the RAE2822 airfoil, and the DLR F6 wing-fuselage configuration.

  13. Implementation of Flow Tripping Capability in the USM3D Unstructured Flow Solver

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Campbell, Richard L.; Frink, Neal T.

    2006-01-01

    A flow tripping capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. The capability is based on prescribing an appropriate profile of turbulence model variables to energize the boundary layer in a plane normal to a specified trip region on the body surface. We demonstrate this approach using the k-epsilon two-equation turbulence model of USM3D. Modification to the solution procedure primarily consists of developing a data structure to identify all unstructured tetrahedral grid cells located in the plane normal to a specified surface trip region and computing a function based on the mean flow solution to specify the modified profile of the turbulence model variables. We leverage this data structure and also show an adjunct approach that is based on enforcing a laminar flow condition on the otherwise fully turbulent flow solution in user-specified region. The latter approach is applied for the solutions obtained using other one-and two-equation turbulence models of USM3D. A key ingredient of the present capability is the use of a graphical user-interface tool PREDISC to define a trip region on the body surface in an existing grid. Verification of the present modifications is demonstrated on three cases, namely, a flat plate, the RAE2822 airfoil, and the DLR F6 wing-fuselage configuration.

  14. Spatiotemporal Responses of Groundwater Flow and Aquifer-River Exchanges to Flood Events

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhan, Hongbin; Schilling, Keith

    2018-03-01

    Rapidly rising river stages induced by flood events lead to considerable river water infiltration into aquifers and carry surface-borne solutes into hyporheic zones which are widely recognized as an important place for the biogeochemical activity. Existing studies for surface-groundwater exchanges induced by flood events usually limit to a river-aquifer cross section that is perpendicular to river channels, and neglect groundwater flow in parallel with river channels. In this study, surface-groundwater exchanges to a flood event are investigated with specific considerations of unconfined flow in direction that is in parallel with river channels. The groundwater flow is described by a two-dimensional Boussinesq equation and the flood event is described by a diffusive-type flood wave. Analytical solutions are derived and tested using the numerical solution. The results indicate that river water infiltrates into aquifers quickly during flood events, and mostly returns to the river within a short period of time after the flood event. However, the rest river water will stay in aquifers for a long period of time. The residual river water not only flows back to rivers but also flows to downstream aquifers. The one-dimensional model of neglecting flow in the direction parallel with river channels will overestimate heads and discharge in upstream aquifers. The return flow induced by the flood event has a power law form with time and has a significant impact on the base flow recession at early times. The solution can match the observed hydraulic heads in riparian zone wells of Iowa during flood events.

  15. Nonlinear elastic instability in channel flows at low Reynolds numbers.

    PubMed

    Pan, L; Morozov, A; Wagner, C; Arratia, P E

    2013-04-26

    It is presently believed that flows of viscoelastic polymer solutions in geometries such as a straight pipe or channel are linearly stable. Here we present experimental evidence that such flows can be nonlinearly unstable and can exhibit a subcritical bifurcation. Velocimetry measurements are performed in a long, straight microchannel; flow disturbances are introduced at the entrance of the channel system by placing a variable number of obstacles. Above a critical flow rate and a critical size of the perturbation, a sudden onset of large velocity fluctuations indicates the presence of a nonlinear subcritical instability. Together with the previous observations of hydrodynamic instabilities in curved geometries, our results suggest that any flow of polymer solutions becomes unstable at sufficiently high flow rates.

  16. Self-similar hot accretion flow onto a neutron star

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail V.

    2001-10-01

    We present analytical and numerical solutions which describe a hot, viscous, two-temperature accretion flow onto a neutron star or any other compact star with a surface. We assume Coulomb coupling between the protons and electrons, and free-free cooling from the electrons. Outside a thin boundary layer, where the accretion flow meets the star, we show that there is an extended settling region which is well-described by two self-similar solutions: (1) a two-temperature solution which is valid in an inner zone r<=102.5 (r is in Schwarzchild units), and (2) a one-temperature solution at larger radii. In both zones, ρ~r-2, Ω~r-3/2, v~r0, Tp~r-1 in the two-temperature zone, Te~r-1/2. The luminosity of the settling zone arises from the rotational energy of the star as the star is braked by viscosity; hence the luminosity is independent of Ṁ. The settling solution is convectively and viscously stable and is unlikely to have strong winds or outflows. The flow is thermally unstable, but the instability may be stabilized by thermal conduction. The settling solution described here is not advection-dominated, and is thus different from the self-similar ADAF found around black holes. When the spin of the star is small enough, however, the present solution transforms smoothly to a (settling) ADAF. .

  17. Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery.

    PubMed

    Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei

    2014-01-08

    A powerful low-cost electrocatalyst, nanorod Nb2O5, is synthesized using the hydrothermal method with monoclinic phases and simultaneously deposited on the surface of a graphite felt (GF) electrode in an all vanadium flow battery (VRB). Cyclic voltammetry (CV) study confirmed that Nb2O5 has catalytic effects toward redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side to facilitate the electrochemical kinetics of the vanadium redox reactions. Because of poor conductivity of Nb2O5, the performance of the Nb2O5 loaded electrodes is strongly dependent on the nanosize and uniform distribution of catalysts on GF surfaces. Accordingly, an optimal amount of W-doped Nb2O5 nanorods with minimum agglomeration and improved distribution on GF surfaces are established by adding water-soluble compounds containing tungsten (W) into the precursor solutions. The corresponding energy efficiency is enhanced by ∼10.7% at high current density (150 mA·cm(-2)) as compared with one without catalysts. Flow battery cyclic performance also demonstrates the excellent stability of the as prepared Nb2O5 catalyst enhanced electrode. These results suggest that Nb2O5-based nanorods, replacing expensive noble metals, uniformly decorating GFs holds great promise as high-performance electrodes for VRB applications.

  18. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries

    DOE PAGES

    Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; ...

    2015-10-23

    Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediatemore » ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.« less

  19. Modeling the Impact of Stream Discharge Events on Riparian Solute Dynamics.

    PubMed

    Mahmood, Muhammad Nasir; Schmidt, Christian; Fleckenstein, Jan H; Trauth, Nico

    2018-03-22

    The biogeochemical composition of stream water and the surrounding riparian water is mainly defined by the exchange of water and solutes between the stream and the riparian zone. Short-term fluctuations in near stream hydraulic head gradients (e.g., during stream flow events) can significantly influence the extent and rate of exchange processes. In this study, we simulate exchanges between streams and their riparian zone driven by stream stage fluctuations during single stream discharge events of varying peak height and duration. Simulated results show that strong stream flow events can trigger solute mobilization in riparian soils and subsequent export to the stream. The timing and amount of solute export is linked to the shape of the discharge event. Higher peaks and increased durations significantly enhance solute export, however, peak height is found to be the dominant control for overall mass export. Mobilized solutes are transported to the stream in two stages (1) by return flow of stream water that was stored in the riparian zone during the event and (2) by vertical movement to the groundwater under gravity drainage from the unsaturated parts of the riparian zone, which lasts for significantly longer time (> 400 days) resulting in long tailing of bank outflows and solute mass outfluxes. We conclude that strong stream discharge events can mobilize and transport solutes from near stream riparian soils into the stream. The impact of short-term stream discharge variations on solute exchange may last for long times after the flow event. © 2018, National Ground Water Association.

  20. Mass transfer in thin films under counter-current gas: experiments and numerical study

    NASA Astrophysics Data System (ADS)

    Lucquiaud, Mathieu; Lavalle, Gianluca; Schmidt, Patrick; Ausner, Ilja; Wehrli, Marc; O Naraigh, Lennon; Valluri, Prashant

    2016-11-01

    Mass transfer in liquid-gas stratified flows is strongly affected by the waviness of the interface. For reactive flows, the chemical reactions occurring at the liquid-gas interface also influence the mass transfer rate. This is encountered in several technological applications, such as absorption units for carbon capture. We investigate the absorption rate of carbon dioxide in a liquid solution. The experimental set-up consists of a vertical channel where a falling film is sheared by a counter-current gas flow. We measure the absorption occurring at different flow conditions, by changing the liquid solution, the liquid flow rate and the gas composition. With the aim to support the experimental results with numerical simulations, we implement in our level-set flow solver a novel module for mass transfer taking into account a variant of the ghost-fluid formalism. We firstly validate the pure mass transfer case with and without hydrodynamics by comparing the species concentration in the bulk flow to the analytical solution. In a final stage, we analyse the absorption rate in reactive flows, and try to reproduce the experimental results by means of numerical simulations to explore the active role of the waves at the interface.

Top